ABSTRACT

Studies on Magnesioferrite

Isao Kushima, Tsuyoshi Amanuma and Tetsuro Yokota

(Sawamura Laboratory)

We have studied the formation temperature and formation ratio of magoesioferrite (MgFe₂O₄) from the mixture of MgO and Fe₂O₃.

The equimolar mixture of oxides was pressed in the mold under about 100 kg/cm^2 ., and heated in air at 700° , 800° , 900° , 1000° , 1200° and 1300° C., for various hours. These sintered samples were examined by X-ray (Debye-Scherrer method), magnetic and chmical analysis. Further the formation ratio of magnetite was studied which was derived from dissociation of Fe₂O₃ contained in the sample. The free MgO contained in sintered samples was leached in ammoniacal ammonium chloride solution.

The results were as follows:

- (1) MgFe₂O₄ are formed by heating the mixture of MgO and Fe₂O₃ over 700°C, and the reaction is complete at 1000°C in one hour.
- (2) When the sample is heated at 1200°C, the intensity of magnetization increases remarkably as compared with the sample heated at 1100°C. It can be considered that this remarkable increase of ferromagnetism is due not only to the change of ionic arrangement, but also to the formation of magnetite in the sample.
- (3) The formation ratio of magnetite in sintered sample is nil at 1100°C., and about 10 % at 1200°C.

(Read at the semi-annual meeting of the Institute on November 26, 1954)