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     The generalized theory of the Archibald ultracentrifugation method has been extended 
 for describing polymer-binary solvent systems. The Archibald functions are derived in terms 

 of the osmotic virial expansion, based on two types of possible definitions of three component 
 systems. 

    To demonstrate the feasibility of the Archibald method in binary solvent systems, the 
 method has been applied to a system of polystyrene in methyl ethyl ketone and methyl chlo-

 roacetate mixture. The molecular weight obtained by this method is in good agreement with 
 those determined by other methods. 

                     INTRODUCTION 

   The Archibald method'," is one of the most common methods for determining 

molecular weights with the analytical ultracentrifuges. Recent developements of 

the theory to polydisperse, nonideal systems have shown that the method allows 

one to determine the weight average molecular weights and the second virial 

coefficients equivalent to those obtained by the light scattering methods-5). In 

this study an attempt has been made to extend the method for describing binary 

solvent systems and to find out what kind of information we could expect to ob-

tain by the binary solvent experiments. 

   The use of binary solvent systems is essentially required in experiments with 

polyelectrolytes, i.e., the measurements are usually made with polyelectrolytes in 

properly buffered solutions. For these cases, we have examined the applicability 
of the Archibald method by taking bovine serum albumin in NaCl solutions as an 

example". 

   Another possible merit of the use of binary solvent systems is that one could 

expect to extend the applicable limit of the method to a higher molecular weight 

region. As is well known, the Archibald method is based on the boundary condi-

tion in the ultracentrifuge cell". The advantage of this method, which permits 

relatively rapid measurements, stems from the fact that the boundary condition 

stands valid at any time even in the early stage of centrifugation, as is opposed 

to the sedimentation equilibrium method". At the same time, however, the use of 

the boundary condition causes a disadvantage of the method, i.e., an ambiguity is 

often involved in determining concentration gradients at the ends of the solution 

column.5'" This is particularly true for solutes with high sedimentation coeffici-

ents, in which the concentration gradients at the ends are usually too steep to be 

determined with high precision. By using a binary solvent consisting of a light 
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and a heavy solvent with respect to the given polymer, the sedimentation rate 

should be considerably reduced (while the diffusion rate should not be much in-

fluenced) so that one would obtain workable Archibald patterns even with high 

molecular weight solutes. 

   In this paper the generalized theory of the Archibald  method') is extended to 

binary solvent systems and the results are compared with those of the osmotic 

pressure and the light scattering methods. Also this paper demonstrates the fea-
sibility of the Archibald method with a binary solvent system by taking a system 

of polystyrene in a mixture consisting of methyl ethyl ketone and methyl chloro-

acetate as an example. 

                         THEORY 

   We consider a three component system consisting of a principal solvent (de-

signated as component 1), a inonodisperse polymer solute (component 2) and a 

second solvent (component 3). We also consider a reference system consisting of 
the complete solution less the polymer solute. In the Archibald experiment the 

complete solution is introduced into one side of a double sector cell and an equal 

amount of the reference solution into the other side of the cell. The cell is cent-

rifuged at a constant angular velocity w and at a constant temperature T. In the 

complete solution, we obtain for the change in the total chemical potential per 

mole of component i (i=2, 3), i1=j i—M;co2r2/2, at radial distance r in the centri-

fugal field : 8,9) 

3 —d ~=Mw2rdr (E i,,i;dm;+V ,dP)(1) 
2=2 

AA,/=(aP /8m9)T,P,m=(2) 

V1= (ay m/8m,)T,P,m(3) 
where m, is the molality (number of moles in the solution containing 1 kg of com-

ponent 1) ; M, and Vi are the molecular weight and the partial molal volume, res-

pectively ; V. is the volume of the solution containing 1 kg of component 1; P is 
the pressure ; the suffix i denotes the quantities refered to component i. The sub-

script m in equations (2) and (3) denotes constancy of all the m; not specifically 

indicated as variable in the derivative. The flow J= relative to the cell is given 

Y: 0 
3 

J = E d(ji /M5)/dr, (i=2, 3)(4) 
j=2 

where L11 is the Onsager phenomenological coefficient as defined by Hooyman.'" 

The use of the condition for mechanical equilibrium in the centrifuge cell, i.e., 

dP=pa2rdr, where p is the local density of the solution, and the use of the boun-

dary condition that the flow of each component is always zero at the ends of the 

solution column lead to :1) 

3 r„2rM2' E (dmi/dr)(5) 
j-2 

          (i=2, 3 ; r=r8 or rb ; for any time t) 
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where ra and ra are the radial distance to the meniscus and to the bottom of the 

solution column, respectively ; and v,=V1/M, is the partial specific volume. On the 

other hand, for the reference solution which contains only m3 moles of component 
3 per 1 kg of component 1, we obtain : 

w2rM3 ° _ A33° (dm,/dr)(7) 

(r=ra or rb; for any time t) 
Here the superscript "0" denotes the quantities refered to the reference solution. 

Reminding that in the ultracentrifuges in common use the concentration gradient 

is measured in terms of refractive index gradient : 

dn=y,Zdm2-1- '3dm3 ; ?r= (an/ami)T,P,m(8) 
we obtain from equations (5), (6) and (8) : 

   1  dYb (M2-----------------------+M3rm) (11123Pm)173M3  
 ZY dr =I(9) 

~ 

                  (P,22-1-b33Pm2)A33 
for the complete solution, and also from equations (7) and (8) : 

 w1Y dr—173°M3,O/A33°(10) 
(r=ra or rb; for any time t) 

for the reference solution. Here the quantity rm is the "adsorption" coefficient 
defined by : 

rm— —A23/1133=(am3/am2)T,P,P3(11) 
   Now we define a quantity, which is termed as the apparent molecular weight 

at time t, Mapp(t), and has the dimension of molecular weight by using experi-
mentally measurable quantities as : 

mop (t) =  RT (dn/dr)— (die Idr)(12) 
0) Y (1-02p°) (n —re) 

(r=ra or rb) 
Here c2 is the apparent specific volume of component 2 ; and (n n°) is the con-
centration of component 2 (appropriately expressed in terms of refractive index 
increment) at either the meniscus or the bottom of the solution column at time 
t. They may be calculated froma sedimentation pattern by using : 

  (nn°)>a=(nn°)t_ora2Jpr2drdr)dr(13) 
(for the bottom, replace ra by rb) Yp being an arbitrary point where the in-

tegrand is zero (see Fig. 1). And (n—n°)1=0 is the initial concentration of component 

2 (again expressed in terms of refractive index increment) and can be calculated 

by multiplying the initial polymer concentration by an appropriate optical factor. 

The optical factor is, in turn, determined by some other independent measurements 

such as boundary forming experiments.2,5) Then the apparent molecular weight, 

Mapp, is obtained from Mapp (t) by taking the limit as t--0 (or perhaps better by 

t1'2>0 as suggested by Yphantis"). Thus the quantity Mapp should be a function 

of the initial concentrations of the solution. Another possible alternative for deter-

mining Mapp is first to extrapolate the quantity [(dn/dr)—(die/dr)] at the me-

niscus or the bottom back to zero time and then multiply it by (RT/w2r)/(1-02p°) 

(n—n°)t o with r=r, or rb, respectively, thus avoiding the graphical integration 
involved in equation (13). 

   At this point, we introduce the condition of osmotic equilibrium for a three 
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component system. We consider a three component system (at pressure P=7r.+P') 

at the osmotic equilibrium against a binary solvent (at pressure P' and concent-

ration m3) through a membrane impermeable only to the component 2. In the 

three component system, the equilibrium condition is :9) 

  Vm(aP) —V.( a'i)—M2(a/ 2)(14)          am2 P1 ft,3\am2k3am2)P1 P3 
Reminding that : 

3 dµ;= E ii dm;+VtdP(15) 
j=2 

(i=2, 3) 
we obtain : 

C (Vm/m2)—(V2+V3rm)7(Vm2)li3-/22-133rm2(16) 
Finally from equations (9)-(16), we obtain: 

Mapp=limMapp(t) 
               t+o 

         RT ai- -1 (M2 + M3'rm) ('2+ '3rm) (17) 
(1—y52p°)(n—n°)t=0 8m2 µ3 (V ./m2) (V2+V3rm) 

It should be noted that all the quantities involved in the above equation are all 

refered to the initial state of the solution. Upon deriving the above equation (17), 
we assumed that the last term in equation (9) and equation (10) cancels with 

each other under the condition m2<<m3 and 

   Equation (17) can be transformed from the molality to the more conven-

tional c-scale (polymer concentration in gram per milliliter of the solution) by 

using the relations : 

ma/Vm=c2/M2(18) 

Vm = (103+m2M2+m3M3) /p(19) 
and also the osmotic virial expansion : 

7r/RT c2 =1/M2 + A2c2 + • • •(20) 

We further expand the initial concentration of component 2 as : 

(n—n°) t=o = (an/ac2) ° m3c2(21) 
and we notice that the bouyancy factor is expressed as : 

(1—(1)2p°) = (ap/ac2) °m3(22) 
From equations (17)-(22) and after some calculations, we finally obtain :    

1   1------r 1V32RT 2V3µ23         +~2Az+c2+•" 
    Mapp (1-I-a°rw) (1+R°rw) LM2 \/-1'33VmM                                                   °22M22µ33 

                                             (23) 
_     a°(an/ac3) 0m2 .°_(ap/ac3) °m3(24) 

 (an/ac2) °m3 (ap/ac2) °m3 
rw = (ac3/ac2) °, 3(25) 

In the above equations the quantities with the superscript "0" denote the values 
in the limit c2=O. The correction term to A2 is negligible except when M2 is very 

small or A2 is made to vanish (osmotic 0-condition). The plot of Ma pp(or 1/M0pp) 

versus c2 yields as the limit c2=0: 

  lim Mapp==M2(1+a°rw) (1+13°rw)(26) 
3340 

The result is equivalent to that of the light scattering method9e12' except the 
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correction factor, i.e., in the latter, the factor is (1-I a°rw)2. To determine the cor-

rect value of M2, we need to know the adsorption coefficient by some other mea-
surements. However, as pointed out by Eisenberg,°"13) by employing a different 

definition of components we can avoid this difficulty. 

   Such a choice in the definition of components in three component systems is 

to take a three component system equilibrated through exhaustive dialysis against 

a given binary solvent.13) The procedure is quite commonly employed for protein 
solutions. In such cases, the density and refractive index differences are measured 

between the equilibrated three component solution and the binary solvent. They 

lead (ap/ac2) ° 3 and (an/ac2) °,3 instead of (ap/acz) °m3 and (an/ac2) °m3, respectively. 

When these conventions are employed, the factor (1-4)2p°) (ie—n°)to in equations 

(12) and (17) can be replaced by : 

(ap/ac2) °k3(an/ac2) °H3c2 
The new definition of the apparent molecular weight, which is denoted by Mapp*, 

takes a simpler form : 
   1 1 -I-(2A2+V32RT )c2+•••(27)    M

app*—M2/-t33VmM22 

In this case, the molecular weight M2 can be directly obtained without any know-
ledge of the adsorption coefficient rw, as suggested by Eisenberg.9'13' 

   It should be noted that in the above derivations, the polymer solute was assu-

med as monodisperse. For a homologous but polydisperse (in molecular weights) 

solute with (an/ac) and (0p/ac) being independent of molecular weights, it can be 

shown that Mapp versus c, c being the total polymer concentration, yields the 

weight average molecular weight, M,,,, i.e., the M2 in equations (23), (26) and (27) 

is Mw. These equations would be useful in describing synthetic polyelectrolytes in 

buffered solutions. 

                     EXPERIMENTAL 

Materials 
   The system investigated was polystyrene in a methyl ethyl ketone and methyl 

chloroacetate mixture (0.456 : 0.544 by weight, respectively) at 30°C. For the sake 
of comparison, solutions of the same polymer in methyl ethyl ketone (MEK) and 

in methyl chloroacetate (MCA) both at 30°C were also examined. The solvents 

were fractionally distilled for two or three time, whenever necessary, just before 

use. The purity of MCA was examined by gas chromatographic analysis. 

   The polystyrene sample was one of the fractions prepared previously in our 

laboratory") by thermal bulk polymerization at a conversion less than 10 % and 

subsequently fractionated with benzene and n-butanol at 30°C. The weight average 

molecular weight was 6.58 x 105 as determined by the light scattering measurement 

in MEK at 20°C. 

Density and bouyancy factor determination 

   Density measurements of the solvent mixtures with various compositions were 

made with several Welde tyye pycnometers (each has the volume about 20 ml in 

a thermostated bath at 30+0.01°C. Table 1 lists the density as a function of sol-

vent composition. Densities of polymer solutions were measured in the similar way. 
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                    Table 1. Density of methyl ethyl ketone and 
                         methyl chloroacetate mixture at 30 deg. C. 

     MCA CONTENT (wt%)DENSITY  (g/ml) 

     0.0000.7942 
     6.2410.8138 
    11.440.8311 

    15.990.8425 
    22.820.8668 
    32.330.8983 
    38.690.9216 
    42.930.9381 
    52.790.9781 
    54.400.9860 
    58.551.0025 
    63.381.0252 
    72.781.0700 
    77.971.0958 
    84.571.1319 
    87.271.1466 
    92.671.1778 
    100.01.2191 

   The bouyancy factor for the second solvent, (1-v3p°), was calculated from the 

density data by : 

    (1-v3p°~(p° -c3) (ap/ac3)  p°-c3(ap/0c3) ' 

while for the bouyancy factor for the polymer, equation (22) was used. 

   The values of the bouyancy factor of polystyrene were 0.0795 for the mixed 

solvent, - 0.168 for MCA and 0.274 for MEK (all at 30°C). The bouyancy factor 

of the second solvent was 0.203. Thus the factor in equation (24) was evaluated 

as S° ̂ 2.55 in the binary solvent. 

Refractive index increment 

   Refractive indices of the solvent mixtures were determined with a Shimadzu-
Abbe type Refractometer Model II using sodium D line at 30±0.5°C. Table 2 lists 

the refractive index as a function of solvent composition. 

                 Table 2. Refractive index nD3o of methyl ethyl ketone 
                           and methyl chloroacetate mixture. 

       MCA CONTENT (wt%)REFRACTIVE INDEX (nD3o) 

    0.0001.374 
    44.061.395 

    54.401.398 
    61.061.402 
    74.911.408 
    100.001.417 
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   The refractive increments of polystyrene solutions in three solvents were 
determined directly with the ultracentrifuge by synthetic boundary cell experim-

ents.2' The specific increments, (an/acz) °, of polystyrene (in unit ml/g) were 0.235 

in MEK, 0.157 in MCA and 0.189 in the mixed solvent. The factor in equation (24) 

was evaluated as a° =0.185 by using the specific increment in the mixed solvent 

and the data in Table 2. 

Ultracentrifugation 

   A "Spinco" Model E analytical ultracentrifuge equipped with a RTIC tempe-

rature controlling unit was used. Schlieren optics was employed using a phase 

plate and a phase angle 80°. The centrifuge cells used were a single sector (Kel-F) 
cell and a double sector (Epon-filled) cell for Archibald runs and a double sector 
synthetic boundary cell for synthetic boundary runs. The Archibald runs were 

performed at a speed 15,220 rpm in MCA and in the mixed solvent and at speeds 
less than 10,000 rpm in MEK. The synthetic boundary runs were made at a speed 

31,410 rpm. All the measurements were made at 30±0.1°C. 

   Schlieren photographs were taken at times from start up to about 60 min. 

The patterns were read on a Nicon Profile Projector Model V-16 (Nihon Kogaku). 

From the patterns, values of (dn/dr) were evaluated by multiplying and optical 

factor of the ultracentrifuge.2,5) 

                 RESULTS AND DISCUSSION 

   Fig. 1 shows typical examples of Archibald patterns obtained with polystyrene 
in the mixed solvent (above) and in MCA (below). In the mixed solvent polysty- 

rarb 

       rarb 

                                  field 
                 Fig. 1 Schlieren photographs of typical Archibald runs. 

          Above : polystyrene in MEK-MCA (0.456 : 0.544) mixture at 30°C. 
                   polymer conc.=0.593g/d1 ; speed=15,220 rpm ; time=55min. 

           Below : polystyrene in MCA at 30°. 
                   polymer conc. =0,488g/d1 ; speed-15,220 rpm ; time=50min. 
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rene slowly sediments toward the bottom of the cell. In MCA the polymer floats 

toward the meniscus rather than sediments toward the bottom, so that the accu-

mulation of solute at the meniscus leads to forming a thick line and this makes 

it difficult to evaluate the correct value of  (dn/dr). On the other hand, the pattern 

at the bottom appears to be fairly good, and we use the bottom data for later 

analysis. However, since the shadow of the cell bottom obscures the detail of the 

pattern, it is not certain that the pattern gives the correct reading of (dn/dr) 
value at the bottom. In the two experiments shown in Fig. 1, which were carried 
out under almost same conditions (concentration, speed, centrifugation time etc.), 

the pattern for the mixed solvent system is seen to be less steeper and easier to 

be analyzed than that for MCA system. This suggests that in the mixed solvent 

system the solutes with much higher molecular weights can be examined by the 

Archibald analysis. 

   As is well known, an error involved in calculating Mapp (t) is resulted mostly 

from an ambiguity in evaluating (dn/dr) at either ends of the solution column. 
Direct reading of the values from a schlieren picture can be safely done perhaps 

as close as 0.02 cm apart from the ends. The values at the ends, therefore, must 

be obtained by some sort of extrapolation procedure.1ihi5) Among the various pro-

cedures proposed so far,5) the linear extraporation of (di/dr) versus r plot near 

the ends seems to be most promising.7,15,16) For monodisperse, ideal solutes, it has 

been shown both theoretically and experimentally that the extrapolation should 

be essentially linear for appropriate combinations of centrifugation time, speed 

and molecular weights. LaBar has worked out a criterion for the linear extrapo-
lation." While for polydisperse, nonideal solutes, there is no theoretical justification. 

However, it has been demonstrated by Weston and Billmeyer16) that even in such 

cases the linear extrapolation leads to molecular weights in good agreement with 

those obtained by light scattering. For these reasons we also have adopted the 

linear extrapolation procedure for evaluating Mapp(t), and any data which did not 

have a linear extrapolation region near the ends have been discarded. The values 

of Mapp(t) thus obtained are plotted against tl'z and extrapolated back to zero time 

and Mapp is determined. 

   The values of Mapp-1 are plotted as a function of polymer concentration for 

three systems in Fig. 2. In all these cases, we find rather high upward concavity 

                         10-
                 30°CMEK 

   8-o 
                                                        MCA 
6 _ 

                                                                           •   ~o                                                                 o Mixed 5oty ent 
               -iY 

2- 

0 --------------------------------------------------------------- 
0 0.7 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Cz (9/d1) 

       Fig. 2 Plots of 1/Mapp versus cz in MEK, in MCA and in the mixed solvent. 
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in the plots. This makes it difficult to obtain high precision in the extrapolation 

to zero concentration. To avoid this difficulty, the data are replotted in Fig. 3 

according to a semi-empirical procedure proposed by  Inagaki,17) which consists of 

plotting -log 114-pp versus c2. 

_50MEK 30°C 
                                                                                                    • 

                                                                                •  `///vvv 
      -5.5 --

• 

Mw° 7.2005 
-6.0 ------------------------------------------------------------------------------------------- 

-5.0-MCA 30°C• 
• • 

O, 0 -5,5-• 

Mw=6.6i•105 
-6.0 
-5.0- Mixed Solvent 30°C 

                                                                                                                         • 
                                            0 •         -5.5-••- 

Mw= 6.58105 
-6.0 .. _. .._ .... 

             0 0.20.4 0.6 0.B 
Cs ( g/dl) 

     Fig. 3 Plots of log (1/Mapp) versus cz in MEK, in MCA and in the mixed solvent. 

   In Fig. 3, the plots respectively extrapolate to the values of molecular weights 

of 7.25 x 105 in MEK, 6.61 x 105 in MCA and 6.58 x 105 in the mixed solvent, which 

are in good agreement with the value from light scattering, 6.58 x 105. The dis-

crepancies in the values obtained in three systems seem to be due to an experi-
mental error. The factor r, in the MEK-MCA mixture seems to be negligible. 

We anticipate that further refinement of the experimental procedures will lead to 
more detailed information on the factor rw. 

   From the plots in Fig. 3, the second virial coefficients (in cgs) are determined 

as 2.24 x 10-4 in MEK, 1.71 x 10-4 in MCA and 1.52 x 10_4 in the mixed solvent, which 

are compared with a value of 1.52 x 10-a obtained by light scattering in MEK at 
20°C. The values obtained by the Archibald method seem to be somewhat higher 

than they should be. Particularly, in view of the fact that the light scattering A2 

has been known to vanish at 27.5°C in MCA,18, the present result of high A2 value 
must be an artifact in the Archibald analysis and the agreement in molecular 

weight in this system seems to be fortuitous. This must be due to an ambiguity in 

evaluating (dn/dr) at the bottom of the cell, which are apparently underestimated. 

The error may be larger in systems with higher concentrations. The slightly hig-

her values in A2 and the appearance of gross curveture in the plots of 1/Mapp 

versus c2 in the other two systems might also be due to the same reason. Further 

refinement of the ultracentrifuge techniques, for example, the reduction in the 

centrifugation speed, will lead to better values of A2. 
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