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    Sedimentation constants of twisted ring macromolecules are calculated by using the spring-
 bead model of the polymeric chain. In the limit of large hydrodynamic interaction, the sedi-

 mentation constant is found to be a monotonously increasing function of the degree of twisting. 
 Its ratio to the sedimentation constant of a linear chain of the same molecular weight is 1.18 

 for the untwisted ring, 1.32 for the singly twisted ring, 1.40 for the doubly twisted ring, ••• 
 and it approaches to the asymptotic limit, 2.00, for the case of extremely high twisting. 

 These values are found to be practically independent of the nature of solvent. 

                      1. INTRODUCTION 

   In the preceding paper of this series, Fukatsu presented a theory of the hyd-

rodynamic properties of flexible (untwisted) ring macromolecules, and showed that 

the ring : linear ratio of the sedimentation constant was 1.18 in the limit of large 

hydrodynamic interaction'>. This result is in a rough agreement with the recent 

experimental values, 1.14 and 1.11, which have been reported on polyoma virus 

DNA') and human papilloma virus DNA,3' respectively. However, according to 

these same experiments, the DNA molecules still occur in another form called the 

twisted ring in addition to the linear and untwisted ring forms, and the twisted 

ring: linear ratio of the sedimentation coefficient is found to be 1.44 for the polyoma 
virus DNA and 1.55 for the human papilloma virus DNA. Thus, this paper intends 

to calculate the theoretical sedimentation coefficient of a series of twisted ring 

molecules and to estimate the degree of twisting of these DNA molecules. 

          2. SEDIMENTATION COEFFICIENT OF A SINGLY 

TWISI'ED RING MOLECULE 

   Let us start with a linear flexible chain polymer consisting of n+1 segments, 

say 0, 1, • • • n th segments, and assume the Gaussian probability density for each 
bond vector re, 

T(rk)=(3/2xra2)3/2 exp[ _(3/2a2)rk2]•(1) 

Let Rst be the displacement vector between two segments s and t. Then, according 

to Fixman,4) the trivariate Gaussian probability density of V1=Ron, V2=Rif and 
V3=Rst of the linear chain is given as 

Po(V1,V2,V3)=(3/2xra2)9/2 ICI -3/2 
x exp [— (3/2a2 ICI ) k.tck'VkVz],(2) 

where ckt is the cofactor of the element ckt in the 3 x 3 determinant I CI, whose 

elements are 

 * 111 * 
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 C1,1  —74 C22—C12=C21 

C33 —C13 — C31 — t-s, 
                  0 for 0<s<t<i or j<s<t<n 

                  t-i for 0<s<i<t<j<n 

C23—C32= j-i for 0<s<i<j<t<n(3) 
                  t-s for 0<i<s<t<j<n 

\j-s for 0<i<s<j<t<n. 

   An untwisted ring molecule may be derived from the linear molecule by join-
ting its 0 th segment with n th segment, or in other words by giving the zero 

value for Ron. Then, by jointing another pair of segments, say i th with j th seg-

ment, we obtain a double ring molecule or the so-called singly twisted ring 

molecule. Thus, the probability density of Rot of the double ring molecule can be 
readily derived from the above trivariate Gaussian function Po(V1, V2, V3) as 

P2(Rst) =NP0(Oon, Oi;, Rot) 

=N
JS(Ron)S(R=>)Po(Ron, Rst)dRan dRii,(4) 

where 8(R) is the three dimensional Dirac delta function and the subscript 2 at-

tached to P represents the number of rings per molecule. N is the normarization 

constant which is given by 

N-'= f Po(Oan, 0;;, Rst)dRst.(5) 
Thus, using Eqs. (2) and (3), we obtain 

P2(Rst) _ (3/2ira2)3/2 (c33/ I)3/2 
x exp [ — (3/2a2) (c33/ C I)Rst2] •(6) 

   According to Kirkwood and Riseman,s' the sedimentation coefficient so of a 

polymer chain is generally given as 
so=M(1--v2po)NAf(7) 

f-1= (1/nc) [1H- (l/67r7on)ESEt<Rst-'>],(8) 
where M, v2 and f are the molecular weight, the partial specific volume and the 

translational friction constant of the polymer, po and 7i, are the density and the 

viscosity of solvent, NA is the Avogadro number and is the friction constant of 

a segment, respectively. Using the hydrodynamic interaction parameter h, we may 

rewrite Eq. (8) in the form, 

f-1= (1/n1) [1+h (2n'a2/3)1/2n-3/2ESE't<Rst-1>],(9) 
with 

h=n1/2/(1270)1/2 arlo.(10) 
Thus, our task is simply to evaluate the statistical average of the inverse distance 

Rst-' between two segments. 

   Using the probability density P2(Rot) given by Eq. (6), we readily obtain 

<Rst-1>— JRst-1P2(Rst)dRst 
=(6/n-a2)1/2(C33/ C )1/2_(11) 

Then, substituting Eq. (11) with Eq. (3) into Eq. (9), and replacing the summation 
with respect to s and t by the integration, we obtain 

     f-1=(1/nn(1-I-1/2hK2),(12) 
             K2=P13/2r -I-P23/27rY .t'YYp21/2_~-"2.h2,-.Y1'ii/2.{1/2)7,-(13) 

    pi= [id-(n—j)]/n,(14) 
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 132=  1—Pi  =  C3  —i)  /n.(15) 
The first and the second terms in Eq. (13) represent the contribution from ring 

1 and 2, respectively, while the remaining terms in parentheses represent the 
contributions from cross configurations in which the segments s and t belong to 
different rings from each other. When p2=0, the molecule becomes identical with 

the untwisted ring molecule, and we have 

K2 (p2 = 0) = n.(16) 

whicn has already been obtained in Part I of this series.' 
   It is now widely accepted that the hydrodynamic properties of any type of 

flexible macromolecules are well approximated by the so-called non-free-draining 

limit of the hydrodynamic interaction, i. e. h>1. In this case, the first term in Eq. 

(12) is negligible, and the ratio of the sedimentation coefficients between two 
different forms of molecule with the same molecular weight is simply represeneted 

by the ratio of K values. For the linear flexible chains, K is given as 8/3.5 Ac-

cordingly, the twisted ring : linear ratio of the sedimentation coefficient is given by 

3K2/8. Table 1 shows the values of 3K2/8 calculated by Eq. (13). As is seen from 

          Table 1. Effect of Ring Formation on the Sedimentation Constant so. 

   No. of ringsSize distributionso (ring)  
so (linear) 

m 131132 pm=Km/Ko 

111.178 
   20.95 0.05 —1.206 

          0.90 0.10 —1.230 
          0.80 0.20 —1.270 
          0.70 0.30 —1.299 
          0.60 0.40 —1.315 
          0.50 0.50 —1.321 
    3uniform size 1/31.400 

  4n1/41.458 
  51/51.500 
  101/101.617 

co//—02.000 

this table, the ratio is rather insensitive to the partition of the size between two 

rings unless pi/p2>5. 

   3. SEDIMENTATION COEFFICIENT OF MULTIPLY TWISTED RINGS 

   The extension of the above calculation to a more general case is straight-

forward though tedious. Here we show only the results of the calculations. If a 

molecule consists of m rings linearly connected by universal joints, the quantity 

Km corresponding to K2 in Eq. (12) is obtained as 

                                     M-1 m--k 
                         -~

'q` 
     Km=Ph3/27r//Jk,ha-1,(17) 

                k//[==11 k!=1 1=11 

(152)



           Hydrodynamic Properties of Dilute Solutions of Ring Polymers. (II). 

            Jk,k+1-4{pkpk+ll/2sin-1 (pk
/+~l/p—.hh)i/2 
                               .12.hh+.ldSln-1(pk/Y—././,k+11')1/2.1,                    —_ ( Pkpk+dp)1/2  sin-1 phpk+1/p(p—pk—pk+l) 

_F phpk+d] 1/2},(18) 

                                         k+11-1 

                           1       p=ph+pk+1"I-4ph qh (1—qh).(19) 
                                     h=k1+i 

Here p1, is the fractional size of the k th ring of the molecule, and qk and 1—qk 

are the fractional lengths of two paths connecting two junctions of the k th ring 

with k-1 th and k+1 th rings. If the molecule consists of m symmetric rings of 
equal size, we can simply put 

pk=1/m, qk=1/2 for all k.(20) 
Accordingly, we obtain 

                                               m
~-11,n—k K

.—m-1/2 7r-I-4m-312J.J.2 sin-la-1/2)
k=1 ds=1 

(l+ 1)1/2 sin-1(l-1).(21) 
The values of 3K,n/8 calculated from Eq. (21) are given in Table 1. This ratio has 
the asymptotic limit, two, for large m. 

                       4. DISCUSSION 

   Comparing the theoretical values with the experimental values for the twisted 
ring: linear ratio of the sedimentation coefficient, we can obtain m=4 in the case 

of the polyoma virus DNA, and m=6 in the case of the human papilloma virus 

DNA. However, these values of the degree of twisting may be somewhat undere-

stimated. That is, the DNA chains are not completely flexible because of their 

double stranded structure. According to Stockmayer and Hearst," the so versus M 

relationship of the native DNA chains can be expressed in the form, 

so = b + KsM°• 5.(22) 
The constant b is about 2.2-2.7 and K2 is 7.60 x 10-3 in Svedberg unit. Very rece-

ntly, new experimental data on the DNA's with extremely high molecular weight 

(T2 and T7 phage DNA) becomes available due to Crothers and Zimm," and the 
inclusion of these new data slightly modifies Eq. (22) : i.e. 

so=2.7+1.52 x 10-2 M°•445.(23) 
The first terms in Eqs. (22) and (23) represent the effect of the stiffness of the 

DNA chains, while the second terms represent the part of s° which is subjected 

to the flexible chain treatment. The effect of chain stiffness on the sedimentation 

constant of ring molecules is still unknown. 

   The sedimentation constants of the linear, ring and twisted ring forms of po-

lyoma virus DNA are 14, 16 and 20 in Svedbergs, respectively, as reported by Weil 
and Vinograd.21 These values for human papilloma virus DNA are 18, 20 and 28 

in Svedbergs, respectively, as reported by Crawford. The effect of the chain stif-

fness on s° is still unknown for the ring molecules. But, if we tentatively assume 
for the ring forms of DNA a correction of the same order as that for the linear 

DNA's, say 3 Svedbergs, the ring : linear ratio of these molecule can be estimated 
as (16-3)7(14-3)=1.18 for polyoma DNA and (20-2) /(18-3) =1.13 for human papill-

                           (153)
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oma DNA, respectively. These values are in better agreement with the theoretical 
estimate, 1.18, than are the uncorrected values, 16/14=1.14 and 20/18=1.11. Simil-

arly, the corrected ratio of the sedimentation coefficient between the twisted ring 
and linear forms is evaluated as  (20-3)/(14-3) =1.54 and (28-3)/(18-3) =1.67 for the 

two species of DNA. From these values, the number of rings m per a molecule is 

estimated as about 6 to 10. In order to obtain a more reliable estimate on the 

degree of twisting, it is necessary to develope a theory of the sedimentation coe-
fficient of semiflexible ring macromolecules and also to know the behavior of the 

intrinsic viscosity both experimentally and theoretically. 
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