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    A sedimentation-equilibrium procedure proposed by Van Holde, Baldwin, and Yphantis 
 was extended to treat nonideal solutions of heterogeneous solutes. The procedure is based 

 on the use of original concentration and a single value of concentration gradient at a par-
 ticular location where the local equilibrium concentration coincides with the original solute 

 concentration (the hinge-point). The method involves two approaches : In the midpoint 
 approach, the hinge-point is replaced by the midpoint that is easier to be located ; and in 

 the meniscus depletion approach, the method is combined with meniscus depletion technique. 
 Dependences of experimentally observable molecular weights on solute-concentration and 

 on sedimentation parameter J, are discussed. 
    In the former, the average molecular weight and the apparent second virial coefficient 

 obtained in the limit of infinite dilution depend on the parameter A, i. e., both are decreas-
 ing functions of increasing d : In the limit of A being zero, the former becomes a type of 

 weight average molecular weight and the latter a type of light-scattering second virial 
coefficient. Whereas in the meniscus depletion approach, since d must be sufficiently large 

 so as to achieve the condition of meniscus depletion, the observable molecular weight is 
 very sensitive to the solute heterogeneity. The meniscus depletion method appears to be-

 come less practical for heterogeneous solute systems. 

                          INTRODUCTION 

   In contrast to conventional sedimentation equilibrium analysis that is based 

on the observation of solute distribution in entire solution column at the sedi-
mentation-diffusion equilibrium,i' there is a different type of procedure proposed 
by Van Holde and Baldwin') that is based on the use of original solute-con-
centration and value of concentration gradient at one particular location in the 
cell. The position may be called the hinge-point, where the local-equilibrium 
concentration is equal to the original concentration of the solution. The method 
has been advanced by Yphantis3' incorporating multichannel cells, and is now 
in current use. As the method stands now, it involves two different approaches. 
In one approach, one chooses rather low centrifugation speed and very short 
column height, say around 1 mm, and utilizes the value of concentration gradient 
at the midpoint, instead of that at the exact hinge-point of the solution column.2,3d' 
In other approach, one employs high centrifugation speed so that the meniscus 
concentration of solute goes to zero, and then utilizes the value of concentration 

gradient at the exact hinge-point.3b) The location can be easily determined, when 
the meniscus concentration is zero. 

* 9 OW, , iJ`r-j :iy9; : Laboratory of Macromolecular Characterization, Institute for Chemi-
  cal Research, Kyoto University, Uji, Kyoto. 
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   These approaches have certain features of advantage, particularly upon 

dealing with monodisperse solute  systems  : For example, the method is rapid 

and, hence, is suitable to dealing with high molecular weight materials. The 
data processing is very simple, although the accuracy is admittedly poor. Be-

cause of these features, it would be interesting and worthwhile to examine the 

performance of the method, when it is applied to more general case of nonideal 
solutions of heterogeneous solute systems. 

   In a preceding article') we developed fundamental equations on sedimenta-
tion equilibrium behavior of nonideal, heterogeneous systems. In this article 

we apply the equations to describe the hinge-point analysis of such systems. The 

results will be compared with experimental data obtained on a few special 

cases. 

                           THEORY 

   For the hinge-point analysis, observable molecular weight MMonP is defined 

as follows :2,3) 

           M3"PP _--- RT1 C 1do(1 a)                                       ---RT-------—-- 
                               (1—v°ps)w2 n° r dr r=rt 

                = (1/An°) (dn/dx)x=x,(1 b) 

The subscript r=rt (or x=x,) indicates that the quantity in the bracket is to 

be taken at the hinge-point rt (or xt in reduced scale). The sedimentation 

parameter 2, reduced radial distance x, original and local-equilibrium concentra-
tions of the solution, if and n, measured in refractometric scale are defined, 
respectively, as follows : 

                 2= (1— Vas) w2(b2—a2)/2RT(2 a) 

x= (r2— a2) (b2 a2)(2 b) 

n°=v°c°=Evic ; n=vc=Evici(2 c, d) 

The abbreviations used are as follows : RT, the gas constant times the absolute 

temperature ; w, angular speed of rotation ; v°, the average partial specific volume 

of solutes in the original solution ; p,, the solvent density ; r, a and b, the radial 

distances to a given position, to the meniscus and to the bottom of the solution 
column, respectively ; vi and v, the specific refractive increment of solute i and 

its local average value, respectively ; ci° and ci, the original and the local-equilib-
rium concentrations of solute i, respectively. The superscript o denotes quanti-

ties referred to the original solution. 

   In the previous article,") we gave a differential equation describing equilib-

rium distribution of solue i in a heterogeneous q-solute system, together with 

the conservation of mass statement. The equations read 

AMi*Bi = (d0,./dx) + Ac°E (M,Mk.*B)kJ ,k) rk(3 a) 

M1*= C(1—vzp,)/(1—v°p0)M,= (Q,/a°)M1(3 b) 

0,=e,jci° ; rk°= c, /c°(3 c, d) 
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 Bzk=Bzk+vz/Mk(3 e) 

Jik= (Wk*)—' 0,(00k,/ 0X)(3 f) 

Vi dx=1•;(OGxS1 •; i,h=1,2,q)(4) 

Here j3t is the apparent bouyancy factor of solute i as defined by eq. (3 b) with 

vt being its partial specific volume : Bt and rk° are the relative equilibrium dis-

tribution of solute i and the relative abundance of solute k in the original solu-

tion, respectively ; Bzk is the i-k interaction parameter. 

   Combining eqs. (1), (2) and (3), we obtain an expression for observable 
molecular weight Mta" as 

Alta" =2-1 E ((vz/v°) (dB-t/dx)x=x0ri°(5 a) 

= —c°EECM1M1*BzkJtk(xt))r rk°(5 b) 

The hinge-point is, according to its definition, to be a position wherein EO;.(xt) 
xr =1. However, for a heterogeneous solute system which consists of solutes 

with different v, there is no way of locating the exact hinge-point. In stead it 

can be located only in the refractometric scale. Wherein the following identity 

holds : 

E(vt/e°)Oi(xt)ry =1(6) 

Apparently at any point all 0, do not simultaneously become unity, except in 

the limit of 2 infinitely approaching zero. In that sense, the first term in the 
right-hand-side of eq. (5 b) is dependent on 2 as well as c°, and in addition, on 

the way how one locates or approximates the hinge-point. The situation is 

entirely different from that of conventional equilibrium analysis. 

   First assuming that c° is sufficiently small, we expand the term 0,(xt) in 

powers of c° :4) 

oh(xi)=0,,(0) }_cotht(i) + (c°)20,t(2) +... (7 a) 

Btt(°) =At exp (2Mt*xt)(7 b) 

At =2Mz*/Cexp (2M,*)— 1)(7 c) 

0' (1) =01W)EMiBzk((AtAk/Azk) —Bkt(0))ri(7 d) 

Azk =2(Mz*+Mk*) /Cexp{2(Mt*+Mk*)}-1)(7 e) 

etc. Then, from eqs. (5) and (7) we obtain 

Mtapp EM.*ditco)ri° 

      z 

             — c°E EMiBikt zt co) C (Mt* + Mk*) Bkt (of — Mt* (AtAk/Atk)) rt°rk° 

+OC(c°)2)(8) 

Apparently, even in the limit of c° being zero, the quantity A-P, is still de-

pendent on 2 through OP)), and tend to a value giving a type of weight average 
molecular weight only when 2 also approaches zero. In such a case, the 2-
dependent terms in the c°-expansion coefficients of Mtaz'p may be expanded in 

powers of 2: 
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W(0)  =1 + (2M2*) (x1-1 /2) + (211V) 2 C (xt —1 /2)' /2 —1 /24) 

+(2114-z*)3(xt(xt-1/2)(x4-1)/6)+0((2Mi*)4) (9 a) 

A4A1/A41, =1 + (22/12) Mi*Mk* + 0(24)(9 b) 

etc. The combination of eqs. (8) and (9) leads to 

Mtann 111,W— — (Mi) 2e°BtaPP j't (2) + ...(10 a) 

Mt(2) =M1{I+2(xt-1/2)M211— (22/24) (1-2(x1-1/2)2)M2/1M3/2+...} (10 b) 

Btan" Ft (2) = B212 + 22 (x.) —1 /2) (M211) 2B414 

— (22/24){(M2/1)2+4M2 1M312 12 (xt 1/2)2(3(M2/1)2+4M2/1M3/2)}B4/4 

+0(2') (10 c) 

Here M1,M2~1,M3/2 etc. are the average molecular weights giving, respectively, 
a type of weight-average, z-average, (z+1)-average etc., and are defined as2,4' 

M1=ZMi*ri°(11 a) 

               M211= (Ml)-1~Mz*(Ml*)r(11 b) 

M312 = (M1M2/1) —1?:Mb* (Mt*) 27./0(11 c) 

etc., and B212, B414 etc. are the average second virial coefficients defined, respec-
tively, as follows :4,2) 

B212 = (M1) -2Z>1 M.Mk*Bikry rk°(11 d) 

B414=(M1M2/1)-2} EIC/ilWlk*(Mt*Mk*)Bar,°Yk°(11 e) 

(MO -2 (M211M3/2) —1 MtMk* (M,*) 2Bikri' rk°(11 f) 

(MO -2(M2nM312)-1>]ZM2Mk2 (Mk*)2Bara°rk°(11 g) 

Here the quantity B212 is a type of light-scattering second virial coefficient, as 
defined before.4'5 Strictly speaking, the quantities defined by eqs. (11 e), (11 f) 
and (11 g) differ slightly from one another. However, the difference appears to 
be trivial, and hence we assigned the same symbol B414 to all three of them. 
The quantity B414 in the 22-term of eq. (10 c) involves these three different 
averages. 
   Generally the type of average molecular weight obtained by extrapolating 
Mt°-PP to infinite dilution depends on the approximation employed for locating 
the hinge-point. We discuss below on the two approaches, i. e., the midpoint 
approach and the meniscus-depletion approach. 

Midpoint Approach : In this procedure one usually employs a condition so as 
to 2 being sufficiently small. In that case the expansion forms, eqs. (10 a) (10 c) 
may be used as the starting equations. It should be noted that all the terms 
with odd powers of 2 in eqs. (10 b) and (10 c) involve a multiplier (x2-1/2). 
Therefore, if we replace the hinge-point xi by the midpoint x„, 

x„,=x=1/2, or r„,=r=Ca2+(1/2)(b2—a2))1/2(12 a, b) 

the odd power terms of 2 identically vanish. Then, the quantity Mani' may be 
recast into a simple form MniaPP as 
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 (Mmapp)  —1=  (M„1)  —1  +  C°Bma"PFr  (2)  +  ...(13 a) 
Mm=Mt(xt=1/2) =EMi*C(2Mi*/2)/sinh(AMi*/2))ri°(13 b) 

       M1{1— (22/24)M2nM312+
71(~724/5760)fM211M312M413M514+0((26)} (13 c)    Bmappl'm(A) =B212— (22/24){C(M2/1)2+41V12/1M3/2)B4/4—2M2/1113/2B2/2} 

+ 0 (24)(13 d) 

Apparently the observable molecular weight Mma"t' yields M1 and B212 only after 
dual extrapolation with respect to both c° and 22. It should be noted that the 
apparent second virial coefficient, eq. (12 c), is expected to decrease with in-
creasing 22, as opposed to that of (M1ap")-1 versus c° plot obtained in the con-
ventional analysis.4) 
Meniscus-Depletion Approach : In this procedure, one employs a condition of 
high-speed centrifugation (i. e., of large A) so that concentrations of all solutes 
go to zero at the meniscus, 6i(0) =0 for all i. Then, one locates the (refrac-
tometric) hinge-point xt by integrating area under the schlieren gradient curve 
or by simply measuring displacement of the Rayleigh fringe pattern. Theoreti-
cally xt is obtained by solving eq. (6) : The problem is very difficult to be carried 
through. Therefore, we discuss here the behavior in a limiting case wherein 
the effects of nonideality are negligible. For heterogeneous solute systems, the 
Flory theta condition') is unlikely to exist, and the assumption of vanishing 
nonideality would be valid only in the limit of infinitely high dilution. With 
these stipulations, the observable molecular weight Mtapp and the condition for 
locating the hinge-point may be given,respectively, as 

                           ZMi                 Mtapp=*Oit(0)ri(14 a) 

Zi/v°)tit(0)ri°=1(14 b) 

Another problem to be solved is that, because of the condition of meniscus-
depletion, eq. (14 a) cannot be expanded in powers of 2. Instead, we assume 
that there must be a solute "1" and its hinge-point coincides with that of the 
whole solute, i. e., 1=OtT(0). Then solving this relation, we obtain 

xt —1 + (AMt*) -1{1n (1— exp (—,1Mt*)) — In (2M2*) } (15 a) 

On the other hand, the condition of the meniscus depletion demands that the 
value AMi* should be large enough so as to the factor exp(-2Mi*) being negli-
gible for all components i. Taking all these requirements into account, we 
obtain an expression of Oit(0) as 

Hit(0) _ (Mi*/Mt*) (AMt*)(1-Mi/Mt*)(15 b) 

Combining eqs. (14 a, b) and (15 b), we obtain 

                       Z CMi*(Mi*) (2Mt*)a-Mi*/Ml*>Jri_           Mtapp =------(16) Z CA* (211
t*) (1-M */Mt*))r2 

The quantity Mtapp is a complex average molecular weight : If the factor, 

(,1M1*)(1—Mq*/Mt°), may be approximated as unity, the value becomes a type of 

z-average, M211. Usually the factor is a decreasing function of Mi*, and hence, 
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the Mt"' should be a lower-order average than the z-average. 
   When the solute heterogeneity is negligibly small, i. e., -M4*/Mt*1<<1 for 

all i, the factor may be approximated as unity : 

(AM*t) (1-Mi*/IV/t ) =1 + (1- MNMt*) In (A1113*) + C (1- M,*/Mt*) 
xln(2Mt*))2+••• (17a) 

Then the observable molecular weight M1"P becomes 

                M "no M2 _11+ (1M3i2/MT*) In (2MT*)+  • • • (17 b) 1 
-- (1— M2a /Mt*) In (2Mt *) + .. • 

On the other hand, the quantity Mt* may be given by solving the condition of 
the hinge-point, i. e., eq. (14 b) : 

Mt*_E(J.*(,iM,*)(1-Mi*/Mt*))n°(18 a) 

Here we apply the same approximation of negligible solute-heterogeneity, and 
replace the quantity M3* by M1, neglecting the higher order terms in the right-
hand-side of eq. (17 a) . Then we obtain 

Mtapp=M2/1{1—C(M3,2-M2,1)/MO in(A,M1)+•••}(18 b) 

Apparently the quantity MtaPP is quite sensitive to the solute-heterogeneity and 
the sedimentation parameter 2. It should be reminded that the value of 2 should 
be chosen to be sufficiently large so that AM1 is about 7-10 or more, because 
of the requirement of the meniscus depletion. Consequently a slightest hetero-

geneity of solute would make the method to be rather impractical. 

              COMPARISON WITH EXPERIMENTAL RESULTS 

Experimental Procedures 

   The procedure and the materials used were the same as those described in 
the previous article.41 However, in this case, most of the sedimentation patterns 
were recorded on a schlieren optics with a phase angle of 75°. Besides a Yphantis 
6-channel cell, we used an 8-channel circular cell with 12 mm thickness.31 Other-
wise the procedures were the same as before.4' The materials used were also 
the same ; a monodisperse polystyrene PST-1 a, a polydisperse poly (methyl 
methacrylate) PMMA-31 M, and a blend of the two polymers (PST-1 a : PMMA-
31 M=0.4997 : 0.5003 by weight). The solvent was 2-butanone (MEK). The 
characterization data of the polymer samples are listed in Table 1. 

                 Table 1. Characterization Data of Polymer Samples. 

                                            Sedimentation Equilirium Dataa' 
    Code10-4Mn 10-4Mw 

l0'4Mi 104Ba2'p 10-4M2/1 

PST-1 a15.5 16,016.32.9 16.6 
PMMA-31 M16.6 20.020.47.4 22.6 
1 : 1 blend19.17.9 20.8 

   a) Data in MEK at 25°C obtained by the conventional analysis (ref. 4). Values of Mi 
     and M2 1 become equal to M,u and Mz, respectively, for homologous polymer samples ; 

      the Barn) is the second virial coefficient determined from (M1a2'2')-1 versus c plot. 
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Application to Special cases 

Two component system : For a two component system with the solute molecular 

weight M and the second virial coefficient B, observable molecular weight MtaPP 
may be expressed as 

(M)1 _ CM() (xt) -' (1 + Mc°B0 (x1) (19 a) 

Here 0(xi) is the value of the relative equilibrium distribution of solute at the 

binge-point xt. It must be unity for a two component system, if the exact loca-

tion of xt is taken. The location may be determined without much difficulty, 

and then, the Mtap1' becomes 

(MtaPP)-1=M-'+c°B(19 b) 

The equation (19 b) applies to the meniscus depletion approach as well. 
   On the other hand, if xt is replaced by the midpoint x„, =1/2, the quantity 

0(x„,,) is not necessarily unity. The theoretical value of 0(x„,) may be calculated 
easily, for example, by applying c°-series expansion method.1c,4' With these 

solutions and eq. (19 a), we obtain 

     I------------------------- 

                 1.2 P S T-1 a 

                     MEK 25°C 

1.1 

1.0 

0.9'TM_3.0 

                 a 

                  a 

2 0.8® ® ® aM =2.0 

                                                     • 

                                               • 

                    0.6 

0.5i  
                0 0.1 0.2 0.3 0.4 0.5 

                        C° (g/dl ) 

      Fig. 1. Plots of reciprocal (midpoint) apparent molecular-weight (1%I„,aV,7)-' 
        versus original solution concentration c° for nearly monodisperse PST-1 a in 

        MEK at 25°C: values of 2M,<, range 0.97-1.12 (white circles) ; 1.82-2.11 (half— 
        black circles) ; and 3.02-3.49 (black circles) for the three sets of data. Heavy 
        line represents the conventional Mw-plot,°) into which the present plots should 
        merge at the limit of 2M being zero ; thin lines represent the theoretical 

        curves as computed by eq. (20 a) with the value of 2M as indicated. 
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 (M.aP1)  -1= (M.)-1+ c°B f„,(2)+  ... (20 a) 

AL= M( (2M/2) /sinh (2M/2)) (20 b)20, 

.f.(2) =1— (cosh (AM /2) —1)(20 c) 

In the limit of A being zero, the factor (AM/2)/sinh(AM/2) approaches unity and 
the factor (cosh (2M/2) —1) to zero, thus the right-hand-side of eq. (20 a) becomes 
equal to that of eq. (19 b) . 

   Numerical calculation of eq. (20 a) was carried out upto the (c°)3-term. 
The results are compared with experimental data obtained on PST-la in MEK 
at 25°C, as demonstrated in Fig. 1. As anticipated, both MM, and Bf,,(2) are 
highly dependent on AM. For example, at 2M=1.5 that is the value usually 
encountered in experiments , the deviation of M, from exact M amounts to 
about 10 %. In such a case, eq. (20 b) may be used to estimate exact M. It is 
noticeable that the apparent slope of the plots becomes nearly zero around AM 
=3 in this system . 
Homologous polymer system : For this system, we assume as before') that all 
components have the same values of v =v and vc=v°, and that all Bu,'s are the 

same as B. Then, it is easy to rewrite eqs. (13 a)-(13 d) to obtain M,,,'P' 

(M,'"")-1=(M,,,)-1+c°BF„,(A)+..•(21 a) 

M,,,=.I11w{1—(A2/24)pzpz+1+(7ii4/5760)pzpz.,.1P +2p=+3+0(A6)} (21 b) 

F°,, (41) =1— (/12/24)pz (pz +2 pz+1) + 0 (U11)(21 c) 

d^2Mw ; pz=N1z/Mu, pz+1=Mz+1/Mw, etc.(21 d) 

                        1.0 
                       PMMA 31M 

MEK 25°C 
                       0.9 

6 
                a0.8 

      o® AM=3.0 E 

       0.7 M.2.0 
                                              a)(/'                                        0 

                       0.6 

                        0.5 

                       0.4 
0 0.10.2 0.3 0.4 

                       C° (g/dI) 
      Fig. 2. Plots of (M,,,a2)1')-1 versus c° for polydisperse PMMA-31.M in MEK at 

25`C: values of 2M,, range 1.70-2.08 (half-black circles) and 2.64-2.95 (black 
       circles) for the two sets of data. For other symbols, see Fig. 1. 
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   On the other hand, the observable molecular weight  M,an" based on the 
meniscus depletion method may be written as 

(Mt°"p)-1=CMz{1-(pz+i-pz)ln+...1)_1+0(c°)(22) 

As noted in the previous section, the c°-independent term of is highly 

sensitive to the solute heterogeneity and the sedimentation parameter 2 : For 

example, since the parameter A must be chosen to be around 7-10  or larger, 

the solute heterogeneity of as small as P+-=0.05 would result in the reduc-

tion of MtaP'T by as large as 10 to 23 % or more. In addition, its c°-dependent 
terms are also expected to be highly sensitive to the solute heterogeneity, 

although the exact feature has not yet been known. An application of the 

meniscus-depletion method would become less satisfactory for a solute with 
even a slightest heterogeneity. 

   The equations (21) and (22) are tested with data on PMMA-31M in MEK 
at 25°C. Fig. 2, shows the plots of (M) °"")-1 versus c°. The results are com-

pared with theoretical curves of a two component system and also with the 
conventional (MI a")-1 versus c data for the same system.41 The calculation 

was made by eq. (20 a) including upto the (e)3-terms, wherein M and B were 

identified respectively with M", and B of this system.'" Here the M1°"t' is the 

observable molecular weight giving a type of wight average value and c is the 

 1.2----------------ie -_-~ 

   PMMA 31M1.0 PST-1a:PMMA31M MIXTURE 
 1.1 MEK 25°CMEK 25°C 

                                          0.9 
    1.0 

    •i                                                                                      rM-_3.0,/ - 09- °0.8 as~~ 
ao •a   o. 

2o                                                     y/1"a M1.5  -0.8is- 0.7r. 
o• •'rN 

0.7ca 
•0.6 

0.6 

0.5 
    0.5 

                                            0.4 
 0.4_0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.5 

C° (g/dlC° (gldi) 
Fig. 3. Plots of reciprocal (meniscus-deple- Fig. 4. Plots of (114,na"")-i versus c° for the 1 : 1 

  tion) apparent molecular-weight (.Mta"")-1 blend of PST-la and PMMA-31M in MEK at 
  versus c° for PMMA-31M in MEK at 25`C: 25'C: values of AM,,, range 1.36-1.58 (half-  h

eavy dashed line represents the conven- black circles) and. 2.60-3.01 (black circles) for   ti
onal Mw plot, and heavy solid line the the two sets of data. For other symbols, see   conventional Mz-plot. Vertical line on 

  each point indicates the error limit.Fig. 1. 
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average concentration in the equilibrium solute distribution measured in refrac-
tometric scale.2,4' The feature of the plots is similar to those of a two com-

ponent system (cf., Fig. 1). The influence of varying 2 on M,,, and P„,(/1) 
appears to be more significant in the polydisperse system than in the monodis-

perse system. When the value of is appropriately chosen so as to Al being, 
say, about 1.5 or less, the midpoint method appears to provide reasonable 

estimates of Mw and B. 
   Figure 3, shows the plot of (Mt°>)-' versus c° based on the meniscus-depletion 

approach. The plot is compared with the conventional (M2„a22)-' versus `c plot 

of the same system.'" Here the M2/1aPP is the observable molecular weight giving 

a type of z-average value.2'4' The heterogeneity of this sample has been esti-

mated to be small') (cf., Table 1). Nevertheless, considerable descrepancy is 

observed between the two types of the plots. 

Poly (A) : poly (B) blend : The equations (13) and (16) are tested with data 
on the PST-la : PMMA-31M blend in MEK at 25°C. Figure 4, shows the plots of 

(M,aaPP)-1 versus c°, which are again compared with theoretical curves calculated 
under the two-component-system approximation and with the conventional plot 

of the same system.4' Again the feature of the plots is quite similar to the 

previous two systems (cf., Fig. 1 and 2). 

   1.4-                         PS
T-1a:PMMA31M MIXTURE 

                           MEK 25°C 
                            1.3 

                            1.2 

1.1- 

                            1.0 

a 0.9- 

0.8 

                            0.7 

                                                      • 

                          0.6 

0.5- 

0,4 ~ 1  
                     0 0.1 0.2 0.3 0.4 0.5 

                             C° (g/dl) 

         Fig. 5. Plots of (Mt aPP)-1 versus c° for the 1:1  blend of PST-la and 
           PMMA-31M in MEK at 25°C. For other symbols, see Fig. 3. 
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   Figure 5, shows the plot of  (Mt°pp)-1 versus c° based on the meniscus-depletion 

method together with the conventional plots of (M2„°pp)-' versus c of the same 

system.4 Again we find considerable descrepancy between the two plots. In 

general the hinge-point method combined with meniscus depletion technique is 

quite sensitive to the solute heterogeneity, partly because of the requirement 
that the parameter A should be sufficiently large. Hence the method appears to 

be less practical for heterogeneous solute systems. In fact the meniscus deple-

tion method is more conveniently applied for monodisperse solute in ideal solu-

tion.su In such cases, it is customary to plot the logarism of equilibrium solute 

concentration, In c(r), against the square of the radial distance, r2: then the 

plot of In c(r) versus r2 always gives a straight line and the solute molecular 
weight may be evaluated from the slope of the plot. However, for a nonideal 

solution of a heterogeneous solute the plot usually deviates from the linearity, 

reflecting both the heterogeneity and the nonideality of the solution in somewhat 
complicated manner. The problem will be discussed in a later publication. 
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