Recent Progress in the Chemistry of Allenes．

Tadashi Okamoto＊

Received July 21， 1972

I．INTRODUCTION

The first allenic compound was found already in 1887．Up to near 1960，allenes received only limited attentions of organic chemists．In the last few years，however， several excellent review articles on this field were published，${ }^{1 \sim 6)}$ which brought hereafter a remarkable increase in the investigations concerning allenes．

The present review is intended to cover the reports on propadiene and substituted allenes which appeared in the period from the middle of 1968 to the end of 1971．The allene chemistry concerning transition metal compounds is separately described in chapter V．All reports on polyallenes and natural occurring allenes are excluded．

In the equations and Tables of this review，the following abbreviations are used： Me；methyl，Et；ethyl，Pr；propyl，Bu；butyl，Hex；hexyl，ϕ ；phenyl，Tol；tolyl，Adm； adamantyl，Ac；acetyl，Ts；tosyl，acac；acetylacetonate，Cp；cyclopentadienyl，THF； tetrahydrofuran，DMSO；dimethylsulfoxide，and HMPA；hexamethylphosphoric tri－ amide．Hydrogens attached to carbons are usually omitted in equations and only the framework of carbon skeleton is described．

II．PREPARATIONS OF ALLENES

For the syntheses of allenes，Sandler and Karo＇s review ${ }^{6)}$ is recommended．The author wishes to describe the recent progress on the reaction for the synthesis and formation of allenes with taking care to avoid duplication of the previous reviews．

II．1：Elimination Reactions

II．1．1 Synthesis of allenes via cyclopropylidene or their derivatives

Allenes are synthesized by the rearrangement of carbene species obtained by the reaction of dibromocyclopropanes with alkyl lithium（generally mtehyl lithium）or by the decomposition of diazocyclopropanes（Eq．（1））．

[^0]Since only little contaminating by-products are accompanied in the reaction, many alkyl- or cycloalkyl-substituted allenes studied lately have been prepared by this route. Some new allenes such as diazoallene, ${ }^{19}$ cyclopropylallene, ${ }^{20}$ and ferrocenylallene ${ }^{21)}$ are obtained by this method. In the presence of optically active (- -separtine or chromous (+)tartarate, partially optically active allenes are also obtained by this reaction. ${ }^{15}$)

As for the intermediate stage of the reaction, it is shown that the reaction proceeds wia a single precursor, ${ }^{7}$) but it is not clear whether the precursor is a carbene ${ }^{7 \sim 10}$) or a carbenoid. ${ }^{11 \sim 15)}$ The limitations of this synthetic method are as follows. a) Tetrasubstituted allenes can not be prepared by the reaction of tetraalkyldibromocyclopropane and methyl lithium. The products are bicyclobutanes instead of allenes ${ }^{10,14,16,17)}$ (Eqs. (2) $\sim(4)$).

(3\%)

(4) ${ }^{7}$

Tetra-substituted dibromocyclopropanes with some aryl substituents give cyclobutanes as the major products, and also allenes as the minor products (Eq. (5)). ${ }^{17 \text {) }}$

The yield of allene is higher for anisyl-substituted cyclopropane (43%) than for phenylsubstituted cyclopropane. The formation of bicyclobutane takes place through the intramolecular insertion of carbene or carbenoid into the α-carbon-hydrogen bond of an alkyl substituent when the ring opening at the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond in I becomes slow because of the steric interaction of the substituents. 14,17)

Aryl substituents facilitate the bond breakage of $\mathrm{C}_{2}-\mathrm{C}_{3}$ by stabilizing the state after the ring opening. ${ }^{17)}$ b) Allene are not obtained when some strain exists in the starting cyclopropanes. ${ }^{18)}$ c) The presence of reactive $\mathrm{C}-\mathrm{H}$ bonds near to the carbene or carbenoid centre is unfavorable for the synthesis of allenes. Carbene species inserts into the C-H bond adjacent to ethereal oxygen to afford bicyclic compounds. Insertion is more facile at a tertiary carbon-hydrogen bond than at a secondary one.

Insertion of atomic carbon into an ethylenic double bond is known as a method to prepare allene, and it also proceeds through a cyclopropylidene intermediate. ${ }^{13)}$ Butadiene is the major by-product. ${ }^{22)}$ Stone et al. applied this method to the synthesis of fluoroallenes. ${ }^{23)}$

II.1.2 Other eliminations

The reaction of substituted 1,3-dibromoacetone ethylene ketals with metallic Mg or Zn gives allenes ${ }^{24)}$ (Eq. (7)).

Haloallenes ${ }^{25 \sim 30)}$, higher cumulenes, ${ }^{31 \sim 33)}$ and others ${ }^{34,35)}$ were synthesized from the corresponding starting materials by the elimination of hydrogen halides, ${ }^{25,26,29 \sim 32,34,35)}$ halogens, ${ }^{27,30}$) or carbon monoxide ${ }^{28)}$. The reagents used in these syntheses were sodium amide ${ }^{25,30)}$, pyridine, ${ }^{31)}$ triethyl amine, ${ }^{35)}$ alkali, ${ }^{26,29,32)}$ zinc, ${ }^{25)}$ magnesium, ${ }^{277}$ and fluoride ion. ${ }^{28)}$ The intermediacy of 1,2 -cyclohexadiene was suggested in the reaction of 3 -cyclohexenyl halides with potassium t-butoxide (Eq. (8)) ${ }^{36}$)

II.2: Rearrangements

II.2.1 Propargylic rearrangement

A number of groups (X) in the propargylic position of acetylenic compounds can be replaced by an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ type reaction to give allene derivatives (Eq. (9)).

$$
\begin{equation*}
\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{CXC}^{2} \mathrm{CR}^{3} \xrightarrow{\mathrm{~N}^{-}} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}=\mathrm{C}=\mathrm{CR}^{3} \mathrm{~N}+\mathrm{X}- \tag{9}
\end{equation*}
$$

The competitive side reaction is an $\mathrm{S}_{\mathrm{N}} 2$ type substitution, which gives acetylene derivatives. The ratio of two isomers is dependent on the steric situations of both reaction sites, C_{1} and $C_{3} ;{ }^{37,38}$) tertiary substrates ($\mathrm{R}^{1}, \mathrm{R}^{2}=$ alkyl or aryl) generally give allenes, while primary substrates $\left(R^{1}=R^{2}=H\right)$ acetylenes. The reaction product is also influenced by the nucleophilic reagent, the substituent, the leaving group and the reaction temperature. ${ }^{39)}$

Hydroxyl group ($\mathrm{X}=\mathrm{OH}$ in Eq. (9)) is replaced with hydrogen halides in the presence ${ }^{40}$) or absence ${ }^{41)}$ of cuprous salts, or lithium aluminium hydride ${ }^{42,43 \text {) to give halo- }}$
allenes and allenes, respectively. It was also replaced with phosphorous compounds. ${ }^{44,45 \text {) }}$
Ester and ether groups are better leaving groups than hydroxyl group and they are replaced even with Grignard reagents ${ }^{47,46,39)}$ or alkyl copper compounds ${ }^{48,49)}$ to give alkylated allenes or sometimes halogenated allenes in the case of Grignard reagents. ${ }^{51)}$ Thionyl chloride reacts with a propargyl ether to give an allene. ${ }^{50}$) Allenic alcohols are synthesized in good yields by the lithium aluminium hydride reduction of mono tetra-hydropyranoxy-derivatives of butyne-1,4-diols. ${ }^{52)}$ The data of Rona and Crabbe for the preparation of allenylidene-cycloalkane is quoted in Table 1.

Table 1. Conversion of Ethynylcarbinol Acetates into Allenes. ${ }^{49)}$

n	R	R^{\prime}	$\mathrm{Y}(\%)$
4	H	Me	81
5	H	Me	85
6	H	Me	82
5	H	$n-\mathrm{Bu}$	65
5	Me	Me	71
5	Me	$n-\mathrm{Bu}$	80
5	$n-\mathrm{Bu}$	Me	47

The lithium aluminium hydride reduction proceeds stereospecifically, ${ }^{38)}$ but the reaction with organocopper reagents is nonstereospecific. ${ }^{49)}$

Halogen atoms in the propargylic position is replaced by using lithium aluminium hydride, ${ }^{37)}$ alkyl magnesium halides, ${ }^{53,54)}$ or triethylphosphite ${ }^{55)}$ to give allenes, alkyl substituted ${ }^{39)}$ allenes, or allenic phosphonates, respectively. A trimethylsilyl group in the propa gylic position is replaced by SO_{3} to give allenesulfonic acid trimethylsilyl ester. ${ }^{56}$)

The reaction of dialkyl propargyl boronates with propionaldehyde (Eq. (1l) $)^{57)}$ might proceed also through an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ type substitution reaction.

$$
\begin{equation*}
\mathrm{R}^{\prime} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{~B}(\mathrm{OR})_{2}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO} \longrightarrow \mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}\left(\mathrm{R}^{\prime}\right) \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{OB}(\mathrm{OR})_{2} \tag{11}
\end{equation*}
$$

Propargyl ethers which have an acetylenic hydrogen react with bases to give allene derivatives ${ }^{58 \sim 60)}$ (Eq. (12)).

$$
\begin{align*}
\mathrm{ROCH}_{2} \mathrm{C} \equiv \mathrm{CH} \frac{t-\mathrm{BuOK}}{70^{\circ} \mathrm{C}} \rightarrow \mathrm{ROCH}=\mathrm{C}=\mathrm{CH}_{2} \tag{12}\\
\quad(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, n-\mathrm{Bu}, n-\mathrm{Hex} ; \mathrm{Y}=80-92 \%)
\end{align*}
$$

When there is no hydrogen in the propargylic position, the elimination of alkoxy group takes place to give an allenyl carbene, ${ }^{59}$) which can be trapped with a diazoalkane.

$\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\phi, i\right.$ - $\operatorname{Pr}, 1,1^{\prime}$-biphenylene)

T. Oramoto

II.2.2 Other rearrangements

Allene is also prepared by the 1,4 -addition to vinylacetylenes ${ }^{51 \sim 59)}$ (Eq. (14)).

Reagents corresponding to AB in Eq. (14) are lithium aluminium hydride, ${ }^{61,61 a)}$ bromine ${ }^{61)}$, HSiR_{3} or $\mathrm{HGeR}_{3},{ }^{63,64)} \mathrm{HNR}_{2},{ }^{65 \sim 67)}$ alkyl lithium, ${ }^{68 \sim 70}$) aryl lithium, ${ }^{71)}$ water, ${ }^{72)}$ alcohol, ${ }^{73)}$ and organocalcium compounds. ${ }^{74 a, 74,75)}$ The addition of alcohol is reversible and the reverse reaction proceeds successfully under basic conditions. ${ }^{73)}$

Another synthetic method of allenes is a thermal reaction similar to the Claisen rearrangement. ${ }^{76 \sim 78)}$ A typical example is shown in Eq. (15) (Tab. 2). ${ }^{76 \text {) }}$

Table 2. Conversion of Prop-2-ynyl Alcohols into β-Allenic Esters. ${ }^{76)}$

R^{1}	R^{2}	R^{3}	R^{4}	$\mathrm{Y}(\%)$
H	H	H	H	34
H	Me	H	H	63
H	$n-\mathrm{Pr}$	H	H	60
H	Me	Me	Me	59
H	Me	Me	H	54
Me	Me	Me	H	61
H		$-\left(\mathrm{CH}_{2}\right)_{5}{ }^{-}$		H

Smith and Stirling studied the thermal rearrangement of sulfinates into sulfones and found that the reaction proceeds through an intramolecular cyclic transition state (Eq. (16)). ${ }^{78)}$

$$
\begin{array}{rl}
\operatorname{ArS}(\mathrm{O}) \mathrm{OCHR} & \mathrm{C} \equiv \mathrm{CR}^{\prime \prime} \xrightarrow{130^{\circ} \mathrm{C}} \xrightarrow[\mathrm{ArSO}_{2} \mathrm{CR}^{\prime \prime} \mathrm{C}=\mathrm{C}=\mathrm{CHR}^{\prime}]{\left(\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H}, \mathrm{Y}=80 \%\right)} \tag{16}
\end{array}
$$

The base-catalyzed rearrangement of acetylenes is also used for the syntheses of allenes. ${ }^{79,80)}$

Propargyldiphenylthiophosphinite, which is formed by the reaction of $\mathrm{Ph}_{2} \mathrm{PCl}$ and $\mathrm{CH} \equiv \mathrm{CCH}_{2} \mathrm{SH}$ in the presence of triethylamine, rearranges to give an allene, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{SCH}=$ $\mathrm{C}=\mathrm{CH}_{2}$). ${ }^{81 \text {) }}$ Dimethylpropargyl sulfonium bromide also rearranges into an allenic isomer by the treatment with triethylamine in DMSO, or by being left in methanol. ${ }^{82}$)

The pyrolytic isomerization of methylacetylene is also a known method for preparing propadiene. In the case of silica catalyst, the exchange of a hydrogen was observed between the reactant and catalyst. ${ }^{83)}$ The reverse reaction, the isomerization of propadiene into methyl acetylene over zinc oxide, was studied by Chang and Kokes, and they found that the reaction proceeded through the co-ordination of a propargyl anion on the catalyst. ${ }^{84)}$

Propargyl halides are reduced with tributyltin hydride to give mixtures of acetylenes and allenes. The yield of allene increases when an alkyl group is present at the propargylic carbon or when an alkyl group is absent at the acetylenic carbon. But allene is a minor product in any cases. ${ }^{85}$)

II.3: Synthesis of Allenes by Metallation

Allenic ${ }^{58,86 \sim 88)}$ or propargylic hydrogens ${ }^{75 \sim 80)}$ are abstracted by organo-lithium compounds to give the resonance stabilized allenic-acetylenic carbanion (Eq. (19)), which reacts with electrophilic reagents to yield allenes, $58,86 \sim 91$) acetylenes, ${ }^{95)}$ or their mixtures. ${ }^{95-98)}$

In general, butyl lithium is used as a lithium compound. Lithium amide might be used, but it is sometimes not reactive enough. ${ }^{86)}$ Even when the reaction proceeds successfully with lithium amide, the products formed are complicated. ${ }^{58)}$

The electrophiles reported are water, ${ }^{98)}$ aldehydes, ${ }^{98)}$ ketones, ${ }^{89,98)}$ alkyl and aryl halides, ${ }^{58,89,91,92)}$ trimethylchlorosilane, ${ }^{87,89 \sim 91)}$ carbon dioxide, ${ }^{88,94)}$ diethyl sulfate ${ }^{90,91,97)}$ and organic sulfur compounds. ${ }^{86,93)}$ The organolithium compound is oxidized by atmospheric oxygen. ${ }^{99 \text {) }}$ Typical examples are shown below:

T. Okamoto

$(24)^{93)}$

A bromine atom in 1,1-dibromodiphenylallene similarly reacts with organolithium to give a monolithiated compound. ${ }^{94)}$

In the synthesis of phenyl-substituted allenes from phenyl-substituted dibromocyclopropane described in section II.I.1, an allenic hydrogen of the resulting allene is easily removed by the excess base to give carbanions, which react in situ with alkyl halides in the system to yield substituted allenes and/or acetylenes. Since it is difficult to prepare tetra-substituted allenes from tetra-substituted dibromocyclopropanes by the method of section II.1.1, the above reaction is a good synthetic method for tetra-substituted allenes. ${ }^{96}$, 100)

Similar organometallic compounds are also prepared from propargyl halides and metals such as magnesium, zinc, or aluminium. ${ }^{101 \sim 106)}$ The additions of these organometallic compounds to ketones, ${ }^{102,103,105)}$ imines, ${ }^{106)}$ and esters ${ }^{104}$) yield the corresponding derivatives of acetylenes and/or allenes, usually as their mixtures. The rate of addition to esters increases in the order of $\mathrm{Zn}<\mathrm{Mg}<\mathrm{Al}^{111)}$ and the ratio of the resulting acetylenes and allenes depends on metals and substrates used. The Grignard reagents reacts with methyl borate to yield mixed boronates. ${ }^{101)}$ The stereospecificity of the products in the reaction of an optically active ketone, $\mathrm{RCH}\left(\mathrm{OCH}_{3}\right) \mathrm{COCH}_{3}$, with such organometallics varies with the metal species used. ${ }^{107)}$

II. 4 Miscellaneous Methods

II.4.1 Wittig reaction

This method is, in general, not important in the synthesis of allenes, because the betaine intermediate included is rather stable and allene itself is unstable under the reaction conditions. ${ }^{108)}$ By the use of stable ylids, however, terminal allenes are obtained in nearly quantitative yields. ${ }^{109)}$

$$
\begin{align*}
& \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}= \mathrm{P} \phi_{3}+\mathrm{CH}_{2}=\mathrm{C}=\mathrm{O} \xrightarrow[0.5^{\circ} \mathrm{C}]{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2} \tag{25}\\
&(\approx 100 \%) \\
&\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{Me} ; \mathrm{R}^{2}=\mathrm{CN}, \mathrm{COCH}_{3}, \mathrm{COC}_{6} \mathrm{H}_{5}, \mathrm{COOC}_{2} \mathrm{H}_{5}\right)
\end{align*}
$$

II.4.2 Hydroboration

Zweifel et al. reported a new synthetic method of terminal allenes via hydroboration (Eq. (26)). ${ }^{110)}$

Table 3. Yields of Terminal Allenes Obtained from 1-Chloro-2-alkynes via Hydroboration-Elimination Reactions. ${ }^{110)}$

R	n-Bu	Cyclohexyl	$t-\mathrm{Bu}$	Phenyl
$\mathrm{Y}(\%)$	83	93	92	91

This method gives no by-products and the yield of allene is fair.

II.4.3 Methods by the use of carbene

A treatment of bromoallene with potassium t-butoxide yields an intermediate vinylidene carbene, which inserts into a carbon-hydrogen bond or into a silicon-hydrogen bond to give allene. ${ }^{111)}$

A vinylidene carbene is also formed from dichlorocyclopropane and a base via chlorocyclopropene. ${ }^{112)}$

The reaction of an unsaturated carbene with an acetylene also gives allene. ${ }^{113)}$

II.4.4 Preparation of allenes by thermal- or photodecomposition

Bisadamantylidenemethane is obtained in a high yield by the thermal decomposition of adamantylidene ketone dimer (Eq. (30)). ${ }^{114)}$ The decomposition of a hydrazone ${ }^{115)}$ or an azalkane ${ }^{116)}$ yields some allenes as well as other products.

An allenic intermediate is suggested in the pyrolytic synthesis of spirodibenzocyclobutene. ${ }^{117)}$ Propadiene is found in the products of photo-decomposition of furfural, ${ }^{118 \text {) }}$ furan, ${ }^{118)}$ thiophene, ${ }^{119}$) or ethylene. ${ }^{120)}$

II.4.5 Other methods

An ene reaction between photo-generated benzyne and methyl acetylene produces an allene. ${ }^{121)}$

T. Okamoto

Other reports on the preparation of allenes describes the mercury-cathode-reduction of acetylenic or allenic halides, ${ }^{122}$) and the synthesis of bisamide of allene dicarboxylic acid by the reaction of 2 moles of aminoacetylene and carbon dioxide. ${ }^{123)}$

11.5: Optically Active Allenes

1.3-Disubstituted allenes have the property of molecular asymmetry and usually the racemic mixtures are obtained in syntheses. The preparations and properties of optically active allenes are summarized in this section.

Optically active aryl and alkyl allenes were synthesized via cyclopropylidene prepared from resolved 2,3-disubstituted cyclopropane carboxylic acids in 5 steps. ${ }^{124)}$

R	ϕ	$n-\mathrm{Bu}$	Et	Me
$[\alpha]_{\mathrm{D}}^{25^{\circ}}$	459°	-7.5°	11.2°	-25.3°
Solvent	Hexane	CCl_{4}	CCl_{4}	CCl_{4}

$(+)$ Penta-2,3-diene prepared from (+)-trans-2,3-dimethylcyclopropane-carboxylic acid has (S)-configuration. ${ }^{8)}$

Corey et al. prepared optically active di-t-butylallene (IV) by the $\mathrm{S}_{\mathrm{N}} 2$ ' type reduction of optically active propargyl esters. ${ }^{38 \text {) }}$

Partially optically active IV is obtained by the treatment of II with lithium aluminium hydride in the presence of aluminium chloride. The optical rotations of allenes obtained from optically pure $(+) \mathrm{II}$ and 2 moles of LiAlH_{4} varies with the amount of AlCl_{3}, as follows.

AlCl_{3} (moles)	0.15	0.33	0.66
$[a]_{578}^{22^{\circ}}$ (Benzene)	-32.9°	$+5.4^{\circ}$	$+26.4^{\circ}$

Caserio et al. found a simple method to obtain optically active allenes. The hydroboration of racemic 1,3-disubstituted allenes with optically active alkyl borane prepared in situ from sodium borohydride and (- - α-pinene proceeds selectively, i.e., one enanthiomer reacts more rapidly, leaving an excess of the other enanthiomer. They obtained partially optically active 2,3 -pentadiene ${ }^{125}$) and 1,2 -cyclononadiene by this method. ${ }^{126)}$

Cope et al. tried the partial resolution of 1,2-cyclononadiene by the use of (π-allene) dichloroplatinum(II) complex with an optically active amine ligand. They used a-methylbenzylamine or p-nitro- a-methylbenzylamine as the optically active amine and obtained 1,2-cyclononadiene of an optical purity of 44% by the treatment of fractionally crystalized allene complex with aqueous sodium cyanide. ${ }^{127)}$

The absolute configuration of 1,2-cyclononadiene, the (R) configuration for the $(+)$ enanthiomer ${ }^{128)}$ and the (S) configuration for the (-) enanthiomer, ${ }^{129)}$ is assigned separately by two groups. The sector rule for chiral allenes is derived by Crabbe' et al. ${ }^{305)}$

III. PHYSICAL PROPERTIES OF ALLENES

Some spectroscopic properties of allenes were studied lately, such as a microwave spectrum, ${ }^{130)}$ electroic spectra, ${ }^{131 \sim 133)}$ NMR spectra, ${ }^{134 \sim 136)}$ IR spectra, ${ }^{137,138)}$ and ESR spectra. ${ }^{139,140)}$ The characteristic IR absorption of allenes appears at $1960 \mathrm{~cm}^{-1}$ for eight aromatic or heteroaromatic substituted allenes ${ }^{137}$) and at $1950-1975 \mathrm{~cm}^{-1}$ for sixteen allenic alchols of the type $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHC}(\mathrm{OH})=\mathrm{C}=\mathrm{CHCH}_{2} \mathrm{R}\left(\mathrm{R}=\right.$ alkyl, aryl, cycloalkyl). ${ }^{138}$)

A study of ${ }^{13} \mathrm{C}$ NMR spectra of allenes shows a linear relationship between the chemical shift of central carbon of allenic bond, $\delta \mathrm{C}_{\beta}$, and the number and sort of the substituent. ${ }^{141 \text {) }}$ A methyl substituent contributes $+3,3 \mathrm{ppm}$ to $\delta \mathrm{C}_{\beta}$ and an ethyl group contributes +4.8 ppm . There is another linear relationship between the chemical shifts of central (C_{β}) and terminal $\left(\mathrm{C}_{7}\right)$ carbons of monosubstituted allenes, $\mathrm{C}_{7} \mathrm{H}_{2}=\mathrm{C}_{\beta}=\mathrm{C}_{\alpha} \mathrm{HX}$. The inverse relation between $\delta \mathrm{C}_{\beta}$ and $\delta \mathrm{C}_{7}$ is explained by the "extended" π-system of $\mathrm{C}_{\alpha} \mathrm{C}_{\beta} \mathrm{C}_{\gamma} \mathrm{HH}$ and $\mathrm{C}_{7} \mathrm{C}_{\beta} \mathrm{C}_{\alpha} \mathrm{HX} .{ }^{141)}$ Nonequivalent two geminal allenic protons were reported for allenes, $\mathrm{RCHBrCOC}\left(\mathrm{CH}_{3}\right)=\mathrm{C}=\mathrm{CH}_{2}$, which showed ABX type spectra. ${ }^{134 \text {) }}$ Other allenes, $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{R},(\mathrm{R}=\mathrm{H},-\mathrm{OAc},-\mathrm{OTs})$ also showed complex absorptions due to the terminal methylenes, but this complication arose from a long range coupling through five bonds including an allenic bond. ${ }^{136)}$ For the coupling constant of such a long range allenic coupling, the following equation was proposed. ${ }^{132 \text {) }}$
T. Okamoto

$$
\begin{align*}
& 5 \mathrm{~J}=\mathrm{A} \sin ^{2} \Phi+\mathrm{B} \\
& \mathrm{~A} \simeq 2.25 \mathrm{~Hz} \tag{35}\\
& \mathrm{~B}=1.18 \mathrm{~Hz} \\
& \Phi: \text { dihedral angle }
\end{align*}
$$

A negative sign of the geminal allenic coupling constant was verified experimentally. ${ }^{142)}$ The sign is also negative for butatriene. ${ }^{143)}$ NMR has been used for the conformational analysis of diphenylethylallene. ${ }^{144)}$ ESR spectrum proved that the radicals generated from propadiene and methylacetylene by hydrogen abstraction are the same. ${ }^{139,140 \text {) }}$

Many reports on the theoretical treatment of propadiene have been published. ${ }^{145 \sim 150)}$ The strain energy, ${ }^{148)}$ the molecular geometry ${ }^{150)}$ and the energy barrier for rotation of bonds ${ }^{147,149)}$ are discussed. The ionization potential of propadiene is $9.53 \pm 0.03 \mathrm{eV} .147,149 \sim$ 151) Propadiene quenches the triplet excitation energy of benzene more effectively than ethylene does, but less effectively than propene. ${ }^{152)}$ The solubility of propadiene into water containing cuprous chloride, ammonium chloride and hydrogen chloride is proportional to the partial pressure of propadiene over a range of $200-800 \mathrm{mmHg}$. The solubility of propadiene is about twice of that of methylacetylene. ${ }^{153)}$

IV. REACTIONS OF ALLENES

IV.1: Cycloadditions

IV.4.1 Cyclodimerization of allenes

Dimerization of allenes to cyclobutane derivatives is a general reaction of allenes. Especially it is easy for polychloroallenes ${ }^{25,29,30,154 \sim 157)}$ such as trichloroallene or trichloroallenecarboxylic acid, tetrakis (methylthio) allene, ${ }^{93)}$ perfluoro-1,2-pentadiene, ${ }^{26)}$ and dimethylcyanoallene. ${ }^{158)}$ These compounds tend to dimerize completely even below room temperature and are difficult to obtain in a pure state.

The orientation and stereochemistry of dimerisation of poly-substituted allenes have been studied extensively. Reported data on the regioscopic distribution of cyclobutanes show that the products are generally 1,2 -dimethylenecyclobutanes and little reports are known which show the predominant formation of 1,3 -dimethylenecyclobutanes. ${ }^{159)}$ Which double bonds takes part in the reaction is dependent on the substituents as seen from Table 4. As for the stereochemistry of substituents on the ring, the trans adducts are usually predominant, ${ }^{160 \sim 165)}$ but the cis adduct is obtained as the main product for the dimerization of 1,3-diphenylallene. ${ }^{165 \text {) The substituents on two exo-methylene groups locate mostly in }}$ syn positions. ${ }^{160,161,163,164,166)}$ Jacobs et al. proposed an orthognal biradical intermediate for allene dimerization and explained the products from its stereochemical situations. ${ }^{160,166,}$ 167)

The dimerization of optically active 1,2-cyclononadiene proceeds with about 100% of stereospecificity to give the meso product but it is not known whether the reaction proceeds through a concerted mechanism or a biradical one. ${ }^{162)}$ The dimerization of optically active 2,3 -pentadiene yields, however, the racemic products, ${ }^{163)}$ suggesting a non--

Table 4. Cyclodimerizations of Unsymmetric Allenes.

$2 \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}=\mathrm{C}=\mathrm{CR}^{3} \mathrm{R}^{4}$				$\begin{aligned} & R^{1} R^{2} \\ & R^{1} R^{2} \end{aligned}$ (V)	$\begin{aligned} & C R^{3} R^{4} \\ & C R^{3} R^{4} \end{aligned}$	 (VI)		2-(36)
R^{1}	R^{2}	R^{3}	R^{4}	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Y (\%)	Product (\%)		Reference
						V	VI	
Cl	Cl	Cl	$\mathrm{CO}_{2} \mathrm{Et}$	$-90 \sim 20$	100	100		155, 29
Cl	Cl	Cl	H	20	100			25
Cl	Cl	Cl	Br	r.t.	100	100		30
F	F	F	$\mathrm{C}_{2} \mathrm{~F}_{5}$	20	85	26	74	26
H	CN	Me	Me	85			100	158
H	CN	Me	Et	130	100		100	158
H	H	H	Cl	60		100		167
Me	Me	H	Cl	$80 \sim 90$		100		167
ϕ	H	H	Cl	80	$30 \sim 45$	41	59	166
Adm	H	H	Cl	125~130	90	59	41	160
H	H	H	Me	170	29	54	46	161
ϕ	ϕ	H	C					165
ϕ	ϕ	H	Br					165
ϕ	ϕ	ϕ	Me	150	39	100		168

concented process. Dolbier, Jr. and Dai examined the secondary isotope effect for the dimerization of propadiene. The intermolecular isotope effect ($k_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$) is 1.013 ± 0.020 and the intramolecular value is 1.14 ± 0.020, which suggest the reaction passes through more than two energy barriers. ${ }^{306)}$ These data are favorable for a biradical mechanism.

Detzer and Roedig studied the kinetics of dimerization of polyhalogenated allenes. The reaction followed second order kinetics and showed large and negative entropies of activation and relatively small enthalpies of activation. They detected no paramagnetic species during the dimerization of tetrachloroallene, and proposed a non-concerted two-step mechanism. ${ }^{159)}$

IV.1.2 (2+2) Cycloadditions of allenes with unsaturated compounds other than allenes

This cyclization is also a well-known reaction, and usually yields four-membered cyclic compounds (Eq. (37)).

When an electron-rich allene and an electron deficient unsaturated compound are used as the reactants, the reaction yields an equilibrium mixture of a zwitter-ion and a four membered-cyclic compound, or only the former ion. ${ }^{307,308)}$

T. OKamoto

The cycloaddition is sometimes accompanied by an ene reaction. ${ }^{28,170,172,174,309)}$
Concerning to the mechanism of the thermal $(2+2)$ cycloaddition, the above-mentioned two mechanisms are still the objects of discussion. Contrary to the dimerization of allenes, Baldwin et al. obtained optically active products from the reaction of optically active 2,3pentadiene and acrylonitrile. They explained the results from the steric requirement in the intermediate. ${ }^{171)}$ The reaction of allene with tetrafluoroethylene or fluorochloroethylene is explained successfully by a biradical mechanism. ${ }^{310,169)}$

Kiefer and Okamura studied the reaction of 3 -methyl-1,2-butadiene with dimethyl maleate or fumalate and found that these reactions are stereospecific. Fumalate gives only the trans adduct. They also tried the kinetic study, and concluded that this reaction does not proceed via a biradical intermediate. ${ }^{172)}$

As a photo-cycloaddition, the reaction of allenes with ketones ${ }^{173)}$ or thioketones ${ }^{174,175)}$ has been reported. Reaction with ketone yields a 2 -methylene-oxacyclobutane, two I: 2 adducts, a spiroketal and a dioxaspiroalkane, and sometimes a cyclobutanone, the rearranged product of an oxetane.

In the case of the addition of 1,4-benzoquinone or 1,4-naphtoquinone with tetramethylallene, the product is exclusively a rearranged one, derivative of 5 -hydroxyindane-2-one. ${ }^{176)}$

Benzyne also reacts with electron-rich allenes to give bicyclic compounds but an ene reaction is in competition with the cycloaddition (Table 8). ${ }^{177 \text {) }}$ Allenes with electronreleasing substituents are favorable to cycloaddition.

IV.1.3 ($2+4$) Cycloadditions

Allenic compounds react as dienophiles, ${ }^{86,154,178,179) \text { while } \alpha, \beta \text {-unsaturated allenic } ; ~}$ compounds react as diene ${ }^{180,181)}$ In the dimerization of phenyl allene, one allene molecule acts as a diene and another molecule as a dienophile (Eq. (41))).182)

Recent Progress in the Chemistry of Allenes

The examination of the secondary isotope effect $\left(\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}\right)$ is found to be effective to distinguish either a concerted process or a two-step one. ${ }^{183)}$ The secondary isotope effect for the reaction of hexachlorocyclopentadiene with 1,1 -dideuteroallene is 0.90 , supporting the one-step mechanism, and the value for the cycloaddition reaction of acrylonitrile with 1,1 -dideuteroallene is 1,21 , suggesting the two-step biradical mechanism. The one-step concerted mechanism is proposed for the reaction of allene with tetracyanoethyleneoxide by this isotope effect. ${ }^{184)}$

Table 5. Isotope Effects for Allene Cycloadditions. ${ }^{184)}$

Type of Reaction	Reagent	$\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$
$2+2$	allene	1.14 ± 0.02
$2+2$	acrylonitrle	1.21 ± 0.02
$2+2$	$\mathrm{F}_{2} \mathrm{C}=\mathrm{CCl}_{2}$	1.15 ± 0.04
$2+3$	$(\mathrm{CN})_{2} \mathrm{C}-\mathrm{C}(\mathrm{CN})_{2}$	0.93 ± 0.01
$2+4$		0.90 ± 0.03

Photo-induced $(2+4)$ cycloaddition (Schönberg reaction) was applied to allenes. ${ }^{185,186)}$ In this reaction, a double bond of allene with an electron-releasing substituent is more reactive. A significant steric hindrance in the reaction of t-butylallene or 1,1-dimethylallene is confirmed kinetically. ${ }^{186)}$

IV.1.4 Other cycloadditions

Some functional allenes react intramolecularly and yield cyclic products: Compounds XII rearrange to give cyclic unsaturated ether with basic catalyst in polar solvents. ${ }^{188)}$ The derivatives of dihydrofuran are obtained when n was zero $\left(R=H, R^{\prime}=O M e, 60 \%\right.$ yield). From XII ($\mathrm{n}=\mathrm{l}, \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{OMe}, \mathrm{SMe}$), methylenetetrahydrofuran or its rearranged product is produced. The acid-catalized reaction of these compounds gives different products. ${ }^{188}$) From XII, a ten-membered cyclic dimer is obtained when n is zero ($\mathrm{R}=\mathrm{H}$, $\left.\mathrm{R}^{\prime}=\mathrm{OMe}\right)$. A six-membered unsaturated ether is formed when n is one $(\mathrm{R}=\mathrm{H}$, $\mathrm{R}^{\prime}=\mathrm{SMe}, 54 \%$ yield). Mercuric salts are good catalysts to yield the dihydrofuran derivatives ($\mathrm{n}=0, \mathrm{R}=\mathrm{Me}-\mathrm{Pr}, 47 \sim 56 \%$ yield). ${ }^{189}$ The reaction of allenic ketones XIII with methylhydroxylamine hydrochloride yields nitrones XIV, which further undergo intramolecular cycloaddition. ${ }^{190)}$

T. Okamoto

(XII)

(XIII)

(XIV)

The structure of the resulting ring compounds is dependent on the number n; when n is 2 , XV is the product (45%), and when n is 3 , XVI, XVII, and XVIII are isolated in 40 , 16 , and 40% yield, respectively. XIX is a sole product when n is 4.

(XV)

(XVI)

(XVII)

(XVIII)

(XIX)

An β-allenic grignard reagent rearranges to another Grignard reagent having a cyclopropyl group. ${ }^{191)}$

(25\%)
An allene dicarboxylic acid bisamide ${ }^{123}$) cyclizes to give an unsaturated lactone by heating. ${ }^{192)}$

Epoxidation of a vinylallene is accompanied with the subsequent cyclization of the product to give cyclopenten-3-one. ${ }^{193,194)}$ Cyclo-1,2-nonadiene undergoes photorearrangement to give tricyclo (3.2.0) nonene. ${ }^{195}$) Substituted furans are synthesized in good yields by the reaction of allenic sulfonium halides with ketones. ${ }^{196}$)

Table 6. Yeilds of Furans by the Addition of Enolate Anions to Allenic Sulfonium Salts. ${ }^{196}$

R^{1}	R^{2}	R^{3}	R^{4}	$\mathrm{Y}(\%)$
H	H	Me	$-\mathrm{CO}_{2} \mathrm{Et}$	86
H	H	Me	$-\mathrm{SO}_{2}-p-\mathrm{Tol}$	78
H	H	ϕ	$-\mathrm{CO} \phi$	72
H	H	Me	$-\mathrm{CO} \phi$	89
H	H	Me / ϕ	$-\mathrm{CO} \phi 1-\mathrm{COMe}$	$83(50 / 50 \mathrm{mix})$.
H	ϕ	Me	$-\mathrm{CO}_{2} \mathrm{Et}$	63
Me	H	Me	$-\mathrm{CO}_{2} \mathrm{Et}$	61

Furans are also prepared from aldehydes and allenic compounds.

Similar reaction with ketones yields methylenedihydrofuran derivatives. Reaction of the carbanion with carbon dioxide yields an unsaturated lactone hemiacetal. ${ }^{197 \text {) }}$

Nitrogen-containing ring compounds such as pyrrolidinone-, ${ }^{198)}$ isoxazole-, ${ }^{199)}$ and oxazoline- ${ }^{200}$ derivatives are synthesized by the four-center addition of substituted allenes with azomethine oxide, phenylchloroaldoxime, and azidoformate, respectively. Pyrazolines are produced by the reaction of allene with nitrile imine, ${ }^{201)}$ arylsulphonyl azide, ${ }^{200}$) or diazo alkanes. 202~204) The four-center reaction of 2 -diazopropane with α, β-unsaturated allenes is influenced by steric and electronic factors, and the reaction occurs at the more electrophilic double bond of allenes. The electronically preferred product, 4-alkylidene-1pyrazoline, is usually formed and the orientation is reversed in the case of crowded allenes. ${ }^{203)}$

Pyridones are synthesized by the Michael addition of ketoenamines to diethyl allenedicarboxylate in fair to moderate yields. ${ }^{205)}$

IV.2: Linear Addition Reactions

IV.2.1 Ionic addition

As for the addition of hydrogen chloride to allene, the intermediacy of a vinyl cation is suggested when bismuth chloride is used as a catalyst at $-78^{\circ} \mathrm{C} .206$) In the case of phenylallene, however, it is shown that the addition of HCl occurs through a localized allylic cation, $\phi \mathrm{C}^{+} \mathrm{HCH}=\mathrm{CH}_{2}$, at $30^{\circ} \mathrm{C}$. ${ }^{207)}$ Methoxyallene reacts at $-60^{\circ} \mathrm{C}$ in ether to yield l-methoxy-3-chloropropene. ${ }^{187)}$ For the HCl addition, the reactivity of allene is reported to be larger than that of cyclopropyl group. ${ }^{208)}$

As for the halogenation of allenes, Caserio et al. proved that halonium ion is a reasonable intermediate in the bromination and iodination of optically active allenes. ${ }^{126)}$ The additions are stereospecific and give the trans adducts, but the optical purity of the iodination product of 2,3 -pentadiene decreases significantly with the iodinating agent in the order $\mathrm{ICl}>\mathrm{IBr}>\mathrm{I}_{2}$ owing to the participation of a streightfoward displacement by nucleophilic anions. ${ }^{125)}$ Halonium ions are detected derectly by NMR in $\mathrm{SbF}_{5}-\mathrm{SO}_{2}$ at

Table 7. NMR Data of Allenyl Halonium Ions (XX) in $\mathrm{SbF}_{5}-\mathrm{SO}_{2} .{ }^{209}$)

(XX)

X	H^{1}	H^{2}	CH^{2}
Cl	9.58	7.07	4.72
Br	9.50	7.28	5.02
I	9.55	7.60	4.77

T. Okamoto

$-80^{\circ} \mathrm{C} .{ }^{209)}$ A preceeding paper for the bromination of 1,2-cyclononadiene, which reported the products consisting of 40% cis- and 60% trans-2,3-dibromocyclononene, ${ }^{210 \text {) was }}$ disproved by Baird et al., who showed the major product is 1,4 -dibromo-cis-cyclononene. ${ }^{211)}$ Caserio et al. also obtained 1,4-dibromocyclononene but as a minor product. ${ }^{126)}$ The transannular bromination appears to be not general, because the bromination of cycloocta-1,2-diene and cyclododeca-1,2-diene yields only cis-2,3-dibromocycloalkenes. ${ }^{212 \text {) }}$

When tetramethylallene or 1,1-dimethylallene is treated with chlorine in trichlorotrifluoroethane in the presence of oxygen, a substitution becomes predominant. ${ }^{213 \text {) }}$

Propadiene also yields the substitution product as well as the addition and dimerization products. ${ }^{213)}$ In the addition of interhalogen compounds or $I N_{3}$ to 2,3-pentadiene and cyclononadiene, the attachment of the electrophile to the central carbon of allenic bond and the nucleophile to the terminal one was observed. Generally the trans adducts are produced. ${ }^{214)}$ Arylsulfonyl or sulfenyl halide reacts with allenes to yield mono adducts having a S-C bonds at the central carbons of allenes in high yields. ${ }^{215,216)}$

The electrophilic addition to 2-methyl-1-(tetramethylcyclopropylidene) propene occurs at the terminal carbon of allenic bond, which is explained by the stability of cyclopropylidenecarbinyl cation. On the other hand, epoxidation and oxymercuration of this allene give central adducts as a result of the product-determining nucleophilic ring-opening of a bridged cation. ${ }^{217)}$

Taylor et al. examined the electrophilic and nucleophilic addition reactions for a series of perfluoroallenes. ${ }^{218,219)}$ The site of nucleophilic attack is dependent on the structure of allene owing to the extent of stabilization of negative charge by the β-fluorine atoms. ${ }^{219)}$

In the addition of hypochlorous acid, $\mathrm{Cl}+$ attacks at the central carbons of allenes and OH^{-}adds to the more substituted terminal carbons. The yields are fair without accompanying chloroketones. ${ }^{220}$)

Phenol reacts with allene in the presence of Hg sulfate and sulfric acid to give 2,2-bis (4-hydroxyphenyl)propane. ${ }^{221)}$ The reaction of Prevost reagent with allene gives the cisand trans monoadduct XXI^{222}) (Eq. (48)).

$$
\begin{aligned}
& \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}=\mathrm{C}=\mathrm{CR}^{3} \mathrm{R}^{4}+(\phi \mathrm{COO})_{2} \mathrm{AgI} \xrightarrow[\text { r.t. } \sim 80^{\circ} \mathrm{C}]{\mathrm{C}_{6} \mathrm{H}_{6} \text { or } \mathrm{CCl}_{4}} \\
& \quad \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}(\phi \mathrm{COO}) \mathrm{CI}=\mathrm{CR}^{3} \mathrm{R}^{4} \quad(6 \sim 89 \%) \quad\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}, \mathrm{~V}=89 \%\right) \\
& \quad(\mathrm{XXI})
\end{aligned}
$$

The addition of allyl Grignard reagent to buta-2,3-diene-1-ol yields a butadiene derivative, 3 -methylenehexa-1,5-diene ($\sim 80 \%$) and/or an allyl alcohol, hepta-2,6-diene-1-ol, ($1 \sim 2 \%$) in ether. ${ }^{223)}$

The base-catalyzed addition of carboxylic acid to dimethylallenylsulphonium bromide readily yields a vinyl ester, which is useful as an acylating reagent for alchols and amines. ${ }^{82}$)

Amines add to an α-keto-substituted allene to give enamines. ${ }^{62)}$

Epoxidation of alkylated allenes was studied by Crandall et al. A bisepoxide is obtained by the reaction of 1,1 -dimethyl- t-butylallene with peracetic acid, ${ }^{311)}$ but in the reaction of tetramethylallene, the resulting epoxides rearranges completely. ${ }^{224)}$

IV.2.2 Radical addition

Radical addition of allenes is investigated in detail by using t-butylhypochlorite. The products in the reaction with optically active 2,3-pentadiene in ether are the racemic mixture, cis- and trans-4-chloro-3-t-butoxy-2-pentene, and 3,4-dichloro-2-pentene, indicating the intervention of a symmetric resonance-stabilized allylic intermediate. In hydrocarbon solvents, substitution becomes predominant and the product is racemic 4 -chloro-2-pentyne formed from the resonance-hybridized 2,3-pentadienyl radical.225) The hybrid nature of propargylic radical, instead of an equilibrium mixture, is verified by Poutsma by means of chemical technics. ${ }^{226}$) The reactivity for the hydrogen abstraction by t - BuO radical decreases in the following order, allenic hydrogen~propargylic hydrogen $>$ allylic hydrogen, ${ }^{225)}$ and the relative reactivity coefficients, k , for tertiary propargylic hydrogen, allenic hydrogen and allylic hydrogen are $13.5,4.0$, and 1.05 , respectively, where cyclopentyl hydrogen is taken as a standard. ${ }^{226)}$ Similar results are also obtained from an ESR study of the reaction of methylallene with t-butoxy radical. ${ }^{140)}$

In the gas-phase free radical addition of hydrogen bromide to allenes, methyl substituents in the reactant accelerates the reaction rate. The activation energies for the reaction with propadiene, 1,2 -butadiene. 3 -methyl- 1,2 -butadiene and 2,3 -pentadiene are $-3,43,-3.44,-4.17$, and $-4.06 \mathrm{kcal} / \mathrm{mol}$, respectively. ${ }^{227)}$ The addition of tetrafluorohydrazine to allene takes place under the influence of light of $2537 \AA$ to give a mixture of 2 -fluoro-3-difluoroaminopropene and 3-difluoroaminopropyne in a total 70% yield. ${ }^{228)}$

IV.2.3 Miscellaneous additions

The addition of carbenes to allenes yields the derivatives of methylenecyclopropane. ${ }^{229,230)}$ Doering et al. studied the reaction by using dideuteromethylene and found a random distribution of deuterium in the resulting methylenecyclopropane, which suggests a symmetric intermediate or an excited methylenecyclopropane intermediate. ${ }^{231)}$ In the reaction of phenylallene with dichlorocarbene, only 2 -methylene-3-phenyl-1,1-dichlorocyclopropane is obtained. ${ }^{230)}$

Hydroboration of allene is studied with bisamylborane ${ }^{233,233)}$ or 4,4,6-trimethyl-1,3,2dioxaborinane. ${ }^{234)}$ The reaction is affected principally by steric effect. Terminal allene yields the products with the attachment of boron at the unsubstituted terminal carbon, and more substituted allenes tend to give the adducts with the attachment of boron at the central carbon of the allenic bond. Cycloallenes yield the latter products. Electronic effect

T. OKAMOTO

of substituents influences the orientation of these addition reactions only with secondary importance.

Allene undergoes an ene reaction, but it is more or less accompanied by the cycloaddition reaction described in IV.1.2. Photo-generated benzyne reacts with allenes as follows. ${ }^{177)}$ The ene reaction of alkyl substituted allenes is generally accompanied by

Table 8. Reaction of Benzyne with Allenes. ${ }^{177)}$

$\approx \mathrm{C}=\mathrm{C}=\mathrm{C}_{-}^{\prime \mathrm{R}}$			 (XXIV)
Allene	Products (\%)		
	XXII	XXIII	XXIV
$\mathrm{Me}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C} \quad 34$			
$\mathrm{MeC}=\mathrm{C}=\mathrm{CMe}$	18	30	
$\mathrm{C}=\mathrm{C}=\mathrm{C}$		16	
$\mathbb{B C}_{0}$	31	0	5
$t-\mathrm{BuC}=\mathrm{C}=\mathrm{COMe}$		26	25
$t-\mathrm{BuC}=\mathrm{C}=\mathrm{COEt}$		26	17
$\mathrm{C}=\mathrm{C}=\mathrm{CCl}$		1	12
$\mathrm{C}=\mathrm{C}=\mathrm{CCN}$		15	

rearrangement to yield the butadiene-derivatives of type XXII. Especially, tetramethylallene reacts with substituted acetylenes having electron withdrawing groups, ${ }^{235)}$ acrylonitrile, ${ }^{309)}$ 1, 1, 1-trifluoropropane, ${ }^{235)}$ triffuoronitrosomethane, ${ }^{235)}$ bis (triffuoromethyl) ketene, ${ }^{28)} \mathrm{EtOCON}=\mathrm{NCO}_{2} \mathrm{Et},{ }^{235}$) and $(\phi)_{2} \mathrm{C}=\mathrm{S}^{236)}$ to yield the adducts of type XXII in moderate to excellent yields. Bis(trifluoromethyl)ketene reacts at both reaction sites, the carbon-carbon double bond and the carbonyl group. ${ }^{28)}$ Dolbier, Jr. and Dai examined the deuterium isotope effect in the reaction of propadiene with hexafluorocyclobutanone, and found the reaction proceeds by a concerted process. ${ }^{237 \text {) Allenic diphenylphosphineoxides }}$ are methylated at the double bond adjacent to phosphorus by lithium dimethyl copper. ${ }^{238)}$ Electronegative-group-substituted methylenetriphenylphosphoranes (XXV) undergo the Michael type addition reaction with allenyl ketones to give new alkylenephosphoranes. ${ }^{239)}$

IV.3: Homoallenic Participation 240~253)

The solvolysis rates of β-allenic esters are accelerated more significantly than those of the corresponding olefinic esters (homoallylic participation) and the rearranged products are formed. The participation by allenic bond is called homoallenic participation. ${ }^{240)}$ The ester group in the γ-position of allenic bond also receives such participation but with lesser extent. ${ }^{246}$

IV.4: Miscellaneous Reaction

Reduction of allenes: Birch reagent reduces alkyl allenes to the trans olefins and aryl allenes to the alkyl benzenes. ${ }^{254)}$) On the contrary, cyclic allenes yield mainly the cis cyclic olefins, and the trans adduct increases for olefins with larger rings. ${ }^{255)}$ Only the cis cyclic olefins are formed from C_{9} and C_{10} cyclic allenes and in the case of C_{14} cyclic allenes, 73% of the products is composed of the trans olefin. With diimide, aliphatic or cyclic allenes are reduced at the least substituted double bond, and yield the cis olefins with little contamination of the rearranged products or the over-reduced products. ${ }^{256)}$

Table 9. Reduction of Acyclic Allenes by Sodium in Liquid Ammonia. ${ }^{254}$)

Allene	Product		
	Yield (\%)	Distribution (\%)	
1,2-nonadiene	80	trans-2-nonene	92.8
		cis-2-nonene	7.2
2.3-nonadiene	85	trans-2-nonene	49.2
		cis-2-nonene	1.5
		trans-3-nonene	47.9
		cis-3-nonene	1.4
4,5-nonadiene	82	trans-4-nonene	96.6
		cis-4-nonene	3.4
tetramethylallene	76	2,4-dimethyl-2-pentene	100
phenylallene	72	propylbenzene	82
		allylbenzene	18

The decomposition or rearrangement of allenes takes place photochemically. ${ }^{257,258)}$ For example, optically active 2,3 -pentadiene racemizes at room temperature in the presence of toluene by triplet energy transfer mechanism. ${ }^{259}$) The thermal decomposition and rearrangement are studied for propadiene ${ }^{260}$) and 1,2 -cyclononadiene. ${ }^{261)}$ The rearrangement of 3 -alkyl-4-bromo-1,2-butadiene to 3 -alkyl-2-bromo-1,3-butadiene occured also thermally in the presence of a metal salt. ${ }^{262,263)}$

Allenic halides, unlike vinyl halides, react under the solvolytic conditions. ${ }^{61,264 \sim 266)}$ Schiavelli et al. examined the solvolysis of triarylchloroallenes. The m value for trichloroallene in aqueous acetone is 0.69 ± 0.06. The activation parameters for triphenylchloroallene are $\Delta \mathrm{H}^{*}=20.2 \mathrm{kcal} / \mathrm{mol}$, and $\Delta \mathrm{S}^{*}=-10.7$ e.u. The product in acetonewater is $1,1,3$-triphenylprop- 2 -ynyl-1-ol. The reaction constant ρ against σ^{+}is -2.0 . The addition of triethyl amine has no effect on the rate but the addition of LiCl causes a considerable rate depression. They interpreted these results in terms of an $\mathrm{S}_{\mathrm{N}} \mathrm{l}$ reaction proceeding via a charge-delocalized allenyl cation. ${ }^{264,266)}$

V. TRANSITION METAL CHEMISTRY OF ALLENES

V.1: Transition Metal Catalyzed Reactions of Allenes

Propadiene oligomerizes in the presence of transition metal compounds such as

T. OKAMOTO

rhodium or nickel complexes. With tris(triphenylphosphine)chlororhodium used as a catalyst, a tetramer XXVI (55\%), a pentamer with unknown structure (16%), and traces of a dimer and a trimer are obtained in chloroform at $70 \sim 80^{\circ} \mathrm{C}$. The product is accompanied with a little polymer and its formation is accelerated in the presence of acetic acid. Methylacetylene does not react under these conditions. $\quad \mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}$ or $\mathrm{Rh}_{\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)_{2}}$ (acac) does not exhibit a satisfactory catalytic effect, and $\left(\phi_{3} \mathrm{P}\right)_{2} \mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}$ effectively catalizes the reaction though an explosion is reported in a large scale

(XXVI)
experiment. ${ }^{267)}$ The tetramer XXVI is obtained also with a catalyst system of $R h_{2}$ $\mathrm{Cl}_{2}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)_{4}$ and triphenylphosphine in a $70 \sim 80 \%$ yield at $60^{\circ} \mathrm{C}$. $[\mathrm{RhCl}$ $\left.\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right) \mathrm{P} \phi_{3}\right]_{2}$ reacts similarly with propadiene at room temperature, but $\operatorname{IrCl}\left(\mathrm{P} \phi_{3}\right)_{3}$ is unreactive. ${ }^{268}$) In the absence of triphenylphosphine, $\mathrm{Rh}_{2} \mathrm{Cl}_{2}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)_{4}$ yields allenepentamer complex, $\mathrm{RhCl}\left(\mathrm{C}_{15} \mathrm{H}_{20}\right)$, and when carbon monoxide or isonitrile exists instead of triphenylphosphine, a high polymer is produced. ${ }^{268)}$ Bis(cyclooctadiene) nickel yields pentamer XXVII selectively ($50-55 \%$) at $40 \sim 70^{\circ} \mathrm{C}$, and another pentamer XXVIII is obtained quantitatively by the reaction of rhodium allenepentamer complex, $\mathrm{RhCl}\left(\mathrm{C}_{15} \mathrm{H}_{20}\right)$, with bisdiphenylphosphinoethane. ${ }^{269)} \quad\left[\not p-(\phi)_{2} \mathrm{PC}_{6} \mathrm{H}_{4} \mathrm{P}(\phi)_{2} \mathrm{Ni}(\mathrm{CO}){ }_{2}\right] \mathrm{x}$ (XXIX) catalyzes the oligomerization of propadiene and produces a tetramer XXVI and a pentamer, for which the structure $\mathbf{X X X}$ or $\mathbf{X X X I}$ is proposed. ${ }^{270)}$

(XXVII)

(XXVIII)

(XXX)

(XXXI)

As the catalyst for the trimerization of allenes, nickel carbonyl-triphenylphosphine complexes are well known. Wilke et al. has reported that $\operatorname{Ni}\left(\mathrm{P}-\left(-\mathrm{O}-\mathrm{O}_{\phi}\right)_{3}\right)_{2}$ catalyzes the conversion of propadiene to $1,2,4$-trimethylenecyclohexane. ${ }^{271)}$ Here, the formation of the usually accompanying isomer, 1,3,5-trimethylenecyclohexane, is not referred. The complex XXIX catalyzes also the gaseous dimerization of propadiene. The catalyzed dimerization yields mainly 1,3 -dimethylenecyclobutane, which is a minor product in the thermal dimerization. For example, under the conditions of $200^{\circ} \mathrm{C}, 61 \%$ of conversion, and by using He as a diluent, a 60% yield of 1,3-dimethylenecyclobutane and a 12% yield of the 1,2 -adduct are obtained.

Palladium acetate catalyzes the linear dimerization of propadiene in acetic acid. ${ }^{272}$)

The catalyst accelerates also the co-dimerization of propadiene with propyne or pentyne. ${ }^{273)}$ Heimbach et al. obtained two 1 : 2 adducts (XXXII, XXXIII) of propadiene and
butadiene in a maximum 69% yield by using nickel(0)-tris(2-biphenylyl) phosphite catalyst.

(XXXII)

(XXXIII)

XXXII is the major product. Methoxyallene or 1,1-dimethylallene gives similar products. They also obtained bis-(methylene)-twelve-membered-ring compounds consisting of two molecules of butadiene and two of propadiene in $5 \sim 13 \%$ yields. ${ }^{274)}$

Tetramethylallene reacts with butadiene at $50^{\circ} \mathrm{C}$ to give linear $1: 1$ and $1: 2$ adducts in an autoclave in the presence of bis(cyclooctadiene) iron, ferric acetylacetonate and triethylaluminium. There are five isomers in the $1: 1$ adducts in which XXXIVa is the main component. The $1: 2$ adducts are largely composed of XXXIVb. The total yield is $30 \sim 50 \% .{ }^{275)}$

V.2: Transition Metal Complexes

Many allene- and oligoallene-complexes are isolated as the intermediates or the model compounds of the catalytic reactions. ${ }^{276}$ 282) Triirondodecacarbonyl produces three isomeric complexes, XXXV, XXXVI, and XXXVII, in the reaction with propadiene. ${ }^{276)}$

The formation of them, the conversion of XXXV to XXXVI and XXXVII, and the conversion of XXXVI to XXXVII are the complete intramolecular reactions with no acceleration by light, protic solvents, hydridic reagents, or free-radical reagents. Bis(cyclooctadiene)nickel reacts with propadiene to yield, after the treatment with triphenylphosphine, a trimer complex, XXXVIII, or a tetramer complex, which reacts with CS_{2} to yield a cyclic trimer, 1,2,4-trimethylenecyclohexane, or a cyclic tetramer, respectively. ${ }^{277)}$

Bis(ethylene)-1,3-diphenylpropane-1,3-dionatorhodium and propadiene give a 60% yield of complex XXXIX at room temperature, ${ }^{278)}$ and $\left[\mathrm{RhCl}\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)\right]_{2}$ yields pentamer complex XL. ${ }^{279)}$

Palladium acetate reacts with propadiene to yield a binuclear trimer complex, XLI. ${ }^{280)}$

T. Okamoto

In the reaction of acetylacetonato- π-allylpalladium with propadiene, complex XLIIa is obtained in a 40% yield besides the insertion product. ${ }^{281)}$ The $2,2^{\prime}$-bi- π-allyl ligand is also prepared by the reaction of propadiene with palladium acetate ${ }^{280}$) or $\mathrm{Fe}_{2}(\mathrm{CO})_{9}{ }^{282}$)

(XXXIX)

(XL)

(XLI)

(XLIIa): $\mathrm{X}=\mathrm{acac}$
(XLIIb): $\mathrm{X}=\mathrm{OAc}$

Osborn pointed out that there are two types of coordination of allene on the metal; a monodentate π-co-ordination and a bidentate co-ordination through two σ-bonds. ${ }^{283)}$ Since then a number of complexes are synthesized such as $\left.\mathrm{Rh}\left(\mathrm{P} \phi_{3}\right)_{2} \mathrm{Cl}(\mathrm{C}=\mathrm{C}=\mathrm{C}) \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2},{ }^{283}\right)$ $\operatorname{RhX}\left(\mathrm{P} \phi_{3}\right)_{2}(\mathrm{C}=\mathrm{C}=\mathrm{C})(\mathrm{X}=\mathrm{Cl}, \mathrm{Rr}$, or I$),{ }^{284)}(\mathrm{acac})(\text { tetramethylallene })_{2} \mathrm{Rh},{ }^{285}$) (acac) (1, 1-dimethylallene) ${ }_{2} \mathrm{Rh}^{286}$) [(1, 1-dimethylallene) $\left.\mathrm{PtCl}_{2}\right]_{2}$, ${ }^{285)}$ [(tetramethylallene) $\left.\mathrm{Cl}_{2} \mathrm{Pt}\right]_{2}$. $2 \mathrm{CCl}_{4},{ }^{285}$) (tetramethylallene) $\mathrm{Cl}_{2} \mathrm{Pt}^{2}\left(\mathrm{NC}_{5} \mathrm{H}_{4}-p-\mathrm{X}\right)\left(\mathrm{X}=\mathrm{NH}_{2}, \mathrm{CH}_{3}, \mathrm{Et}, \mathrm{H}, \mathrm{Br}\right.$, or CN$\left.),{ }^{287}\right)$ (l, l-dimethylallene) $\mathrm{Cl}_{2} \mathrm{Pt}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right),{ }^{287)} \quad(\mathrm{acac})_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}(\mathrm{C}=\mathrm{C}=\mathrm{C}),{ }^{286)}$ and $\mathrm{Pt}\left(\mathrm{P} \phi_{3}\right)_{2}$ $(\mathrm{C}=\mathrm{C}=\mathrm{C}){ }^{288}$) With an exception of the last complex, π-co-ordination is generally accepted. But the co-ordinated allenes in these complexes are not linear, which suggests a considerable extent of rehybridization of orbitals.

A (π-1,2-cyclononadiene) dichloroplatinum (II) complex having an optically active amine ligand is used for the resolution of the allene as already described in section I. 5. ${ }^{128)}$

The co-ordinated allene in an allene tetracarbonyl iron complex reacts with electrophilic reagents to yield π-allylic cationic complexes (Eq. (52)).

(XLIII)

The reaction with hydrogen tetrafluoroborate gives π-allylic complex $\mathrm{XLIII}(\mathrm{R}=\mathrm{H}$, $\mathrm{X}=\mathrm{BF}_{4}$) in acetic anhydride, and the reaction with acetyl or benzoyl chloride in the presence of aluminium chloride in dichloromethane yields $\mathrm{XLIII}(\mathrm{R}=\mathrm{Ac}$ or $\phi \mathrm{CO}$, $\mathrm{X}=\mathrm{AlCl}_{4}-{ }^{-}$). 289) Another allene complex, XLIV , undergoes intramolecular rearrangement at ambient temperature to give π-allylic complex XLV. ${ }^{290}$)

$\left(\mathrm{Q}=\mathrm{Me}_{2} \phi \mathrm{P}\right.$ or $\left.\mathrm{Me}_{3} \mathrm{As}\right)$

The above reaction seems to be a model reaction for insertion, but the insertion of allene into a π-allylic palladium complex is reported to be not a co-ordination-insertion process but an "actual" insertion step. ${ }^{291)}$

Free propadiene reacts with a hydro-complex to yield a π-allylic complex, which is isolated as hexafluorophosphorous salt or tetraphenylborate ${ }^{292)}$ (Eq. (54)).

$$
\begin{equation*}
\operatorname{trans}\left[\mathrm{Pt}\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{H}\left(\mathrm{NO}_{3}\right)\right]+\mathrm{C}=\mathrm{C}=\mathrm{C} \xrightarrow{\text { r.t. }}\left[\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Pt}^{2}\right]^{+} \mathrm{NO}_{3}- \tag{54}
\end{equation*}
$$

Cationic propadiene complexes are prepared also by the protonation of a σ-propargylic complexe ${ }^{293)}$ (Eq. (55)).

A σ-propargylic molybdenum, tungsten, or manganese complex yields another complex having an allenic bond in a ligand in the reaction with sulfur dioxide ${ }^{294)}$ (Eq. (56)). $\quad \sigma$ Allenic iron or platinum complexes were prepared by the reaction of propargyl halides with cyclopentadienyldicarbonyliron monoanion (Eq. (57)) ${ }^{295)}$ or tetrakis(triphenylphosphine)platinum ${ }^{296,297)}$ (Eq. (58)).

$$
\begin{align*}
& \mathrm{CpFe}(\mathrm{CO})_{2}-{ }^{-}+\mathrm{BrCH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\mathrm{MeOH}} \mathrm{CpFe}(\mathrm{CO})_{2} \mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2} \tag{57}\\
& \mathrm{Pt}\left(\mathrm{P}_{3}\right)_{4}+\mathrm{ClCR}^{1} \mathrm{R}^{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\mathrm{Et}_{2} \mathrm{O}} \operatorname{trans}\left[\mathrm{PtCl}\left(\mathrm{CH}=\mathrm{C}=\mathrm{CR}^{1} \mathrm{R}^{2}\right)\left(\mathrm{P} \phi_{3}\right)_{2}\right] \tag{58}\\
& \left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{Y}=95 \% ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\phi, \mathrm{Y}=83 \% ; \mathrm{R}^{1}, \mathrm{R}^{2}=-\left(\mathrm{CH}_{2}\right)_{5}-, \mathrm{Y}=53 \%\right)
\end{align*}
$$

The rate of insertion of propadiene into a π-allyl-palladium bond is increased by the electron attracting substituent in the allyl group as follows, $\mathrm{Cl}>\mathrm{COOCH}_{3} \gg \mathrm{H}>\mathrm{CH}_{3}$. ${ }^{\text {297) }}$ The solvent effect of the reaction of propadiene with dichlorobisbenzonitrilepalladium is examined. ${ }^{304)}$

V.3: Organomercury Chemistry of Allenes

The stereospecificity of oxymercuration of allene is investigated by several workers. ${ }^{298 \sim}$ 301) The adducts resulting from cyclic allenes and mercuric chloride are cis for the nine- and ten-membered cyclic allenes, and 66% of the products is trans for the elevenmembered cyclic allene. ${ }^{300}$) For the 14 - or 16 -membered cyclic allenes, the trans adducts are produced.299) They explained these results from the stabilities of planar allylic intermediates. Caserio et al. studied the methoxy mercuration of optically active 2,3pentadiene. Although the reaction with mercuric acetate is a stereospecific trans addition through a σ-bonded mercurinium ion intermediate, ${ }^{298)}$ both the methoxymercuration by mercuric chloride and the deoxymercuration are nonstereospecific, which suggests that the intermediate bear a close resemblance to the symmetrical allylic ion. ${ }^{301)}$

In connection with oxymercuration, the catalytic addition of alcohols or water to 1,2 -cyclononadiene was reported. ${ }^{302)}$ Boron trifluoride acts as a co-catalyst, and mercuric salts and alkyl or aryl mercurials as catalysts. The orientation of addition is opposite to

T. Oramoto

Table 10. Reaction of Ethanol with Optically Active 1,2-Cyclononadiene. ${ }^{303}$)

Mercury salt	Co-catalyst	Yield of ethoxycyclo-nonene (\%)	$[a]^{25}$
EtHgOAc	BF_{3}	85	15.3
$\phi \mathrm{HgOAc}$	BF_{3}	42	13.6
$\mathrm{Hg}(\mathrm{OAC})_{2}$	-		12.4
$\mathrm{Hg}(\mathrm{OAc})_{2}$	BF_{3}	67	12.6
$\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 9 \mathrm{H}_{2} \mathrm{O}$	BF_{3}	82	12.1
HgO	BF_{3}	73	11.1
HgSO_{4}		72	10.4
$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$		51	9.9
$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$	BF_{3}	70	9.9
$\mathrm{HgCl}_{2} \cdot \mathrm{Hg}(\mathrm{OAc})_{2}$			6.2
HgFa_{2}	BF_{3}		1.4
HgCl_{2}			0.1

that of Brönstead acid-catalyzed addition, yielding no ketones or vinyl ethers. The optical purity of ethanol addition to optically active 1,2 -cyclononadiene varies with the sort of mercury salt used. ${ }^{303 \text {) }}$ These data suggest that the intermediate is an equilibrium mixture of mercurinium ion and allylic carbonium ion, with the least contribution of mercurinium ion for mercuric chloride and the most contribution for ethylmercuric acetate ${ }^{303}$ (Table 10).

ACKNOLEDGMENT

The author wishes to thank Emeritus Professor Sango Kunichika for the kind comments on the manuscript.

REFERENCES

(1) H. Fischer, "The Chemistry of Alkenes," ed. by S. Patai, Interscience Publishers; New York, (1964), p. 1025.
(2) A. A. Petrov and A. V. Fedorova, Usp. Khim., 33, 3 (1964).
(3) K. Griesbaum, Angew. Chem. Int. Ed., 5, 933 (1966).
(4) D. R. Taylor, Chem. Rev., 67, 317 (1967).
(5) T. F. Rutlidge, "Acetylenes and Allenes," Reinhold Book Corp., New York, (1969).
(6) S. R. Sandler and W. Karo, "Organic Functional Group Preparation," Vol. II, Academic Press, New York, (1971) p. 1.
(7) M. S. Baird, Chem. Comm., 1145 (1971).
(8) W. M. Jones and J. M. Walbrick, Tetrakedron Letters, 5229 (1968).
(9) W. M. Jones and J. M. Walbrick, J. Org. Chen., 34, 2217 (1969).
(10) L. Skatteb $\phi 1$, Tetrahedron Letters, 2361 (1970).
(11) H. R. Ward, R. G. Lawler and H. Y. Loken, J. Amer. Chem. Soc., 90. 7359 (1968).
(12) G. Köbrich and W. Goyert, Tetrahedron, 24, 4327 (1968).
(13) M. J. S. Dewar, H. Haselbach and M. Shanshal, J. Amer. Chem. Soc., 92 (11), 3506 (1970).
(14) W. R. Moore and J. B. Hill, Tetrahedron Letters, 4343 (1970).
(15) H. Nozaki, T. Aratani, 'T. Toraya and R. Noyori, Tetrahedron, 27, 905 (1971).
(16) W. R. Moore, K. G. Taylor, P. Müller, S. S. Hall and Z. L. F. Gaibel, Tetrahedron Letters, 2365 (1970).
(17) W. R. Moore and J. B. Hill, ibid., 4553 (1970).
(18) L. Skatteb $\phi 1$, Acta Chem. Scand., 17, 1683 (1963).
(19) D. J. Northington and W. M. Jones, Tetrahedron Letters, 4317 (1971).
(20) V. M. Slobodin, V. E. Maiorova and A. P. Khitrov, Zh. Org. Khim., 5, 851 (1969). (Chem. Abstr. 71, 38396n [1969].)
(21) W. M. Horspool, R. G. Sutherland and B. J. Thomson, Chent. Comm., 1554 (1971).
(22) P. S. Skell, J. E. Villanme, J. H. Plonka and F. A. Fagone, J. Amer. Chem. Soc., 93, 2699 (1971).
(23) M. J. McGlinchey, T. Reynoldson and F. G. A. Stone, Chem. Comm., 1264 (1970).
(24) G. Giusti, C. Morales and C. Feugeas, Compt. Rend., 269C, 162 (1969). (Chem. Abstr., 71, 101363 [19691.)
(25) A. Roedig and N. Detzer, Angew. Chem., 80, 482 (1968).
(26) R. E. Banks, A. Braithwaite, R. N. Haszeldine and D. R. Taylor, J. Chem. Soc. (C) 2593 (1968).
(27) R. E. Banks, M. G. Barlow, W. D. Davies, R. N. Haszeldine and D. R. Taylor, ibid., 1104 (1969).
(28) D. C. England and C. G. Krespan, J. Org. Chem., 35, 3322 (1970).
(29) A. Roedig and N. Detzer, Ann., 749, 153 (1971).
(30) A. Roedig, N. Detzer and G. Bonse, ibid., 752, 60 (1971).
(31) K. W. Ratts and R. D. Partos, J. Amer. Chem. Soc., 91, 6112 (1969).
(32) S. A. Vartanyan, M. R. Barkhudaryan and Sh. O. Badanyan, Arm. Khim. Zh., 23, 31 (1970). (Chem. Abstr., 73, 3400 [1970].)
(33) W. Jasiobedzki and W. Wawiernia, Rocz. Chem., 45, 751 (1971).
(34) C. H. Coy, R. N. Hazeldene, J. M. Newlands and A. E. Tipping, Chem. Comm., 456 (1970).
(35) H. Schelhorn, H. Frischleder and S. Hauptmann, Tetrakedron Letters, 4315 (1970).
(36) A. T. Battini, F. P. Corson, R. Fitzgerald and K. A. Frost, Jr., ibid., 4757 (1970).
(37) J. K. Crandall, D. J. Keyton and J. Kohne, J. Org. Chem., 33, 3655 (1968).
(38) W. T. Borden and E. J. Corey, Tetrahedron Letters, 313 (1969).
(39) J. Gore and M. L. Roumestant, ibid., 891 (1970).
(40) P. M. Greaves, M. Kalli, P. D. Landor and S. R. Landor, J. Chem. Soc. (C), 667 (1971).
(41) H. Kollmar and H. Fischer, Tetrahedron Letters, 4291 (1968).
(42) L. A. Van Dijck, K. H. Schönemann and F. J. Zeelen, Rec. Trav. Chim., 88, 254 (1969).
(43) T. E. Deville, M. B. Hursthouse, S. W. Russell and B. C. L. Weedon, Chem. Comm., 754 (1969).
(44) M. G. Voskanyan, A. A. Gevorkyan and Sh. O. Badanyan, Arm. Khim. Zh., 23, 766 (1970).
(45) J. Berlan, M. L. Capman and W. Chodkiewicz, Compt. Rend., 273G, 1107. (Chem. Abstr., 76, 25369 [1972].)
(46) R. Mornet, L. Gowin and J. Cousseau, ibid., 270C, 1315 (1970). (Chem. Abstr., 73, 3401 [1970].)
(47) G. M. Mkryan, S. M. Gasparyan and N. K. Melkonyan, Zh. Org. Khim., 7, 27 (1971). (Chem. Abstr., 74, 99364 [1971].)
(48) P. Rona and P. Crabbe, J. Amer. Chem. Soc., 90, 4733 (1968).
(49) P. Rona and P. Crabbe, ibid., 91, 3289 (1969).
(50) W. Ried and R. Neidhardt, Ber., 103, 2208 (1970).
(51) J. Gore and M-L. Roumestant, Tetrahedron Letters, 1027 (1971).
(52) J. S. Cowie, P. D. Landor and S. R. Landor, Chem. Comm., 541 (1969).
(53) H. Hopf, Angew. Chem., 80, 703 (1970).
(54) J. Iossiphides, R. Michel and C. Trayanowsky, Compt. Rend., 272G, 1566 (1971). (Chem. Abstr., 75, 35051 [1971].)
(55) G. Peiffer, J.P. Bianchini, J. Llimas and J.C. Traynard, Ann. Fac. Sci., Marseille, 43A, 109 (1970). (Chem. Abstr., 75, 20508 [1971].)
(56) P. Bourgeois and G. Merault, Compt. Rend., 273G, 714 (1971). (Chem. Abstr., 76, 3950 [1972].)
(57) E. Favre and M. Gaudemar, ibid., 272C, 111 (1971). (Chem. Abstr., 74, 76470 [1971].)
(58) S. Hoff, L. Brandsma and J. F. Arens, Rec. Trav. Chim., 87, 916 (1968).
(59) H. Reimlinger and R. Paulissen, Tetrahedron Letters, 3143 (1970).
(60) A. S. Atavin, V. I. Lavrov, O. N. Sidorova and B. A. Trofimov, Zh. Org. Khim., 7, 330 (1971). (Chem. Abstr., 74, 111363 [1971].)

T. Okamoto

(61) J. P. Dulcere, M. Santelli and M. Bertrand, Compt. Rend., 271G, 585 (1970). (Chem. Abstr., 74, 12515 [1971].)
(61a) M. Santelli and M. Bertrand, Tetralkedron Letters, 3905 (1970).
(62) M. V. Mavrov, E S. Voskanyan and V.F. Kucherov, Tetrahedron, 25, 3277 (1969).
(63) A.I. Kakhniashvili and D. Sh. Ioramashvili, Zh. Obshch. Khim., 40, 1556 (1970). (Chem. Abstr., 75, 6036 [1971].)
(64) A. I. Kakhniashvili and D. Sh. Ioramashvili, ibid., 40, 1552 (1970). (Chem. Abstr., 75, 6039 [1971].)
(65) S. I. Radchenko, L. N. Cherkasov, B. S. Kupin and A. N. Makarova, Zh. Org. Khim., 6, 1961 (1970). (Chem. Abstr. 74, 12537 [1971].)
(66) S. O. Badanyan, M. G. Voskanyan and G. G. Khudoyan, Arm. Khim. Zh., 23, 804 (1970). (Chen. Abstr., 74, 41795 [1971].)
(67) M. L. Petrov, S. I. Radchenko, B. S. Kupin and A. A. Petrov, Zh. Org. Khim., 7, 1123 (1971). (Chem. Abstr. 75, 140180 [1971].)
(68) L. N. Cherkasov, Kh. V. Balyan and A. N. Krivosheya, Zh. Ves. Khim. Obshchest., 15, 579 (1970). (Chem. Abstr., 74, 12711 [1971!.)
(69) L. N. Cherkasov, N. M. Dubrovskaya and A. N. Krivosheya, Fiz. Khim. Khim. Tehhnol., 221 (1969). (Chem. Abstr. 75, 140152 [1971].)
(70) L. N. Cherkasov, S. I. Radchenko, B. S. Kupin, Khim. Geterotdikl. Soedin., 7, 354 (1971). (Chem. Abstr., 76, 14266 [1972].)
(71) S. I. Radchenko, L. N. Cherkasov, B. S. Kupin and A. N. Krivosheya. Zh. Org. Khim., 7, 104 (1971). (Chem. Abstr., 74, 99540 [1971].)
(72) B. P. Gusev, L. A. Jsurgozen and V. F. Kucherov, Izv. Akad. Nauk. SSSR, Ser. Khim., 2089 (1971). (Chem. Abstr., 76, 13749 [1972].)
(73) G. M. Mkryan, E. E. Kaplanyan and A. V. Arutyunyan, Zh. Org. Khim., 7, 448 (1971). (Chem. Abstr., 75, 63022 [1971].)
(74) L. N. Cherkasov, S. I. Radchenko, G. I. Pismennaya and Kh. V. Balyan, ibid., 7, 111 (1971).
(74a) L. N. Cherkasov, G. I. Pismennaya, Kh. V. Balyan and A. A. Petrov, ibid., 6, 1758 (1970). (Chem. Abstr., 73, 109193 [1970].)
(75) L. N. Cherkasov, Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol., 14, 1117 (1971). (Chem. Abstr., 75, 140173 [1971].)
(76) J. K. Crandall and G. L. Tindell, Chem. Comm., 1411 (1970).
(77) M. V. Mavrov, N. S. Runge, A. P. Rodionov and V. F. Kucherov, Izv. Akad. Nauk. SSSR., Ser. Khim., 883 (1971). (Chem. Abstr., 75, 48366 [1971].)
(78) G. Smith and C. J. M. Stirling, J. Chem. Soc. (C), 1530 (1971).
(79) R. B. Minasyan, M. G. Indzhikyan, P. S. Kinoyan and A. T. Babayan, Arm. Khim. Zh., 23, 240 (1970). (Chem. Abstr., 73, 76593 [1970].)
(80) V. Schoellkopf, K. Fellenberger and M. Rizk, Anin., 734, 106 (1970).
(81) A. N. Pudovik and N. G. Khusainova, Zh. Obshch. Khim., 39, 1417 (1969). (Chem. Abstr., 71, 113041 [1969].)
(82) G. D. Appleyard, C. J. M. Stirling, J. Chem. Soc. (C), 1904 (1969).
(83) J. H. Parmentier, H. G. Peer and L. Shcutte, J. Catalysis, 22, 213 (1971). (Chem. Abstr., 75, 62484 [1971].)
(84) C. C. Chang and R. J. Kokes, J. Amer. Chem. Soc., 92, 7517 (1970).
(85) R. M. Fautazier and M. L. Poutsma, ibid., 90, 5490 (1968).
(86) S. Hoff, L. Brandsma and J. F. Arens, Rec. Trav. Chim., 87, 1179 (1968).
(87) F. Jaffe, J. Organometallic Chem., 23, 53 (1970).
(88) G. Koebrich and E. Wagner, Ber., 103, 2515 (1970).
(89) R. Mantione and B. Kirschleger, Compt. Rend., 272C, 786 (1971). (Chent. Abstr., 74, 111493 [1971].)
(90) Y. Leroux and R. Mantione, J. Organometallic Chem., 30, 295 (1971). (Chem. Abstr., 75, 88252 [1971].)
(91) Y. Leroux and R. Mantione, Tetrahedron Letters, 591 (1971).
(92) R. Mantione and Y. Leroux, ibid., 593 (1971).
(93) G. A. Wildschut, L. Brandsma and J. F. Arens, Rec. Trav. Chim., 88, 1132 (1969).
(94) G. Köbrich and E. Wagner, Angez. Chem., 82, 548 (1970).
(95) R. Mantione and Y. Leroux, Compt. Rend., 272G, 2201 (1971). (Chem. Abstr. 75,98111[1971].)
(96) E. V. Dehmlow and G. C. Ezimore, Tetrahedron Letters, 1599 (1971).
(97) J. Iossiphides, C. Troyanowsky and A. Tsamantakis, Compt. Rend., 272G, 1724 (1971). (Chem. Abstr., 75, 62849 [1971].)
(98) G. I. Pismennaya, L. M. Zubritskï and Kh. V. Balyan, Zh. Org. Khim., 7, 251 (1971). (Chem. Abstr., 74, 111670 [1971].)
(99) L. N. Cherkasov, G. I. Pismennaya and A. N. Krivosheya, Fiz., Khim. Khim. Tehhnol., 217 (1969). (Chem. Abstr., 75, 151857j [1971].)
(100) E. V. Dehmlow and G. C. Ezimore, Tetrahedron Letters, 563 (1971).
(101) E. Favere and M. Gaudemar, Bull. Soc. Chim., Fr., 3724 (1968). (Chem. Abstr., 70, 4175 [1969].)
(102) J. L. Moreau and M. Gaudemar, ibid., 2171 (1970). (Chem. Absir., 73, 76597 [1970].)
(103) J. L. Moreau and M. Gaudemar, ibid., 2175 (1970). (Chem. Abstr., 73, 76410 [1970].)
(104) R. Couffignal and M. Gaudemar, ibid., 3157 (1970). (Chem. Abstr., 74, 140846 [1971].)
(105) J. L. Moreau, Y. Fragin and M. Gaudemar, ibid., 4511, (Chem. Abstr., 74, 76489 [1971].)
(106) I. L. Moreau and M. Gaudemar, ibid., 3071 (1971). (Chem. Abstr., 75, 118379 [1971].)
(107) D. Guiller-Dron, M. L. Capman and W. Chodkiewicz, Compt. Rend., 272C, 486 (1971).
(108) G. Aksnes and P. Fr yen, Acta. Chem. Scand., 22, 2347 (1968).
(109) Z. Hamlet and W. D. Barker, Synthesis, 2, 543 (1970). (Chem. Abstr., 74, 41837 [1971].)
(110) G. Zweifel, A. Horng and J. T. Snow, J. Amer. Chem. Soc., 92, 1427 (1970).
(111) J. C. Craig and C. C. Beard, Chem. Comm., 692 (1971).
(112) L. Crombie, P. J. Griffiths and B. J. Walker, ibid., 1206 (1969).
(113) M. S. Newman and C. D. Beard, J. Org. Chem., 35, 2412 (1970).
(114) J. Strating, A. H. Alberts and H. Wynberg, Chem. Comm., 818 (1970).
(115) L. A. Paquette and G. V. Meehan, J. Amer. Chem. Soc., 92, 3039 (1971).
(116) G. Rosini and R. Ranza, J. Org. Chem., 36, 1915 (1971).
(117) M. P. Cara and J. A. Kuczdowski, J. Amer. Chem. Soc., 92, 5800 (1970).
(118) H. Hiraoka and R. Srinivasan, J. Chem. Phys., 48, 2185 (1968).
(119) H. A. Wiebe and J. Heicklen, Can. J. Chem., 47, 2965 (1969).
(120) G. G. Meisels, Y. Inel and A. Siddiqi, J. Phys. Chem., 75, 1317 (1971).
(121) M. Jones, Jr. and M. R. Decamp, J. Org. Chem., 36, 1536 (1971)
(122) H. Doupeux, P. Martinet and J. Simonet, Bull. Soc. Chim. Fr., 2299 (1971). (Chem. Abstr., 75, 125868 [1971].)
(123) J. Ficini and J. Pouliquen, J. Amer. Chem. Soc., 93, 3295 (1971).
(124) J. M. Walbrick, J. W. Wilson, Jr. and W. M. Jones, ibid., 90, 2895 (1968).
(125) M. C. Findlay, W. L. Waters and M. C. Caserio, J. Org. Chem., 36, 275 (1971).
(126) L. R. Burd and M. C. Caserio, J. Amer. Chem. Soc., 93, 5758 (1971).
(127) A. C. Cope, W. R. Moore, R. D. Bach and H. J. S. Winkler, ibid., 92, 1243 (1970).
(128) W. R. Moore, H. W. Anderson, S. D. Clark and T. M. Ozretich, ibid., 93, 4392 (1971).
(129) R. D. Bach, V. Mazur, R. N. Brummel, L-H. Lin, ibid., 93, 7120 (1971).
(130) J. Demaison and H. D. Rudolph, J. Mol. Spectroscopy, 40, 445 (1971). (Chem. Abstr., 76, 29347 [19721.)
(131) C. Baker and D. W. Turner, Chem. Comm., 480 (1969).
(132) S. P. McGlynn, J. W. Rakalais, J. R. McDonald and V. M. Scherr, Chem. Rev., 71, 73 (1971).
(133) V. A. Petukhov, M. V. Mavrov and E. S. Voskanyan, IEv. Akad. Nauk. SSSR., Ser. Khim., 1323 (1971). (Chem. Abstr., 75, 82029 [1971].)
(134) M. L. Martin, G. J. Martin and R. Couffignal, J. Chem. Soc. (B), 1282 (1971).
(135) M. Santelli, Chem. Comm., 938 (1971).
(136) R. S. Macomber, J. Org. Cheim., 36, 999 (1971).
(137) C. N. Cherkasov, Fiz., Khim. Khim. Tekhnol., Sb. Mater. Nauch-Tekh. Konf. Rab. Nauki, Proizvod, 72 (1968). (Chem. Abstr., 75, 27576 [1971].)
(138) L. N. Cherkasov and S. V. Lukyanchuk, ibid., 76 (1968). (Chem. Abstr., 75, 27618 [1971].)
(139) P. J. Krusic and J. K. Kochi, J. Amer. Chem. Soc., 90, 7155 (1968).
(140) J. K. Kochi and P. J. Krusic, ibid., 92, 4110 (1970).
(141) R. Steur, J. P. C. M. van Dongen, M. J. A. de Bie and W. Drenth, Tetrakedron Letters, 3307 (1971).
(142) M. L. Martin, G. J. Martin and R. Couffignal, .J. Chem. Phys., 49, 1985 (1968).

T. Oramoto

(143) M. L. Martin and F. Lefevre, J. Chem. Soc. (B), 2049, (1971).
(144) F. G. Riddell and M. J. T. Robinson, Tetrahedron, 27, 4163 (1971).
(145) J. M. Andre, M. C. Andre, G. Levoy and J. Weiler, Internat. Quantum. Chem., 3, 1013 (1969). (Chem. Abstr., 72, 47542 [19701.)
(146) L. J. Schaad, L. A. Burnelle and K. P. Dressler, Theor. Chim. Acta, 15, 91 (1969).
(147) L. J. Schaad, Tetrahedron, 26, 4115 (1970).
(148) I. J. Miller, ibid., 25, 1349 (1969).
(149) R. J. Buenker, J. Chem. Phys., 48, 1368 (1968).
(150) L. Radom, W. A. Lathan, W. J. Hehre, J. A. Pople, J. Amer. Chem. Soc., 93, 5339 (1971).
(151) C. S. Mathews and P. Warneck. J. Chem. Phys., 51, 854 (1969).
(152) M. W. Schmidt and E. K. C. Lee, J. Amer. Chem. Soc., 923579 (1970).
(153) A. N. Lyubimova, A. S. Tarkhanyan and A. K. Pogosyan, Arm. Khim. Zh., 21, 718 (1968). (Chem. Abstr., 70, 100570 [1969].)
(154) G. Köbrich and E. Wagner, Angev. Chem., 80, 481 (1968).
(155) A. Roedig and N. Detzer, Angew. Chem., 80, 483 (1968).
(156) H. Khalaf, Tetrahedron,Letters, 4233 (1971).
(157) A. Roedig, Angew. Chem., 81, 157 (1969).
(158) G. R. Hansen, K. W. Ratts and J. T. Marvel, Chem. Comm., 918 (1970).
(159) N. Detzer and A. Roedig, Tetrahedron, 27, 5697 (1971).
(160) T. L. Jacobs and O. J. Muscio, Jr., Tetrahedron Letters, 4829 (1970).
(161) J. J. Gajewski and C. N. Shin, J. Amer. Chem. Soc., 91, 5900 (1969).
(162) W. R. Moore, R. D. Bach and T. M. Ozretich, J. Amer. Chem. Soc., 91, 5918 (1969).
(163) J. J. Gajewski and S. Winstein, Tetrahedron Letters, 899 (1970).
(164) S. R. Byrn, E. Maverick, O. J. Muscio. Jr., K. N. Treublood and T. L. Jacobs, J. Amer. Chem. Soc., 93, 6680 (1971).
(165) E. V. Dehmbw, Tetrahedron Letters, 4286 (1969).
(166) O. J. Muscio, Jr. and T. L. Jacobs, ibid., 2867 (1969).
(167) T. L. Jacobs, J. R. McClenon and O. J. Muscio, Jr., J. Amer. Chem. Soc., 91, 6038 (1969).
(168) J. M. Edinger, S. F. Sisenwine and A. R. Day, J. Org. Chem., 36, 3614 (1971).
(169) D. R. Taylor and D. B. Wright, J. Chem. Soc. (C), 391 (1971).
(170) E. J. Moriconi and J. F. Kelly, /. Org. Chem., 33, 3036 (1968).
(171) J. E. Baldwin, U. V. Roy, Chem. Comm., 1225 (1969).
(172) E. F. Kiefer and M. Y. Okamura, J. Amer. Chem. Soc., 90, 4187 (1968).
(173) H. Gotthardt, R. Steinmetz and G. S. Hammond, J. Org. Chem., 33, 2774 (1968).
(174) H. Gotthardt, Tetrahedron Letters, 2345 (1971).
(175) H. J. T. Bos, H. Schinkel, Th. C. M. Mijsman, Tetrahedron Letters, 3905 (1971).
(176) N. Ishibe and I. Taniguchi, Tetrahedron, 27, 4887 (1971).
(177) H. H. Wasserman and L. S. Keller, Chem. Comm., 1483 (1970).
(178) R. Alexander and D. I. Davies, J. Chem. Soc. (C), 5 (1971).
(179) S. Kunichika, T. Okamoto and K. Yoshikawa, Bull. Inst. Chem. Res., Kyoto Univ., 49, 109 (1971).
(180) M. Bertrand, J. Grimaldi and B. Waegell, Bull. Soc. Chim. Fr., 962 (1971). (Chem. Abstr., 75, 4953 [1971].)
(181) M. Bertrand, J. Grimaldi and B. Waegell, Chem. Comm., 1141 (1968).
(182) J. E. Baldwin and L. E. Walker, J. Org. Chem., 36, 1440 (1971).
(183) W. R. Dolbier, Jr. and S.-H. Dai, J. Amer. Chem. Soc., 90, 5028 (1968).
(184) W. R. Dolbier, Jr. and S.-H. Dai, Tetrahedron Letters, 4645 (1970).
(185) H. J. T. Bos, C. Slagt and J. S. M. Boleij, Rec. Trav. Chim., 89, 1170 (1970).
(186) J. S. M. Boleij and H. J. T. Bos, Tetrahedron Letters, 3201 (1971).
(187) S. Hoff, L. Brandsma and J. F. Arens, Rec. Trav. Chim., 88, 609 (1969).
(188) S. Hoff and L. Brandsma, ibid., 88, 845 (1969).
(189) R. Gelin, M. Albrand and S. Gelin, Compt. Rend., 269C, 241 (1969).
(190) N. A. Lebel and E. Banucci, J. Amer. Chem. Soc., 925278 (1970).
(191) H. G. Richey, Jr. and W. C. Kassa, Jr., Tetrahedron Letters, 2313 (1969).
(192) J. Ficini, J. Pouliquen and J.-P. Psulme, ibid., 2483 (1971).
(193) J. Grimaldi and M. Bertrand, Bull. Soc. Chim. Fr., 957 (1971). (Chem. Abstr., 75, 5312 [1971].)
(194) J. Grimaldi and M. Bertrand, Tetrahedron Letters, 3269 (1969).
(195) H. R. Ward and E. Karafiath, J. Amer. Chem. Soc., 902193 (1968).
(196) J. W. Batty, P. D. Howers and C. J. M. Stirling, Chem. Comm., 534 (1971).
(197) R. Mautione, Y. Leroux and H. Normant, Compt. Rend., 270C, 1808 (1970).
(198) M. C. Aversa, G. Cum and N. Uccella, Chem. Comm., 156, (1971).
(199) P. Battioni, L. Vo-Quang, J. C. Raymond and Vo-Quang-Yen, Compt. Rend., 271C, 1468 (1970). (Chem. Abstr., 74, 53611 [1971].)
(200) R. F. Bleiholder and H. Shechter, J. Amer. Chem. Soc., 90, 2131 (1968).
(201) A. Aspect, P. Battioni, L. Vo-Quang and Y. Vo-Quang, Compt. Rend., 269C, 1063 (1969). (Chem. Abstr., 72, 43558 [1970].)
(202) P. Battioni, A. Aspect. L. Vo-Quang and Y. Vo-Quang. Compt. Rend., 268G, 1263 (1969). (Chem. Abstr., 71, 38853 [1969].)
(203) S. D. Andrews, A. C. Day and R. N. Inwood, J. Chem. Soc. (C), 2433 (1969).
(204) P. Battioni and Y. Vo-Quang, Compt. Rend., 266G, 1310 (1968).
(205) S. Danishefsky, S. J. Etheredge, R. Valkmann, J. Eggler and J. Quick, J. Amer. Chem. Soc., 93, 5575 (1971).
(206) B. Charleston, C. K. Dalton and S. Washbourmeet, Tetrahedron Letters, 5147 (1969).
(207) T. Okuyama, K. Izawa and T. Fueno, ibid., 3295 (1970).
(208) M. L. Poutsma and P. A. Ibarbia, ibid., 4967 (1970).
(209) J. M. Bollinger, J. M. Brinich and G. A. Olah, J. Amer. Chem. Soc., 92, 4025 (1970).
(210) D. K. Wedegaertner and J. M. Millam, J. Org. Chem., 33, 3943 (1968).
(211) M. S. Baird, C. B. Reese, A. Shaw, Tetrahedron, 27, 231 (1971).
(212) C. B. Reese and A. Shaw, Tetrahedron Letters, 4641 (1971).
(213) M. L. Poutsma, J. Org. Chem., 33, 4080 (1968).
(214) L. R. Byra, W. L. Waters and M. C. Caserio, Amer. Chem. Soc., Div. Petral. Chem., Prepr., 14, 25 (1969).
(215) T. L. Jacobs and R. Macomber, J. Org. Chem., 33, 2988 (1968).
(216) W. E. Truce and G. C. Wolf, Chem. Comm., 150 (1969).
(217) M. L. Poutsma and P. A. Ibarbia, J. Amer. Chem. Soc., 93, 440 (1971).
(218) R. E. Bauks, A. Braithwaite, R. N. Haszeldine and D. R. Taylor, J. Chen. Soc. (C), 454 (1969).
(219) R. E. Banks, A. Braithwaite, R. N. Haszeldine and D. R. Taylor, ibid. (C), 996 (1969).
(220) J. P. Bianchini and M. Cocordano, Tetrahedron, 26, 3401 (1970).
(221) L. Schuster and P. Raff, Ger., 1297616. (Chem. Abstr., 70, 77525C [1969].)
(222) W. Smadja, Compt. Rend., 268C, 271 (1969). (Chem. Abstr., 70, 77525C [1969].)
(223) H. G. Richey, Jr. and S. S. Szucs, Tetrahedron Letters, 3785 (1971).
(224) J. K. Crandall and W. H. Machleder, J. Amer. Chem. Soc., 90, 7292 (1968).
(225) L. R. Byrd and M. C. Caserio, J. Amer. Chem. Soc., 92, 5422 (1970).
(226) M. L. Poutsma, Tetrahedron Letters, 2925 (1969).
(227) R. Y. Tien and P. L. Abell, J. Org. Chem., 35, 956 (1970).
(228) C. L. Bumgardner and K. G. McDaniel, J. Amer. Chem. Soc., 91, 1032 (1969).
(229) P. Battioni, L. Vo-Quang and Vo-Quang-Yen, Bull. Soc. Chim. Frr., 3978 (1970). (Chem. Abstr., 74, 53106 [1971].)
(230) R. R. Kostikov and A. I. Ioffe, Zh. Org. Khim., 6, 2630 (1970).
(231) W. Von E. Doering, J. C. Gilbert and P. A. Leermakers, Tetrahedron, 24, 6863 (1968).
(232) D. S. Sethi, G. C. Joshi and D. Devaprabhakara, Can. J. Chem., 46, 2632 (1968).
(233) D. S. Sethi, G. C. Joshi and D. Devaprabhakara, ibid., 47, 1083 (1969).
(234) R. H. Fish, J. Amer. Chem. Soc. 90, 4435 (1968).
(235) H. A. Chia, B. E. Kirk and D. R. Taylor, Chem. Comm., 1144 (1971).
(236) H. Gotthardt, Tetrahedron Letters, 2343 (1971).
(237) W. R. Dolbier, Jr. and S.-H. Dai, Chem. Comm., 166 (1971).
(238) J. Berlan, M. L. Capman and W. Chodkiewicz, Compt. Rend., 273G, 295 (1971). (Chem. Abstr. 75, 118370 [1971].)
(239) G. Bnono, G. Peiffer and A. Guillemonat, ibid., 271G, 937 (1970). (Chem. Abstr., 74, 22958 [1971].)
(240) R. S. Bly, A. R. Ballentine and S. U. Koock, J. Amer. Chem. Soc., 89, 6993 (1967).
(241) M. Bertrand and M. Santelli, Chem. Comm., 718 (1968).

T. OKAMOTO

(242) R. S. Bly and S. U. Koock, J. Amer. Chem. Soc., 91. 3292 (1969).
(243) R. S. Bly and S. U. Koock. ibid., 91, 3299 (1969).
(244) T. L. Jacobs and R.S. Macomber, ibid., 91, 4824 (1969).
(245) R. S. Maconber, ibid., 92. 7101 (1970).
(246) B. Ragonnet, M. Santelli and M. Bertrand, Tetrahedron LetLers, 955 (1971).
(247) M. Santelli and M. Bertrand, ibid., 3699 (1969).
(248) M. Santelli and M. Bertrand, ibid., 2515 (1969).
(249) M. Santelli and M. Bertrand, ibid., 2511 (1969).
(250) C. Santelli-Rouvier, P. Archier and M. Bertrand, Compt. Rend., 269C, 252 (1969).
(251) R. Garry and R. Vessiere, Bull. Soc. Chim. Fr., 1542 (1968).
(252) D. R. Kelsey and R. G. Bergman, J. Amer. Chem. Soc., 93, 1941 (1971).
(253) S. A. Sherrod and R. G. Bergman, ibid., 93, 1925 (1971).
(254) G. Nagendrappa, R. K. Srivastava and D. Devaprabhakara, J. Org. Chem., 35, 347 (1970).
(255) R. Vaidyanathaswamy, G. C. Joshi and D. Devaprabhakara, Tetrahedron Letters, 2075 (1971).
(256) G. Nagendrappa and D. Devaprabhakara, ibid., 4243 (1970).
(257) J. Raffi and C. Trayanowsky, Compt. Rend., 271C, 533 (1970). (Chem. Abstr., 73, 130569k [1970].)
(258) H. R. Ward and E. Karafiath, J. Amer. Chem. Soc, 91, 7475 (1969).
(259) O. Rodriguez and H. Morrison, Chem. Comm. 679 (1971).
(260) S. S. Levush, S. S. Abadzher and V. U. Sherchuk, Neftekhimiya, 2, 215 (1969). (Chem. Abstr., 71, 80491 [1969].)
(261) K. Crandall and R. J. Walkins, Tetrahedron Letters, 1251 (1970).
(262) S. Combrisson, E. Michel and C. Troyanowsky, Compt. Rend., 269, 536 (1969).
(263) S. Combrisson, E. Michel and C. Troyanowsky, ibid., 269, 555 (1969).
(264) M. D. Schiavelli, C. S. Hixon and W. H. Moran, /. Amer. Chem. Soc.. 92, 1082 (1970).
(265) C. V. Lee, R. J. Hargrove, T. E. Dueber and P. J. Stang, Tetrahedron Letters, 2519 (1971).
(266) M. D. Schiavelli, S. C. Hixon, H. W. Moran and C. J. Boswell, J. Amer. Chem. Soc., 93, 6989 (1971).
(267) F. N. Jones and R. V. Lindsey, Jr., J. Org. Chem., 33, 3838 (1968).
(268) S. Otuka, A. Nakamura and H. Minamida, Chem. Comm., 191 (1969).
(269) S. Otsuka, A. Nakamura, K. Tani and S. Ueda, Tetrahedron Letters, 297 (1969).
(270) F. W. Hoover and R. V. Lindsey, Jr., J. Org. Chem., 34, 3051 (1969).
(271) M. Englert, P. W. Jolly and G. Wilke, Angezu. Chem. Int. Ed., 10, 77 (1971).
(272) G. D. Shier, U.S.P., 3567762. (Chem. Abstr., 74. 126454 [1971].)
(273) G. D. Shier, ibid., 3458562. (Chem. Abstr., 71, 80641 [1969].)
(274) P. Heimbach, H Selbeck and E. Troxler, Angew. Chem. Int. Ed., 10, 659 (1971).
(275) A. Greco, A. Caarbonaro and G. Dall'Asta, Tetrahedron Letters, 5009 (1969).
(276) S. Otsuka, A. Nakamura and K. Tani, J. Chem. Soc. (A), 154 (1971).
(277) S. Otsuka, A. Nakamura, S. Ueda and K. Tani, Chem. Comm., 863 (1971).
(278) G. Pamtini, P. Racanelli, A. Immirzi and L. Porri, J. Organometallic Chem., 33, C17 (1971).
(279) S. Otsuka, I. Tani and A. Nakamura, J. Chem. Soc. (A), 1404 (1969).
(280) T. Okamoto, Bull. Chem. Soc. Japan, 44, 1353 (1971).
(281) R. P. Hughes and J. Powell, J. Organometallic Chem., 20, P17 (1969).
(282) R. Ben-Shoshan and R. Pettit, Chem. Comm., 247 (1968).
(283) J. A. Osborn, ibid., 1231 (1968).
(284) K. Kawanishi, N. Yasuoka, K. Nobutani and M. Kakudo, ibid., 317 (1969).
(285) T. G. Hewitt, K. Anzenhofer and J. J. De Boer, Chem. Comm., 312 (1969), and T. G. Hewitt and J. J. de Boer, J. Chem. Soc. (A), 817 (1971).
(286) P. Racanelli, G. Pautini, A. Immirzi, G. Allegra and L. Porri, Chem. Comm., 361 (1969).
(287) K. Vrieze, H. C. Volger and A. P. Proat, J. Organometallic Chem., 21. 467 (1970).
(288) S. Otsuka, A. Nakamura and K. Tani, ibid., 14, 30 (1968).
(289) D. H. Gibson, R. L. Vonnahme and J. E. Mckiernan, Chem. Comm., 720 (1971).
(290) M. H. Chisholm, H. C. Clark and D. H. Hunter, ibid., 809 (1971).
(291) R. P. Hughes and J. Powell, ibid., 275 (1971).
(292) A. J. Deeming, B. F. G. Johnson and J. Lewis, ibid., 598 (1970).
(293) J. Benaim, J. Y. Merour and J. L. Roustan, Compt. Rend. 272G, 789 (1971). (Chem. Abstr. 74, 112181 [1971].)
(294) J. L. Poustan and C. Charrier, ibid., 268C, 2113 (1969).
(295) M. D. Jhonson and C. Mayle, Chem. Comm., 192 (1969).
(296) J. P. Collman, J. N. Cawse and J. W. Kang, Inorg. Chem. 8, 2574 (1969).
(297) B. E. Mann, B. L. Shaw and N. T. Tucker, /. Chem. Soc. (A), 2667 (1971).
(298) D. Medema and R. vau Helden, Rec. Trav. Chim., 90, 304 (1971).
(299) R. Vaidyanathaswamy, D. Devaprabhakara and V. V. Rao, Tetrahedron Letters, 915 (1971).
(300) G. C. Joshi and D. Devaprabhakara, J. Orgamonetallic Chem., 15, 497 (1968).
(301) W. S. Linn, W. L. Waters and M. C. Caserio, /. Amer. Chem. Soc., 92, 4018 (1970).
(302) R. D. Bach, Tetrahedron Letters, 5841 (1968).
(303) R. D. Bach, J. Amer. Chem. Soc., 91, 1771 (1969).
(304) T. Okamoto, Bull. Inst. Chem. Soc., Kyoto Univ., 49, 409 (1971).
(305) P. Crabbe, E. Velarde, H. W. Anderson, S. D. Clark and W. R. Moore, Chem. Comm., 1261 (1971).
(306) W. R. Dolbier, Jr. and S.-H. Dai, J. Amer. Chem. Soc., 921774 (1970).
(307) R. Gompper and D. Lach, Angeve. Chem. Int. Ed., 10, 70 (1971).
(308) R. W. Hoffmann and W. Schäfer, Angeze. Chem., 82, 700 (1970).
(309) J. C. Martin, P. L. Carter and J. L. Chitwood, J. Org. Chem., 36, 2225 (1971).
(310) D. R. Taylor, M. R. Wargurton and D. B. Wright, J. Chem. Soc. (C), 385 (1971).
(311) J. K. Crandall and W. H. Machleder, J. Amer. Chem. Soc., 90, 7346, and 7347 (1968).

[^0]: ＊岡本 忠：Laboratory of Organic Unit Reactions，Institute for Chemical Research，Kyoto Uni－ versity，Uji，Kyoto．

