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    A Monte Carlo method to calculate transmission of electrons through thin foils is described. 
Angular deflection due to multiple scattering, energy loss by ionization, and fluctuation in energy 
loss are taken into account. The calculations have been made for electrons normally incident on 
thin aluminum foils of various thicknesses. The results obtained are in fairly good agreement with 
other calculation and with the experimental results. 

                         I. INTRODUCTION 

   The penetration of the fast electrons through the matter is the important  sub-

ject of the theoretical and experimental investigations. It is characterized by 
multiple Coulomb scattering and statistical fluctuation in ionization energy loss. The 
transport properties of electrons are also of interest in connection with numerious 
experimental applications. When the absorber materials are thin enough com-

pared to the range of incident electrons, the problems can be treated analytically 
and the satisfactory agreement between theory and experiment has been reported.' 

    The situation becomes more complicated when the absorber thickness increases. 
For this case, the energy loss and angular deflection can not be treated separately 
and theoretical treatment of the problem is very difficult. There are two techniques 
to study electron transport in the thick materials; the moments method and the Monte 
Carlo method. The moments method developed by Spencer' has been used to 

calculate the depth distribution of energy deposition in the materials. However, its 
application is limited only to media that are unbounded and homogeneous, and 
foil-transmission problems can not be treated by this method. 

   On the other hand, the Monte Carlo method can, in principle, offer the most 
accurate solutions for the electron transport problems in bounded media. This 
method is applicable to any energy range of electrons and to any geometry. The 
calculation is based on the simulation of the electron tracks by random sampling 
techniques. The number of Coulomb collisions undergone by a fast electron during 
the slowing-down process is quite large, so that the simulation of the individual col-
lision is not feasible. Instead, the electron trajectory is divided into a number of 

short segments, such that the number of collisions along each segment is large, but 
the average angular deflection due to multiple scattering and the average energy 
loss by ionization per segment are small. This means that the results of analytical 
treatments of angular deflections and energy losses can give satisfactory approxi-
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mations to the net probability distributions in each segment. The angular deflec-

tions and energy losses sampled in each segment are then combined to construct 
a complete electron trajectory in the foil. By the use of such a procedure, the thick— 
foil transmission problem can be treated as a sequence of thin-foil ones, in which the 

electron behavior can be adequately represented by analytical forms. 
    The Monte Carlo method based on this approach has been outlined by Berger,3' 

and the earlier references are cited therein. Recently, Sugiyama'? performed 
Monte Carlo calculations for transport of fast electrons with energy higher than 
a few MeV and obtained the results in considerably good agreement with experimental 
data. Berger and Seltzer developed a computer code called ETRAN,') which is the 
most accurate and the most frequently used program at present. By the use of 
this code they calculated various quantities for electron transmission') and for pro-
duction of bremsstrahlung radiation." Using the same logic as those employed in the 
ETRAN code, several codes have been developed to permit the routine studying of 

the electron transport problems for one-dimensional multilayer targets,8) cylindrical— 

geometry multimaterials,9' and complex systems.") 
    Although the ETRAN code is accurate, takes into account many interactions 

between electron and atom, and has the flexibility of being able to calculate various 

quantities, it requires a large-memory and high-speed computer. In the case of 
radioactive sources, most electrons emitted from the source have the energy less than 

2 MeV. It is worth while to develop a simple Monte Carlo code which can be used 
in this energy region. 

    In this paper is presented a brief description of a Monte Carlo program to 

study transmission of electrons through thin foils. This program includes electron 
multiple scattering and the effect of energy-loss straggling. The advantage is its 

simplicity and high speed. The present code does not require large-memory com-

puter and is reasonably accurate. Calculations have been carried out with this code 
for monoenergetic electrons incident perpendicularly on the thin targets of various 

thicknesses. The results presented here include the transmission coefficient and the 

energy spectrum of transmitted electrons. Comparison is made with the experi-
mental results and also with the calculated result from the ETRAN code of Berger and 
Seltzer. 
    All the the calculations in the present work have been performed on the FACOM 

230-75 computer of the Data Processing Center of Kyoto University. 

                     II. METHOD OF CALCULATION 

    The computer program has been written under the following assumptions: 
1) An electron beam is incident normally on a foil. 

2) The lateral extension of the foil is large enough compared to the electron range. 
3) The electrons never return to the foil once they have left it. 
4) The production of knock-on electrons by the inelastic Coulomb collisions is 

    ignored. 
5) The energy loss by radiation is neglected. 
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Fig. 1. Schematic flow diagram of the program. 
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    The flow diagram in Fig. 1 shows how each electron history is followed until 
the electron is absorbed in the foil or escapes from it. In the present code, the seg-
ment size is chosen by the logarithmic-spacing law and stopping power is determined 
from the continuous-slowing-down approximation. The energy-loss distribution in 

each segment is sampled from the Blunck-Leisegang formula and the multiple-scatter-
ing angular deflection is obtained from the Moliere theory. 

1. Division of Electron Track into Segments 

    The segment size is chosen so that the kinetic energy of the electron is, on the 
average, reduced by a constant factor  2-1/m per segment. When the energy of the 
electron in the k-th segment is Ek, the size of the k-th segment is given by 

   t _('Ek dEdE(1)           kJ
Ek_1 dx 

where I dE/dx I is the mean energy loss per unit pathlength and 

Ek = 21/mEk_l •(2 ) 

    This logarithmic spacing was chosen for the reason that the distribution of 
multiple-scattering angular deflections changes little from segment to segment. 

In the present work, we chose m=16. This means that the reduction of the energy 
in each segment is 0.9576. 

2. Stopping Power and Mean Energy Loss 

    The mean energy loss per unit pathlength by collision is calculated in the con-

 tinuous-slowing-down approximation. The resulting formula is") 

dE = 2Cmc2/92{Bo-2(ln Z+ln(I/(10Z))} ,(3 ) 
dx 

where 

        C = 0.1503 Z/A , 

Bo = 21.683+ln T2(T+2)—[1+(2T+1)/(T+1)2].ln2 

+1/(T+l)2+ 1 [TI(T+1)]2, 

and T is the initial kinetic energy of the electron in units of mc2. 
    The mean excitation energy I is chosen from the empirical relation between I 

and Z as12) 

I/Z = 9.76+58.8Z-1.19 eV .(4 ) 

    If the size of the segment is small, the energy loss in the segment can be assumed 
to be small compared to the energy of the electron. In this case, the mean energy 
loss in the segment is determined from 

  dE=
dx•t'(5 ) 
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 where t is the segment size. 

 3. Fluctuation in Energy Loss 

    When an electron with energy  Eo travels a distance t, it will suffer an energy loss 
dE by ionization. For the case that dE<<Eo, Landau13' developed multiple scat-

 tering theory which gives the distribution of the energy losses. In his theory this 

 distribution can be expressed in terms of a dimensionless parameter 2 as 

f(4E, t)d(4E) = c6(2)d2,(6) 

 where 

       _a .~E+ln[Eo/(a.t)]-1.116,(7 ) 
dE is the mean energy loss and 

        a=0.154A—°Z(MeV/cm) . 

             f 

 The universal function 0(2) has been evaluated by Landau and tabulated by 
Borsch-Supan.'4 
    Blunck and Leisegang15' have extended Landau theory by taking into account 

 the binding effect of the atomic electrons to which the electron transfers its energy. 
 According to their result, the distribution is given by 

f(a)d2_cvryexp{—(a—'lv)2}da . (8 )                 V=1 (71442)1/2ry+,b21 

 The parameters c,,, 2,,, and r are determined from the least-squares fitting of the 

Landau function 95(2) and have been listed by Blunck and Leisegang. The broad-
ening parameter b in Eq. (8) has been estimated by Blunck and Westphal,") based on 

 a Thomas-Fermi model of the atom and can be expressed as 

                q•4E•Z4"3    6' —(
a•t)2 7(9) 

with eV. 
    In the present work, the energy loss of the electron in each segment was sampled 

from the distribution derived by Blunck and Leisegang. The composition method 
to generate the random numbers according to Eq. (8) has been proposed by 
Sugiyama.4 The frequency function of the distribution can be written as 

                     4  

 .f(A) _ avfv(     2) ,(10) 

 where 

av=cvrv, 

                    {._ (d-2)2}fv()V12iravexp2-a! J ' 
( 50 )



                  Monte Carlo  Calculations of Transmission of Electrons 

ov = (714 42)/2 

   By using a uniform random number, an integer v is chosen with the probability 

proportional to a„ of being v. Having selected the value of v, a sample is drawn 
from the distribution with the frequency function f„(2). Since f„(2) is the normal 
distribution, the sample is obtained from 

                                            a 

                                   Select Random 
                                 Numbers: RR2'R3 

1  IXI(1) = R1- al/EaZI 

                                             Yes 
XI(1) < 0 --------------- 

                                        No 

----------------------10Iv=v+1I 
1  I

XI(v) = XI(v) - av/Eai I 

                          No XI (v) < 0 

                                          Yes 

V  

A = av + ^•(b2 + y2)1n R2-sin 2trR3 

IAS = 4E + a•At(A + 1.116 - ln(E/a•At)) 

B. 

             Fig. 2. Method of randomly selecting the energy-loss fluctuation 
                     from the Blunck-Leisegang theory. 
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 2  =  A,+a,•V/-2lnR1• sin  2nR27(11) 

where R1 and R2 are uniform random numbers in the interval [0, 1]. Then the 
value of LIE is determined by using 2 and t. The flow diagram of this procedure 
is shown in Fig. 2. 

   In order to test the validity of the present sampling method, the distribution of 

.t calculated from random sampling is compared with the f (2) function calculated 
analytically by the Blunck-Leisegang theory. The result is shown in Fig. 3. 
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                Fig. 3. Comparison of the distribution of random variates 
                       with the Blunck-Leisegang theory. 

4. Angular Deflection by Multiple Scattering 
   When electrons traverse each segment of the material, they not only lose their 

energy, but they are also deflected laterally from their original paths. In the small— 
angle approximation, Moliere' developed a theory which gives the angular dis-
tribution of multiple-scattering deflections. The applicability of this theory has been 
extended by Bethe1" to large angles. 

   In the corrected Moliere theory, the probability that an electron will have an 
angle between e and e+--de after traversing a distance t can be written by 

.f(e)de = K (sinee11b28[.f`0)(e)+f(1)(e)/B+...]dO,(12) 

where the reduced angle 0 is 
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  B=
c.-B'(13) 

K is the normalization constant for the frequency function, and  fd0'(5) and f(1) (0) 
are purely numerical functions tabulated by Moliere and Bethe. The parameter 

xc is defined as 

         = 4irNte'Z(Z+1)/(pa)2 , 

where N is the number of atoms per cm3, and p is the momentum and v the velocity 
of the electron, respectively. 

    The parameter B depends on the distance t and is obtained by solving the trans-
cendental equation. This parameter can be expressed as a function of the number 
of collisions, n, during the traverse of the distance t and the relation between B and 
log10 n is tabulated by Moliere. Instead of solving the transcendental equation, we ex-

panded B is powers of log,o n and kept the first four terms. The coefficients of the 
third-order polynomial were determined by the least-squares method. 

   In order to sample the angular deflection from Eq. (12), the combination of the 
composition and the rejection methods was used. Following Messel et a1.19' and 
Sugiyama," the expression (12) can be rewritten as 

.f(&) = G(©)[a,f,(0)g1(e)+am {a2 .f2(B)g2(B)+a3 f3(0)g3(0)}] , (14) amam 
where 

        G(9) = (sin 6/9)1', a1 = 1-5/B, .fi(0) = 0f)(0) 
g1(o)=1, .f2(0)=1 ifB<1, 

       a, = [0{5f<o'(0)+f(1'(6)}/B1nax = 4.1818/B, 

       f3(0) = 2/0' if 0> 1 , 
a3 = [04{5fm(0)+fc' (e)}/(2B)]max = 2.1947/B, 

am = 0[5 f(°)(0)-+.f(1)(e)]/Bdo = 4.98/B . 

0 The functions g,(0) and g3(0) are calculated from the table of Bethe and are given 
in the Tables I and II of Messel et a1.19' For 0 <4, g3(0) is given to the constant 

value of 0.64 and the intermediate values of these functions are determined by inter-

polation from the tabulated values. 
   First, we choose an integer from 1 to 3 with probability proportional to ai of being 

i. This is done by using the uniform random number distributed in [0, 1]. Then a 
sample is drawn from the distribution with frequency function fi(0), and the value 
is accepted or rejected by computing the value of gi (B) and comparing with a random 

variate. In the case of rejection, the process is repeated again and again until a value 
is finally accepted. The value of 9 is obtained by applying to transformation from 
the value of 0. 

   The value of 9 thus obtained is tested by using a uniform random number 
R5 and only the values which fulfill the condition 
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   (sin ey'2>R5 ~(15) 
       ®J 

are accepted. 
   In Fig. 4, the flow diagram of this method is shown. The comparison of the 

random variates sampled from Eq. (14) with the frequency function is made in 
Fig. 5. 

a 

                                 Select Random Numbers: 
R1,R2,R3'R4,R5 

l  

---------------------- XI = R1 - al/(al+am)I 
                                                     Yes 

          XI < 0 ---------------------- 

                                            No 

--------------- 01 XI = R2 - 027(02+03)-----------------H 
                           Yes XI < 0 

     -r  

                 No10 = /-1n R3------------------I 
0 = R3I ` 0 = 1/ 3  

R4 < g2(0) R4 < g3(0) No 

             No 

        esYes 

0 = 0•X a•V ----------------------- 

No sin 0 > R
5.0 

Yes. 

     Fig. 4. Method of randomly selecting the multiple-scattering angular deflection from the 
            Moliere theory. 
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                          Fig. 5. Comparison of the distribution of random variates 

                               with the Moliere theory. 

Sugimaye proposed a method to correlate the energy-loss distribution which 

       neglects the angular deflection and the angular deflection distribution which is 

        derived from the continuous-slowing-down approximation. If 0,„ is the angular 

        deflection estimated above, the angle can be corrected for the energy-loss fluctuation 

       by the following relation: 

0=0,„~E.(16) 
       5. Changes in Direction and Position 

           We choose the z axis as polar axis and 0 and 95 are spherical coordinates in this 

       system. Let (0„, On) and (0„+„ sb„+,) denote the directions of the electron at the 
       beginning and at the end of a segment, and 0 and r the polar and azimuthal 

        multiple-scattering deflections in that segment. The values of 0„+, and O„+, are 

        determined from the well-known kinematic relations between change of direction 
        and multiple-scattering deflection: 

               cos 0„+, = cos 0„ cos 0+sin 0„ sin 0 cos 7 ,(17) 

sin 0 sin'       sin (q5
„+,— 95„) _,(18) 

                                  sin 0„+, 
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 cos (15„+1—c)= cos 0—cos 0„ cos On}(19) 
                          sin On sin 0n+1 

   The azimuthal deflection 3' is distributed uniformly between 0 and 2n. The 

selection of Yr is replaced by the selection of sine and cosine of the azimuthal angle 
and this selection is made by the rejection method of von Neumann.2) The de-

flection angle 9 is selected by the technique described in the preceding section. 
   The position at the end of the segment (x', y', z') is determined from the position 

at the beginning of the segment (x, y, z) and the spherical coordinates (0, ') : 

x'=x+t•sin0•cos , 

y' =y+t•sin 0•sin F , •(20) 

z' = z+t •cos 0 , 

where t is the distance travelled by the electron in that segment. 

6. Termination of History 

   According to the flow diagram shown in Fig. 1, an electron history is traced until 
the electron leaves the foil or is absorbed in it. The energy loss is estimated, angular 
deflection is calculated, and the position is determined. If the electron is inside the 
foil and has energy sufficient to escape from it, these procedures are repeated. 

   A history is terminated in the following cases: 
1) The electron leaves the foil. 

2) The electron energy falls below a certain cut-off energy. 
3) The residual mean range is smaller than the distance to any boundaries of 

   interest. 

   The last condition is estimated as follows; if the position of the electron is z 
and the coordinate of the boundary is zB, the energy necessary to escape from the 
boundary is given by 

   EB =dE•I z—zB I •(21) 
             dx 

When the electron energy is less than this value, the history is no longer followed. 

III. SAMPLE CALCULATIONS AND COMPARISON WITH EXPERIMENTS 

   Various calculations of transmission electrons with the computer code based on the 
method described above have been made in order to compare with experimental 
data. The results of typical runs are presented. 

   The number transmission coefficients for aluminum foils are given in Fig. 6. The 
number transmission coefficient is defined as the ratio of the number of electrons 
emerging from the foil to the number of electrons impinging on the foil. Calcula-
tions were made for 250-keV electron beam perpendicularly incident on the foils. 
The results are based on a sample of 10,000 Monte Carlo histories. The transmission 
coefficient is presented as a function of the fractional true range z/r07 where z is the 
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Fig. 6. Comparison of calculated number transmission 
                        coefficientes for aluminum foils with measured 

                       values of Seliger. 

actual thickness and ro the mean range of the incident electrons. 

   The experimental values shown in the figure were obtained by Seliger.21" He 
measured the transmissions of monoenergetic beams of electrons by the use of a 
90-degree magnetic analyzer and a 2n GM counter, of which window is formed 
with the absorber material. 

   It can be seen from the figure that for small foil thickness there is good agree-
ment. For larger thicknesses, the experimental points lie somewhat below the Monte 
Carlo results. This can be ascribed to the smallness of the number of segments. 
In the ETRAN code, each segment is divided into n equal sub-segments. Seltzer 
and Berger" tested the effect of varying n on the number transmission coefficients 
and showed that the transmission coefficient decreases with increasing n. They used 
n=4 for aluminum. However, the computer time needed for the calculations 
increases roughly in proportion to n. 

   In Fig. 7 is shown the energy spectrum of the transmitted electrons for an in-
cident energy of 1 MeV and an aluminum target. The target thickness of 0.110 

g/cm2 corresponds to 0.2 of the electron range in aluminum at 1 MeV. The spec-
trum calculated by the Monte Carlo method is shown in histogram form. The 
result was obtained with a sample of 50,000 histories. 

   The transmitted energy spectrum for 1-MeV electrons incident perpendicularly 
on the aluminum foil has been measured by Rester and Derrickson.22> A beam of 
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                 Fig. 7. Comparison of experimental and calculated energy 
                        spectra of transmitted electrons. The incident 

                       energy is 1 MeV and the foil thickness corresponds 
                      to 0.2 of the range in aluminum at 1 MeV. 

monoenergetic electrons was obtained from the 3-MeV Van de Graaff accelerator 
and focused on the target foil by the use of an electrostatic quadrupole lens. The 

energy spectra of the transmitted electrons were measured with a Si(Li) detector. 
The results are plotted in the figure by open circles. 

   For comparison, the energy spectrum of transmitted electrons calculated by the 
ETRAN code is also shown in the figure. The calculation was made by Rester and 
Derrickson22) in order to compare with their experimental result. This spectrum is 
based on a sample of 15,000 Monte Carlo histories. It should be noted that this 
calculation was made for slightly thinner foil (0.10 g/cm2).. 

   It can be seen from the figure that the spectrum calculated with the present code 
is fairly good agreement with the experimental data and also with the calculated 
result of the ETRAN code. 
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