
Bull. Inst. Chem. Res., Kyoto Univ., Vol. 55, No. 2, 1977 

     The Crystal Structure of Polyethylene at  4.5°K 
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     A cryostat for X-ray diffraction work with a diffractometer was constructed. This apparatus was 
 utilized for the crystal structure analysis of polyethylene. Polyethylene was crystallized at 129°C and 
 its X-ray measurements were carried out at 4.5°K. The crystal parameters were refined by the least 
 squares method. The cell dimensions are: a=7.12s A, b=4.852 A and c=2.555 A. The setting 

 angle is 45.5±3°. 

                           INTRODUCTION 

   In 1939, the crystal structure of polyethylene was analysed in detail for the first time 
by Bunn.'> Since his classic work, the crystal structure analyses of the melt-crystallized 
and drawn samplesz_e>an d the folded chain single crystals7) were carried out intensively. 
It has been found out from these analyses that single crystals have the crystal structure 
with a large setting angle of 48° differing from that of other crystals whose crystal structure 
are significantly due to the preparation. 

   Polyethylene lattice expands in the a-axis direction with temperature and simulta-
neously the setting angle increases. Polymer crystals are inherently not perfect and become 
inevitably more disordered with the increase of temperature due to the thermal motion of 
atoms. The lattice disorder of the first kind can be estimated from the temperature factors 

on the X-ray diffraction analysis, and this is the overall disorder in which in addition to 
the disorder of thermal origin the statistical imperfections due to molecular displacements 
from the ideal positions are included. The disorder of the second kind (paracrystalline 
disorder) exists characteristically in polymer crystals. The disorder of the second kind 
can be measured from the integral breadths of a reflection of X-ray diffraction pattern and 
higher order reflections. 8) There is no suitable method to extract the disorder due to 
thermal molecular motions from these inherent disorders of crystals. If the structure 
of a crystal with frozen molecular motion is known, it will be possible to distinguish thermal 
disorder. Thus, the structure analysis of crystal should be done at a temperature close to 
0°K to know the exact temperature dependence of the properties and structure of crystals. 

   A mechanical relaxation called the 8 dispersion has been observed in polyethylene 
crystals in the temperature range as low as 20°K.9> Its relaxation mechanism is not yet 
sufficiently clear and thus the structure analysis of crystal at a sufficiently low temperature 
is urgently needed to reveal the crystal structure without any thermal vibration. Although 
much progress has been made recently in the studies of properties and structures of 
materials at low temperatures in space research, few research works of the low tem-

perature structure analysis of polymer crystals have been carried out except the works 
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by Shen et al.,10) Hohne and VUilke,1U and Avitabile et al.6) Avitabile et al. have carried 

out the precise structure analysis of deuterated polyethylene crystal by the neutron 

diffraction method at 4°K. 

   The crystal structure has been predicted theoretically from minimizing the potential 

energy by assuming a suitable interaction between the non-bonded atoms. The structure 

thus derived corresponds to that polymer may have at 0°K. These predicted structures 

have been compared with the data observed at liquid nitrogen temperature or those ex-

traporated to 0°K to check their validities. Naturally, it is more desirable to compare the 

predicted structure with the data obtained on a large and perfect crystal at a temperature 
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                         Fig. 1. The whole appearance of the cryostat. 
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as close to 0°K as possible. 
   Thus the analysis of the crystal structure at liquid helium temperature was undertaken 

in the present work. First, the cryostat was constructed to take the X-ray diffraction 

pattern at this temperature. The crystal structure analysis of polyethylene was carried 
out with the X-ray diffraction data obtained by this apparatus. The detail of the ap-

paratus and the obtained results are presented in the following sections. 

                            EXPERIMENTAL 

Sample 

   Unfractionated linear polyethylene Sholex 6050 (produced by Showadenko Inc.) was 

once melted at 145°C for some tens minutes. The melts were transferred to an oil bath 

kept at 129°C and crystallized for three days. A plate of 1 mm thickness was used as a 

specimen for diffraction work. 

Apparatus 

   Figure 4 shows the whole appearance of the apparatus. This is designed for the 

convenience of the measurment with X-ray diffractometer and was constructed by Rigaku-
denki Inc. The cryostat is a conventional double Dewar vessel consisting of a liquid 

helium vessel surrounded by a liquid nitrogen vessel (Fig. 2). A radiation shield made of 

alminium foil of about 10  p. thickness is attached to the these vessels to screen the specimen 

from thermal radiation. The outside window is made of vacuum-tight beryllium (which 
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                        Fig. 2. Schematic representation of the cryostat. 
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hardly absorbs X-ray) to keep the sample chamber vacuum. This apparatus is also 
designed to perform the measurement at various temperatures. The temperature was 
controlled with an accuracy of ±0.05°C by a controller using thermocouple. The thermo-
couple of copper in combination with an alloy of gold +2.1% cobalt was used. The 
temperature was measured with the resistance thermometer of germanium semiconductor. 
As for other experimental procedures at low temperature, the texts by White12> and by 
Ros-Innes13> were referred. 

   Liquid helium was used as cooling medium, but since the sample was cooled by 
conduction through the sample holder which was in thermal contact with the bottom of 
liquid helium vessel, the temperature 4.2°K of liquid helium was not achieved. The 
lowest temperature of the sample achieved by this apparatus was 4.5°K. This type of 
cryostat has already been reported and its make-up and usage are practically same. 

   The X-ray generator was a conventional one with a sealed tube and was operated at 
40 kV and 25 mA. The diffraction intensities of the nickel filtered Cu-Ka ray were 
measured with a scintillation counter. 

Method of Data Analysis 

   The structure factor of the unit cell for the (hkl) reflection is given by 

F(hkl)= E, frD, exp (-27ri(bxr+kyr+lzr))(1) 

where f r denotes the scattering factor of an atom and xr, yr, and zr denote the fractional 
coordinates. The suffix r indicates the rth atom in the unit cell. These fractional co-
ordinates are defined as follows: 

xr=X,/a yr=Yr/b zr=Zr/c(2) 

where a, b, and c represent the lattice constants of unit cell and Xr, Yr, and Zr are the 

component displacements of r th atom from the origin of unit cell along a, b, and c directions, 
respectively. Dr denotes the Debye-Waller factor given by 

Dr=exp(—(h2B11+k2Bs2+12B33+klBz3+IhBs1+hkB12))(3) 

where Bj;(i, j=1, 2, 3) denotes the anisotropic temperature factor. This factor is related 
to the smearing effect on reflections by the thermal agitation of atoms. 

   The vibration of an atom in an anisotropic potential field is characterized by a sym-
metric tensor with six independent components Ui;(i, j=1, 2, 3), and the mean squared 
amplitude of vibration in the direction of unit vector 1 is given as 

<uz>=EEUtiltli(4) 

i when l;(i=1, 2, 3) is a component of the vector I. The tensor component is connected 
with the temperature factor as follows: 

Btt=2ir2xt*Utt (i=1, 2, 3) 

and Bt;=47r2xt*x,*Ut; (i, j=1, 2, 3)(5) 

where xi*, x2*, and x3* are the reciprocal axis lengths, i.e. a*, b*, and c*.14) 
   The precise parameters in Eq. (1) including the atomic coordinates and temperature 

factors were determined by the least squares method, which was generally used for a re-
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finement of crystal  structure.15) The most probable values of these parameters are 

estimated to minimize the value R defined as follows : 

R= E w(hkl)(KF°'(hkl)—Fc(hkl))2(6) 
                   ski 

where F°' and F. denote the square root of the observed integral intensity with the same 
sign as Fo and the calculated structure factor respectively, K is the scale factor and w (hkl) 
is the weight to (hkl) reflection. The iteration was repeated until the index RE converged 
on a suitable value. Here the index RE is a measure of reliability and defined as follows : 

E, (IF o(hkI)j —I F,(hkl)I) 
  RE= hklC7)       EI F

°(hkl) I 
                          hkl 

where F° (hkl) is the observed structure factor equal to KF°' (hkl). Partly overlapped 

reflections were separated by means of the peak separation method based on the least 

squares.16) When the separation could not be done by the method mentioned above, 
then the peak was separated in propotion to the ratio of calculated intensities. After 

correcting the observed integral intensities for the Lorentz-polarization factor and the 

absorption effect, F,' (hkl) was determined. 

   Calculations by the least squares method were carried out with an electronic computer 

FACOM 230-48 in the Institute for Chemical Research of Kyoto University. The values 

given by Bunn were used as the starting values of parameters and the atomic coordinates 
and anisotropic temperature factors were refined to yield the most reliable values. 

                             RESULTS 

   Polyethylene crystal undergoes no phase transition during cooling to 4.5°K where 

              Table I. The Observed Lattice Parameters of Polyethylene Crystal 

                             Unit cell dimensions (A) 
 abc 

7.1234.8522.553 

                                 Coordinates of carbon atom 

xyz 

0.0460.0650.25 

                              Temperature factors (Az) 
   B11B22B33 B15 

0.0120.0250.076 —0.001 

                                Setting angle (°) 

45.5°+3° 

                           Mean squared displacements (A2) 

<d a2><db2><dc2> 

0. 032O. 03o0. 025 
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         Table II. The Observed and Calculated Structure Factors 

(hk 7) IFolIF ,I 

11 0 13.6016.39 
20 0 13.2614.91 
21 0 3.323.72 
02 0 8.248.70 
12 0 3.032.83 
01 1 5.685.84 
11 1 3.353.75 
31 0 6.155.53 
20 1 5.686.34 
22 0 4.614.49 
21 1 3.903.72 
40 0 4.864.00 
12 1 4.295.43 
32 0 4.534.61 
41 0 4.113.01 
31 1 4.915.04 
13 0 3.512.72 
22 1 3.402.80 
23 0 3.113.54 
40 1 5.965.64 
51 0 0.280.77 
03 1 6.695.38 
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Fig. 3. The projection of orthorhombic unit cell of polyethylene at 4.5°K on (001) 
       plane. 0 is the setting angle. 
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the crystal system is orthorohmbic as at room temperature. Its space group is Pnam. 
The lattice dimensions of unit cell were determined from the observed peak positions of 
the wide angle X-ray diffraction pattern by the least squares method (see Table I). 

   In determining the coordinates and anisotropic temperature factors of the atoms by 
the method described above, hydrogen atoms were neglected. The coordinates and 
anisotropic temperature factors of the carbon atom are listed in Table I. B23 and  B31 
are a priori zero because of the symmetry of space group of crystal lattice. 22 reflections 

were used in this calculation. The observed and calculated structure factors are shown 
in Table II. Though several reflections such as (002), (520), (231) have the observable 
intensities, they are overlapped with the intense peak from the sample holder and the 

peaks can not be resolved into the respective components with a reliable accuracy. Those 
reflections are not used in the calculation and omitted in Table II. The reliability index 
RE was about 12%. 

   Figure 3 shows a projection of polyethylene unit cell at 4.5°K on the basal plane 

(001). The large open circles and small ones represent the carbon and hydrogen atoms, 
respectively. A C-H bond length of 1.1A and an H-C-H bond angle of 110° are assumed. 
As shown in Fig. 3, the setting angle is the angle between the projection of planar zigzag 
chains and the b axis. This angle is calculated as about 45.5° from the coordinates x, y 
in Table I. 

   The mean squared displacements in the a, b, and c axis directions are estimated from 
the temperature factors according to Eqs. (4) and (5). (see Table I) 

                            DISCUSSION 

   Lattice dimensions of polyethylene crystal observed or estimated at low temperature 

have been reported by many researchers.6,10,17-'8) They are shown in Table III with the 

        Table III. The Observed and Calculated Lattice Dimension and the Setting Angle 

a(A)b(A)c(A) Temp. (°K) setting angle reference 

       [observed] 
 7.16 4.862.538 10(10) 

  7.121 4.8522.548449°(6) 
7.1234.8532.55s4.545.5±3°present work 

       [estimated] 
 7.14 4.87(17) 

7.103 4.8532.553(18) 

       [predicted] 
 7.2 4.9548°(20) 

7.118 4.85546.9°(21)* 

 7.1 5.045°(22)** 
 7.156 4.89446°19'(23) 

 7.11 4.9248°(24) 
 7.15 4.8447.5°(25)*** 

   * Parameters for Set IV 
  ** Values of a and b are estimated from the given graph. 

 *** Parameters for Set II 
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present data. The values given by Hendus17) and Davis et al.18> are estimated by extra-
poration of the data at above liquid nitrogen temperatures to 0°K. The sets by Davis 
et al. and Avitabile et al. are in good agreement with the present data. It should be 
emphasized that the values by us and Avitabile et al. are most reliable since the actual 
measurement was taken place at the lowest temperature. 

   The long periods of the sample used here were found to be over 400 A from the 
measurement of the small angle X-ray scattering. The crystallite size and paracrystalline 

distortion were also estimated according to Hosemann's paracrystalline theory.8) The 

paracrystalline distortion was about 2.0% in the [110] direction and the crystallite size 
in the same direction was about 400 A. The crystallites composing the sample are suffi-
ciently large as polymer crystal and their lattice distortion is fairly small. These lattice 
dimensions are thus nearly equal to those that a large perfect crystal of polyethylene is 
supposed to have at a temperature near 0°K. Polyethylene lattice shrinks in the a and 
b axis directions during cooling to 4.5°K, while the c axis length increases by about 0.01 A 
in comparison with the values at room temperature (see Table I). This result suggests 
that the thermal expansion in the c axis direction is due to the fact that the thermal twisting 
of chains around C-C bonds is restricted. Davis et al. and Kobayashi and Keller19> have 
also speculated this cause of thermal expansion in the c axis direction from the results at 
rather high temperature, Molecular chains oscillating between left- and right-handed 
helical conformations become rigid in planar zigzag conformation. The carbon-carbon 
bond length (1.568±0.01 A) and bond angle (109±1°) in the present molecular con-
formation were calculated from the atomic positions and the lattice dimensions. The pres-
ent bond length is more extended than the usual value (1.54 A) of polyethylene and 

paraffine at room temperature, but is comparable to that in some small molecules.26) 
The bond angle is smaller and very close to the tetrahedral angle of diamond lattice, 

109°27'. (The extension of bond length and the narrowing of bond angle at low temper-
ature have also found out by Avitabile et al. from the crystal structure analysis of deuter-
ated polyethylene by the neutron diffraction: the bond length is 1.578 A and the bond 
angle is 107.7°). When light atoms such as hydrogen are not considered in the structure 

analysis by the least squares method, the refined coordinates of atoms intend to shift 
toward light atoms. Since hydrogen atoms are not considered in the present analysis, 
the coordinates of carbons may shift toward the positions of hydrogen atoms (cf. Fig. 3) 

and this shift may result in extending bond length and narrowing bond angle as the 
coordinates along the c axis are fixed. Molecular chains take an extended planar zigzag 
conformation as judged from the large c axis lattice dimension. Let us imagine the 

molecular conformation at rather high temperature. When a molecular chain oscillating 

between left- and right-handed helical conformation is projected on the plane normal to 
the molecular chain axis, the time-average position of carbon on the plane should shift to 

the molecular axis from that of planar zigzag molecules. Since the time-average molecular 
conformation remains in the planar zigzag, this shift of position leads to the apparent ex-

pansion of bond angle and the simultaneous shortening of bond length. Thus, the increase 
of the c axis lattice dimension, the extension of bond length and the narrowing of bond 
angle at low temperature are explained consistently in terms of change in molecular con-
formation. 

    Lattice parameters are predicted by many workers20 28) from minimizing the lattice 
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energy which is the sum of intermolecular potential energies over all atomic pairs in 
crystal lattice (see Table III). The molecular chain folding is not considered in these 
calculations and a crystal lattice is assumed to be perfect and extended infinitely, so that 
the derived values correspond to those which polyethylene crystal may take at 0°K. The 
inherent disorder and finite size of a real crystal thus set the limitation in referring to the 

predicted structure. The difference of the lattice dimensions calculated by various workers 
is due to the difference of the potential functions in their calculation. The set given by 
Williams21) is in good agreement with the present values. Williams has used the potential 
functions derived by the least squares method from the data on various crystals of simple 

chain molecules at liquid nitrogen temperature and his potential functions are considered 
to be closest to the real one. The setting angle of predicted parameters is generally 
larger than the present value and is smaller than the value (49°) given by Avitabile  et al. 
Thus the lattice parameters comparable to the observed ones are predicted theoretically. 
It is noted, however, that the short bond length and large bond angle at room temperature 
as well as the temperature invariance of c axis length are assumed in these calculations. 

   The mean squared displacements of carbon atoms are estimated from the anisotropic 
temperature factors by Eqs. (4) and (5) (see Table I). <da2> is equal to <db2> and this 
result is consistent with the fact that the setting angle of molecular zigzag plane is set 
to about 45°. The displacement of carbon atom has two origins: (1) the net thermal 
disorder caused by thermal fluctuation of molecular chains around their regular positions 
and (2) the statistical lattice imperfection of the inherent molecular displacement from its 
registered position. The displacement of carbon atoms due to two different origins is not 
treated separately in Eq. (3) and thus each contribution to the X-ray diffraction cannot 
be known. Kitagawa and Miyazawa27) calculated the temperature factors for X-ray 
scattering at 100°K by using the potential functions determined from the spectroscopic 
data at low temperature. The mean squared displacement caused only by the thermal 
agitation is estimated at 0.014 A2 in both a and b axis directions. This values must be 
smaller at 4.5°K. Though 4.5°K is not necessarily "low" in the field of low temperature 

physics, the present data may be regarded as those at 0°K from the view point of the 
thermal motions in molecular crystals. The lattice disorder estimated in the present work 
is too large to be considered solely due to thermal vibrations, so that the so-called temper-
ature factors at 4.5°K may be treated as the "distortion factors" due to lattice imperfections 
including the zero-point vibration. Iohara et al. estimated this factor as 0.04 A by the 
extraporation of the temperature factors obtained at several temperatures above liquid 
nitrogen temperature to 0°K. Their value is comparable to the present observed data of 
0.03 A2 in the a and b axis directions. If the lattice imperfections are known quanti-
tatively, then the lattice disorder due to thermal fluctuation can be estimated by the sub-
traction of the "disorder factor" from the overall temperature factor. The temperature 
dependence of disorder will be discussed elsewhere. 

   The disorder of the first kind due to the statistical lattice imperfections was measured 
by the structure analysis at low temperature. The result depends largely on the observed 

integral intensities and the contribution of the lattice disorder of the second kind to the 
observed intensities should be estimated. The disorder factor of the second kind is given 
by:8) 

         Dh=2 exp(-27r2gh2h2)/ (1+exp(-2ir2gh2h2)}(8) 
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where  Dh is the fractional reduction in the scattered intensity, gh is the disorder of the 
second kind and h is the order of the reflection. Substituting gh=0.02 into Eq. (8), 

           D110=0.996 

and D220=0.984 

Thus the paracrystalline disorder has a negligible effect on the measured intensities and 

can be neglected in the structure analysis. The disorder of the first kind (see Table I) 

plus the paracrystalline disorder (2%) is the total disorder of real crystal. Even when 
polyethylene is crystallized deliberately at high temperature over a long period, the crystal 
disorder is inevitably incorporated into crystallites and remains unremoved at low temper-
ature. 
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