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     The Debye particle scattering function P was calculated on the "three-phase model" representing 
 a spherical multimolecular micelle formed by an AB diblock copolymer. The model consists of the 

 three phases, i.e., a pure B phase forming the spherical "core", an A-B intermixing phase forming the 
"shell" in which the A-B junctions are located, and a pure A phase forming the "fringe" surrounding 

 the shell and the core. The A chains were assumed to obey the statistics of the random-flight chain 
 with one end (i.e., the junction) bound near the impermeable surface (of the B core). The calculations 

 showed that the P—' vs Csin2 (0/2) curve with the constant C so chosen as to give the initial slope of 
 1/3 increases with increasing angle much more rapidly than that for the linear chain, but less rapidly 

 than that for the uniform-density model, essentially in agreement with observations. The method to 
 analyze, on the basis of the model, experimental data obtained from the core-component-invisible 

 micelle systems was discussed. It was shown that new information about the micelle morphology is 
 obtainable. Above all, the extent of expansion of the A chains in the radial direction could be de-

 termined with little (theoretical) ambiguity. 

                          INTRODUCTION 

   The formation of multimolecular micelles by block and graft copolymers in the 

presence of a selectively bad solvent for one of the copolymer components is well known.') 
Figure 1 will give an idea about such micelles. It shows electron micrographs of the 
micelles formed by polystyrene (PS)-poly(methyl. methacrylate) (PM) diblock copolymers 
in acetonitrile solution.2) Spherical micelles nearly uniform in size are seen. Each micelle 
is considered to consist of several hundreds of molecules. In general, a micelle formed by 
a diblock copolymer in a selective solvent may be considered to consist of a compact core 
(swollen to a certain extent) of the less soluble component surrounded by a flexible fringe 
of the more soluble component which maintains the system in a colloidal state. In the 
above example, acetonitrile is a nonsolvent for PS and a near-0 solvent for PM at the room 
temperature, so that the micelle surface consists predominantly of the PM chains.2) 

   The electron micrographic morphology is, of course, different from that in solution, 
because polymer coils will collapse upon themselves during the solvent evaporation stage. 
Direct morphological information comes from the light scattering investigation of the 
particle scattering function P. Previously, we3) proposed a model representing a spherical 
micelle formed by an AB diblock copolymer, and calculated the P function of the model. 
The "star-shape model", so called in the paper, has a seemingly unrealistic aspect: The 
A chains forming the fringe with one end fixed on the surface of the spherical core formed 
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         Fig. 1. Electron micrographs of the micelles from acetonitrile solutions of PS-PM 

               diblock copolymers 46B (Al u,=3.4x105, and xps=0.45) and 47B (Mm— 
                1.09 x 105, and xps=0.42) with polymer concentration as indicated in the 

                  figures. 

by the B chains were assumed to enter the core freely. It would he more realistic to assume 
that a micelle formed by a large number of molecules generally consists of three phases, 
i.e., a pure B phase forming the core, an A—B intermixing phase which includes the A—B 

junctions, and a pure A phase forming the fringe which surrounds the shell and the core. 
This model is analogous to Meier's model4) proposed as one of the three basic structures 

of block copolymer solids.5) In this paper we calculate the P function of such a model on 
the basis of the random-flight statistics, 6) and discuss the method of analysis of experimental 
data based on the model. In order to avoid the complexity arising from the optical arte-
fact, light scattering measurements have been often made with solvents isorefractive for 
one of the copolymer components.7-11) As to block copolymer micelles, such measure-
ments have been made by Utiyama of a1.12) on the PS-PM/toluene (TOL)-furfryl alcohol 

(FAL) mixed solvent system in which the fringe component is "invisible", and by us3,13> 
on the PS-PM/p-xylene and PS—PM and PM-PS-PM/TOL-p-cymene (pCY) mixed 

solvent systems in which the core component is "invisible". Our interest here is the latter 
type of systems. In the following, it is assumed that the core component is "invisible". 

                       THE THREE-PHASE MODEL 

   Let f AB diblock copolymer chains, each consisting of NA A segments and NB B 
segments, form in a selectively bad solvent for the B component a spherical micelle as 
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                 A chains --------- 
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                                   A+B shell 

                           (thickness 2s = 2 (r0 — a)) 

              Fig. 2. Schematic representation of the "three-phase star-shape model." 

illustrated in Fig. 2: The radius of the pure B core is a, and the thickness of the A–B 

intermixing phase is 2s. For numerical simplicity, the A–B junctions are assumed to be 
in the middle of the intermixing phase, i.e., on the surface of the sphere of radius ro=a+s, 
in a random manner. The A chains are assumed to obey the statistics of the random– 
flight chain with one end fixed at a radial distance r=ro and with an impermeable non-
interacting boundary at r=a. No assumption is made here on the density distribution of 
B segments, since we have assumed that the B component is "invisible". This model 
will be designated as the "three-phase star-shape model". The previous "star-shape 
model" is the special case where a=0. Below, we will often use the reduced quantities 
Ro, A, S (=Ro—A), and R instead of ro, a, s, and r, respectively. They are defined by 

Ro=p1/2ro, A= pi/ 2a s=p1/2s, and R=41/2,(1) 

P=3I(2NAbA2)(2) 

where bit is the effective length of A segments. 
   In this section, let us derive the radial density distribution p of A segments. The 

distribution fn(rn) of the end-to-end vector rn of a random-flight chain with n+1 segments 
of length b serially numbered from 0 to n obeys the diffusion equation, 

afn(rn)I an=(b2/6)4 2fn(rn)(3) 

If f n is spherically symmetrical, Eq. (3) becomes one-dimensional by the replacement, 

pn=rnfn (rn=lrn1) 

apnfn)Ian=(b2/6)[a2pnf n)I arns](4) 

For the present purpose, Eq. (4) should be solved under the condition that the first (0-th) 
segment is at r=ro and all the segments exist in the region of r>a. The problem now is 
analogous to the one for the chain terminally bound near a planar surface.6) Following 
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the similar procedure, we obtain the probability  density  pn(ri/rol  a) of finding the ith seg-
ment at ri with the 0-th segment fixed at ro and all the segments found at r>a: 

pn(ri/rja)= {(ro—a)/ro+(af ro)erf[ponl/2(ro—a)]} —i 
X (47rrori)-1(goi/v) v2 {exp[—f3oi(ro—ri)2] —exp[—f3oi(ro+ri-2a) z]} 

X {(ri—a)/ri+(a/ri)erf[13in1/20,i—a)]}(5) 

PI. =3/[2(m—l)b2], (l<m)=(0<i<n)(6) 

      erf x= 1x(2/7r1/2)exp(—t2)dt(7) 

where f pn(ri/rola)(4irri2)dri=1. 
   The overall radial density distribution pn(r/roJa) normalized to unity is given by 

pn(r/rola)=(n+1)-1 E pn(ri/rola), ri=r(8) 
i=o 

Putting Eq. (5) in (8), converting the summation to an integral, and carrying out the 

integration,10 we have the following result: 

PNA(r/roIa) X (4ar2) 
=(2 fj1/2/ir1/2)[Ro—A+A erf (Ro—A)]-1 

X {R [exp(—h12)—exp(—h22)-7,1/2h1(1—erf hl)+ir112h2(1—erf h2)] 

+A[—exp(—haz)+exp(—h42)+ir1/2ha(1—erf ho) —a1/2h4(1—erfh4)]} 

                                         (9) 

h1=IR—Rol, h2=R+Ro-2A 

ha=IR—Rol +R—A, h4=2R+Ro-3A 

where we have set n=NA, and b=bA (i.e., f3on=/ =3/(2 NAbA2) ). In the particular case 
where ro— a (or Ro—>A), Eq. (9) converges to15> 

PNA(r/ro=ala) x (417r2) 
          =4/31/2(1+2Af 7 1/2)-1 {R[1—erf(R—A)]—A[1—erf(2R-2A)]} (10) 

          CALCULATION OF THE PARTICLE SCATTERING FUNCTION 

    The apparent particle scattering function Papp for an A—B binary copolymer system 
is generally given byls> 

Papp—pA2P A+N'B2PB+2pAp-BPAB(11) 

     &A=1—p.B=xUA/(xV A+yUB)(12) 

where PK and PAB describe the interference effects between K—K and A—B segments, 
respectively; x (=-1—y) is the weight fraction of A segments, and VA is the refractive 
index increment of the K homopolymer (K=A or B). In our case, v13=0, so that 
Papp=PA. PA is conveniently split into the two terms PA,1 and PA,2, representing the 
inter- and intrachain contributions, respectively: 
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                  Table I. Values of PA,11/2 for the "Three-Phase Model"a 

    XA1 0.5 1.01.5 2.0 3.0 4.0 5.0 7.0 9.0 11.0 13.0 S~Ro  

Ro=O.O 
0.921 0.850 0.787 0.7300.632 0.552 0.487 0.387 0.316 0.266 0.227 

Ro=0.1 
1.0 0.921 0.850 0.787 0.7300.632 0.551 0.485 0.385 0.314 0.262 0.223 
0.8 0.921 0.850 0.786 0.7290.630 0.549 0.482 0.380 0.307 0.255 0.216 
0.6 0.921 0.850 0.786 0.7280.628 0.546 0.478 0.374 0.301 0.247 0.207 
0.4 0.921 0.849 0. 785 0.7270.626 0.543 0.473 0.369 0.294 0.239 0.198 
0.2 0.921 0.849 0.784 0.7260.624 0.540 0.471 0.363 0.287 0.231 0.190 
0.0 0.921 0.849 0.784 0.7250.622 0.538 0.467 0.358 0.280 0.223 0.181 

Ro=O.2 

1.0 0.921 0.850 0.786 0.7290.630 0.548 0.481 0.379 0.306 0.253 0.213 
0.8 0.921 0.850 0.785 0.7270.627 0.544 0.475 0.370 0.295 0.240 0.200 
0.6 0.921 0.849 0.784 0.7250.623 0.539 0.469 0.361 0.284 0.227 0.185 
0.4 0.921 0.849 0.783 0.7240.620 0.534 0.462 0.351 0.272 0.214 0.171 
0.2 0.920 0.848 0.782 0.7220.617 0.530 0.456 0.342 0.260 0.200 0.156 
0.0 0.920 0.848 0.781 0.7210.614 0.525 0.450 0.333 0.248 0.186 0.140 

Ro=O.3 
1.0 0.921 0.850 0.785 0.7270.627 0.544 0.475 0.370 0.294 0.239 0.198 
0.8 0.921 0.849 0.784 0.7250.623 0.538 0.468 0.359 0.281 0.224 0.181 
0.6 0.921 0.848 0.783 0 7230.619 0.532 0.460 0.347 0.266 0.207 0.163 
0.4 0.920 0.848 0.782 0.7210.615 0.526 0.452 0.335 0.251 0.190 0.144 
0.2 0.920 0.847 0.780 0.7190.611 0.520 0.444 0.323 0.236 0.172 0.125 
0.0 0.920 0.847 0.779 0.7170.608 0.515 0.436 0.311 0.221 0.155 0.106 

Ro=0.4 

1.0 0.921 0.849 0.784 0.7250.623 0.538 0.468 0.359 0.280 0.223 0.180 
0.8 0.921 0.848 0.783 0.7230.619 0.532 0.459 0.346 0.265 0.206 0.160 
0.6 0.921 0.848 0.781 0 7210.615 0.526 0.451 0.333 0.249 0.186 0.140 
0.4 0.920 0.847 0.780 0.7190.610 0.519 0.442 0.320 0.232 0.167 0.119 
0.2 0.920 0.846 0.779 0.7160.606 0.512 0.433 0.307 0.215 0.147 0.098 
0.0 0.920 0.846 0.778 0.7140.602 0.506 0.424 0.293 0.198 0.128 0.076 

Ro=0.5 
1.0 0.921 0.848 0.783 0.7230.619 0.532 0.459 0.346 0.265 0.205 0.160 
0.8 0.920 0.848 0.781 0.7210.615 0.526 0.451 0.334 0.249 0.187 0.140 
0.6 0.920 0.847 0.780 0.7190.611 0.519 0.442 0.320 0.232 0.167 0.118 
0.4 0.920 0.846 0.779 0.7160.606 0.512 0.432 0.306 0.214 0.146 0.096 
0.2 0.920 0.846 0.777 0.7140.602 0.505 0.423 0.292 0.196 0.126 0.074 
0.0 0.920 0.845 0.776 0.7120.597 0.499 0.414 0.278 0.178 0.105 0.051 

Ro=O.7 

1.0 0.920 0.847 0.780 0.7190.611 0.520 0.442 0.321 0.233 0.168 0.120 
0.8 0.920 0.847 0.779 0.7170.607 0.514 0.435 0.310 0.219 0.152 0.102 
0.6 0.920 0.846 0.778 0.7150.603 0.508 0.426 0.297 0.202 0.132 0.080 
0.4 0.920 0.845 0.777 0.7130.599 0.501 0.417 0.283 0.184 0.111 0.057 
0.2 0.920 0.845 0.775 0.7110.595 0.494 0.408 0.269 0.166 0.090 0.035 
0.0 0.919 0.844 0.774 0.7090.591 0.488 0.399 0.255 0.148 0.069 0.012 

Ro=1.0 

1.0 0.920 0.846 0.777 0.7130.600 0.503 0.420 0.288 0.191 0.120 0.068 
0.8 0.920 0.845 0.776 0.7120.598 0.500 0.415 0.280 0.181 0.108 0.055 
0.6 0.920 0.845 0.775 0.7110.595 0.495 0.408 0.269 0.166 0.090 0.035 
0.4 0.919 0.844 0.774 0.7090.591 0.488 0.400 0.256 0.150 0.071 0.013 
0.2 0.919 0.844 0.773 0.7070.587 0.483 0.392 0.244 0.134 0.052 -0.007 
0.0 0.919 0.843 0.772 0.7050.584 0.478 0.385 0.233 0.118 0.034 -0.027 

 a XA ,1=W2<S2>A,1. For the values of <S2>A,1, see Table II. Value of PA,11/2 reserves the sign 
  of the rhs of Eq. (17), so that it can be negative in certain cases. 
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     PA=(1 ,/~{1)PA,i+.f 'PA,2(13) 

 where  f is the association number. The intrachain contribution PA,2 may be sufficiently 
approximated17> by the Debye function's) for the linear free chain, i.e., 

P,2^'(2/ YA)2[exp(- YA)-1+ YA](14) 

YA=w2/(4/3)(15) 

co =(4T/A) sin(0/2)(16) 

where A and 0 have the usual significance. The interchain contribution PA,1 is related 
to the density distribution p given by Eq. (9) as 

         pA,11/2=f4lrr2pNA(r/roka)sin(wr)/(wr) dr(17) 

                                   a The integration cannot be analytically performed except for the case of a=0 (see footnote 

19). Equation (17) was calculated with a FACOM 230-48 digital computer. A part 
of the results is listed in Table 1.21) 

                             The light scattering apparent mean-square radius <S2>app derived from the w2-term of 
the series expansionof Papp is likewise given by 

         <'J2>app=P,A2<S2>A+PB2<s2>B+2F'6 AIL B<S2>AB(18) 

where <S2>A, <S2>B and <S2>AB concern PA, PB, and PAB, respectively. In our case, 

<S2>app=<S2)A, and <S2>A may be given by 

       <S2>A=(1 J1)<S2>A,1+J{1<S2>A2,(19) 

      <S2>A,1=f4ar2pNA(r/rola) dr(20) 

<S2>A, 2,--d/(4/3)(21) 

Equation (20) was claculated numerically.22> Table II lists the results. 

                Table II. Values of 1<S2>A,1 for the "Three-Phase Model"a 

Ro/S        R0 1.0 0.8 0.6 0.4 0.20.0 
     0.00.750 

      0.10.760 0.783 0.808 0.834 0.862 0.892 
      0.20.789 0.831 0.877 0.930 0.988 1.054 
      0.30.840 0.894 0.959 1.037 1.129 1.236 
      0.40.909 0.974 1.055 1.157 1.284 1.438 
      0.50.999 1.069 1.164 1.290 1.453 1.661 
      0.61.110 1.181 1.288 1.436 1.637 1.903 
      0.71.239 1.312 1.427 1.600 1.836 2.166 
      0.81.389 1.461 1.582 1.773 2.050 2.448 
      0.91.560 1.627 1.754 1.963 2.280 2.750 
      1.01.751 1.814 1.943 2.168 2.526 3.073 

 a )=3/(2NAbA2)• 
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                 ANALYSIS OF LIGHT SCATTERING DATA 

   In this section we describe what information is obtainable by analyzing, on the basis 

of the "three-phase model", light scattering data obtained for the core-component-invisible 

micelle system. 

   First, let us see the behavior of the model. In Fig. 3,  PA ,1  1 is plotted against XA,1= 
<S2> A,1 w2 for several values of R0.23) The thickness of the intermixing phase was 
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        Fig. 3. Plots of PA,i 1 vs XA,i for the "three-phase star-shape model" with S=O, 
                and Ro as indicated in the figure: XA,1=c„2<S2>A,1. 
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         Fig. 4. Plots of In PA, i 1 vs XA,1 for the "three phase star-shape model" with 

S=O, and Ro as indicated in the figure: XA,1=W2<S2>A,I. 
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         Fig. 5. Plots of ln PA,i 1 vs XA1 for the "three-phase star-shape model" with 
                Ro=0.5, and S/Ro as indicated in the figure: XA,1=w2<S2>A,1. 

set zero, i.e., S=Ro—A=0. The figure shows that PA,1-1 increases with increasing 
XA,1 much more rapidly than that for a linear chain, showing large curvature at small 
X A,1, i.e., at low angles. The trend becomes more and more significant as Ro increases. 
This is the characteristic common to spherical particles.3) In a practical sense, the usual 
Kc/R(6) vs sins (0/2) plot is no more effective to evaluate <S2>app of a spherical micelle. 
In Fig. 4, the same data are presented in the ln PA,1-1 vs XA,1 plot. The curves have 
wider ranges of linearity at low angles. This plot appears to be the most favorable. In 
Fig. 5, In PA,1-1 is plotted against X A,1 for several values of S/Ro with Ro fixed at Ro=0.5.. 
We see that PA,1-1 becomes a somewhat slowly increasing function as S/Ro increases. 

   Now, suppose that we have an experimentally determined P curve to be compared 
with the theoretical PA,1 curve. The functional form of PA,1 depends on the reduced 

quantities Ro and S/Ro alone (cf. Eqs. (9) and (17) ). In principle, it is possible to deter-
mine the two by comparison. In practice, however, it appears almost impossible, since 
the theoretical curve for a given pair of Ro and S/R° is reproduced by a number of other 

pairs almost perfectly at least in the region of XA,1 of practical interest. For example, 
the curve for Ro=0.3 and S/Ro=0 closely fits the curve for Ro=S/Ro=0.5 (cf. Fig. 4 and 
5). 
   The fact is indeed noteworthy, however, that the pairs of Ro and SIRo which give a 

common PA,1 also give a common <S2>A,1, unless S/Ro is not too large. If we set 

p<S2>A,1=1.5, for example, all the curves for different pairs coincide with each other 
within ±0.5% up to XA,1=15, if S/Ro<2/3. As S/Ro comes closer to unity, the devia-
tion steeply becomes larger (about 20% at XA,1=10 for S/Ro=1). Under the assumption 
that S/R° is not so large (which does not sound unreasonable in view of the two-phase 
structures in bulk), the above fact points to a possibility to derive a new piece of information 
with less ambiguity. The procedure may be as follows : The observed P function is com-

pared with the theoretical curves for, for example, S/Ro=0 (i.e.. Fig. 3 or 4), and the best 
fit value of Ro is determined. The. Ro determines P<S2>A,1 (cf. Fig. 6). Thus, /i can be 
known, since <S2>A,1 is, of course,- known from the measured value of <S2>A (cf. Eqs. 
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                   Fig. 6. Plots of $<S2>,,1 vs Ro for the "three-phase star-shape model" with S/R° 
                        as indicated in the figure: S=3/(2NAbA2). 

(19-21) ). 
            Here, some words may be necessary for the parameter fi. In the absense of the 

        excluded volume effects, f-1 (=2 NAbA2/3) is equal to 4<S2>A,free, where <S2>A,free is 
        the mean-square radius of the equivalent free A chain. In the presence of a possitive 

        excluded volume effect between A segments (which is usually the case with the micelle 
        system), the equality no more holds. The A chains belonging to a micelle should be 

        extended in the radial direction so as to avoid the mutual interference. Of course, our 
        random flight-statistics do not strictly describe such chains, but should still be a valid 

        approximation. All what we are saying is that the segment length bA includes the exclud-
        ed volume effects acting within the micelle (a uniform-expansion approximation), and is 

        generally different from the length bA,froe of the free chain. This defines the expansion 
         factor am as 

1II 4.0 — PS-PM 63030 in 1034CY (39.6/60.4) 

                                   3.0 — mama-density  P°de1— 

                                    / / "three-phase =del 
/PO = 0.42 aS-S 

/ linear d,415 

                                                                      r.7. 
                                                                             1.0 

                                  / 

II I  
             0510 15 

                  Fig. 7. Plots of In Papn 1 vs Xapp for PS-PM diblock copolymer 63B30 in a 
toluene/p-cymene mixture at 30°C (circles), for the "three-phase star-shape 

                          model" with Ro=0.42, and S=0 (solid curve), and for the uniform-density 
                          model with a=0 (broken curve): Xapp=w2<S2>app• 
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   aM=bAlbA, free(22) 

or equivalently 

     aM 2 = (4,S3<S2>A,f ree)-1(22') 

One should remind that  am describes the expansion in the radial direction, and those in 
the other directions are, of course, undetectable by this method. 

   We show an example of such analysis. In Fig. 7, an experimental Papp curve13> 
is compared with the theoretical curve for S=0 and Ro= 0.42. The circles are measured 
points and the solid curve is the theory. The measurements were made on PS-PM diblock 
copolymer 63B30 (Mw=1.5 X 106 and xrs=0.24) with a TOL/pCY mixture (39.6/60.4 
by weight) at 30°C. In this condition, only the PM chain is insoluble and, in addition, 
almost "invisible". Hence, the scattering comes predominantly from the PS chains which 
are forming the fringe. It was found that the apparent association number fapp=79, and 
<S2>app1/'2=840 A. The fapp should be close to the true f, since the compositional 
heterogeneity in a copolymer sample should, if any, be smoothed out to a large extent 
in a multimolecular micelle. The PM has a small but finite visibility (vpM/vps=0.07). 
The theoretical curve in Fig. 7 includes this effect in a suitable manner.24> As the 
figure shows, the agreement between the theory and the experiment is excellent. For the 
sake of comparison, we have shown the theoretical curve for the uniform-density model.12> 
This model consists of a uniform-density B core of radius a surrounded by a uniform— 
density A shell of thickness d-a. The ratio of a to d determines the shape of the P function 
of this model. The broken curve in the figure shows the case of a=0. The agreement 
with the experiment is poor. If we assume a nonzero a, it becomes worse. The uniform— 
density model is unable to explain the experiment, whatever parameter we may choose. 

   Now, with the value of Ro=0.42 obtained above, we have P<S2>A,1=1.47 from Fig. 
6. From the known value of <S2>app and the independently determined value of 
<S2>A,freel/2=236 A, we have p-1/2=764 A, and the am given by Eq. (22) is estimated 
to be 1.62. This shows that the PS chains are significantly extended in the radial direction. 

   As pointed out above, it is not possible to estimate the "true" values of ro and s from 
this analysis alone. Together with the results for the fringe-component-invisible systems,12> 
one would gain an answer to this question. Nevertheless, certain valuable information 
can be derived from the above analysis: The assumption of S=0 leads to the estimation 
that ro=P-1'2Ro=321 A from which the average density of the PM core is estimated to be 
1.08 g/ml. This value is very close to the bulk density, and appears too high for the 
micelle density in solution. The PM core should be necessarily swollen to a certain extent. 
We expect that the true value of SIRo would be significantly larger than zero. If we 
assume that 0>S/Ro>0.4, for example, the possible range of Ro becomes 0.42>Ro>0.63, 
giving the PM chains more room. Complete results on the PS-PM and PM-PS-PM/TOL— 
pCY systems will be given elsewhere.25> 
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