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   The purpose of this note is to present the formal derivation of a generalized form 
of Fujita's equation') for sedimentation equilibrium on nonideal polydisperse system. 
His equation is given for the weight-average molecular weight. Yet potentially sedi-
mentation equilibrium can afford to inform us of many other average molecular 
weights as well. As far as the higher average molecular weights are concerned, 
application of the method has been practically limited to the pseudoideal system, 
where the solute-solute interactions apparently vanish. For such systems, there have 
been published two methods: one is the classical Lansing-Kraemer method,2) and 
the other the variable 2 method first proposed by Fujita3) and later extended by 
Scholte.4) Although the latter has been proved very useful and reliable, it often 
becomes infeasible to meet the necessary condition that the system of interest is to be 
in the pseudoideal state. Therefore, it is highly desirable to develop a new method 
valid for nonideal systems. An approach relevant to this aim is to extend and gen-
eralize Fujita's equation. With such a generalization, we wish to embellish his 
original work. 

   We consider a system similar to the one Fujita treated,') i.e., an incompressible 
solution containing a single solvent (component 0) and polymeric solutes of q species 
(components 1, 2,...,. q) differing in molecular weight M but with negligible difference 
in partial specific volume ii. Then, the basic equation for sedimentation equilibrium 
reads") 

2Mici= dci/de+Mici E Bik(dck/cl$)+v E ck(dci/de)+0(cickcm) 
k=1k=1 

(i = 1, 2,.. q)(1) 

where c{ denotes the local equilibrium concentration of solute i in g/ml, Btk stands 
for the thermodynamic interaction coefficient between solutes i and k, and ,? and e 
are, respectively, the generalized speed parameter and the reduced radial distance: 

A=(1—vho)(b2—a2)o 2/2RT(2) 
= (r2 _a2)/02 2 _a2)(3) 

Here, a, b, and r are, respectively, the radial distances to the meniscus, to the bottom 
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and to a given position of the solution column, Po the solvent density at equilibrium 

temperature, cu the angular velocity, and R T has got the usual significance. For 
later convenience, we introduce here further symbols : c° = Ect and c= Ec, desig-

nate, respectively, the original and the local equilibrium concentrations, gi=cd/c° 

represents the weight fraction of solute i in the sample, O =c,/q stands for the rela-

tive equilibrium distribution of solute i, d in dX is the operator to take difference in 

quantity X between the positions a and b. 
   Now equation 1 can be rewritten in new symbols as 

AMieigi=(d01/ de) gi+c°Mieigi E Bik(dek/ de) gk 
+c° iEek(dei/dE)gigk+O[(c°)2](4) 

This differential equation suggests that the solution 0, may be expressed in a poly-
nomial of c°.1) 

ei(e)=010(e)+c°0i1(e)+0[(c°)Z](5) 

where the 0 5 (e)'s are unknown functions of E with the restrictions as 

5'010(e)de=l J(i=1, 2,..., q; j?1) (6a, b) 00 

Combining Eq. 4 with Eq. 5, we obtain a set of differential equations: 

deio/de= 2M1010(7a) 
de =AMi011—E{MiBikeik(deko/dc)+veko(deio/de)}gk (7b) 

The first two solutions of 0,,i (g)'s are as follows: 

eio = exp (A Mis)/[exp (A M1) —1](8a) 

                 _r1             On=—O oEMi(Bik+v/Mk)eio0kode—eko}gk(8b) 
withfeeds_ AMiMk[exp A (Mi+ Mk) —1](9)           Jo:oko(Mi+Mk) [exp (AMi)-1][exp (AM k)-1] 
With these solutions, the following relations may be readily obtained: 

4(000k0)=A(Mi+Mk)1 lei0ekode+0(c°)(l0a) 
40i -= Mi+ Ac°  EMi[Mi—(M1+Mk)](Bik+0/Mk)

o0100kodEgk+O[(c°)2] 
(10b) 

   Now we differentiate (s-1) times each term of Eq. 4 with respect to e, operate 
d to them, and take summation over i to get 

As+1 EMs+1s+10E[s+1 _()s](/) J0       igi+~CMiMiMiMi+MkBik+vMk0JOkodegigkik 
                                        (1  = Ads C/ de s)/c° + 21c° EEMiMk(Mi + Mk)s (Bik +v/Mk)J0ioeko d$ gi gk 

                + higher terms in c°(11) 

Following the Lansing-Kraemer expressions2) for average molecular weights and their 
apparent ones, 
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 MwMz...Mz+s-1=  Eigrigi(12b) 

(114WMz...Mz+s-1)°PP=4(dsc/des)/(2s+lc°)(12a) 

we may reduce the above equation into the form below : 

(MWMz...Mz+s-1)°PP= MwMz...Mz+s-1 +C°Li Li Mi[Mi+1 _ (Mi+Mk)s+ii 
ik 

x (Bik+v/Mk)
Jo0io0kod$gigk+ higher terms in c°(13a) 

or after reciprocating and re-expanding in the form of 

1/(MM... Mz+s-1)°PP=1/MMMz... Mz+s-1 + c°(MMMz... Mz+s-1)-2 

X EEMi[(Mi+Mk)s+1_ME+11(Bik+0310oeioekodEgigk 
     + higher terms in c°(13b) 

This is the generalized equation we aimed to derive, and Fujita's equation is seen to 
be a special case of Eq. 13b. With s=0, the equation can be written as 

                       r     1/(M)°P=1/Mw+c°(Mw)-2EL~MiMk(Bik+v/Mk)So0io0kodegigk 
        + higher terms in c°(14) 

where(Mw)°PP= 4c/(2c°)(15) 

The form of Eq. 13b suggests that the higher average molecular weights are formally 
obtained by successive extrapolations. As is well-known, the number-average mole-
cular weight is also determined by sedimentation equilibrium, but equation 13b doesn't 
include this case. It is because an additional experimental condition must be satisfied 
for this purpose. So we will discuss it in a separate paper. 

   On applying Eq. 13b to analyses of experimental results, one must pay close 

attention to the a-dependence of the function, 0io0ko d$. In regard to this prob-

                                                 0 lem, one may refer, for examples, to the papers.5) Experimentally only the curves 
of c(r) and dc(r)ldr are observable with the optical devices installed in an ultracentifuge, 
no derivatives higher than the second being directly obtained. However, advances 
in computer techniques is promising to enable us to synthesize the curve of c(r) or 
dc(r)/dr from experimental results and to evaluate its derivatives successively with 
accuracy.5) 
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