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     For reactions leading to three particles in the final state, five independent variables are 
 assigned to the polar and azimuthal angles of two particles and the kinetic energy of one of them. 

 Formulas are given for calculations of other variables from these five. Formulas are also given 
 for transformations of polar and azimuthal angles from the laboratory system to the rest frames 

 of two-particle systems. A FORTRAN programme using these formulas is included in an 
 appendix. 
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                         I. INTRODUCTION 

   For three-particle reactions of the form a+b-1+2+3, five independent variables 
are required to define the final state completely. In experiments of two-particle corre-
lation measurements, two detectors are set at angles (Or, ¢1) and (Os, ¢2) respectively 
and kinetic- energies T5 and T2 of particles 1 and 2 are measured in coincidence. There-
fore, quantities T5, 01, ¢1, 8s, and O2 are taken as five independent variables and 
differential cross sections d56/dT1dQ1df22 are measured as functions of these variables. 
Kinetic energy T5, an extra variable, can be used to identify true events of the reaction. 

   Coincident energy spectra are characterized by relative kinetic energies between two 
final-state particles. These energies are calculated from the five independent variables. 
For the purpose of doing it, nonrelativistic formulas are summarized in Ref. 1. Since 
two-particle correlation experiments are performed frequently at intermediate incident 
energies, relativistic calculations are done in this report. Moreover the following matters 
are examined. First, quasi-free scattering proceeds in two ways. One is that the target 
b consists of two particles and one of them collides with the projectile a with leaving 
the rest particle as a spectator. The other is that the projectile a consists of two parti-
cles and one of them collides with the target b. In the former, quasi-free scattering 
occurs near the energy corresponding to the spectator kinetic energy of zero in the 
target system and in the latter, of zero in the beam system. These two processes of 
quasi-free scattering are expected to occur especially when particles a and b are iden-
tica1.2' Then, kinetic energies Ti of particles i are calculated in both the target and 
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       beam systems. Secondly, in angular-correlation experiments, differential cross sections 
d5oldTidQidSl2 are measured as functions of angles (02, 02) of particle 2 if one assigns 

      particle 1 to the particle emitted from the production process of the (23) system and 
       particle 2 to the succeeding decaying one. Angular correlation functions are obtained 

       through the transformation of differential cross sections to the ones in the rest frame. 
       of (23) system. Several times, according to physical or experimental requirements, 

      detector 2 is placed off the reaction plane which is defined by the direction of detector 
       1 and that of incident beam. Then transformation equations for the azimuthal angle 

       952 as well as for the polar angle 02 are required. 

                         II. CALCULATION FORMULAS 

       1. Reference Systems 

           Four types of reference system') are used to describe kinetic motions of particles, 
       that is, laboratory system (LS), overall center-of-momentum system (CMS), beam system 

       (BS) and rest frames of two-particle system (R12, R23, and R31). Target b is assumed 
      to rest in the LS and therefore the target system is identical with the LS. The CMS 

      quantities are denoted by an asterisk and the Rij quantities by an index Rij. An index 
       L for the LS quantities is omitted for simplicity. 

          The z-axis of the LS is defined as the momentum of projectile and the z-axis in 
       the CMS is defined as the direction parallel to the LS one. The zx-plane (¢=0) can 

      be defined arbitrary. 

      2. Kinetic Energies 

          Quantities to describe the motion of particle i are as follows: the total energy Ei, 
       the momentum Pi, the rest mass mi, the kinetic energy Ti, and the velocity vi. The 

       momentum vector is expressed in terms of its absolute value Pi, the polar angle Bi, and 
       the azimuthal angle 9i in the polar coordinate system. Among these quantities exist the 
      following relations: 

Ei2= Piz + mi2,( 1) 
Ei=Ti+mi,(2) 
Pi2=Ti2+2miTi,(3 ) 

vi= Pi/Ei.(4 ) 

          The similar relations hold for a two-particle system consisting of particles i and j 
       with definition of its energy E13, momentum Pi; and invariant mass Mi; as 

Ei;=Ei+E;,(5) 

(6 ) 
M?i;= (Ei+Ei) 2— (Pi +P;) 2(7 ) 

           For the total system its energy Eo, momentum Po and invariant mass Mo are calcu-
      lated from the quantities of the initial state with assigning the particle a to the projectile 

       and the particle b to the target. They are written as 

EoEa+Eb=Ta+ ma+ mb,(8 ) 
Po=Pa+Pb=Pa,(9) . 
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 Po=Pa---  (Ta2+2maTa)1'2,(10) 

MO2=E02—Po2= (ma+ mb) 2+2mbTa.(11) 

        If, for the particle 1, the kinetic energy T1 and the angles (Or, O) are known in 

    the LS, the (23) system consisting of particles 2 and 3 is uniquely determined owing to 

     the energy-momentum conservation equations 

Eo —E1=E2 +E3,(12) 

135—Pi =P2 ±P3.(13) 

     Then kinematics for two-particle reactions') can be applied to solve P2 as a function of 

     the angles (Os, 02) • The calculacions are performed as follows. First, in the R23, the 

     momentum and the energy of particle 2 are independent of the angles and are ex-

     pressed in terms of the invariant mass M23: 

P2R23=21/2 (M232, m22, m32)/ (2M23),(14) 

E2R23 = (M232+ m22— m32) / (2M23) ,(15) 

     where 

M232= (E2+E3) 2- (P2+P3) 2 
_. (Eo—El) 2— (P0—P1) 2 

=Mo2+ m12-2E0E1+2P0PlcosBl(16) 

    and the function 2(x, y, z) is defined as 

2(x, y, z) =x2+y2+z2-2xy-2yz-2zx.(17) 

     Secondly, the momentum of particle 2 in the LS is calculated from the momentum and 

     energy in the R23 through the Lorentz transformation between these systems. The 

     transformation is done along the z'-axis which is defined as P23 in, the LS. The veloc-

    ity v23 of the R23 in the LS and the associated Lorentz factor 123 are given by 

V23=P23/E23,(18) 

r23=E23/M23,(19) 

r23 V23 =P23/M23,(20) 
    where 

E23=E0—E1,(21) 
P23= IPo-P11 = (P32+P12-2PoPlcosO1) h/2.(22) 

     The angle 023 of (23) system with respect to the z-axis is given through the momentum 

     conservation, Eq. (13), as follows: 

sinO23 = P1sinO1/P23,(23) 

cos°23= (Po -P1cosO1) /P33.(24) 

     Now, the Lorentz transformation equation solved for P2 is written as 

E2R23= —r23v23P2coso'2+r23E2 
_ —r23v23P2cos0'2+r23 (P22+ m22)1 2.(25) 

     The angle 0'2 is measured with respect to the z'-axis and cos0'2 is expressed by. 

cos0'2 =- cos02cos023 — sin02cos (02 — 951) sin033, 
          = (PocosO2= P1cosO1_2) /P23,(26) 

     where 
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                     Fig. 1. Angle coordinate in the laboratory system. 

cosO,_2= cos°1cosO2+sin°lsinO2cos (02-01) •(27) 

The z'x'-plane (¢'=0) is defined as the plane including the z-axis (Fig. 1). Finally, 

the solution P2 is given by 

p2*=p2R23 (B±J)/A,(28) 

with 

      D= r232 (1 — g2) + g2 (r23/r2R23) 2cos20'2, (29) 

A=723 (1— U232cos2e'2) ,(30) 

B=g cos8'2,(31) 

g= v23/ U2R23'(32) 

where U2R23 is the velocity of particle 2 in the R23 and and r2R23 is the associated 

Lorentz factor and they are given by 

U2R23=p2R23/E2R23'- (33) 

r2R23=E2R23/ m2(34) 

   Concerning the existence of solutions P2±, one has two cases depending on the rela-

tive magnitudes of v23 and v2R23. (1) If 1>g, always D>0 as found from Eq. (29) and, 
however, D1j2> 1B and consequently P2-<0. The latter relation is found - from the 

equation 

B2—D= (g2-1) r232(1- v232cos20'2) .(35) 

Then, one has only the solution P2+. (2) If 1<g, the signs of D and cosO'2 should be 

examined. (i) If D>0 and cosO'2>0, one has two solutions P2t. (ii) If D>0 but cos B'2 

<0, one has no physical solution because p2± are always found to be negative as seen 

from Eqs. (31) and (35). (iii) If D<0, regardless of the sign of cosO'2, one has no 

solution. The energy E2 is given by 

E2= (P22+ m22) i/2(36) 

   For the particle 3, the energy E3 and momentum P3 are calculated from the quan-

tities for the particles 1 and 2 through the - energy and momentum conservation equa-

tions 

E3 =E0—E1—E2j(37) 
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 P3=Po-PI—P2.(38) 

From the latter equations, P3 is derived as follows. 

P3= (P02+P12+P22-2P5P1cos81-2P5P2cosO2+2P1P2cos81_2)1/2(39) 

   The kinetic energy Ti of particle i is given by 

Ti=Es— ms.(40) 

The kinetic energies of the relative motions between the particles j and k.and between 
the particle i and the (jk) system are given by 

Ti_k=Mik- mi— mk(41) 

and 
Ti—jk = Mo — ms — Mik(42) 

respectively. MA are obtained by cyclic permutations of indexes in Eq. (16). 
   Once the energy E1 is obtained in the LS, the energy Ell' in the BS can be calcu-

lated through the Lorentz transformation between these systems with ra=Ea/ ma and 

raVa= Pa/ ma and is given by 

EtB= (EaEi—PaPicos01) / ma.(43) 

3. Polar and Azimuthal Angles 

   In order to evaluate an azimuthal angle cb, both values of sincb and cos¢ are needed 
and on the contrary a polar angle 0 is uniquely evaluated from a value of cose. How-
ever, in practical calculations with a computer, it is frequently convenient to use both 
values sine and cos° for evaluating 0. In the following both formulas for sine and 
cos() are given. 

   The LS angles (03, 03) of particle 3 are calculated from the quantities for the 

particles 1 and 2 through the momentum conservation, Eq. (38), and are given by 

sine, = (P12sin201+ P22sin202 + 2P1P2sinO1sinO2cos (02 — (5i)) Ii2/P3,(44) 

cos03 = (Pa —Picos()i — P2cos02) /P3,(45) 
sinc3 = (— Pisin0 isincb i — P2sin02sin952) / (P3sin03) ,(46) 

coscb3 = (—PisineicosqSi —Pssin02cosch) / (P3sinO3) .(47) 

Practically the factor P3sin03 in Eqs. (46) and (47) is not needed because cb3 is evalu-
ated through the ratio tan53=sinc/53/cos¢3 associated with an examination of the sign of 
sin¢3 and coscb3 (sin03>0). For calculation of 03 through Eq. (45) only, the value of P3 

is given by Eq. (39). 

   The CMS angles (di*, lbs*) are calculated from the LS ones through the Lorentz 
transformation equations with 15—Eo/Mo and roco=Po/Mo which are evaluated with Eqs. 

(8), (10) and (11), and are given by 

sinBs* = Pisinei/Pi*,(48) 

cosei* = (EoPicosei — P0E1) / (M0P1*) ,(49) 

01*=01•(50) 

If one calculates 01* through Eq. (49) only, the value of P1* is needed and is given by 

P1*=di/2(Mzik, MG', mi2)/(2)l4 ).(51) 
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   In the Rjk, the z-axis is defined as the direction opposite to the momentum of 

particle i, that is, —PiRjk Then the polar angle 0 Rik equals to 7r—Oi_jR51' and is expressed 
in terms of the invariant mass Mij and the energies and momenta of particles i and j 
in the Rjk as follows: 

       cosOjR13=(m213_ mi2 — mi2 - 2EiRikEjRjk) / (2PitikPjejk) , (52) 
where 

EiRik=(Mo2—M3 2—m12)/(2Mjk),(53) 
P1Rik=a1/2(MO2, Mjk2 mi2) (2Mjk).. . (54) 

and EiRjk and PjRiK are obtained by cyclic permutations of indexes in Eqs. (14) and 

(15) . The Rjk azimuthal angle OP of particle j is calculated from the LS angles 
through three steps of transformations. The first is the Lorentz transformation between 
the LS and the CMS along the z-axis. The azimuthal angle is invariant, that is, 0;=0;*. 
The second is a rotation of coordinate system in the CMS which transform the z-axis to 
the z"-axis. The latter axis is defined as Pie= —Pi* and the rotation angle equals to 
the angle O a*=zc-Bi*. By using formulas of spherical trigonometry, 0j* is transformed 
to ¢;' through the following equations. 

sinO j 'sinO j" = sin°j*sin (g5;* — 951*)(55) 
sin8j"cos0j"=cosBi*sin8i*— slay cosBi* cos (0j*—Oi*).(56) 

The z"x"-plane (95"=0) is defined as the plane including the z-axis (Fig. 2). The last 
is a Lorentz transformation between the CMS and the Rjk along the z"-axis and the 
equations are as follows: 

P jRiksmB jRik = Pj*StnO j"(57) 

iRjk = Cbi'.(58). 

By substitution of Eqs. (48), (49), (50), (57) and (58) into Eqs. (55) and (56), the 
following equations are obtained: 

sinp;RA = PjsinOjsin — ci) / (Pjftiksin8 jRjk) ,(59) 

cospb ik=[(EoPjcosOi—PoEi) Pisin51— (EoPicos(/1—PoEi) PjsinOjcos(¢5 — cli) 

           x (MoPi*) -1 (PPiksine Rik) -1.(60) 

Concerning to the factor (PjRiksin0P), is noted the same fact as mentioned about Eqs. 

(46) and (47). 

(V. 

                       Jk 
                      6jk 

                Fig. 2. Angle coordinate in the center-of-momentum system. 
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4. Phase Space Factor 

    If the differential cross section is written in a form as follows11: 

d5t/dT1d,(21d,(22=(27c/ltva)pi(Ei) IMI2,(61) 

then the phase space factor p1(E1) is given by 

p1(E1) _ (2irt1)-6P1P2E5E2E31E2+E3—E2 (Po —P1) •P2/P221-1. (62) 

This equation corresponds to the following definition: 

pi (E1) d T2dQ1d,Q5 = (27rh) -6Sd3P1d3P2d3P3 
x63 (Po —P1—P2 —PO 3(Eo—E1—E2—E3)(63) 

with the integrations over the variables P3, 03, 03, and P2. This expression is a non-
invariant form and differs from a Lorentz-invariant one by inclusion of a factor of 

8E1E2E3. In the R23, the phase space factor is calculated in the form: 

pi(E1R25) = (27r17) 6111R23P2R23E1R23E2R23E2a23/M23(64) 

Then the Jacobian a(T1i Qj, Q2)/a(T1R23 Q1R23 Q2R22) for the transformationof the 

differential cross section d5e/dT1dS21dQ2 from the LS to the R23 is given by 

a(T1, Q1, S22)/a(T5R23 1R23 Q2R23) p1(E5R23)/pl(E1).(65) 

                         III. PROGRAMME 

    A FORTRAN programme is given in an appendix. The input quantities are the 
masses of five particles participating in the reaction: ma, mb, mt, m2, and m3 (in AMU), 

the kinetic energy of the projectile in the laboratory system: T. (in MeV) and the 

polar and azimuthal angles of the particles 1 and 2 in the laboratory system: 81, 951, 02, 
and 1b2 (in degrees). In calculations the kinetic energies of particle 1: Ti (in MeV) 

are given successively by a starting value plus a increment value multiplied by integers. 

These values are also given in the input data. In the programme is put a restriction 

that a given value of Ti should satisfy a limit M23—m2—m3>0, before the examinations 

mentioned in the preceding section. The output quantities are represented in a matrix 

form as used in Ref. 1. 
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                                               APPENDIX 

      SOURCE LIST X.A.R.D.VR.DVR.kT23 K,1000.THRCM.PHHCM.APCTAN.RAMDA.X. 0.2 
               C THREE FURY RELATIVISTIC KINEMATICSX,RH1.FM1RCM,FACT.EEACT1.EFACT2 

C 8.0 I. CO. RNS. 0N8 
             C P=PROJECTILE0008RAM0A(X.Y.Z)=X++2+Y++2+7++2-2.0+X+Y-2.0+Y+Z-7.0+Z.X 

      C T=TARGET0009AUMV=931.504 
C 1=0FTECTFO AT (TH1L.PH1L)0010ARG=-1.0 

           C '=DFTECTED AT (1H2L.PH2L)0011PAI=DARCOS(ARG) 
C 3=0MDLTFCTED0012YMP=XMP+AUM•" • 

    C0013- YMT=XMT+AUMV 
      C L =LAB. 0014VM1=501+AUM0 

         C C =LM OF TOTAL SYSTEM0015YM2=XM2+AUMV ' 
         C RIJ=CM OF (IJ)SYSTEM0016YM3=XM3+AUMV 

C H =HEAM0017ZP=YMP++2 
C0018ZT=YMT++2 
C. XV =HEST MASS (AMU)0019Z1=YM1++2W 

          C I =KINETIC ENERGY (MEV)002022=YM2++2 
         C TH =POLAR ANGLE (DEG.)002103=YM3++2 

        C PH =ALIHUTHAL ANGLE (DEG.)0022TH1=THIL+PAI/180.09 
          C TI-J=RELATIVE ENERGY OF PARTICLES 1-J0023 1H2=TH2L+PA1/180.0x 

C 1H01=PHASE SPACEMO0024PH1=PH1L+PAI/180.0- 
            C 0002=PHASE SPACE (T1L.T2L)0025PH2=PH2L+PAI/180.0 

C GH73=JACU0I AN FOR TRANSFORMATION L-R23 0026FO=YMP+YMT+TPLM 
     C0027PO=DS4HT(TPL++2+2.0+YMP+TPL)^V 

0001COkm05/DINIIXOP.XMI,001.XM2.XM3.TPL,TH1L.TH21.PHIL.PH2L0020S0=E0++2-P0++2 
     0002CUMMON/DIN2/START.STEP0029RS0=DSNRT(50) 
    00030300LE PRECISION XMP.XMT.XMI.002,0030030EP=YMP+TPL1,1i 
0004- READ(5.1000) SOP02:11RAO=YMP+YMT-Y01-Y02=003... 

  0005REt0(5.1000) DOT0032ICODE=II4. 
  0006READ(5.1010) TEL0033LCODE=O-Z 
   0007READ(5.10201 STAPT.STEP0034LMIN=19 
   000010 READ(5.1000) 00101135LMAX=";UO0 

^0009READ(5.1000) 0E120036DO 505 L=1.3009 0010READ(5.1000) 5030037XL=L-1 
CD  0011IF(XM1.E0.0.0) GO TO 9000038T1=START+STEP+XLy CD

001220 READ(5.1020) THIL.PH1LCO39 - F1=01=0M1 
v0013IF(THIL.FG.360.0) GO TO 10.004010 PO=DSAkT(T1++2+2.0+VMI+T1)-o 

00)430 00AD(3.1020) 1H2L.PH2L00+1S23=0007.1-2.0+E0+E1+2.0+PO4PI+DCOS(TH1).=1 
0(115IF(TH2L.EG.360.0) GO TO 2U0042RT23=USOST(S23)-YM2-YM3Tn 
0016CALL KINFNA0043IF(PT23) 60.15.159 

   0017CA71 PRINT00+415 CONTINUE 
  0018GO TO 3110045E23=E::-E19 

      0019900 COMTINUE0046P23=DSNRT(PP+=2+P1++2-2.0+P0+p1+DCO5(TH1)) 
  0020500000+7023=P23/F23N 

00711000 FO4*'AT(014.Pi0048523=023/05007(523)-C3 
      00221210 106+41100.2)0049P1023=00501(40055(50.523.71)1/(2.0+3180T(523))G• 
       00231020 FO4mA1(2F7.2)CO50P2k23=DSSIIY(RAMDA(523,12.23)1/(2.0+D50PT(523)) 
     0024END0551F1R23=(SO-523-Z1)/(2.000SNRT(S23)) 

0052E2R73=(523+22-/3)/(2.0+55057(52331 
0)53E3R23=(S23+Z3-121/(2.0+DS6RT(S23))9FH 
                                                                                                                                                               005402R23=P2R23/E2823 
005582823=E2023/0029Z 
   0001SUPROUTINE DINENA0056VR=V23/V2k23 

            0002COMMON/IIN1/XM.P.xml.XM1.k02.x43.TPL.1111L.TH2L.PH1L.PM2L0057COTH12=000S(TH1)+DCOS(TH2)+DSIN(TH1)+DSIN(TH2)=DCOS:PH2-PH11 19 
       0003CONMON/0IN2/START,STFP0058COTH2P=(P0=DCOS(T112)-P1+COTH12)/023 

0004COMMON/DOU11/T1L(300.2).T2L(310.2).13L.(300.2)C'590=(G73++2)+(1.0-VE'++2)+(VR++2)+(CUTY2P++2)+(+23/02Y23)++2 
X.T23(300).T31(300,2).T12(300.2).TH3L(300.2).PH3l(300,2)0090 A=G23+(1.O-(V23s+2)+(COTH2P++2)) 
X.TF:1C(300).TH2C(300,7).TH3C(300.7).RH01(300.2).PHO2(300.2)00610=VR+COTH2P, 
X.TE,2R23000.7).TG3R31(305.2).T01012(300.2) -0062DVk=1.0-Vk 
X,PE,2R23(300.2)•PH3R31(300.2).P01k12(3U0.2)0063- IF(DV0) 25.+7.40 
0.0RCM(305.7)006425 IF(COTEI2P) 60.30.30 
X.T18(300).T2P(300:2),T301300.2)006540 LOWCD=O 

0015CCIMNON/O1012/01.0.10005.SSO0066,TIL(L..1)=T1 
        0006COMMON/L^OIC(' il' IE.I` 40.1 CODE.L000F0067T1L(L.2)=0.0 

             0007DOI18LE EkFCI4Io5. xN:P.YMT.XM1.XM2.XM3,YMP.YMT.YM1,YM2,YM3.71.Z2.Z3 0068 -G0 TO 90, 
8.00.01006930 IF(D) 60.52,30  
0.A0MV.4R6.PAI0070 .. 50 LONCD-1 
0.101.007.113.001.01120P13.5,0 CM.T112CM. TH3CM0071LCODE=1 
X,E0•F'U.S0.4S1i:R0V0072T1L(L.1)=T1  
k•P1.E'2.P1.E11.L2.F3•E23,P23•V23.023,COTH12.00TH2P0073T10..2)=T1 
0.01023.F'2023.03023, P1023•02023.00073.62823 - 
X.023.$31.512.7(1.0/2.143



 0074G0 TO 90 
     007560 CONTINUE0001•FUNCTION ECSO(Y •X) 

        0076•F7(ICODF.E2.0) GU TO 50000003DRLE PRECISION ARCTAN.X.Y.PP( 
     0077LMAX=1.-1001.OU080=-E PRECISION AHCi 

0076GU TO 600=-1 .0                                                0005AHG 
 0079IF               90 IF(10308.F0.1) GO TO 800006(=OA 300.30 0007IF(X) 30

3,3031..33                                                                                                                                              03            0080LmIN=L-..OOC7300 1F (v) iO3•303.303 
         0081ICOOF=1 0009303 ARC TAN 39ATAN(Y/%)+P41 

008280 K=1                                                            0009GO TO 3 
0003P2=P2F

('013w (P,+DS66T(D))/A301100-01 .F(Y) 300•307.30B          0084GO TO 10 
058595 K=7•0010011.730607-TPN=3.OwoAl/2.0 008bP7=0 lh21*(h-i)c,~!.T (01))/A00)3307HJ•10 390 
0097100 CONTINUE0013C TAN=9999*PA1/160.00 0000E2=09491 (P 2**7.[2)0015005GO108B Ah C TOF~0T(? 390 0089P3=DSW'RTIP(.42+61r*7*v2+*2=2.0*M0*P1*DC0S(TH1)3(/2.G340                       X-2.0*4040/ 010011'l.)*1.0*P1*P2*C01H12)0016GOTO         009003=75151(P3wa2.23).,017302,•(vV)130909.310.310             0091S31=S0+22-i. i*: l412.7.0*F'O.P2*OCOS<iH2)0018309'10TO)TA(=OATr.';(Y7)1*2.0*PAI         0092812=27*22*7.0*F1*E2-2.0*P1*62*600912002944J=04       0093T2L(1..K)=E2-Y`+23021790(36TIT4V (Y/X) 
0044T3L (I .8)=L3-730021190:ir.T`.UF                                                                                                              0022 
0095T23(L) =0SO41-(623)-y,2-Y53-Y53RETIIRN 

    0096031(L,6).PS90TIC'a1I-Y8,3-VM1CU70ENDH .T 
0097T17(L•K)=DS.

1*L"0-YM2(2 0096TA1=ZP*71-2.(I*L64F1*2.(I(1*PO*214000S(TN1)• 
    7099TA7=2O*77-2.0*tO*F2.2.0*PU*P2*OCOS(T82),fD 

     01                                                                                                                                             118(0PRECISION 0100TA3=/1*22*[T*2.0*(11'E7-VMT*(E1*E2)-P1*P2*CDTH12) 
  ((..-           0101010(L) =VNF-YH1)**2-TA1)/(2.0*YMP)0002DOUNLEP

REFUNCTIONPRECISION PNCTAN.+                                                                                                                                             10ISCINTHON!.T91•50.E0F.O.P0.E1.F]•6N$.BNB.THCM 4                                                         l         0102T2P(L•K)=((v++F-"n2)w*7-TA7)/(2.OwYMP)00020C003
011)3139)1.0)=((YHP-Y"3)*62-T43)/(2 .0*0MP)0004NLE 
C104SI=DSN6T(P1**2*(DSiN(TH1))**7*P2**2+(DSIN(TH2a*2                                            00048NS=nU*0039(180)-PO.11)h                                                                              )) 

                  %*2.0*P1*P2*0SIN(TH1)*OSIN(TH2)*DCOS(PH2-PH1))0006-NP=FU8)(F1/P7)(p 
         0105C0=20-01*DCOS(Tn11-P2*DCUS(T112)0017•061^+=Ak0OSTAN (HNS.00                                                                                                                   Pd                                                                                                                                                      (TH.^AE) 

     0106TH3=48CTAN(SI.(0)0008PETI)R n. 
(D0007Tr3l (r.•*)=TH 3w1n(1.f+/PPIOEND(D f'010851=-P1*C'-SIN(1H1)*CS)N(PH1)-P2a351N(TH2).DS1(9M2)M 
v0109CO= Pi*USIN(Tul)+0005(PH1)-P7*USIN(TH2)*0005(PH7)' CI 0110R(13*4601411I11.00) 

       0111P1131(L.K)=P63.190.0/PPI0001FUNCTION TsRCM(S0.S12.523.11.22.23)M ' 0112` .H1CM=IHCM(TH1.S0.EO.PO,F1,P1)0002COUPLE PRECISION THPCM.S0.512.573.21.Z2.23.PANDA.U.V•w~• 
011.311120,6=19661(9112.`0.00•00,02.02)5,81•02.050.950.X,74)PI 
0114T83C*=THCm(IH3•SO.EO•PU•E3.63)00030006LE PRECISION 48G 
01151010 (L) =TH1CM*180.0 /PP1"J 

          0116TN7C(L.K)=Tr.2C0*180.0/PAI0004RAMDA(U.V.4)=U+*2+V+*2.4442•.2.UwubV-2.0*V*w-2.044bU n                                                                    0005AHC,=-1.0 
0117T113C(L.8)=1H3C4l_b0.0/PA10006PAI=UARCUS(ARG) 
0116T112623(7.72.71'6(M(S0.512.573.11.72.23)000791=114,604(50.523.71)M 
01)9100431(1.,)=Tr.90M(S0.S23.S31.22.23.Zi)000872=RA*)4(523.17.13) 
           0120T9_R12(L.F)=THPOw(S0.S31.S12.23•Z1,72)00098NS=(SU-S23-/1)*(923*Z2-73)*2.0*523*(Z1*72-512)60 
         012147u(T'H 1M..i'H1.PH                                         HP73(L.n)=1',1HCCTH2CM7)                                                                                                              0010 . BNP=DSGE

191)*USOPT(R2) •           0122-+3R31(1.r)=PHR.'.M(TH2CM.THiCM.PH2.PH.3)0011%=-PNSi6Ne 
01235011117(1.7)=PI.H(M(1440CM•TH1(M.PH3,PH/)0012THRCV=OAFCOS(X)4160.0/FAI 

    012494(1=7..000131161050 
    0125F74CT1=F1*F2+F3-0014END 
012691.S'=P1*02*EF4( T1 

     0127HNH=0AHUIFU-E1-F7*P73+CDTH2P/P2).FACT... 
0126RH1=IN'S/8Nh. 
01294N101(L.7)=R`11 0001FUNCT I~n = C6'(iHIC*'.TH7Cm.PHl•PH2) 

0130EFACT2=F1623=F2R231F3R730002DCUPLE 1611)91UN G86CN:TH1C*.TH2CM.PH 1•PM2•FH12.51•CO.PAI•ARG 
0137HN$=P1 k73+H2R:3+F.F ACT7%.AFCTAN 
0132PN8=OSNIT($23)*7461-0003AH6=-1.0 
        0133,I1109 hnS/F:NH0004F4I=!IAV Cr'.c Il.401 • 
0134G*C*IL.0)=1H1009/hll10005PH12=PH7-PH1 
0135(7(1.04(0.64.0) GO 10 500000651=DSIn(TH7CM)*0S)N(CH12) 
0136T6!1.014.2) GO TO 5000007' CO=OCOS(TH2Cn)*DSIN(TH1CM)-DCO5(THOCM)*DSIN(TH2CM).DCDSCPH12) 
0137GO TO 950008PHRCM=ARCTAN(51.CO> 
113h000 0391)9UE0009FHRCM=PHRCM*180.0/FAI 
0139505 CONTINUE00100071195 

   0140600 0011(490011END 
       0141(NO


