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Three-Particle Relativistié Kinematics
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For reactions leading to three particles in the final state, five independent variables are
assigned to the polar and azimuthal angles of two particles and the kinetic energy of one of them,
Formulas are given for calculations of other variables from these five. Formulas are -also given
for transformations of polar and azimuthal angles from the laboratory system to the rest frames
of two-particle systems. - A FORTRAN programme using these formulas is included in an
appendix. o : : ’
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1. INTRODUCTION

For three-particle reactions of the form a-+b—1+2+3, five independent variables
are required to define the final state completely. In experiments of two-particle corre-
lation measurements, two detectors are set at angles (0, ¢;) and (d;, ¢;) respectively
and kinetic-energies Ty and T, of particles 1 and 2 are measured in coincidence. There-
fore, quantities T, 6;, ¢;, 8, and ¢, are taken as five independent variables and
differential cross sections d%¢/dT,d2,d¥2, are measured as functions of these variables.
Kinetic energy T, an extra variable, can be used to identify true events of the reaction.

Coincident energy spectra are characterized by relative kinetic energies between two
final-state particles. These energies are calculated from the five independent variables.
For the purpose of doing it, nonrelativistic formulas are summarized in Ref. 1. Since
two-particle correlation experiments are performed frequently at intermediate incident
energies, relativistic calculations are done in this report. Moreover the following matters
are’ examined. First, quasi-free scattering proceeds in two ways. One is that the target
b consists of two particles and one of them collides with the projectile a with leaving
the rest particle as a spectator. The other is that the projectile a consists of two parti-
cles and one of them collides with the target b. In the former, quasi-free scattering
occurs near the energy corresponding to the spectator kinetic energy of zero in the
target system and in the latter, of zero in the beam system. These two processes of
quasi-free scattering are expected to occur especially when particles a and b are iden-
tical? Then, kinetic energies T; of particles i are calculated in both the target and
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beam systems. Secondly, in angular-correlation experiments, differential. cross sections
d*0/dTd2,dQ, are measured as functions of angles (#,, ¢;) of particle 2 if “one assigns
particle 1 to the particle emitted from the production process of the (23) system and
particle 2 to the succeeding decaying one. Angular correlation functions are obtained
~ through the transformation of differential cross sections to the ones in the rest frame
of (23) system. Several tlmes according to physical or experimental requirements,
detector 2 is placed off the Feaction plane which is defined by the direction of detector
1 and that of incident beam. Then transformation equations for the azimuthal angle
¢2 as well as for the polar angle #, are required.

II. CALCULATION FORMULAS

1. Reference Systems

Four types of reference system® are used to describe kinetic. motions of particles,
that is, laboratory system (LS), overall center-of-momentum system (CMS), beam system
(BS) and rest frames of two-particle system (R12, R23,and R31). Target b is assumed
to rest in the LS and therefore the target system is identical with the LS. The CMS
quantities are denoted by an asterisk and the Rij quantities by an index Rij. An index
L for the LS quantities is omitted for 51mp11c1ty

The z-axis of the LS is defined as the momentum of projectile and the z-axis in
the CMS is defined as the direction parallel to the LS one. The zx-plane (¢=0) can
be defined arbitrary.

2. Kinpetic Energies

Quantities to describe the motion of particle i are as follows: the total energy Ej,
the momentum Pj, the rest mass mu, the kinetic energy T3, and the velocity vi. The
momentum vector is expressed in terms of its absolute value Py, the polar angle 81, and
the azimuthal angle ¢; in the polar coordinate system Among these quantltles exist the
followmg relations:

E?2=Pi*+ m?, (D)

Ei=Ti+ m, : v : . ; ‘(2)
PiZZTxZ-I-QMiTi, ) ‘ ‘ (3) .
vi=Pi/ £y : _ C(4)

The similar relations hold for a - two-particle system consisting of particles 1 and j
with definition of its energy Ej;, momentum Pj; and invariant mass Mj; as

Ejj:’Ej—i-Ej, ’ ‘ ' ’ . ( 5)
P13=P1—I—P], ‘ . (6)
M= (Ey 4+ Ep2— (P Py 2. ‘ (7

For the total system its energy E;, momentum P; and invariant mass M, are calcu-
lated from the quantities of the initial state with assigning the particle a to the projectile
and the particle b to the target. They are written as '

Eo:Ea+Eb:Ta+ Mg+ My, : : ‘ (8)
Py=Ps+Pp=P,, » (9) -
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Py=Po= (T +2maTa) 2, (10)
M2=E2—P?= (ma+ mv) *-+2mpTa. - . (11
If, for the particle 1, the kinetic energy T and the angles (#;, ¢;) are known in
the LS, the (23) system consisting of particles 2 and 3 is uniquely determined owing to
the energy-momentum conservation equations
E\—E,=E,+E,, B - (12
Po—Pl:PZ—f—Pg. (13)

Then kinematics for two-particle reactions” can be applied to solve P; as a function of
the angles (6, ¢,). The calculacions are performed as follows. First, in the R23, the
momentum and the energy of particle 2 are independent of the angles and are ex-
pressed in terms of the invariant mass My,:

PR =22 (Mye?, ma?, mg®) /(2My,), (14)

B = (My"+ mzz_— ms?) / (2M33), . ‘ (15

where , : .
v ' M232=(E2+E3)2—(P2—|—P3)2
=(E,—E)*— (P, —Py?

=M?+ my®—~2E E+2P,Pcost; o T e (16)

and the function 1(x, », 2) is defined as
Wx, 9, D=2+ +22—2xy—2yz—2zx. N a7n

Secondly, the momentum of particle 2 in the LS is calculated from the momentum and
energy in the R23 through the Lorentz transformation between these systems. The
transformation is done along the z’-axis which is defined as Py, in the LS. The veloc-
1ty vm of the R23 in the LS and the associated Lorentz factor r;; are glven by

Vas =Psy/ Es, (18)
‘723 =Hps/ Ms, . (19)
723023 = P23/ Mzs, ‘ (20)
where ' ‘
En=E,—E,, : @n
Pyy=Py—Py| = (P + P2 —2P Picosfy) /% . ' (22).

The angle 6,5 of (23) system with respect to the z-axis is g1ven through the momentum
conservation, Eq. (13), as follows:

' Slnaz;;:PlSlnﬁl/Pu, ‘ (23)
€088y3= (Py— P,cos8,) / Py;. ' (24

Now, the Lorentz transformation equation solved for P, is written as

Ey8% = — 3053 P3c080" 3+ 723E,
= —1aaU2aP2C080" 3 725 (P24 my?) 172, ‘ (25

The angle §’; is measured with respect to the z’-axis and cosf’; is expressed by.

€08’ ;= c0s0,C050,3 — SNl ,cos (G, — P1) sindy,, .
= (Pycosfy— Picosf . p) / Psa, (26)
where '
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Fig. 1. Angle coordinate in the laboratory system.

cosf 1. == cosfl;cosf,-+sinf sindzcos (g — 1) . 27

The z’s’-plane ($’=0) is defined as the plane including the z-axis (Fig.‘ D). Fiﬁa,lly;
the solution P, is given by ‘

. Pr=P,;* (B+VD)/ 4, v _ O
with :

D=y (1—g" + g8 (ras/125%%) 2cos?0’s, (29)

A=143(1— vy5%cos?0";), k (30

B=g cosf’,, (31)

8= 33/ 0,55, (32)

where 1,82 is the velocity of particle 2 in the R23 and and p,f% is the. associat,éd
Lorentz factor and they are given by
Z)ZRZS — PZRZS/EZBZS, . . (33)
7,.ZRZ:‘l :EZR23/ Ma. ’ K (34_)
Concerning the existence of solutions P,*, one has two cases depending on the rela-
tive magnitudes of vy; and »,%%%. (1) If 1>g, always D>0 as found from. Eq. (29) and,
however, D'/?>|B| and consequently P,"<{0. The latter relation is found-from the
equation
BZ—D: (gz—l)]’232(1“1)23200820,2) . ' o (35)
Then, one has only the sotution P,*. (2) If 1<g, the signs of D and cos¢’; should be
examined. (i) If D=0 and cosf’;=0, one has two solutions P,*. (i) If D=0 but cos.§’,
<0, one has no physical solution because P,* are always found to be negative ‘as seen
from Egs. (31) and (85). (id If D<0, regardless of the sign of cosf’s, one has no
solution. The energy E; is given by A
Ey= (P mH) 72 ' (36)
For the particle 3, the energy E; and momentum P; are calculated from the quan-
tities for the particles 1 and 2 through the energy and momentum conservation equa-
tions | : :

Ey,=E,—E,—E,, (37
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P,=P,—P,—P,. v (38)
From the latter equations, P; is derived as follows. v '

Py= (P + P24 Pyt — 9P, Picosf, — 2Py Pycosty + 2P, Pycos, ) 2. (39

The kinetic energy Ti of particle i is given by _

Ti=Ei— mi. 40
The kinetic energies of the relative motions between the particles j and k.and between
the particle i and the (jk) system are given by
Tie= M — my— mx - (41)
and ' ’ :

Tige=My— mi— Mie v (42)

respectively. Mix are obtained by cyclic permutations of indexes in Eq. (16).

Once the energy Ei is obtained in the LS, the energy E® in the BS can be calcu-
lated thrdugh the Lorentz transformation between these systems with 7a=Fa./ma and
f;b;"z'Pa/ ma and’is given by - ’ ‘

EB= (EE;— PyPicos:) / ma. v g (43)

3. Polar and Azimuthal Angles

kI‘n order to evaluate an azimuthal angle ¢, both values of sing and cosp are needed
and on the contrary a polar angle ¢ is uniqﬁely evaluated from a value of cosf. How-
ever,.in practical calculations with a computer, it is frequently convenient to use both
values sinf and cosé for evaluating 4. In the following‘ both formulas for sind and
cosf) are -given. ‘

The LS angles (8;, ¢;) of particle 3 are calculated from the quantities for the
particles 1 and 2 through the momentum conservation, Eq. (38), and are given by .

sind; = (Py?sin%f, - Py2sin?0; - 2P, Pysindysinf,cos (g — $))Y/ Py, 44
cosfy= (Py— Pycosf;— Pycosfy) / Py, (45)
sings= (— P,sindsing, — Pysinfysing,) / (Pysindy), (46)
cosgy = (— Pisinfcosg, — Pysind,cosgy) / (Pysinds) . 47

Practically the factor Pgsind; in Egs. (46) and (47) is not needed because ¢y is evalu-
ated through the ratio tang;=sing;/cosg, associated with an examination of the sigri of
sing; and cosg; (sinf;=0). For calculation of #, through Eq. (45) only, the value of P,
is given by Eq. (39).

The CMS angles (6i*, ¢:*) are calculated from the IS ones through the Lorentz
transformation equations with yy=FE/M, and ryv,=Py/ M, which are evaluated with Egs.
(8), (10) and (11), and are given by :

sind;* = Pisinfy/ Pi*, (48)
cosfy*= (E,Picosty— PoEy) / (MoPi*), 49
$1* =1 (50

If one calculates 6:* through Eq. (49) only, the value of Pi* is needed and is given by
Pk =283 ( M2, M% mi®/(2My). (31)
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In the Rjk, the z-axis is defined as the direction opposite to the momentum of
particle i, that is, —Py®i. Then the polar angle §;%* equals to z—f1*¥ and is expressed
in terms of the invariant mass Mh and the energ1es and momenta of partlcles i and ]
in the Rjk as follows: : o

COSHjRij: (MZH_ mxz — m32~2EiRjkEjRjk) / (2P1R3kP3R3k) , ' . (52)

where '
ER = (M — My — mi®) / (2Myo) o - BY
PRIE=2E(M?, Myt, mi®) (2Mix) : S

and Ef and Py™< are obtained by cyclic permutations of indexes in Egs. (14) and
(15) The Rjk azimuthal angle ¢&% of particle j is calculated from the LS angles
through three steps of transformations. The first is the Lorentz transformation between
the LS and the CMS along the z-axis. The azimuthal angle is invariant, that is, ¢j=gq*.
The second is a rotation of coordinate systcm in the CMS which transform the z-axis to
the z//-axis. The latter axis is defined as Py*=—Py* and the rotation angle equals to
the angle 0x*=r—0*. By using formulas of spher1cal trlgonometry, ¢] is transformed
to ¢’ through the following equations.

sinfy’sing;’’ =sinf*sin ($3* — $1*) (55)

sinfy''cosgy”’ = cosby*sinfi* —sinfy*cosfi*cos (p5* —1*). . . (56)
The z”/x’’-plane (¢”/=0) is defined as the plane including the z-axis (Fig. 2). The last
is a Lorentz transformation between the CMS and the Rjk along the z'’-axis and the
equations are as follows:

PjRjksinﬂjRJ"‘:Pj*sinﬁj", . . (57)

PFE=gy". (58)
By substitution of Eqs. (48), (49), (50), (57) and (58) into Eqs. (55) and (56), t
following equations are obtained: :

sing{#1% = Psindssin (¢3— ¢1) / (PF¥Esing 7<) | (59)
cosg ¥ = (EPjcosfj— P Ey) Pising; — (EyPicosfs — PyEy) P]smﬁjcos(qﬁ, é1) ]
X (MoPy*) "1 (PF¥sing Fi=) -1, (60)

Concerning to the factor (P{#¥%sinf#%), is noted the same fact as mentioned about Egs.
g ! i i) q

(46) and (47).

Fig. 2. Angle coordinate in the center-of-momentum system.
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4. Phase Space Factor
If the differential cross section is written in a form as followsY :
d%o/dT,d2,dQ,= (2n/%ive) o1 (Ep) | MY, 6D
then the phase space factor p;(E)) is given by
p1(Ey) = (k) PPy, B, By | Byt Ey — By (Py— Py < Py/ Pyt |, (62
This equation corresponds to the f0110\ving definition:

plv(El) dTldgld.Qz: (27[71) _GSd3P1d3P2d3P3 :
X 83(Py—P,—P,—P)6(E,—E,— E,—E;) (63)

with the integrations over the variables P;, #;, ¢;, and P, This expression is a non-
invariant form and differs from a Lorentz-invariant one by inclusion of a factor of
8E\E;E;. In the R23, the phase space factor is calculated in the form:

01 (EIRZS) — (Qﬂﬁ) -GPIRZ3PZR.23E‘R23EZRZSE3R23/M23. . (64)

Then the Jacobian (T4, 24 22 /6(T\R3, 088, QR for the transformation of the
differential cross section d°¢/d7d2;d2; from the LS to the R23 is given by

a(Tl, Qh 2y /a(Tlms, -lea, sza) =P1(E1R23)/91(E1)- (65)
1II. PROGRAMME

A FORTRAN programme is given in an appendix. The input quantities are the
masses of five particles participating in the reaction: ma, mn, mi, ms, and mg (in AMUY),
the kinetic energy of the projectile in the laboratory system: 7. (in MeV) and the
polar and azimuthal angles of the particles 1 and 2 in the laboratory system: &y, ¢, 65,
and ¢, (in degrees). In calculations the kinetic energies of particle 1: 7 (in MeV)
are given successively by a starting value plus a increment value multiplied by integers.
These values are also given in the input data. In the programme is put a restriction
that a given value of T should satisfy a limit M;— m,— my;=0, before the examinations
mentioned in the preceding section. The output quantities are represented in a matrix
form as used in Ref. 1. ‘
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APPENDIX

SOURCE L1sT

la¥aXaYakatalakatatakakatatatakatake¥a¥aV¥akal

THRFE £0DY RELATIVISTIC KINEMATICS

P=PROJECTILE
=TARGET .
FTECTED AT (THILJPHIL)
ETECTED AT (VH2L,PH2L)
HDLTECTED

L =LAB.

C  =(M OF 10TAL SYSTEM
R1J=CM OF (TJ)DYSTEM

B =REAM

M =HEST mASS famyd

T =X INET{C tNERGY (MEV)

=POLAR ANGLE (DEG.)

=RLINUTHAL ANGLE (DEGe)
T1=J=RELATIVE ENFRGY OF PARTICLES 1~J
FHDI=PHASE SPACE (T1L)

PHO2=PHASE SPACE’ (T1L.T2L)
GK23=JACUBIAN FOR TRANSFORMATION L=R23

COMMONS DINLY XP s XM1 4 XML 4 XM2 ¢ XM3 3 TPL A THIL « THZL «PHILWPH2L
COMMON/D IN2/START \STEP
DOURLE PRECISION XMP-XMT‘XMleM?~XM3
RFAD(S11000) XMP
READ(511006) XMT
PEAD(5:1010) TFL
READ(S+1020) STARTJSTEP
10 READ(5+1006) Xml
READ(5+1000) xM2
READ(5+3.000) XM3
IF¢XM1.EC.0.03 GO YO 900
20 KEAD(5¢1020) THIL «PHIL
IF{THIL.F0:360.0) GO TO 10
30 READ(5+1020) TH2LAPHZL
TF(TH2L .£4.360.0) 50 TO 20
CALL KINFMA
Call PRINT
6U TO 30
200 COMTINUE
SToP
1C00 FURMAT(L14. By
1010 FORMAT(FE.2)
1020 FORMAT(ZF7.2)
END

SUKROUT INE ¥ TNEMA :

COMMONZ D11/ RMP s XMT o XML e XMZ o XM3 0 TRPL o THIL s TH2L o PRIL+PH2L
COMMUNZDINZ /STAKTASTEP
COMMON/DOUTI/TILCR0G2) 4 T2L (30C2) 4 T3L(36042)
X+T23(300)T32C200,2)4T12(30042) «TH3L C30042) «FH3L (3C042)

X THICLI00) vTH2C (300423 «TH3C (300423 sRHOL1(300+2) +RFHD2 (3004 2)

XaTH2R23(0012) « TH3K31 (300 THIR12(30042)
XaPHRR23 (300423 +PH3K31(30042) PHIN12(30042)
X+ GROM(I002)

XeT1RC300YT2E(IT0VZ2) (T3B(30042)
COMMON/DOLT 2/RLV 2 E (PO RSO
COMMONSLN TCD /L~ TE ot MAX < 1CODF s LCODE
DOUBLE PHECTS LN NP orMT XM o XM2 XM YMP L YMT oYMECYM2 0YH3 210 12423
X2 2P 2V

N X+ AUMY i ARG PAT

XeTHl s Th/~1h3.PN]oPNZwPH}-TN‘(M-TNLCMtTHSCM
XA b PGSO IHEYIREY
XsP1loF24P%, 21 E3CE234P234vZ234623.COTHIZ 2 COTHZP
X ER23 F2H23EIR23\PIK23+P2F23V2R23+G2R23
Xe523+9310512.TFITAZ2WTAS

n063

L Ccoad

0045
cos6
cou7
co48
9049
€050

2251
G052
CO53
0054
0355
056
0057
0058
hysed
€250
0261
€262
0063

es | -

0065

2066

0067
Co68
Coe9
0070

0071 .. .-

0072

0073

XvABDVRIDVR(RTZS

X+ THCM« THRCM «PHRCM s ARCTANYRAMDA X Y42

X+RH1 «KHIRCHM FACT vEFACTLEFACT2

X+S511COVBNS BN

RAMDACX Y ¢ Z) X3 624 Y R824 7 %#%2=2 ,0%X#Y=2 0¥V %702 On22X
AUMV=931 504

YMI =XM1 EAUMY
YMP=XM2 X AUMY ‘
YM3=XMAXAUMY
2P=YMP*#2Z
IT=YMT%#2
Z1=YM1g#?
22=YM2#%D
23=YM3#x2
THi=THiL#PA1/180.0
CTH2=THZL*PAL/18G.0
PHi=PHIL#PA]/180.C
PH2=FHZLAPAT/18G.0
EO=YMP+YMT+TPL
PO=DSUHT(TPL*#2+2 ., U*YMP&TPL)
SO=EO##2=PO*%2

REV=YMP+YMT=YMI=YM2=YM]3
1CODE=0

DO 505 L=1.300
Xt=t=1
T1=START#STEP#XL
Fl=T1+YNM1
10 Pi=DSUKT(T1#42+2.0%YM1+T1)
$23=50+71-2.0%EU#E1+2,0#P0#P12DCOS(THL)
RT?23=DSOKT (S23) ~YM2wYM3
IF(RT23) 606415415
15 CONTINUE
C-£1
WRTLPOR24PLwu22,0xP0xPLADCOSETHII)
23/F23
623=E£23/USERT(523)
P1R23=DSRKT (RAMDACSCS23023))/(2.05DSRRT(523))
P2r?3=DSUKT (RAMDA(S23422423)) /(2. 0#DSORT(523))
E1R23=(S0~523-71) /(2. 0sDSERT(523))
E2R23=(523422-73)/(2+04DSEKT (523))
E3R23=(523473=22)/(2.0#DSERT(523))
V2R23=P2R23/E2R23
G2R23=E2R23/YM2
VR=V23/V2R23
COTHL2=DCOSCTH1I ¥DCOS(THZ) +DS IN(THLS #¥DSINCTH?) 8DCOS (PH2=PH1Y
COTH2P=(PO*DCOS(TH2)=P1#COTHI2) /P23
DR{G238r2) % (1, 0-VP*%2) + (VR#+2) % (COTHRP #4711 (523,/G2H23) au?
22623+ (1.0- (V235 #2) w(COTHPP*42))
B=yR&COTH2P
OVi=l « 0=Vi
1F(DVKY. 25.60.40. .
25 1F(COTHZP)Y 60130430
40 LOwWCD=0
TIL(La1)=T1
Til(L+2)=0.0
GO TO. 90, :
30 1F(D) 6C5045C:
50 LOwCD=1
LCODE=1
TLL(L1)=T1
TiL (L 2)=T2

VIVNV, 'S PU® ‘VMVSHQO "I ‘vOVNONN *Y ‘I9IIVY 'S
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2

S00
505
&00

GO TO 40

CONTINUE

FFCTCODF.ER.0) GO YO 500

Lmax=l~1

GO TO 600

IFCICOCELEQ@VLY GO TO 80
L

P2=°2FZJ*(P*DSART(D))/A
GO T 1C0

P2=P2E2%n (B=DSEHT(L) /A
CONTIMUE
E2=DSURT(Prasapes?)
SURT(RGsep+2 1 K% D455 2mz 2 08PURPY ‘L‘COS(TF!)
O#PUEP2a Lo (TH/) 2. 08P LeP2eC0OTHIZ)
T(Pawazall)
(422=7 .50 ONE 242 05P0O#P22DCOS(THE)
142242, Unk 1t 2=2,0%PL2F2%COTHL2
=f 2= YM2

—YMEmYM3

-¥M3nYh]

~YWM1-YM2

+2.0#P0#P1%0COS(THLY

S4Z2=2 .08t Z2F 22 . GxPOXP220COS (TH2)

TAIRZL47 24 T+Z O (F1vE2=YMT*(E1+E2)~-P1l#P24C0OTHLD)

TIRCLY  =((YvE-YM1)s%2-TA1)/(2.0%YMP)

T2R(LARI=((YMF=VYMI) 42 2=TA2) /(2. 0%YMF)

TIRC(LARI=((YMP=Y"3) x£2=T43) /(2.0%YMP)
TeDSWHT(PL## 22 (DOINCTHI) ) Xu24P2x %28 (DSINCTHZ) ) %42

X+2,NxP1eP2#DS [N(TH] ) $DSTIN(TH2) *DCOS (PH2-PH1))

CO=PU=PL#DCAS (TR1) ~pPaDCOS (TH2)

TH3=ARCTAN(ST v ()

Tral (LK H3XIn0.G/PAL

s‘r-m«( SINCOIRD DS RIPHLI =P2%0S IN(TH2) *DS {1l

PI1#DSIN(THI) *DUDS(PHL) ~P2#DSIN(THZY #DCOS 1P

ARCTAN(ST VL)

PH’&I (LeK)=Pr35180.(1/PA]

TH1CM=THCM(THT «SOED«PDIEL 1)

THCM(THZ S0E0POE24F2)

HCM(THIVS0EOPUE3WF3)

THECCL)  =THICM*LE0.0/PAT

THPC (LK) =THP R 180,0/PAT

TH3C (LK I =THICH* 160, 0/PAL

THZF23 (L sk 3=THECM(5045124872021472473)

ThaR3L(L sk 3=TrkiM(S00523405531 0224230210

TeIlRL2 (L oKX =THHOM(S045314512423421472)

CUZE2ICL R ) =PRI ITHLCM s THZCM PR PH2)

Er15R31 (L a¥ ) =PHRCM(THZCM TH3CM I PHZ «PH3)

EHIPRLZ A K3 =PHERCMITHICM  THICM S PHI)

FaCcT=1.0

FERCT YrE7wED

Blig=PlePZaeractl

BHR=DABS (FL=E1-F2#Fp 32 COTH2P /P2 #FACT
RHT=RANS/ENE
#HO1 (L F =Rl

EFACT2=F 1k23#F ¢R25nE 3R23
HNG=PIR2 340 2R2SERACT?
BANR=NSWHT (23 #FALT
FHIRCM=BNG 7Nl
GROMCL o ¥ ) 2RHIRCM/ k]
TFCLONCD.E6.0) GO 10 500
TF(r.Ewe2) GO 10 500

60 1O 9%

CONTINUE -7

CONT INUF

RETURN

END

cocl
0a0c2
ooe3
0004
jeloford
2006
2007
2008
oong
o010
0011
012
0033
0014

Q020
0921

23

0001
€062
coe3
0004
0nos
00Cé
0067
000y

[elele
0002

C0C3
[elole 2
0005
CO06
2007
[elef )
60CY
001G
G011
0012
0013
0014

300
303

201
306

30

2

3ok
302
304
310
390

FUNCTION ARCTAMCY XD
DOUSLE PRECISION AKCTANCXsY.PA]
DOURLE PRECISIUN AKG

ARG=+=1.0
PAT=NAKCOS (ARD)
TIFCX) 300.301.302

IFCY) 30343034303
ARCTAN=DATAN(Y/X)+PAT
60 TO 390 .
TFCY) 30643074208
ARCTAN=2.0#PAL1/2.0
D10 39C
ARCTAN=9Y90#PA] /180,00
GO TO 390

ARCTAM=FAL /2.0

G0 TC 390

1R (YY) 30943104330
AMCTEURDATALCY /M) 2, 0 PA(
50 T4 3%0
ARCTANSDATANCY/X)
CURTINUF

RETURS

END

FUNCTION THCM(THLS0EOWPOELPL)

DOUBLE PRECISION TH14SUSEQ.POELsFLABNSIBNBTHCM
DOUKLE PPECISION ARCTAN

BNS=DSHPT(SOYNDSTINCTHLY
RisE=EQ*CCOS(THL) ~POx (E1/P1)

THEM=ARCTAN (BNS «BNE)

RETURN

END

FUNCTICN THRUM(SO4$124823421422423)

COURLE PRECISION THPCMISCS124823+21422473 RAMDASU VN
XeR1 4R2+ENS RNB X P2 ]

DOUKLE PRECISIUN ARG

RAMDACU WV en ) ZUSR2+V k24w nn2m 2. UnlVe? , GHVaW=2, bWl
ARG==1,0

PAT=DARCOS (ARGD

R1=RAMDA(SO.S23471)

R2=RAYDALSZ23472423)
BNG=(50=523=71)%(523+22-23)+2.0#S23%(21472=512>
BNB=DSEFT (F1) ¥LSART (R2)

X==PNS/ENE

THRCM=DARCIS(X) #2160, 0/PAL

PETURN

END

FUNCTIUN Braaln{THICM TH2OM PHL W PH2)

DOURLE FRECTISIUN PRACMITHICM THZOMIPHLWPH2 JPH12451 4COPAL s ARG
X ARCTAN

ARG==1.0

FAT=HARCOS (ARG

FH12=PH2~FH]

S1=DSIN(THZCMI A0S INCERLZ)

CO=NCOS(TH2CM)Y #DSINITHICM) ~DCOSKTHICMI #DS TN (TH2CMI #DCOS (PHE 2)
PHRCM=ARCTAN(S14+CO>

PHRCM=FHRCM#180.0/F A1

RETURN

END

SONEWIAUIS] OUSIALB[RY S[o1IeJ-931Y ],



