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     A postulate parallel to Boltzmann's postulate : log WocS, permits the estimation of heat ca-
 pacity anomalies in substances for which data are published, and the prediction of anomalies in 
  other crystals in which molecular rotation is possible. The dispersion relation relating excitation 

  energy with frequency, is derived from the data of molecular spectroscopy, based upon strong 
  coupling between phonons and rotating molecules. 
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INTRODUCTION 

BoItzmann's postulate that the entropy of a gas was proportional to the log prob-

ability: 

                log W o S 

has been the cornerstone of equilibrium statistical mechanics, for from it,; with the 

second law of thermodynamics, it is possible to define a thermodynamic temperature: 

        k(a log Wl          -\ au~V-T. 
In the hands of later investigators, macroscopic quantities T, S, U and the other ther-
modynamic functions have been calculated from the quantum mechanical characteristics 
of a gas made of microscopic molecules. 

   A parallel postulate is proposed: 

         (a log W=I         l as~v 
where v is the frequency of a wave, e the energy of the wave and W is the probabiliy 
of this wave. With the aid of this postulate it is possible from quantum meohanics to 
calculate the energy of an excitation as a function of frequency: the dispersion relation. 

   Our principal quantum fluid, helium-4, has been described by Landau in terms of a 
dispersion relation.') At low frequency the excitations are phonons where e=hv, at higher 
frequency there is a parabolic minimum which he named the roton. While many 
attempts have been made to describe these rotons in terms of microscopic states, no 
derivation has received unanimous acceptance.2 
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                            TABLE I 

      THERMODYNAMICSWAVEDYNAMICS: 
        Boltzmann's PostulateWave Postulate 

        (Thermal Equilibrium)(No Temperature) 

     log WooSlog Woo Q' 
                                                                                     co        (8log W\1(8logW1l1 k\         au )

v=T\ 8U /v v 

                                    Entropy 

S= &=—Q 

                                                                           V 

                                  Free Expansion 

      4s'1(2''1(2'4 &—Jvr----dQ 

{ 

          Perfect GasWaves without Dispersion 

       4S 00 logv,d&DlogVf 
                               Carnot Cycle 

     Eff=1—TZEff=1—vz   Tlvl 
                                    First Law 

dU=TdS+vd&—dW 
                             Temp. Waves 

   We may in principle derive the thermodynamic character of an excitation gas such 
as the phonons or rotons in iiquid helium using pistons and reservoirs in the traditional 
manner, and a comparison is made in Table I. The new quantity: wave entropy, &, 
has a definition entirely parallel to the entropy of a system in thermal equilibrium. 
Whereas temperature is that characteristic which has a common value for all systems in 
thermal equilibrium, frequency is that characteristic of a wave which remains constant 
as the wave passes from one medium to another. The wave-entropy must be carefully 
distinguished from thermal entropy for, as defined, it has the dimensions of action (erg 
sec.) and not energy (ergs). Rayleigh in 1902 discussed the vibrations of"astring, and 
examined the analogy between frequency and temperature.s' Each has only positive 
values and no upper bound. The zero of temperature and of frequency may be ap-

proached but not attained. Upon adiabatic expansion to lower temperature and frequen-
cy, and recompression, the original state is restored. 

   The significance of these formal statements resides in their utility. The purpose of 
the present study is to explore dispersion theory as it applies to molecular crystals and 
to identify its derivation from microscopic statistical mechanics, treating the molecule as 
an identifiable dynamical unit. A more complete statement of these proposals is to be 
found in reference 4. 

                     DISPERSION RELATION 

   The dispersion relation: a=f(v) is a relation between the energy, e, of an excitation 
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and its frequency,  v. In Landau's theory of liquid helium' there is no temperature 
dependence. In fact the dispersion relation can be measured at essentially zero tempera-
ture.5> This dispersion relation allowed him to account for the deviation of the ther-
modynamic properties of liquid helium from those of the Debye theory. His dispersion 
curve was synthesized to fit the data, and no clear picture emerged of the excitation 
which he named the roton. Efforts have been made over the last decades to find a 
microscopic origin for the roton, but no identification has been generally accepted.2'4) 

   In Planck's radiation theory, he is dealing with a wave of constant velocity so that 
s=hv. His derivation can be extended to waves with variable velocity, such as are 
observed in liquid helium and other systems, by substituting s= (1—m) hv, where m is 
initially considered a disposable parameter.°> The energy of the excitation then becomes 

   U=ec(1>hm)hvl( 1 ) 

Analytically _m must be a pure number which can take any value between zero and 
unity (0<in<l). In statistical mechanics such parameters are usually related to con-
centrations. For example the concentration of ortho-hydrogen ranges from zero at low 
temperature to 0. 75 for the high temperature mixture, and a statistical definition is used.° 
m, however, must be a function only of frequency, and not of temperature, for the 
dispersion relation is thought to apply to systems in the absence of temperature. It is 
then outside the realm of equilibrium thermal statistical mechanics, and the postulate 
log Woo Q(v is introduced. 

   The present study extends the author's work on liquid helium to a class of com-
pounds characterized by strong bonding between atoms of a small molecule and weak 
bonding between molecules. In such solids the molecular approximation may be ex-
pected to have utility. 

   The overwhelming success of traditional statistical mechanics is largely a consequence 
of the . study of gases. In such systems there are strong forces between atoms of a 
molecule and very weak forces between molecules. The heat capacity, internal energy 
and free energy can be separated, and the total is the sum of the (a) translational 
contribution . of the molecules and the (b) internal motions within the molecule. In the 
simplest case this is rotation of the molecule as a whole. At higher temperatures vibra-
tional and other modes are excited. 

   In the study of absolute entropy there have been many attempts to correlate the 
thermodynamic properties of the molecular gas with those of the solid. While a super-
ficial correlation may exist, it is not strong nor compelling. The heat capacity in a few 
cases may be the sum of the Ti low temperature Debye term and an anomaly of the 
variety proposed by Schottky!) Yet a substance such as elementary oxygen, 02, is surely 
a molecular solid in which a single molecule may occupy a lattice cell. In it the two 
atoms are strongly bonded, and the van der Waal forces between molecules are com-
paratively weak. The separation between atoms is 1. 2A whereas the separation between 
molecules is 4. 1A. There should, therefore, be an analogy between the thermodynamics 
of the solid and of the gas.s> Experimentally an anomaly is found in 02 beginning near 
3°K, with a maximum near 10°K. The maximum for the gas should occur near 5°K. 

   The usual assumption of lattice theorists is that molecular rotation does not occur in 
solids. Yet solid hydrogen exists in ortho and para forms and the transformation rate 
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has been measured.e Methane has been extensively studied by Yamamoto upon the 
basis of the existence of spin states.9j Pitzer has catalyzed spin transformation by adding 
molecular 02 to his sample.10' We have previously observed spin transformation in C2H2, 
H20, CH4, and CH2O.4) 

   Oxygen is a particularly simple system, for it is homonuclear with zero nuclear spin, 
so rotational quantum numbers are restricted to J=O, 2, 4. .. We shall use this mole-
cule as an example to reduce the complexity of the mathematics. The full expressions 
for other molecules will be included in a later section. 

   If free molecular rotation is assumed, we must seek a method of coupling these 
states to the Debye or phonon states. This is accomplished using the dispersion relation, 
and deriving the heat capacity from this dispersion relation. The form of the dispersion 
curve will be less extreme than that of liquid helium (Fig. 3), The expression s= 

(1—m) by = (1—m) / ha) permits us to represent a wave with velocity dependent upon 
frequency. The character of m is, therefore, central to the discussion. When on=0, 
the dispersion relation is that of phonons: s=hv, and the Debye low temperature heat 
capacity is obtained: CcoT.81 As m becomes finite, the dispersion curve will deviate 
from the phonon line, resulting in excess heat capacity and an anomaly. m is not a 
function of temperature and can not therefore obtained from the traditional equilibrium 
theory of statistical mechanics. m is a function of frequency only. If we are to obtain 
a microscopic theory for m it must start from a new principle. A postulate equivalent 
to Boltzmann's postulate has been proposed: 

a log Wol 
asv(2) 

This permits us to define a partition function equivalent to the usual one but with kT 
replaced by f (v) . 

Z= (2J+ 1) e–s4s+1)s19Y(3 ). 
where J is the rotational quantum number, B, the rotational constant B=h2/8n2I (with 
I the moment of inertia of the molecule), v, the frequency and c, a constant. From 
this partition function we can obtain the internal energy, entropy and heat capacity for 
a gas of quanta (or their equivalent waves) for which s=f(v), with energy a function 
of frequency and the velocity of the wave, frequency dependent. 

   Since the range of m is from zero to unity, it has the character of a concentration. 
At zero temperature, at equilibrium, all molecules will be in their lowest available state. 
For oxygen, this will be J=O. A low frequency wave will not produce molecular transi-
tions and will be a phonon. m=0 would characterize this condition. As the wave 
frequency is increased (still at zero temperature) molecules can be rotationally excited 
by the passing wave and the concentration of excited molecules will depend upon fre-
quency. m>0 would characterize this situation. For oxygen, J=O, 2, is sufficient to 
account for the observed anomaly. The concentration of excited molecules, in analogy 
with equlibrium statistics, will be m=(Z-1)/Z and for oxygen will be: 

E(2J+ 1) e scs+usic,. 
m=-2.4...  

E(2J+ 1)e s<s+imY(4 ) 
.2=0.2.4...- 
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The value of  c, empirically required, is h/ 4r (to be compared with k for an equilibrium 

system). With this substitution, and w=v/2rr we obtain: 

5e-skirm 
m 1+5e------------snizm(5) 

Figure 1 shows m as a function of circular frequency, w, for 02, N2, CO, and F2. 
   The rigorous derivation of these expressions is given in reference 4. 

co 

    0.10
2 

N2 

   iF 
                21,12 

0.1 

0.05 

                  0 10' 2 3 4 5x10 6 7 8 94012 10 co Rad/sec 
                Fig. 1. Calculated values of in as a function of frequency w. 

                 LOW TEMPERATURE HEAT CAPACITY 

   The internal energy of a system for a single mode of oscillation, e. g. compressional, 
giving rise to longitudinal waves, is obtained from the dispersion relation: 

V  (' ew2du,"  
2r2k3Je.ikT_ 1(6 ) 

From this the heat capacity is obtained by differentiation with respect to temperature, 
e = (1 —m) / hw taken as temperature independent, 

VcezekTwadw      C—2 x2c3kT2(ee/kT_ 1)-------------z(7 ) 

In the low temperature region, where e =/ hw, and the upper limit of integration may 

be replaced by infinity, we obtain 

16ir5Vk4T3   C
'°15c3h(8 ) 

This means that there can be no significant contribution from excitations in oxygen 
with to greater than 2 X 1012 rad/sec (Fig. 1) , and corresponds to temperatures for oxy-

gen less than 3° K. It is the Debye low temperature approximation: C, oT3. 
   A second low temperature approximation is possible where the range of the integral 

extends beyond the phonon region into the region where m is small but not zero. This 
is the region where the theory is expected to be most reliable, for the excitations should 
be phonon-like (1-m=l) . This region will then define the departure from phonon 
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heat capacity, attributed to molecular excitations (in the cases considered, the excitation 

of molecular rotation) . It then is a predictable departure from T3 heat capacity based 

only upon the moment of inertia of the molecule and the quantum rules familiar in 

molecular spectroscopy. It is a predictable correction to the "smooth extrapolation" used 

in absolute entropy studies. 

   The ratio of heat capacities with and without dispersion is evaluated by numerical 

integration, and (C—C,)/C, is plotted against temperature in a log-log plot in Fig. 2. 

                                                                              24 11 I 9 

                             1 o+Ili I  
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      Fig. 2. Relative heat capacity as a function of temperature in the low temperature 

            approximation for substances of Table II. Symbols from Table II. 

                S(1—m)2eo-m)/hm/kTw4do) C(ea-m)/ho/kT — 1)-------------------2 
    C,=ea-m)/ho/kTw4dw(9 ) 

(ea-m)/ho/kT — 1)-------------2 

Table II shows the result of calculation. The second column gives the moment of 
inertia, I, of the molecule; column three, the nuclear spin, S, of the pertinent atoms; 
column four, the quantization; column five, the calculated temperature for (C—C,)/C,= 
0, 02, near the beginning of the anomaly; column six, the observed temperature. Col-
umn seven gives the calculated slope d ln(C—C,/C,)/d In T at (C—C,)/C,=0, 02, which 
measures the strength of the anomaly: column eight gives the equivalent slope for the 
materials studied to sufficiently low temperatures. Column nine gives the value of m,,, 

empirically required to fit the maximum of the anomaly. 
   Where heat capacity measurements extend to the phonon region, the calculated 

threshold temperature corresponds reasonably well to that measured. The strength of 
the anomaly also corresponds to that measured, with one notable exception (CD4) . For 
the systems for which measurements have not been made, the predictions of the theory 

are given. In nearly every case the high temperature mixture has been used, for 
uncatalyzed nuclear spin transformations are slow. In the case of H2O and H2S, ob-

servers have seen slow release of heat in the calorimeter, and the equilibrium heat capacity 
has therefore been calculated."' 

   Not every one of the substances studied will necessarily show the effect. Formalde-
hyde (H2CO) has a strong tendency to polymerize, and free rotation cannot be expected 

in the polymer. Hydrogen bonds may inhibit molecular rotation in H2O and NHs, but 
the excellence of the fit suggests that these bonds do not prevent rotation of the mole-
cule. 
   One of the most interesting aspects of the theory is that internal rotation , can be 
estimated. The rotation of the methyl radical -CHs has been extensively studied. 
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                           TABLE II 

 Molecule I S Quantization T(Calc.) T(Obs.) d  /C- Cs.) m, 
      x10-32C- CydlnT `ln Cs, I 

       (gm cm2)Cc,-0. 02 (Calc.) (Obs.) 

DIATOMIC 
1 Oxygen 1.93 0 J=0, 22.7 3.5 5.9 6 0. 13 
2 Nitrogen _' 1. 38 1 2/3 J=0, 2 4.2 5.0 5.7 6 0. 12 

                        1/3 J=1, 3 
3 C=O1.45 0 J=0,23.7 4.0 5.9 7 0.17 
4 F23.26 1/2 1/4 J=0, 2 2.24.3 

                         3/4 J=1,3 
5 Cl211.48 3/2 3/8 J=0, 2 0.65.7 

5/8 J=1, 3 
LINEAR 
6 HCN1.89J=0, 11.04.3 
7 DON2.31J=0, 10.84.7 
8 HC°CD 2.82J=0, 10.75.7 
9 HC=CH 2.37 1/2 1/4 J=0, 2 3. 13.9 

3/4 J=1, 3 
METHANE etc. 
10 C H40.533 1/2 A, E, F9.84.70.65 
11 CH3D0. 722 1/2, 1 A, E3.06.80.42 
12 CH2D2 0.792 1/2, 1 "A, E"3. 34.90.4 
13 CHD30.854 1/2, 1 A, E2.64.80.42 
14 CD41.057 1 A, E, F 3.83. 7 
15 SiH40.946 1/2 A, E, F 5. 74.0 
16 GeH40.97 (?) 1/2 A, E, F 5.34.0 
SYMIVI. ROTOR 
17 NH30.45 1/2 2/3 J=0, 1 ; k=0 7.6 6.6 5.0 4 0. 12 

                            1/3 J=1,2;'ik=1 

18 PH30.628 1/2 /i ii 3.44.7 
19 AsH30.752 1/2 /i ii 2.84.7 
20 CH3C16.315 1/2 /i // 0.25 5.0 
ASYMM. ROTOR 

21 H2O(Eq.)0.33 1/2 J=0, 14.6 4.5 7.6 7 0.22 
22 H2S(Eq.)0.59 1/2 J=0, 12.510.4 
23 H2C=O2.31 1/2 1/4 J=0, 2 3. 1 4.2 

  (H. T. Mx)3/4 J=1, 3 
INTERNAL ROTOR 
24 -CH30.588 Planar Rotor 2/3 J=0, 1 ; k=0 2.04.9 

                           1/3 J=1,2; k=1 
LIQUID 
25 He-He4.7 0 J=0, 2, 40.51 0.5 1010 0. 75 

There appears to be universal agreement that in dimethylacetylene there is little or no 
restriction.'2' Unfortunately, heat capacity measurements do not extend to the necessary 

low temperature. We have not found data to check the theory for any compound with 
internal rotation. 

   If the anomalies predicted are found in the laboratory, absolute entropies based 

upon "smooth extrapolation" of the measured heat capacties have systematic errors, and 
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must be revised following further measurements. 

                   COMPLETE REPRESENTATION 

   Dispersion theory in the form described appears to be successful in predicting the 

departure from T3 heat capacity, in position and in form. Even in the hands of Lan-

dau, ;dispersion theory cannot describe the lambda point for liquid helium. His best 
dispersion curve accounts for the data only to 1. 6°K, well below T1=2. 17°K. He 

suggests that roton-roton interactions may account for the data at higher temperatures?' 

Yarnell et al. introduce temperature dependence in the parameters of the dispersion 

curve, and with these three additional disposable functions can account for the data to 
nearly T,'. 

   The simple theory described is therefore an induction theory. If m is calculated to 

high values of co it will approach unity. The dispersion curve will then have a maximum 

but no minimum and the heat capacity will diverge and become infinite. (Landau's 
dispersion curve avoids- this catastrophy by using a parabola for the roton.) Experimental 

studies of helium suggest that a better representation is a "second phonon" line, parallel 

to the phonon line.5) The heat capacity then has a maximum and the anomaly dimin-
ishes slowly with higher temperatures.- The same "second phonon" region is assumed for 

the molecular solids of Table II, equivalent to introducing a disposable constant m0: the 

terminus of the calculated dispersion curve (Fig. 3) . For many substances the limiting 

value of ma is near 0. 1 and the maximum ratio of heat capacities (C/C9) max is less than 

2. Liquid helium has an extreme minimum with m°=0, 75 and methane has nearly as 

high a value. 

   Figure 4 shows the experimental data plotted in the same fashion as Fig. 2, with 
the theoretical line represented. These curves necessarily converge on the low temper-

ature approximation of Fig. 2. 

   Oxygen is particularly simple for the molecule is homonuclear with zero spin.13) Odd 

             SOLID OXYGEN 

60*CO 

HS NH, 
                              az _ Oz . 

40 
6/k •K 
30 

C0o- 200`       

IO 

                                                                                                       uoe-
   0 IOI 2 3 4 5*10. 6 ! 6xI~ ^   

to Rod /secz o •n ^ s VWzO 

Fig. 3. Excitation energy of oxygen as a function Fig. 4.Relative heat capacity of oxygen, • ; 
     of frequency. m° at -w0 defines the endcarbon monoxide, + ; nitrogen, X ; and 

     of the low temperature approximationammonia, A ; compared to theory in 
     and the beginning of the "second phonon"high temperature form. Curves must 

line.necessarily converge upon low tempera-
                                                   ture approximation. 
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values of J are missing, and the partition function is: 

 Z=  (2J+1)e-J<J+1)5/Id(10) 

Only two states are needed, J=0, 2 for mS0. 12. 
   Nitrogen has ortho and para forms and unit nuclear spin (S) so the partition func-

tion for the high temperature mixture is 

         Z=  (2S+1)E(2J+1)e-J(J+uh/Ia +-(2S+1)E(2J+1)eJ(J+1)h/Im (11)  33 

A dilemma appears in connection with the para contribution. In our previous studies, 

J+0 molecules were assumed to be locally defined and therefore not part of the ground 
state continuum. If J=1 molecules, locally defined, are counted as excited, then phonons 
at low temperatures are cooperative modes among only two-thirds of the molecules. If 

pure para nitrogen were prepared (by means not identified) then presumably there 
would be no phonon excitations at low temperature and no T3 low temperature heat 
capacity. The assumption, subject to modification, has therefore been made that cells 
with J=1 are to be counted with J=0 molecules as the ground state and m then be-
comes the population of excited states. 

2 J=(2J+1)eJ(J+1)h/Ia 1 E(5J+1) e-J(J+1)h/Im In J(J+t)AiIm3E(2J+1)e----------------J(J+1)h%Im(12) 

The principal contribution is from J=0, 2, and only near mo does J=1, 3 become 
significant. The low temperature measurements of Burford and Graham do not join 
well with those of Bagatskii et al.") The latter more complete data have been used. 

   Carbon monoxide has been a cause celebre in absolute entropy studies, for a differ-
ence between spectroscopic calculations and heat capacity observations persist.15) The 
atoms of the molecule have zero nuclear spin, the atoms are of similar size, but the 
center of gravity is not midway between nuclei. In the gas, odd and even values of J 
are observed. In the solid, if the ends are not identical, an ordered state of COCOCOC 
will be the ground state. If there is little difference between the ends of the molecule 
then a disordered state COOCOCCO will be possible and a maximum entropy of mixing 
of Rin 2=1.38 cal/mol deg will remain. The entropy difference of 1. 1 cal/mol deg is 
attributed to this source. Even in lattice calculations the molecule is commonly treated 
as symmetrical.") 

   In our calculations the differences are crucial. If the ends are distinguishable, all 
values of J will be found. The deviation calculated then occurs at much too low a 
temperature. If the ends are indistinguishable, then J=1, 3 will be missing and the 
calculation will be the same as in oxygen. Both curves are plotted in Fig. 5. It is 
evident that the observations conform to the symmetrical hypothesis.17) Carbon monoxide 
then becomes a most intriguing example of the Gibbs Paradox. The molecule appears 
to rotate in its cell about an axis midway between nuclei, and the electron clouds would 
appear to be indistinguishable. 

   Methane is a particularly interesting case for measurements are available for the 
deuterium derivatives to temperatures of 1-2°K.13) While the structure and molecular 
weight (and hence the molecular volume and velocity of sound) are only slightly 

( 9 )



                                        L. B. BORST 

 -- CARBON                                           MONOXID
E 
                                         *G1116 Morrison (1966) 

       J.0,1• Bur ford a Groham11969) 
               2,0-aoa 

L3-- X 

                                     /1/1 

w..cm-I it 
                                                                         lI 

1.1//                                                                                                                                             '1 -                                                   .j!01.I: 

(01/N. 
' 

              • 2 4 6 8 10TeK 12 14 16 18 20a'1 z 3 0 3 s r 0:010 oK - zo: 

Fig. 5. Comparison of heat capacity of carbon Fig. 6.Relative heat capacity for methane and 
       monoxide with theory. Curve for J=0, 1its deuterium derivatives. Broken curves, 

      represents unsymmetrical molecule.theory. 

changed, the quantum character is radically changed, for CH4 and CD4 are spherical tops, 

CH3D and CHD3 are respectively prolate and oblate symmetrical tops and .CH2D2 is an 

asymmetric top. Early studies of Maue19) and, his partition functions have been the 
basis of out calculations. Because of the four identical nuclei . in CH4 and CD4, there 

are three spin states A. E. F, singlet, triplet and quintet, named by Maue, ortho, meta 
and para. CH4, having the smallest moment of inertia, shows an anomaly beginning, at 

10°K which accurately approximates the approach to the 20. 6° lambda •point (Fig. 6). 

(The deviation of the data from the calculation below 16° is due to the effect of the 
strong anomaly near 1°K.) The CB contribution is interpolated between the heat capacity 

above and below the lambda transition. 

  In the deuterium derivatives the anomaly appears at much lower temperatures, 

2, 5-3°K (calc), and the strongest contribution occurs near 10°K. The observed heat 

capacity curves are complex since the weak rotational anomaly falls between large 

anomalies -,-10 and ---20° (which are not predicted by this theory). We have taken 

the data corrected for isotopic impurities given by Colwell et al.18(b) We have assumed 

the molecular volumes and velocities of sound to be the same for the deuterium deriva-
tives; we have used the CB of CD4. 

CD4 is quite different from the other methanes for the --1°K anomaly is absent, 

and the heat capacity becomes CBo0T3 below 3° K. The position of the rotational anom-
aly is well predicted, but the strength is quite inadequate. The assumption of spin 

equilibrium, however, gives a threshold temperature much too low and a strength much 

too high. No satisfactory model has been found to represent CD4. Yamamoto20j believes 

that the lattice for CD4 is quite different from that of CH4. 

   The rotational spectrum of ammonia has been analyzed using the mathematical 

model of the oblate symmetrical top. The moment of inertia about the axis of symmetry 

(I.A.), is greater that the other two identical moments of inertia (Is). An .additional, 

quantum number, k, appears and again there is slow conversion between nuclear spin 
states, designated A and E (analogous to ortho and para forms) . The high temperature 
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mixture consists of 2/3 A and 1/3 E. The analytical character  of  the dispersion relation 

becomes more complex. 

2 E(2JJ=-1,2;K=0) e-J(J+uh/IBe1(2J 11)eJ(J+1)h/IBm—(h/IAw—h/IBm)k2 
              3 E(2J+1)J(J+1)h/IBm+e3 E2(2J+1)J(J+1)h/IBm—(h/IAei—h/IBo,)k2(13) 

 a J=0, 1,2;k=0J=1, 2;k=1 

Experimental data are from reference 21. 
   The asymmetric rotor has been previously discussed for the case of water." Some 

investigators have found slow response in the calorimeter, thought to be caused by spin 

conversion in the solid.11' Flubather et al. found one sample, which they designated IIa, 
which gave a curve 9% above their other samples.22' We have measured the time 
dependence of the neutron cross section for two samples of water which gave widely 
disparate results." These questions have been resolved by Pitzer for methane.10' A highly 

purified sample in the calorimeter gave sluggish response to the addition of heat, where-
as a sample containing 0. 8% of molecular oxygen, 02, gave rapid response. This 
elegant work explains the difficulties with water, for small concentrations of oxygen are 
not easily identified. In our work the sample with rapid response (T,,2 100 minutes) 

• contained an unknown amount of oxygen. The single crystal sample, at 4°K, (T,/2>100 
hours) contained little distributed oxygen. We also confirm Pitzer's studies in the case 
of methane, for again, an impure sample showed spin transformation (T,,2=20 minutes) 
whereas a carefully purified sample gave slow response (T1/2> 100 hours) .23) 

   Flubacher's data are well represented if we assume spin equilibrium in the calori-
meter. No useful results are obtained for the high temperature mixture. This assump-
tion is also applied to H2S. Further heat capacity measurements will be required to 
resolve this problem. 

                           LIQUIDS 

   Three quantum liquids have been discussed previously: helium-4, SiO2 and GeO2." 
In helium, the departure from the phonon line is well represented. However, the J=4 
rotational state must be artificially strengthened to obtain the deep minimum of the 
dispersion curve. Liquid helium is included in Fig. 2 and Table II for comparison. In 
the glasses, adequate representation is achieved using adjusted moments of inertia 0. 37 x 
10-39 for SiO2 and 0. 42 X 10-3' for GeO2. These values correspond to Si-O-Si and 
Ge-O-Ge bond angles of 153° and 152°. 

                           SUMMARY 

   The assumption of a postulate parallel to Boltzmann's postulate permits the calcula-
tion of dispersion relations for molecular crystals where molecular rotation within the 
cell is plausible. Heat capacity anomalies are calculated which correspond in position to 
observed anomalies for systems with adequate data. The strength of the measured 
anomaly, near threshold, corresponds to the strength calculated except for the single 
case of CD,. Estimation of the maximum relative strength (C/C,) requires the inclusion 
of an empirical cutoff, m0. 

   Predictions have been made which are subject to experimental verification for sys- 
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      tems with no adequate data. 
          Catalysis of spin transformations by molecular oxygen appears to  be a controlling 

       factor in the study of molecular systems. 
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