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         A rapid scan internal reflection spectroscopic system has been developed using an optically 
      transparent electrode (OTE) of tin oxide coated glass, a multi-channel photodetector, and a 

      micro-computer. Some basic examinations of the internal reflection cell were investigated in 
      terms of a typical reversible redox system of ferro/ferricyanide. The electrochemical pertur-

      bation of the OTE is performed in one of two ways, i. e., a potential step or a linear sweep 
      mode. The reflectivity — potential curves were obtained directly and analyzed in a manner 

      similar to that in polarography. Internal reflection spectra of electrooxidation/reduction pro-
      ducts were obtained in situ by a multi-channel photodetector, corresponding to the stepwise 

      changes of the potential of the OTE. 

      KEY WORDS: Internal reflection spectroscopy / Tin oxide optically transparent 
           electrode / Multi-channel photodetector / Spectro-electrochemistry / 

                            INTRODUCTION 

      In order to evaluate the electrode reaction mechanism by the optical observation of 
   the electro-generated species in situ, various spectro-electrochemical methods have been 

developed.'"2> An internal reflection (IR) technique provides helpful information about 
  an interfacial phenomenon.3-5> In the infrared, the IR technique has been widely used 

  for the acquisition of the spectra of thin films or mono-molecular films as an attenuated 
  total reflection technique and has also been applied to the identification of the electro-

  chemical products.60> In the visible, Hansen et al.5> were the first to employ the technique 
  for the investigation of electrode reactions by the use of an optically transparent electrode 

   (OTE) of tin oxide coated glass. However, the method has not been diffused except 
   by Kuwana and his followeres,9> because the technique necessitates a specially elavorate 

  optical path and also a highly sensitive photodetector for the observation of faint optical 
 signals from an IR cell.-

      In the previous paper,10> the authors have reported an IR cell assembly for the 
   commercial double-beam type spectrophotometer. In this paper, the authors have 

  developed a rapid scan internal reflection spectroscopic system using a multi-channel 

  photodetector and a micro-computer, and report here about its instrumentation and 
  some basic examinations of the IR cell in terms of a typical reversible redox couple of 

  ferro/ferricyanide. 

ta±>'=~, JNjth* tsC,i7Ct— IS: Department of Chemistry, Faculty of Science, Kyoto University, 
       Sakyo-ku, Kyoto 606. 
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                                EXPERIMENTAL 

        Reagents and Instruments 

            Reagents: All chemicals usedwere of analytical reagent grade. Sample solutions 

        were prepared freshly with twice distilled water. 

            Instruments: A rapid scan internal reflection spectroscopic system is composed of the 

        following three divisions: (1) A single-beam type spectrophotometer with an accessary 

        optical assembly equipped with an IR cell, (2) An optional electrolysis device of a PAR 

        Potentiostat Model 173 with a Digital Coulomb Counter Model 179 and a Nikko Keisoku 

        Potential Sweeper NPS-2, which imposes an electrochemical perturbation on the OTE, and 

        (3) A micro-computer system, Union Giken System 77, which controls a photodetector, 
        and also processes the experimental data. 

            Figure 1 illustrates a block diagram of the system manufactured by Union Giken 

        Co. Ltd., Osaka, in which "PS" is a DC Power supply for a light source, "LS" of 50W 

        tungsten lamp, "IRC" is an IR cell, and "M" is a monochromator of a diffraction grating. 

        The monochromatic light is detected by a photomultiplier, "PMT" or a multi-channel-

        photodetector, "MCPD". One of the notable features of this system is the use of the 
        MCPD in order to obtain a dynamic spectrum of the electrode — solution interface. The 

        MCPD consists of a one-dimensional array of 256 pieces photodiodes, and instantaneously 

        offers an IR spectrum for any 92 nm in the visible region, which is processed by a micro 

        processing unit, "MPU" through an analog-to-digital converter "A/D" and then plotted 
        on an X-Y recorder, "R". The PMT is used for the observation of the reflectivity 

        changes at a constant wavelength corresponding to the potential change, which is recorded 

        directly with a National Pen Recorder VP-6431A. 
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                  Fig. I. Block diagram of internal reflection spectroscopic system. 
PS : power supply, LS : light source, IRC : IR cell, M : monochromator, 
PMT : photomultiplier, MCPD : multi-channel photodetector, A/D : 

                          analog-to-digital converter, MPU: micro-processing unit, R: X-Y 
                          recorder, T : trigger circuit, POT : potentiostat with potential scanner. 

        The electrochemical perturbation applied to the IR cell is performed in one of two 

        ways, i. e., a potential step mode or a linear sweep mode, which is synchronized with 

        data acquisition through a trigger circuit, "T". 

            An accessary optical assembly and the IR cell are shown in Figs. 2 and 3, respectively. 

        White light beam radiated from a tungsten lamp, after being collimated and slitted, is 

        incidented to a total reflection plate, "TRP" in the IR cell at an incidence angle of 70° 

        using each pair of mirrors and semi-circular prisms. Thus, the total reflection takes place 

        ten times at the interface between the total reflection plate and the electrolyte solution. 

                                 (212)
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                  Fig. 2. Scheme of accessary optical assemembly. 
LS : light source, IRC: IR cell, M : diffraction grating, PMT 
photomultiplier, MCPD: multi-channel photodetector. 
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                 Fig. 3. Multi-reflection type internal reflection cell. 
                        Ref. E : Ag/AgC1 reference electrode, Aux. E : Pt coil counter 

                        electrode, TRP: total reflection plate. 

    Then the light beam is monochromated by the diffraction grating, and the monochromatic 

    light is detected by the PMT or the MCPD. 

        Though the IR cell designed here is similar in principle to the one by Kuwana et 

al.7-9', the overall arrangement is quite different as seen in Fig. 3, i. e., the total reflection 

    plate is laid at the bottom of the cell, and semi-circular prisms are used. . In order to 
    lead the light beam smoothly, small amounts of liquid paraffin are impregnated between 

    the plate and upper planes of the prisms. A gold gasket serves as an electrical lead to 

    the OTE. A cell body is made of black diflon, and the other materials are aluminum 

    with burn black surface. The OTE consists of a quartz glass plate (21 x 81 mm square 
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         and 1 mm in thickness) coated with tin oxide on the upper surface, which is supplied 
         by Iwaki Glass Co. Ltd. 

                             RESULTS AND DISCUSSION 

        1) Classical Internal Reflection Spectroscopy 

            In order to characterize the IR cell used, the classical IR spectra of potassium 

          permanganate were observed, as shown in Fig. 4, using a quartz plate as a total reflection 
         plate over a concentration range from 0. 02 M to 0. 10 M in 0. 32 N sulfuric acid solu-

         tion. Each spectrum has four absorption maxima at 509, 528, 546, and 568 nm, which 

          correspond to those of a conventional transmission spectrum. Exactly speaking, however, 
         the longer the wavelength becomes, the more the reflection absorbance increases owing 

         to the increase of the path length of the IR cell in proportion to the wavelength, as 

         described in the previous paper.10) Figure 5 indicates the linear relations between the 
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                  Fig. 4. Classical internal reflection spectra of potassium permanganate in 0.32 
                          N sulfuric acid solution. 
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                   Fig. 5. Relationships between the reflection absorbance and the concentration 
                         for the spectra in Fig. 4. 
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       reflection absorbance at each maximum and the concentration of permanganate, which 

       verify Beer's law in the  IR spectroscopy as given by Eq. (1).') 

A=s •n•3•C...... (1) 

       where, A is the reflection absorbance, e is the molar extinction coefficient, 8 is the path 

       length for the IR cell, n is the number of the total reflections, which was ten times in 
       this work, and C is the concentration of a light absorbing species. The average path 

       length was estimated according to Eq. (1) as 2500 A at 524 nm per one total reflection. 

      2) Internal Reflection Spectroscopy Using OTE without electrochemical Perturbation 

          Figure 6 illustrates the IR spectra of potassium permanganate using a tin oxide coated 

      glass and the MCPD, over the concentration range from 0. 02 M to 0. 10 M in 0. 32 N 
       sulfuric acid solution. Three absorption maxima inherent in permanganate were observed 

       at 528, 546, and 568 nm. However, the absorption maximum at 509 nm was not observed, 

       which was observed in the classical IR spectrum, because the light intensity in this region 

       decreased extremely owing to the interference of the tin oxide layer of the OTE. 

           Linear relationships between the reflection absorbance at each maximum and the 
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                Fig. 6. Internal reflection spectra of potassium permanganate in 0. 32 N sulfuric 
                      acid solution using OTE as total reflection plate. 
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                Fig. 7. Relationships between the reflection absorbance and the concentration 
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    concentration of permanganate were obtained as shown in Fig. 7, though they did not 

    pass the origin but converged upon one point on the ordinate. Therefore, it is confirmed 
    that OTE cell also satisfies Beer's law defined by Eq. (2) in analogy with in classical IR 

spectroscopy.1' " 

A=N,ff•e•n•S•C...... (2) 

    where, Ne ff is a sensitivity factor characteristic of the type of the OTE.9' 11 The Neff 
    value for the tin oxide coated glass at 524 nm was about 0. 36 times that of the classical 

IR spectroscopy. 

   3) Application of the Internal Reflection Technique for Monitoring the electrode 
       Process 

       The parameter 5 in Eqs. (1) and (2) means not only the path length in a conven-
    tional meaning, but also to the depth of the vertical distance from the electrode surface to 

    the bulk solution. The 3 value for this spectroscopy is estimated so small as ca. 2000 A, 
   that the method is applicable particularly to the optical identification of the electrode 

    reaction products at the vicinity of the electrode surface. The technique was examined 
    in terms of a reversible electrode reaction of ferro/ferricyanide in potassium chloride 

solution.12' The changes of the reflectivity at 420 nm were monitored continuously 
    during the anodic or the cathodic potential step. Figure 8 illustrates the anodic oxidation 

    of ferrocyanide ions, where the upward arrows indicate the anodic potential steps from 
    0. 15 V to 0. 80 V vs. Ag/AgCI, and the downward arrows show the reverse steps from 
    0. 80 V to 0. 15 V. Figure 9 illustrates the cathodic reduction of ferricyanide ions, where 

    the upward arrows show the cathodic steps from 0. 80 V to 0. 15 V and the downward 
    arrows show the reverse steps. 

       In the cases of low concentration of the depolarizers, the reflectivities at both steps 
    of the oxidation and reduction attained to the steady-state values within a few seconds. 

    According to Kuwana et al.,s's' the behavior of the reflectivity against time at the 
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             Fig. 8. Potential response of the reflectivity for the oxidation and re-reduction 
                    of ferrocyanide in 2.5 M potassium chloride solution. 

                   Concentration of ferrocyanide ; (a) : blank, (b) : 20 mM, (c) : 100 mM, 
wavelength : 420 nm, potential step : 0. 15 V -> 0.80 V -' 0. 15 V vs. 
Ag/AgC1. 

( 216 )



                          A Rapid Scan Internal Reflection Spectroscopic System 

         010110\11 

                              w 

                   > 

                                0.38°I°0.38°I°. 0.94°I° 

                           cc 

mink— 

                   ( a ) ( b)( c ) 

                  Fig. 9. Potential response of the reflectivity for the reduction and re-oxidation 
                        of ferricyanide in 2.5 M potassium chloride solution. 

                      Concentration of ferricyanide ; (a) : blank, (b) : 20 mM, (c) : 100 mM, 
wavelength : 420 nm, potential step : 0. 80 V --> 0. 15 V -> 0. 80 V vs. 
Ag/AgCI. 

        chronoamperometric perturbation, i. e., the potential step method, for the reversible 
        electrode reaction was described as follows: In the case of the colored electrode pro-

         duct,* 

                        Aferri =sferri • n•13,11 • Orerro • (D ferro/D ferri)1/2 
x [1—exp(a2•t) •erfc(a.t112)]...... (3 ) 

        Under the condition of t>1 millisecond, Eq. (3) is abbreviated to,

•Aferri =e ferri • n • beff •CrerroD1/2...... ( 4 )                                                (ferro/Dferri) 

        where, C° and D have their usual meanings, b, f f= 8 • N, f f, a= Df ;ri/i, and t is time after 
        the potential step. On the other hand, when the depolarizer loses its color, the behavior 

        is represented in the reverse way as given in Eq. (5), 

Aferr1=31erri•n•b,11•Cterri exp(a2•t) •erfc(a•t"2)...... ( 5) 

       Then the change of the reflection absorbance from the initial value is given by Eq. (6) 

Aferri=Afina:—Ainiiiat=—tferri•n•beff•Cferri...... ( 6 ) 

where the minus sign indicates the increase of the reflectivity at the electrode surface 
        by the electrochemical perturbation. The potential response of the reflectivity in Figs. 

        8 and 9 agrees with Eqs. (3) and (5), respectively, except that the response time is 

        considerably longer than that expected from these equations, 1 millisecond. It can 'be 
        said that these relaxation effects are attributed to the time lags caused by the slow 

        potential rise at the electrode surface due to the resistivity of the tin oxide layer of the 
         OTE, i. e., 200 ohms. 

           The response behavior of the reflectivity at the reduction of ferricyanide ions was 

           * In these equations, the reflection absorbance is correlated with the reflectivity as follows ; under 
            the condition of R,>)'4R; A=dR/Re=(1—R)/Re, where R and Re are the reflectivities of colored 

             and colorless species at the electrode surface, respectively. 

( 217 )



                         T.  HINOUE, S. OKAZAKI and T. FUJINAGA 

                                                            • 0.02—v0.02— 

      • O• 
                                    A 

C`p 
OUf 

   •• 

     N 

 Q0.01—2C0.01— 

                                                                                                                                 • 

     C o 

W N'•cc• 
    Ci 
c 
  0.00 I i I I 0.00 II I  

       0.00 0.02 0.04 0.06 0.08 010Q00 0.02 004 0.06 0.08 0.10 
         Concentration of K4Fe(CN)6(M)Concentration of K3Fe(CN)6 (M ) 

  Fig. 10. Relationships between the reflection Fig. 11. Relationships between the reflection 
          absorbance and the concentration ofabsorbance and the concentration of 

         ferrocyanide in 2.5 M potassiumferricyanide in 2.5 M potassium 
       chloride solution.chloride solution. 

slower than that of the oxidation of ferrocyanide. This was more significant in the 

case of the high concentration 'of the depolarizer; curves(C) in Figs. 8 and 9. These 

phenomena are ascribed simply to the fact that the overpotential at the cathodic step 
becomes less and less sufficient owing to the negative shift of the half-wave potential of 

ferricyanide, i. e., 0. 286 V vs. Ag/AgCI for 40 mM and 0. 257 V for 100 mM ferricyanide 

(see in Fig. 14), and the cathodic limitation of the accessible potential range of tin oxide 
OTE at 0. 10 V us. Ag/AgCI, at which tin oxide is reduced to tin metal. 

    Figures 10 and 11 show the linear relationships between the concentration of ferro/ 

ferricyanide ions and their reflection absorbance calculated from the steady-state values 

of the reflectivities as expected by Eqs. (4) and (6). Small changes in the reflectivity 

were observed even for the blank solutions of 2. 5 M potassium chloride by both anodic 

and cathodic potential steps as shown in curves (a) in Figs. 8 and 9. These phenomena 

are considered to be due to the change of the electric state in the tin oxide layer in 

the OTE.1" 

4) Spectro-potentiograms with the Internal Reflection Cell 

    It is interesting to obtain the dynamic profile of the reflectivity — potential relation on 

the basis that the reflection absorbance is corresponding directly to the surface concen-

tration of the depolarizer. Figure 12 illustrates the reflectivity — potential curve of 20 mM 

potassium ferrocyanide in 2. 5 M potassium chloride solution, which corresponds to a 
current — potential curve in polarography. A plot of log[(AR),—dR]/dR vs. E, a wave 
analysis in the similar manner as in polarography"), gives a straight line with a slope of 

75 mV and the half-wave potential of 0. 336 V vs. Ag/AgCI as shown in Fig. 13. The 

limiting reflectivities (4R), of spectro-potentiograms for ferro/ferricyanide ions were 

proportional directly to their concentration in the manner similar to that in the reflection 
absorbance - concentration relationships of Figs. 10 and 11. 

    From the results of the wave analyses of the spectro-potentiograms of ferro/ferri- , 

cyanide ions shown in Fig. 14, it is found that their half-wave potentials shift to the more 

anodic/or cathodic direction, and their log-plot slopes increase with increasing concentra- 
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                    Fig. 12. Reflectivity vs. potential profile for the oxidation of 20 mM potassium 

                            ferrocyanide in 2.5 M potassium chloride solution. 
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                    Fig. 13. Plot of log{[(JR),—dR]/dR} vs. E for the spectro-potentiogram in 
                             Fig. 12. 

           tion of ferro/ferricyanide ions. In the case of the reduction of ferricyanide, the above 
           concentration effects seem to be attributed simply to the it-drop caused by the increment 

           of the electrolysis current. Therefore, the corrected half-wave potential of ferricyanide, 
0. 305 V vs. Ag/AgCI obtained by extrapolating the E112 — C plot to zero concentration of 

          ferricyanide, agrees well with the mean value (0. 31 V) of the cathodic (0. 35 V) and 
           anodic (0. 27 V) peak potentials of the cyclic voltammogram of 1 mM ferrocyanide in 

           2. 5 M potassium chloride solution. And also the corrected log-plot slope, 60 mV suggested 
           that the electrode process of the reduction of ferricyanide ions may be reversible. 

           However, the oxidation process of ferrocyanide ions seems to be rather complicated, even 
           though the effects of it-drop are corrected, that is, the shift of the half-wave potential 

           is not linear with the concentration of ferrocyanide ions, but becomes very large in the 
           concentration range higher than 60 mM. This result seems to suggest the higher-order 

           association of forrocyanide with potassium cations in the high concentration range of 100 
           mM: In this study, the concentrations of ferro/ferricyanide were taken to be so high in 
           order to obtain detectable changes in the reflectivity. The major species in the solution 
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   seem to be the species associated with at least one potassium cation.14' 

  5) Rapid Scan Internal Reflection Spectra of Electrogenerated Species 

      One of the notable advantages of this system is the use of the MCPD, that is to 

  say, IR spectra of electro-oxidation/reduction products can be observed in situ. Figure 

   15 illustrates the IR spectra of electro-oxidated species of 0. 1 M ferrocyanide in 2. 5 M 

   potassium chloride solution at various electrode potentials, which are similar to the 
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           Fig. 15. Rapid scan internal reflection spectra of electrooxidation products of 
                   ferrocyanide at various potentials. . 
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          conventional transmission spectrum of ferricyanide shown by a dotted line. In general, an 

          IR spectrum cannot be compared directly with the conventional transmission spectrum, 

          because the path length in the  IR spectroscopy is proportional to the wavelength, and 

          moreover N,11 cannot be estimated exactly.15' However, it can be said that the path 
          length is compensated relatively, and the N,11 value is assumed to be constant in the 

          experimental region of the wavelength, judging from the fact that any interference 

          pattern due to the tin oxide layer is not observed in this region.15' The half-wave 

          potential and the log-plot slope obtained from the wave-analysis at any wavelength agree 
          with those obtained from the spectro-potentiogram in the same concentration, 100 mM 

          of ferrocyanide solution. 

             This rapid scan internal reflection spectroscopic system is going to be improved in 
          sensitivity by the use of more effective computer techniques and will be presented 

           elsewhere. 
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