Screening of Type II Restriction Endonucleases

I. Isolation and Characterization of Enzymes from Fifteen Bacterial Strains

Hiroyuki Sugisaki*, Yoshihiko Maekawa*, Susumu Kanazawa* and Mituru Takanami*

Received September 7, 1982

One hundred and forty-seven bacterial strains were surveyed for the presence of type II restriction endonucleases, and eighteen species of enzymes were successfully isolated from fifteen strains in which enzyme activities were identified. Based on analysis of the restriction patterns generated from viral and plasmid DNAs and of the sequences around the cleavage-sites, four of enzymes named *AatII*, *BanII*, *FokI* and *MluI* were found to have new specificities. The remaining fourteen enzymes, named *AatII*, *AtuIAMI*, *BanII*, *BanIII*, *BprI*, *EcoICRI*, *GglI*, *GinI*, *MauI*, *PaiI*, *PanI*, *PfII*, *PpuI*, and *SpaI*, were isoschizomers of known enzymes.

KEY WORDS: Restriction endonuclease/ Recognition sequence/ Isoschizomer

I. INTRODUCTION

Type II restriction endonucleases are a class of enzymes which introduce doublestranded cleavages at unique sites of DNA by recognizing specific sequences. This type of enzymes have only been identified in bacterial strains and their specificities are known to be strain-specific. Since the collection of different enzymes is of course advantagenous for gene cloning and DNA dissection, many bacterial strains have extensively been surveyed during the last several years, and more than seventy species of enzymes with different specifities have now been isolated.^{1,2)} The recognition sequences of these enzymes are limited to tetra- to hexa-nucleotides, and most of them have two-fold rotational symmetry. Assuming that enzymes corresponding to all possible sequences of tetra- to hexa-nucleotides with such palindromic structures are present in microorganisms, the number of enzymes are expected to be more than one hundred fifty. Based on this assumption, we carried out screening of new enzymes on bacterial strains which have not been examined yet. As a consequence, we identified enzyme activities in fifteen strains out of one hundred forty-seven strains examined. Enzymes were purified from respective strains and their cleavage-site specificities were analyzed.

II. MATERIALS AND METHODS

Bacterial strains and culture conditions

The sources and strain names used for screening are listed in Table I. Acetobacter

^{*} 椙崎 弘幸, 前川 宜彦, 金沢 進, 高浪 満: Research Facility for Nucleic Acids, Institute for Chemical Research, Kyoto University, Uji, 611.

and *Gluconobacter* strains were obtained from Dr. T. Tochikura of Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, some of *Pseudomonas* and *Streptomyces* strains from Toyoboseki Co., and all other strains from Dr. K. Soda of this Institute, respectively. The compositions of culture media were as follows:

a) Acetobacter and Gluconobacter strains; 0.5% glucose, 1.5% glycerol, 0.5% yeast extract, 0.5% bacto-tryptone, and 0.1% malt-extract (pH 7.2).

b) Lactobacillus and Streptococcus strains; 0.85% yeast extract, 1.1% glucose, 0.2% KH₂PO₄, 10% tomato juice, 0.1% Tween 80 and 2% CaCO₃ (pH 7.2).

c) Micrococcus, Mycobacterium, Pseudomonas and Serratia strains; 1% meat extract, 1% bacto-tryptone, 2% glucose and 5% NaCl (pH 7.0).

d) Streptomyces strains; 2% nutrient broth (Difco), 0.2% yeast extract, 0.8% NaCl, and 0.5% glucose (pH 7.2).

e) All other strains; 1% bacto-tryptone, 0.5% yeast extract, 0.5% NaCl and 0.1% glucose (pH 7.2).

Strains were grown at either 30°C (a to e) or 37°C (c and e) to a late logarithmic phase by vigorous shaking in a NBC-rotary shaker. The cells were then harvested by centrifugation, washed once with buffered saline and stored at -70°C.

Viral and plasmid DNAs and other enzymes

Phage T4dC and lambda DNAs and plasmids, pAO2, pAO43 and pBR322, were prepared as in the previous paper.^{3,4)} Phage ϕ X174 RF-I and SV40 DNAs were purchased from Bethesda Research Laboratories. The sources of other enzymes used for restriction and sequence analyses have been described previously.⁵⁾

Purification of enzymes

Purification of enzymes was carried out by the procedures essentially identical to those previously used.^{3~5} Ten grams of the frozen cells were suspended in 50 ml of 0.05 M tris-HCl (pH 7.5) and 2 mM 2-mercaptoethanol, disrupted by sonication in a Tomy Ultrasonic Disruptor and centrifuged for 60 min at 30,000 rpm in a Spinco 50Ti rotor. The high-speed supernatant was made 0.1 M NaCl, and then a 10%stock solution of polyethyleneimine, dissolved in water and neutralized, was added to 1%. The precipitate containing mostly nucleic acids was removed by centrifugation, and to the supernatant was added solid ammonium sulfate to 70% saturation. The resulting precipitate was collected by centrifugation, dissolved in 0.01 M potassium phosphate buffer (0H 7.5) and 1 mM 2-mercaptoethanol, and dialyzed against the same buffer. The solution was applied on a phospho-cellulose column (Whatman, $1 \text{ cm} \times 20 \text{ cm}$) and chromatographed with a linear gradient of KCl, and type IIenzyme activities were assayed. The active fractions were applied on a DE52-cellulose column (Whatman, $1 \text{ cm} \times 15 \text{ cm}$) and chromatographed with a linear gradient of KCl. Further purification of enzymes was carried out by heparin-agarose column chromatography.⁶⁾

Assay of enzyme activities

One to five μ l of fractions were added to 30 μ l reaction mixtures containing 0.01 M tris-HCl (pH 7.5), 7 mM MgCl₂, and 1 μ g of viral or plasmid DNAs. After

incubation for 30 min to 2 hrs at 37°C, reaction was terminated by adding 5 μ l of 0.05 M EDTA, 15% Ficoll and 0.02% bromophenol blue. The solutions were electrophoresed for 2 to 4 hrs at 10 V/cm on horizontal slab gels of 1% agarose, dissolved in 90 mM tris-borate buffer (pH 8.3), 2.5 mM EDTA and 0.5 μ g/ml ethidium bromide.

Nucleotide sequence determination

Sequence analysis was carried out by the method of Maxam and Gilbert.⁷⁾ The two dimensional mobility-shift method, which uses electrophoresis and homochromatography, was applied for identification of unique 5'-terminal sequences in a mixture of restriction fragments.⁸⁾ The 5'-terminal nucleotides were analyzed as described earlier.³⁾

III. RESULTS AND DISCUSSION

For the primary screening of enzymes, about 1 g of frozen cells were suspended in 10 ml of tris-HCl (pH 7.5)81 mM 2-mercaptoethanol, disrupted by a sonicator, and centrifuged for 60 min at 30,000 rpm. The cleared supernatant was directly applied onto a small phospho-cellulose column ($0.5 \text{ cm} \times 1 \text{ cm}$), equilibrated with potassium phosphate buffer (pH 7.5)-1 mM 2-mercaptoethanol-5% glycerol (buffer A). After washing the column with 5 ml of buffer A, adsorbed proteins were eluted with 2 ml of 1 M KCl in buffer A. The flow-through fraction and 1 M KC:-eluate were submitted for assay of type II-enzyme activities. All the strains listed in *Table I* were examined by this way, and enzyme activities were detected in fifteen strains.

As the next step, the extracts from the respective strains, in which some enzyme activities were detected, were fractionated by phospho-cellulose column chromatography and enzyme activities in fractions were assayed. The activities in some strains were resolved into two or three different enzymes. The active fractions which generate unique restriction patterns were pooled, and purified by DEAE-cellulose and heparin-agarose columns chromatography. The respective enzymes were con-, centrated by dialysis against buffer A containing 50% glycerol, and named according to the nomenclature by Smith and Nathans.⁹⁾

Viral and plasmid DNAs (pBR322, pAO2, pAO43, ϕ X174 RF-I, SV40, lambda, and T4dC DNAs) were digested with respective enzymes and the resulting restriction patterns were compared with those of known enzymes. The 5'-terminal sequences of restriction fragments were also analysed. The results of analysis are summarized in *Table I*. Among the eighteen enzymes isolated, *Aat*II from *Acetobacter aceti* IFO 12536, *Ban*II from *Bacillus aneurinolyticus* IAM1077, *Fok*I from *Flavobacterium okeanokoites* IFO12536 and *Mlu*I from *Micrococcus luteus* IFO12992 were found to have new specificities. The detailed data for the specificities of these enzymes have been published elsewhere.^{4,10)} The remaining fourteen enzymes were isoschizomers of known enzymes.

We could identify type II enzyme activities only in fifteen strains out of one hundred forty-seven strains examined, but this does not mean that other strains are lacking in this type of enzymes. In our screening procedure, we first fractionated extracts into the adsorbed and non-adsorbed fractions by phospho-cellulose. In

Screening of Type II Restriction Endonucleases

Bacteria	Sources		Enzymes	Specificity		
Acetobacter aceti	IFO	3281	Aat I	AGG↓CCT	isoschizomer of Stu I (11)	
			Aat II	GACG↓T	new enzyme (10)	
Acetobacter ascendens	IFO	3188	—			
Acetobacter kuetzingianus	IFO	3222	-			
Acetobacter melanogenes	IFO	3293	—			
Acetobacter tubidans	IFO	3225				
Achromobacter georgioplitanum	ATCC	23203	_			
Achromobacter obae	ICR	0870				
Achromobacter polymorph	ICR	0880	-			
Achromobacter superficialis	ICR	0890				
Acinetobacter species	TOYC)BO				
Aerobacter aerogenes	AKU	028	·			
Aerobacter aerogenes	IFO	3220				
Agrobacterium randiobacter	IAM	1526				
Agrobacterium tumefaciens			Atu IAMI	?		
0			11 14144	•		
Alcaligenes brookeri	IFO	12948	_			
Alcaligenes faecalis	IAM	B-141	terms .			
Alcaligenes faecalis	IFO	3160				
Alcaligenes viscolactis	IAM	1517				
Arthrobacter atrocyaneus	IFO	12670	_			
Arthrobacter ureafaciens	IAM	625				
Bacillus amyloliquefaciens K-50	TOYC	BO				
Bacillus aneurinolyticus	IAM	1077	Ban I	C↓GPyPuCC	isoschizomer of Hgi CI (1)	
			Ban II	$GPuGCPy{\downarrow}C$	new enzyme (10)	
			Ban III	AT↓CGAT	isoschizomer of Cla I (12)	
Bacillus circulans	ICR	1560				
Bacillus licheniformus	IFO	12200	—			
Bacillus licheniformus	IAM	11054				
Bacillus mesentericus var. flavus	IFO	3028				
Bacillus reseus Migula	IFO	3041	_			
Bacterium mycoides	IFO	3040	_			
Brevibacterium ammoniagenes	IFO	12071	-			
Brevibacterium ammoniagenes	IFO	12072	-			
Brevibacterium divaricatum	NRRL	2311	—			
Brevibacterium linens	IFO	12141				
Brevibacterium linens	IFO	12147				
Brevibacterium protophormiae	IFO	12128	Bpr I	?		
Cellulomonas flavigena	IFO	3747	-			
Cellulomonas flavigena	IFO	3754	<u>.</u>			
Cellulomonas flavigena	IFO	12680	_			
Corynebacterium michiganse	ICR	2211				

Table I. Bacterial strains assayed for the presence of type II restriction endonucleases

Corynebacterium sepedonicus	ICR	2200			
Corynebacterium xerosis	IFO	12684			
Erwinia aroideae	IFO	3830	_		
Erwinia carotovora	IFO	3057			
Escherichia coli crookes	ICR	0010			
Escherichia coli E8	ICR	0030			
Escherichia coli E9	ICR	0040			
Escherichia coli 2bT	ICR	0020	Eco ICRI	GAGCTC	isoschizomer of Sst I (13)
Escherichia coli freudii S-96	ICR	0070	<u>*</u>		
Flavobacterium arborescens	IAM	1100	—		
Flavobacterium lutescens	IFO	3084			
Flavobacterium lutescens	IFO	308 5			
Flavobacterium marginata	IFO	3066			
Flavobacterium okeanokoites	\mathbf{IFO}	12536	Fok I	GGATG	new enzyme (4)
Flavobacterium suavealens	IFO	3752			
Gluconobacter gluconicus	IFO	3285	Ggl I	?	н 1
Gluconobacter industricus	IFO	3260	Gin I	GGATCC	isoschizomer of Bam HI (14, 15)
Gluconobacter liquefaciens	IFO	12388	_		
Gluconobacter suboxydans	IFO	3130	<u> </u>		
Gluconobacter suboxydans	IFO	3172			
Gluconobacter suboxydans var. α	IFO	3254	<u> </u>		
Lactobacillus acidophilus	IFO	3205	_		
Lactobacillus arabinosus	IFO	3070			
Lactobacillus bulgaricus	IFO	3533			
Lactobacillus delbrueckii	IFO	3202			
Lactobacillus delbrueckii	IFO	3534			
Lactobacillus fermentum	IFO	3071	—		
Micrococcus aurantiacus	IFO	12422	Mau I	CTGCAG	isoscizomer of Pst I (16)
Micrococcus flavus	IFO	3242	_		
Micrococcus glutamicus	ATCC	13032			
Micrococcus luteus	IFO	3064			
Micrococcus luteus	IFO	12992	Mlu I	A↓CGCGT	new enzymes (4)
Micrococcus luteus	ICR	1850	_		
Micrococcus lysodeikticus	IFO	3333			
Micrococcus roseus	IFO	3764			
Micrococcus species	AKU	510	—		
Micrococcus species	AKU	520			
Micrococcus varians	IFO	3765			
Mycobacterium avicem	IFO	3082			
Microbacterium smegatis	IFO	3083			
Nocardia erythropolis	IFO	12320	_		
Nocardia erythropolis	IFO	12682			
Nocqrdia mexicana	IFO	3973	_		
Pediococcus homari	IFO	12218			
Proteus retgeri	ICR	0650	_		
-			(

Screening of Type I	Restriction	Endonucleases	
---------------------	-------------	---------------	--

			•		
Pseudomonas aeruginosa	IFO	3080			
Pseudomonas aeruginosa	IFO	3445			
Pseudomonas aeruginosa	IFO	3919			
Pseudomonas aeruginosa	ICR	3250			
Pseudomonas aeruginosa	TOYO	BO			
Pseudomonas alkaligenes	ATCC	12815	Pai I	GGCC	isoschizomer of Hae III (17
Pseudomonas alkanolytica	IFO	12319	Pan I	$C\downarrow TCGAG$	isoschizomer of Xho I (18)
Pseudomonas convexa (Chester)	IFO	3773			
Pseudomonas cruciviae	ATCC	3 115	—		
Pseudomonas decanhae	IAM	1048	—		
Pseudomonas destrolytica	IFO	12570			
Pseudomonas diminuta (Leifson)	IFO	12697	—		
Pseudomonas fluorescens	IFO	3081	-		
Pseudomonas fluorescens	IFO	3507	Pfl I	?	
Pseudomonas fluorescens	IAM	1057			
Pseudomonas groveolons (taetrolens)	IFO	3460	_		
Pseudomonas iodium	IFO	3558	_		
Pseudomonas maltophila	IFO	12690			
Pseudomonas marginalis	IFO	3925	_		
Pseudomonas ovalis	IFO	3738			
Pseudomonas ovalis					
Pseudomonas polycolor	IFO	3918	'		
Pseudomonas putida	ATCC	12533			
Pseudomonas putida C-83	тоуо	BO	Ppu I	GGCC	isoschizomer of Hae III (17
Pseudomonas putida C-175	TOYO	BO	-		
Pseudomonas riboflavina (Foster)	IFO	3140			
Pseudomonas salanacerium	IFO	3509	_		
Pseudomonas striata	IFO	12996			
Pseudomonas stutzeri	IFO	12695	_		
Pseudomonas syncyanae	IFO	3757			
Pseudomonas synxantha	IFO	3757			
Pseudomonas species AK-LPL-7	тоуо	BO			
Pseudomonas tobaci	IFO	3508			
Causing automation	IFO	2046			
Sarcina aurantiaca	IFO	3046			
Sarcina lutea	IFO	3232			
Sarcina lutea	IFO	1099			
Serratia marcescens	IFO	3046	-		
Serratia marcescens	IFO	3054			
Serratia plymuthium	IFO	3055	_		
Staphyrococcus aureus	IFO	3082			
Staphyrococcus faecalis	IFO	3181			
Staphyrococcus faecalis	IFO	3826			
Staphyrococcus lactis	IFO	2546			
Streptomyces adorifer	ATCC	6246			
Streptomyces albus	IFO	3418			
Streptomyces albus	IFO	3422			
Streptomyces albus	IFO	3710			

Streptovertici	llium netropsis	IFO	12893			
Streptovertici	llium netropsis	IFO	3723	_		
Streptomyces	rochei	IFO	12908			
Streptomyces	resistamyceficus	ATCC	19807			
Streptomyces	resistsmyceficus	ATCC	19804			
Streptomyces	purpeofusoeus	IFO	12905			
Streptomyces	phaeochromogenes	IFO	3108	Spa I	GCATGC	isoschizomer of $Sph I$ (19)
Streptomyces	parourascens	IFO	13077			
Streptomyces	microflavus	IFO	13062			
Streptomyces	longisporus	ATCC	14697			
Streptomyces	intermedius	ATCC	3329			
Streptomyces	griseus	IAM	0084			
Streptomyces	flaveolens	IAM	0005			
Streptomyces	cellulosae	IFO	3713			
Streptomyces	caudidus	ATCC	13077			
Streptomyces	albus	IFO	13011	—		

Footnotes to Table:

 Abbreviations for the sources of strains. AKU: Faculty of Agriculture, Kyoto University, ATCC: American Type Culture Collection, Rockville, Maryland, USA., IAM: Institute for Applied Microbiology, University of Tokyo, ICR: Institute for Chemical Research, Kyoto University, IFO: Institute for Fermentation, Osaka, NRRL: Northern Utilization Research and Development Division, US Department of Agriculture, Peoria, Illinoi, USA, TOYOBO: Toyoboseki Co.

2. Recognition sequences are written from 5' to 3', only one strand being given, and when known, the site of cleavage is indicated by the arrow.

3. Mode of cleavage of Fok I is as follows: (5') ... GGATG NNNNNNNN

(3') ... CCTAC NNNNNNNNNN↑

this fractionation, cellular DNA and RNA and most of proteins including non-specific nucleases are recovered in the flow-through (non-adsorbed) fraction, and this would make it difficult to detect activities of specific enzymes in the fractions. It is quite likely that we are missing enzymes with poor affinity toward phospho-cellulose. Nevertheless, we could isolate eighteen species of enzymes in which four were found to be new enzymes. A common cloning vector pBR322 contains a single cutting site of *AatI* in the upstream region of the *bla* gene, and two cutting sites of *BanII*, but separated by fourteen base-pairs, in the *tet* gene. *MluI* does not cleave this plasmid. *FokI* was a new type of enzyme which generates a protruding 5'-end of four nucleotides at the site nine nucleotides downstream from the recognition sequence. These enzymes would become powerful tools for gene engineering. The rmeaining fourteen enzymes were isoschizomers of known enzymes, but some of enzymes (*e.g. EcolICRI*, *BanI*, *SpaI*, *GinI*, *AatI*, *MauI* and *GglI*) were very high in yields and could be easy to purify. Some of the originally repored enzymes may be replaced by these enzymes.

ACKNOWLEDGEMENTS

We thank Dr. H. Takahashi of Institute of Applied Microbiology, University of Tokyo, Dr. T. Tochikura of Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, and Dr. K. Soda of this Institute for providing various bacterial strains. This work was supported by Research Grants from the Ministry of Education, Science, and Culture of Japan.

REFERENCES

- (1) R. J. Roberts, Nucleic Acids Res., 9, r75-r96 (1981).
- (2) R.J. Roberts, Nucleic Acids Res., 10, r114-r144 (1982).
- (3) H. Sugisaki, Gene, 3, 17-28 (1978).
- (4) H. Sugisaki and S. Kanazawa, Gene, 16, 73-78 (1981).
- (5) M. Takanami, Methods in Molec. Biol., 7, 113-133 (1974) (Ed., R. B. Wickner, Marcel Dekker, New York).
- (6) T. A. Bickle, V. Pirrota, V. and R. Imber, Nucleic Acids Res., 4, 2561-2572 (1977).
- (7) A. Maxam and W. Gilbert, Proc. Natl. Acad. Sci. USA, 74, 560-564 (1977).
- (8) E. Jay, R. Bambara, R. Padmanabban and R. Wu, Nucleic Acids Res., 1, 331-353 (1974).
- (9) H.O. Smith and D. Nathans, J. Molec. Biol., 81, 419-423 (1973).
- (10) H. Sugisaki, Y. Maekawa, S. Kanazawa and M. Takanami, Nucleic Acids Res., 10, 5747-5752 (1982).
- (11) H. Shimotsu, H. Takahashi and H. Saito, Gene, 11, 219-225 (1980).
- (12) H. Mayer, R. Grosschedl, H. Schutte and G. Hobom, Nucleic Acids Res., 9, 4833-4845 (1981).
- (13) S. P. Goff and A. Rambach, Gene, 3, 347-352 (1978).
- (14) G.A. Wilson and F.E. Young, J. Molec. Biol., 97, 123-125 (1975).
- (15) R. J. Roberts, G. A. Wilson and F. E. Young, Nature, 265, 82-84 (1977).
- (16) D. I. Smith, F. R. Blattner and J. Davies, Nucleic Acids Res. 3, 343-353 (1976).
- (17) J. H. Middleton, M. H. Edgell and C. A. Hutchison, J. Virol., 10, 42-50 (1972).
- (18) T. R. Gingeras, P. A. Myers, J. A. Olson, F. A. Hamberg and R. J. Roberts, J. Molec. Biol., 118, 113-122 (1978).
- (19) L. Y. Fuchs, L. Covarrubias, L. Escalante, S. Sanchez and F. Bolivar, Gene, 10, 39-46 (1980).