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   A two body transition amplitude in nuclear reaction is obtained analytically in a Born approxi-
mation on the basis of the Faddeev three body theory. Elastic scattering cross sections for 2H(p, p)2H 
and 3He(p, p)3He are calculated and good fits are obtained in comparison with the experimental data. 

                          I. INTRODUCTION 

Faddeev1) succeeded for the first time in giving a mathematically correct theory 
of nonrelativistic three particle system. In the case of breakup reaction the Faddeev 
equation was solved exactly using separable potentials.2) The incident energy 
dependence and the angular dependence of the cross section were obtained analytically 
in the second Born approximation by our group3l 

   After the Faddeev's work, Sloan') studied the expanded Faddeev equation in the 
case of four-particle system. But it is difficult to solve exactly this Faddeev-like 
four-body equation. Then we atempt to calculate the cross section for 3H(p, p)3He 
in a Born approximation on a three body model. 

           II. TRANSITION AMPLITUDE IN THREE BODY SYSTEM 

   In this section we derive the transition amplitude for two body reaction on the 
basis of the exact three body theory. For the three body system the transition 
operator Usa from the initial channel ce to the final channel f is given by Alt et al.5) as, 

Uoa = —(1-8s,,) (H0—Z)— EUT1,(1) 

and the amplitude for two body reaction can be written as a series of multiple scattering 

processes as, 

<i9q f I Go URa Go aqt> = — (1— (7pa) <fiq f I Go I aqi> — J<Qq fIGo Um'GoTv Col aqt> 

        = — (1-8o a) go (PN) D (Pa) ---------
aP                                ~Ra3 

        ~EmJ00(p13) dps<pv tv(z-4v2) I pvc>~a(Pac)I----------C I3(2) 
where 

* mi7t - , tl4 Ih, *A : Facility of Nuclear Science Research, Institute for Chemical 
  Research, Kyoto University, Kyoto. 
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                      pR  (ia------- (C94 of—qi) C
9P 
1  

                    pa = G--- Ra (qf—Cq4qi) • 
                                    9P 

The notation cm C pq, •••  and pp, qp, • • • are same as those in ref. 3. The momentum 
distribution function oa(pa) in the initial channel a can be written with the form 
factor g(p) = N / (,9 +pa) and the binding energy x as l (pa) =ga (p ,) / (ia+Pa) • 
The factor <p I ty(e) I p'> is the two body transition amplitude for r pair with the 
energy e and p' and p are the initial and final momenta, respectively. The 
momentum distribution k(pa) has the maximun at pa=0. This fact is true in the 
case of S shell nuclei. Then the most probable values of /IA, py, • • • in Eq. 2 can be 
estimated as, 

                       1 
PR qf)                        CyR(C99qi—C94 

9P 

1 
                  PY — GyR------(CPSCqqqi—qf) , 

9P 

                        py —  CYaqi 
                                  P 

                           = Cya                    qY99gi 

Neglecting multiple processes the transition amplitude can be written for the two 
body reaction from channel a to channel Q as, 

<agf I Got).RaGo l aqi> = — (1 —SRa) R (PR) ~a(Pa) --------                                    1617
,13 

        +REaztRYa~PYI ty(z—qYZ)I(3)                PY/~---------I C9
P I3' 

where 77R,„ is a new factor defined as, 

77131Pa = '()p(Pry7) o (Pa/) dP; 

                                CYa           = 27v2 go (z co) g(z)
CvP 

9P 

X [I (lc pq1i aqi) —I ('c of/aqi) —I (QRgfkagi) +I (Qsgfpgi)] ,(4) 

                                         I (xggfkagi)
/Ya22YR                            1C-31                YaYR(5)                        C'9P4+ (CNof—C99qi)2+IC'9P/cR I 

   In the case of elastic and inelastic scatterings, the final channel j9 is equal to the 
initial channel a and the first term of Eq. 3 disappears. Thus the transition amplitude 
is reduced to the amplitude for the subsystem multiplied by the factor 77. Using above 
the transition amplitude the two body cross section is easily obtained as, 
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        d6  =  (27L)4i-1  of (mP mT)2(mP+mT)  I < of I GoLloo,G,I C q.> 12 f(6) dSd
qi (4mA mB mc)3 

            m  _ 1 
             _ rh2 41.6 MeV fm2' 

where mP, mT, mA, mB and me are masses of the projectile, of the target nucleus, of the 
detected particle A, of the particle B and C, respectively. The transition amplitude 
I <aqf I GoUUaGo I aqi> 12 is measured in units of MeV-1, masses in atomic mass units 
and energies qi and q, in MeV. 

   Now spins of particles are taken into accounts in the calculation for the transition 
amplitude. The first and second terms in Eq. 3 must be modefied by spin factor Sp,, 
and Soya, respectively. For example Spa can be calculated by the overapping of two 
spin functions in the channel Q and the channel a as, 

SRm =  JTOT I Ligiv(Ja): JTOT> 
JTOT 
     = LJ (—)76+2j0+27y-Ja-1TOT1/(2JS+1) (2L+ 1) W JTOTjRI JRL) 
JTOT 

                                          (7) 

whereL, jR and A, are spins of particles a, /3 and r, and L and Jo are spins of pair a 
and ,e, respectively. W is a Racah coefficient. The other spin factor can be also 
calculated easily. 

III. COMPARISON WITH EXPERIMENTAL DATA AND DISCUSSION 

3-1) Elastic scattering of protons on deuteron 
   Elastic scattering of protons on deuteron is the most simple case in the three 

body scattering and the cross section can be calculated by Eq. 3 and Eq. 6 with the 
spin factor. In this case two protons a and /e are contained in the three body system, 
then the antisymmetrized amplitude is used to calculate the amplitude as, 

<Qgfxf I GoUfiGo I agixi> 

/-------2[<agfxfIGoU.G0Ingixi>—<agfxfIGoUUaGOIagixi>] ,(8) 

where xi and xf are the spins in the initial and the final channel, respectively. The 
calculated cross section is compared in Fig. 1 with the experimental data which are 
obtained from ref. 6. The two nucleon scattering amplitude is calculated with the 
Yamaguchi type S wave separable potential neglecting higher partial wave compo-

nents. The potential parameters are same as those of Table III in ref. 7. The 
calculated curve shows a large forward peak, a small backward peak and a deep 
minimum at 120 degreees. The forward peak comes from the second terms in Uda 

and URa and the backward peak comes from the first term of the exchange process U0,, 
in Eq. 3. Because the Coulomb interaction is neglected in the calculation, the cross 
sections at the extremely forward angles are overestimated in comparison with the 
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                  Fig. 1. Differential cross section in elastic p-d scattering 
                        at 65 MeV. Points are obtained from the ex-

                        perimental data in ref. 6. The curve is calculated 
                       analytically using the S state separable potential 
                         for N-N interaction. 

experimental data. Furthermore using the first Born approximation the cross 

sections are underestimated at large angles. Neverthless both the forward and 
backward rises in the experimental data are well reproduced by the calculation curve. 
3-2) Elastic scatterting of protons on helium-3 

   In this case we assumed that the helium-3 target is composed of one proton and 
one deuteron. Then the scattering amplitude in Eq. 3 is calculated using the transi-
tion amplitude for p-d interaction neglecting the p-p scattering process. Furthermore 
the spin factor is neglected. Then the cross section for 3He(p, p)3He can written by 
the elastic p-d cross section, the factor 1 77 1 2 and a kinematical factor K as, 

                              z, -----                 (da)d22  p-31—K. I'71•( dQ )p-d '(9) 
        K kinematical factor for p-3He X C13for p-d}6= 1.424 

             kinematical factor for p-dCQpfor p-31-le1 

   In fig. 2 the theoretical curve shows the calculation with Eq. 9. The theoretical 
curve at forward angles is about 14% smaller than the experimental data.8) This 
discrepancy in the absolute cross section may come from neglecting the p-p inter-
action. The angular dependence of the calculated cross section is so simillar to the 
experimental data. 
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                 Fig. 2. Differential cross section in elastic p-31-le scattering 
                       at 65 MeV. Points are obtained from the experi-

                        mental data in ref. 8. The curve is calculated using 
                       Eq. 9 with I n12 and the cross section of elastic p-d 

                          scattering6). 

   In conclusion the simplified transition amplitude is obtained analitically using 
the Born approximation in the three body theory. The theoretical cross section is 

proportional to that for the subsystem modefied by the factor I n 2, and the theoretical 
cross section can reproduce the characteristic structure of the experimental data in 
few nucleon system. 
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