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Elastic Scattering in Few Nucleon System
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A two body transition amplitude in nuclear reaction is obtained analytically in a Born approxi-
mation on the basis of the Faddeev three body theory. Elasticscattering cross sections for 2H(p, p)2H
and 3He(p, p)*He are calculated and good fits are obtained in comparison with the experimental data.

I. INTRODUCTION

Faddeev? succeeded for the first time in giving a mathematically correct theory
of nonrelativistic three particle system. In the case of breakup reaction the Faddeev
equation was solved exactly using separable potentials,? The incident energy
dependence and the angular dependence of the cross section were obtained analytically
in the second Born approximation by our group.®

After the Faddeev’s work, Sloan® studied the expanded Faddeev equation in the
case of four-particle system. But it is difficult to solve exactly this Faddeev-like
four-body equation. Then we atempt to calculate the cross section for H(p, p)°He
in a Born approximation on a three body model.

II. TRANSITION AMPLITUDE IN THREE BODY SYSTEM

In this section we derive the transition amplitude for two body reaction on the
basis of the exact three body theory. For the three body system the transition
operator Uy, from the initial channel @ to the final channel gis given by Alt et al.® as,

Upy = —(1—0g,) (Ho“z)_EMUBV Gy Iy, (1

and the amplitude for two body reaction can be written as a series of multiple scattering
processes as,
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where

® EAKIED, WK %, AR#FEX : Facility of Nuclear Science Research, Institute for Chemical
Research, Kyoto University, Kyoto.
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The notation C8%, C82, ... and py, gg, --+ are same as those in ref. 3. The momentum
distribution function @,(p,) in the initial channel @ can be written with the form
factor g,(p,)—N,/(8i+2) and the binding cnergy &, as Oy(p,)=Lu(p)/(K3+12)-
The factor {p|ty(¢)|p"> is the two body transition amplitude for 7 pair with the
energy ¢ and p’ and p are the initial and final momenta, respectively. The
momentum distribution @,(p,) has the maximun at p,—0. This fact is true in the
case of S shell nuclei. Then the most probable values of pj, pj, --- in Eq. 2 can be
estimated as, .
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Neglecting multiple processes the transition amplitude can be written for the two
body reaction from channel @ to channel g as,
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In the case of elastic and inelastic scatterings, the final channel g is equal to the
initial channel @ and the first term of Eq. 3 disappears. Thus the transition amplitude
is reduced to the amplitude for the subsystem multiplied by the factor . Using above
the transition amplitude the two body cross section is easily obtained as,
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where m, m,, m,, my and m, are masses of the projectile, of the target nucleus, of the
detected particle A, of the particle B and C, respectively. The transition amplitude
[KBa ;| GoUg,G,| 2q;>|? is measured in units of MeV ™, masses in atomic mass units
and energies ¢? and 45 in MeV.

Now spins of particles are taken into accounts in the calculation for the transition
amplitude. The first and second terms in Eq. 3 must be modefied by spin factor Sg,
and Sgy,, respectively. For example Sy, can be calculated by the overapping of two
spin functions in the channel g and the channel « as,
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where j,, jg and j, are spins of particles @, g and r, and J, and J, are spins of pair «
and B, respectively. W is a Racah coefficient.” The other spin factor can be also
calculated easily.

. COMPARISON WITH EXPERIMENTAL DATA AND DISCUSSION

3-1) Elastic scattering of protons on deuteron

Elastic scattering of protons on deuteron is the most simple case in the three
body scattering and the cross section can be calculated by Eq. 3 and Eq. 6 with the
spin factor. In this case two protons @ and g are contained in the three body system,
then the antisymmetrized amplitude is used to calculate the amplitude as,

$Basss| GoU Gy agixy
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where x; and x, are the spins in the initial and the final channel, respectively. The
calculated cross section is compared in Fig. | with the experimental data which are
obtained from ref. 6. The two nucleon scattering amplitude is calculated with the
Yamaguchi type S wave separable potential neglecting higher partial wave compo-
nents. The potential parameters are same as those of Table III in ref. 7. The
calculated curve shows a large forward peak, a small backward peak and a deep
minimum at 120 degreees. The forward peak comes from the second terms in U,
and Uy, and the backward peak comes from the first term of the exchange process Uy,
in Eq. 3. Because the Coulomb interaction is neglected in the calculation, the cross
sections at the extremely forward angles are overestimated in comparison with the
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Fig. 1. Differential cross section in elastic p-d scattering
at 65 MeV. Points are obtained from the ex-
perimental data in ref. 6. The curve is calculated
analytically using the S state separable potential
for N-N interaction.

experimental data. Furthermore using the first Born approximation the cross
sections are underestimated at large angles. Neverthless both the forward and
backward rises in the experimental data are well reproduced by the calculation curve.
3-2) Elastic scatterting of protons on helium-3

In this case we assumed that the helium-3 target is composed of one proton and
one deuteron. Then the scattering amplitude in Eq. 3 is calculated using the transi-
tion amplitude for p-d interaction neglecting the p-p scattering process. Furthermore
the spin factor is neglected. Then the cross section for *He(p, p)*He can written by
the elastic p-d cross section, the factor |#|? and a kinematical factor X as,

(i) o= 1 (55, ©

K — kir.lematical factor for p-*He « < CY% for p-d )6 — 1.494
kinematical factor for p-d C73 for p-*He

In fig. 2 the theoretical curve shows the calculation with Eq. 9. The theoretical
curve at forward angles is about 149, smaller than the experimental data.® This
discrepancy in the absolute cross section may come from neglecting the p-p inter-
action. The angular dependence of the calculated cross section is so simillar to the

experimental data.
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Fig. 2. Differential cross section in elastic p-3He scattering
at 65 MeV. Points are obtained from the experi-
mental data in ref. 8. The curveis calculated using
Eq. 9 with |9]|? and the cross section of elastic p-d
scattering®.

In conclusion the simplified transition amplitude is obtained analitically using

the Born approximation in the three body theory. The theoretical cross section is
proportional to that for the subsystem modefied by the factor | |2, and the theoretical
cross section can reproduce the characteristic structure of the experimental data in

few nucleon system.
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