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    A relativistic continuum wave function in the Coulomb field at zero kinetic energy limit is expressed 
in terms of Bessel function. The result is compared with the exact Coulomb continuum wave functions 
at low energies and the possibility for application of the present result as an approximate wave function 
in the final state for inner-shell ionization in ion-atom collisions is discussed. 
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                        I. INTRODUCTION 

    In recent years, extensive experimental data on inner-shell ionization cross 
sections in ion-atom collisions have been accumulated and a careful comparison 
between these data and various theoretical models becomes possible. The plane-wave 
Born approximation (PWBA)1) and the semiclassical approximation (SCA)2) are 
most frequently used to interpretate the experimental results. 

    In order to describe the final electron state, it is usual to use the continuum wave 
function in the nuclear Coulomb field. This continuum wave function is given in 
terms of the confluent hypergeometric function and it is not so convenient to evaluate 
the transition matrix elements even in the case of the simple PWBA or SCA theory 
based on the first-order Born approximation. 

   For L-subshell ionization by heavy-ion impact, we have shown that the measured 
ionization cross sections deviate from the predictions of the first-order theories and the 
higher-order process plays an important role.3) In our paper, we used the continuum 
Coulomb wave function at the threshold energy (zero kinetic energy) for the final 
state and calculated the L-subshell ionization cross sections in the second-order SCA 
model. In this way, we could avoid tedious numerical integrations involving the 
hypergeometric functions, because the final-state wave function is expressed in the 
form of the Bessel function. This simplification can be justified from the fact that 
most electrons ejected in ion-atom collisions are concentrated in the energy region 
near to the threshold. 

   In the previous work,4) we calculated the Coulomb continuum wave functions 
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with zero kinetic energy and compared them with those in low-energy region. We 
found that for small radial distances the zero-energy wave functions can well reproduce 

the behavior of the continuum wave function with low kinetic energies for various 

angular momenta. 

   However, all the calculations have been done using the nonrelativistic hydrogenic 

wave functions. On the other hand, most experimental studies on L-subshell ioni-

zation have been performed for medium or heavy target elements where the electronic 

relativistic effects are known to be important.5) It is useful to perform the higher-

order calculations for L-shell ionization cross sections in ion-atom collisions by the use 
of relativistic wave functions, in the manner similar to the nonrelativistic case.3) 

   In the present work, we derive the relativistic continuum wave functions at zero 

kinetic energy and compare them with the wave functions with various kinetic energies 
and orbital angular momenta. The validity of application of the present results to 

the calculations of inner-shell ionization cross sections in ion-atom collisions is 
discussed. 

       II. RELATIVISTIC WAVE FUNCTION AT ZERO KINETIC ENERGY 

   The solution of the Dirac equation for the free electron in the Coulomb field is 

given by6) 

(r G (r) (1) Vj
\ iF(r) X-/(y) 

where x is the spin-angular function, r is the radial distance, r" is the unit vector of 
the direction r, K=+(j+1/2) for j=1+1/2, l is the orbital angular momentum, j is the 
total angular momentum, it is its projection, and G(r) and F(r) are large and small 
components of the radial wave functions, respectively. 

   The radial wave function is 

            rF— i(W-1)1/2(2pr)renb/2IF(y+iy)I  J-(2)                       2(7,'.~)1/2F(2y+1)' 

(W+1)1/2(2pr)renb/2Ir(y+iy)I(3)   rGJ 
               - 2 (74)1/21-,(74)1/21-,(2y+1)+' 

where W is the total energy in units of the electron rest mass, p is the momentum, 
y2=K2—(aZ)2, Zis the atomic number, a is the fine structure constant,y=ZW/p, F(x) 
is the gamma function, 

        J=e1Pr+sn(y+iy)F(y+1+iy, 2y+1; 2ipr)+C.C.,(4) 

F(a,fl;x) is the confluent hypergeometric function, and c.c. denotes complex conjugate. 
The factor rl is given by 

e2in=— (lc -iv/W)/(y+iy)• (5) 

   The solutions are normalized in the energy scale and when Ow and Ow are solutions 
corresponding to energies W and W', 
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f Owbw-dr=8(W—W'),(6) 
where 8(x) is the Dirac delta function. 

    Throughout the present work, we use the atomic units, i.e. p1=e=me=1, where 
e is the charge and me is the rest mass of the electron. 

   At the zero kinetic energy limit, W—>-1, i.e. p—>-0, Eqs. (2) and (3) approach to 

rF= —Z1/2aJ2r[(8Zr)1/2] ,(7) 

and 

rG=(2r)1/2{Jsr-1[(8Zr)1/2]—  (2Z r)1/2J2r[(8Zr)1/2]}, (8) 
where Jz(x) is the Bessel function. 

   These results coincide with the expressions given by Trautmann et al.7) except for 
the normalization constant. 

   In the case of the nonrelativistic limit, y---~jK~, the large component, Eq. (8), 
reduces to 

rG — (2r)1/2J2t+1[(8Zr)1/2] ,(9) 

which is equivalent to the expression used in the previous work4), except for 
normalization. 

III. RESULTS AND DISCUSSION 

   In the nonrelativistic case,4) the electron wave function can be written in a uni-
versal form for the atomic number Z, when the radial distance r is replaced by r/Z and 
the kinetic energy E by Z2E. On the other hand, the relativistic wave function has 
no such universal property because y depends on Z. 

   In the manner similar to the nonrelativistic case, the comparison between the 
continuum wave function with zero kinetic energy and that with small kinetic ener-

gies is made graphically. Figure 1 shows the results for hydrogen atom with K= —1. 
The left side indicates the large component and the right side represents the small 
component. The symbols, a, b, c, and d correspond to the kinetic energy with E= 
0.01, 0.02, 0.05, and 0.10 hartree, respectively. The exact continuum wave function 
at the given energy is shown by the solid curve, while the zero-energy wave function 
is plotted by the dashed curve. Similar results for K=1 and —2 are shown in Figs. 2 
and 3. 

   It can be seen from the figures that for low energies and at small radial distances 
the zero-energy wave function is in good agreement with the continuum wave functions 
with low energies both for large and small components. The discrepancy between 
two wave functions becomes larger for larger radial distance and for higher kinetic 
energy. 

   In Fig. 4, a similar comparison for K=1 and for uranium (Z=92) is shown. In 
this case, the symbols a, b, c, and d correspond to the kinetic energy of 100, 200, 300, 
and 1000 hartree, respectively. It is clear that the almost same trend as for hydrogen 
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         Fig. 1. Comparison of large and small components of zero-energy wave function with 
                 those of exact continuum wave functions for K= —1 and for hydrogen. The 
                solid lines correspond to the relativistic continuum wave functions with a) E=0 .01, 
                b) E=0.02, c) E=0.05, and d) E=0.10 hartree, while the dashed lines indicate 

                 those with E=0. 
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is observed also in the case of uranium. For  Tc=1 and —2, similar results can be 

obtained. 

   As has been described above, there is no scaling property in the relativistic wave 
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                          Fig. 2. Same as Fig. 1, but for Tc=1. 
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         function. However, if we plot the wave functions as a function of r/Z, instead of r, 
          we can obtain an approximate universal behavior of the continuum wave functions 

         between hydrogen and uranium. 
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Fig. 3. Same as Fig. 1, but for rc= —2. 
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   From these results, we can say that at small radial distance,  r/Z54.0 a.u., and 
for low energies, E <0.02 Z2 hartree, the wave function at zero kinetic energy limit can 
well reproduce the behavior of both large and small components of the relativistic 
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     Fig. 4. Same as Fig. 1, but for K= -1 and for uranium (Z=92). The symbols corre-
           spond to a) E= 100, b) 200, c) 300, and d) 1000 hartree, respectively. 
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Coulomb continuum wave function with the finite kinetic energy. This conclusion is 
same as that obtained in the nonrelativistic case.4) 

   Since the dominant contributions of the transition matrix element for inner-shell 
ionization process in ion-atom collisions comes from the region near to the mean radial 
distance of the inner-shell electrons to be ejected and most electrons ejected have 
small kinetic energies, the use of the zero-energy wave function for the relativistic 
calculations of inner-shell ionization cross sections by heavy-ion impact is quite 
adequate. 
   As in the nonrelativistic case, the discrepancy between the zero-energy wave func-
tion and the exact one at the given kinetic energy becomes larger for larger K values. 
However, for low-energy projectiles, where the electronic relativistic effects and the 
higher-order process are important, the contributions from high partial waves are 

generally negligible. This fact indicates that the present zero-energy wave function 
is useful to perform higher-order calculations of inner-shell ionization cross section by 
low-energy heavy ions relativistically. The calculations for L-subshell ionization 
cross sections by heavy-ion impact by the use of the present wave functions are in 

progress. 
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