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   The epitaxial modes of the long-chain compounds on a uniaxially drawn isotactic polypropylene 
(iPP) substrate were studied. They crystallized from the melt and by vapor-deposition onto iPP. In the 
case of crystallization from the melt, n-alcohol crystals grew with their (001) basal plane parallel to 
the substrate surface. The molecules were arranged with their chain axes normal or oblique to the 
surface. Carboxylic acids crystallized in monoclinic C- and  C'-forms showed the epitaxial modes with 
the orientation analogous to that of the n-paraffin /iPP system. In crystallization by vapor-deposition, 
carboxylic acids did not show epitaxial growth, but n-alcohols exhibit several modes of epitaxial 
growth which are classified by the molecular orientation with respect to the iPP chain axis. Two 
modes of them are similar in that molecular chains of n-alcohols are parallel to the substrate surface; 
one has the same orientation as that in PE/iPP epitaxy, and in the other, molecular chains of 
n-alcohols are oriented parallel to the c-axis of the iPP substrate. The other modes have the same 
normal or oblique orientation as observed in the crystallization from the melt; flat-on lamellae grew. 
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                       1. INTRODUCTION 

   Epitaxial growth of long-chain compounds on the polyethylene (PE) substrate was 
reported in references.l•2) In the case of the polyethylene substrate, similarity of its 
crystal structure to the subcell of long-chain compound crystals has a decisive effect 
on epitaxial growth of the crystals. On the other hand, PE itself crystallizes on 
isotactic polypropylene (iPP) epitaxially.3,4) From these facts, it is expected that iPP 
could be a substrate for long-chain compound crystals to grow epitaxially on it. Really, 
epitaxial growth of n-paraffins on a uniaxially drawn iPP film took place.5l There 
were observed three types of epitaxial orientations where the molecular axes of 
n-paraffins were perpendicular to the substrate surface. The orientational relations 

were described in reference;5) type Al has the orientational relation of (001),//(010),pp 
and [110],//[001],pp, type A2 (001)p//(010),pp and [010],//[001],pp and type A3 (001)p// 

(O10),pp and [110]p//[001],pp. In addition, there is another epitaxial mode that molecu-
lar chains of n-paraffins lie parallel to the iPP substrate surface; 

(100),//(010),pp and [O10],A 46° [001] fpp. 
This orientational relation is the same as that in the epitaxy of PE/iPP system. This 
epitaxial mode was observed in n-paraffins with carbon number longer than 40. In this 

itl xi, d'l9 II , ifn F , 14 LU n—: The Institute for Chemical Research, Kyoto University, 
  Uji, Kyoto-fu, 611 Japan) 
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paper, epitaxial growth of other long-chain compounds such as n-alcohols and n-
carboxylic acids was studied. These compounds usually crystallize in a monoclinic or 
triclinic crystalline form and not crystallize in an orthorhombic form. Odd-numbered 
carboxylic acids crystallize in one or two of triclinic A'-, B'- and monoclinic C'-forms 
depending on the chain length and crystallization condition.6 '° Even-numbered car-
boxylic acids crystallize in one or two of A-, B- and C-forms.11•12) n-Alcohols also 
crystallize in one or two crystalline forms of a-, /3- and y,-forms.13"") These long-chain 
compounds are similar to n-paraffins in the chemical structure in that they have a long 
normal hydrocarbon chain and in the crystal structure in that their crystals have a 
similar orthorhombic subcell to that of n-paraffins; the subcell is the same as the unit 

cell of PE.1° 

                      2. EXPERIMENTAL 

   Thin iPP substrate films for transmission electron microscopy were prepared by 

the method reported by Petermann and Gohil.18I iPP was supplied by Tokuyama Soda 
Co., Ltd. The experimental procedure to make specimens was as follows: a few drops 
of dilute solution of a long-chain compound were spread on the iPP film and the solvent 
was evaporated. Then, the film was heated above the melting point of the compound 
and cooled down to room temperature. The vapor-deposition crystallization was also 
applied. A thin iPP film and a long-chain compound were put in an evacuated chamber, 
and the compound was vapor-deposited onto the iPP substrate. Samples thus prepared 
were observed by a transmission electron microscope JEOL JEM-200CS. Long-chain 
compounds used in this study are n-paraffins with the carbon number 31 to 50, 
n-alcohols with the carbon number 17 to 30, n-carboxylic acids with the carbon number 
17 to 30 and methyl and ethyl esters of some acids. They were purchased from Tokyo 
Kasei Kogyo Co., Ltd. 

                         3. RESULTS 

3.1. Crystallization from melt 

   When various kinds of n-alcohols were crystallized from the melt on the iPP 
drawn film, their crystals showed three different types of preferential orientations 
which are characterized by electron diffraction patterns shown in Figs. la, b and c. The 

patterns show hk0 net patterns of n-alcohol crystals which superimposed on the iPP 
fiber pattern with a definite orientational relation to it. The presence of hk0 net 

pattern indicates that molecular chains in n-alcohol crystals stand perpendicular to the 
iPP substrate in all three cases. In these cases, n-alcohols crystallized in the monoclinic 

/3-form whose lattice parameter /3 (the unique angle of the unit cell) is 89°. Here, the 
molecular chains orient almost perpendicular to the substrate surface when the (001) 

plane is parallel to it. Odd-numbered alcohols crystallize in the /3-form in a normal 
crystallization condition. Even-numbered alcohols are crystallized normally in yi-form. 
However, they crystallized in /3-form on the iPP substrate. The above three orienta-
tions are distinguished in that the crystallographic b-axis of an n-alcohol make 
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                 Fig. 1 Electron diffraction patterns of n-alcohol crys-
                      tals grown on the uniaxially drawn iPP film. 
                        (a) 1-tetracosanol crystallized with mode A3. 

                       (b) 1-triacontanol crystallized with mode A,. (c) 
                        1-tetracosanol crystallized with modes Al and 

A,. 

different angles with the c-axis of the substrate. They are named A1, A, and A3 

according to the notation in epitaxy of n-paraffins on iPP,5> because the respective 

orientational relations of hk0 net patterns are quite similar to those of corresponding 

epitaxial types for n-paraffins. 

   (1) Figure la shows the first type, A3i which is observed most frequently. This type 
is identified by the feature that the 110 reflection from n-alcohol crystal coincides with 

the 111 reflection from the iPP fiber pattern. This mode of epitaxy has the same 

orientation as the mode expressed as A3 in reference5l for n-paraffins on iPP. 

   (2) The second type A, is characterized by Fig. lb. In this figure, the 200 reflection 
from n-alcohol crystal is on the equator of the iPP fiber pattern as described in 

reference,5> and in other words, the 020 reflection appears on the meridian of iPP. 

   (3) Figure lc shows the third type A1. This is less often observed. In this figure, the 
110 reflection of an n-alcohol is on the equator of the iPP fiber pattern. This type of 

orientation was the same as type Al of n-paraffins in reference.° 

   Figure 2 shows an electron diffraction pattern of stearyl alcohol crystallized on a 

drawn iPP film. By measuring the lattice spacings, it is found that stearyl alcohol 

crystallized in the monoclinic y1-form. Since the molecular axis is oblique toward the 

a-axis, the dimension of a of the unit cell is larger than that of PE unit cell. The subcell 

of the y1-form is, however, orthorhombic and almost identical to the PE unit cell. In 

Fig. 2, the 020 spot of the n-alcohol is observed in the same direction with respect to 

the iPP fiber axis as in the case of the B mode of epitaxy of n-paraffins.5> In both cases, 

.._.J 
\ 

Fig. 2 Electron diffraction pattern 
                                         of stearyl alcohol crystals 
                                           grown on the uniaxially 

                                         drawn iPP film. Stearyl alco-
                                           hol crystallized in y,-form. 

                           (103)



                         T. OKIHARA, M. OHARA, A.  KAWAGUCHI and K. KATAYAMA 

(. _ _ 

j8N, 
...C.c #a•\\ 

                \\\\1 
   .\\\\ 

     •f 

* I. II 

     Fig. 3 Electron diffraction patterns Fig. 4 Illustration for relation 
             of various n-carboxylic acidbetween the reciprocal lattice 

             crystals grown from the meltof a n-carboxylic acid crystal 
            on the uniaxially drawn iPPand incident electron beams. 
             film. (a) n-nonadecanoic acidb and b* axes are normal to 

            crystallized with mode Aim.the figure. 
             (b) n-tetracosanoic acid 

             crystallized with mode Aim. 
             (c) n-nonadecanoic acid 

            crystalized with mode A3m. (d) 
            stearic acid crystallized with 

              mode A4m. 

thus, the b-axis is in the same direction as regards the iPP fiber axis. The a-axis of the 

n-alcohol also lies parallel to the substrate surface, that is to say, the (001) plane is in 

contact with the iPP substrate surface. 

   Figure 3 shows typical electron diffraction patterns of various carboxylic acids 

crystallized on an iPP substrate. When most of carboxylic acids examined here, except 

for heptadecanoic acid, were crystallized on the iPP substrate from the melt or on the 

substrate kept at high temperatures by vapor-deposition, they showed one or more 

types of differently oriented overgrowth. The strong spots indicated with thick arrows 

are all indexed as 020. Lattice spacings of weak spots indicated with a small arrows 

range from 0.420nm to 0.440nm. These are indexed as 11l (l is dependent on the chain 

length, i.e. the kind of carboxylic acid). All diffraction patterns are interpreted on the 

basis of the Ewald construction for diffraction as shown in Fig. 4. The c*-axis of the 

reciprocal lattice of a n-carboxylic acid is parallel to the incident electron beams. In 

this orientation, the 020 and 111 reciprocal points are placed on the sphere of reflection 

at the same time. That means the (001) plane of the acid crystal is in contact with the 
iPP substrate. Even-numbered carboxylic acids crystallize in monoclinic C-form and 

odd-numbered carboxylic acid in C'-form. The molecular arrangement and inclination 

toward the a-axis in the C-form unit cells of the carboxylic acids is similar to that of 

n-alcohols with the y1-form, except for the magnitude of inclination angle Q of 

molecules against the basal plane. In both kinds of crystals, their subcells are ortho-

rhombic and the molecular packing in them is quite similar. Thus, these carboxylic 
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--- ---Fig . 6 Electron diffraction pattern 
                                                of tetracosanoic acid ester 

     Fig. 5 Electron diffraction patterncrystal grown on the uniaxial-
          of heptadecanoic acid crystal-ly drawn iPP film; (a) methyl 

           lized from the melt on theester and (b) ethyl ester. 
           uniaxially drawn iPP film. 

acids and n-alcohols exhibit one or more types of oriented overgrowth characterized 

by electron diffraction patterns in Fig. 3. On the basis of the difference in the orienta-

tion of the 020 spot with respect to the fiber axis of iPP, the orientational modes 

distinguished by diffraction patterns in Figs. 3a, b, c and d are here denoted as Aim, 

A2m, Aim and A,m, respectively. According to the same notation as in the case of 

n-paraffins, A means that molecular chains stand on the substrate surface (not always 

perpendicular), the subscript i (i=1,2,3 and 4) denotes the same orientation of the b-axis 
as the corresponding subscript in n-paraffins do and m denotes that the crystalline 

form of carboxylic acids is monoclinic. Type A4m shows the same orientation as 

described in the case of stearyl alcohol crystallized in y1-form (see Fig. 2). 

   Heptadecanoic acid crystallized in a different orientation from that of longer 

homologues. Its electron diffraction pattern is shown in Fig. 5. From the observed 

lattice spacings, it is found that all spot-like diffractions from the acid are indexed as 

Okl, i.e. the Okl net pattern superimposes on the fiber pattern of iPP. The figure is 

understood on the reflection condition that the electron beams are incident onto the 

acid crystals in the direction almost parallel to the a-axis, so that the Okl net pattern 

can be observed; the electron beams are incident horizontally (parallel to the a-axis) in 

Fig. 4. It is concluded that the (100) plane to which molecular chains align parallel is 

in contact with the substrate surface. Since the orientation of the Okl net pattern with 

respect to the iPP fiber axis differs from photograph to photograph, it seems that 

heptadecanoic acid does not crystallize epitaxially on the iPP substrate because of the 

shortness of molecular chain. 

   Other long-chain compounds showed epitaxial growth on the iPP substrate. Figure 

6 shows electron diffraction patterns of methyl and ethyl tetracosanates crystallized 
on the iPP substrate from the melt. The crystal structures of these compounds are not 

reported, but the crystal structure of methyl stearate which has a subcell similar to 

that of n-paraffins is reported by Aleby.17) The crystallization behavior of methyl 

triacontanate on the (001) plane of KC1 was reported by Ueda [18] . Though the crystal 

structure of this ester is also not analyzed yet, he has concluded that molecular chains 

of the methyl ester are perpendicular to the substrate, because his electron diffraction 
experiment showed the hk0 net pattern of the subcell similar to that of n-paraffins and 
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                                          Fig. 8 (a) Transmission electron mi- 
                        il,m.crograph of n-triacontanol 

                                                 crystals grown on a uniaxial-
                                          ly drawn iPP film and (b) the 

      Fig. 7 Transmission electron micro-corresponding diffraction pat- 
             graph of tetracosanoic acidtern. The inset is the enlarged 

             crystals grown by vapor-pattern of the central part. 
            deposition on a uniaxially 

            drawn iPP film. 

methyl stearate. In the present cases, the analogous hk0 net patterns were observed, 

and hence, it is concluded that molecular chains stand perpendicular to the substrate. 

Further, since the hk0 net pattern is oriented with respect to the fiber pattern in the 

same way as in the case of n-paraffins, epitaxial crystallization occurs. 

3.2 Crystallization from the vapor phase 

   Figure 7 shows the morphology of vapor-deposited tetracosanoic acid on iPP kept 

at room temperature. Both edge-on and flat-on lamellae were observed and their 

orientation was random. It is likely that this vapor-deposition condition was not 

favorable for the carboxylic acid to crystallize epitaxially on the iPP substrate. In 

contrast to carboxylic acids, when n-alcohols were vapor-deposited on the iPP sub-

strate at room temperature, they crystallized epitaxially. Figure 8 shows the morphol-

ogy of n-triacontanol vapor-deposited on the iPP film at 25°C and the corresponding 

electron diffraction pattern. The pattern indicates that three types of epitaxial growth 

occurred on iPP. The presence of 001 reflections along the meridian of the iPP pattern 

indicates that molecular chains of the n-alcohol are parallel to the c-axis of the 

substrate. The others are flat-on lamellae grown epitaxially on the substrate. They are 

identified with two types of hk0 net patterns of n-alcohol crystals which are definitely 

oriented with respect to the iPP fiber pattern. In them, the (001) plane of n-alcohol 

lamellae is in contact with the surface of the iPP substrate. Further, there is another 

orientation, though it is not recognized in Fig. 8b, in which orientation n-alcohol 

molecular chains take the same parallel orientation as those of PE chain do when PE 

crystallized epitaxially on iPP from the melt. All the types of epitaxy are distinguished 

by the difference of lamellar orientation on the substrate surface, as described in the 

case of crystallization from the melt. The epitaxial crystallization behaviors of 

n-alcohols are quite similar to those of n-paraff ins. 
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polypropylene (010) plane 

          Fig. 9 (a) illustration of flat-on lamellar crystal of n-alcohol with 
A-form, (b) illustration of flat-on lamellar crystal of n-carboxylic 

                 acid, (c) molecular arrangement of (001) plane of n-alcohol 
                 crystal with fl-form, (d) end methyl group arrangement of car-

                boxylic acid crystal with C'-form and (e) molecular arrangement 
               of polypropylene (010) surface, In (c), (d) and (e) large and small 

                 circles mean carbon atoms and hydrogen atoms, respectively. In 
                 (e), there is a rectangle ABCD which is a two-dimensional lattice 

                of iPP (010) plane. The spacings of this lattice are as follows; 
AB=0.846nm and AD=1.005nm. 

                              4. Discussion 

   In the previous paper,^) we discussed the lattice matching in epitaxial growth of 

n-paraffins on iPP. In that case, the (010) plane of the iPP substrate plays an important 

role on epitaxy. 

   Figure 9a shows a model of the molecular orientation of the /3-form of an n-alcohol 

crystallized epitaxially on the iPP substrate. The molecular chains are almost perpen-

dicular to the substrate surface. In the case of crystallization of n-alcohols from the 

melt, they crystallized in /3-form, but stearyl alcohol has another modification, that is, 

/3-form. This result indicates that the /3-form is favorable for the epitaxial growth of 
n-alcohols on iPP. Because the unique angle ,Q of the unit cell is 89°, the crystal 

structure of the f-form is nearly orthorhombic and close to that of orthorhombic 

n-paraffins. Thus, the lattice matching similar to that of n-paraffin/iPP can be easily 

formed between n-alcohols with a /3-form crystal and iPP. n-Alcohol molecules are 

dimerized in the crystal lattice by forming hydrogen bonds between -OH groups. It is 
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supposed that the coupled n-alcohol molecules behave in epitaxial crystallization as 
n-paraffins, because the end methyl groups are arranged in the same manner on the 

(001) plane as in the n-paraffin crystals. From the epitaxial crystallization behavior 
analogous to that of n-paraffins, it is considered that the contact plane with the iPP 
substrate is the (001) plane in which the end methyl groups are arranged as shown in 
Fig. 9c. It is stressed that the iPP (010) plane plays an important role on the A3 mode 
of epitaxy of n-paraffins. Here, it is most likely that the iPP (010) plane is in contact 
with the (001) plane of n-alcohols, realizing the following lattice coincidence. Figure 9e 

represents the molecular arrangement in the iPP (010) plane.5) Rows of end methyl 

groups shown by the arrows in Fig. 9c are parallel to the [110] direction. The interval 
between the rows is close to half of distance AB in Fig. 9e. Thus, the A3 epitaxial mode 
is achieved by fitting the end methyl rows of n-alcohols in the valleys between the side 
methyl rows on the iPP (010) plane.5) 

   From the electron diffraction, it is found that the (001) plane of the carboxylic 

acids was in contact with the iPP substrate and consequently, molecular chains are 
tilted on the substrate surface as modeled in Fig. 9b. Figure 9d shows the arrangement 
of end methyl groups on the (001) basal plane of carboxylic acid crystals of the C-form. 
In Fig. 9d, thin arrows indicate the direction in which end methyl groups align most 
densely. For examples, the interval between the rows of end methyl groups in the [110] 
direction is 0.436nm which is nearly equal to the (110) spacing of the orthorhombic 
n-paraffin cell (0.411nm).5} This spacing is in good agreement with half of the lattice 
spacing AB (0.846nm) shown in Fig. 9e. Thus, the row of end methyl groups in the (001) 
face of carboxylic acids fits in between two neighboring rows of side methyl groups in 

the iPP surface, as shown by the arrow I in Fig. 9e. Accordingly, the epitaxy mode Aim 
is (001)c//(010),Pp, and [110]c//[101],pp where c denotes a carboxylic acid. The distance 
AD in Fig. 9e is nearly equal to the dimension of a (twice of the interval between rows 

of end methyl groups aligned along the b-axis, as shown in Fig. 9d). The AIm mode of 
epitaxy is caused as follows: the rows of end methyl groups fit in the valleys between 
the rows of side methyl groups in the (010) iPP surface oriented in the direction of the 
arrow II in Fig. 9e. The observed electron diffraction pattern of this epitaxy is 
explained on the basis of this orientation of carboxylic acids (see fig. 3a). In the case 

of Aam, the b-axis of carboxylic acids is in the direction AD. Since the orientation with 
respect to the iPP fiber axis is the same as that in the B mode epitaxy of n-paraffins 
on iPP,S) this epitaxy occurs when carboxylic acid molecules lie down to fit in the 

channels running in the direction II. We should examine by energy calculation whether 
the epitaxy is energetically favorable or not. However, it is very difficult because too 
many atoms must be taken into consideration for the calculation. Analysis of Aim is 
also difficult because there is no suitable lattice matching between the (001) plane of 

carboxylic acids and the (010) iPP plane for this mode of epitaxy, and again we must 
rely on the energy calculation to know this mode in detail. There are two problems in 
this epitaxy; one is whether this epitaxy is stable from the view point of interaction 
energy between carboxylic acids and the iPP substrate, and the other is which surface 
of the iPP substrate is assigned to this epitaxy, the (010) plane or any of others. So good 
explanation is not yet provided for Aim mode epitaxy. Table 1 shows the grouping of 
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                  Table 1. Classification of epitaxial mode of long-
                           chain compounds on the iPP substrate. 

                   compound epitaxial mode 

 C12OHA1, As 
C180H 0-form) A2, A3 

(y,-form)A,m 
C23OHA1, A2, As 
C240HAl, A2, A3 
C250HA1, A2, A3 

        C300HA2, A3 

C17000HAim, A4m 
C18000RAim, Aim, Aim, A4m 
C23COOHAim, Aim, Aim, A4m 
C25000HAim, Aim, A4m 
C29000HAim, Aim, Aim 
C23000CH3A3 
C23000C2H5A2, A3 

epitaxial mode for long-chain compounds observed in melt crystallization. 
   In crystallization by vapor-deposition, carboxylic acid crystals did not show 

epitaxy on the substrate kept at room temperature (see Fig. 7). From this result, the 

epitaxial temperature of n-carboxylic acids seems to be higher than room temperature. 

In vapor-deposition crystallization of n-paraffins and n-alcohols, epitaxially oriented 

odge-on lamellae were observed on the iPP substrate at room temperature. Edge-on 

lamellae were not observed in the crystallization from the melt except for longer 

homologues. They take two orientations; one is explained by the B-mode epitaxy of 

n-paraffins on iPP,5) and the other is that molecular chains of long-chain compounds 

are parallel to the c-axis of iPP. In the latter, however, there is no lattice matching of 

a small misfit. Further accumulation of experimental data gives an explanation of this 

epitaxy. 

   Since the subcell of long chain compounds is the same as PE unit cell, their 

epitaxies on PE are performed to adjust a crystallographic plane of the subcell to the 

corresponding one of the PE unit cell. In the present long chain compound/iPP systems, 

the subcell also plays an important role. However, no subcell plane matches to "any of 

the lattice spacing on the (010) iPP surface" justly as in the long-chain compound/PE 

system. Consequently, a small misfit is inevitable. Because of this misfit, atoms or 

molecules placed near the interface can not occupy the stable position to form the 

stable crystal lattice of their own. As crystals grow, a lattice spacing gradually varies 

from the interface toward inside the crystal of the compound and reaches the value of 

the stable crystal lattice. Otherwise, to avoid this unstableness, the misfit dislocation 

is introduced at the interface. Though the epitaxially grown crystals remain unstable 

at the interface, their instability is eliminated by introducing the dislocation, and then 

they grow to be a stable form, maintaining the epitaxial orientation with the substrate. 

   The long-chain compound crystals which grew on the iPP substrate are in contact 
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with the substrate surface in a wide range. However, the lattice fitting between the 

crystal and the substrate could not be maintained over the entire interface. At the 

stage of nucleation, the orientational relation of the epitaxial growth is determined, 

i.e., this epitaxy is nucleation-controlled. A small contact area has an important role 

for epitaxial growth. 
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