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   The 4-rod RFQ resonator is simulated by a resonant circuit based on the four-conductor shielded 
transmission line (4CSTL). The normal mode analysis for TEM waves is applied to a certain model 
structure. The mathematical derivations of the normal modes propagating in the 4CSTL and their physical 
interpretation are described. Some examples to reconstruct the RFQ fields from the results of the normal 
mode analysis are in good agreement with the 3-D calculations by MAFIA code. 
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                          1. INTRODUCTION 

   Many different configurations of the so-called 4-rod Radio-Frequency Quadrupole (RFQ) 

have been constructed for the linear accelerators1 38). The 4-rod RFQ resonator consists of four 

longitudinal electrodes connected with a tank by supporting posts as shown in Fig. 1. 

    Some equivalent circuits have been developed1-4'6 8'ioa4,zi,zs,zs,z8ss as) but there is no 

general method proposed to study any configurations of the 4-rod RFQ resonators. This 
circumstance makes their comparative analysis difficult and impedes an optimal selection of their 

configuration at the given conditions. In this paper we will present a generalized modeling 

approach which can be applied for a wide family of the 4-rod RFQ resonators. 

   Our method is the usual approach for modeling of a microwave-transmission system as an 

equivalent circuit which is composed of sections of uniform transmission lines jointed together 

through coupling networks. The representation with equivalent circuit is helpful to understand 

intuitively the resonator. It allows to predict their behavior and leads to systematic design, 

study, and testing47,48). 
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       Fig. 1. General concept of the 4-rod RFQ resonator : 1 is a quadrupole electrode ; 

              2 is a tank; 3 is an electrode-supporting post. 
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   Our approach can be considered as an extension of the conventional transmission line theory 
based on the concepts of distributed parameters. In this case, a real 3-D electrodynamics 

problem is reduced to an equivalent-circuit problem. So far, all studies had made some specific 
assumptions which came from only the particular geometry of each investigated resonator. Our 
method includes some numerical calculations of 2-D problems to study 3-D problems without any 
specific assumptions within 2-D problem. It allows to extend the abilities of the equivalent-
circuits modeling to the application such as to study the 4-rod RFQ. 

   The 4-rod RFQ resonator can be simulated by a resonant  circuit49'501, which consists of four-
conductor shielded transmission lines (4CSTL) loaded by sets of the impedance corresponding to 
the transverse supports (Fig. 2). It is assumed that only TEM waves propagate along all 
conductors of the resonant circuit. The standing waves defining the mode of the resonance 
oscillation is the superposition of the waveguide modes propagating on the transmission lines. 
This interrelation between the resonance and waveguide modes characterizes a resonance mode 
through the corresponding waveguide modes. For example, the accelerating system for electron 
linac can be treated as a sequence of small cavities with TM01 waveguide. modes. The Alvarez 
structure, the Four-vane RFQ resonator and Double-H-resonator can be represented as single 
cavities based on the TM01, TE21, TE11 waveguide modes, respectively 1'51). 

   In order to study the 4-rod RFQ resonators, we should consider in detail the behavior of the 
corresponding waveguide of the 4CSTL. In this case we have used conceptions of the normal 
TEM modes propagating in the multi-conductor transmission line system. It is shown that 

purely mathematically derived normal propagating modes have clear physical interpretations. 
Some qualitative results based on the. normal TEM mode analysis for the 4-rod RFQ resonators 
are presented in this paper. It is demonstrated how a field of the resonator can be reconstructed 
by a normal mode combination. 

   In section 2 a review of constructions of the 4-rod RFQ resonators is presented. The 

general behaviors of the multi-conductor TEM transmission lines are described in section 3. 
The method of normal TEM modes in the 4CSTL is presented in section 4. The fifth section is 
devoted to the qualitative considerations of the 4-rod resonators based on our method. 
Examples of the transformation from the 4CSTL to 4-rod RFQ resonators are given. The 
examples of resonators have different normal mode contents. The results are compared with the 
3-D calculations by MAFIA code. 

     2. THE 4-ROD RFQ RESONATOR AS A CAVITY WITH THE TEM WAVES 

   Although the 4-rod RFQ resonator contains only two kinds of principal elements : electrodes 
and posts, there can be a lot of configurations. The longitudinal profile is usually uniform, but 
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                  Fig. 2. The equivalent circuit of the 4-rod RFQ resonator. 
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Split-Coaxial Resonator (SCR) with "spear-shaped beams" is an example of the non-uniform 

case. The transverse cross-section of the electrodes can have a simple round geometry or a 

complicated one with various vane-like shapes. The different kinds of the supporting posts 

(straight, triangular and cylindrical stems or spiral supports) have been designed. 
   In this paper we will treat the 4-rod RFQ resonators as cavities with TEM waves, using 

transmission line theory. Similar approaches were separately applied to drift-tube resonators59) 

and for RFQ resonators2-4'7'$'10-12,40,41> Here we will develop a general procedure according to 
our previous studies presented in Refs.49'5o,6o-63> The basic condition for our approach is an 

assumption that only TEM waves propagate along all conductors. Simulating the 4-rod RFQ 

by equivalent circuit in Fig. 2 we will assume that the characteristics of resonators are determined 
by the 4CSTL with TEM standing wave. 

   The well-known condition for propagation of only TEM waves requires that the transverse 

physical dimensions of the 4CSTL must be much less than the wavelength X. In our case it can 
be formulated as R/ A<1, where the tank radius R plays a role of such transverse physical 

dimension. The relation between R/A. and .l of existing 4-rod RFQ resonators is shown in Fig. 3. 

The above condition seems to be satisfied in the existing 4-rod RFQ resonators.. 

   All resonators presented in Fig. 3 are grouped in the following several types : 1) split-coaxial 

resonators (SCR) with spear-shaped beams" 1'12'23); 2) one module SCR with round rods7'21) ; 3) 

4-rod RFQ with spiral supports9,16'29) ; 4) the "In-line stems 4-rod RFQ" 1,10,13) (the connection 

points of all rods with the tank are located at the same longitudinal position) ; 5) the "Alternate 

R/~, 
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                                                   • 4-rod RFQ (In-line straight 

• i-------------------------------------------------stems) 
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      Fig. 3. The ratio of the tank radius R to the wavelength A. for the different RFQ resonators : 
           1) Double H [1] ; 2) 4-vane H [1] ; 3) SCR (spear-shaped beams) [1, 11, 12, 23] ; 4) 

            SCR (one-module with round rods) [7, 21] ; 5) 7) 4-rod RFQ (spiral supports) [9, 
            16, 29] ; 6) 4-rod RFQ (In-line straight stems) [1,10,13] ; 7) 4-rod RFQ (alternate 

            straight stems) [17, 18, 20, 24, 28, 37] ; 8) a 4-rod and 4-vane H hybrid [33, 34, 36] ; 
            9) 4-rod RFQ (variable energy) [22, 25]. 

( 5 2 )



                      Qualitative Analysis of 4-rod RFQ Resonators 

stems 4-rod RFQ"17'18,20,24,28,37)(each set  of  opposing rods is connected to the tank at the middle 

of the successive supports of the other set of rods) ; 6) Variable energy 4-rod RFQ22'25; 7) a 4-rod 
and 4-vane H hybrid33;34,36,38) Also in Fig. 3 we show parameters for two main types of H-

resonators in which non-TEM waves with longitudinal field component, namely H (TE) waves, 

can arise in the case of RR.> 0.1. As shown in Fig. 3, all types of the Four-rod RFQ resonators 

in meter waveband satisfy condition R/as0.1. At the value of R/A=0.1 there is a border 

between TEM (4-rod RFQ) resonators and H (TE)-resonators except some kind of resonators in 

decimetric waveband, where a possible alternative for H-resonators can be considered. Under 

these conditions, we can recognize the main limitation of presented modeling method. For some 

cases the method may give correct quantitative and qualitative results, but for other cases it 

becomes only a qualitative model. It depends on the order of difference between an ideal TEM 

field and a real 3-D field in the resonator. But main purpose of the present work is not get 

numerical results but qualitative study. 

              3. DESCRIPTION OF TEM WAVES IN THE 4CSTL 

   In this section we will introduce some features of a mathematical description of the TEM 

wave propagation in the 4CSTL. The general behaviors of the TEM waves have been described 

in many monographs on RF electrodynamics, for example in Refs. 64-66. According to their 

definition, the TEM waves have only transverse components of electric and magnetic fields and 

propagate at the velocity of light in medium (vacuum in the case of the 4CSTL). 
   In the case of TEM waves, a uniform wave equation which describes propagating 

characteristics of waveguide systems is reduced to the two-dimensional Laplace equation. As a 

result, the transverse fields of TEM waves are obtained from two-dimensional static equations 

and their longitudinal distributions are described by the telegraph equations. Thus, all the 

static field techniques are at our disposal in treatment of TEM waves. Because the transverse 

electric and magnetic fields are perpendicular between each other at everywhere and the ratio of 

their amplitudes is equal to the intrinsic impedance of free space ^/0/eo , they are interconnected 

and each of them can be defined through each other. Hence, only the electrostatic problem is 

enough to be solved. 

   The propagation of TEM waves is described by the well-known telegraph equations69.-69) 

The point by point derivation of them for the multi-conductor transmission line is presented, for 

example, in Ref. 66. For our case these equations can be derived from the consideration of the 
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         Fig. 4. Schematic representation for the distributed parameters of the 4CSTL. 
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        elementary section of the 4CSTL with the length Az, which are shown in figure 4 together with its 

        equivalent circuit. The telegraph equations are formulated for the complex amplitudes of 

        voltage and current on the conductors of the 4CSTL. These amplitudes are expressed as the 

        integrals of the TEM wave fields. They depend on only the longitudinal coordinate z. For the 

        n-th conductor (the shield corresponds to n=0) the integrals are taken along the some paths 1„ 

        and In , which are located in a transverse plane of the 4CSTL : 

Un=— f f.dl , L= f H•dl(1) 
In" 

            The examples of these paths l2 and 12' for 2-nd conductor are shown in Fig. 4. Maxwell's 

        equations are reduced to the system of the differential equations with U„ and In as the functions of 

        z. This system is usually called as the telegraph equations. It consists of 2N differential 

        equations for N-conductor transmission line, while the shield is the (N+1)-th conductor. For 

        example, the simplest case of N=1 with 2 equations corresponds to the coaxial transmission line. 

        The case of N=4 with 8 equations corresponds to the four-conductor shielded transmission line. 

        For the 4CSTL this system can be written in the following matrix form : 

            dz IIU11=—ico•1jL11•11I1M,dz=—i~,~~/3MMU~~,(2) 
L11 L12 L13 L14311 /312 /313 [314 IQik=/3 

        where (la = L21 L22 L23 L24 , kgI= /321  P22 /323 /324for i*k, 
                    L31 L32 L33 L34/331 332P33 /334L ik=Lk:                                                                 .

L41 L42 L43 L44.//341 ,342 /343/344 

dell = [ U1, ... , U4] T and 11111= [I1 i ... , I4] T are 4-dimensional vectors of voltage and current, 
respectively ; co- is the angular frequency ; i2= —1. The sign T designates a transpose matrix. 

       The matrices 11A1 and IILII are 4 X 4-dimensional real square symmetric matrices. Their 
        elements are the coefficients of the electrostatic induction and magnetostatic inductivity, 

        respectively. The total definition of these coefficients is presented in Ref. 70-73. They can be 
        obtained from corresponding electrostatic and magnetostatic problems for systems of N 
          conductors. 

           The matrix lI/3M expresses the total charges on the conductors Ql, Q2, ... , QN= IIQII in terms 
        of their potentials q i, 02, •.. , O,v= II c6lI, i.e. 

I1Q11=II0I•II0II.(3) 

            While the coefficients of like index, as f3ii, are known as coefficients of capacity7Q 
        (capacitance or the self-capacitance in Ref. 71) and of unlike index as coefficients of induction or 

        the mutual capacitance. The Ad, are always positive (13kk>0), but Ai are negative (/3ik=I3ki<0). 
           The matrix IILII expresses the magnetic fluxes surrounding the conductors 951, 02, ••• , ON in 

         terms of their currents Ii, 12, ... , IN, i.e 

0II_11L1111III•(4) 

            The coefficients of like index, as Li{, are known as the self-inductance and the coefficients of 
        unlike index Lik as the mutual inductance. 

            In. this paper we consider only the symmetric four-conductor shielded transmission lines. 
         Because these transmission lines have four conductors, their cross-sections have the rotational 
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symmetry for  90°. It means the followings : 1) all four conductors have identical cross-sections 

2) the cross-section of the shield has the rotational symmetry for 90° (for example, a circle, a 

square, an octagon and so on) ; 3) conductors are located symmetrically relative to the center of 

symmetry of the shield. Then, there are the following additional relations between matrix 

coefficients for the symmetric 4CSTL, which are graphically illustrated by equivalent circuit of 

the 4CSTL in figure 4: 

          AI=122=I3//33=/344/3a, L11=L22=L33=L44La, 

            / 

        /312=/323=P34=/314—/3b, L12=L23=L34=L14°Lb,(5) 

313—/324=/3c,L13=L24=Lc 

    The substitution of (5) into the telegraph equations (2) transfers them to the next form : U1La Lb Lb Lb Ii"11/3 (3b /33 fib 1 Ui 
         d 02 = —icd Lb L0 Lb L 12d I2=—i~•fib

//~~a1b(3cU2(6)         dz 03 La Lb La Lb I3 ' dz 13POib Pa fib r4l3           U4.LbLc Lb LaJ.14,8bpc fibPa 

    The common solution of system (6) for voltage and current can be expressed in terms of their 
boundary values at z=0. It consists of two waves traveling in opposite directions and can be 
written in the following matrix form (see for example, [69]): 

IIUII=exp (-1101'z)'IIU(+aIl+exp (IIGII'z)•Io_aMI ; 
                                             (7) II

rII=eXp (—IIGIIT'z)'IIt+aII+eXp (IIGIIT'z)'IIC4MI ; 

where- IIGII=^IILII'IIfMI is  a square symmetric matrix. Their elements are the coefficients of 
propagation and IIGIIT=VIIf3II'IILII • The plus sign designates a forward wave and the minus 
corresponds to backward one. 

    This solution of the telegraph equations describes the longitudinal distributions of voltage 

and current and they correspond to the electric and magnetic fields of the TEM waves. The 

transverse pictures of these fields are defined by two-dimensional (2D) Laplace equations with 

boundary conditions determined by the voltage and current values at a given cross-section. As 
it is followed from above expressions, the voltage and current on every conductor of the 

transmission line depend on the voltage and current on the rest conductors. In general case, it 

means that the ratios of voltage and current between conductors change along the 4CSTL and the 

boundary conditions at every cross-sections will be different. Consequently, the 2D-problems 

also will be different for each cross-section and the transverse pictures of the TEM waves will 

depend on longitudinal position along transmission line. In such case it is necessary to solve 
Laplace equations for every cross-section and further procedures will become a numerical one. 

This causes difficulties for qualitative interpretations. 

                     4. NORMAL MODES OF THE 4CSTL 

4.1 Mathematical derivation 

    In order to eliminate the difficulties coming from the longitudinal dependence of 2-D 

problems we use the normal mode analysis technique for TL. Originally, this method was 
developed for the high-voltage multi-conductor transmission lines64-69). In a particular case of 
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the 2-conductor transmission lines this procedure are widely applied to study RF devices working 
on two coupled transmission lines (directional couplers, filters, amplifiers, slow-waves 
transmission systems and so on). The simplest variant of normal mode technique for two 
coupled lines was also adapted to study the 4-rod RFQ at the assumption in which two opposite 
electrodes are treated as a single conductor4,7,49s0,60sI,63,74) Because the 4CSTL corresponds 
to the 4-rod RFQ more adequately, we have extended this method to the 4CSTL. This makes it 

possible to generalize the consideration for the 4-rod RFQ. In the previous papers49'50'63) we 
have already presented such extension shortly. In this paper we describe the normal mode 
analysis technique developed for the 4CSTL in detail. 

   The normal mode technique introduces a concept of so-called normal TEM waves (or 
modes), which are also characterized by some voltage and current The voltage and 
current of these normal modes are some combinations of voltage UI and current IIII of original 
TEM waves. In a transmission line system with N conductors there are N normal TEM modes 
of propagation. Thus, there are four modes in the 4CSTL. Any field of original TEM waves is 
expressed by the superposition of these normal modes. 

   Mathematically, the problem of a definition of normal modes corresponds to the calculation 
of the so-called modal matrix IIMII64,66) which converts the square matrices and IILII of the 
initial system (4) into the diagonal form. The modal matrix IIMII is composed of eigenvectors 

(or modal column) IILII of conversed matrixes which correspond to their eigenvalues (or 
characteristic roots). Let designates the eigenvalue of II3II and yL of IILII. Due to the 
matrices II,3II and IILII are the commutative ones, i.e. =IILII'III3II, they have the same 
eigenvectors and modal matrix IIMII . The eigenvectors 11v11  satisfy to the both following 
equations : 

IILII'IIVII= L'II'VII , IIfII'IIVII='IIVII (8) 

   The characteristic roots are derived from characteristic equations for matrices 111II and 

IILII : 

det(IILII—.L'IIVII)=0, det(11/311—‘/3'IIEII)=0, (9) 

where IIEII is the unit matrix. Both these equations result in the similar fourth order algebraic 
equations with respect to the characteristic roots. Their decisions are expressed as the 
followings : 

           L
/a+2L~b+L~//~~                    Lc;L2=La—2~~Lb+ Lc;yy~L3=La—/~~Lc;'L4=LaLc (10)          y~i1=/3a+21J/b+f3c;S(32=IJa-2/3/b+A;y/j3—Ra—/3c; ",64—/3a—IJc 

   Substitution of these eigenvalues into the equations (8) defines the eigenvectors IIVII and, 
hence, the modal matrix IIMII 

           1 1 1 1    

11m11=—'1 1 —1 —1(11) 

1 —1 —1 1 

   As IIMII is a symmetric matrix, it satisfies to the following relations : 

IIMIIT=11m11—'=IIMII, IIMII.IIMIIT=II' II.IIMII—'=IIEII(12) 
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   Besides the matrix  IIMII, the normalized matrix IIDII [691 should be defined for convenience 

of physical interpretation of the normal modes. We have defined it in the following form : 

1/2000000 

IIDII= 0 1 0 o IIDII—'=o 1 0 0(IIDII•IIDII-1=IIEII) (13) 00100010 
0 0 0 1 0 0 1 

   In order to transfer from the telegraph equations for original TEM waves (6) to ones for the 
normal modes we should follow to the methodology in Refs. 66, 69. Let's insert into right-hand 
sides of equations (6) the factors IIMII•IIMIIT=IIEII and IIDII•IIDH-1=IIEII one after other: 

d IIcrII=-iw•IILII•IIMII•IIDII•IIDII '•IIMIIT•IIIII, 

dz IIIII=-iw•IIfMI•IIMII•IIDII-'•IIDII•IIMIIT•IIUII 

   Then, multiply both sides of the voltage equation by factor IIDII•IIMIIT and the current 
equation by factor 011-1'11/1411 T: 

d dz IIDII•IIMIIT loll=—iw•IIDII•IIMIIT•IILII•IIDII•IIDII-1•IIMIIT•II.II, 
                                               (14) 

dz IIDII-1.IIMIIT.IIJII=—iw•IIDII—'•IIMIIT•IIJ3II•IIMII•IIDII-1•IIDII•IIMIIT.IIUII 

   The equations (14) can be written in the short form : 

      dz II1I=-iw•IILDII•IIVII, dz IIDII=—iw•I0DII•IIII,(15) 
where IIDII=IIDII•IIMIIT•II[II, IIDII=IIDII-1•IIMIITIIiII, 

L1/4 0 0 0 
0 6,2 0 0 IILDII=IIDII•IIMIIT•IILII•IIMII•IIDII= 
o oL3 0 

                                0 0 0 6,4 

4 p1 0 0 0' 
0 ..p2 0 0 

      IIDII=IIDII-1•IIMIIT•I0II•IIMII•IIDII-1= o o 0 

                                     0 0 0 -p4. 

and the elements-L1, ••• , yL4 and .pi, ... ,'p4 are defined by formulae (10). 
   As the result, the system of telegraph equations (6) consisting of 8 (2 X 1V) coupled equations 

is reduced to four independent systems. Each of these systems contains the two simplest 
telegraph equations for each normal mode: 

1-st mode :2-th mode : 

        d1=-iw•LD•rf1d2=—iwLD 77.2
dd .2=-ZCU'           D•.g 2D22 

                                                  r 

          dzrfl=—Zw'~11~1dzr//L•S 
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           3-th mode : 4-th mode : 

          d
z3=—icdLDrf324=—im•L4D4•>74 

    dd .(16) 
           dz 213=-zU/333•4dz 774=—ico'ARI'4-4 

   Each of four systems given by (16) can be solved as a usual telegraph equation for one-

conductor (or coaxial) transmission line. From (16) the second order differential equations 
describing the voltage wave propagation of every normal wave can be derived : 

d2  
        dz24=—y=2•4,i=1, ... ,4, where- y==w2•LD•to(17) 

   Taking into account that the TEM waves propagate at the velocity of light v, all constants of 

propagation -y should be the same and be equal to the wave number k= col v, i.e. y,=-k. This 
means that coefficients LD and j are interconnected by the relation 

LD• t,=(18) 

   Using this relation the solution for normal modes is expressed in the matrix form as : 

II II = IIa Ii •cos (kz) + IIBII'sin (kz), (19) 

H7;11=i'v•IIi II' 1—IIAII•sin (kz)+IIBII•cos (kz)1, 

11A 11 and IIBII are vectors of constant coefficients defined by boundary conditions. 
   Finally, the solution for the full field of the 4CSTL can be obtained from the results for 

normal modes (19). The expressions for voltage and current of an original TEM wave through 
the normal modes can be derived from relations (15) in the following form : 

2 1 1 1 

IIUII=IIMIIIIDII-I-IIe1I=21' 2 I —11                              1 —1 11a, 

.2 —1 —1 1 

                      1/2 1 I 1"       

IIiII=IIMII-IIDII-II7,II=2' 1/2 1 —1 -1 •II7;II (20) 

                             1/2 —1 —1 1. 

4.2 Physical interpretations of TEM modes 
   Let's consider the meanings of introduced normal mode parameters. The relations (15) for 

normal mode voltage and currents are 

4-1=1/4•(U1+02+U3+ 04) 7],=(I1+12+I3+I4) 
52=1/2'(U1-02+U3—U4)• 7;2=112•(Il—I2+I3-14) (21) 
4-3=1/2-(U1+U2— U3— U4)'713=1/2•(I1+12—I3—I4) 
45=1/2•(U1—U2-63+U4) 774=1/2•(Il-I2-I3+14) 

   To obtain the conditions for existence of only a single mode, we should put voltage and 
currents of any others to be equal zero. For example, for the first mode it means that 42=4i3 
4=0 and 7J2= 773= 174=0 at any z. Their substitution in (21) will give that voltage and current 
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of TEM wave are identical on all conductors, i.e  02  and I1=I2=I3=I4=I. 
The voltage and current of the first normal mode are ei = U and 2'72 41.  The similar procedure 
can be applied for other modes. The voltage and current of normal modes in the absence of any 
other mode components are connected with the voltage and current of original TEM waves in the 
following way : 

=U , UmU1=U2=Ug=U4 2=2'U, UmU1m—U2=U3m—U4 7f1=41, I=J1°12=I3=I4 ' 3 77.2=2.I, I=I1m—I2=13=-14 
            _(22) 

3=2.0,U=U1=U2°-U3=—U44=2.U, U=U1=—U2m—U3=U4 7.73=2•I, I=I1 I2=-I3= J4 3 774=2•I, I=I1=—I2=-I3=14 
   From these relations, we may define the ways of connections of the conductors of the 4C STL 

for each mode under the condition that any other mode components are absent. Every mode 

propagates along all conductors of TL making up the so-called modal channel. The top row of 
figure 5 illustrates the modal channels of the 4CSTL graphically. Every modal channel of the 

4CSTL can be considered as simple transmission line system with two conductors, one of them 

with a direct current and other with a reversed one. 

   The mathematically derived relations (22) express the practically important fact that the 

ratio between voltage and current on the conductors for every mode do not change along TL. It 

allows to use for every mode the same mathematical means as the usual one-conductor TL (for 

example, coaxial or non-shielded two-conductor TL). That is, in order to determine the TEM 

fields, it is necessary to carry out two procedures for every mode. First one is calculation of 

 41)AiPb) 
                                                    idgm 

           4111l) 
 1Ira 

(0- +1(1) - +1 _ +1 

      • • = +1 . •
_•_••_ 

   • •••C2• •C3• •C4 

  14101 Ittik410.4111.   16/00:040401080/0 
         -+---- 

''$2) 
 a)b)c)d) 

   Fig. 5. Normal TEM modes in the 4CSTL. The 1st, 2nd, 3rd and 4th modes correspond to 
          figures a), b), c) and d), respectively. The top row is the "modal channels" of the 4CSTL, 

           the middle is the 2-D problems for definition of distributed capacitance, the bottom is the 
            E-line patterns. 
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distributed parameters. They are derived from the 2-D problems, which correspond to every 
mode channel. The second step is the determination of longitudinal dependence which is 
derived from the solutions of the corresponding telegraph equations (16). 

   The every modal channel of the 4CSTL shown in the top row of figure 5 is characterized by 
the distributed capacitance Ci and inductance L1. The two-dimensional electrostatic problems 
with definition of capacitance C1 are presented in the middle row of figure 5. These distributed 

parameters C, and L, are equal to the corresponding diagonal elements of matrices II /3°11 and 
respectively: 

1       CI=~3D=4~~I=4(~3a+2[36+~3~)LI=LD=4' =4•(La+2Lb+Lc) 
   C2== -(3a-2/3b+1tD() 

   C3—D_; L2`L22=L2=La-2Lb+La23        Sl)=i3a—/3aD 
 D
l=fl—              a(3aLs—LD—is=La—L,     C4=44=L

4=L44= yi4=La—L~ 

   Using the formulae (3) and (4) it is easy to check these relations (23). The capacitance C1 

is defined to be a capacitor. The first terminal of this capacitor corresponds to the four central 

conductors of the 4CSTL connected together. The second terminal correspond to the shield of 

the 4CSTL. The capacity is the ratio of the charge Q on one terminal to the potential difference 

U of between them. The charge Q is the sum of the four equal charges Qi of four conductors of 

the 4CSTL, i.e. Q=4•QI, while they have the same potential U. Using (3) the charge on the one 

central conductor Qi is expressed as QI=(Pa+2/3b+A)•U. Hence, the capacitance C1 becomes 

CI=4•(/3a+2A+/3c). 

   The inductance L1 is defined as an inductivity of a single conductor. This conductor 

corresponds to the four central conductors of the 4CSTL connected together surrounded by the 

shield of the 4CSTL. The inductivity is the ratio of the flux 0 surrounding this conductor to its 

current I. This current I is the sum of the four equal currents II of four conductors of the 

4CSTL, i.e. I=4•II, while they are surrounded by the same magnetic fluxes O. Using (4) the 

magnetic fluxes 0 surrounding any central conductor is expressed as (P=(La+2L1+Le).I/4. 

Hence, the inductance L1 becomes LI=(La+2Lb+Lc)/4. 

   The similar considerations may be carried out for other modes. Because of the 

interconnection of the electric and magnetic fields, there is the relation (18), which couples the 

distributed capacitance C, and the distributed inductance L . This means that it is enough to 

calculate only the distributed capacitance G. The distributed inductance L= can be obtained by 

the relation (18). 

   The bottom row of Figure 5 illustrates the E-line patterns of normal TEM modes in the 

4CSTL. It shows clear the physical meaning of each mode. The first mode can be named as 

the coaxial, because it corresponds to the usual CTL with four-wire central conductor. The 

second mode is a quadrupole one. It creates the original RFQ fields and therefore, their 

longitudinal distribution will determine the voltage flatness in RFQ-channel. The third and 

fourth modes are two dipole modes. The directions of their fields are perpendicular to each 

other. 

   If we accept the usual approximation that the current flowing on the real 4CSTL with losses 

are the same as in the ideal 4CSTL without losses, the total power loss P becomes the simple sum 

of the partial loss of every mode Pi, i.e. P= P,. Only the second mode has useful field for =I 
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RFQ. In view point of power loss the rest modes can be considered as "parasitic" ones. 

   However, the non-quadrupole modes may be responsible for some other properties of the 
resonator. For example, the presence of coaxial mode determine a very flat field of the 
"Alternate stems 4-rod RFQ" resonator with a small tank diameter. Moreover, these non-

quadrupole modes also may contribute some additional corrections in beam dynamics. 
   Although the coaxial mode does not penetrate the accelerating channel, but it makes some 

potential difference between the axis of RFQ channel and the resonator tank. This fact should 
be taken into consideration for design of an matching sections. For example, it was shown in 

Ref. 8 for the SCR that the electrode shapes must be modified essentially. In the case of the  SCR 

the existence of such potential difference is obvious even without the present normal mode 

concept. However, there are some constructions of 4-rod RFQ in Refs. 5, 9, 10, 13, where the 

existence of such voltage is not so clear. In these cases, using the normal mode analysis, we may 

detect the presence of coaxial mode which creates undesirable potential difference in a matching 

area. It can help to find the best ways for construction of a matching section of the 4-rod RFQ. 

   The simple constructive design of structure can be reached when the presence of the weak 

dipole fields is allowed13'2s'37'3s~ In contrary of coaxial mode, the dipole modes may influence 

on beam dynamics in a regular part of RFQ channel. Their fields should be added to an original 

RFQ field, because they may cause both resonant and non-resonant interactions with particles of 

beams and therefore, can distort the stable particle motion. It is useful to know the conditions 

for existence of non-quadrupole modes in order to evaluate their affects or to find means to 

suppress them. 

   At first the normal mode analysis was introduced only to eliminate the mathematical 

difficulties. However, the practical importance of the normal modes has increased by the fact 

that the normal modes have clear physical interpretations. The knowledge of the mode contents 

of total field in the 4CSTL can be useful for calculations of both efficiencies of 4-rod RFQ 
resonators and the beam dynamics in their RFQ-channel. 

         5. THE PROPAGATING MODE CONTENTS OF CAVITY MODES 

   In the indefinite 4CSTL, the normal TEM modes can propagate with any amplitudes at any 

frequencies. But if the conductors of the 4CSTL will be loaded by some impedance, this system 

becomes a resonance circuit with several resonance modes at a discrete set of frequencies, while 

the TEM wave of each resonance mode is a superposition of the propagating normal TEM modes of 

the 4CSTL. The amplitudes of these field components depend on the configurations of 

resonators. A resonance mode of a 4-rod RFQ resonator can be described by a combination of 

the corresponding normal TEM modes. Such combination can distinguish a type of a resonator. 

Some cases of the mode combination in the 4CSTL and corresponding 4-rod RFQ resonators are 

discussed in the following sections. This approximate method is compared with field patterns 

obtained from the exact solution of Maxwell's equations which was made by us using the 3-D 

MAFIA code751. 

5.1 4-rod resonators on the base of a single TEM propagating mode. 

   At the beginning, the simplest case is considered when the cavity mode is formed by a single 

normal mode. Let's consider the standing waves produced by every normal mode. They can 

be excited in the corresponding modal channels of the 4CSTL presented in Fig. 5. They are 
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     Fig. 6. a) the voltage distribution of the standing waves produced by every normal mode in 
            the 4CSTL ; b) half-wave 4-rod resonator ; c) quarter-wavelength 4-rod RFQ 

                resonator. 

usual standing waves of a simple TL with voltage and current nodes shifted exactly by a quarter 

wavelength. Then, we cut the 4CSTL between two voltage nodes. The Fig. 6, a represents the 

voltage distribution in such section for every mode. This section becomes a resonance circuit, 

which corresponds to half-wave 4-rod resonator (Fig. 6, b). Note, this resonator is a single 

example where present method decides the 3-D electrodynamics problem exactly. 

    The half-wave 4-rod resonator has four main resonant modes and each of them is produced 

by a single normal propagating mode. Because they have the same resonance conditions 

expressed as 1=A/2, their resonant frequencies coincide. All cavity modes are confluent and we 

cannot see them separately on the field patterns produced by MAFIA code. This resonator has 

no practical interest. But cutting of it into two pieces makes the quarter-wavelength 4-rod RFQ 

resonator (Fig. 6, c). In this case, almost all modes are separated and their fields drawn by 

MAFIA-code are illustrated in fiigure 7. 

   The Fig. 7, a presents E-lines and B-lines of the cavity modes at the transverse cross-section 

of A/4-resonator at z=1/2. These field patterns are in good agreement with the corresponding 
TEM propagating normal modes which were given already in Fig. 5. The transverse field 

patterns of resonator are the same almost at all values of z. The exception is only a narrow 
region near the open ends of electrodes at z=1, where the E-lines have dominant longitudinal 

components. The fields at transverse cross-section at z=1 are shown in Fig. 7, b. The fields of 

quadrupole cavity mode in axial planes of A/4-resonator are given in Fig. 7, c. It illustrates that 
the fields have mainly transverse components. 

   It is seen that the fields have the transverse E and B components corresponding TEM waves 

and are distributed along z-axis in the same manner as fields of usual coaxial 2/4-resonator, the 
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  Fig. 7. The field patterns of the cavity modes calculated by MAFIA code for the of A/4-
         resonator which is shown in Fig. 6, c: a) the fields in the transverse cross-section at 

Z=1/2 ; b) the fields in the transverse cross-section at z=l; c) The fields of quadrupole 
         cavity mode in axial planes XOZ and CC'. 
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one end of which is terminated by a short circuit and the other by loading capacity. Hence, the 
resonance conditions of this 4-rod A/4-resonator are determined by the same way as the case of its 
coaxial analogue, namely ctg(kl)=k•Cf/C, where Ci and Cf are the distributed capacitance (see 

Fig. 5) and loading capacities, respectively, for the i-th normal mode. The Fig. 7, c explains by 
example the difference of G= for unlike modes. Under the influence of the loading capacity, the 
resonance frequencies of cavity modes are reduced from the resonant frequency f,v4=c/41 of an 
ideal case where the loading is absent. 

   Thus, there is the mode separation for the case of 2../4-resonator in comparison with A/2-
resonator. It is predetermined by the different values of the ratios C/C. The mode separation 
can reach up to several percents for the reasonable geometry of resonators at the open end areas. 
For example, for A/4-resonator presented in Fig. 6, c, where its length, the tank diameter, the 
electrode diameters and the gap width at open ends are 0.2 m, 0.1 m, 0.01 m and 0.01 m, 
respectively, the /Apt-value becomes to be 375 MHz. The calculated frequencies by MAFIA-
code are 332 MHz (the difference from f,/4 is 11%), 366 MHz (2.5%) and 373 MHz (0.5%) for 
coaxial, dipole and quadrupole modes, respectively. The results show that quadrupole cavity 
mode is insensitive to the loading capacity. 

   Because of the sinusoidal change of the longitudinal voltage distribution, the quarupole fields 
of the given A/4-resonator is essentially non-uniform along resonator axis. This is not practical 
without modification. The modification is similar to drift-tube structures of the Sloan-Lawrence 
type on twin-line. The non-uniformity of the voltage distribution is reduced by "bending the 
low voltage parts" 52-54) The Fig. 8 shows the results of such modification of /1/2-resonator (Fig. 
6, b) into one-section of 4-rod resonator. The generalization of the one-section makes the 
indefinite multi-sectional resonator. It is seen how the electrodes in "low voltage parts" of A/2-
resonator transform into the electrode-supporting posts of multi-sectional resonator. According 

to longitudinal positions of supporting posts, this resonator is called the 4-rod. RFQ resonator 
with "In-line stems". 

   The "bending" procedure is mechanically looked as cutting of the low voltage parts of 
electrodes with the arrangement of the supporting posts at the cutting points. With equivalent 
circuits, it may be treated as a connection of some equivalent impedance of the supporting posts 

       The normal modes in the "In-line stem 4-rod RFQ" 
      One-section 4-rod coaxial quadrupole two dipole modes 

A/2—resonator 

        IMINIrU,3 U24U1,3U2,4U1,4U2,3U1~2U3.4 

                    IIIIII 01I1110_ _®I~III_~II _       jr_MOW 
ZZZZ 

    The indefiniteA- 1 RA- A multi-sectional A All' Num ` 
In-line stem 

 4-rod RFQ~_                    ~tl~tltl    resonator"~~n-7~ 
       Fig. 8. The normal modes in the one section of the 4-rod .V2-resonator and view the 

               multi-sectional "In-line stem 4-rod RFQ" resonator. 
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to the input impedance of the i-th conductor of the 4CSTL. In order to preserve the voltage and 
current distribution in the 4CSTL, this equivalent impedance of the supporting posts should be 
matched with the impedance of the 4CSTL. The input impedance of  i-th conductor is defined as 
Z,"= WI,. When only a singe normal mode exists in the 4CSTL, the input impedance of all 
conductors are the same functions on z according to the relations (21) and (19), i.e. 
Zr = U(z)/I(z)=Z`"(z). For matching, the input impedance of every supporting post Zr has to 
correspond to the function Z`"(z). But practically, it is impossible to make the supporting post to 
have an arbitrary given absolute values of Zr. They may be made as mechanically identical 

ones with the same the Zz"-values. This means that these identical supporting posts should be 
installed at the same z. 

   As the results, in the case of 4-rod resonator with single normal modes, the supporting post 
should be identical and should have in-line arrangement. The shape and configuration of the 
supporting posts do not influence on mode contents of the cavity modes. Only numerical 

characteristics of resonators depend on their shapes. The supporting posts can be realized in 
many configurations. They are based on different systems of conductors, which can produce 

input impedance with an inductive nature. They range from the simplest straight stems to 
spiral supports. Probably, it is possible to make the supporting posts on the base of the so-called 

poly-coaxial resonators76). It may be a competitor with spiral supports because of mechanical 
strengths. Similar construction of support is applied in the drift-tube resonator with two-coaxial 
support771. 

   If above conditions of impedance matching is not satisfied, the operating RFQ mode of 4-rod 
RFQ resonator will contain an additional non-quadrupole normal modes. Practically, there can 
be two cases. First case corresponds to the 4-rod RFQ with indentical supporting posts, which 
are not arranged "In-line". In the second case the supporting posts have no the rotational 
symmetry for 90°. The presence of non-quadrupole normal modes requires the special 
consideration for each case. 

5.2 4-rod resonators on the basis of a combination of TEM modes. 
5.2.1 Dipole modes combinations 

   As the examples of the mode combinations, the cases with only the dipole modes are used, 
because the graphical presentation in such cases is very clear and simple. It is explained by the 
fact that the distributed parameters of two dipole modes are the same. 

   Fig. 9 shows the dipole mode combination when two dipole modes with equal amplitudes are 
summed in-phase. Because the distributed parameters are identical, their voltage and current 

have the same amplitudes. The left side of the Fig. 9, a shows the initial voltage and current 

distributions on all conductors of the 4CSTL which correspond exactly to the half-periods of sine 

and cosine curves, respectively. The results of their summation are given on the right side of the 

Fig. 9, a. Below it, the resulting resonator corresponding to the shaded .U4-section of the 

4CSTL is shown. 

   In this case, one pair of electrodes is excited in opposite phases as two A/4-vibrators. The 

other pair has no current and voltage at any z. Hence, it is not necessary to connect the ends of 

the non-excited pair of the conductors to the cavity tank. 

   Fig. 9, b shows the potential signs and the current directions of the electrodes together with 

field lines at different cross-sections of this resonator. They were derived using the above 
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    Fig. 9. The cophased superposition of the dipole modes : a) the voltage and current 
           distributions of dipole modes, the voltage and current distributions of the summed TEM 

           wave and the resulting resonator ; b) The potential signs and current directions at 
            different cross-sections of the resulting resonator. 

distributions in Fig. 9, a. The corresponding field patterns calculated by MAFIA-code are 

shown in Fig. 10. The results by MAFIA calculations are in a perfect agreement with ones from 

our method shown in Fig, 9, b. The ratio of the maximum value of the field strength to the value 

at the middle of the resonator is obtained from sinusoidal distribution to be 0.707 in present 
method. The corresponding ratio for E-fields is equal to 0.71 (=0.67/0.95) and for B-fields 0.72 
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                           b) 
   Fig. 11. The superposition of the dipole propagating modes shifted by .1/4 relative to each other : 

           a) the voltage and current distributions of dipole modes, the voltage and current 
           distributions of the summed TEM wave and the resulting resonator; b) The potential 

            signs and current directions at different cross-sections of the resulting resonator. 

(=1.8/2.5) in the case of MAFIA calculation. Thus, our graphical consideration has coincided 
with 3-D MAFIA-results. 

   Fig. 11 shows another dipole mode combination when two dipole modes with equal 

amplitudes are summed in a .U4 phase shift. The left side of the Fig. 11, a shows the initial 

voltage and current distributions on all conductors of the 4CSTL which correspond exactly to the 

half-periods of sine or cosine curves. The results of their summation are given on the right side 

of the Fig. 11, a. Below it a schematically drawing of the resulting resonator corresponding to 

the shaded .1./4-section of the 4CSTL is shown. 

   In this case, all electrodes are excited as four z1/4-vibrators and the system consists of two 
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    Fig. 12. The field patterns calculated by MAFIA-code for the superposition of the dipole modes 
            shown in Fig. 11. 
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pairs of the opposing electrodes with the same zero-boundary conditions  (1=0, U=0). Each 
pair of the opposing electrodes is exited in opposite phases. The both ends of each pair must be 
connected to the tank in similar way (see Fig. 11, a). This type of the cavity mode exist in the 
one-section .1/4-resonator with the alternate arrangement of connections between rods and the 
tank (Fig. 13, a). 

   Fig. 11, b shows the potential signs and the current directions of the electrodes together with 
field lines at different cross-sections of this resonator. They are derived using the above 
distributions in Fig. 11, a. Because voltage of the 4th mode is equal to zero at the middle of the 
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       Fig. 13. The mode superposition which corresponds to the "Alternate stems 4-rod 

RFQ"resonator : a) The views of the one-section A./4 resonator and the 
               indefinite multi-sectional resonator ; b) The superposition of the quadrupole 

              and coaxial propagating modes shifted by A./4 relative each to other ; c) The 
               transverse planes of the 4CSTL with zero boundary conditions and resulting 

                 resonators for o-mode and Jt-mode. 

resonator, the electric field here comes from only the 3rd mode. The magnetic field at z = 1/2 is 

defined only by the 4th mode from the similar reason. The corresponding field patterns 

calculated by MAFIA-code are shown in Fig. 12. These pictures are in good agreement with 

ones in Fig, 11, b. 

   Thus, our graphical consideration can predicate and explain the dipole cavity mode of the 4-

rod resonator. The presented examples illustrate also that the current and voltage of 

propagating modes may be non-zero at open and shorted ends of conductors, respectively. The 
boundary conditions require the zero values only for corresponding voltage and current of 

original field. 

5.2.2 Combinations with quadrupole mode 

   Now we consider the mode combinations with participant of the quadrupole mode. 

Because of the difference of distributed parameters between quadrupole mode and any another, it 

is impossible to get the figures of mode combinations without any calculations as it is done for 

above cases of dipole modes. To define the voltage and current distributions, we should find the 

constant coefficients in the solutions (19). They can be derived using zero boundary conditions. 

In this paper we have omitted the details of these calculations. The results are expressed 

graphically for qualitative consideration. 
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   A practically important case of the mode combination which corresponds to the one-section 

of the "Alternate stems 4-rod RFQ resonator" shown in Fig. 13, a is presented in Fig. 13, b. 

This is the superposition of the standing waves of coaxial and quadrulpole TEM modes shifted 

along longitudinal direction by  d14, while the voltage amplitude of coaxial mode is larger than 

the quadrupole mode by factor 2(C1/C2)1/2, where C1 and C2 are distributed capacitance of the 

coaxial and quadrupole modes, respectively. 

   As shown in Fig. 13, b, there is a set of transverse planes perpendicular to the z-axis of the 

4CSTL in which either voltage or current on each conductor of the 4CSTL is equal to zero (Fig. 

13, c). In these planes, the conductors with zero voltage can be connected to the shield and the 

conductors with zero current can be cut to open-circuits. The segments between neighboring 

planes are resonant circuits corresponding to the one-section of the "Alternate stems 4-rod RFQ" 
resonator. The short segment with length A(A<A14) corresponds to 2r-mode relative to 

neighboring rods (RFQ operating mode) ,and the longer one with length .1.12—A corresponds to 
0-mode (in-phase neighboring rods). The sum of the lengths of 7r and 0 mode segments is equal 
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      Fig. 14. The potential signs and current directions at different cross-sections of the 
               resulting resonators shown in Fig. 13, c : a) 2r--mode ; b) o-mode. 
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to exactly A/2. It should be noted, that the difference of the segment length from A/2 is caused 
by the difference of the wave impedance between coaxial and quadrupole modes. 

   In contrast to the quadropole and coaxial mode combination, the above discussed 

combinations of two dipole modes, which have exactly the same wave impedance, result in the 
equal segment lengths  A=2.14. The dipole resonator modes with the same frequencies are 

degenerative. Two combinations of coaxial and quadrupole normal TEM modes correspond to 
r and 0 resonator modes and others correspond to different combinations of two dipole modes. 
For the unit section with length 1 it can be obtained that fr+fo=2fd, where fir, fo and fd are 
frequencies of n-mode, 0-mode and dipole modes, respectively, while fd = (v/41), where v is 
velocity of light. 

   Fig. 14 shows the potential signs and the current directions of the electrodes together with 
field lines at different cross-sections of this resonator for r and 0 resonator modes. They are 
derived using the above distributions in Fig. 13, b, c. The corresponding field patterns 
calculated by MAFIA-code are shown in Fig. 15, a, b. These figures are in agreement with the 
results of our theory. At the cross-sections corresponding to the middle of the resonator for both 
modes, we can see the typical patterns of the propagating normal modes. 

   At open ends of electrodes the currents of two propagating modes have non-zero values. 
They are compensated and the summed current is equal to zero. Because the current of modes 
are distributed in the transverse cross-section by different ways, the power losses are non-zero at 
the open ends of electrodes. This situation is in contrast to the usual case (for example, coaxial 
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     Fig. 15. The field patterns calculated by MAFIA-code for superposition of the quadrupole 

             and coaxial modes shown in Fig. 13 and Fig. 14 : a) 2r-mode ; b) o-mode. 

resonator or above resonators based on a single mode) in which the power loss at the open end of 
electrodes is zero. 

   The cophased superposition of coaxial and qudrupole TEM modes with the same voltage 

amplitudes results in the A/4-resonator as shown in Fig. 16, a. One pair of the electrodes has the 
zero (as shield) potential and the other one has the voltage distribution which is sinusoidally 
increasing along z-direction. The results from MAFIA calculations for this resonator are shown 
in Fig. 16, b. They agree with our consideration. The combination of this A/4-resonator with 
the "Alternate stems 4-rod RFQ" resonator causes a modified resonator, which has an initial part 
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     Fig. 16. The cophased superposition of the quadrupole and coaxial modes : a) the present 

method ; b) The field patterns calculated by MAFIA-code. 

with increasing RFQ voltage63l. This initial part can be used as a matching section which is free 

from undesirable longitudinal fields and has no complicated electrode configuration. 
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