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Abstract A symmetric relation of macroscopic quantities between two different steady
problems of the linearized Boltzmann equation is derived. A few applications to half-space
problems are presented first. Then, for the gas in bounded or unbounded domains such that
solid bodies or condensed phases are confined in a finite region, general representations of
the mass, momentum, and heat fluxes through the boundary (possibly at a point on or on
a part of it) are derived from the symmetric relation linked to the separability of boundary
data. This result imply a reduction of the original problem to a single elemental problem in
the same domain, as far as the fluxes are concerned. Many applications are also presented.
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1 Introduction

The linearized Boltzmann equation is widely used for the study of a slow rarefied gas flow
or a gas in a micro scale system such as a micro channel, an aerosol particle, etc. One of
the interesting feature in such gas systems is that fluid-dynamical and thermal phenomena
are mutually inductive. For instance, a net heat flow through a channel is induced in the
Poiseuille flow, while a net mass flow is induced by a temperature gradient along the wall
(the thermal transpiration [1]). Those phenomena are sometimes related to each other, e.g.,
the former net flow is identical to the latter up to the dimensional factor in the above example
[2]. The thermal polarization [3,4] and thermophoresis [5—-7] of a particle are other examples
of the mutually inductive phenomenon expected to be related to each other [8,9]. In the
present paper, we investigate what kind of relation holds in general between two problems
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described by the steady linearized Boltzmann equation. We will eventually derive a useful
representation of the fluxes through the boundary for quite general situations.

First in Sect. 2, we consider two time-independent boundary-value problems of the
linearized Boltzmann equation in the same domain. The domain may be bounded or un-
bounded, and its boundary is composed of two parts: one representing a simple solid surface
or an interface with the condensed phase of the gasr¢tdeboundary for short) and the
other representing an artificial boundary set in the interior of the gas, which includes the
specular and periodic boundaries as a special case, or a far field in an unbounded domain (the
imaginary boundaryfor short). We derivea symmetric relation of averaged macroscopic
guantitiesbetween the two problems by integrating both in space and molecular velocity a
product of one solution and the other with reversed molecular velocity. The relation is ob-
tained by the self-adjointness and parity of collision operator with the aid of the condition of
detailed balance on the real boundary and its extension assumed on the artificial boundary,
provided that the velocity distribution function approaches the given data sufficiently fast at
a far distance for an unbounded domain. A concrete set of general situations in which the
relation holds is also presented. These situations will be dealt with in the rest of the paper.

One of the situations where the symmetric relation holds is a spatially one-dimensional
half-space problem of the linearized Boltzmann equation. In Sect. 3, we present some ap-
plications to half-space problems occurring in the study of the Knudsen layer structure [10—
12]. In Sects. 3.1 and 3.2 we show the recovery of known relations for the so-called slip and
jump coefficients, while in Sect. 3.3 we provide unknown relations for jump coefficients and
a couple of new numerical data by use of them. In the half-space problems, the boundary
data on the real boundary affect the state of the gas in a far field. On the other hand, for
bounded or unbounded domains such that the real boundary is confined in a finite region,
we may deal with the boundary data separately, place by place, and consider a response of
the system to elemental sources put on the boundary. We shall call the respo@Gsedhe
functionin the present paper. In such domains, we can assure the symmetric relation to hold
by a rather simple argument based on the Stokes set of equations. In Sect. 4, we present
a fruitful consequence from the separability of the boundary data linked to the symmetric
relation. To be specific, after a preliminary argument in Sect. 4.2, we present general ex-
pressions of the mass, momentum, and heat fluxes on the boundary in Sect. 4.3, which we
call the representation theorem and is the second main outcome of the present paper. The
obtained representation is not a mere superposition of the Green function. It tellsethat
problem of finding a flux through the boundary (possibly a part of or even a point of it) is
reduced to finding the Green function for the elemental source corresponding to that flux
put on the interested boundarfhe elemental sources are a collision invariant distributed
uniformly or linearly in space on the boundary (possibly on a part of or even at a point on
it). Their correspondence to the fluxes will be clear in the course of discussion in Sects. 4.2
and 4.3. We also show corollaries of the theorem on the reciprocity of the fluxes induced
by the Green functions in Sect. 4.4. This property will become important, especially when
linked to the entropy theory to be developed in a separate paper. Various applications of the
theorem will be shown in Sect. 5.

Our Green function is not the ones discussed in [13,14]. The source is not in the equa-
tion but in the boundary condition as the macroscopically meaningful elemental data. This
is intended to reflect the fact that the boundary data are given in accordance with the state of
the surroundings at the macroscopic level. Our purpose is not to represent the solution itself
as a superposition of the Green functions but to show the reduction of the original problem
to obtaining a single elemental solution corresponding to the interested fluxes through the
boundary. Simple analogues might come to mind. For instance, the Green reciprocity theo-



rem [15-17] for the Laplace equation is known in the electrostatics for conductors and in the
theory of heat conduction. For the continuum or near continuum gas (i.e., the system with
small Knudsen numbers) in the linear regime, the flow field is described by the Stokes equa-
tion for the incompressible fluid and the temperature field by the Laplace equation [10-12].
From this point of view, the representation theorem may be regarded as the extension of the
classical reciprocity to arbitrary Knudsen numbers, though it includes more. We will give a
comment on this aspect in Corollary 9 in Sect. 5. We also mention a simple analogue in the
theory of radiative transfer [18] to the example of a half-space problem in Sect. 3.2.

2 Symmetry of the steady linearized Boltzmann equation
2.1 Problem

We start with a physically rather abstract or seemingly artificial formulation of the problem.
Let us denote b and { the dimensionless position and molecular velocity. We shall

consider a functiorp(x,{) in a certain domain ok, sayD, and for the whole space &

that satisfies the steady, inhomogeneous linearized Boltzmann equation:

09 Jp 1
Z.d—)q+l=.07i—K$(co)+|. @
HereF is a given vector depending onand{ and satisfies the conditiog%F.E =0 with

E(Z) = m¥2exp(—|{|?), K is an arbitrary positive constant (DK < o), andl is a given
function of x and {. The explicit form of the linearized collision integra?’ () is sup-
pressed, becaus¥ is required only to have the following properties in the discussions:

(i) Z(-) commutes with the parity operator acting {n
ZL(P)” =Z(d7) foranyd, (2a)

where the function with superscriptis defined a8/~ (x,{) = ¥(x,—{).
(i) Z(.)is self-adjoint:
(L (W) =(YZ(d)) forany® and¥, (2b)

where the bracket§) indicate the following moment with respect{o
(@) = [@(@EQ)L.

(i) (@) =0 holds if and only if® is a linear combination of i, and|{ 2.
(iv) Z(-)is non-positive:
(02(d)) <0 foranyd, (2c)

and the equality holds if and only @ is a linear combination of 1, and|{ |2.
The following obvious properties will be frequently used in the sequel:
(@) =@, (d)=(d~) foranyd. 3
On a part of the bounda@D, which we denote bygD,y, ¢ obeys the following condi-
tion:

_ GIEC) re 2010 — 102"
0=0ut [ g RE &N -6)d, G0 @



where, = { - nwith n being the unit vector inward normal to the boundéBy, at position

X, Ow is a given function ok and{ to be specified soon later in (5), apd andg;, stand for
o(x,{") andgw(x,{") respectively. The kern& is a given function having the properties
summarized in Appendix A, where and in what follows we denot®gy the kernel satis-
fying the condition({n®) = 0 and byRpg the kernel free from this condition. The required
properties are different betwe&r andRpgr. The functiongy (X, {) is defined by

gw_{zz-uw+<IZ|2§)rw if R=Rer,
PWJFZZ‘UWJF(MF*g)TW if R=RpR,

whereuy, Ty, andR, are given constants i§ with u,, - n = 0. In generalyy, Ty, andRy
depend on the positiaxon dD,,. Note thatg,, is defined for the whole range gt
Physically,dD,, is the part corresponding to theal boundary which is the surface of
a simple solid body (a simple surface, for short) or the interface with the condensed phase,
i.e., liquid or solid, of the gas (the interface, for short). On the former, there occurs no mass
flow across the boundary (i.64,¢) = 0), while on the latter it may occur in generBcr
represents the reflection kernel for the former &pg that for the latter in the reference
equilibrium state at rest. The deviation of the state of the boundary are represerigd by
Uy, andty, involved ingy. The dependence &onx comes from the possible change of the
boundary material and typically appears as the change of the accommodation coefficients.
From now on, we consider two functiogd and¢® such that

1. ¢* satisfies (1) and (4) with; = .%;, | =14, andgy = g},

2. ¢B satisfies (1) and (4) witk; =.% ", 1 =18, andgy, = @&,
whereRin (4) is common tap® and¢B. The aim of Sect. 2 is to derive a symmetric identity
between the global quantities @f* and of ¢®. For the moment, we proceed without any

information aboutp’s on the remaining part of the bounda?{p, which we denote by Dy,

®)

2.2 Symmetric relation

We first show a symmetric identity that can be obtained without specific information on
dDgy. The presented form is a slight extension of those in the literature (e.g., [13,19,20])
mainly in the sense thatis arbitrary as far as the solution exists.

Proposition 1 Consider the functiong” and ¢B such that

(i) ¢" satisfieg1) and(4) with F = .%, | =14, and g, = ¢,
(i) @B satisfieg1)and(4)withF =.%,1 =18, and g, = ¢,

where R in(4) is common tap® and ¢B. If the kernel R satisfies the condition of detailed
balance [13,21] (see Appendix B):

14 IR(ET,GXEL) = 14| R(=4,—{X)E({)  for £n >0, {3 <0, (6)

the following symmetric identity holds:

|, (@ a5 [ | (@o s [ P
= /aDW<Zn9®7‘PB>dS+%/ﬁDg@n(PA*(PB)dS— ./D<IA’(pB>dx7 (7

wheredSis the surface element at positian x
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Proof We first integrate (1) forp® (or ®) multiplied by ¢B~E (or ¢**~E) over the whole
space of{:

@l AP P ), )
B
@O+ (7 0 ) e 2P ) + 1%, (@)

Subtracting (8b) from (8a) leads to, with the aid of (2a), (2b), (3), and the conditidh for
immediately after (1),

37 G0 )15 ) = (G )+ 1A ). ©

Integrating (9) over the domaid results in the well-known identity (e.g., see [13]):

B B g A- g
R (pA)dS+/D<I dS——2/ (Zng™ @ dS+/I )ds (10

Next, we split the surface integrals into thosedid, anddDg and transform the integral
on the former. Simple rearrangement yieldsaih,

(200% 0" = (Zn(0® — a0 (@ =) + (Cngly @) + (2n0® d0) — (Zndl G-

The last term on the right-hand side vanishes because of (Sianal= 0. Further, forR
satisfying the condition of detailed balance, the first term on the right-hand side vanishes, as
shown in Appendix B. Thus, the integrand of the surface integral@y is reduced to

(200P @) = (Zag @) — (Gnba @), (&n@™ 0°) = (Tng 0°) — (TG @),
Substitution into (10) yields the desired identity. O

2.2.1 Condition oDy

We now introduce the condition fgron dDy to refine Proposition 1, and thgsought to be
considered as a solution of the boundary-value problem of (1), (4), and the condition (11) on
0Dy below. We shall consider three types of conditions)yy and correspondingly split it

into three partsaDg), 6Dgi), andc?DS"). Each part is defined as follows.
0] 0DS) is the part wherep for the inward direction of is given?
ox,{) =hin(x,{) for{n>0,xe 0DS>. (11a)

Herehi, is a given function defined faf, > 0. For later discussions, we extend the range
of this function to the whole space ¢fand denote the extended function I, {).
The way of extension is arbitrary.

(i) aDSi) is the part that reaches infinity whénis an unbounded domain. The asymptotic
form of @ for large|x| is given:

o(x,.{) ~h(x{) as|x| — o. (11b)
Note thath(x, {) is defined for the whole range gfand satisfies (1) by definition.

1 Mathematically, the conditions (4) and (11a) do not exclude each other, so that there may be a part of the
boundary which can be regarded a®b,, or in 0Dg). However, there arises no difference to be cared.
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(iii) dDS“) is the part wherep for the inward direction of at positionx is related to that for
the outward direction of’ at positionx':

PO6E) =hx2) +/1;D(i")// <0 P(X.{".x.)(¢/ ~)d{'dS  for{,>0,x€ dDgii>7

9
(11c)

whereh(x, ) is a given function defined for the whole range/adind for any € aDj",

!, = -/, andn’ and d$are the inward unit vector normal &DS") and the surface
element at poink’ respectivelyy’ andh’ stand forp(x', ") andh(x’, ') respectively.
P is a given function defined faf, > 0 and{/, < O that prescribes the relation between
two pointsx andx’ on dDg”). Here we restricP to the functions that meet the following
conditions (an extension of the conditions in Appendices A and B):

(a) For g, > 0and{/, <0,
1Z0E(Q)P(X,Z' . x.0) = ¢y [E(L)P(x,—. X, -T').

(b) For a certain given functiogo(x,{) > 0 defined for, > 0 andx € dDg”), the
following relation holds:

1=go(x &)+ [ [ PX.Z'xQ)dL'dS for &> 0.
g w <

(c) P(¥,Z’,x,Z) > 0, and it is not identically zero.

The property (a) is an extension of the condition of detailed balance to among different
points on the boundary. It should be noted that the uniqueness condition corresponding
to the third property oRcr and Rcgr in Appendix A is not required oP. Thus, the
specular and periodic type boundaries are classifiecﬁiﬁgﬁ'). Due to the property (c),

(11a) is excluded from (11c).

Some physical comments would be in order on the boundary conditions. As mentioned
before,dDy, is the part corresponding to theal boundary i.e., a simple surface or the
interface. On the former, there occurs no mass flow across the boundary, while on the latter
it may occur in general. The kerngtr represents the reflection rule on the former Bpd
on the latter. It is important to notice that the specular reflection condition is excluded from
the partoD,, because of the third property BEr andRpr in Appendix A. The remaining
partdDg is theimaginary boundarywhich is set inside a gas. The specular reflection and

periodic boundary conditions are a typical example of the @éi”). It is readily checked

that they have the properties requiredPofArbitrariness ot on dDg) and dDg") aims at
the application to a rather artificial problem setting often adopted in numerical simulations.
We close the present subsection with the following lemma:

Lemma 1 Let ¢* and ¢B obey the conditior(11) with h = h* and h= hB respectively,
where P in(11c)is common tap® and ¢®. Then the following identity holds:

/ (i), A(iii) <Zn(‘PA_ - hA_)(‘PB - hB)>dS: 0, (12)
9Dy UADg

where i and t on 9D are an arbitrary extension offand I to the whole range of .



Proof For brevity, we denote@® —h” by ¢ (a = A, B). Obviouslyy® = 0 for {, > 0 on
dDé) The integrand oﬂDé) is readily seen to vanish by a change of variables:

(Za yB) = / Zn™ WPEAZ — / L yBEdZ =0,
Jn>0 J{h>0

and (12) is reduced to the surface integramﬂ"). For the reduced integral

A B\ A B
L A A e W ARt

J >0 z?Dg

we use (11c) foup® in the first term and that fo” in the second term on the right-hand
side. Then, by the use of the property (aothe first and second terms are seen to cancel
out each other in a way similar to the proof of Lemma 4 in Appendix B. O

2.2.2 Symmetric relation

We now present the first main outcome of the present paper, which is the refinement of
Proposition 1 due to Lemma 1:

Proposition 2 (symmetric relation) Consider the solutiong”® and ¢® of the boundary-
value problen(1), (4), and(11) such that

(i) ¢"is asolution in the case of# 14, gy = iy, F = .%;, and h=h*,

(i) @B is a solution in the case of+ I8, g, = g8, F = %, and h= h&,
where R in(4) and P in(11c)are common to the problems. Then,

1. If the kernel R oD,y satisfies the condition of detailed balan&,

2. and if the parthgi) is absent org” and @B approach K and I sufficiently fast in
(11b)so that

[ Gn(@™ ~ 1) (¢P P ds—o, (13)
oDy
the following equality holds:
B— B— B— A B—
f, o s [ @bt otas—3 [ @ ias— [0 gt

= A A B A—1B\qQ A-_ B
_/dDW@ngW dS+/ 2 oP)dS— 2/@Dg@nh hB)ds /D<| Brdx. (14)

It should be reminded that*hand I on aD§’ may be any extension ofitand I to the
whole range of [see (i) in Sect. 2.2.13.

2 The respective values of the second and third terms of each side of (14) depend on the way of extension
of W, andhB . However, the following relation always holds:

/dDg@nhB def/ (ZahB hAdS/ (Zah™ @ def/ (Zoh™ HB)dS



Proof The refinement is achieved by the reductior{ g™~ ¢®) on 0Dg due to Lemma 1:
| (ad* gPias= [ ((Gh" 6B+ (Gg 1B — (Gl ) s
dDyg dDg
[ Gle" =)@ —P))ds
9

a

It should be noted thdtandh are not restricted to any specific form as far as the solwtion
exists (see the example in Sect. 3.3).

The condition (13) is fulfilled for bounded domains. It is also fulfilled for unbounded
domains at least in the following two general situationsFfce O:

1. D is a spatially one-dimensional half-space.
2. D is an unbounded three dimensional domain 8B, is confined in a finite region, so

thatdDg = 9D

The first case is obvious because the area of surface integral does not change in passing to
the limit x| — o, and¢@” and® in the surface integral oDy may be replaced by and
hB. The second case is not trivial and is due to Lemma 2 to be shown soof later.

In the rest of the paper, we work on bounded domains and unbounded domains in
the situations raised above. We first present some applications to the first case, i.e., one-
dimensional half-space problems, in Sect. 3. The first case is not merely simple but also
requires a separate discussion from the second case. It is due to the fact that the source on
the real boundarg,, does affect the state of the gas in a far field in that case andhttas-
not be given independent gf.. [22] In contrast, we may separately deal with the sources on
the boundaries in the second case, i.e., the three dimensional unbounded domain, and con-
sequently can establish a unified theoretical framework with the case of bounded domain.
We present this unified approach in Sect. 4, which leads to the second main outcome of the
present paper on general representations of the mass, momentum, and heat fluxes passing
through the boundary. We will show its applications in Sect. 5.

We close the present subsection with the announced lemma:

Lemma 2 Let ¢* and ¢® satisfy(1) with F = 0 in an unbounded domain D withDg =
dDg'), where h= h* and I respectively ir(11b) Then the following equality holds:

[ G@alot —1t)(¢P—e)ds=o0,
Dy

Proof Let us denotep® —h? by ¢/ (a = A, B). Since, by definitionh® is a solution of (13

with F =0, ¢% is a solution of (1) withF = 0 andl“ = 0 and tends to vanish &% — .

Now consider a sufficiently large sphere that contains the real boudayyinside. We
denote byS, the surface of the sphere and kyits radius.(® varies with the scale afy
near$, for sufficiently largerg, and the behavior at a far distance is well described by the
Grad-Hilbert expansion [10] for small King (< 1). This implies that the flow velocity and
the pressure due tp? are described by the Stokes equation for the incompressible fluid,
while the temperature due 199 is described by the Laplace equation [10]. Thanks to the

3 Asis clear from the proof of Lemma 2, the key estimate (33) in [19] is incorrect.

4 In generalh® may have singularities in the domain under consideration, so gifesiowever, it does
not cause any trouble, because only the outer region, witfeaed“ are regular, will be considered.



i i at infinity
1 at infinity
: b pressure P,
pressure 1 '
° ';N Po S temperature T
20 u, temperature H u,/dx, = C;
£X T+ Cpx) :
i b = 0
E X = X,
g =
(a) Thermal creep (b) Shear flow

Fig. 1 Thermal creep and shear flow problems.

general solution of the Stokes equation [23—25] and the property of the harmonic functions
(e.g., [26]), the pressure due &7 is seen to be 00(|x|~2), while the flow velocity and
temperature due tg¢” are seen to be @(|x| ). Thusy? for large|x| is estimated as

5
W =24+ (L7 )"+O(X ) (a=AB).
wherec? andc® are a quantity oO(|x| 1), independent of , and we have
/ (Zo™ wB)dS= lim / (Zo™ wB)dS= lim / o(|x|~3)dS=0,
aDg rg—e Jog, rg—%Jos

which is the desired equality. O

3 Application to half-space problems

We show some applications of the symmetric relation (14) to half-space problems. Through-
out this section, the real boundary is assumed to be locally isotropic [12,10]. Sections 3.1
and 3.2 present the recovery of known relations, while Sect. 3.3 provides unknown relations.

3.1 Shear and thermal creep flows over a plane wall

When a rarefied gas is bounded by a wall with a gradient of temperature along its surface, a
flow is induced along the wall in the direction of the gradient (tmermal creep flowsee,
e.g., [1,27-29]). We discuss a cross relation of this flow to the shear flow over the wall.

Let us denote byL the space coordinate with = (/71/2)¢y where{p is the mean
free path of a molecule at the equilibrium state at rest with pregsuasd temperaturéy.
Consider a gas occupying a half spage X% 0) over a resting plane wall in the following
two situations depicted in Fig. 1:

1. Thermal creep (problem T, for sharffhe temperature of the wall is given Ay(1+
Crxz) with Cr being a positive constant. At a far distant, the state of the gas is indepen-
dent ofxy, the pressure ipg, and the temperature is the same as that of the wall.

2. Shear flow (problem S, for shorffhe temperature of the wall i§. At a far distance,
the gas pressure [%, the temperature i%, and thex;-component of the flow changes
linearly inx; with a constant gradierit2kTo/m)%/2/L]Cs, wherek andmiis the Boltz-
mann constant and the mass of a molecule, respectively.
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The conditiorCr, |Cs| < 1 is assumed for linearization. We denote lpy@kTo/m) ~>/2(1+
@ )E the velocity distribution function for probleth(J = T, S). ¢y is known to be sought in
the form of gr = Cr[(||? — 3)% — Pr(x1,{)] and ¢ = Cs[2{ox1 — Ps(x1,{)], whered,
is a solution of the following boundary-value problem:

Zl? =L(®)+1; (I=T,9), (15a)
X1
= M * & * .
@5 _-/Zl*<0 LEQ) Rer(7,0)@ydd", {1>0,x =0, (15b)
@3 —hy asx; — oo, (15C)

where
|T:ZZ(|Z|2*2)» hr =brlo+ 0A(L]), Is=20142, hs=bslo+ {10B(()),

Reris independent of, A(||) is the solution ofZ({iA) = —&i(|{|2— 3) such that|{|?A) =
0, andB(|{]) is the solution ofZ({i;B) = —2¢;j with {jj = i{j — %|Z|zd]

The reduced problem is known to have a solution if and only tiakes a special value,
and the solution is unique and approachgexponentially fast ag; — o [22,30-33]. With
these properties in mind, we use Proposition 2 by putiifig= ®r and¢® = ®s to have

—5(@hsh) — [ (g Pridx = —3 (@hrhe) — [ (7 os)aa

In the meantime, the integration of (15a) o= T multiplied by {>E shows the second term
on the left-hand side to vanish, and we eventually obtain

(@2BZIbr = - [ (@27~ 3)ps)da— (G2ZAIZIBAZD).  (16)

As depicted in Fig. 1(a),—%bT is the dimensionless flow velocity at a far distance in the
xo-direction normalized bt in problem T, while(Z2(|{|? — g)¢5> is the dimensionless
heat flow in the same direction normalized®yin problem S. Equation (16) represents the
cross relation between the two problems. Incidentall§222B(|{|)) is the dimensionless
viscosity and 2722A(/|)B(|{|)) the dimensionless coefficient of the thermal stress.

The relation (16) can be checked by the numerical data in the literature (see, e.qg., [20]).
By using the notation in [10], (16) is rewritten as

1 00
nka=—5ye+ [ Ha(m)an. (17)

wherey; = 2({23B), Ky = br /2, ys = 2({2LZAB), Ha = —(Z2(/{ [~ §) ®s), andn = xq.
For the diffuse reflection boundary conditidfy, andHa have been computed accurately as

Ki = —0.38316 / Ha(n)dn = % «0.23368 (BGK model [27,34, 10])
JO

Ky =—0.6465 / Ha(n)dn =0.1530 (Boltzmann equation; hard sphere [28,10])
0

For the latter, we show the values recomputed from the data obtained iKf35]{0.6463
and 5’ Hadn is not given in [10,28]). According to [10], botjy and ys are unity for the
BGK® model, whiley, = 1.270042427 angs = 1.947906335 for the hard-sphere Boltz-
mann equation. Substitution of these values shows the relation (16) or (17) to hold.

5 The BGK (Bhatnagar—Gross—Krook) model is termed “BKW” (Boltzmann—Krook-Welander) equation
in the cited references because of the independent contribution by Welander.



11

3.2 Evaporation and condensation on a plane condensed phase

Consider a gas occupying a half space bounded by its plane condensed phase. The condensed
phase is at rest and its temperature is uniform and constant. At a far distance, the gas is in
the state of uniform pressure with uniform flow and temperature gradient normal to the
interface. We discuss the steady behavior of the gas in the situation (see, e.g., [36—38]).

We use the same notation as Sect. 3.1 and take the temperature of the condensed phase
and the corresponding saturation gas pressure as the reference temfgrahg@ressure
po. If we denote by Po(2kTo/m)~%2(1+ @)E the velocity distribution function and by
To(1+ AT +Crx), po(1+AP), and(2kTo/m)*?(u,0,0) the temperature, pressure, and
flow velocity at a far distance, the problem is formulated as follows:

o9
ZlTXl _g((p)7

L GE@ ) e )
(p_-/q<o LEQQ) Rer({",{)@"d{", {1>0,x=0,

§—h=2P+ (2P~ AT+ (12~ 2~ GA(Z]Cr + 2aths, aSX1 — o0,

whereRpris independent ak andAP, At, Ct, andus are constants. Note that the heat flow
po(2kTo/mM)Y/?(Qw,0,0) at a far distance is given by

Qo = {Za(12 2~ 20 = (12— ) = —5(1ZI*AZ]))Cr.

Denoting by subscriptl, 0) the quantitiesp, h, AP, andAt when(Qw, U.) = (1,0) and by
subscript(0, 1) the counterparts whef.., U, ) = (0, 1), we can split the problem as

® =01,0Qw + P0,1) Ueo, h=h(1 0)Qw 4 hyg 1) Uso,
AP =A P(l,O) Qw+A P(O,l) Uso AT :AT<1"0) Qw + AT(QJ_) Uco -

As in Sect. 3.1, each of the reduced problems, the ca$®0fu..) = (1,0) or (0,1),
is known to have a solution if and only &P; o) andAt1 g (or AP 1) andAtq ) take
a special set of values, and the solutigg 1) (or ¢10)) is unique and approachés ;)

(or hi10)) exponentially fast ag; — 0.8 With these properties in mind, we make use of
Proposition 2 withp” = @1 o) and@® = @9 4 to have the relatioh

1 B 1 _
- é <Z1h(071) h(1A0)>X1ﬂ°° = E <Zlh(1’0)h(0,1)>x1ﬁ°°-,

6 As s seen from the form of the equation and the boundary condifigh, (Or ¢1,0)) can be sought as a
function ofxq, {1, and|{|. This property will be used later in Sect. 3.3.

7 There is a simple analogue in the theory of radiative transfer [18], in which the following two problems
in a half space of isotropic scattering field are considered (F. Golse, private communication):

pokf=—f+(f), f(x=0u>0)=9¢(u), f— fo=(fo) asx— oo,
HAg=—-0+(9), 9Xx=0,u>0)=0, (ug) =-1,

where f(x, ) andg(x,4) (x> 0, —1 < u < 1), the analogue t@q 1) and ¢1), denote the intensity of
radiation, (f) = %ffl f(x,u)dy’, and¢ is a given function. Here, concerned is mainly the valud.ofn

the first problem and)(x = O, u < 0) in the second. We can show th&t = %f&(b(u’)g(o,fu’)du’ in a

way similar to the derivation of (10), wheggx = 0, u > 0) = 0 is essential to remove the contribution of
f(x=0,u < 0) from the identity. In this simple analogue, elaborate considerations on the boundary like in
Sect. 2 are not necessary.
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which is reduced to
A P(l,O) =A T(O,l)‘ (18)

The relation (18) can be checked by numerical data in the literature. In¥Bgtg) and
At(gy are related t&c; andd; in [10] asCy = —%(\Z\“A(\Z\))AP(LO) andd; = At(gy),
whereC, anddj for the complete condensation condition are given as

C; =0.55844 d; = —0.44675 (BGK model[34,10])
C1=1.0947, d, =-0.4557 (Boltzmann equation; hard sphere [39,37,.10])

Note that (| |*A) is 3y in [10] (> = 1 for the BGK model angs = 1.922284066 for the
hard-sphere Boltzmann equation). Substituting these values shows the relation (18) to hold.

3.3 Jump condition for the Stokes set of equations on the condensed phase

Consider the steady behavior of a slightly rarefied gas around its condensed phase with
arbitrary (smooth) shape in the linear regime. According to the asymptotic theory [11, 34,
12,10] for small Knudsen numbers, the overall behavior of the gas can be described fluid-
dynamically by the Stokes set of equations with a proper set of slip condition for the flow
velocity and jump condition for the pressure and temperature. However, a correction is re-
quired in a thin layer adjacent to the interface with the thickness of a few mean free paths.
The thin layer is called the Knudsen layer, and the correction is correspondingly called the
Knudsen-layer correction; the solution of the Stokes set is called the fluid-dynamic part (of
the solution of the Boltzmann equation). The study of the Knudsen layer is reduced to sev-
eral half space problems of the homogeneous or inhomogeneous Boltzmann equation. The
problems treated in Sects. 3.1 and 3.2 are typical examples of those reduced problems. By
the analyses of the reduced problems, we can obtain the concrete value of the coefficients,
the so-called slip and jump coefficients, occurring in the slip and jump conditions. For the
details of the asymptotic theory, the reader is referred to [12, 10]. Here we merely present the
general expressions for the pressure and jump conditions derived by the theory. We are going
to show some relations among the jump coefficients obtained by the use of the symmetric
relation (14).

Let us denote by andP the perturbed temperature and pressure of the fluid-dynamic
part and byr,, andR, the perturbed temperature of the condensed phase and the correspond-
ing perturbed saturation pressure of the gas. According to [10], if neglecting the second and
higher order effects of the Knudsen number, the differenaeasfdP from 1, andR,, at the
interface, which is called the temperature jump and pressure jump respectively, is given by

][5 o 2 5] 2 ] s 5]

T— Ty d; 2 Xy | th 0%, | s dz
Hereu, is the component inward normal to the interface of the fluid-dynamic part of the
dimensionless flow velocity, the same component of the dimensionless position vector,
andk/L is the mean curvature of the interfatén the above expressiony, dT/d%,, and
du,/0x, on the right-hand side represent their value at the interface.
As partially mentioned in Sect. 3.2, the coefficie(®s,d;) and(C;,d;) are related to
AP's andAt’s there aqCy,d) = —%W(AP(LO)-,AT(LO)) and(Cj,d;) = (AP1),4T(0))-

8 Here and in [10], the curvature is negative when the corresponding center of curvature lies on the gas
side.
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On the other handCs, ds) and(Cy7, d7) are respectively determined with the solutigyand
@, of the following half space problems:

0% @)+, (=67, (192)
1
= M * *dZ* _
o= (o GE) Rer({".{)@ydl", {1>0, x3 =0, (19b)
@ —hy, asx; — oo, (19¢)
where
1
=J@Z-P), = Co— (1217~ )ds+ £(32 —1ZP)B(Z).
0
Sz Ao, h7:—C7—(|Z|2—§)d7,

and RpR is independent ok. The ()0 1) is a function ofxy, {1, and|{| defined by 1
@o0.1) — h(o.1) (see the footnote 6) and vanishes exponentialby as co.

We first apply Proposition 2 to the pairs g§ and @, o) by putting¢* = @ and ¢® =
@1,0) and ofgs and@o 1) by putting@® = @ andg® = @o,1)- Then we eventually obtain

3 00 00
o=ty [ (@i+Oida, o=z (2a+3 [ (@+ouda).  (20)

1
Sy
Here we followed the notation in [10], i.€2; +O; = 3<|Z| W 01 ), Q1+61= yz(m W0))s
wherey; ~ y; are those in Sects. 3.1 and 3.2 ahdo) = @1.0) —h1,0)- The relatlon (20) can
be checked by the numerical data in the literature. In the case of the complete condensation
condition, they are given for the BGK model as follows [34, 10]:

C — 0.82085 / (Q; + O )dxy — 0.23886
0

ds — 0.33034 / (Q1+61)dxg = —0.11609
0

Sinceyr = y» = y3 = 1 for this model, the relation (20) is seen to hold. On the other hand,
the values ofCs anddg have been unknown for the other cases, and here we report their
values for the hard-sphere Boltzmann equation by the use of (20) with the aid of the data
of Y1,0) andyo 1) available in the literature (e.g., [37,39-41]). By the use of the numerical
data in [40,41], the integrals @, + ©; andQ1 + O, are computed as

/ (Q; + O} )dx, — 0.2834 / (Q1+61)dx = —0.1943
0 Jo
Sincey; = 1.270042427y, = 1.922284066, angs = 1.947906335, we have

Cs=1.0575 dg=0.3447 (Boltzmann equation; hard-sphere)

in the case of the complete condensation condition. To our best knowledge, this is the first
report on the values of these coefficients for the hard-sphere Boltzmann equation.

Next we apply Proposition 2 to the pairs @f and @1 o) by putting ¢ = ¢, andg® =
@1,0) and ofgy and@o 1) by puttingg® = @; andg? = @o,1)- Then, we eventually obtain

1 "o d 3 [
cyzé'/o <(Zf—|Z\2>w@l)%>dxl—i/o (Q; +6;)dx, (21a)
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1/ d 1 /°
=5 [ @12 e+ o[G0 2P Wos)da. (210)

The present example demonstrates the advantage of a rather abstract formulation in
Sect. 2. The problem fap; contains the derivative of non Chapman-Enskog solufign)
as the inhomogeneous term, which is typical in the higher-order analyses of the Knudsen-
layer. The feature thdt(andh) is not required to be of a specific form is advantageous in
such analyses and will allow us to derive further identities for slip and jump coefficients.

4 Representation theorem on mass, momentum, and heat fluxes

As noted just before Lemma 2 in Sect. 2.2.2, a remarkable difference of the bounded and
three dimensional unbounded domains from the half space is the fact that one may separately
discuss the effect of the sources on the boundary. We shall present a fruitful consequence
obtained from this property linked to the symmetric relation (14).

4.1 Problem and formulation

Consider the steady behavior of a rarefied gas in a domain that is arbitrary except for the
conditions to be described later. There is no external force. The state of the gas is so close
to the reference equilibrium state at rest with dengiiyand temperaturé that the higher
order terms of the deviation from the reference state may be neglected. We shall mainly
discuss the general properties of the mass, momentum, and heat transfered to the boundary
of the domain under consideration.

Let us denote by the reference length of the system lbiythe position, by 2kTy/ m)l/ 274
the molecular velocity, and bgo(2kTo/m)~%/2(1+ @)E({) the velocity distribution func-
tion of gas molecules, wherke is the Boltzmann constant and is the mass of a gas
molecule. Then, the behavior of the gas, the perturbed velocity distribution furgtiisn
described by the following linearized Boltzmann equation:

Jp 21

where Kn is the Knudsen number defined by Krp /L with /g being the mean free path of
a molecule in the gas at the reference equilibrium state.

Let us denote by the domain ofx representing the gas domain under consideration.
The boundaryD of the domain is split into two parts: the patb,, representing thesal
boundaryand the part Dy representing the remainingnaginary boundaryAs the domain
D, we consider the following two possibilities:

1. Dis a bounded domain.
2. D is an unbounded domain, and the real bound#dy, is confined in a finite region,
i.e., there exists a sphere with a finite radius that cont@ihg in its interior.

It is important to note that the second assumption excludes unbounded domains in one and
two dimensional problems from the subsequent discussions.

As to the real boundary part, we denote By1+ 1y) the temperature of the real
boundarydDy, by po(1+ Ry) the corresponding saturation pressure of the gas, and by
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(2kTo/m)*/2u,, the velocity of the boundary, whena = (po/m)kTo. Then, ¢ obeys the
following condition ondDy,:

G IEWQT) 7 7osnpert e 7
0=0ut [ G REEN@ -g)i frgys0 (29)
HereR = Rcr on the simple boundary aril= Rpgr on the interface, wherBcr andRpr
are those in Appendix A that satisfy the condition of detailed balance (31). The furggtion
is given by (5). The kerneR multiplied by (2kTo/m)%/? is the reflection kernel of the real
boundary which is at rest with the reference temperafprén what follows, irrespective of
the type of the real boundary (eithRe= Rcr or Rpgr), we simply writegy, as

5
ngPW+25iuwi+(|Z\2—§)rw on dDy, (24)

because the addition of ay¥independent term tg,, does not influence the condition (23)
because of the third property &g in Appendix A. Note thau,;n, = 0 because we are
concerned with the steady problem.

On the imaginary boundagDg, @ obeys the following condition:

1. WhenD is boundedgDy = z?Dg) U 0D(gi“) andg obeys the condition (11a) or (11c):

@(x,2) =hin(x,{) for ¢, >00onaDy, 52
( xz +/ ||I)/, X/z XZ) (d o dz ds fOan>00naDSII)'
(25b)

2. WhenD is unboundeddDgy = 0Dgi>, and@ obeys the condition (11b):
@(x,{) = h(x,{) as|x| — o, (25c)

whereh is a solution of (22).

Note thath is defined for the whole range df in each case. As in Sect. 2.2.1, we extend
the range of the functioh;, from ¢, > 0 to the whole range of and denote the extended
function byh. The way of extension is arbitrary and does not affect the subsequent results.

Most of the cases, we are concerned with the flow velo@kTo/m)/u;, heat-flow
vector%po(ZkTo/m)3/2Qi, and stress tensaip(&j + Rj) of the gas, wherg; is the Kro-
necker delta. In particular, their component normal to the boundary is of special interest,
which will be denoted byin, Qn, andRj:

U= U = {G0@), Qn=Qin = (Ga(IZP—2)0),  Poj =Ry = (22nl;0).

Note that they represent the dimensionless inward fluxes of mass, heat, and momentum
through the boundary at the position, respectively.

As is noted in Sect. 2.2.2, all the conditions in Proposition 2 are fulfilled by any two
solutions of (22), (23), and (25) withy, given by (24). The first condition is obviously
fulfilled by the definition ofR, while the second is due to Lemm& Zhus, the symmetric
relation (14) holds between any two solutions discussed in Sect. 4.

9 Note that the addition d®y to g,y made in (24) on a simple boundary does not change the value of the
first term of each side of (14) becaus @) = 0 there.
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Table 1 Green functions for elemental sourcesai,. The domain may be bounded or unbounded.

Green functiof corresponding elemental soufce note
GP0)(x, ) Ow = 8(X—Xo) h=0 -
GlT™)(x,Z) g = (I{[*~3)3(x—%) h=0
Gt (x, ) Ow = 24t 5(X— Xo) h=0 G“*o (x2) = G (x, 7)
GP9(x,q) Ow = Xs(X) h=0 9(x,{) = [sGPX) (x,{)dS
G (x,) gu = (17— 3)Xs(%) h=0 G<TS>(X7Z):f GIT) (x,{)dS

a1 is a unit vector tangential tdD,, atXy. SC dDy,.
b 5 is thed-function. xs(x) = 1 for x € S andys(x) = 0 otherwise.

4.2 Preliminary argument — motivation and basic results

If h=0 ondDyg, the perturbatiorp from the reference equilibrium state is induced onIy by
the sourceg, on dDy,. Sincegy, is a linear combination of 1 with ¢, =0, and|{|? — 3
we are motivated to consider the response of the system to these elemental somb@s on
and to represenp as their superposition.

Let Xo be a point on the real boundagD,,. We introduce three elemental solutions
of the boundary-value problem (22), (23), and (25) listed in the first three lines in Table 1,
which we denote byz(P%) (x,Z), G(T*0) (x, Z), andG(t%) (x, ). Each of them represents
the response of the system to the corresponding elemental source @D{,0and thus we
call them theGreen function¥ with respect tax on dDy,. If necessary, we calb(Pxo)
G(TX) andG(t*) the Green function for the pressure source, temperature source, and ve-
locity source in thd-direction, respectively. Any solutiogp of the boundary-value problem
(22), (23), and (25) witlh = 0 can be expressed as a superposition of the Green functions:

0= [ (Rul0)G™) + 1w(x0)G T | (x0) G %) )dSy,  (26)

wherelly, = Uy/|uw| and d$ is the surface element at positigg Here and in what follows,

we denote the moments of the Green function by putting the corresponding superscript. For
instancep” ™ (x) = (¢G(P%)(x, Z)). The first important observation is a reciprocity of the
Green functions in the following sense:

Lemma 3 For any pointsxg and X, on dDy,, the following relation holds:

ur > (x0), U (x0), u&‘s'*”(xo) u<n'°{xo>(x1>, (x1> Ris " (x,)
QY (xo), Q™ (%0), Q¥ (x0) | = | U™ xa), QN (xa), PRSP (x0) |
Pic " (x0), Pt ™ (x0), P ™ (x0) | LU (x), Q( " (xg), Pis'™ (x1)

where R; = Ryjtj, Pis = Fhjsj, andt and s are a unit vector tangential to the boundary at
point Xy and x; respectively.

Proof Proposition 2 is applicable to any two Green functions (see the last paragraph of
Sect. 4.1). Withp” = G(@%) and B = GBX) (g = P,T,—t; B = P,T,—5), we apply the
symmetric relation (14). Sindé = 0, IB 0, =0, andh® = 0, (14) is reduced to

[ (G 6P 0))ds= | (¢ G (x.£))ds
JdDy dDw

10 |n the present paper, we shall use the term “Green functions” for the solution even when the correspond-
ing elemental source is not a point source. See, for instance, the last two lines in Table 1.
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Let us consider the case= P andf = T. Sincegj, = 6(X—Xo) andg? = (|{|>— 3)d(x—
X1), performing the surface integration oD,y yields

(@G (x0,2)) = (2122~ 267 (1, ),

which is no other than the equalin%T;xl) (Xo) = Qﬁp;x‘” (x1). Other equalities can be proved
in the same way by changing the pairafind3. ad

Lemma 3 leads to the following important consequence, if it is linked to (26):

Corollary 1 Consider the boundary-value probld@®), (23), and(25) with h= 0. For any
point Xy on dDy, the fluxes normal to the boundary can be expressed by

Un(%o) f%&wﬁmNm+r<momm<>—wmmeﬁmNm
Qn(XO) = /(9D PW(X)UE.T Xo) (X) + Tw (X)Qr(‘IT Xo0) ( ) _ qu (X) Pr(lTvXO) (X) dS (28)
Pat(Xo) " L Ry OOUS 0 (%) + Ty (X)Q) (%) — Uiy (X)ngt;xo)(x)

wherettis a unit vector tangential to the boundaryat x

Proof The superposition (26) yields

Un(X0) mmﬁWW+unTWm|wuH%mm>
Qnlx0) | = [ | RIQ™ (30) + Tu(XIQN ™ (o) — Juw(3)| Q¥ () | S
Fre(%0) " L RuOPIT™ (%0) + T (X) P ™ (%0) — b ()] PR ™™ (x0)

and the substitution of (27) leads to the desired expression. O

Corollary 1 shows that each of the mass, tangential momentum, and heat fluxes atxg point
on the real boundargD,, is expressed as a weighted sum of the fluxes over the boundary
dDy, induced by the corresponding Green function with respect to that point. The correspon-
dence is as follows: the mass flgx the pressure source, the heat fluxthe temperature
source, the momentum flux the velocity source.

4.3 Representation theorem

Corollary 1 implies a reduction of the original problem to a single elemental problem of
finding the Green function corresponding to the flux of interest. A natural question arises
whether a similar representation could be obtained for general situations suthshmait
necessarily zero. Fortunately, we can give an affirmative answer to this question, which we
present here. The key to the generalization is the fact that one can recover Corollary 1 by
directly applying Proposition 2 to the pair gfin Sect. 4.2 and the Green function. To be
specific, the representations af(Xo), Qn(Xo), Prt(Xo) are respectively recovered by the
application of Proposition 2 to the pairs fandG(F*0), ¢ andG(T*) andg andG(~t%o).
This alternative approach enables us to perform the generalization by the use of suitable
elemental sources and the corresponding Green functions. We call the set of expressions
thus obtained theepresentation theorem on mass, momentum, and heat.fluxes

Actually, there are five versions of the representation theorem depending on the situa-
tion. We present them in Sects. 4.3.1-4.3.3.
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4.3.1 Representation of fluxes througi,,

Proposition 3 (Representation theorem 1)Consider the boundary-value problef22),

(23), and (25). The fluxes of mass, heat, and tangential momentum throgh at Xo

are represented in terms of the corresponding Green function, irrespective of whether D
is bounded or unbounded:

Un(Xo) , Pwuﬁp_;x‘)) + rWQ,ﬁP;_XO) —uiPF ;_x") (Znh~G(PX0))
Qn(Xo) | = /ﬁ ] R 4w QO —uRy ) | dS+ [ (GhGT0) | ds,
Pt (Xo) J0Dw Pwur(rt;xo)JFTWQr(;t;xo)_uWi rsi—t;xo) 9 | (Zsh~G(-tx0)y

wherettis an arbitrary unit vector tangential to the boundaryxt® The way of extension
of hj, on dDg) does not influence the relatiok?

Proof We apply Proposition 2 to the pair gf = G(@X) (o = P, T, —t) and¢” = @, where
@is the solution of the boundary-value problem (22), (23), and (25). S$thee0, g/ = gw,
h* =h, IB =0, andhB = 0, the symmetric relation (14) is reduced to

| @t ods= [ (Ggue@ds [ (gh6le)ds
Dy, Dy, dDg

whereg® = 6(x—Xo), (|/{|2— 3)8(X—Xo), and—2¢;t;6(X—Xo) for a = P, T, andt, respec-
tively. Substitution of the specific form ef andg, yields the desired representation.O

Proposition 3 can be transformed into the statement on the fluxes through an arbitrary
area ondDy, which is useful in many applications. To derive it, we introduce the Green
functions with respect to an area 8B, defined in the last two lines in Table 1. If we denote
by poL2(2kTo/m)Y/2.2 (Ay) and 3 poL2(2kTo/m)*/2.2(Ay) the mass and heat transfered to
an ared\y on dDy, per unit time, they are written in terms of andQ, as

G = Lo o=

Substituting the representation in Proposition 3 and performing the surface integration with
respect tog leads to the representation in terms of the Green functions with respigt'to

Proposition 4 (Representation theorem 2)Consider the boundary-value problef22),

(23), and (25). Irrespective of whether D is bounded or unbounded, the outward fluxes of
mass and heat through an areg An dD,, are represented in terms of the corresponding
Green function with respect to this area:

[%(Avv)} _ / PWU]<"|P;AW) + TWQE]PJ'\W) ~ Ui PIEiP;Aw) < / |: <Znh—G(P;Aw)> }
2(Aw) Japw | Pyl ™) 4 1, Q) — P Joog [ (Zah=GTAw)

ni

11 We may consider the Green functi@™*) that is the solution of the problem (22), (23), and (25) with
h=0andgy = 2{n6(X— Xo). Then, we can derive the representation for an arbitrary component of the force.
In the present work, however, we restrict ourselves to derive a representation in terms of the Green functions
satisfying the physical requiremeny, - n = 0. The same is true for the general representations of the torque
on the real boundary.

12 on 0D8), his an arbitrary extension @, from ,, > 0 to the whole range af, and hencé~ for ¢, > 0
is the extended part. The arbitrariness of this part is killed in the morfaht G(7%0)) (a = P,T,—t),
becaus&(@%) = 0 for ¢, > 0 by definition.

13 The same representation is obtained by applying Proposition 2 to the peiir-6fG(@A) and¢” = ¢
directly, which would be a less demanding way in mathematical rigor.
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Table 2 Green functions for elemental sourcesaibg for a bounded domain

Green functioA  corresponding elemental soufce note

GPX)(x,{)  gv=0 h=23(x—xo) -

GT(x,{) gw=0 h=(]{]>-3)5(x—X) -

GEX)(x,Z)  gw=0 h=2445(Xx—Xo) GlEx0) (x,) = —G(~tX) (x, )

GPI9x{)  gw=0 h=xs(X GPI(x,Q) = 5GP (x,{)dS

G'9(x{) gw=0 h=({-3)xs(x) G (x,{) = [sGT™) (x,{)dS

GE9(x)  gv=0 h=2{lixs(x) GlE9(x,) = [sGIE*)(x,{)dS
G (X,Z) — _G(-69 (x, 2)

& ¢is an arbitrary unit vector. § dDg.
b See the footnote b in Table 1.

The way of extension of;fon 0D8) does not influence the relation (see footnote 1'2).

4.3.2 Representation of fluxes througidg for a bounded domain

As to the fluxes througl@Dg, we need to discuss the bounded and unbounded domains
separately. Here, we focus on the former and introduce the Green functions listed in Table 2.
The main difference from the previous case lies in the Green function for the velocity source,
i.e., the direction of the velocity sourdeis not necessarily tangential to the boundary but
rather arbitrary. This feature allows us to have the representation of not only the mass and
heat fluxes but also the momentum flux through an arbitrary aré®gne first present the
representation for fluxes through a point@Dy. The proof is similar to that in Sect. 4.3.1

and is omitted for the sake of brevity.

Proposition 5 (Representation theorem 3)Consider the boundary-value proble{22),
(23), and (25a) or (25b) for a bounded domain. The fluxes of mass, heat, and tangential
momentum througBDy at X4 are represented in terms of the corresponding Green function:

Un(Xg) . I:,WUEIP;Xg) + TWQE]P;XQ) — Uy Prglj?:xg)
Qn(%g) :/ Rl "+ 1 QY9 Uy P | dS
Pl |72 | Ry %) 4 1, Q%) Prffe;xg>
gznhe“’“g» (Znh(%g,2))

vl

where R, = Bj¢j and £ is an arbitrary unit vector. The way of extension gf bn dDS)
does not influence the relatiot?

Zah~G(T*)) | dS+ | (&n(1Z[2—3)h(xg, Q) |,
Zoh~G(—txa)) (24ngjtih(xg,4))

Next, we show the representation of the fluxes through an aré®gri_et us denote by
Pol2(2KTo/m)Y2.2 (Ag), 3poL?(2kTo/m)%/2.2(Ag), and poL%.F;(Ag) the mass, heat, and

14 we exclude from the general discussion the possibility of the Green function for the velocity source,
because, in general, the direction of the vettiangential to the boundary depends on the position.

15 The reason is slightly different from the case explained in footnote 12. The extended partsofor
n > 0. By definition, G = §(x — Xg), (|{|2 = 3)8(X—Xg), or —2(j¢;5(X—Xg) (@ =P, T, or —£) in
this range, so that the contributions of the extended part to the second and third terms on the right-hand side
cancel out each other.
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Table 3 Green functions for elemental sources at infinity for unbounded domain

Green functioA corresponding elemental source note

GP=)(xZ) gu=0 h=1 -
G ™(xg) gu=0 h=(]-3) -

G(Z:w)(x ) =0 h=20( Gem)(" &=~ ew)(x’o
GROP(X7) gu=0 h=284dtx GR©=) (x,7) = —G(-20=)(x,7)
& ¢is an arbitrary unit vectoQ (£) = () is an alternating matrix defined ig;; = —&ijk ks

whereg; i is Edington’s epsilon.

momentum in thel-direction transfered to the arég on dDg for a bounded domain per
unit time. poL2.%;(Ag) may be regarded as the force acting on the Agga the ¢-direction.
They are written in terms af,, Qn andPy as

AP e
2(Ag) | = [ [Qnm]ds
G B LM

Again, we just show the result and omit the proof similar to that in Sect. 4.3.1.

Proposition 6 (Representation theorem 4)Consider the boundary-value problef22),

(23), and(25a)or (25b)for a bounded domain. The outward fluxes of mass, heat, and mo-
mentum through an arbitrary areagfon dDg are represented in terms of the corresponding
Green function with respect to this area:

Ry 4+ 1,QF ) —u, iP P;A9>

paA (T:iAg) TA9) |, plTiA
Z?(Ag) =[5 | Puth ™+ TuQn Ui P 3 ds
Fi(Ag) " | Rt 4 1, Q) L

(Zoh~ G(PAg))

o [ (G G

ds—
(Zah~ G(-tAg)) /

Ag

(Zah)
(&n(1ZP=3)h) | dS
(2¢ngjtih)

where/ is an arbitrary unit vector. The way of extension gf on dDg) does not influence
the relation (see footnote 15).

4.3.3 Representation of fluxes througig for an unbounded domain

We finally turn to the representation of the fluxes passing thrailg§ for an unbounded
domain and introduce the Green functions listed in Table 3. The main difference from the
previous cases is the fact that they are the Green functions for the sources on the whole area
of dDg and that a new type of elemental source, which we shall call the rotation source
around{-axis, is introduced in the last line of the table. It should be reminded that in the
present cash is required to satisfy (22) and that any linearized local Maxwellian satisfying
(22) is limited to a linear combination of the elemental sources in Table 3.

Let us denote bygl?(2kTo/m)Y/2.2 (), 3poL?(2kTo/m)*/2.2(c0), poL2.Z(w), and
poL3.7, () the mass, heat, momentum in thelirection, and angular momentum around
the ¢-axis transfered to a far field (a#Dg) per unit time. poL%.%, () and poL3%(Dg)
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may be regarded as the force and the torque (or the moment of force) actitigyan the
£-direction. They are written in terms of, Q, andFyj as

l:/@/((w)) gn((X))

(o] ' n X

Fy() | © ‘/,;Dg Pre(X) as
() LigijkXj Pk(X)

Applying Proposition 2 to the pair of the solution of the boundary-value problem (22), (23),
and (25) and the Green functions in Table 3 leads to the following:

Proposition 7 (Representation theorem 5)Consider the boundary-value proble{22),

(23), and (25c) for an unbounded domain. The outward fluxes of mass, heat, and linear
and angular momentums througiDy (i.e., the net fluxes toward the outer far field) are
represented in terms of the corresponding Green function:

M () Rt + Tw QI ™) — iy P
2() PWUI(1T'°°) + TWQQ—'OO) — Uyj ptle)
F (o) - (—£;00) (—£;00) 8,[;00) ds
yé dDw RPuun + TwQn — Uy pnj
o] _ ‘00 - o a .
7(20) Rutly 207 4 1,Ql 207 _y, Bl 20
GP») _1
|G (g 5)
7/(9Dg<znh G(_e;DO)“‘ZZjEj yds
G20 { 27 g14 6%

where/ is an arbitrary unit vector.

Practically, it is important to note that the above representation yields immediately that of
the outward net fluxes througtD,, by changing the sign of the right-hand side, because of
the conservation of mass, linear and angular momentum, and energy.

4.4 Reciprocity of the fluxes induced by the Green functions

As a direct consequence of Propositions 4—7, we obtain a set of corollaries on the reciprocity
of the Green functions, which we summarize here. Besides its significance by itself, the
reciprocity will play a key role in our entropy theory to be developed in a separate paper.
Before showing the corollaries, let us recall the notation convention immediate after (26).
For instance, we denote by (%:Bv) (A,,) and.2(?B) (A,,) the dimensionless outward fluxes

of mass and heat through ardg induced by the Green function with respect to déga

(%(U;Bw)(AW) B uﬁ]";B‘”)(xo) B
[Q(O(;BN)(AW)} __-/Aw { (@B (30 dS, (a=PRT).

Throughout this subsectiofandm are an arbitrary unit vector and the component in their
direction will be indicated by subscriptécandm, e.g.,.#, = Zj{j, Pam = Pajm.

Corollary 2 For any areas 4, By ondDy,

A PB) (A) _ M PA)(By) TR (Ay)
[ Seeiian] = [emmign] [Sreiid)]
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Proof Apply Proposition 4 to the boundary-value problem @&f 8« (a = P,T).

O
Corollary 3 For anyx, X; € dDg in a bounded domain

Uy (xy), xl), uhy ™) (%)
QY (xq), <x1>, Q ’"*°><x1>
%) (x1) — i 3 (%1 — Xo )7 %) (xy), Prg ) (xy)
”l (%), Q™ (xo>, PR (X0) — M3 (Xo — Xa)
”1 (%), Q™ (%), P (%o0)
u% £ (x0), Qb (xo), Pim ™ (o)

Corollary 4 For anyxy € dDy, andxq € dDg for a bounded domain, the following relation
holds:

i k), W (). Ut 0xg) | T ), Q7 k), Péf’i*g)<xw>
Q). Q™ (%), Qn 10) | = | ™ (xa). QT ), Py <xw>

—¢; —¢; —¢;
us % x), QY4 (), Pn& %) ()
wherettis a unit vector tangential toD,y, at X.

Proof Apply Proposition 5 to the boundary-value problem @) (a =P, T,—m) by
puttingXy = X; for Corollary 3 and to that fo&(®*w) (a = P,T,—t) for Corollary 4.

g
Corollary 5 For any areas 4, By C dDg in a bounded domain,
APE (A, AT (Ag), ™) (Ag)
2P (Ag), 2(TB)(Ag), 2™ (Ag)
ﬂ[/(P :Bg) (Ag) +£i /AgmB I’l,dS L/[T Bg)(Ag)’ g:z(—miBg)(Ag)
P)(Bg), 2PA)(By), Fa Y (Bg) +m /Ag . nds
NByg
AT (By), 2T (By). T " (Bg)
M (By), 2By, T T (By)
Corollary 6 For any areas & € 0Dy, and Ay € dDg in a bounded domain,
%(RA\N)(AQ)’ t///(T?AN)(Ag) M PR (Ay), 2P (Ay)
QPAN(Ag), 2TA(A)) | = | TR (Ay), 2T4)(A,)
g;P;AN)(Ag)7 !?;T;Aw)(p‘g) %(*Z;Ag)(AW% Q(ff;Ag)(AW)
Proof Apply Proposition 6 to the boundary-value problem @&#:8s) (a = P,T,—m) for
Corollary 5 and to that fo&(?*) (a = P, T) for Corollary 6. O

Corollary 7 The following reciprocal relation holds:
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Corollary 8 For anyxe< 0Dy, and AC dDy,,

AP (00), /T (c0), - o) wm, A, PR
2P (), 2T (o), 207X (c0) W, AT, R )
Fy M (@), F (), 2 ™() | T k), Qi) Rt |
77 w), 77 w), ™) | L2900, Qb 2O (0, Bl (x)

M PP (), AT (o0) APRD), 2P (p)

Q(P;A)(oo)7 Q(T;A)(OO) /{(T;OO)(A)7 ,@(Tm)(A)

F (@), 7N (w) | 7| aCEIR), 2 A

%(P;M(w)’ Z“?A)(oo) (2O (A) 9(-2E)=)(p)

Proof Apply Proposition 7 to the boundary-value problem@f:*) (a = T,—m,—Q(m))
for Corollary 7 and to that fo6(®> (a = P, T,—m) or GI¥A (B =P, T) for Corollary 8.

5 Applications of the representation theorem

In this section, we present application examples of the representation theorem. Some of
them (Examples 1, 2, and 5) have been discussed in the literature as the examples of the
Onsager—Casimir reciprocity in the connection to the entropy production (e.g., [2,42,8,43,
9)]). It should be noted that they are recovered merely as byproducts of the representation
theorem and that the discussion of the entropy production is entirely excluded from the
present paper.

5.1 Mass and heat fluxes and the force acting on the resting bodies in an unbounded domain

Consider a group dN resting bodies (safy,...,By) arranged in a finite region in the gas
occupying an unbounded domain. In a far field, the gas is in the equilibrium state at rest
with density pp and temperatur@y. The respective bodies in the group may be a simple
solid body or a condensed phase of the gas; they do not change in time their shape and
surface temperature and have no surface velocity.

When the deviation from the reference equilibrium state is small, the problem can be
linearized around the reference state. Then, as a direct application of Proposition 4 and
Corollary 2 @Dy, = 8By +--- 9By, dDg = dDy ), Ay = 3Bj, By = 3By, Uyi = 0, anch = 0),
we have the following statement for the mass and heat transfered to the resting bodies:

Corollary 9 (mass and heat transfered to the resting bodiesjhe mass and heat trans-
fered to the body B(j = 1,...,N) per unit time can be expressed by the mass and heat
flow distributions over the whole body surfagB,, induced by the Green functions for the
pressure and temperature sources with respediBg

M (98B))  [ul ), QY | [Re(x)
{ 2(08)) } B _/oow [u,&“"Bi)(x), QL% (%) {Tw(X)} 9

In particular,
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(i) if there is no condensed phase in the group of bodies, the mass transfered to each body
vanishes and the above expression becomes much simHier as

2(08) = - [ Q"™ u(0ds (29)

(i) the following reciprocity holds:

4 PIB(0By), 4T (0B))] _[.4P9B)(9By), 29 (9B)
28 (0B)), 2798 (9By) | |79 (9By), 2T98)(0By) |

Example 1 (Evaporation from and condensation onto a volatile sph€&ehsider the case
where the group of the bodies is a single spherical condensed phase of the gas (for short, a
volatile sphere). Denoting b$the surface of the volatile sphere, we have the expression

V(S)} - [uﬁf’@(xx QSF?S)(x)} {PWOO} ds
S

uy ¥ (x), Q¥ (x) | L w(X)

and the reciprocity
AT (9) = 2P (9).

Noted that# (P9 and 2P are the dimensionless mass and heat passing through a point
on Sper unit time and area fd®, = 1 andt,, = 0, while.#Z(™S and 2(T:S are those for

Ry = 0 andt, = 1. Thus, as far as the mass and heat transfer is concerned, the general result
is readily obtained by the study of two elemental situati®ls:- 1, tw =0andR, =0, Ty =

1. The above reciprocity was numerically verified in the literature (e.g., [42,43]). O

We also have a statement on the force and torque on the group of resting bodies (not
individual bodies) as a consequence of Proposition 7 and the conservation of linear and
angular momentums:

Corollary 10 (Force and torque on the group of resting bodies)rhe force and torque

on the group of bodies can be obtained from the mass and heat flow distributions over the
whole body surfac@D,, induced by the Green functions for velocity and rotation sources

in a far field. If we denote bygh?.%,(dDy) and pL2.7;(dDy,) the force and torque on the
group of bodies in thé-direction. they are expressed as

£00) (£:0)
F4(9Dy) } / ( Uy ™ (x) Qv (%)
: - R (X) . +Tw(X) . )ds

{ T(0Dw) 4D UBQ(Z)'OO) (X) QEQ(Z)’OO) (X)

16 Consider a temperature field in the fluid dynamic limit, which is described by the Laplace equation. Let
us denote by the perturbed temperature of the gas and8§i) the counterpart when the temperature source
is put ondBj, i.e., AT = 0,A1%8) = 0, T = T, 0N IDy, 10981 = 1 0ndB;, and7(?8) = 0 onIDy \ 9B;.
Then, the Green formulg, (TAT(%81) — 1B At)dx = [;(r01(?8) — 1(9B1)01) - ndS is reduced to

o:/ rWDr<‘7Bi>.ndS—/ IZIr-ndS+/ (rO7%8) — %8 Q7). nds
9D o8 aDg

Sincet andt(?Bi) decays with the rate dk|~* as|x| — o, the third integral vanishes, and we have
/‘ 7, O7(8) ndS:/ Or-nds
dDw 9B;

The expression (29) is the generalization of this relation to the gas of arbitrary Knudsen number.
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In particular, when there is no condensed phase in the group, i.e., @Bgnis a simple
boundary, the mass transfered to each body vanishes and the force and torque on the group
of bodies can be expressed only by the heat flow distribution:

F(0Dw)] _ Q=) (x)

Proof By the linear and angular momentum conservatioh§gDy ) = — % (%) and.7;(dDy) =
— (). Use Proposition 7 for the representation%®f(c) and .7;(c) by puttinguyi =0
andh = 0. Finally use the parity oB(4*) in Table 3. O

ds

Example 2 (Force acting on a simple solid body with non-uniform temperat[#4) Con-
sider the case where the group of the bodies is a single simple solid body. Denoting by S the
surface of the body, the dimensionless force acting on the body is given by

Zu(S) = - /S Tw(X)QE) (x)dS

Qﬁf;“’) is the dimensionless heat flow induced (BS/?“’). This Green function is a solution
of the problem of a uniform slow flow in thé-direction past the body with the reference
uniform upstream temperatufig (to be precise, the solution normalized by the upstream
flow speed). O

Extension of Corollaries 9 and 10 to the case of bodies with moving surface under
the constraint ol - N = 0 is straightforward. In the case of a bounded domain with the
boundary composed only of the real boundati) (= dDy,), Corollaries 9 and 10 hold as it
is with a proper choice of the reference equilibrium state. On the other hand, if the gas is not
necessarily in some resting equilibrium state in a far field, we need to use Propositions 4 or
7 directly. The next is such an example.

Example 3(Thermophoresistonsider an infinite expanse of a resting gas with the temper-
ature distributiorilp(1+Cx;) (C: a positive constant), in which a single simple solid body
with temperatur€ly is located at the origin. In this situation, there occurs a force acting

on the body, which is the present concern (see, e.g., [5—7] and the references therein). The
sources on the boundary are givenday= 0 andh = C[(|{|?> — %)xl — (v/m/2)Kn1A([{])]

in this situation, wherd\ is the one already defined in Sect. 3.1. We denote by S the surface
of the body and use Proposition 7 to obtain the relation

Fi(S) = ~Fi(=) =€ | o, (™ + Vkn(GnaA(21)6 ) )ds

Here the parity of5(6®) in Table 3 and the conservation of momentum have been used.
In the meantime, since bothandGé*) solve (22), we can show in the same way as in

the proof of Proposition 1 thgpp ({nh~ G(¢*))dS= 0. By using this fact an@D = dD4US,

we obtain an alternative expresstén

FS =C [ (1@t + kn(na2) 6" ) ds

a

17 Qur result is different from that in [8]. This is due to the fact that the terréy@{||) is missing in the
asymptotic form of the perturbed distribution function in that reference. The expression in [8] is incorrect.
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ap, [s.=0cr —%)r,‘]

T,.(X,x,)

oD,
(h=0)

Fig. 2 A straight pipe with a pe-
*i riodic temperature distribution.

'
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©

5.2 Mass and heat fluxes along various channels

Example 4(Golse’s theoremonsider a gas in a straight pipe with a uniform cross-section.
The temperature of the pipe is periodic and is constant in time. In the situation, a steady flow
is induced in the gas by the non-uniformity of the temperature of the pipe. Golse proved that
the induced flow field does not generate the mass flux through the pipe cross-section, by
assuming that the temperature variation is so small that the linearization of the problem is
allowed (Golse’s theorem [12]). We shall show below that we can reach the same conclusion
with a slight extension of the statement by the application of Proposition 6.

Let us take the coordinatq in the axial direction of the pipe as in Fig. 2. L€be the
period in this direction an® be the domain surrounded by the pipe wall and by the cross-
sectionsy andS; located respectively ay = 0 andx; = s. Becausd?y, = 0, u, = 0, and
h =0, Proposition 6 yields, by puttingy = S, the relation

() = — /d . x QY (. x,)dS

wherex, = (x2,%3), and here the Green functi@ ") is the solution of the problem:

P;
_0G( S 2 1 g(G(P;Sl))

4 % :ﬁﬁ ) (30a)
(Ps) _ [ 1GIEQ) < 1GPS) “\dZ*
GO pax0) = [ TR Re(E.0)6 P 0 x0.8 )
Zn>0, (x,X,) €Dy,  (30b)
GPS(sx,,0)=1+GP™(0,x,,) forly1 <0, (30c)
GPS(0,x,,¢) =GP (sx,,{)~1 forls >0, (30d)

whereRcr is independent ak. If the pipe wall is of the locally isotropic boundary [12,10],
we can seek the solution in the folfrG(PSU = x; /s+ 1 ®(x, ,{), where® is even with
respect ta/;. Since® is even,QﬁP;Sl)( = ({nGP™))) vanishes, so tha# (S;) = 0.

In the proof by Golse in the Appendix A.4 of [12], the Maxwell-type boundary condition
with 1, depending only o, is considered. In contrast, we arrived at the same conclusion
for a more general boundary condition ang In the sense, the present approach provides
a slight extension of the applicable range of his statement. O

18 Here we assumed the similarity solution for brevity. Actually, however, this assumption is not necessary
and we can sho@ﬁp;sl) = 0 by the argument similar to that by Golse for the reduced problem (30).
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xZ
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2 ry
]SO Sl f
0 [ domain D l 1 X
i : Fig. 3 The channel between two parallel infinite plates and the
B domainD for the application of the representation theorem.

Example 5(Poiseuille, thermal transpiration, and Couette flov&)nsider the steady be-
havior of the gas between two parallel plates located at i% in the following cases (see,
e.g., [45-47]):

1. Poiseuille flow (PF, for short): two plates are at rest with a uniform constant tempera-
ture To, and a uniform gradient of pressure in thedirection is imposed, i.e., the gas
pressure is given bgo(1+ Cpx1) with Cp being constant.

2. Thermal transpiration (TT, for short):two plates are at rest with a common tempera-
ture distributionTo(1+ Cyx;) with Cr being constant.

3. Couette flow (CF, for short): two plates are at a uniform constant temperaiigréhe
upper platex, = 3) is moving with the velocity (2kTo/m)Y/?uwz,0,0), while the lower
(X2 =—3) is at rest.

We assume thaCp|, |Cr|, and|uw1| are so small that the problems can be linearized around
the resting equilibrium state with temperatiigand pressurgyg. Further the state is as-
sumed to be independentxg. In what follows, we denote by putting the subscript PF, TT,
and CF the solutions of the problems 1-3 normalized by the consIan@s, anduy;.

Let D be the domain defined byQx; < 1, —% <X < % and 0< x3 < 1. (see Fig. 3)
Let S andS; the cross-section (per unit length in tkeedirection) of the channel ag =0
andx; = 1. Let S; be the surface of the platesxat= i% in the range of &< x; < 1 and
0 < x3 < 1. It is easy to check that the solution of problem TT solves the probleb in
with gw = x1 (][>~ 3), h(xs = 0) = 0, andn(x, = 1) = |{|?> — 3, while that of problem CF
solves the problem i with gy = 2{10(x2 — %) andh = 0. With these in mind, we apply
Propositon 6 by puttingg = S; to obtain

Mr(S) =% [ 00 Vds+ 2PN (S, er(s) = -7 (S,

As in Example 4, we assume the plates are of the locally isotropic boundary, so that the
Green functiorG(™%) is given in the form o6(PS) = x; + ¢ ®(x2, {2, | |). Since® is even

in {1, Q(ZP;S” in the first equality vanishes. Finally noting that the normalized solution of the
Poiseuille flow problem is the Green functig¥™SL), we can rewrite the above relations as

M77(S1) = 2rr(S1), Mcr(S1) = —F1pHSy),

which show the cross relations among the three basic flows (see, e.g., [2]). O

Example 6(Thermal pumpsfonsider a gas in the pipe with periodic ditches as in Fig. 4(a).
The temperature distribution of the pipe surface is constant in time and is periogiwith

the same period as the geometric structure. It is known that a one-way flow is induced by
the non-uniform temperature in the pipe [48], which is the driving mechanism of the so-
calledKnudsen pump49, 10]. When the perturbed temperature of the pipe surface is small
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ap, (h=0)

(a) Knudsen pump (b) Thermal edge pump

Fig. 4 Schematics of thermal pumps.

enough, we can apply Proposition 6 to the gas dorDefthe unit stage of the pump drawn
in solid lines in the figure) to have the relation

() = — /a W00 (0ds

becaus&?, = 0, u, = 0, andh = 0, whereS s the cross-section & = s. Thus the mass
flux by the one-way flow induced in the pump can be expressed by the heat flow distribution
on the pipe surface of the Green functiaff*® for the pressure source &

Even when the pipe is a simple straight one with a uniform temperature distribution, a
one-way flow can be induced if two arrays of uniformly heated and unheated platd, say
andBy, are put inside the channel periodically with respect twith periods[see Fig. 4(b)].

The pipe equipped with such arrays of plates is callediieemal edge pumf50, 10]. For
simplicity, let the temperature of the arrBy be the same as the pipe temperaflizeThen,

if the uniform perturbed temperatumg,; of the arrayB; is small enough, we can apply
Proposition 6 to the gas domalh (the unit stage of the pump drawn in solid lines in the
figure) to have the relation

M(S) = Ty, 279 (0By),

becausery (X) = Tw1 on dB; and 1, = 0 both ondB, and on the pipe surfac&®y = 0,
uy =0, andh = 0, whereSis the cross-section & = s. Thus the mass flux by the one-way
flow induced in the pump can be obtained by knowing the heat that the Bynaceives in
the flow of the Green functio®F for the pressure source & O

6 Conclusion

In the present paper, we first established a symmetric relation (14) that holds widely between
two steady problems of the linearized Boltzmann equation in Sect. 2. We also presented a
concrete set of situations where the required condition is seen to be fulfilled by a rather

simple argument: the bounded domain, one-dimensional half-space, and three dimensional
unbounded domain with a finite confinement of bodies. Then, in Sect. 3, we showed some

application examples to the second situation (one-dimensional half-space problems). In par-
ticular, four unknown relations among the Knudsen layer problems were newly obtained.
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A remarkable difference of the first and third situations from the second was the fact that
we may deal with the source on the boundary separately in the former. Making use of this
property, we developed in Sect. 4 a unified approach to the first and third situations, on the
basis of the symmetric relation, to establish general expressions of the mass, linear and an-
gular momentum, and heat fluxes, which we called the representation theorem. The theorem
tells that the problem of finding a flux on the boundary is reduced to finding the solution of a
single elemental problem in the considered domain, which we calle@réen functionthe
response of the gas system to a proper elemental disturbance from the surroundings. These
disturbances are the pressure, velocity, rotation, or temperature soumethetboundary
We finally presented some application examples of the theorem in Sect. 5.

Some of the presented examples show the recovery of the cross relations that have been
discussed in the literature as the Onsager—Casimir reciprocity on the basis of entropy produc-
tion. It suggests some relation of the present approach to that based on the entropy produc-
tion (e.g. [51,38,19,9]). We shall discuss the issue in a separate paper, where the corollaries
in Sect. 4.4 will play a key role. Here we merely stress that the present straightforward ap-
proach based on (14) is widely applicable and yields useful relations or expressions without
any connection to the entropy production argument.

A Reflection kernel Rin the linearized problem

We summarize the properties of the reflection keRéRcr andRpR) for the linearized problem (see Ap-
pendix A.9 in [10]).

Properties of Rr
1. Rer({",{;%) >0 for{; <0,,>0.

2. /z ORCR(Z*,Z;X)dZ =1 forg; <O.
JE-n>

3. Let ¢ bed = co+ G +c4/{|%, wherecy, ¢, andcy are independent &f. Among suchg, only ¢ = ¢
satisfies the relation

b QEQ) = | ol Ren(2 X0 (% 2VE(Z)AZ" for 2o > 0.

<0 |nl
Note that the second property corresponds to the condifiep) = O of no flow across the boundary. The
third property corresponds to the natural requirement that in a resting container with a uniform temperature

the resting equilibrium state with the same temperature is established. The specular reflection is excluded
from Rcg by this property.

Properties of Rr

1. Rer(",4;%) >0 for; <0,%,>0.
2. For a certain given functiogo(x, {) > 0 defined for, > 0,
1]

E({) =g0(x.{)+ o WRPR(Z*!:X)E(Z*)UZ* for {n>0.

3. Let ¢ be¢ = co+ G g + ¢4/ |2 wherecy, ¢, andc, are independent af. Among suchp, only ¢ =0
satisfies the relation

b Q) = [ Ror(@ 2096 2 ER )" for gy >0
%<0 |l

The second and third properties are the counterpart to the thRgrofThey are a natural requirement thatin a

resting volatile container with a uniform temperature the resting equilibrium state with the same temperature

and the corresponding saturation gas pressure is established.
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B Condition of detailed balance

Besides the fundamental properties in Appendix A, the kel often required to satisfy the so-called
condition of detailed balancd-or instance, the most widely used conditions, such as the diffuse reflection,
Maxwell-type, and Cercignani—Lampis conditions, are known to satisfy that condition. [13]

The condition of detailed balance for the kerRah the linear problem reads

iR, GXEL") = 4| R(—4,~L5X)E)  for &n>0,Z; <. (31)
With this property, we can prove the following:

Lemma4 Let ¢" and @ obey the conditior{4) with gy = g and gy = g2 respectively. If the kernel R
satisfies the condition of detailed balan@1), the following equality holds:

(60" —di ) (¢~ i) =0.

Proof We denotep® —g& by ¢ (a = A, B) for brevity and rewrite the left-hand side as

B— A _ [ B— A f B, A
(W ) = /Mznw WRE(Q) /Z VP B (32)

n

The first term is rewritten by the use of (4) fgr* as
B— A _ * * 7. #y 1 Ak g 7% | 1B
J, vt E@ag = [ ] IGIREEER e [yt ez,
while the second term is rewritten as
B,;,A— _ * * . * Bx * A—
/Mznw YA Q)T = M[/Nwznm(z GXE@)Rag |yt i

= [/ZPO\Zn\R(—Z,—Z*;X)E(Z)wB*dz] e

Jggeo

Thus, the first and second terms cancel out each other because of the detailed balance (31). O
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