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Abstract A symmetric relation of macroscopic quantities between two different steady
problems of the linearized Boltzmann equation is derived. A few applications to half-space
problems are presented first. Then, for the gas in bounded or unbounded domains such that
solid bodies or condensed phases are confined in a finite region, general representations of
the mass, momentum, and heat fluxes through the boundary (possibly at a point on or on
a part of it) are derived from the symmetric relation linked to the separability of boundary
data. This result imply a reduction of the original problem to a single elemental problem in
the same domain, as far as the fluxes are concerned. Many applications are also presented.
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1 Introduction

The linearized Boltzmann equation is widely used for the study of a slow rarefied gas flow
or a gas in a micro scale system such as a micro channel, an aerosol particle, etc. One of
the interesting feature in such gas systems is that fluid-dynamical and thermal phenomena
are mutually inductive. For instance, a net heat flow through a channel is induced in the
Poiseuille flow, while a net mass flow is induced by a temperature gradient along the wall
(the thermal transpiration [1]). Those phenomena are sometimes related to each other, e.g.,
the former net flow is identical to the latter up to the dimensional factor in the above example
[2]. The thermal polarization [3,4] and thermophoresis [5–7] of a particle are other examples
of the mutually inductive phenomenon expected to be related to each other [8,9]. In the
present paper, we investigate what kind of relation holds in general between two problems

S. Takata
Department of Mechanical Engineering and Science, also Advanced Research Institute of Fluid Engineering
and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
Tel.: +81-75-7535802
Fax: +81-75-7534942
E-mail: takata@aero.mbox.media.kyoto-u.ac.jp



2

described by the steady linearized Boltzmann equation. We will eventually derive a useful
representation of the fluxes through the boundary for quite general situations.

First in Sect. 2, we consider two time-independent boundary-value problems of the
linearized Boltzmann equation in the same domain. The domain may be bounded or un-
bounded, and its boundary is composed of two parts: one representing a simple solid surface
or an interface with the condensed phase of the gas (thereal boundary, for short) and the
other representing an artificial boundary set in the interior of the gas, which includes the
specular and periodic boundaries as a special case, or a far field in an unbounded domain (the
imaginary boundary, for short). We derivea symmetric relation of averaged macroscopic
quantitiesbetween the two problems by integrating both in space and molecular velocity a
product of one solution and the other with reversed molecular velocity. The relation is ob-
tained by the self-adjointness and parity of collision operator with the aid of the condition of
detailed balance on the real boundary and its extension assumed on the artificial boundary,
provided that the velocity distribution function approaches the given data sufficiently fast at
a far distance for an unbounded domain. A concrete set of general situations in which the
relation holds is also presented. These situations will be dealt with in the rest of the paper.

One of the situations where the symmetric relation holds is a spatially one-dimensional
half-space problem of the linearized Boltzmann equation. In Sect. 3, we present some ap-
plications to half-space problems occurring in the study of the Knudsen layer structure [10–
12]. In Sects. 3.1 and 3.2 we show the recovery of known relations for the so-called slip and
jump coefficients, while in Sect. 3.3 we provide unknown relations for jump coefficients and
a couple of new numerical data by use of them. In the half-space problems, the boundary
data on the real boundary affect the state of the gas in a far field. On the other hand, for
bounded or unbounded domains such that the real boundary is confined in a finite region,
we may deal with the boundary data separately, place by place, and consider a response of
the system to elemental sources put on the boundary. We shall call the response theGreen
functionin the present paper. In such domains, we can assure the symmetric relation to hold
by a rather simple argument based on the Stokes set of equations. In Sect. 4, we present
a fruitful consequence from the separability of the boundary data linked to the symmetric
relation. To be specific, after a preliminary argument in Sect. 4.2, we present general ex-
pressions of the mass, momentum, and heat fluxes on the boundary in Sect. 4.3, which we
call the representation theorem and is the second main outcome of the present paper. The
obtained representation is not a mere superposition of the Green function. It tells thatthe
problem of finding a flux through the boundary (possibly a part of or even a point of it) is
reduced to finding the Green function for the elemental source corresponding to that flux
put on the interested boundary.The elemental sources are a collision invariant distributed
uniformly or linearly in space on the boundary (possibly on a part of or even at a point on
it). Their correspondence to the fluxes will be clear in the course of discussion in Sects. 4.2
and 4.3. We also show corollaries of the theorem on the reciprocity of the fluxes induced
by the Green functions in Sect. 4.4. This property will become important, especially when
linked to the entropy theory to be developed in a separate paper. Various applications of the
theorem will be shown in Sect. 5.

Our Green function is not the ones discussed in [13,14]. The source is not in the equa-
tion but in the boundary condition as the macroscopically meaningful elemental data. This
is intended to reflect the fact that the boundary data are given in accordance with the state of
the surroundings at the macroscopic level. Our purpose is not to represent the solution itself
as a superposition of the Green functions but to show the reduction of the original problem
to obtaining a single elemental solution corresponding to the interested fluxes through the
boundary. Simple analogues might come to mind. For instance, the Green reciprocity theo-
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rem [15–17] for the Laplace equation is known in the electrostatics for conductors and in the
theory of heat conduction. For the continuum or near continuum gas (i.e., the system with
small Knudsen numbers) in the linear regime, the flow field is described by the Stokes equa-
tion for the incompressible fluid and the temperature field by the Laplace equation [10–12].
From this point of view, the representation theorem may be regarded as the extension of the
classical reciprocity to arbitrary Knudsen numbers, though it includes more. We will give a
comment on this aspect in Corollary 9 in Sect. 5. We also mention a simple analogue in the
theory of radiative transfer [18] to the example of a half-space problem in Sect. 3.2.

2 Symmetry of the steady linearized Boltzmann equation

2.1 Problem

We start with a physically rather abstract or seemingly artificial formulation of the problem.
Let us denote byxxx andζζζ the dimensionless position and molecular velocity. We shall

consider a functionφ(xxx,ζζζ ) in a certain domain ofxxx, sayD, and for the whole space ofζζζ
that satisfies the steady, inhomogeneous linearized Boltzmann equation:

ζi
∂φ
∂xi

+Fi
∂φ
∂ζi

=
1
K

L (φ)+ I . (1)

HereFFF is a given vector depending onxxx andζζζ and satisfies the condition∂∂ζi
FiE = 0 with

E(ζζζ ) = π−3/2 exp(−|ζζζ |2), K is an arbitrary positive constant (0< K < ∞), andI is a given
function of xxx and ζζζ . The explicit form of the linearized collision integralL (φ) is sup-
pressed, becauseL is required only to have the following properties in the discussions:

(i) L (·) commutes with the parity operator acting onζζζ :

L (Φ)− = L (Φ−) for anyΦ , (2a)

where the function with superscript− is defined asΨ−(xxx,ζζζ ) ≡Ψ(xxx,−ζζζ ).
(ii) L (·) is self-adjoint:

⟨ΦL (Ψ)⟩ = ⟨ΨL (Φ)⟩ for anyΦ andΨ , (2b)

where the brackets⟨·⟩ indicate the following moment with respect toζζζ :

⟨Φ⟩ =
∫

Φ(ζζζ )E(ζζζ )dζζζ .

(iii) L (Φ) = 0 holds if and only ifΦ is a linear combination of 1,ζζζ , and|ζζζ |2.
(iv) L (·) is non-positive:

⟨ΦL (Φ)⟩ ≤ 0 for anyΦ , (2c)

and the equality holds if and only ifΦ is a linear combination of 1,ζζζ , and|ζζζ |2.

The following obvious properties will be frequently used in the sequel:

(Φ−)− = Φ , ⟨Φ⟩ = ⟨Φ−⟩ for anyΦ . (3)

On a part of the boundary∂D, which we denote by∂Dw, φ obeys the following condi-
tion:

φ = gw +
∫

ζ ∗
n <0

|ζ ∗
n |E(ζζζ ∗)
|ζn|E(ζζζ )

R(ζζζ ∗
,ζζζ ;xxx)(φ ∗−g∗w)dζζζ ∗

, ζn > 0, (4)
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whereζn = ζζζ ·nnn with nnn being the unit vector inward normal to the boundary∂Dw at position
xxx, gw is a given function ofxxx andζζζ to be specified soon later in (5), andφ ∗ andg∗w stand for
φ(xxx,ζζζ ∗) andgw(xxx,ζζζ ∗) respectively. The kernelR is a given function having the properties
summarized in Appendix A, where and in what follows we denote byRCR the kernel satis-
fying the condition⟨ζnφ⟩ = 0 and byRPR the kernel free from this condition. The required
properties are different betweenRCR andRPR. The functiongw(xxx,ζζζ ) is defined by

gw =
{

2ζζζ ·uuuw +(|ζζζ |2− 5
2)τw if R= RCR,

Pw +2ζζζ ·uuuw +(|ζζζ |2− 5
2)τw if R= RPR,

(5)

whereuuuw, τw, andPw are given constants inζζζ with uuuw ·nnn = 0. In general,uuuw, τw, andPw

depend on the positionxxx on ∂Dw. Note thatgw is defined for the whole range ofζζζ .
Physically,∂Dw is the part corresponding to thereal boundary, which is the surface of

a simple solid body (a simple surface, for short) or the interface with the condensed phase,
i.e., liquid or solid, of the gas (the interface, for short). On the former, there occurs no mass
flow across the boundary (i.e.,⟨ζnφ⟩ = 0), while on the latter it may occur in general.RCR

represents the reflection kernel for the former andRPR that for the latter in the reference
equilibrium state at rest. The deviation of the state of the boundary are represented byPw,
uuuw, andτw involved ingw. The dependence ofRonxxx comes from the possible change of the
boundary material and typically appears as the change of the accommodation coefficients.

From now on, we consider two functionsφA andφB such that

1. φA satisfies (1) and (4) withFi = Fi , I = IA, andgw = gA
w,

2. φB satisfies (1) and (4) withFi = F−
i , I = IB, andgw = gB

w,

whereR in (4) is common toφA andφB. The aim of Sect. 2 is to derive a symmetric identity
between the global quantities ofφA and ofφB. For the moment, we proceed without any
information aboutφ ’s on the remaining part of the boundary∂D, which we denote by∂Dg,
i.e.,∂Dg = ∂D\∂Dw.

2.2 Symmetric relation

We first show a symmetric identity that can be obtained without specific information on
∂Dg. The presented form is a slight extension of those in the literature (e.g., [13,19,20])
mainly in the sense thatI is arbitrary as far as the solution exists.

Proposition 1 Consider the functionsφA andφB such that

(i) φA satisfies(1) and(4) with Fi = Fi , I = IA, and gw = gA
w,

(ii) φB satisfies(1) and(4) with Fi = F−
i , I = IB, and gw = gB

w,

where R in(4) is common toφA and φB. If the kernel R satisfies the condition of detailed
balance [13,21] (see Appendix B):

|ζ ∗
n |R(ζζζ ∗

,ζζζ ;xxx)E(ζζζ ∗) = |ζn|R(−ζζζ ,−ζζζ ∗;xxx)E(ζζζ ) for ζn > 0, ζ ∗
n < 0, (6)

the following symmetric identity holds:∫
∂Dw

⟨ζngB−
w φA⟩dS+

1
2

∫
∂Dg

⟨ζnφB−φA⟩dS−
∫

D
⟨IB−φA⟩dxxx

=
∫

∂Dw

⟨ζngA−
w φB⟩dS+

1
2

∫
∂Dg

⟨ζnφA−φB⟩dS−
∫

D
⟨IA−φB⟩dxxx, (7)

wheredS is the surface element at position xxx.
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Proof We first integrate (1) forφA (or φB) multiplied by φB−E (or φA−E) over the whole
space ofζζζ :

⟨ζi
∂φA

∂xi
φB−⟩+ ⟨Fi

∂φA

∂ζi
φB−⟩ =

1
K
⟨L (φA)φB−⟩+ ⟨IAφB−⟩, (8a)

⟨ζi
∂φB

∂xi
φA−⟩+ ⟨F−

i
∂φB

∂ζi
φA−⟩ =

1
K
⟨L (φB)φA−⟩+ ⟨IBφA−⟩. (8b)

Subtracting (8b) from (8a) leads to, with the aid of (2a), (2b), (3), and the condition forFFF
immediately after (1),

1
2

∂
∂xi

⟨ζiφB−φA⟩+ ⟨IB−φA⟩ =
1
2

∂
∂xi

⟨ζiφA−φB⟩+ ⟨IA−φB⟩. (9)

Integrating (9) over the domainD results in the well-known identity (e.g., see [13]):

−1
2

∫
∂D

⟨ζnφB−φA⟩dS+
∫

D
⟨IB−φA⟩dS= −1

2

∫
∂D

⟨ζnφA−φB⟩dS+
∫

D
⟨IA−φB⟩dS. (10)

Next, we split the surface integrals into those on∂Dw and∂Dg and transform the integral
on the former. Simple rearrangement yields on∂Dw

⟨ζnφB−φA⟩ = ⟨ζn(φB−−gB−
w )(φA−gA

w)⟩+ ⟨ζngB−
w φA⟩+ ⟨ζnφB−gA

w⟩−⟨ζngB−
w gA

w⟩.

The last term on the right-hand side vanishes because of (5) anduuuw ·nnn = 0. Further, forR
satisfying the condition of detailed balance, the first term on the right-hand side vanishes, as
shown in Appendix B. Thus, the integrand of the surface integral on∂Dw is reduced to

⟨ζnφB−φA⟩ = ⟨ζngB−
w φA⟩−⟨ζngA−

w φB⟩, ⟨ζnφA−φB⟩ = ⟨ζngA−
w φB⟩−⟨ζngB−

w φA⟩.

Substitution into (10) yields the desired identity. ⊓⊔

2.2.1 Condition on∂Dg

We now introduce the condition forφ on∂Dg to refine Proposition 1, and thusφ ought to be
considered as a solution of the boundary-value problem of (1), (4), and the condition (11) on
∂Dg below. We shall consider three types of conditions on∂Dg and correspondingly split it

into three parts:∂D(i)
g , ∂D(ii)

g , and∂D(iii )
g . Each part is defined as follows.

(i) ∂D(i)
g is the part whereφ for the inward direction ofζζζ is given:1

φ(xxx,ζζζ ) = hin(xxx,ζζζ ) for ζn > 0, xxx∈ ∂D(i)
g . (11a)

Herehin is a given function defined forζn > 0. For later discussions, we extend the range
of this function to the whole space ofζζζ and denote the extended function byh(xxx,ζζζ ).
The way of extension is arbitrary.

(ii) ∂D(ii)
g is the part that reaches infinity whenD is an unbounded domain. The asymptotic

form of φ for large|xxx| is given:

φ(xxx,ζζζ ) → h(xxx,ζζζ ) as|xxx| → ∞. (11b)

Note thath(xxx,ζζζ ) is defined for the whole range ofζζζ and satisfies (1) by definition.

1 Mathematically, the conditions (4) and (11a) do not exclude each other, so that there may be a part of the

boundary which can be regarded as in∂Dw or in ∂D(i)
g . However, there arises no difference to be cared.
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(iii) ∂D(iii )
g is the part whereφ for the inward direction ofζζζ at positionxxx is related to that for

the outward direction ofζζζ ′ at positionxxx′:

φ(xxx,ζζζ ) = h(xxx,ζζζ )+
∫

∂D(iii )
g

∫
ζ ′

n′<0
P(xxx′,ζζζ ′

,xxx,ζζζ )(φ ′−h′)dζζζ ′dS′ for ζn > 0, xxx∈ ∂D(iii )
g ,

(11c)
whereh(xxx,ζζζ ) is a given function defined for the whole range ofζζζ and for anyxxx∈ ∂D(iii )

g ,

ζ ′
n′ = ζζζ ′ ·nnn′, andnnn′ and dS′ are the inward unit vector normal to∂D(iii )

g and the surface
element at pointxxx′ respectively.φ ′ andh′ stand forφ(xxx′,ζζζ ′) andh(xxx′,ζζζ ′) respectively.
P is a given function defined forζn > 0 andζ ′

n′ < 0 that prescribes the relation between

two pointsxxx andxxx′ on∂D(iii )
g . Here we restrictP to the functions that meet the following

conditions (an extension of the conditions in Appendices A and B):

(a) For ζn > 0 andζ ′
n′ < 0,

|ζn|E(ζζζ )P(xxx′,ζζζ ′
,xxx,ζζζ ) = |ζ ′

n′ |E(ζζζ ′)P(xxx,−ζζζ ,xxx′,−ζζζ ′).

(b) For a certain given functiong0(xxx,ζζζ ) ≥ 0 defined forζn > 0 andxxx ∈ ∂D(iii )
g , the

following relation holds:

1 = g0(xxx,ζζζ )+
∫

∂D(iii )
g

∫
ζ ′

n′<0
P(xxx′,ζζζ ′

,xxx,ζζζ )dζζζ ′dS′ for ζn > 0.

(c) P(xxx′,ζζζ ′
,xxx,ζζζ ) ≥ 0, and it is not identically zero.

The property (a) is an extension of the condition of detailed balance to among different
points on the boundary. It should be noted that the uniqueness condition corresponding
to the third property ofRCR and RCR in Appendix A is not required ofP. Thus, the

specular and periodic type boundaries are classified into∂D(iii )
g . Due to the property (c),

(11a) is excluded from (11c).

Some physical comments would be in order on the boundary conditions. As mentioned
before,∂Dw is the part corresponding to thereal boundary, i.e., a simple surface or the
interface. On the former, there occurs no mass flow across the boundary, while on the latter
it may occur in general. The kernelRCR represents the reflection rule on the former andRPR

on the latter. It is important to notice that the specular reflection condition is excluded from
the part∂Dw because of the third property ofRCR andRPR in Appendix A. The remaining
part∂Dg is the imaginary boundary, which is set inside a gas. The specular reflection and

periodic boundary conditions are a typical example of the part∂D(iii )
g . It is readily checked

that they have the properties required ofP. Arbitrariness ofh on ∂D(i)
g and∂D(iii )

g aims at
the application to a rather artificial problem setting often adopted in numerical simulations.

We close the present subsection with the following lemma:

Lemma 1 Let φA and φB obey the condition(11) with h = hA and h= hB respectively,
where P in(11c) is common toφA andφB. Then the following identity holds:∫

∂D(i)
g ∪∂D(iii )

g

⟨ζn(φA−−hA−)(φB−hB)⟩dS= 0, (12)

where hA and hB on ∂D(i)
g are an arbitrary extension of hAin and hB

in to the whole range ofζζζ .
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Proof For brevity, we denoteφ α −hα by ψα (α = A,B). Obviouslyψα = 0 for ζn > 0 on

∂D(i)
g . The integrand on∂D(i)

g is readily seen to vanish by a change of variables:

⟨ζnψA−ψB⟩ =
∫

ζn>0
ζnψA−ψBEdζζζ −

∫
ζn>0

ζnψAψB−Edζζζ = 0,

and (12) is reduced to the surface integral on∂D(iii )
g . For the reduced integral∫

∂D(iii )
g

⟨ζnψA−ψB⟩dS=
∫

∂D(iii )
g

∫
ζn>0

ζnψA−ψBEdζζζdS−
∫

∂D(iii )
g

∫
ζn>0

ζnψAψB−EdζζζdS,

we use (11c) forψB in the first term and that forψA in the second term on the right-hand
side. Then, by the use of the property (a) ofP, the first and second terms are seen to cancel
out each other in a way similar to the proof of Lemma 4 in Appendix B. ⊓⊔

2.2.2 Symmetric relation

We now present the first main outcome of the present paper, which is the refinement of
Proposition 1 due to Lemma 1:

Proposition 2 (symmetric relation) Consider the solutionsφA and φB of the boundary-
value problem(1), (4), and(11)such that

(i) φA is a solution in the case of I= IA, gw = gA
w, Fi = Fi , and h= hA,

(ii) φB is a solution in the case of I= IB, gw = gB
w, Fi = F−

i , and h= hB,

where R in(4) and P in(11c)are common to the problems. Then,

1. If the kernel R on∂Dw satisfies the condition of detailed balance(6),

2. and if the part∂D(ii)
g is absent orφA and φB approach hA and hB sufficiently fast in

(11b)so that ∫
∂D(ii)

g

⟨ζn(φA−−hA−)(φB−hB)⟩dS= 0, (13)

the following equality holds:∫
∂Dw

⟨ζngB−
w φA⟩dS+

∫
∂Dg

⟨ζnhB−φA⟩dS− 1
2

∫
∂Dg

⟨ζnhB−hA⟩dS−
∫

D
⟨IB−φA⟩dxxx

=
∫

∂Dw

⟨ζngA−
w φB⟩dS+

∫
∂Dg

⟨ζnhA−φB⟩dS− 1
2

∫
∂Dg

⟨ζnhA−hB⟩dS−
∫

D
⟨IA−φB⟩dxxx. (14)

It should be reminded that hA and hB on ∂D(i)
g may be any extension of hA

in and hB
in to the

whole range ofζζζ [see (i) in Sect. 2.2.1].2

2 The respective values of the second and third terms of each side of (14) depend on the way of extension
of hA

in andhB
in. However, the following relation always holds:

∫
∂Dg

⟨ζnhB−φA⟩dS− 1
2

∫
∂Dg

⟨ζnhB−hA⟩dS=
∫

∂Dg

⟨ζnhA−φB⟩dS− 1
2

∫
∂Dg

⟨ζnhA−hB⟩dS.



8

Proof The refinement is achieved by the reduction of⟨ζnφA−φB⟩ on ∂Dg due to Lemma 1:∫
∂Dg

⟨ζnφA−φB⟩dS=
∫

∂Dg

(
⟨ζnhA−φB⟩+ ⟨ζnφA−hB⟩−⟨ζnhA−hB⟩

)
dS

+
∫

∂D(ii)
g

⟨ζn(φA−−hA−)(φB−hB)⟩dS.

⊓⊔

It should be noted thatI andh are not restricted to any specific form as far as the solutionφ
exists (see the example in Sect. 3.3).

The condition (13) is fulfilled for bounded domains. It is also fulfilled for unbounded
domains at least in the following two general situations forFFF = 0:

1. D is a spatially one-dimensional half-space.
2. D is an unbounded three dimensional domain and∂Dw is confined in a finite region, so

that∂Dg = ∂D(ii)
g .

The first case is obvious because the area of surface integral does not change in passing to
the limit |xxx| → ∞, andφA andφB in the surface integral on∂Dg may be replaced byhA and
hB. The second case is not trivial and is due to Lemma 2 to be shown soon later.3

In the rest of the paper, we work on bounded domains and unbounded domains in
the situations raised above. We first present some applications to the first case, i.e., one-
dimensional half-space problems, in Sect. 3. The first case is not merely simple but also
requires a separate discussion from the second case. It is due to the fact that the source on
the real boundarygw does affect the state of the gas in a far field in that case and thush can-
not be given independent ofgw. [22] In contrast, we may separately deal with the sources on
the boundaries in the second case, i.e., the three dimensional unbounded domain, and con-
sequently can establish a unified theoretical framework with the case of bounded domain.
We present this unified approach in Sect. 4, which leads to the second main outcome of the
present paper on general representations of the mass, momentum, and heat fluxes passing
through the boundary. We will show its applications in Sect. 5.

We close the present subsection with the announced lemma:

Lemma 2 Let φA and φB satisfy(1) with FFF = 0 in an unbounded domain D with∂Dg =
∂D(ii)

g , where h= hA and hB respectively in(11b). Then the following equality holds:∫
∂Dg

⟨ζn(φA−−hA−)(φB−hB)⟩dS= 0.

Proof Let us denoteφ α −hα by ψα (α = A, B). Since, by definition,hα is a solution of (1)4

with FFF = 0, ψα is a solution of (1) withFFF = 0 andIα = 0 and tends to vanish as|xxx| → ∞.
Now consider a sufficiently large sphere that contains the real boundary∂Dw inside. We
denote bySg the surface of the sphere and byrg its radius.ψα varies with the scale ofrg

nearSg for sufficiently largerg, and the behavior at a far distance is well described by the
Grad-Hilbert expansion [10] for small Kn/rg (≪ 1). This implies that the flow velocity and
the pressure due toψα are described by the Stokes equation for the incompressible fluid,
while the temperature due toψα is described by the Laplace equation [10]. Thanks to the

3 As is clear from the proof of Lemma 2, the key estimate (33) in [19] is incorrect.
4 In general,hα may have singularities in the domain under consideration, so doesψα . However, it does

not cause any trouble, because only the outer region, wherehα andψα are regular, will be considered.
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(a) Thermal creep (b) Shear flow

Fig. 1 Thermal creep and shear flow problems.

general solution of the Stokes equation [23–25] and the property of the harmonic functions
(e.g., [26]), the pressure due toψα is seen to be ofO(|xxx|−2), while the flow velocity and
temperature due toψα are seen to be ofO(|xxx|−1). Thusψα for large|xxx| is estimated as

ψα = 2ζic
α
i +(|ζζζ |2− 5

2
)cα +O(|xxx|−2) (α = A, B),

wherecα
i andcα are a quantity ofO(|xxx|−1), independent ofζζζ , and we have∫

∂Dg

⟨ζnψA−ψB⟩dS= lim
rg→∞

∫
∂Sg

⟨ζnψA−ψB⟩dS= lim
rg→∞

∫
∂Sg

O(|xxx|−3)dS= 0,

which is the desired equality. ⊓⊔

3 Application to half-space problems

We show some applications of the symmetric relation (14) to half-space problems. Through-
out this section, the real boundary is assumed to be locally isotropic [12,10]. Sections 3.1
and 3.2 present the recovery of known relations, while Sect. 3.3 provides unknown relations.

3.1 Shear and thermal creep flows over a plane wall

When a rarefied gas is bounded by a wall with a gradient of temperature along its surface, a
flow is induced along the wall in the direction of the gradient (thethermal creep flow; see,
e.g., [1,27–29]). We discuss a cross relation of this flow to the shear flow over the wall.

Let us denote byxiL the space coordinate withL = (
√

π/2)ℓ0 whereℓ0 is the mean
free path of a molecule at the equilibrium state at rest with pressurep0 and temperatureT0.
Consider a gas occupying a half space (x1 > 0) over a resting plane wall in the following
two situations depicted in Fig. 1:

1. Thermal creep (problem T, for short): The temperature of the wall is given byT0(1+
CTx2) with CT being a positive constant. At a far distant, the state of the gas is indepen-
dent ofx1, the pressure isp0, and the temperature is the same as that of the wall.

2. Shear flow (problem S, for short): The temperature of the wall isT0. At a far distance,
the gas pressure isp0, the temperature isT0, and thex2-component of the flow changes
linearly in x1 with a constant gradient[(2kT0/m)1/2/L]CS, wherek andm is the Boltz-
mann constant and the mass of a molecule, respectively.
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The conditionCT, |CS|≪ 1 is assumed for linearization. We denote by 2p0(2kT0/m)−5/2(1+
φJ)E the velocity distribution function for problemJ (J = T,S).φJ is known to be sought in
the form ofφT = CT[(|ζζζ |2− 5

2)x2−ΦT(x1,ζζζ )] andφS = CS[2ζ2x1−ΦS(x1,ζζζ )], whereΦJ

is a solution of the following boundary-value problem:

ζ1
∂ΦJ

∂x1
=L (ΦJ)+ IJ (J = T, S), (15a)

ΦJ =
∫

ζ ∗
1 <0

|ζ ∗
1 |E(ζζζ ∗)
ζ1E(ζζζ )

RCR(ζζζ ∗
,ζζζ )φ ∗

J dζζζ ∗
, ζ1 > 0, x1 = 0, (15b)

ΦJ →hJ asx1 → ∞, (15c)

where

IT = ζ2(|ζζζ |2−
5
2
), hT = bTζ2 +ζ2A(|ζζζ |), IS = 2ζ1ζ2, hS = bSζ2 +ζ1ζ2B(|ζζζ |),

RCR is independent ofxxx, A(|ζζζ |) is the solution ofL (ζiA)=−ζi(|ζζζ |2− 5
2) such that⟨|ζζζ |2A⟩=

0, andB(|ζζζ |) is the solution ofL (ζi j B) = −2ζi j with ζi j = ζiζ j − 1
3 |ζζζ |

2δi j .
The reduced problem is known to have a solution if and only ifbJ takes a special value,

and the solution is unique and approacheshJ exponentially fast asx1 → ∞ [22,30–33]. With
these properties in mind, we use Proposition 2 by puttingφA = ΦT andφB = ΦS to have

−1
2
⟨ζ1h−S hT⟩−

∫ ∞

0
⟨I−S ΦT⟩dx1 = −1

2
⟨ζ1h−T hS⟩−

∫ ∞

0
⟨I−T ΦS⟩dx1.

In the meantime, the integration of (15a) forJ = T multiplied byζ2E shows the second term
on the left-hand side to vanish, and we eventually obtain

⟨ζ 2
1 ζ 2

2 B(|ζζζ |)⟩bT = −
∫ ∞

0
⟨ζ2(|ζζζ |2−

5
2
)ΦS⟩dx1−⟨ζ 2

1 ζ 2
2 A(|ζζζ |)B(|ζζζ |)⟩. (16)

As depicted in Fig. 1(a),− 1
2bT is the dimensionless flow velocity at a far distance in the

x2-direction normalized byCT in problem T, while⟨ζ2(|ζζζ |2− 5
2)ΦS⟩ is the dimensionless

heat flow in the same direction normalized byCS in problem S. Equation (16) represents the
cross relation between the two problems. Incidentally, 2⟨ζ 2

1 ζ 2
2 B(|ζζζ |)⟩ is the dimensionless

viscosity and 2⟨ζ 2
1 ζ 2

2 A(|ζζζ |)B(|ζζζ |)⟩ the dimensionless coefficient of the thermal stress.
The relation (16) can be checked by the numerical data in the literature (see, e.g., [20]).

By using the notation in [10], (16) is rewritten as

γ1K1 = −1
2

γ3 +
∫ ∞

0
HA(η)dη , (17)

whereγ1 = 2⟨ζ 2
1 ζ 2

2 B⟩, K1 = bT/2, γ3 = 2⟨ζ 2
1 ζ 2

2 AB⟩, HA = −⟨ζ2(|ζζζ |2− 5
2)ΦS⟩, andη = x1.

For the diffuse reflection boundary condition,K1 andHA have been computed accurately as

K1 =−0.38316,
∫ ∞

0
HA(η)dη =

1
2
×0.23368 (BGK model [27,34,10]),

K1 =−0.6465,
∫ ∞

0
HA(η)dη = 0.1530 (Boltzmann equation; hard sphere [28,10]).

For the latter, we show the values recomputed from the data obtained in [35] (K1 =−0.6463
and

∫ ∞
0 HAdη is not given in [10,28]). According to [10], bothγ1 andγ3 are unity for the

BGK5 model, whileγ1 = 1.270042427 andγ3 = 1.947906335 for the hard-sphere Boltz-
mann equation. Substitution of these values shows the relation (16) or (17) to hold.

5 The BGK (Bhatnagar–Gross–Krook) model is termed “BKW” (Boltzmann–Krook–Welander) equation
in the cited references because of the independent contribution by Welander.
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3.2 Evaporation and condensation on a plane condensed phase

Consider a gas occupying a half space bounded by its plane condensed phase. The condensed
phase is at rest and its temperature is uniform and constant. At a far distance, the gas is in
the state of uniform pressure with uniform flow and temperature gradient normal to the
interface. We discuss the steady behavior of the gas in the situation (see, e.g., [36–38]).

We use the same notation as Sect. 3.1 and take the temperature of the condensed phase
and the corresponding saturation gas pressure as the reference temperatureT0 and pressure
p0. If we denote by 2p0(2kT0/m)−5/2(1+ φ)E the velocity distribution function and by
T0(1+ ∆τ +CTx1), p0(1+ ∆P), and(2kT0/m)1/2(u∞,0,0) the temperature, pressure, and
flow velocity at a far distance, the problem is formulated as follows:

ζ1
∂φ
∂x1

=L (φ),

φ =
∫

ζ ∗
1 <0

|ζ ∗
1 |E(ζζζ ∗)
ζ1E(ζζζ )

RPR(ζζζ ∗
,ζζζ )φ ∗dζζζ ∗

, ζ1 > 0, x1 = 0,

φ →h≡ ∆P+(|ζζζ |2− 5
2
)∆τ +[(|ζζζ |2− 5

2
)x1−ζ1A(|ζζζ |)]CT +2ζ1u∞, asx1 → ∞,

whereRPR is independent ofxxx and∆P, ∆τ , CT, andu∞ are constants. Note that the heat flow
p0(2kT0/m)1/2(Q∞,0,0) at a far distance is given by

Q∞ = ⟨ζ1(|ζζζ |2−
5
2
)φ⟩x1→∞ = ⟨ζ1(|ζζζ |2−

5
2
)h⟩ = −1

3
⟨|ζζζ |4A(|ζζζ |)⟩CT.

Denoting by subscript(1,0) the quantitiesφ , h, ∆P, and∆τ when(Q∞,u∞) = (1,0) and by
subscript(0,1) the counterparts when(Q∞,u∞) = (0,1), we can split the problem as

φ =φ(1,0)Q∞ +φ(0,1)u∞, h =h(1,0)Q∞ +h(0,1)u∞,

∆P =∆P(1,0)Q∞ +∆P(0,1)u∞, ∆T =∆T(1,0)Q∞ +∆T(0,1)u∞.

As in Sect. 3.1, each of the reduced problems, the case of(Q∞,u∞) = (1,0) or (0,1),
is known to have a solution if and only if∆P(1,0) and∆τ(1,0) (or ∆P(0,1) and∆τ(0,1)) take
a special set of values, and the solutionφ(0,1) (or φ(1,0)) is unique and approachesh(0,1)

(or h(1,0)) exponentially fast asx1 → ∞.6 With these properties in mind, we make use of
Proposition 2 withφA = φ(1,0) andφB = φ(0,1) to have the relation7

−1
2
⟨ζ1h−(0,1)h(1,0)⟩x1→∞ = −1

2
⟨ζ1h−(1,0)h(0,1)⟩x1→∞,

6 As is seen from the form of the equation and the boundary condition,φ(0,1) (or φ(1,0)) can be sought as a
function ofx1, ζ1, and|ζζζ |. This property will be used later in Sect. 3.3.

7 There is a simple analogue in the theory of radiative transfer [18], in which the following two problems
in a half space of isotropic scattering field are considered (F. Golse, private communication):

µ∂x f = − f + ⟨ f ⟩, f (x = 0,µ > 0) = ϕ(µ), f → f∞ = ⟨ f∞⟩ asx→ ∞,

µ∂xg = −g+ ⟨g⟩, g(x = 0,µ > 0) = 0, ⟨µg⟩ = −1,

where f (x,µ) and g(x,µ) (x ≥ 0, −1 ≤ µ ≤ 1), the analogue toφ(0,1) and φ(1,0), denote the intensity of

radiation,⟨ f ⟩ = 1
2

∫ 1
−1 f (x,µ ′)dµ ′, andϕ is a given function. Here, concerned is mainly the value off∞ in

the first problem andg(x = 0,µ < 0) in the second. We can show thatf∞ = 1
2

∫ 1
0 ϕ(µ ′)g(0,−µ ′)dµ ′ in a

way similar to the derivation of (10), whereg(x = 0,µ > 0) = 0 is essential to remove the contribution of
f (x = 0,µ < 0) from the identity. In this simple analogue, elaborate considerations on the boundary like in
Sect. 2 are not necessary.
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which is reduced to
∆P(1,0) = ∆τ(0,1). (18)

The relation (18) can be checked by numerical data in the literature. In fact,∆P(1,0) and
∆τ(0,1) are related toC1 andd∗

4 in [10] asC1 = − 1
3⟨|ζζζ |

4A(|ζζζ |)⟩∆P(1,0) andd∗
4 = ∆τ(0,1),

whereC1 andd∗
4 for the complete condensation condition are given as

C1 =0.55844, d∗
4 = −0.44675 (BGK model [34,10]),

C1 =1.0947, d∗
4 = −0.4557 (Boltzmann equation; hard sphere [39,37,10]).

Note that13⟨|ζζζ |
4A⟩ is 5

2γ2 in [10] (γ2 = 1 for the BGK model andγ2 = 1.922284066 for the
hard-sphere Boltzmann equation). Substituting these values shows the relation (18) to hold.

3.3 Jump condition for the Stokes set of equations on the condensed phase

Consider the steady behavior of a slightly rarefied gas around its condensed phase with
arbitrary (smooth) shape in the linear regime. According to the asymptotic theory [11,34,
12,10] for small Knudsen numbers, the overall behavior of the gas can be described fluid-
dynamically by the Stokes set of equations with a proper set of slip condition for the flow
velocity and jump condition for the pressure and temperature. However, a correction is re-
quired in a thin layer adjacent to the interface with the thickness of a few mean free paths.
The thin layer is called the Knudsen layer, and the correction is correspondingly called the
Knudsen-layer correction; the solution of the Stokes set is called the fluid-dynamic part (of
the solution of the Boltzmann equation). The study of the Knudsen layer is reduced to sev-
eral half space problems of the homogeneous or inhomogeneous Boltzmann equation. The
problems treated in Sects. 3.1 and 3.2 are typical examples of those reduced problems. By
the analyses of the reduced problems, we can obtain the concrete value of the coefficients,
the so-called slip and jump coefficients, occurring in the slip and jump conditions. For the
details of the asymptotic theory, the reader is referred to [12,10]. Here we merely present the
general expressions for the pressure and jump conditions derived by the theory. We are going
to show some relations among the jump coefficients obtained by the use of the symmetric
relation (14).

Let us denote byτ andP the perturbed temperature and pressure of the fluid-dynamic
part and byτw andPw the perturbed temperature of the condensed phase and the correspond-
ing perturbed saturation pressure of the gas. According to [10], if neglecting the second and
higher order effects of the Knudsen number, the difference ofτ andP from τw andPw at the
interface, which is called the temperature jump and pressure jump respectively, is given by[

P−Pw

τ − τw

]
= un

[
C∗

4
d∗

4

]
+

√
π

2
Kn

{
∂τ
∂xn

[
C1

d1

]
+2

∂un

∂xn

[
C6

d6

]
−2κ̄un

[
C7

d7

]}
.

Hereun is the component inward normal to the interface of the fluid-dynamic part of the
dimensionless flow velocity,xn the same component of the dimensionless position vector,
andκ̄/L is the mean curvature of the interface.8 In the above expression,un, ∂τ/∂xn, and
∂un/∂xn on the right-hand side represent their value at the interface.

As partially mentioned in Sect. 3.2, the coefficients(C1,d1) and(C∗
4,d∗

4) are related to
∆P’s and∆τ ’s there as(C1,d1) = − 5

2γ2(∆P(1,0),∆τ(1,0)) and(C∗
4,d∗

4) = (∆P(0,1),∆τ(0,1)).
8 Here and in [10], the curvature is negative when the corresponding center of curvature lies on the gas

side.
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On the other hand,(C6,d6) and(C7,d7) are respectively determined with the solutionφ6 and
φ7 of the following half space problems:

ζ1
∂φJ

∂x1
=L (φJ)+ IJ, (J = 6,7), (19a)

φJ =
∫

ζ ∗
1 <0

|ζ ∗
1 |E(ζζζ ∗)
ζ1E(ζζζ )

RPR(ζζζ ∗
,ζζζ )φ ∗

J dζζζ ∗
, ζ1 > 0, x1 = 0, (19b)

φJ →hJ, asx1 → ∞, (19c)

where

I6 =
1
2
(3ζ 2

1 −|ζζζ |2), h6 = −C6− (|ζζζ |2− 5
2
)d6 +

1
4
(3ζ 2

1 −|ζζζ |2)B(|ζζζ |),

I7 =
1
2
(ζ 2

1 −|ζζζ |2)
∂ψ(0,1)

∂ζ1
, h7 = −C7− (|ζζζ |2− 5

2
)d7,

andRPR is independent ofxxx. Theψ(0,1) is a function ofx1, ζ1, and|ζζζ | defined byψ(0,1) =
φ(0,1) −h(0,1) (see the footnote 6) and vanishes exponentially asx1 → ∞.

We first apply Proposition 2 to the pairs ofφ6 andφ(1,0) by puttingφA = φ6 andφB =
φ(1,0) and ofφ6 andφ(0,1) by puttingφA = φ6 andφB = φ(0,1). Then we eventually obtain

C6 = γ1−
3
4

∫ ∞

0
(Ω ∗

4 +Θ ∗
4 )dx1, d6 =

1
5γ2

(
2γ3 +3

∫ ∞

0
(Ω1 +Θ1)dx1

)
. (20)

Here we followed the notation in [10], i.e.,Ω ∗
4 +Θ ∗

4 = 2
3⟨|ζζζ |

2ψ(0,1)⟩, Ω1+Θ1 =− 5
6γ2⟨|ζζζ |2ψ(1,0)⟩,

whereγ1 ∼ γ3 are those in Sects. 3.1 and 3.2 andψ(1,0) = φ(1,0)−h(1,0). The relation (20) can
be checked by the numerical data in the literature. In the case of the complete condensation
condition, they are given for the BGK model as follows [34,10]:

C6 = 0.82085,
∫ ∞

0
(Ω ∗

4 +Θ ∗
4 )dx1 = 0.23886,

d6 = 0.33034,
∫ ∞

0
(Ω1 +Θ1)dx1 = −0.11609.

Sinceγ1 = γ2 = γ3 = 1 for this model, the relation (20) is seen to hold. On the other hand,
the values ofC6 andd6 have been unknown for the other cases, and here we report their
values for the hard-sphere Boltzmann equation by the use of (20) with the aid of the data
of ψ(1,0) andψ(0,1) available in the literature (e.g., [37,39–41]). By the use of the numerical
data in [40,41], the integrals ofΩ ∗

4 +Θ ∗
4 andΩ1 +Θ1 are computed as∫ ∞

0
(Ω ∗

4 +Θ ∗
4 )dx1 = 0.2834,

∫ ∞

0
(Ω1 +Θ1)dx1 = −0.1943.

Sinceγ1 = 1.270042427,γ2 = 1.922284066, andγ3 = 1.947906335, we have

C6 = 1.0575, d6 = 0.3447 (Boltzmann equation; hard-sphere)

in the case of the complete condensation condition. To our best knowledge, this is the first
report on the values of these coefficients for the hard-sphere Boltzmann equation.

Next we apply Proposition 2 to the pairs ofφ7 andφ(1,0) by puttingφA = φ7 andφB =
φ(1,0) and ofφ7 andφ(0,1) by puttingφA = φ7 andφB = φ(0,1). Then, we eventually obtain

C7 =
1
2

∫ ∞

0
⟨(ζ 2

1 −|ζζζ |2)ψ−
(0,1)

∂ψ(0,1)

∂ζ1
⟩dx1−

3
2

∫ ∞

0
(Ω ∗

4 +Θ ∗
4 )dx1, (21a)
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d7 =
1
2

∫ ∞

0
⟨(ζ 2

1 −|ζζζ |2)ψ−
(1,0)

∂ψ(0,1)

∂ζ1
⟩dx1 +

1
5γ2

∫ ∞

0
⟨(3ζ 2

1 −|ζζζ |2)A(|ζζζ |)ψ(0,1)⟩dx1. (21b)

The present example demonstrates the advantage of a rather abstract formulation in
Sect. 2. The problem forφ7 contains the derivative of non Chapman–Enskog solutionψ(0,1)
as the inhomogeneous term, which is typical in the higher-order analyses of the Knudsen-
layer. The feature thatI (andh) is not required to be of a specific form is advantageous in
such analyses and will allow us to derive further identities for slip and jump coefficients.

4 Representation theorem on mass, momentum, and heat fluxes

As noted just before Lemma 2 in Sect. 2.2.2, a remarkable difference of the bounded and
three dimensional unbounded domains from the half space is the fact that one may separately
discuss the effect of the sources on the boundary. We shall present a fruitful consequence
obtained from this property linked to the symmetric relation (14).

4.1 Problem and formulation

Consider the steady behavior of a rarefied gas in a domain that is arbitrary except for the
conditions to be described later. There is no external force. The state of the gas is so close
to the reference equilibrium state at rest with densityρ0 and temperatureT0 that the higher
order terms of the deviation from the reference state may be neglected. We shall mainly
discuss the general properties of the mass, momentum, and heat transfered to the boundary
of the domain under consideration.

Let us denote byL the reference length of the system, byLxxx the position, by(2kT0/m)1/2ζζζ
the molecular velocity, and byρ0(2kT0/m)−3/2(1+ φ)E(ζζζ ) the velocity distribution func-
tion of gas molecules, wherek is the Boltzmann constant andm is the mass of a gas
molecule. Then, the behavior of the gas, the perturbed velocity distribution functionφ , is
described by the following linearized Boltzmann equation:

ζi
∂φ
∂xi

=
2√
π

1
Kn

L (φ), (22)

where Kn is the Knudsen number defined by Kn= ℓ0/L with ℓ0 being the mean free path of
a molecule in the gas at the reference equilibrium state.

Let us denote byD the domain ofxxx representing the gas domain under consideration.
The boundary∂D of the domain is split into two parts: the part∂Dw representing thereal
boundaryand the part∂Dg representing the remainingimaginary boundary. As the domain
D, we consider the following two possibilities:

1. D is a bounded domain.
2. D is an unbounded domain, and the real boundary∂Dw is confined in a finite region,

i.e., there exists a sphere with a finite radius that contains∂Dw in its interior.

It is important to note that the second assumption excludes unbounded domains in one and
two dimensional problems from the subsequent discussions.

As to the real boundary part, we denote byT0(1+ τw) the temperature of the real
boundary∂Dw, by p0(1+ Pw) the corresponding saturation pressure of the gas, and by
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(2kT0/m)1/2uuuw the velocity of the boundary, wherep0 = (ρ0/m)kT0. Then,φ obeys the
following condition on∂Dw:

φ = gw +
∫

ζ ∗
n <0

|ζ ∗
n |E(ζζζ ∗)
|ζn|E(ζζζ )

R(ζζζ ∗
,ζζζ ;xxx)(φ ∗−g∗w)dζζζ ∗ for ζn > 0. (23)

HereR= RCR on the simple boundary andR= RPR on the interface, whereRCR andRPR

are those in Appendix A that satisfy the condition of detailed balance (31). The functiongw

is given by (5). The kernelR multiplied by (2kT0/m)3/2 is the reflection kernel of the real
boundary which is at rest with the reference temperatureT0. In what follows, irrespective of
the type of the real boundary (eitherR= RCR or RPR), we simply writegw as

gw = Pw +2ζiuwi +(|ζζζ |2− 5
2
)τw on ∂Dw, (24)

because the addition of anyζζζ -independent term togw does not influence the condition (23)
because of the third property ofRCR in Appendix A. Note thatuwini = 0 because we are
concerned with the steady problem.

On the imaginary boundary∂Dg, φ obeys the following condition:

1. WhenD is bounded,∂Dg = ∂D(i)
g ∪∂D(iii )

g andφ obeys the condition (11a) or (11c):

φ(xxx,ζζζ ) =hin(xxx,ζζζ ) for ζn > 0 on∂D(i)
g , (25a)

φ(xxx,ζζζ ) =h(xxx,ζζζ )+
∫

∂D(iii )
g

∫
ζ ′

n′<0
P(xxx′,ζζζ ′

,xxx,ζζζ )(φ ′−h′)dζζζ ′dS′ for ζn > 0 on∂D(iii )
g .

(25b)

2. WhenD is unbounded,∂Dg = ∂D(ii)
g , andφ obeys the condition (11b):

φ(xxx,ζζζ ) → h(xxx,ζζζ ) as|xxx| → ∞, (25c)

whereh is a solution of (22).

Note thath is defined for the whole range ofζζζ in each case. As in Sect. 2.2.1, we extend
the range of the functionhin from ζn > 0 to the whole range ofζζζ and denote the extended
function byh. The way of extension is arbitrary and does not affect the subsequent results.

Most of the cases, we are concerned with the flow velocity(2kT0/m)1/2ui , heat-flow
vector 1

2ρ0(2kT0/m)3/2Qi , and stress tensorp0(δi j + Pi j ) of the gas, whereδi j is the Kro-
necker delta. In particular, their component normal to the boundary is of special interest,
which will be denoted byun, Qn, andPn j:

un = uini = ⟨ζnφ⟩, Qn = Qini = ⟨ζn(|ζζζ |2−
5
2
)φ⟩, Pn j = Pi j ni = ⟨2ζnζ jφ⟩.

Note that they represent the dimensionless inward fluxes of mass, heat, and momentum
through the boundary at the position, respectively.

As is noted in Sect. 2.2.2, all the conditions in Proposition 2 are fulfilled by any two
solutions of (22), (23), and (25) withgw given by (24). The first condition is obviously
fulfilled by the definition ofR, while the second is due to Lemma 2.9 Thus, the symmetric
relation (14) holds between any two solutions discussed in Sect. 4.

9 Note that the addition ofPw to gw made in (24) on a simple boundary does not change the value of the
first term of each side of (14) because⟨ζnφ⟩ = 0 there.
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Table 1 Green functions for elemental sources on∂Dw. The domain may be bounded or unbounded.

Green functiona corresponding elemental sourceb note

G(P;xxx0)(xxx,ζζζ ) gw = δ (xxx−xxx0) h = 0 −
G(T;xxx0)(xxx,ζζζ ) gw = (|ζζζ |2− 5

2)δ (xxx−xxx0) h = 0 −
G(ttt;xxx0)(xxx,ζζζ ) gw = 2ζitiδ (xxx−xxx0) h = 0 G(ttt;xxx0)(xxx,ζζζ ) = −G(−ttt;xxx0)(xxx,ζζζ )
G(P;S)(xxx,ζζζ ) gw = χS(xxx) h = 0 G(P;S)(xxx,ζζζ ) =

∫
SG(P;xxx0)(xxx,ζζζ )dS0

G(T;S)(xxx,ζζζ ) gw = (|ζζζ |2− 5
2)χS(xxx) h = 0 G(T;S)(xxx,ζζζ ) =

∫
SG(T;xxx0)(xxx,ζζζ )dS0

a ttt is a unit vector tangential to∂Dw atxxx0. S⊆ ∂Dw.
b δ is theδ -function.χS(xxx) = 1 for xxx∈ S andχS(xxx) = 0 otherwise.

4.2 Preliminary argument — motivation and basic results

If h = 0 on∂Dg, the perturbationφ from the reference equilibrium state is induced only by
the sourcegw on ∂Dw. Sincegw is a linear combination of 1,ζζζ with ζn = 0, and|ζζζ |2− 5

2 ,
we are motivated to consider the response of the system to these elemental sources on∂Dw

and to representφ as their superposition.
Let xxx0 be a point on the real boundary∂Dw. We introduce three elemental solutions

of the boundary-value problem (22), (23), and (25) listed in the first three lines in Table 1,
which we denote byG(P;xxx0)(xxx,ζζζ ), G(T;xxx0)(xxx,ζζζ ), andG(ttt;xxx0)(xxx,ζζζ ). Each of them represents
the response of the system to the corresponding elemental source put on∂Dw, and thus we
call them theGreen functions10 with respect toxxx0 on ∂Dw. If necessary, we callG(P;xxx0),
G(T;xxx0), andG(ttt;xxx0) the Green function for the pressure source, temperature source, and ve-
locity source in thettt-direction, respectively. Any solutionφ of the boundary-value problem
(22), (23), and (25) withh = 0 can be expressed as a superposition of the Green functions:

φ =
∫

∂Dw

(
Pw(xxx0)G(P;xxx0) + τw(xxx0)G(T;xxx0) −|uuuw(xxx0)|G(−ûuuw;xxx0)

)
dS0, (26)

whereûuuw = uuuw/|uuuw| and dS0 is the surface element at positionxxx0. Here and in what follows,
we denote the moments of the Green function by putting the corresponding superscript. For

instance,u(P;xxx0)
i (xxx) = ⟨ζiG(P;xxx0)(xxx,ζζζ )⟩. The first important observation is a reciprocity of the

Green functions in the following sense:

Lemma 3 For any points xxx0 and xxx1 on ∂Dw, the following relation holds: u(P;xxx1)
n (xxx0), u(T;xxx1)

n (xxx0), u(−sss;xxx1)
n (xxx0)

Q(P;xxx1)
n (xxx0), Q(T;xxx1)

n (xxx0), Q(−sss;xxx1)
n (xxx0)

P(P;xxx1)
nt (xxx0), P(T;xxx1)

nt (xxx0), P(−sss;xxx1)
nt (xxx0)

 =

 u(P;xxx0)
n (xxx1), Q(P;xxx0)

n (xxx1), P(P;xxx0)
ns (xxx1)

u(T;xxx0)
n (xxx1), Q(T;xxx0)

n (xxx1), P(T;xxx0)
ns (xxx1)

u(−ttt;xxx0)
n (xxx1), Q(−ttt;xxx0)

n (xxx1), P(−ttt;xxx0)
ns (xxx1)

 ,

(27)
where Pnt = Pn jt j , Pns = Pn jsj , and ttt and sss are a unit vector tangential to the boundary at
point xxx0 and xxx1 respectively.

Proof Proposition 2 is applicable to any two Green functions (see the last paragraph of
Sect. 4.1). WithφA = G(α;xxx0) andφB = G(β ;xxx1) (α = P,T,−ttt; β = P,T,−sss), we apply the
symmetric relation (14). SinceIA = 0, IB = 0, hA = 0, andhB = 0, (14) is reduced to∫

∂Dw

⟨ζngA−
w G(β ;xxx1)(xxx,ζζζ )⟩dS=

∫
∂Dw

⟨ζngB−
w G(α;xxx0)(xxx,ζζζ )⟩dS.

10 In the present paper, we shall use the term “Green functions” for the solution even when the correspond-
ing elemental source is not a point source. See, for instance, the last two lines in Table 1.
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Let us consider the caseα = P andβ = T. SincegA
w = δ (xxx−xxx0) andgB

w = (|ζζζ |2− 5
2)δ (xxx−

xxx1), performing the surface integration on∂Dw yields

⟨ζnG(T;xxx1)(xxx0,ζζζ )⟩ = ⟨ζn(|ζζζ |2−
5
2
)G(P;xxx0)(xxx1,ζζζ )⟩,

which is no other than the equalityu(T;xxx1)
n (xxx0) = Q(P;xxx0)

n (xxx1). Other equalities can be proved
in the same way by changing the pair ofα andβ . ⊓⊔

Lemma 3 leads to the following important consequence, if it is linked to (26):

Corollary 1 Consider the boundary-value problem(22), (23), and(25)with h= 0. For any
point xxx0 on ∂Dw, the fluxes normal to the boundary can be expressed by un(xxx0)

Qn(xxx0)
Pnt(xxx0)

 =
∫

∂Dw

 Pw(xxx)u(P;xxx0)
n (xxx)+ τw(xxx)Q(P;xxx0)

n (xxx)−uw j(xxx)P
(P;xxx0)
n j (xxx)

Pw(xxx)u(T;xxx0)
n (xxx)+ τw(xxx)Q(T;xxx0)

n (xxx)−uw j(xxx)P
(T;xxx0)
n j (xxx)

Pw(xxx)u(−ttt;xxx0)
n (xxx)+ τw(xxx)Q(−ttt;xxx0)

n (xxx)−uw j(xxx)P
(−ttt;xxx0)
n j (xxx)

dS, (28)

where ttt is a unit vector tangential to the boundary at xxx0.

Proof The superposition (26) yields un(xxx0)
Qn(xxx0)
Pnt(xxx0)

 =
∫

∂Dw

 Pw(xxx)u(P;xxx)
n (xxx0)+ τw(xxx)u(T;xxx)

n (xxx0)−|uuuw(xxx)|u(−ûuuw;xxx)
n (xxx0)

Pw(xxx)Q(P;xxx)
n (xxx0)+ τw(xxx)Q(T;xxx)

n (xxx0)−|uuuw(xxx)|Q(−ûuuw;xxx)
n (xxx0)

Pw(xxx)P(P;xxx)
nt (xxx0)+ τw(xxx)P(T;xxx)

nt (xxx0)−|uuuw(xxx)|P(−ûuuw;xxx)
nt (xxx0)

dS,

and the substitution of (27) leads to the desired expression. ⊓⊔

Corollary 1 shows that each of the mass, tangential momentum, and heat fluxes at a pointxxx0

on the real boundary∂Dw is expressed as a weighted sum of the fluxes over the boundary
∂Dw induced by the corresponding Green function with respect to that point. The correspon-
dence is as follows: the mass flux⇔ the pressure source, the heat flux⇔ the temperature
source, the momentum flux⇔ the velocity source.

4.3 Representation theorem

Corollary 1 implies a reduction of the original problem to a single elemental problem of
finding the Green function corresponding to the flux of interest. A natural question arises
whether a similar representation could be obtained for general situations such thath is not
necessarily zero. Fortunately, we can give an affirmative answer to this question, which we
present here. The key to the generalization is the fact that one can recover Corollary 1 by
directly applying Proposition 2 to the pair ofφ in Sect. 4.2 and the Green function. To be
specific, the representations ofun(xxx0), Qn(xxx0), Pnt(xxx0) are respectively recovered by the
application of Proposition 2 to the pairs ofφ andG(P;xxx0), φ andG(T;xxx0), andφ andG(−ttt;xxx0).
This alternative approach enables us to perform the generalization by the use of suitable
elemental sources and the corresponding Green functions. We call the set of expressions
thus obtained therepresentation theorem on mass, momentum, and heat fluxes.

Actually, there are five versions of the representation theorem depending on the situa-
tion. We present them in Sects. 4.3.1–4.3.3.
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4.3.1 Representation of fluxes through∂Dw

Proposition 3 (Representation theorem 1)Consider the boundary-value problem(22),
(23), and (25). The fluxes of mass, heat, and tangential momentum through∂Dw at xxx0

are represented in terms of the corresponding Green function, irrespective of whether D
is bounded or unbounded: un(xxx0)

Qn(xxx0)
Pnt(xxx0)

=
∫

∂Dw

 Pwu(P;xxx0)
n + τwQ(P;xxx0)

n −uwiP
(P;xxx0)
ni

Pwu(T;xxx0)
n + τwQ(T;xxx0)

n −uwiP
(T;xxx0)
ni

Pwu(−ttt;xxx0)
n + τwQ(−ttt;xxx0)

n −uwiP
(−ttt;xxx0)
ni

dS+
∫

∂Dg

 ⟨ζnh−G(P;xxx0)⟩
⟨ζnh−G(T;xxx0)⟩
⟨ζnh−G(−ttt;xxx0)⟩

dS,

where ttt is an arbitrary unit vector tangential to the boundary at xxx0.11 The way of extension

of hin on ∂D(i)
g does not influence the relation.12

Proof We apply Proposition 2 to the pair ofφB = G(α;xxx0) (α = P,T,−ttt) andφA = φ , where
φ is the solution of the boundary-value problem (22), (23), and (25). SinceIA = 0, gA

w = gw,
hA = h, IB = 0, andhB = 0, the symmetric relation (14) is reduced to∫

∂Dw

⟨ζngB−
w φ⟩dS=

∫
∂Dw

⟨ζng−wG(α ;xxx0)⟩dS+
∫

∂Dg

⟨ζnh−G(α;xxx0)⟩dS,

wheregB
w = δ (xxx−xxx0), (|ζζζ |2− 5

2)δ (xxx−xxx0), and−2ζitiδ (xxx−xxx0) for α = P, T, andttt, respec-
tively. Substitution of the specific form ofgB

w andgw yields the desired representation.⊓⊔

Proposition 3 can be transformed into the statement on the fluxes through an arbitrary
area on∂Dw, which is useful in many applications. To derive it, we introduce the Green
functions with respect to an area on∂Dw defined in the last two lines in Table 1. If we denote
by ρ0L2(2kT0/m)1/2M (Aw) and 1

2ρ0L2(2kT0/m)3/2Q(Aw) the mass and heat transfered to
an areaAw on ∂Dw per unit time, they are written in terms ofun andQn as[

M (Aw)
Q(Aw)

]
= −

∫
Aw

[
un(xxx0)
Qn(xxx0)

]
dS0.

Substituting the representation in Proposition 3 and performing the surface integration with
respect toxxx0 leads to the representation in terms of the Green functions with respect toAw:13

Proposition 4 (Representation theorem 2)Consider the boundary-value problem(22),
(23), and (25). Irrespective of whether D is bounded or unbounded, the outward fluxes of
mass and heat through an area Aw on ∂Dw are represented in terms of the corresponding
Green function with respect to this area:[

M (Aw)
Q(Aw)

]
=−

∫
∂Dw

[
Pwu(P;Aw)

n + τwQ(P;Aw)
n −uwiP

(P;Aw)
ni

Pwu(T;Aw)
n + τwQ(T;Aw)

n −uwiP
(T;Aw)
ni

]
dS−

∫
∂Dg

[
⟨ζnh−G(P;Aw)⟩
⟨ζnh−G(T;Aw)⟩

]
dS.

11 We may consider the Green functionG(nnn;xxx0) that is the solution of the problem (22), (23), and (25) with
h= 0 andgw = 2ζnδ (xxx−xxx0). Then, we can derive the representation for an arbitrary component of the force.
In the present work, however, we restrict ourselves to derive a representation in terms of the Green functions
satisfying the physical requirementuuuw ·nnn = 0. The same is true for the general representations of the torque
on the real boundary.

12 On∂D(i)
g , h is an arbitrary extension ofhin from ζn > 0 to the whole range ofζζζ , and henceh− for ζn > 0

is the extended part. The arbitrariness of this part is killed in the moment⟨ζnh−G(α;xxx0)⟩ (α = P,T,−ttt),
becauseG(α;xxx0) = 0 for ζn > 0 by definition.

13 The same representation is obtained by applying Proposition 2 to the pair ofφB = G(α;Aw) andφA = φ
directly, which would be a less demanding way in mathematical rigor.
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Table 2 Green functions for elemental sources on∂Dg for a bounded domain

Green functiona corresponding elemental sourceb note

G(P;xxx0)(xxx,ζζζ ) gw = 0 h = δ (xxx−xxx0) −
G(T;xxx0)(xxx,ζζζ ) gw = 0 h = (|ζζζ |2− 5

2)δ (xxx−xxx0) −
G(ℓℓℓ;xxx0)(xxx,ζζζ ) gw = 0 h = 2ζiℓiδ (xxx−xxx0) G(ℓℓℓ;xxx0)(xxx,ζζζ ) = −G(−ℓℓℓ;xxx0)(xxx,ζζζ )
G(P;S)(xxx,ζζζ ) gw = 0 h = χS(xxx) G(P;S)(xxx,ζζζ ) =

∫
SG(P;xxx0)(xxx,ζζζ )dS0

G(T;S)(xxx,ζζζ ) gw = 0 h = (|ζζζ |2− 5
2)χS(xxx) G(T;S)(xxx,ζζζ ) =

∫
SG(T;xxx0)(xxx,ζζζ )dS0

G(ℓℓℓ;S)(xxx,ζζζ ) gw = 0 h = 2ζiℓi χS(xxx) G(ℓℓℓ;S)(xxx,ζζζ ) =
∫

SG(ℓℓℓ;xxx0)(xxx,ζζζ )dS0

G(ℓℓℓ;S)(xxx,ζζζ ) = −G(−ℓℓℓ;S)(xxx,ζζζ )

a ℓℓℓ is an arbitrary unit vector. S⊆ ∂Dg.
b See the footnote b in Table 1.

The way of extension of hin on ∂D(i)
g does not influence the relation (see footnote 12).14

4.3.2 Representation of fluxes through∂Dg for a bounded domain

As to the fluxes through∂Dg, we need to discuss the bounded and unbounded domains
separately. Here, we focus on the former and introduce the Green functions listed in Table 2.
The main difference from the previous case lies in the Green function for the velocity source,
i.e., the direction of the velocity sourceℓℓℓ is not necessarily tangential to the boundary but
rather arbitrary. This feature allows us to have the representation of not only the mass and
heat fluxes but also the momentum flux through an arbitrary area on∂Dg. We first present the
representation for fluxes through a point on∂Dg. The proof is similar to that in Sect. 4.3.1
and is omitted for the sake of brevity.

Proposition 5 (Representation theorem 3)Consider the boundary-value problem(22),
(23), and (25a)or (25b) for a bounded domain. The fluxes of mass, heat, and tangential
momentum through∂Dg at xxxg are represented in terms of the corresponding Green function:

 un(xxxg)
Qn(xxxg)
Pnℓ(xxxg)

 =
∫

∂Dw


Pwu

(P;xxxg)
n + τwQ

(P;xxxg)
n −uw jP

(P;xxxg)
n j

Pwu
(T;xxxg)
n + τwQ

(T;xxxg)
n −uw jP

(T;xxxg)
n j

Pwu
(−ℓℓℓ;xxxg)
n + τwQ

(−ℓℓℓ;xxxg)
n −uw jP

(−ℓℓℓ;xxxg)
n j

dS

+
∫

∂Dg

 ⟨ζnh−G(P;xxxg)⟩
⟨ζnh−G(T;xxxg)⟩
⟨ζnh−G(−ℓℓℓ;xxxg)⟩

dS+

 ⟨ζnh(xxxg,ζζζ )⟩
⟨ζn(|ζζζ |2− 5

2)h(xxxg,ζζζ )⟩
⟨2ζnζ jℓ jh(xxxg,ζζζ )⟩

 ,

where Pnℓ = Pn jℓ j and ℓℓℓ is an arbitrary unit vector. The way of extension of hin on ∂D(i)
g

does not influence the relation.15

Next, we show the representation of the fluxes through an area on∂Dg. Let us denote by
ρ0L2(2kT0/m)1/2M (Ag), 1

2ρ0L2(2kT0/m)3/2Q(Ag), and p0L2Fℓ(Ag) the mass, heat, and

14 We exclude from the general discussion the possibility of the Green function for the velocity source,
because, in general, the direction of the vectorttt tangential to the boundary depends on the position.

15 The reason is slightly different from the case explained in footnote 12. The extended part ofh− is for
ζn > 0. By definition,G(α;xxxg) = δ (xxx− xxxg), (|ζζζ |2 − 5

2)δ (xxx− xxxg), or −2ζ jℓ j δ (xxx− xxxg) (α = P, T, or −ℓℓℓ) in
this range, so that the contributions of the extended part to the second and third terms on the right-hand side
cancel out each other.
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Table 3 Green functions for elemental sources at infinity for unbounded domain

Green functiona corresponding elemental source note

G(P;∞)(xxx,ζζζ ) gw = 0 h = 1 −
G(T;∞)(xxx,ζζζ ) gw = 0 h = (|ζζζ |2− 5

2) −
G(ℓℓℓ;∞)(xxx,ζζζ ) gw = 0 h = 2ζiℓi G(ℓℓℓ;∞)(xxx,ζζζ ) = −G(−ℓℓℓ;∞)(xxx,ζζζ )

G(Ω(ℓℓℓ);∞)(xxx,ζζζ ) gw = 0 h = 2εi jk ζiℓ j xk G(Ω(ℓℓℓ);∞)(xxx,ζζζ ) = −G(−Ω(ℓℓℓ);∞)(xxx,ζζζ )

a ℓℓℓ is an arbitrary unit vector.Ω(ℓℓℓ) = (Ωi j ) is an alternating matrix defined byΩi j =−εi jkℓk,
whereεi jk is Edington’s epsilon.

momentum in theℓℓℓ-direction transfered to the areaAg on ∂Dg for a bounded domain per
unit time.p0L2Fℓ(Ag) may be regarded as the force acting on the areaAg in theℓℓℓ-direction.
They are written in terms ofun, Qn andPnℓ asM (Ag)

Q(Ag)
Fℓ(Ag)

 = −
∫

Ag

 un(xxx)
Qn(xxx)
Pnℓ(xxx)

dS.

Again, we just show the result and omit the proof similar to that in Sect. 4.3.1.

Proposition 6 (Representation theorem 4)Consider the boundary-value problem(22),
(23), and(25a)or (25b) for a bounded domain. The outward fluxes of mass, heat, and mo-
mentum through an arbitrary area Ag on∂Dg are represented in terms of the corresponding
Green function with respect to this area:

M (Ag)
Q(Ag)
Fℓ(Ag)

 = −
∫

∂Dw


Pwu

(P;Ag)
n + τwQ

(P;Ag)
n −uw jP

(P;Ag)
n j

Pwu
(T;Ag)
n + τwQ

(T;Ag)
n −uw jP

(T;Ag)
n j

Pwu
(−ℓℓℓ;Ag)
n + τwQ

(−ℓℓℓ;Ag)
n −uw jP

(−ℓℓℓ;Ag)
n j

dS

−
∫

∂Dg

 ⟨ζnh−G(P;Ag)⟩
⟨ζnh−G(T;Ag)⟩
⟨ζnh−G(−ℓℓℓ;Ag)⟩

dS−
∫

Ag

 ⟨ζnh⟩
⟨ζn(|ζζζ |2− 5

2)h⟩
⟨2ζnζ jℓ jh⟩

dS,

whereℓℓℓ is an arbitrary unit vector. The way of extension of hin on ∂D(i)
g does not influence

the relation (see footnote 15).

4.3.3 Representation of fluxes through∂Dg for an unbounded domain

We finally turn to the representation of the fluxes passing through∂Dg for an unbounded
domain and introduce the Green functions listed in Table 3. The main difference from the
previous cases is the fact that they are the Green functions for the sources on the whole area
of ∂Dg and that a new type of elemental source, which we shall call the rotation source
aroundℓℓℓ-axis, is introduced in the last line of the table. It should be reminded that in the
present caseh is required to satisfy (22) and that any linearized local Maxwellian satisfying
(22) is limited to a linear combination of the elemental sources in Table 3.

Let us denote byρ0L2(2kT0/m)1/2M (∞), 1
2ρ0L2(2kT0/m)3/2Q(∞), p0L2Fℓ(∞), and

p0L3Tℓ(∞) the mass, heat, momentum in theℓℓℓ-direction, and angular momentum around
the ℓℓℓ-axis transfered to a far field (or∂Dg) per unit time.p0L2Fℓ(∞) and p0L3Tℓ(D∞

g )
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may be regarded as the force and the torque (or the moment of force) acting on∂Dg in the
ℓℓℓ-direction. They are written in terms ofun, Qn andPn j as

M (∞)
Q(∞)
Fℓ(∞)
Tℓ(∞)

 = −
∫

∂Dg


un(xxx)
Qn(xxx)
Pnℓ(xxx)

ℓiεi jkx jPnk(xxx)

dS.

Applying Proposition 2 to the pair of the solution of the boundary-value problem (22), (23),
and (25) and the Green functions in Table 3 leads to the following:

Proposition 7 (Representation theorem 5)Consider the boundary-value problem(22),
(23), and (25c) for an unbounded domain. The outward fluxes of mass, heat, and linear
and angular momentums through∂Dg (i.e., the net fluxes toward the outer far field) are
represented in terms of the corresponding Green function:


M (∞)
Q(∞)
Fℓ(∞)
Tℓ(∞)

 = −
∫

∂Dw


Pwu(P;∞)

n + τwQ(P;∞)
n −uw jP

(P;∞)
n j

Pwu(T;∞)
n + τwQ(T;∞)

n −uw jP
(T;∞)
n j

Pwu(−ℓℓℓ;∞)
n + τwQ(−ℓℓℓ;∞)

n −uw jP
(−ℓℓℓ;∞)
n j

Pwu(−Ω(ℓℓℓ);∞)
n + τwQ(−Ω(ℓℓℓ);∞)

n −uw jP
(−Ω(ℓℓℓ);∞)
n j

dS

−
∫

∂Dg

⟨ζnh−


G(P;∞) −1
G(T;∞) − (|ζζζ |2− 5

2)
G(−ℓℓℓ;∞) +2ζ jℓ j

G(−Ω(ℓℓℓ);∞) +2ζ jε jkl ℓkxl

⟩dS,

whereℓℓℓ is an arbitrary unit vector.

Practically, it is important to note that the above representation yields immediately that of
the outward net fluxes through∂Dw by changing the sign of the right-hand side, because of
the conservation of mass, linear and angular momentum, and energy.

4.4 Reciprocity of the fluxes induced by the Green functions

As a direct consequence of Propositions 4–7, we obtain a set of corollaries on the reciprocity
of the Green functions, which we summarize here. Besides its significance by itself, the
reciprocity will play a key role in our entropy theory to be developed in a separate paper.
Before showing the corollaries, let us recall the notation convention immediate after (26).
For instance, we denote byM (α;Bw)(Aw) andQ(α;Bw)(Aw) the dimensionless outward fluxes
of mass and heat through areaAw induced by the Green function with respect to areaBw:[

M (α;Bw)(Aw)
Q(α;Bw)(Aw)

]
= −

∫
Aw

[
u(α;Bw)

n (xxx0)
Q(α;Bw)

n (xxx0)

]
dS0, (α = P,T).

Throughout this subsection,ℓℓℓ andmmm are an arbitrary unit vector and the component in their
direction will be indicated by subscriptedℓ andm, e.g.,Fℓ = F jℓ j , Pnm = Pn jmj .

Corollary 2 For any areas Aw, Bw on ∂Dw,[
M (P;Bw)(Aw)
Q(P;Bw)(Aw)

]
=

[
M (P;Aw)(Bw)
M (T;Aw)(Bw)

]
,

[
M (T;Bw)(Aw)
Q(T;Bw)(Aw)

]
=

[
Q(P;Aw)(Bw)
Q(T;Aw)(Bw)

]
.
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Proof Apply Proposition 4 to the boundary-value problem forG(α;Bw) (α = P,T). ⊓⊔

Corollary 3 For any xxx0, xxx1 ∈ ∂Dg in a bounded domain, u(P;xxx0)
n (xxx1), u(T;xxx0)

n (xxx1), u(−mmm;xxx0)
n (xxx1)

Q(P;xxx0)
n (xxx1), Q(T;xxx0)

n (xxx1), Q(−mmm;xxx0)
n (xxx1)

P(P;xxx0)
nℓ (xxx1)−niℓiδ (xxx1−xxx0), P(T;xxx0)

nℓ (xxx1), P(−mmm;xxx0)
nℓ (xxx1)



=

 u(P;xxx1)
n (xxx0), Q(P;xxx1)

n (xxx0), P(P;xxx1)
nm (xxx0)−nimiδ (xxx0−xxx1)

u(T;xxx1)
n (xxx0), Q(T;xxx1)

n (xxx0), P(T;xxx1)
nm (xxx0)

u(−ℓℓℓ;xxx1)
n (xxx0), Q(−ℓℓℓ;xxx1)

n (xxx0), P(−ℓℓℓ;xxx1)
nm (xxx0)

 .

Corollary 4 For any xxxw ∈ ∂Dw and xxxg ∈ ∂Dg for a bounded domain, the following relation
holds: u(P;xxxw)

n (xxxg), u(T;xxxw)
n (xxxg), u(−ttt;xxxw)

n (xxxg)
Q(P;xxxw)

n (xxxg), Q(T;xxxw)
n (xxxg), Q(−ttt;xxxw)

n (xxxg)
P(P;xxxw)

nℓ (xxxg), P(T;xxxw)
nℓ (xxxg), P(−ttt;xxxw)

nℓ (xxxg)

 =

 u
(P;xxxg)
n (xxxw), Q

(P;xxxg)
n (xxxw), P

(P;xxxg)
nt (xxxw)

u
(T;xxxg)
n (xxxw), Q

(T;xxxg)
n (xxxw), P

(T;xxxg)
nt (xxxw)

u
(−ℓℓℓ;xxxg)
n (xxxw), Q

(−ℓℓℓ;xxxg)
n (xxxw), P

(−ℓℓℓ;xxxg)
nt (xxxw)

 ,

where ttt is a unit vector tangential to∂Dw at xxxw.

Proof Apply Proposition 5 to the boundary-value problem forG(α ;xxx0) (α = P,T,−mmm) by
puttingxxxg = xxx1 for Corollary 3 and to that forG(α;xxxw) (α = P,T,−ttt) for Corollary 4. ⊓⊔

Corollary 5 For any areas Ag, Bg ⊆ ∂Dg in a bounded domain,
M (P;Bg)(Ag), M (T;Bg)(Ag), M (−mmm;Bg)(Ag)
Q(P;Bg)(Ag), Q(T;Bg)(Ag), Q(−mmm;Bg)(Ag)

F
(P;Bg)
ℓ (Ag)+ ℓi

∫
Ag∩Bg

nidS, F
(T;Bg)
ℓ (Ag), F

(−mmm;Bg)
ℓ (Ag)



=


M (P;Ag)(Bg), Q(P;Ag)(Bg), F

(P;Ag)
m (Bg)+mi

∫
Ag∩Bg

nidS

M (T;Ag)(Bg), Q(T;Ag)(Bg), F
(T;Ag)
m (Bg)

M (−ℓℓℓ;Ag)(Bg), Q(−ℓℓℓ;Ag)(Bg), F
(−ℓℓℓ;Ag)
m (Bg)

 .

Corollary 6 For any areas Aw ∈ ∂Dw and Ag ∈ ∂Dg in a bounded domain,M (P;Aw)(Ag), M (T;Aw)(Ag)
Q(P;Aw)(Ag), Q(T;Aw)(Ag)
F

(P;Aw)
ℓ (Ag), F

(T;Aw)
ℓ (Ag)

 =

 M (P;Ag)(Aw), Q(P;Ag)(Aw)
M (T;Ag)(Aw), Q(T;Ag)(Aw)
M (−ℓℓℓ;Ag)(Aw), Q(−ℓℓℓ;Ag)(Aw)

 .

Proof Apply Proposition 6 to the boundary-value problem forG(α;Bg) (α = P,T,−mmm) for
Corollary 5 and to that forG(α;Aw) (α = P,T) for Corollary 6. ⊓⊔

Corollary 7 The following reciprocal relation holds:

M (T;∞)(∞) =Q(P;∞)(∞), M (−mmm;∞)(∞) = F
(P;∞)
m (∞),

Q(−mmm;∞)(∞) =F
(T;∞)
m (∞), F

(−mmm;∞)
ℓ (∞) = F

(−ℓℓℓ;∞)
m (∞),

M (−Ω(mmm);∞)(∞) =T
(P;∞)

m (∞), F
(−Ω(mmm);∞)
ℓ (∞) = T

(−ℓℓℓ;∞)
m (∞),

Q(−Ω(mmm);∞)(∞) =T
(T;∞)

m (∞), T
(−Ω(mmm);∞)

ℓ (∞) = T
(−Ω(ℓℓℓ);∞)

m (∞).
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Corollary 8 For any xxx∈ ∂Dw and A⊆ ∂Dw,
M (P;xxx)(∞), M (T;xxx)(∞), M (−mmm;xxx)(∞)
Q(P;xxx)(∞), Q(T;xxx)(∞), Q(−mmm;xxx)(∞)
F

(P;xxx)
ℓ (∞), F

(T;xxx)
ℓ (∞), F

(−mmm;xxx)
ℓ (∞)

T
(P;xxx)

ℓ (∞), T
(T;xxx)

ℓ (∞), T
(−mmm;xxx)

ℓ (∞)

=−


u(P;∞)

n (xxx), Q(P;∞)
n (xxx), P(P;∞)

nm (xxx)
u(T;∞)

n (xxx), Q(T;∞)
n (xxx), P(T;∞)

nm (xxx)
u(−ℓℓℓ;∞)

n (xxx), Q(−ℓℓℓ;∞)
n (xxx), P(−ℓℓℓ;∞)

nm (xxx)
u(−Ω(ℓℓℓ);∞)

n (xxx), Q(−Ω(ℓℓℓ);∞)
n (xxx), P(−Ω(ℓℓℓ);∞)

nm (xxx)

 ,


M (P;A)(∞), M (T;A)(∞)
Q(P;A)(∞), Q(T;A)(∞)
F

(P;A)
ℓ (∞), F

(T;A)
ℓ (∞)

T
(P;A)

ℓ (∞), T
(T;A)

ℓ (∞)

 =


M (P;∞)(A), Q(P;∞)(A)
M (T;∞)(A), Q(T;∞)(A)
M (−ℓℓℓ;∞)(A), Q(−ℓℓℓ;∞)(A)

M (−Ω(ℓℓℓ);∞)(A), Q(−Ω(ℓℓℓ);∞)(A)

 .

Proof Apply Proposition 7 to the boundary-value problem forG(α ;∞) (α = T,−mmm,−Ω(mmm))
for Corollary 7 and to that forG(α;xxx) (α = P,T,−mmm) or G(β ;A) (β = P,T) for Corollary 8.

5 Applications of the representation theorem

In this section, we present application examples of the representation theorem. Some of
them (Examples 1, 2, and 5) have been discussed in the literature as the examples of the
Onsager–Casimir reciprocity in the connection to the entropy production (e.g., [2,42,8,43,
9]). It should be noted that they are recovered merely as byproducts of the representation
theorem and that the discussion of the entropy production is entirely excluded from the
present paper.

5.1 Mass and heat fluxes and the force acting on the resting bodies in an unbounded domain

Consider a group ofN resting bodies (say,B1, . . . ,BN) arranged in a finite region in the gas
occupying an unbounded domain. In a far field, the gas is in the equilibrium state at rest
with densityρ0 and temperatureT0. The respective bodies in the group may be a simple
solid body or a condensed phase of the gas; they do not change in time their shape and
surface temperature and have no surface velocity.

When the deviation from the reference equilibrium state is small, the problem can be
linearized around the reference state. Then, as a direct application of Proposition 4 and

Corollary 2 (∂Dw = ∂B1+ · · ·∂BN, ∂Dg = ∂D(ii)
g , Aw = ∂B j , Bw = ∂Bk, uwi = 0, andh= 0),

we have the following statement for the mass and heat transfered to the resting bodies:

Corollary 9 (mass and heat transfered to the resting bodies)The mass and heat trans-
fered to the body Bj ( j = 1, . . . ,N) per unit time can be expressed by the mass and heat
flow distributions over the whole body surface∂Dw induced by the Green functions for the
pressure and temperature sources with respect to∂B j :[

M (∂B j)
Q(∂B j)

]
= −

∫
∂Dw

[
u

(P;∂B j )
n (xxx), Q

(P;∂B j )
n (xxx)

u
(T;∂B j )
n (xxx), Q

(T;∂B j )
n (xxx)

][
Pw(xxx)
τw(xxx)

]
dS.

In particular,
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(i) if there is no condensed phase in the group of bodies, the mass transfered to each body
vanishes and the above expression becomes much simpler as16

Q(∂B j) = −
∫

∂Dw

Q
(T;∂B j )
n (xxx)τw(xxx)dS. (29)

(ii) the following reciprocity holds:[
M (P;∂Bk)(∂B j), M (T;∂Bk)(∂B j)
Q(P;∂Bk)(∂B j), Q(T;∂Bk)(∂B j)

]
=

[
M (P;∂B j )(∂Bk), Q(P;∂B j )(∂Bk)
M (T;∂B j )(∂Bk), Q(T;∂B j )(∂Bk)

]
.

Example 1(Evaporation from and condensation onto a volatile sphere)Consider the case
where the group of the bodies is a single spherical condensed phase of the gas (for short, a
volatile sphere). Denoting byS the surface of the volatile sphere, we have the expression[

M (S)
Q(S)

]
= −

∫
S

[
u(P;S)

n (xxx), Q(P;S)
n (xxx)

u(T;S)
n (xxx), Q(T;S)

n (xxx)

][
Pw(xxx)
τw(xxx)

]
dS

and the reciprocity
M (T;S)(S) = Q(P;S)(S).

Noted thatM (P;S) andQ(P;S) are the dimensionless mass and heat passing through a point
on Sper unit time and area forPw = 1 andτw = 0, while M (T;S) andQ(T;S) are those for
Pw = 0 andτw = 1. Thus, as far as the mass and heat transfer is concerned, the general result
is readily obtained by the study of two elemental situations,Pw = 1, τw = 0 andPw = 0, τw =
1. The above reciprocity was numerically verified in the literature (e.g., [42,43]). ⊓⊔

We also have a statement on the force and torque on the group of resting bodies (not
individual bodies) as a consequence of Proposition 7 and the conservation of linear and
angular momentums:

Corollary 10 (Force and torque on the group of resting bodies)The force and torque
on the group of bodies can be obtained from the mass and heat flow distributions over the
whole body surface∂Dw induced by the Green functions for velocity and rotation sources
in a far field. If we denote by p0L2Fℓ(∂Dw) and p0L3Tℓ(∂Dw) the force and torque on the
group of bodies in theℓℓℓ-direction. they are expressed as[

Fℓ(∂Dw)
Tℓ(∂Dw)

]
= −

∫
∂Dw

(
Pw(xxx)

[
u(ℓℓℓ;∞)

n (xxx)
u(Ω(ℓℓℓ);∞)

n (xxx)

]
+ τw(xxx)

[
Q(ℓℓℓ;∞)

n (xxx)
Q(Ω(ℓℓℓ);∞)

n (xxx)

])
dS.

16 Consider a temperature field in the fluid dynamic limit, which is described by the Laplace equation. Let
us denote byτ the perturbed temperature of the gas and byτ(∂B j ) the counterpart when the temperature source
is put on∂B j , i.e.,∆τ = 0, ∆τ(∂B j ) = 0, τ = τw on ∂Dw, τ(∂B j ) = 1 on∂B j , andτ(∂B j ) = 0 on∂Dw \∂B j .
Then, the Green formula

∫
D(τ∆τ(∂B j ) − τ(∂B j )∆τ)dxxx =

∫
∂D(τ∇∇∇τ(∂B j ) − τ(∂B j )∇∇∇τ) ·nnndS is reduced to

0 =
∫

∂Dw

τw∇∇∇τ(∂B j ) ·nnndS−
∫

∂B j

∇∇∇τ ·nnndS+
∫

∂Dg

(τ∇∇∇τ(∂B j ) − τ(∂B j )∇∇∇τ) ·nnndS.

Sinceτ andτ(∂B j ) decays with the rate of|xxx|−1 as|xxx| → ∞, the third integral vanishes, and we have∫
∂Dw

τw∇∇∇τ(∂B j ) ·nnndS=
∫

∂B j

∇∇∇τ ·nnndS.

The expression (29) is the generalization of this relation to the gas of arbitrary Knudsen number.
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In particular, when there is no condensed phase in the group, i.e., when∂Dw is a simple
boundary, the mass transfered to each body vanishes and the force and torque on the group
of bodies can be expressed only by the heat flow distribution:[

Fℓ(∂Dw)
Tℓ(∂Dw)

]
= −

∫
∂Dw

τw(xxx)

[
Q(ℓℓℓ;∞)

n (xxx)
Q(Ω(ℓℓℓ);∞)

n (xxx)

]
dS.

Proof By the linear and angular momentum conservations,Fℓ(∂Dw)=−Fℓ(∞) andTℓ(∂Dw)=
−Tℓ(∞). Use Proposition 7 for the representation ofFℓ(∞) andTℓ(∞) by puttinguwi = 0
andh = 0. Finally use the parity ofG(ℓℓℓ;∞) in Table 3. ⊓⊔

Example 2(Force acting on a simple solid body with non-uniform temperature)[44] Con-
sider the case where the group of the bodies is a single simple solid body. Denoting by S the
surface of the body, the dimensionless force acting on the body is given by

Fℓ(S) = −
∫

S
τw(xxx)Q(ℓℓℓ;∞)

n (xxx)dS.

Q(ℓℓℓ;∞)
n is the dimensionless heat flow induced byG(ℓℓℓ;∞). This Green function is a solution

of the problem of a uniform slow flow in theℓℓℓ-direction past the body with the reference
uniform upstream temperatureT0 (to be precise, the solution normalized by the upstream
flow speed). ⊓⊔

Extension of Corollaries 9 and 10 to the case of bodies with moving surface under
the constraint ofuuuw · nnn = 0 is straightforward. In the case of a bounded domain with the
boundary composed only of the real boundary (∂D = ∂Dw), Corollaries 9 and 10 hold as it
is with a proper choice of the reference equilibrium state. On the other hand, if the gas is not
necessarily in some resting equilibrium state in a far field, we need to use Propositions 4 or
7 directly. The next is such an example.

Example 3(Thermophoresis)Consider an infinite expanse of a resting gas with the temper-
ature distributionT0(1+Cx1) (C: a positive constant), in which a single simple solid body
with temperatureT0 is located at the origin. In this situation, there occurs a force acting
on the body, which is the present concern (see, e.g., [5–7] and the references therein). The
sources on the boundary are given bygw = 0 andh= C[(|ζζζ |2− 5

2)x1− (
√

π/2)Knζ1A(|ζζζ |)]
in this situation, whereA is the one already defined in Sect. 3.1. We denote by S the surface
of the body and use Proposition 7 to obtain the relation

Fℓ(S) = −Fℓ(∞) = −C
∫

∂Dg

(
x1Q(ℓℓℓ;∞)

n +
√

π
2

Kn⟨ζnζ1A(|ζζζ |)G(ℓℓℓ;∞)⟩
)

dS.

Here the parity ofG(ℓℓℓ;∞) in Table 3 and the conservation of momentum have been used.
In the meantime, since bothh andG(ℓℓℓ;∞) solve (22), we can show in the same way as in

the proof of Proposition 1 that
∫

∂D⟨ζnh−G(ℓℓℓ;∞)⟩dS= 0. By using this fact and∂D = ∂Dg∪S,
we obtain an alternative expression17

Fℓ(S) = C
∫

∂Dw

(
x1Q(ℓℓℓ;∞)

n +
√

π
2

Kn⟨ζnζ1A(|ζζζ |)G(ℓℓℓ;∞)⟩
)

dS.

⊓⊔
17 Our result is different from that in [8]. This is due to the fact that the term ofζ1A(|ζζζ |) is missing in the

asymptotic form of the perturbed distribution function in that reference. The expression in [8] is incorrect.
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Fig. 2 A straight pipe with a pe-
riodic temperature distribution.

5.2 Mass and heat fluxes along various channels

Example 4(Golse’s theorem)Consider a gas in a straight pipe with a uniform cross-section.
The temperature of the pipe is periodic and is constant in time. In the situation, a steady flow
is induced in the gas by the non-uniformity of the temperature of the pipe. Golse proved that
the induced flow field does not generate the mass flux through the pipe cross-section, by
assuming that the temperature variation is so small that the linearization of the problem is
allowed (Golse’s theorem [12]). We shall show below that we can reach the same conclusion
with a slight extension of the statement by the application of Proposition 6.

Let us take the coordinatex1 in the axial direction of the pipe as in Fig. 2. Lets be the
period in this direction andD be the domain surrounded by the pipe wall and by the cross-
sectionsS0 andS1 located respectively atx1 = 0 andx1 = s. BecausePw = 0, uuuw = 0, and
h = 0, Proposition 6 yields, by puttingAg = S1, the relation

M (S1) = −
∫

∂Dw

τw(x1,xxx⊥)Q(P;S1)
n (x1,xxx⊥)dS,

wherexxx⊥ = (x2,x3), and here the Green functionG(P;S1) is the solution of the problem:

ζi
∂G(P;S1)

∂xi
=

2√
π

1
Kn

L (G(P;S1)), (30a)

G(P;S1)(x1,xxx⊥,ζζζ ) =
∫

ζ ∗
n <0

|ζ ∗
n |E(ζζζ ∗)
|ζn|E(ζζζ )

RCR(ζζζ ∗
,ζζζ )G(P;S1)(x1,xxx⊥,ζζζ ∗)dζζζ ∗

ζn > 0, (x1,xxx⊥) ∈ ∂Dw, (30b)

G(P;S1)(s,xxx⊥,ζζζ ) = 1+G(P;S1)(0,xxx⊥,ζζζ ) for ζ1 < 0, (30c)

G(P;S1)(0,xxx⊥,ζζζ ) = G(P;S1)(s,xxx⊥,ζζζ )−1 for ζ1 > 0, (30d)

whereRCR is independent ofxxx. If the pipe wall is of the locally isotropic boundary [12,10],
we can seek the solution in the form18 G(P;S1) = x1/s+ ζ1Φ(xxx⊥,ζζζ ), whereΦ is even with

respect toζ1. SinceΦ is even,Q(P;S1)
n

(
= ⟨ζnG(P;S1)⟩

)
vanishes, so thatM (S1) = 0.

In the proof by Golse in the Appendix A.4 of [12], the Maxwell-type boundary condition
with τw depending only onx1 is considered. In contrast, we arrived at the same conclusion
for a more general boundary condition andτw. In the sense, the present approach provides
a slight extension of the applicable range of his statement. ⊓⊔

18 Here we assumed the similarity solution for brevity. Actually, however, this assumption is not necessary

and we can showQ(P;S1)
n = 0 by the argument similar to that by Golse for the reduced problem (30).
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Fig. 3 The channel between two parallel infinite plates and the
domainD for the application of the representation theorem.

Example 5(Poiseuille, thermal transpiration, and Couette flows)Consider the steady be-
havior of the gas between two parallel plates located atx2 =± 1

2 in the following cases (see,
e.g., [45–47]):

1. Poiseuille flow (PF, for short): two plates are at rest with a uniform constant tempera-
tureT0, and a uniform gradient of pressure in thex1-direction is imposed, i.e., the gas
pressure is given byp0(1+CPx1) with CP being constant.

2. Thermal transpiration (TT, for short):two plates are at rest with a common tempera-
ture distributionT0(1+CTx1) with CT being constant.

3. Couette flow (CF, for short): two plates are at a uniform constant temperatureT0. The

upper plate (x2 = 1
2) is moving with the velocity((2kT0/m)1/2uw1,0,0), while the lower

(x2 = − 1
2) is at rest.

We assume that|CP|, |CT|, and|uw1| are so small that the problems can be linearized around
the resting equilibrium state with temperatureT0 and pressurep0. Further the state is as-
sumed to be independent inx3. In what follows, we denote by putting the subscript PF, TT,
and CF the solutions of the problems 1–3 normalized by the constantsCP, CT, anduw1.

Let D be the domain defined by 0< x1 < 1,− 1
2 < x2 < 1

2 , and 0< x3 < 1. (see Fig. 3)
Let S0 andS1 the cross-section (per unit length in thex3-direction) of the channel atx1 = 0
andx1 = 1. Let S± be the surface of the plates atx2 = ± 1

2 in the range of 0< x1 < 1 and
0 < x3 < 1. It is easy to check that the solution of problem TT solves the problem inD
with gw = x1(|ζζζ |2− 5

2), h(x1 = 0) = 0, andh(x1 = 1) = |ζζζ |2− 5
2 , while that of problem CF

solves the problem inD with gw = 2ζ1δ (x2− 1
2) andh = 0. With these in mind, we apply

Propositon 6 by puttingAg = S1 to obtain

MTT(S1) = ±
∫

S±
x1Q(P;S1)

2 dS+Q(P;S1)(S1), MCF(S1) = −F
(P;S1)
1 (S+).

As in Example 4, we assume the plates are of the locally isotropic boundary, so that the
Green functionG(P;S1) is given in the form ofG(P;S1) = x1+ζ1Φ(x2,ζ2, |ζζζ |). SinceΦ is even

in ζ1, Q(P;S1)
2 in the first equality vanishes. Finally noting that the normalized solution of the

Poiseuille flow problem is the Green functionG(P;S1), we can rewrite the above relations as

MTT(S1) = QPF(S1), MCF(S1) = −F1PF(S+),

which show the cross relations among the three basic flows (see, e.g., [2]). ⊓⊔

Example 6(Thermal pumps)Consider a gas in the pipe with periodic ditches as in Fig. 4(a).
The temperature distribution of the pipe surface is constant in time and is periodic inx1 with
the same periods as the geometric structure. It is known that a one-way flow is induced by
the non-uniform temperature in the pipe [48], which is the driving mechanism of the so-
calledKnudsen pump[49,10]. When the perturbed temperature of the pipe surface is small
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(a) Knudsen pump (b) Thermal edge pump

Fig. 4 Schematics of thermal pumps.

enough, we can apply Proposition 6 to the gas domainD (the unit stage of the pump drawn
in solid lines in the figure) to have the relation

M (S) = −
∫

∂Dw

τw(xxx)Q(P;S)
n (xxx)dS,

becausePw = 0, uuuw = 0, andh = 0, whereS is the cross-section atx1 = s. Thus the mass
flux by the one-way flow induced in the pump can be expressed by the heat flow distribution
on the pipe surface of the Green functionG(P;S) for the pressure source onS.

Even when the pipe is a simple straight one with a uniform temperature distribution, a
one-way flow can be induced if two arrays of uniformly heated and unheated plates, sayB1

andB2, are put inside the channel periodically with respect tox1 with periods [see Fig. 4(b)].
The pipe equipped with such arrays of plates is called thethermal edge pump[50,10]. For
simplicity, let the temperature of the arrayB2 be the same as the pipe temperatureT0. Then,
if the uniform perturbed temperatureτw1 of the arrayB1 is small enough, we can apply
Proposition 6 to the gas domainD (the unit stage of the pump drawn in solid lines in the
figure) to have the relation

M (S) = τw1Q
(P;S)(∂B1),

becauseτw(xxx) = τw1 on ∂B1 and τw = 0 both on∂B2 and on the pipe surface,Pw = 0,
uuuw = 0, andh= 0, whereS is the cross-section atx1 = s. Thus the mass flux by the one-way
flow induced in the pump can be obtained by knowing the heat that the arrayB1 receives in
the flow of the Green functionG(P;S) for the pressure source onS. ⊓⊔

6 Conclusion

In the present paper, we first established a symmetric relation (14) that holds widely between
two steady problems of the linearized Boltzmann equation in Sect. 2. We also presented a
concrete set of situations where the required condition is seen to be fulfilled by a rather
simple argument: the bounded domain, one-dimensional half-space, and three dimensional
unbounded domain with a finite confinement of bodies. Then, in Sect. 3, we showed some
application examples to the second situation (one-dimensional half-space problems). In par-
ticular, four unknown relations among the Knudsen layer problems were newly obtained.
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A remarkable difference of the first and third situations from the second was the fact that
we may deal with the source on the boundary separately in the former. Making use of this
property, we developed in Sect. 4 a unified approach to the first and third situations, on the
basis of the symmetric relation, to establish general expressions of the mass, linear and an-
gular momentum, and heat fluxes, which we called the representation theorem. The theorem
tells that the problem of finding a flux on the boundary is reduced to finding the solution of a
single elemental problem in the considered domain, which we called theGreen function, the
response of the gas system to a proper elemental disturbance from the surroundings. These
disturbances are the pressure, velocity, rotation, or temperature source puton the boundary.
We finally presented some application examples of the theorem in Sect. 5.

Some of the presented examples show the recovery of the cross relations that have been
discussed in the literature as the Onsager–Casimir reciprocity on the basis of entropy produc-
tion. It suggests some relation of the present approach to that based on the entropy produc-
tion (e.g. [51,38,19,9]). We shall discuss the issue in a separate paper, where the corollaries
in Sect. 4.4 will play a key role. Here we merely stress that the present straightforward ap-
proach based on (14) is widely applicable and yields useful relations or expressions without
any connection to the entropy production argument.

A Reflection kernelR in the linearized problem

We summarize the properties of the reflection kernelR (RCR andRPR) for the linearized problem (see Ap-
pendix A.9 in [10]).

Properties of RCR

1. RCR(ζζζ ∗
,ζζζ ;xxx) ≥ 0 for ζ ∗

n < 0, ζn > 0.

2.
∫

ζζζ ·nnn>0
RCR(ζζζ ∗

,ζζζ ;xxx)dζζζ = 1 for ζ ∗
n < 0.

3. Let ϕ beϕ = c0 +ciζi +c4|ζζζ |2, wherec0, ci , andc4 are independent ofζζζ . Among suchϕ, only ϕ = c0
satisfies the relation

ϕ(xxx,ζζζ )E(ζζζ ) =
∫

ζ∗
n <0

|ζ ∗
n |

|ζn|
RCR(ζζζ ∗

,ζζζ ;xxx)ϕ(xxx,ζζζ ∗)E(ζζζ ∗)dζζζ ∗ for ζn > 0.

Note that the second property corresponds to the condition⟨ζnφ⟩ = 0 of no flow across the boundary. The
third property corresponds to the natural requirement that in a resting container with a uniform temperature
the resting equilibrium state with the same temperature is established. The specular reflection is excluded
from RCR by this property.

Properties of RPR

1. RPR(ζζζ ∗
,ζζζ ;xxx) ≥ 0 for ζ ∗

n < 0, ζn > 0.
2. For a certain given functiong0(xxx,ζζζ ) ≥ 0 defined forζn > 0,

E(ζζζ ) = g0(xxx,ζζζ )+
∫

ζ∗
n <0

|ζ ∗
n |

|ζn|
RPR(ζζζ ∗

,ζζζ ;xxx)E(ζζζ ∗)dζζζ ∗ for ζn > 0.

3. Let ϕ beϕ = c0 +ciζi +c4|ζζζ |2, wherec0, ci , andc4 are independent ofζζζ . Among suchϕ, only ϕ = 0
satisfies the relation

ϕ(xxx,ζζζ )E(ζζζ ) =
∫

ζ ∗
n <0

|ζ ∗
n |

|ζn|
RPR(ζζζ ∗

,ζζζ ;xxx)ϕ(xxx,ζζζ ∗)E(ζζζ ∗)dζζζ ∗ for ζn > 0.

The second and third properties are the counterpart to the third ofRCR. They are a natural requirement that in a
resting volatile container with a uniform temperature the resting equilibrium state with the same temperature
and the corresponding saturation gas pressure is established.
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B Condition of detailed balance

Besides the fundamental properties in Appendix A, the kernelR is often required to satisfy the so-called
condition of detailed balance. For instance, the most widely used conditions, such as the diffuse reflection,
Maxwell-type, and Cercignani–Lampis conditions, are known to satisfy that condition. [13]

The condition of detailed balance for the kernelR in the linear problem reads

|ζ ∗
n |R(ζζζ ∗

,ζζζ ;xxx)E(ζζζ ∗) = |ζn|R(−ζζζ ,−ζζζ ∗;xxx)E(ζζζ ) for ζn > 0, ζ ∗
n < 0. (31)

With this property, we can prove the following:

Lemma 4 Let φA and φB obey the condition(4) with gw = gA
w and gw = gB

w respectively. If the kernel R
satisfies the condition of detailed balance(31), the following equality holds:

⟨ζn(φB−−gB−
w )(φA−gA

w)⟩ = 0.

Proof We denoteφ α −gα
w by ψα (α = A,B) for brevity and rewrite the left-hand side as

⟨ζnψB−ψA⟩ =
∫

ζn>0
ζnψB−ψAE(ζζζ )dζζζ −

∫
ζn>0

ζnψBψA−E(ζζζ )dζζζ . (32)

The first term is rewritten by the use of (4) forψA as∫
ζn>0

ζnψB−ψAE(ζζζ )dζζζ =
∫

ζn>0

[∫
ζ∗

n <0
|ζ ∗

n |R(ζζζ ∗
,ζζζ ;xxx)E(ζζζ ∗)ψA∗dζζζ ∗

]
ψB−dζζζ ,

while the second term is rewritten as∫
ζn>0

ζnψBψA−E(ζζζ )dζζζ =
∫

ζn>0

[∫
ζ∗

n <0
|ζ ∗

n |R(ζζζ ∗
,ζζζ ;xxx)E(ζζζ ∗)ψB∗dζζζ ∗

]
ψA−dζζζ

=
∫

ζ ∗
n <0

[∫
ζn>0

|ζn|R(−ζζζ ,−ζζζ ∗;xxx)E(ζζζ )ψB−dζζζ
]
ψA∗dζζζ ∗

.

Thus, the first and second terms cancel out each other because of the detailed balance (31). ⊓⊔
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