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ABSTRACT

This thesis is concerned with the Hy, filtering problem for linear discrete-time systems.
The Ho filtering problem is a state estimation problem of minimizing the maximum energy
in the estimation error over all possible disturbance trajectories. The state estimation
based on the He, criterion is valid when there exists a significant uncertainty in the
disturbance statistics. This thesis consists of mainly two parts.

The first part considers the infinite-horizon problem for a time-invariant system. We
provide a complete solution to the infinite-horizon H,, filtering problem for time-invariant
systems from the viewpoint of model métching in the frequency domain. The set of all
H,., filters is characterized in terms of a positive semi-definite stabilizing solution of the
H,, algebraic Riccati equation (ARE).

The free parameter contained in the Hy, filter can be used for achieving an additional
design specification as well as the Hy, error bound. In the case where the system is
subject to step and/or periodic disturbances, the state estimates may be degraded by
the biases or periodic fluctuations due to these disturbances. In order to attenuate these
undesirable effects of these disturbances, the transfer functions from the disturbances to
the estimation error must be zero at certain points on the unit circle of the complex plane.
Based on the Nevanlinna-Pick interpolation theory, we propose a method for adjusting
the free parameter so that the boundary constraints on the unit circle are satisfied.

Since the H,, filter is characterized by a positive semi-definite stabilizing solution of
the H., ARE, the estimation performance of the H, filter is dependent on the properties
of the H,, ARE. We derive a lower bound of the H, error bound - for which there exists
a stabilizing solution of the Hy, ARE, and show the monotonicity and convexity of the
stabilizing solution with respect to y. Furthermore, based on the above properties of the
stabilizing solution of the H.,, ARE, we study the behavior of the set of all H,, filters
with respect to the change of 4. It turns out that the degree of freedom of the H, filter
decreases at the optimum under a certain condition.

In the second part, the finite-horizon problem for a time-varying system is studied.

Since the H,, norm is the Lg induced norm, the H, filtering algorithm has a certain



minimax properties. In order to understand this aspect of the H, filtering problem, it is
essential to exploit the game theoretic approach in the time-domain. It is shown that the
solutions to the minimax filtering and prediction problems are identical to the central H,
filter and the H, one-step predictor, respectively. The worst-case disturbance maximizing
the énergy in the estimation error is also derived.

By using the Riccati difference eciua.tions (RDEs), we compare the performances of
the H,, and Kalman filters in the case where the disturbances are zero mean Gaussian
white noises. The relation between the prescribed H, error bound « and the estimation
performance of the central Ho, filter is éxamined based on the monotonicity of the Ho,
RDE. For time-invariant systems, the connection between the finite and infinite horizon
H,, filtering problems' is made clear by showing the convergence of the solution of H,
RDE. We also derive a solution to the Hy, fixed-lag smoothing problem based on the
result on the He filtering problem.

Finally, we discuss the existence of a saddle point solution to the stochastic minimax
filtering and prediction problems. It turns out that the minimizer’s saddle point policies are
identical to the central H, filter and the H, predictor. These results provide alternative
interpretations of these H, state estimators and a justification of the application of the

H,, state estimators to the stochastic system with unknown disturbance statistics.
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Notations and Definitions

* o= 9

()
(-)
(+)
-l

lzllq
E{-}
Tr( - )
Amax( ' )
)\min( : )
diag[. . ]
Im( - )
Ker( - )
I,
N{m, R)
R

Rﬂ
Rmxn
C

Transpose of a matrix

Complex conjugate transpose of a matrix

Moor-Penrose pseudo-inverse

Norm of a vector and matrix

( Euclidean norm for a vector, the largest singular value for a matrix)
= (zTQx)1/?

Expectational operation

Trace of a square matrix

The largest eigenvalue

The smallest eigenvalue

Block diagonal matrix formed from the arguments

Image or range space of a matrix

Kernel or null space of a matrix

The n x n identity matrix. The subscript may be omitted when it is irrelevant.
Gaussian distribution with mean m and covariance R

The set of all real numbers

- The set of all n-dimensional real vectors

The set of all m x n real matrices

The set of all complex numbers

The set of all n-dimensional complex vectors

The set of all m X n complex matrices

The shift operator

The set of all proper stable transfer matrices

The set of all proper real rational transfer matrices which have no poles on
the unit circle

The set of all proper stable real rational transfer matrices

The set of all unimodular transfer matrices

The set of all transfer matrices in RH,, whose Hy, norms are less than «.
The set of all transfer matrices in RH,, whose H,, norms are less than or
equal to 7.

The set of all m X n transfer matrices in the function space X

The set of all square summable functions

The set of all signals which are square summable over the interval [0, N]

The parahermitian conjugate of G{¢), namely GT(c™1)

diag[J, —v2I,] for a given constant y > 0



A transfer matrix in the state-space data is-written as

[il—B—] —CleI-A)'B+D
Tl | T A T

The L and Ly[0, V] norms of a function zj _a_.rlr‘e‘ respectwelydeﬁned by .

UV RN JPS /20, oo e, o2
lzll2 = (Z zfzk) and |z||2 = (kz $E$k)
k=0 =0

The Hy norm of a transfer matrix. G(c) is deﬁne;i by . 1

ot = (g [/, mio* e as)

The Lo and Hiy norms e et by
IGlleo = sup ]|G(er)||
‘WeR T
Acronyms

" ARE AlgeBraic Riccati Equation
RDE Riccati Difference Equation”



Chapter 1

Introduction

1. Kalman Filter and Minimax Filters

The filtering problem involves estimating the states of a system using the past noisy
measurements. Since the publication of the fundamental papers by R. E. Kalman [24],[25),
Kalman filtering theory based on the least-squares (Hy-optimal) error criterion has been
deeply entrenched in the control and signal processing theories and their applications for
more than three decades (see, for example, [26],[41]). When the noise disturbances are
white noise prccesses and their spectral densities are exactly known, Kalman filter offers
the optimal state estimation algorithm in the least-squares and minimum-variance senses
that |le]l2 and E{}|ex]|*} are minimized, where e), denotes the estimation error. However,
it is difficult to know the exact stochastic properties of the disturbances a priori. In this
case, the state estimates based on the least-équares criterion may be degraded by the
uncertainty of the disturbance statistics.

To cope with this difficulty, a number of researches on the robust filtering have been
reported. One of the major approaches to the robust filtering under uncertain distur-
bance statistics is the minimax filtering based on the game theory. ‘Mintz (33] and Krener
[30] showed that the Kalman filter has the minimax property for the following pointwise

optimization problem:

N
max {”3N||2 -3 “dk"2}
k=0

min
filter dyeL, {0,N]

where d). denotes the disturbance and % is the time step. Moreover, this minimax state



estimation problem has been recently reconsidered by Basar in the prediction and smooth-
ing cases (2]. As a different minimax approach to the design of a robust Kalman filter,
Poor and Looze considered the minimax problem where the disturbances are known to be
white noises, while their covariances are unknown and belong to certain compact convex
sets [37].

This thesis addresses a new minimax approach to the robust filtering problem based

on the H, error criterion which has received great interest in the robust control theory.

2. H. Error Criterion

In the last several years, the Hy, control theory has brought a remarkable breakthrough
in the field of robust control. The interested readers should refer to the text books such
as [11], {17] and [42]. The two Riccati formula for the state-space solution to the standard
H,, control problem was first derived by Doyle et al. [8], and thereafter many techniques
for solving this problem were reported in the literature (see e.g. [15],[28},(42]).

This thesis addresses a new minimax filtering problem based on H, error criterion.
That is, we employ the Ho, norm of the error dynamics as a measure of the estimation
errors. Since the Ho norm is the Ly induced norm, i.e. the maximum energy in the
output signal over all possible exogenous input trajectories, the filtering algorithm based
on the H, criterion possesses a minimax property. Thus, H, criterion is valid in the
case where there exists a significant uncertainty in the spectrum density of the exogenous
disturbance [56]. As shown below, the Hc, filtering problem is different from the minimax
problems mentioned in the previous section, because it involves the minimization of the
accumulated estimation error rather than the pointwise minimization of the estimation
errTor.

We here briefly review the minimax aspect of the Hy, filtering problem. We consider
the linear time-invariant case for simplicity. Let Tpy{c) be the transfer matrix from the
disturbance di to the estimation error e;. The z-transform of e is then given by e(c) =
Ted(o)d(o). We first assume that dy is an arbitrary deterministic Lo signal. If the filter,

denoted by Tt(c), is designed to stabilize T,4(0), ek is also an Ly signal. By Parseval’s



theorem, we see that

1 x . . R .
llell3 = o | d () TH (/) Toa(e/) d(e™) dw
< o= [ dM A sl P
1 7 e
S5 _Wd“(e’ V(e W Tedl| % dww = | Teall> || lI3

Hence, the H, filtering problem of designing a filter T;(o) sat.isfying‘ | Teallc < v for a
given v > 0 has the following minimax property.

sup ([lell3 —~+?ldl13) < 0
€L,

Tystabiaimg Te 4

Let P denote the set of all seéond-order stationary processes. Suppose that the distur-
bance dj. belongs to P. Then, the estimation error e, also belongs to P if Teq(o) € RHo.
The auto-correlation matrix of di is defined by R4(r} = E{di+-dl}. The Fourier trans-
formation of Rq(r), denoted by Sq(w), is called the power spectral density matrix of d,

narnely,

Sq(w) = Z Ry(r)e ™

T=—00
Similarly, we define S, (w) as the power spectral density matrix of eg. It is easy to verify

that

Se(w) = Ted(eju)Sd(w)Te}ji(eju)

We thus obtain _
TrS,(w) < || Tea(e)?TrSu(w) < ||TedliZeTrSa(w)

We also easily see by the inverse Fourler transform that

1

T =
B{didy} = =

x 1 T
TeSg(w)dw, Bleper} =g [ TrSe(w)dw
- -7

Therefore, the H,, filtering problem has a minimax property for the stochastic noise

disturbances, too.

oatiine s &8, [B{lexl®) - 7 E{1de?}] < 0



3. H_ Filtering Problem

The H, filtering problem was first addressed based on the polynomial approach for
a discrete-time system [18]. This approach employs Kawakernaak’s technique [31] which
translates the H, optimization problem to a certain Ly optimization ?roblem. The poly-
nomial approach was also applied to the fixed-lag smoothing problem [19].

A state-space approach to the Ho, filtering problem was first studied for the continuous-
time case [3]. As well known, the bounded real lemma (BRL) is one of the important tools
for solving H, optimization problems in the state-space setting. Based on the BRL and
Lagrange multiplier technique, Bernstein et al. (3] considered the problem of minimizing
the upper bound on the Ly norm of the estimation error while maintaining the He, norm
bound. Shaked [39] also provided a state-space solution for a linear staticnary process
based on the duality between estimation and control. Nagpal and Khargonekar [36] em-
ployed a time domain approach based on the game theofetic LQ optimization technique
in order to derive necessary and sufficient conditions for the existence of solutions to both
finite and infinite horizon Hy, filtering problems. They also provided a solution to the
H,, fixed-interval smoothing problem, and showed that the H,, smoother is optimal in
the Mo sense {36]. Yaesh and Shaked [51],[54] gave another game theoretic interpretations
of the H, filter. Recently, the mixed Hy/H, filtering problem was solved using a convex
optimization technique by Khargonekar and Rotea [27]. Moreover, for the finite-horizon
problems, Uchida and Fujita [47] showed that the central H,, filter and H,, smoother
minimize the exponential quadratic cost. It may be noted that a parametrization of all
H, filters is given as a solution to the special case of the standard H,, control problem [8].
However, this result cannot be directly applied to unstable systems because the control
problem requires the internal stability of the closed-loop system, which cannot be satis-
fied in the filtering problem for unstable systems. Takaba and Katayama [46] provided a
parametrization of alll H ﬁltérs based on the Nehari-type model matching technique.

The results for the discrete-time case in the state-space setting almost parallel the
continuous-time case. The mixed Hp/H,, one-step prediction problem was solved by

Haddad et al. [20]. The BRL was also applied to the H,, filtering and H,, one-step pre-



diction problems by Yaesh and Shaked [52]. Moreover, Yaesh and Shaked [55] provided a
game theoretic interpretation of the H,, one-step predictor, which is discrete-time coun-
terpart of the result of [54]. However, the above works assumed that the state estimator
has a so-called ‘full-order observer’ structure. Thus, a complete parametrization of all
H, filters has not been given. Moreover, unlike the continuous-time case, two full-order
observer structures, namely, a filter and a one-step predictor, are possible in the discrete-
time case. Thus, the solutions to the filtering and prediction problems were derived from
the different problem formulations. For the finite-horizon case, Fujita et al. [12] recently
derived a necessary and sufficient condition for the existence of an H,, filter based oﬁ
the completing the équares and conjugate point arguments without assuming the observer
structure. They also demonstrated the superiority of the H, filter to the Kalman filter

in a visual tracking system.

4, OQOverview of the Thesis

This thesis mainly consists of two parts. In Chapters 2-4, we study the Hy, filtering
problem for time-invariant systems in the frequency-domain setting. Chapters 5-7 are
concerned with the finite time horizon Heo filtering problem for time varying systems.

Chapter 2: The H,, optimization problem is originally formulated in the frequency
domain, which should be solved by the (J, J')-spectral factorization or Nevanlinna-Pick
interpolation techniques. Therefore, Chapter 2 is first dedicated to providing a solution
to the infinite-time horizon H, filtering problem for time-invariant systems. As stated in
the previous section, a complete parametrization of all H filters has not been derived
for the infinite-horizon case in the previous works. Thus, .we will derive a solvability
condition and provide a complete parametrization of all solutions of the Hy, filtering
problem based on the model matching approach and (J, J')-spectral factorization. The
resulting solufion is given in terms of a positive semi-definite solution to a certain indefinite
algebraic Riccati equation (ARE), which is called ‘an H algebraic Riccati equation’.
The structure of the H, lﬁltering problem is also shown by using the cha;in scattering

representation. Furthermore, the H,, prediction problem is solved by making use of the



results in the filtering problem.

Chapter 3: This chapter considers the H, filtering problem with frequency con-
straints on the unit circle of the complex plane. If the system is subject to step or periodic
disturbances, the state estimates may be degraded due to the biases or periodic fluctua-
tions. In order to remove these undesirable effects, we impose boundary constraints such
that the transfer functions from the step or periodic disturbances to the estimation error
" must be zero at certain frequency points on the unit circle. Based on the Nevanlinna-Pick
interpolation technique, we develop a method for adjusting the free parameter of the Ho
filter derived in the previous chapter so that the boundary constraints are satisfied. A
numerical example is also given in order to demonstrate the applicability of the proposed
design method.

Chapter 4: Since the state-space solution to the Hy filtering problem is expressed
by the positive semi-definite stabilizing solution of the H, ARE, the performance of the
H,, filter depends on the stabilizing solution. Therefore, the analyses of the Ho ARE
are very important. In this chapter, we study some properties of the Hoo ARE and the
analysis of the H, filter. We first derive the infimum of -y, for which a stabilizing solution
to the Ho, ARE exists, and show that the positive semi-definite stabilizing solution has
the monotonicity and convexity properties with respect to -y.

Multi-objective filter design problems including Ha/H filtering problem aim at achiev-
ing an additional design specification by using the free parameter contained in the H,,
filter. Since the set of the free parameter is characterized by the stabilizing solution to the
H., ARE, we study the behavior of this set when -y changes based on the above properties
of the Ho, ARE. Such analyses of the H, filter will provide a guideline for desigﬁing an
H,, filter. ' '

Chapter 5: This chapter considers the finite-time horizon minimax state estimation
problemé closely related to the Ho, state estimation problems. As shown in Section 1.1,
the H, ﬁlteriﬁg problem has a certain minimax property. However, the frequency domain
apﬁrodch proposed in the previous chapters does not directly provide this property since

it merely minimizes the largest singular value of a certain transfer matrix. In order to



understand the minimax property of the Hy, filtering problem, it is essential to exploit
the game theoretic approach in the time domain. Based on the Lagrange multiplier tech-
nique, we show that the minimax state estimators are identical to the H,, estimators in
both filtering and prediction cases. Furthermore, necessary and sufficient conditions for
the existence of the minimax state estimators are given in terms of an H-type Riccati
difference equation (RDE) satisfying the positive definiteness of certain matrices.

Chapter 8: As shown in Section 1.3, a number of methods for solving the He,
filtering problems including mixed Hy/H,, problems have been reported. However, the
analysis of the estimation performance of the H,, filter has received much less attention.
Thus, in this chapter, we will investigate the performance of the central H,, filter by using
RDEs. First, by comparing the H, and Hs (Kalman filtering) RDEs, we first consider the
estimation performance in the case when the underlying disturbance is zero mean white
noise. Next, we clarify the relationship between the prescribed Ho, error bound and the
performance of the central H, filter based on the monotonicity of the Ho, RDE. Also, for
the convergence of the solution of the H,, RDE, we provide a sufficient condition, which
connects the finite and infinite horizon H, filtering problems. We also provide a solution
of the H, fixed-lag smoothing problem by reducing the problem to a usual H,, filtering
preblem.

Chapter 7: In this chapter, we will provide an alternative game theoretic interpreta-
tions of the central H,, filter and predictor. It may be noted that we have derived solutions
to the minimax state estimation problems in the deterministic framework in Chapter 5.
We will consider an alternative minimax state estimation problems in the stochastic set-
ting, which are discrete-time equivalences to the problem discussed in [54]. It is shown
that the H,, filter and predictor are generated by the minimizer's saddle-point policies
to certain stochastic minimax filtering and prediction problems, respectively. Thus, the
results of this chapter justify the application of the H, state estimators to the stochastic
systems.

Chapter 8: This chapter summarizes the results obtained in this thesis, and discuss

the direction of the future research.



Chapter 2

A Model Matching Approaéh to
H Filtering Problem

1. Introduction

This chapter considers the state-space solution to the Ho, filtering problem for linear
time-invariant systems. As shown in Chapter 1, the discrete-time ¥, filtering problem
has been considered from various points of view [52],[53],[55]. In these works, however,
a complete parametrization of all discrete-time Hy, filters was not given. Thus, in this
chapter, we will derive a complete parametrization of all H,, filters based on the model
matching approach. The model matching approach to robust state estimation was first
formulated in [9] using a parametrization of stable unbiased filters, though a complete
solution was not given. We first reduce the H, filtering problem to a model matching
problem (MMP) using the parametrization of all stable unbiased filters [14]. The MMP has
been exténsively studied by many researchers [11],[15],[28]. We give a state-space solution
to the MMP based on the (J, J')-spectral factorization approach[15]. The present approach
gives a straightforward proof in the pure frequency domain and a clear understanding of
the structure of the H, filtering problem even though the process disturbance and the
measurement noise are correlated. It may be also noted that the results in this chapter
are the discrete-time counterpart of those in [46].

Furthermore, the solution to the H, prediction problem is given as a special case of



the H, filtering problem, whereas the problem was solved in a different setting from the
H,, filtering problem in the previous works [52],(53]. The present approach provides a

unified solution to the He, filtering and prediction problems.

2. Problem Formulation

We consider a linear discrete-time system described by

Ti41 = Az + Bdy (2.2.1)

yr = Czi + Dd. (2.2.2)

where z € R™,yr € R? and d;, € R™ are the state vector, the measurement and the
unknown disturbance, respectively. We also assume that dj is an arbitrary Lo signal. Let

2 € R? be the linear combination of the state variables given by
zp =Lz, L#0 (2.2.3)

The matrices A, B, C, D and L are constant matrices of appropriate dimensions.

The following standard conditions are assumed to hold.

(A1) (C,A) is detectable.
A-e*I, B

A2) rank
(A2) ra c D

=n+gq, WER

We wish to estimate z; based on the measurement set {y;| ¢ < k} under the above
assumptions. Let 3 be the estimate of z; and T;(0) be the transfer matrix of the filter,

namely,
z= T[(O‘)'y (2.2.4)

We also define the filtered estimation error by ex = z; — Zr. Then, we see from (2.2.1)-

(2.2.4) that
e=z— 2= {Tw(o) — Tt(0)Tya(o)}d (2.2.5)

where the transfer matrices from dj to z; and y; are given by

A|B Al B
Tzd(‘r) = [‘L—l'T:l ) Tyd(a) = [F‘?

9

(2.2.6)




Hence the transfer matrix from dy to e is given by
Ted(o) = Tz4(0) — Ti(0)Tyalo) (2.2.7)

We consider the following design specifications.

(81) Ti(o) € RH
(S2) T.lo) € RHE™
(83) For a given scalar constant ¢ > 0,
(1) | Tedlloo <7, () I Tedlloo <y
We also define the following sets of the H,, filters.
A(vy): the set of all Tt(o) satisfying (S1), (S2) and (S3-i}
A(y): the set of all Ty(o) satisfying (S1), (S2) and (S3-ii)

The Ho filtering problem is now stated as follows:

(a) Find a necessary and sufficient condition for A(y) # ¢.
(b) If A(y) is not empty, parametrize all elements of A(y) and A(y).

3. Preliminaries

In this section, we give some preliminary results on the (J, J')-spectral factorization,

model matching problem and a (J, J')-lossless matrix. These results are useful for solving

A|B
C|D

the (J, J')-spectral factorization is the problem of finding a unimodular matrix II{o) such

H,, filtering problem.

}

Given real symmetric matrices J, J' and a p X m transfer matrix G(o) =

that
G(0)JG~ (o) = II(0) '™ ()

If such a matrix II(o) exists, it is called a (J, J)-spectral factor. The following two lemmas

are related to the state-space computation of (J,J' )-spectral factorization.

Lemma 2.1: Given real symmetric matrices J € R™*™, J' € RP*P and a p X m transfer

A|B
C|D.

matrix G(o) = with A stable, there exists a unimodular matrix O(o) € GHEXP

such that
G(a)IG™ (o) = H(a)J‘fIIN(:U)

10



if and only if

(i) The following ARE has a unique stabilizing solution X .
X =AXAT - (4XCT + BIDY)V Y 4axCT + B/DTT + BJBT  (23.1)

where V = DJDT - CXCT.

(ii) There exists a nonsingular constant matrix W € RP*?P satisfying
wWJIwT =v (2.3.2)

Then, such a transfer matrix Il(o) is given by

Al K
{o) = w (2.3.3)
ClI
K=(AXxCT+ BJDT)V! (2.3.4)
Proof: See Appendix 2.1. | |
. :  matri Vie Vi (HBX(a+D) e
Lemma 2.2: For a given real symmetric matrix V = € R\ITPIXTP) | we

Vo Vao
assume that Vi1 > 0 holds. Then a necessary and sufficient condition for the existence of

a nonsingular matrix W € R{+P)X(a+P) satisfying WJ,,WT =V is that

Vo Vi1l Vol — Va2 > 0
"~ Proof: See Appendix 2.2. | | |
The following corollary is well known as the bounded real lemma.

Corollary 2.1: (Bounded Real Lemma)

A|B
For a given p X m transfer matrix T'(o) = oD }, suppose that (A, B) is stabilizable

and (C, A) is detectable. Then, the following conditions are equivalent.
(i) The matrix A is stable and ||T||ec < 7-

(i) There exists a positive semi-definite stabilizing solution of the ARE
X =AXAT+ (AxCT + BDT)WV-1(4XCT + BDT)T + BBT (2.3.5)
with V := %I, — DDT — CXCT > 0.

11



Proof:  Although the lemma is proved in [6] and [52], we give another proof based
on the (J,J')-spectral factorization. Assume that A is stable and ||T|l.c < 7. Then
there exists a unimodular matrix T, (o) satisfying 72Ip —TT~ =T,T,. Thus, by taking
J = ’YZIP ?’ , J' =1, and G{o) = (I, T(0)] in Lemma 2.1, we see that the ARE
(2.3.5) has a stal?ilizing solution X with V > 0. Moreover, since A is stable, X is positive
semi-definite by Lyapunov’s theorem.

Conversely, if X > 0 is a stabilizing solution of the ARE (2.3.5) with V >0, then A is

stable by Lyapunov’s theorem. Moreover, it follows from Lemma 2.1 that there exists a

matrix T,(¢) € GHEXP satisfying v2I, — TT™~ = T,T5". This implies that ||Tfloo <. W

The next lemma gives a connection between a model matching problem and the (J, J')-

spectral factorization.

Lemma 2.3: For given T1(0) € RLES™ and Tp(0) € RLL™, suppose that G(o) =

0 has a right inverse in RL{MP)X(+P) | Then the following are equivalent.

(i) There exists 2 Q(c) € RHEX? satisfying |T1 — QTo||le0 < 7-
I I

ii) There exists a unimodular matrix II(c) = 12 e GHEFPXHP) such that
oy IIog =

G(0)JmpG™ (o) = (o) JgpIl™ (o), (o) € GHLY?

Proof: The proof is immediate from Theorem 2.4 of [15]. | |

The notion of a (J, J')-lossless matrix is very important for deriving the parametriza-

tion of H, filters.

Definition 2.1: Given symmetric matrices J € R™*™, J' € RP*P, a transfer matrix

©(0) € Ri&‘m i.s called (J, J');Iossless if it satisfies

0(c)JO~(0) =J' VYo e C

©(0)J0%(c) < J' Vo st o] 21 -

A remarkable property of a (J, J')-lossless matrix is shown in the following lemma.

12
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Lemma 2.4: Suppose that ©(o) =
O O

] € RLGPIX0RHP) js ([, Jon)-lossless,
and define
B(o) = (UB12 + O22) 1 (UO1: + Oyy)
Then we have
(i) ®(0) € BHES™ if and only if U(o) € BHEY.
(i) ®(0) € BHE*™ if and only if U(c) € BHEX.

Proof: For the proof, see the reference [7). ]

4. Solution via (J, J')-Spectral Factorization

In this section, we will give a solution of the H, filtering problem based on the (J, J')-
spectral factorization approach. Since Tyq(co) and T:4(¢) may not be stable in general,
we first need to characterize the class of all filters satisfying (S1) and (S2). This is the

filtering equivalent of the class of internally stabilizing controllers [11]. -

Lemma 2.5: The set of all filters satisfying (S1} and (S2) is given by

Ti(o) = Ta () — Q(0)Tin(o) (2.4.1)
RPTIE: N

where Q(o) is an arbitrary transfer matrix in RHEX9, and where H € R"*? is a matrix

such that Ay := A — HC is stable.

Proof: See Appendix 2.3. n

The filter T;(o) is strictly proper if and only if Q(c) is strictly proper. If Ti(o) is strictly
proper, then it does not use the measurement ;. for the estimation at time k, namely (o)
is a predictor. Therefore, the above parametrization includes both filters and predictors.

We assume that T{(o) is expressed by (2.4.1) and (2.4.2). Then, substituting (2.4.1)
into (2.2.7) yields

13



Tea(0) = Ti(0) — Q(o)Ta(0) (2.4.3)

Ay | By Ag | By
T = 3 T g) = 2.4.4
1(o) [ 1 o } 2(0) [ =T D (2.4.4)
where By = B — HD. It thus remains to find a matrix Q(c) € RHE}? such that
171 - QT2lleo <y : - (2.4.5)

It may be noted that T,q4(c) is affine with respect to Q(o), and that T1(c) and T»(o)
are stable. Thus, the H, filtering problem reduces to a usual model matching problem

(MMP) to which Lemma 2.3 is applicable.

Theorem 2.1: The set A7) is non-empty if and only if
(2) The algebraic Riccati equation

P = APAT — (APET + BV 1(APET + §)T + BBT (2.4.6)

has a unique positive semi-definite stabilizing solution P, where

Vi, Vit -~ ~ ~ -~
v=|_ " 2| =pJ,, DT +EPCT
| Vo Voo
[ R+cPCT  CPLT
- h \ . (2.4.7)
| LPCT  —(42I,- LPLT)
. [ec] = [p o] %
C= , D= , S=| BDT 2.4.8
L] [o —Ip] [ 0% o] @48
(b} For such a solution P, the following inequality holds.

Vi=VyV3ilVe — Ve >0 | (2.4.9)

Proof: _
(i) Reduction to a (Jmp, Jop)- spectral factorization problem: We have only to consider

the existenqe of a matrix Q(o) € RHE? satisfying (2.4.5). We define

N . Ay |Bg 0. ‘
G(o) = [?EJ; OI ] D o - (2.4.10).
1\ —ip ' ‘
0 I




where By = [ By 0 ] . Under the assumptions (A1) and (A2), G{o) has a right inverse
in RL{PtP)*(@+P) Thus, we see from Lemma 2.3 that A(y) # ¢ holds if and only if there

I; I
exists a unimodular matrix [I{g) = o2 e GHP)*(a+P) gatisfying
O21 oo :
G(0)JmpG~(0) = (o) J3pI1™ (o) . (2.4.11)

with II;;(c) € GHI}Y,
(ii) Derivation of the ARE (2.4.6): From Lemma 2.1, there exists a unimodular matrix

II{o) satisfying (2.4.11) if and only if there exists a unique stabilizing solution P of the
ARE

P=ApgPAY — (AgPCT + By J.p,DT)

xV Y AgPCT + ByJmpDT)T 4 By Jinp B (2.4.12)
and there exists a nonsingular matrix W € R(@+P)%(¢+P) gatisfying
WIpWT=Vv (2.4.13)
It is obvious from (2.4.7) that
[R+cpPc™ cpr™|vi=(1, 0] (2.4.14)

Hence, we easily see that (2.4.12) is equivalent to (2.4.6). Furthermore, we define

Ky = (AgPET + By Jpp, DTV (2.4.15)
K =(APCT + §)v—! (2.4.16)
Ak =A-KC (2.4.17)

Then, from (2.4.14), we obtain Ky = K — H{I, 0], and thus Ax = Ay — K€ holds. It
follows that Ag is stable since P is a stabilizing solution of (2.4.12). This implies that P
is also a stabilizing solution of the ARE (2.4.6).

(iii) Inequality (2.4.9) and the positive semi-definiteness of P: We hereafter assume that
the ARE (2.4.6) has a unique stabilizing solution P. |
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If there exists a matrix W € R(TP)X{¢+P) satisfying (2.4.13), then, from Lemma 2.3,

the (Jmp, Jqp)-spectral factor satisfying (2.4.11) is given by

4 K Ag | KyW, KW,
(o) = é{ 7 < :, W= C Whn Wia (2.4.18)
o L | Wy Waa

where W € R{g+P)x(a+P) j5 appropriately partitioned as
Wi W W, Wiz
W n Wi | g, = 12
Wor Wa Wa | Way
If 117} (o) € RHZY holds, Wy is invertible and

Aw |—KgWi |
wnlc| I ]W”

0 (e) = (2.4.19)

where Ao 1= Ay — KgW1W;3'C. Since this realization is stabilizable and detectable, A
is stable. It is also easy to verify from (2.4.14) that A, = A — KWlwl_llc. Moreover,

(2.4.6) is expressed as
P=APAL + NoNE (2.4.20)

where

Neo= [ B—KWiW'D 7K(Wa~ WiWi Wia) |
Since the second term in the right hand side of (2.4.20) is positive semi-definite and since
A is stable, P > 0 holds. Also, since G(o) is invertible in RL,,, V must be nonsingular.
Together with P > 0, this implies Vi; = R+ CPCT > 0. It thus follows from Lemma 2.2
that V = Vo Vi7 Vol — Vao > 0.

Co.n'versely, we assume that the conditions (a),(b) hold. Then, from (2.4.7), we get
.V11 = R+CPCT > 0. Hence, from Lemma 2.2, there exists a nonsingular W € R{@+p)x(¢+p)
satisfying (2.4.13). Moreover, there exists a unimodular matrix II(c) € RH{IHP)X(a+7) gat
isfying (2.4.11) and it is given By (2.4.1;8). Also, since WiuWg = Vii+v° Wi Wih > 0 holds
from V11 > 0 and (2.4.7), W7, is invertible. Thus, we can express (2.4.6) as (2.4.20). Since
- Ak is stable, (A, K) is stabilizable. This implies that the pair (4co, Noo) is also stabiliz-
able [49]. It thus follows from Lyapunov’s theorem that A, is stable, so I} (¢) € RHLY
holds. Therefore, from Lemma 2.3, the MMP (2.4.5) is solvable. X |
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Next we give a parametrization of all H, filters T;{o).

Theorem 2.2: Suppose that the set A(vy) is not empty. Then the parametrization of
all Ty(o) € A7) (resp. Ti(c) € A{7)) is given by

Tr(o) = —(UShg — Qa2) "1 (UQ — Q) , (2.4.21)
Ak | -Ki -K;
Q Q
Qoy=| " " l=wt e[, o (2.4.22)
Q21 QO
L{o I

where U(c) is an arbitrary transfer matrix in BHPX? (resp. BHEXY), and where K =

[K1 Kq] € R"*(@+P) Ap and W are defined by (2.4.16), (2.4.17) and (2.4.13), respectively.

Proof: We define

O(0) = O11(¢) ©12(0)
@21(0) ©O2(o)

Ak |B-K:D Ko
=W ¢ D 0 (2.4.23)

L 0 -

} = TI"Yo)G(o)

Since G(0)JmpG™(0) = I1(0)JgpI1~ () holds, we get
O(0)Imp@~(0) = Jyp
Some simple calculations yield

Jop — 0(0)Jmp©t (a)

(2 Ak |1

H
I,
AKA ] >0 Vost |o]>1
w-iC | o

Thus G(o) has the (Jmp, Jgp)-lossless factorization G(c) = II(0)O{0) with a (Jmp, Jgp)-
lossless matrix ©(c¢) and a unimodular matrix I (¢) . Let Xj{c) € RHIX? and X5(0) €
RHPX? be defined by

[ X1(0) Xalo) | =[-Q@) L]Oe) (2.4:24)
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Then we get
[ Tae) -1, | =] ~Q0) I, |Glo)

[ -Q() I, | I(=)6(0) |
= [ Xi(0) Xa(o) | 6(c) ‘ (2.4.25)

Hence T.q(o) is expressed as

Ted(0) = —{(~U)O12 + O22} " {(-U)O11 + Oz}
= —(UO12 — O22) ' (UO11 — O21) - (2.4.268)

where U (27) := —X;(0)X1(0). Since ©(c) is (Jmp, Jqp-)—lbssless,‘ it follows from Lemma
2.4 that Teg(o) € BHEX™ if and only if U(o) € BHIXP (resp. Tea(o) € BHEX™ iff
U(o) € BHIXP). Furthermore, from (2.4.24), we see that

—Q(0) = Xalli1 + Xy (2.4.27)
Ip = Xlﬁlz + Xgﬁgg . (2.4.28)
-1 : o, —1 1‘}Ill ﬁ12
where 17" (o) is partitioned as I~ (o) = | i 2 . Hence we get
: HMp; My |. |
Qo) = —(Ufiz - ]’:‘[22)_1 (Uﬁu —1la1) : (2.4.29)

Substituting this into (2.4.1) yields

Tt (o) = —(Ulljp — Tpe)~? {U (ﬁl2Tﬂ + ﬁquz) - (ﬁzzTn + ﬁlem)}

Therefore, we obtain the parametrization of (2.4.21)-(2.4.22) by defining Q(0) as

Qo) = Q1 Qe | I 1o —Tp O
(@)= | _ =1 = ~ oy
21 Qoo Ilo; a2 -Tn Ip
AK|—K1 —~Ks
=w*|lcl| 1 o0
Lo I
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Remark 2.1: It may be noted from Theorems 2.1 and 2.2 that the solution of the H,
filtering problem is independent of the constant matrix H which is introduced in Lemma
2.5.

Remark 2.2: Tt is easily seen from the proof of Lemma 2.2 that if the H, filtering
problem is solvable, we can take W2 = 0 as in (A.2.26) without loss of generality. Then,
(o) of Theorem 2.2 is given by

Ak | - K) — K>
Qo) = | wglc wit 0 (2.4.30)
I | -Wa'WaWit Wi

where L' = W' (L — W1 W12C). In this case, by taking U (o) = 0, we obtain

A-KuC| K
Ti(0) = =5 (0)Q0 (o) = o d 2.4.31
1(o) 22 (0)Q21(0) [L-MwOlMoo] ( )
It is easy to verify that
Koo = KW1Wt = (APCT + BDT)(R+CPCT)™! (2.4.32)
My = W Wyt = LPCT(R+CPCT)™? (2.4.33)

Hereafter, we refer to this H,, filter as the central H, filter or the central solution of
the Hy, filtering problem. It may be noted that, when v tends to infinity, the H, ARE
(2.4.6) reduces to the Kalman filtering type (Ha-type) ARE, and hence the central Hy,
filter reduces to the Kalman (Hy-optimal) filter.

5. Structure of H, Filtering Problem

In this section, we will study the structure of the Hy filtering problem using the chain
scattering representation[29].

‘We consider a system described as

by
u2 | _ 11 212 Uy (2.5.1)
Y2 o1 a2 Y1

where (up,y2) and (u2,v1) are the inputs and outputs of the system, respectively. The

S I . . , :
transfer matrix L(o) = 211 212 is called “a chain scattering matrix”. This system
21 22

can be illustrated as in Fig. 2.1.
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U9 : U1

B s je——r
| Y |

Y2 : u

r— v

Fig. 2.1: Chain scaftering representation

Using the chain scattering matrices £1{o) and o(o), the input-output relationship of
the cascade connection of two systems in Fig. 2.2 (a) is given by
'u3 ‘ ) ug . U

= To(0) = Tp(0)T1(0) | - (25.2)

3 Y2 n ' ’

This implies that the cascade connection of systems can be represented by using the

product of the chain scattering matrices of each system (Fig. 2.2 (b))..

ug  ug ug

Y3 b2

(a)

ug U1
Y3 2221 Y1

LW

Fig. 2.2: Cascade cpﬂnection of chain’ séattéring matrices
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We next consider a closed-loop system shown in Fig. 2.3. The input-output relation-

ship of this system is described by

&(o) = —(QZy; — 221)—1(Q212 — To2) ' (2.5.3)

As shown in Lemma 2.4, if £(0) € RL{EAXm4p) jg (Jmp, Jgp)-lossless, then a necessary

and sufficient condition for ®(o) € BHEX™ is (o) € BHEX?,

] — In
Q >
— e &

Fig. 2.3: Chain scattering representation of a closed-loop system

Based on the above properf,ies of the chain scattering representation, the structure of
the He filtering problem is illustrated in Fig. 2.4, where L;ys(0) and E¢(0) are the chain
_sca.ttering matrices associated with the system (2.2.1)—(2.2.3) and the filter (2.4.1),(2.4.2),
respectively. |

Esys(a') =

Tzd(a) —Ip —Tu(o) Ip

Tyalo) 0 } Ze(o) =

—Tp(c) O :|

Note that £2{o) is independent of the matrix H in Lemma 2.5 because of the pole-zero
cancellation between II"(0) and T¢(o). If the H, filtering problem is solvable, then
Beys(0) has a (Jmp, Jop)-lossless coprime factorization sy = 2710 with Q{o) and (o)
defined by (2.4.22) and (2.4.23). Conversely, suppose that Zgys(c) has a (Jmp, Jop)-lossless
coprime factorization Ly, = Q10 without assum.ing.any pa.rtiéula.r realizations of (o)
and ©(c¢). Then, from Fig. 2.4) and Lemma 2.4, an H, filter in A(y) is given by (2.4.21)

with U(¢) € BH. In summary, we have the following theorem.
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Fig. 2.4: Structure of H,, filtering problem

Theorem 2.3: The set A(y) is non-empty if and only if Leys(o) has a (Jmp, Jgp)-lossless
coprime factorization of Tsys = Q710, where ©(c) € RHE,%+")"(”‘+”) 18 (Jimp, Jqp)-lossless

and Q(o) € RH{gPIx(9+p),

6. Solution of H, Prediction Problem

From the discussion in Section 4, we see that the key properties of Hy, filters lie in
the biproper H, filter of (2.4.31)—(2.4.33) which utilizes {y| t < k} for the estimation at
time k. Therefore, even if the H, filtering problem is solvable, there may not exist an
H,, predictor (strictly proper T7(o)) which uses {y;] ¢ < k— 1} rather than {y| { < k}. In
this section, we consider the H, prediction problem as a special case of the Hy, filtering

problem.

Theorem 2.4: Suppose that A(y) # ¢ holds. Then, a necessary and sufficient condition
for the existence of an He, predictor satisfying (S1)—(S3) is that Vaa < 0 holds for the
positive semi-definite stabilizing solution of the ARE (2.4.6).

Proof:  Necessity: Suppose that there exists an Heo predictor Ti(o) satisfying (S1)-
(S3). By (2.4.21), U3 — §291 must be strictly proper for such a T:(c). We now assume
Wi2 = 0 without loss of generality, so that Q(c) is given by (2.4.30). Moreover, let the
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Ay | B
realization of U (o) be given by U(o) = vizv , so that
Cy | Dy
Ay Bywjlc ByWg!
U(O’)Qll(a) - le(a) = 0 AK "Kl

Cy DyW3'C - L' | (Dy + Wa Wa)Wr!
Thus we obtain Dy = —W2_21W21.

Since ||U|lco < 7 holds from Theorem 2.2, we get
v2I, — DyDf = 3L, - Wl W WE W5l = —Wap! VaaWsy! > 0
Therefore, Vos < 0 holds.
Sufficiency : Suppose that Voo < 0 holds. Then,

W = [ (Vi1 = VoV V)2 —y 1Vl (= Vi) 7172 ]

26.1
0 T (V)2 .

is nonsingular and satisfies WJqPWT = V. By taking W as in (2.6.1), we get the following

parametrization from Theorem 2.2.

Ti(0) = — (U2 — Qo2) 1 (U1 — Q1) (2.6.2)

Qe Q Ag l_Kl —K»
Q(a)=[9“ 912 } =| ¢ |wg -wilwwg! (2.6.3)
21 22 — —- .
W'l 0 Wyt

where U(c) is an arbitrary transfer matrix in BHZX? and C' = W71C — Wl W Wil L.
Moreover, taking U(c) = 0 yields an Hy, predictor

(2.6.4)

Ti(o) = ~Q5; (0)Qn (o) = [ A- 50 I i ]

L |o
This completes the proof. [
Remark 2.3: It is easy to verify that
K1 = (APCT + BDY)(R + CPCT)!
P=P{U,—-~y2L*LP)™!
Thus, as « tends to infinity, the H, predictor (2.6.4) reduces to Kalman predictor.

23



Remark 2.4: Since V11 > 0 holds, we get
V= Vo V7' Vol — Voo 2 =Vao

Thus we see from Theorems 2.1 and 2.4 that the existence condition of an H. filter is
more relaxed than that of an H,, predictor. This implies that there exists an H, filter

which achieves the smaller Ho, error bound than any H,, predictors.

7. Concluding Remarks

In this chapter, we have given a solvability condition of the H filtering problem
based on the model matching approach using (J, J')-spectral factorization. We have also
derived a complete parametrization of all solutions. Similarly to the Hy control case,
the free parameter of the parametrization can be used for achieving an additional design
specification, e.g. Hy performance, as well as the Ho, error bound. Such multi-objective |
design of an H, filter will be discussed in the following chapters.

Furthermore, we have given a solution to the H,, prediction problem as a special case
of the H, filtering problem. The present approach provides a unified solution to the H,

filtering and prediction problems.

Appendix 2.1: Proof of Lemma 2.1

It may be noted that the continuous-time result is given in [15] and that the proof of
the discrete-time result is given by using the bilinear transformation [16]. We here prove
without using the bilinear transformation.

Sufficiency : We assume that there exist a stabilizing solﬁtion X to the ARE (2.3.1) and
that a nonsingular matrix W satisfying (2.3.2) exists. We define ¥{c) := G(o)JG~ (o)
and let II{c) and K be defined by (2.3.3) and (2.3.4), namely

AlK
C|I } v
K =(AXCT+BIDT)V™!

(o) =
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Since X is a stabilizing solution of the ARE (2.3.1), it is straightforward to show that

A-KC|-K
¢ |y

I Yo)=w!

} € RHEX?

It remains to show that ¥(¢) = (o) J' IV (o).
From (2.3.1), we get

BJBT =oXo™' — AXAT + (4XCT + BIDT)WW1(4xCT + BJDT)T
= (oI, — A)X (o7, — AT+ KVKT

ol — AXAT + AX (0711, — AT) (A.2.1)
Pi‘e—multiplying by ®(o) := C(oI, — A)~! and post-multiplying by ®~(¢) yield

2(0)BJBT@(0)” = CXCT + 8(0)KVE 3™ (o)

+@(0)AXCT + CX AT~ (o) (A.2.2)
Since G{o) = ®(¢)B + D, it follows from (A.2.2) that

¥(¢) = DJDT + ®(c)BJBT®™ (o)

+DJBT3™ () + ®(c)BJ DT

[alx alxl”
FEET -

Substituting (2.3.2) into (A.2.3) yields ¥ (o) = II(¢)J'I™~(¢). This completes the proof of

sufficiency.

Necessity : We first consider the case where (C, A) is observable. The basic idea of the
proof is due to [34]. Since A is stable, there exists a unique solution to the Lyapunov

equation
X, =AX1AT+ BJBT | (A.2.4)
Then we get
BJBT = (oI, — A)Xi(o7 , — AT) + AX1(07 L, — AT) + (oI, — A)X AT
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Pre-multiplying by ®(o) and post-multiplying by ®™(z) yield

$(c)BJBT®™(0) = CX,CT + ®(0)AX,1CT + CX 14T~ (o)
Hence, we get
¥(o) = DJDT + &(c)BIBT &~ (0)
+8(0)BJDT + DJBT®™(0) |
= DJDT + CX1CT + G(o) + G (0) (A.2.5)

where

v

G(o) =

A| AX,CT + BJIDT
| 4%, + J (A.2.6)

C|- 0

We now assume that there exists a unimodular matrix II(o) such that ¥ = IIJ'II™. From
(A.2.5), we easily see that if A is a pole of ¥(o) then 1/A is also a pole of ¥(o), and that

if |A] < 1 then A is an eigenvalue of A. Thus, we can take II{c) as

(o) = AT , W: nonsingular
c|\w

Note that since (C, A) is observable, I is unique for C, A and II(¢). Since W is nonsingular,
V := WJ'WT is also nonsingular. Similarly to the derivation of (A.2.5) and (A.2.6), we

obtain
(o) = (o)J'II™(0) =V + CXoCT + (o) + 1™ (o) (A.2.7)
. A|AXCT 4+ 7WT
(o) = | 40T+ TW (A.2.8)
c| 0

where X is 2 unique solution to the Lyapunov equation
Xo = AX AT +TJ'TT - (A2.9)

Since both G'(s) and II'(c) are in RHEX?P and strictly proper, comparing (A.2.5) with
(A.2.7) yields o -

é’(q):f[(a) | "~ (A.2.10)

DIDT+CX,CT =V +CX,CT . (A211)

26



Moreover, since (C, A) is observable, from (A.2.6),{A.2.8) and (A.2.10), we get
AX,CT + BIDT = AX,CT +ry'w?T (A.2.12)

Define X := X; — X5. It then follows from (A.2.11),(A.2.12) and the invertibility of V'
that

V =DJDT +CXCT (A.2.13)
=KW (A.2.14)
K =(AXCT + BJDT)V -1~ (A.2.15)

Substituting above equations into (A.2.9) yields
Xo = AX2AT + (AXCT + BIDY)WWYCX AT + DJBT)

By subtracting this from (A.2.4), we obtain the ARE (2.3.1). Note that X is unique since

X1, X2 and T’ are unique. Moreover, II™! is given by

T-i(0) = [A—PW*Cl-W*FJ _ [A—KCI -K ]

w-ic | wol w-ic |w-L
Since (o) is unimodular, A — KC is stable, i.e. X is a stabilizing solution.

Next, we consider the case where (C, A) is not observable. It suffices to show that there
exists a stabilizing solution of the ARE (2.3.1). Without loss of generality, we assume that

A, B and C are in the canonical form

A 0 ' B '
A={ ,c=|la o], B=|"" (A.2.16)
Agr A - By
where (Cy, A11) is observable and Agg is stable. Also, it is easy to verify that G(o) =
A X X4
u | B . According to (A.2.16), we partition X as X = M2 Then the
C, | D Xo1 Xoo

ARE (2.3.1) reduces to the following simultaneous equations.
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v =DJsDT +C1x1,CT (A.2.17)
X1 = AuXn Al + B1JBY - (AuXnCt + BJDT)
xV 1 (AnXuCF + BgphT | o (A2.18)
Xo1 = AppXa1 (A — K1C)T + An X {An — K1C1)T
+ByJ(B) — K1 D)T ' (A.2.19)
Xog = Apn X0 ADy + A1 X11AS) + ApnXo1 AT, + AT, X3\ AT,

+ByJBY — KaVEY - (A.2.20)

where K = (AXCT + BJDT)V ! is partitioned as

K= K h _ (A1 X1:CT + BjypTYyv-1
| K {(An1X11 + A9 X2)CT + BpJ DT}V !
Since G(o) = Jé“ I;l , from the result in the case where (C, A) is observable, there
1

exists a unique stabilizing solution X, to the ARE of (A.2.17),(A.2.18). Hence A K&y

is stable. Since A2g and A);; — K1C) are stable, it follows from (A.2.19) and (A.2.20) that

Xo1 and Xo9 are uniquely determined for X,;. Furthermore, we have

K An—-KiCi 0
1 [ c 0 ] _ [ 11 1C1

Ky ' :

A-KC=A4-
: Agy — K€y Agg

From the stability of 459 and A;; — K C1, A — KC is also stable. Therefore, in the case
where (C, A) is detectable, the ARE (2.3.1) also has a unique stabilizing solution X. W

Appendix 2.2: Proof of Lemma 2.2
Since Vi1 > 0, the following identityr‘holds.

I, 0
VaVir' L

V11 0

V =
0 Voo -V V7'VE

[Iq ViV
0 I,

] (A.2.21)

For the existence of a nonsingular W, it is necessary that Vop — Vo, V7' V41 is nonsingular.
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We define L
Wi Wi | _ I, 0
R, = 1 154
War Was "‘V21V11 Ip

Then, from WJquT =V and (A.2.21), we obtain

Vi = W Wi - W Wh ' (A.2.22)
0= ngﬁ}ﬁ - 72W22W1’g (A.2.23)
Vg — V21VHIV2'11‘ = ngﬁ}g - 'Y?ngﬁ}ég (A.2.24)

Since V13 > 0 and (A.2.22) hold, Wn is invertible. Then, from (A.2.23), we get ﬁfgi =
7217171-1117171217[?3;. Substituting into (A.2.24) yields
Va Vi Vi — Voo = ¥*Waa (I, — NTN)W3, (A.2.25)

where N = yW;!Wia. Since I, — NNT > 0 holds from (A.2.22), we get I, - NTN > 0.
Thus, it follows from (A.2.25) that Vo, V;7'Val — Vag > 0. Since Va3 Vi7 Vil — Vap is
invertible, we obtain -

Va7 Vg — Var > 0

Conversely, assume that VleﬁlVQ’I{ — V9 > 0 holds. Then it is easy to verify that

V111/2 0 ‘
W = _ (A.2.26)
ViV 2y (Ve VitV - V)12
is invertible and satisfies W J,,WT = V. |

Appendix 2.3: Proof of Lemma 2.5

Although a proof is given in [14], we give a different proof.
Necessity:  Under the assumption (A2), there exists a matrix H € R"™*? such that
Ag = A— HC is stable. We define

Tn(o) = {AH H}

L |0
We easily see that T (o) satisfies (S1) and (S2). Therefore, without loss of generality, we

can assume that T¢(o) has the form of
Ti(o) = Tn (o) + T{ (v) (A.2.27)
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where T7(c) € RHE 9. We now define

T8(0) = Tea(0) = T (0)Tyalo) = [%-’fﬂ ¢ REPI™

where By = B — HD. Substituting (A.2.27) into (2.2.7) yields

Al|B '
-CT}?] (A.2.28)

Using the matrix H, a left coprime factorization of Ty4(0) is gi\}en by

Tea(0) = Toy(0) = T (0)Tya(0)

_ | As B | _
arlae]

Tya(0) = X} (0)Y (o)

where -
x(0) = [ 2| vy = | L1
-C |1, c| D
From (A.2.28), we get
THo) X Y (0)Y (0) = Tea(o) — T (0) € RHEX™ (A.2.29)

Since X (¢) and Y (o) are coprime over RH,, it follows from (A.2.29) that T} (0) X ~!(o) €
RH’;;“? holds. Therefore, by defining Q(¢) = ~T7(c)X ~(0) and Tip(o) = X (o), we get
the parametrization of (2.4.1). '
Sufficiency: The staBility of Ti(o) is obvious.. If Ti(c) is expressed as in (2.4.1) and
(2.4.2), then a straightforward calculation yields

Ay | By Apg | By
Toa(o) = | = -
‘”'@ | [ Lo } Q(U) c|D }
Since Ay is stable and Q(c) € RHEX?, T .4(o) € RHEX™ holds. S |
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Chapter 3

H Filtering with Boundary

Constraints

1. Introduction

In the previous chapter, we have derived the parametrization of all solutions of the
infinite-horizon H, filtering problem for time-invariant systems. The free parameter of
the H,, filter can be used to achieve an additional design specification as well as the Hy,
error bound. As an example of such multi-objective Hy, filtering problems, we consider
the H filtering problem with frequency constraints on the unit circle of the complex
plane (boundary constraints).

If the system is subject to step or periodic disturbé;nces, then the state estimates may
be degraded by the biases or the periodic fluctuations due to these disturbances. In order
to reject these undesirable effects, we need to impose boundary constraints such that the
transfer functions from these disturbances to the error must be zero at certain points on
the unit circle. Thus, the state estimation with boundary constraints is also important
from the practical viewpoint.

It may be also noted that we can attenuate step and periodic disturbances by apply-
ing the observer design technique to the augmented system incorporating the state-space
model of the disturbances. However, since the augmented system does not satisfy the as-

sumption (A2) in Chapter 2, it is difficult to solve the H, filtering problem with boundary
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constraints by the conventional observer design technique.

Therefore, in this chapter, based on the Nevanlinna-Pick interpolation technique [45],
[48], we develop a method for adjusting the free parameter of the Heo filter so that the
boundary constraints are satisfied. Moreover, we show that the resulting Ho, filter is a
linear function observer for the augmented system including the disturbance model. A

numerical example also shows the applicability of the proposed design method.

2. Problem Formulation

We again consider the system of (2.2.1)-(2.2.3)

ZTre1 = Azy + Bd;
v = Czp + Dd;.

zp = Lz

where z; € R®, yr € R7 and di € R™ are the state vector, the measurement and the
disturbance at time k, respectively. Moreover, 2 € RP is the vector to be estimated. .
Asin Cha.pterl 2, we assume the following. |
(A1) (C,A) is detectable.

A-e*I, B
C D

Let Z; be the estimate of z; based on the measurement set {y| t < k}, and T{(c) be

(A2) rank =n+gq, YWwER

the filter transfer matrix from yy to 2. The standard H filtering problem is the problem
of finding a filter Ti{o) satisfying the following specifications:

(S1)  Ti(o) € REP
(52) Teafo) € RHES™ |
(83) ||Ted|loo < v for a given constant v > 0

where T,4(c) is the transfer matri_x'from di to the estimation error e := 2, — .

In this chapter, we wish to find a filter Tt(c) satisfying the boundary constraints on

Ted(0) =

the unit circle in the complex plane in addition to the above specifications.
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(54) T.£,’3 (efwi) = O for given r different frequency points w; € R

(i=11"'17')

() is the column vector which consists of the £; entries of dj. associated with the

where w;,

i-th constraint, and T,SL} (o) is the transfer matrix from w(’) to the estimation error eg.

Moreover, we define v(i) as the column vector which consists of the rema.ining m — &

entries of di, and let T8 (o) be the transfer matrix from vi) to eg.

In many practical situations, the disturbance d; may include step or periodic distur-
bances. If di contains these disturbances, then the estimates may be degraded by the
biases or the periodic fluctuations. In order to remove these undesirable effects, it is re-
quired that the transfer matrix from the disturbances to the estimation error should be
zero at certain points on the unit circle. To see this more specifically, let us consider the

following example.

Example 3.1: We consider the system given by

5 05 0 0 00
Tper= | 0 g+ 10 0 1 |dg
0 0 1 00
1 2 0 4 0 "
. = Tl
Y i0 0 k 0 k

T

110
zp =
0 01

(m=3,n=3,p=2, ¢=2)
We denote the i-th element of dj. by dix, i =1,2,3, and assume that d) ; contains a step
disturbance and d3 ) contains both a step disturbance and a periodic disturbance with
frequency wo > 0. We now define w( D and v( ,1=1,2(r=2), by

dq &
wd = | oD = ay,
da3

d
wfcz) = doy, vff) | duk
do i

Further, we define Te(.l? (o) and Te )(a) as the transfer matrices from w£ and 'u( D to €k,

respectively.
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Since wE_,l) contains step disturbances, we assume that u,(cl) € Lo and

1 a1 DSk
wk =
0 k<0

where a; € R? is an arbitrary constant vector. Then, by the final value theorem, we get

lim e = lim (1~ a™1)TE) (0)w!(0)

k—oo
. - 1.
= lim (1- e ™TE ()17 —=

= T{D(1)a,

Thus, in order to reject the bias due to the step disturbance, we need to design Tt(o) so
that TS (1) = 0 hold. This implies that 75y (1) = 0 with w; = 0.

Next, we consider the effect of the periodic disturbance. Allowing 'w,(c?) to take a

complex value for simplicity, we assume that wg) = a9 exp(Jwqk) for some constant as € R

and vf) € Lo. Then, the steady-state response of ey is given by
er = Tﬁ)(ej“’z)azej“’“@

Hence, in order to remove the periodic fluctuation due to the periodic disturbance, we

require that Te(s,)(ej“”) = 0 should be satisfied.

3. Boundary Constraints

Assume that the conditions (a) and (b) of Theorem 2.1 hold, and that the parametriza-
tion of all Ti(o) satisfying (S1)-(S3) is given by (2.4.21) and (2.4.22), where U(0) is an
a.rbitréry tljansfer-ma.trix in BH{,’g‘q, and where K = (K1 K») € R“"(q'.*'f’), Ag and W are
defined by (2.4.16), (2.4.17) and (2.4.13), respectively. Then we see that T,q(c) is given
by | | |

Ta(0) = —S3H()T(0) (3.3.1)

where

[ 21(0) Eé(a) ] = [ U(g) fIP,] (o) .‘ ‘.
= [ UB11 — O UBpp — Oy ] (3.3.2)
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and ©(c) is defined by (2.4.23). We here define )3?1) (o) and 2(1'2) (o) as the transfer matrices
which consist of the column vectors of }31(0) corresponding to wg) and 'uf), respectively.

In other words, we define 2 (a) and E (o) s0 that
T8(0) = -z3'2Y), TP () = -37'53 (33.3)
The following theorem shows that the boundary constraints can be expressed in terms

of E(lil) (o).

Theorem 3.1: Suppose that the conditions (a) and (b) of Theorem 2.1 hold, and that
the Ho, filter satisfying (S1)-(S3) is given by Theorem 2.2. Then, for a given frequency
point w; € R, TS () = 0 holds if and only if T\ (/) = 0 holds.

Proof:  (Necessity) Since Ly(c) € RHEX? holds from U(s) € RHEX? and ©(o) €
RHFP*(m+p) 5551(5) does not have a zero at o = e/, Hence E(lil) (e™i) = 0 is necessary
in order that (')(ef“") = 0 should hold.

(Sufficiency) Assume that Egl)(e-""") = 0. Then, from (3.3.1), it suffices to show that

T2(0) does not have a zero at o = e/, Since ©{0) is (Jmp, Jop)-lossless, we get
O (/) Jmp®H (7) = T
Pre-multiplying this by [U (e7*%) Ip) and post-multiplying by (U (e7) LM yield
VL - UU% = ¥*58f - TiTf, o=¢

where U(c) € RHEXY is a free parameter satisfying ||U||e < 7. It follows from EE? (i) =
0 that
32, - UUH = 4255l - s 5 = oo (3.3.4)

It may be noted that the left-hand side of this equation is positive define since ||U|o < 7y-
If £5(c) has a zero at o = e/ there exists a nonzero vector 7 such that ¥ a(e/*i) = 0,

Then we see from (3.3.4) that

D g()H o
0Ly - U0y = —nPEEn <0, o= e
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This contradicts the positive definiteness of y2I, — UUR. Therefore, $9(c) does not have
a zero at o = ei¥i, ||

We here define 9?.1)1 (¢) and @g?g(o) as the transfer matrices which consist of the
column vectors of @11(o) corresponding to w}_,i) and vg), respectively. We similarly define

egl)l(a) and @9}12(0) for ©51 (o), so that
2(1') = ®(i) _ G)(;) ‘ (3.3.5)
11(0) (0)©11,(0) 511 (0) 3.
£(0) = U(0)0{%(0) - 65)(0) | (3.3.6)

Since 2&‘1’ (o) is affine with respect to U{g), from Theorem 3.1, finding a free parameter
U{c) satisfying (S4) reduces to the following interpolation problem.
Interpolation Problem: For given r different frequency points w; (i =1,---,7),

find a transfer matrix U(c) € BHEX? such that
UEy=U; (@G=1,---,7) o - (3.3.7)
where U; € CP*9 13 a solution of the linear matrix equation
U0 () = 0, () (3.3.8)
A solution of this interﬁolation problem is given by the following theorem.

Theorem 3.2: Suppose that the conditions (a) and (b) of Theorem 2.1 hold, and that
O(o) is defined by (2.4.23). Then there exist a matrix U; satisfying (3.3.8) if and only if

Ker @(1?1 (e?i) C Ker @(2?1 (1) ‘ (3.3.9)

If such a matrix U; exists fori=1,--+,r, then a necessary and sufficient condition for the

existence of a free parameter U(o) € BHEXY satisfying (3.3.7) is that
lofh (el <y (=1,-7) (3.3.10)

Proof: From Lemma A.3.1(i), there exists a matrix U; satisfying (3.3.8) if and only if
(3.3.9) holds. In this case, from Lemma A.3.1 (iii}, the minimum-norm solution among all

solutions to (3.3.8) is given by
U; = 04, ()OS 0# (i) | (3.3.11)
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Since ||U||eo < 7 holds, for the existence of a matrix U(c) € BHEXY satisfying (3.3.7},
there must exist a matrix satisfying ||U;]| < v among the solutions of (3.3.8). This implies
that (3.3.10) must hold,

Conversely, we assume that the conditions (3.3.9) and (3.3.10) hold. Then there exists
a matrix U; satisfying (3.3.8) with |Ui|l < v. If ||U:lj < v bolds for ¢ = 1,:--,7, then the
existence of U(o) € BHEX? satisfying (3.3.7) is guaranteed by Lemma A.3.2. n

In summary, the Hy, filter T;(o) satisfying (S1}-(S4) can be obtained by the following
design procedure.
Step 1: Check if the conditions (a) and (b) of Theorem 2.1 hold or
not. If not, stop.

Step 2: Solve the ARE of (2.4.6),(2.4.7), and obtain ©{¢) from
(2.4.23).

Step 3: Check if the conditions (3.3.9) and (3.3.10) hold or not. If
not, stop.
Step 4: Obtain U; from (3.3.11), and find a U(o) € RHEX? satisfying
[iU]lo < v and (3.3.8) using the matrix-valued Nevanlinna-
Pick algorithm [48].
Step 5: Obtain Ti(o) from (2.4.21),(2.4.22) in Theorem 2.2.
In general, the conditions (3.3.9),(3.3.10) depend on the parameter v. However, if A

has no eigenvalues on the unit circle, then we can obtain a condition equivalent to (3.3.9),

which is independent of .

Lemma 3.1: Suppose that A has no eigenvalues on the unit circle. Then, the following
condition is equivalent to (3.3.9) in Theorem 3.2:
Ker T () C Ker T{) () (3.3.12)
(s

where T!S:J (¢} and T;SL} (o) are the transfer matrices from wk) to yr and z, respectively.

Proof: Note that the eigenvalues of A are the invariant zeros of Q(¢) of Theorem 2.2.
It follows that, if A has no eigenvalues on the unit circle, there exists a matrix I'; € CP*9

such that
I = —'{ U;'Qm(eju") - sz(ejw'.)}_'l{Uiﬂll(ejwi) - Q?l(ejwi)} (3'3'13)

37



Conversely, if a matrix T'; is given, we can get U; by

U; = —{Tifha(e) ~ Qaa(e™)} 7HTiua () — Qo (7))} (3.3.14)

~ _ -1
S Qa2 | _ | O Qe
Qa1 Qoo 227 Qo9

Thus, the mapping from U; to T'; is bijective. Furthermore, a simple calculation of state-

@?1)1 O e T;S:B , (3315
W | = 5 (3.3.15)
Oa11 Qa1 Qoo Tew

Hence, we see from (3.3.8),(3.3.13) and (3.3.15) that the existence of U; satisfying (3.3.8)

where

space data yields

is equivalent to the existence of I'y satisfying
I T (7)) = T8 (e77) (3.3.16)

Therefore, by Lemma A.3.1 of Appendix 3.1, the condition (3.3.9) is equivalent to (3.3.12).
- ,

4. Relation to Linear Function Observer Theory

In the previous section, we discussed the boﬁnda.ry constraints from the viewpoint of
the zeros of transfer matrices, Therefore, the relationship between the structure of the
resulting H., filter and the disturbance model is not clear. On Ehe othel; hand, it is rwell
known that the linear function observer theory can be applied to the state estimation
for the augmented system incorporating the disturbance model. In this section, we will
clarify the relationship between the resulting H, filter and the conventional linear function
observer by showing that the resulting H,,, filter is a linear function observer for the
augmented syéterﬁ. i | |

- Hereafter, we only consider the step disturbance (r = 1, wy = 0) for simplicity. We

algo assume without loss of generality that dy = [wg)T «HTJE)T]T and

B=[B; By}, D=[D; Dj
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accordingly. Then the system of (2.2.1),(2.2.2) is expressed as

Tpe1 = Azp + Blw( )y Bq 'u( ) (3.4.1)
yp = Cop + Dlw( ) + Dzv( ) ) (3.4.2)
Since w( disa step function, the disturbance model is given by

OREMO (3.4

We assume that the conditions (i),(ii) of Theorem 2.1 hold. We also assume without

loss of generality that a matrix W satisfying (2.4.13) has the form

W= Wu 0
Wa Wop

W
11 W= 0
W21 W22

In the case where r = 1 and w; = 0, the interpolation condition of (3.3.7) and (3.3.8) can

and define
W

1

be given by
U =UQ1) =

where
vy = e (e ()
Since U; € R?*Y, we can choose the free parameter U{o) as
U(o) = Uy = 0, (el (1) (3.4.4)

From the above discussion, an H, filter satisfying (51)-(S4) is given by

A-KC|K

T3 = = = 3.4.5

t(o) [ I —iiC | " ] ( )
K= KW\ Wi + K2W22UW1—11 . (3.4.6)
M = W Wyt + WaUWS? (3.4.7)

where K = [K; Kby) is defined by (2.4.16).
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Since A — KC is stable, we can define
T:=[1 —{I.-(4-KC))™'(B,~KD) |
Simple-calculation yields

(A= - | (B4
T[O IelJ (A-Ecyr=K[c D | - (3.4.8)

Also, since Teq,)(l) = 0, we get
(L - MC){I,— (A-KC)} {(B1—KD))-MD; =0

That is, o
(L-Meyr+M[c b |=[L 0] (3.4.9)

It therefore follows from (3.4.8),(3.4.9) and Lemma A.3.3 that T;(o) of (3.4.5) is a linear

T Bz | (1
+ vy,
wi”] [ 0 } "

T}
(1) ] + DZUS)
Wi

5. Numerical Example

function observer for the augmented system

zer | | A B
2=
wi-&l i 0 Iy

yk.=:C D1]

In this section, we consider Example 3.1 again. The infimum of ~ satisfying the con-
ditions (a),(b) of Theorem 2.1 is vy = 3.112. Thus, in the following, we take v = 3.5. In
this case, the stabilizing solution P > 0 to the ARE of (2.4.6),(2.4.7) is

22375 —12.976 —10.581
P=|-12.976 62.889 147.537
—10.581 147.537 373.836
Also, a matrix W satisfying (2.4.13) is _
14.933 —0.181 0 0
~0.181 4831 0 0
7.341  2.220 0.980 -0.028
19.033 -1.477 —0.028  0.476
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Since w,(cl) contains the step disturbance, wy = 0 for the constraint (S4). We also take
wy = m/4 by assuming that the periodic disturbance included in w,(f) has the frequency
m/4. Note that the central filter (U(s) = 0) does not satisfy (S4) for this example.

In order to find a free parameter satisfying (S4), we consider the interpolation problem
in Section 3.3. Let U; be given by (3.3.11), and let go = 0.02, where ¢g is, the parameter
which reduces the interpolation problem on the unit circle to a usual Nevanlinna-Pick
problem (see Appendix 3.2). Then, by applying the matrix-valued Nevanlinna-Pick algo-

rithm [48], one of the solutions to the interpolation problem on the unit circle is given by

the 8th-order transfer matrix

- =_1_ n11{e) ma(o)
vie) d(o) [ngl(a) no1 (o) :’

d(o) = ¢® — 6.2060" + 17.7080° — 30.3220° + 33.9975%

—25.5060° + 12.4850% — 3.6360 -+ 0.480.

n11(0) = 0.2110% — 1.33507 + 3.8760°% — 6.7360° + 7.6520*
—5.8200° 4 2.8750% — 0.8460 + 0.113

ng1 (o) = 0.9280% — 5.421¢7 + 14.6240% — 23.6570° + 24.9210*
—17.395¢° + 7.79402 — 2.0220 + 0.228

n12(c) = 0.31708 — 1.98507 + 5.6960° — 9.7720° + 10.9370%
—8.1570° + 3.9520% — 1.1340 + 0.147

noa(o) = 0.1880% — 1.39207 + 4.5450° — 8.6740° + 10.6610*

—8.6760° + 4.5790°% — 1.4370 + 0.205

For the resulting Hoo filter, the values of T.4(c) for o = 1,e/™/* are

[ 0.000 —0.467 0.000
Ted(l) = .
0.000  0.600 0.000
coo | ~0.001+0.042j —0.415+ 0.069; 0.000
Tealet?) = ) .
—0.470 —1.243 —0.240 — 2.812 0.000

This shows that the condition (S4) is satisfied, that is, the transfer functions from [d) 5 d3 )7

and d3 x to ey are zero at frequency w = 0 and 7 /4, respectively.
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Fig. 3.1 shows the singular value (SV) plots of Teq(o) for the central and proposed
M, filters. We see from the figure that the H,, error bound [|T,4ll < 3.5 is achieved by
both filters. It may be noted that, due to the constraint (S4), the SV plot for the proposed
design method has a notch at frequency 7 /4 22 0.785 and has small singular values at low

frequency band.
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Fig. 3.1: Singular value plots of T,4(c)

A simulation result is also given in Fig. 3.2, where e;x = [ejt eg,k]T. In order to
see the effects of the step and periodic disturbances on the estimation errors, we give the

disturbance dj, as follows:

05 50<k
dpp=0 ~ 0<k
ozmq§m 0<k <350
k= { 1+02cos(7h) 350 <k |

{ 0 0<k<50
1.k =

The initial states of the system and f;he filters are all set to zero. Fig. 3.2 (a) shows
that the performance of the central Hy, filter is degraded by the bias and the periodic
Auctuations due to the step anci periodic disturbances. On the cbhtrary, in Fig. 3.2 (b),
the estimation eﬁors of the proposed He, filter asymptotically converge to zero even in

LA

the presence of the step and periodic disturbances.
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6. Concluding Remarks

In this chapter, we have proposed a design method of an H,, filter so that the con-
straints on the unit circle is satisfied. By this method, we can reject the undesirable effects
due to the step or periodic disturbances.

We have also shown the relationship between the state-space model of the disturbvance
and the structure of the proposed H, filter in the case where the disturbance is step

function.
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Fig. 3.2: Simulation results
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Appendix 3.1: Linear Matrix Equation

Lemma A.3.1: Consider the linear matrix equation
XB=C (A.3.1)

for given constant matrices B € C™*" and C € CP*".

(i) There exists a matrix X € CP*™ satisfying (A.3.1) if and only'if
KerBCKerC  (equivalentlyy, CB¥B = Cl) (A.3.2)
(ii) If (A.3.2) holds, the set of all solutions X is given by
X = CB* 4+ QI — BB#) (A.3.3)
(iii) The minimum-norm solution whose norm is minimal among all solutions is
X =CB#* | (A.3.4)

Proof: See, for example, the reference [44]. . [ |

Appendix 3.2: Interpolation Problem on the Unit Circle

Lemma A.3.2: For given r different frequency points w; € R (t=1,-+-,7), there exists

a rational transfer matrix X (o) € HEX? satisfying || X||co < 1 and
XE)y=X; (GE=1,--,7) (A.3.5)

if and only if 7
IXill <1, (E=1,---,1) (A.3.6)

Proof: The lemma is the discrete-time equivalent of Lemma B in [45]. Hence, the proof
almost follows the line of the proof in [45).
(Necessity) Obvious. '
(Sufficiency) We assume that (A.3.6) holds. We now define o;(¢) = €€ for a small
scalar € > 0. Note that [lo;(¢)f| > 1 since & > 0. We consider a Pick matrix [48] given by

P(e) = {Pue(e)} (A.3.7)

L-XiXe _ _ L-X{X,
1— ApAe 1 — e—2e—d(wi—wy)

Prele) = (A.3.8)
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where A\j = cr{"l and A denotes the complex conjugate of X. Since £ > 0 and (A.3.6) hold,
we get P () > 0. Furthermore, as € — 0, || Pir(€)]| becomes arbitrarily large, whereas

I, - XiXx,

 Pre(E)l — 1= o=itwi—wt) <oo, k#L

Hence there exists a constant €9 > 0 such that P(gg) > 0 holds. Thi.s implies from
the Nevanlinna-Pick theorem that there exists a rational transfer matrix Z(¢) € HBX?
satisfying || Z]|coc < 1 and

Z(oi(e)) =X (i=1,---,7)
If we define X (o) := Z(e*0o) for such a Z(c), then X (o) satisfies || X||oc < 1 and the
original interpolation condition (A.3.5). n

Remark 3.1: Z(o) can be computed by the matrix-valued Nevanlinna-Pick algorithm
(48]

Remark 3.2: In Lemma A.3.2, the existence of a “real” rational X (o) is not guaranteed.
In order to obtain a real rational X (o), we need to impose additional conditions which

are complex conjugates of the original conditions.
X(e_jw‘) =X; (i=1,---,7)

In this case, if we get a complex rational solution X¢(c), then a real rational solution X (o}

is given by

X(0) = {Xo(2) + Ko(o}

Appendix 3.3: Linear Function Observer

Let us consider the system described by

Tr+1 = Azp + Bug (A.3.9)

yi = Czy, (A.3.10)

where z, yr and uy is the state, measurement and the known control input.

We wish to estimate the linear function of the state variables defined by
zr = Lzy, (A.3.11)
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Lemma A.3.3: Consider the system given by

g = Al + B+ Buy (A.3.12)

 m=0&+Dy . (A.3.13)
If the following conditions hold, the system of (A.3.12);(A.3.13) is a linear function observer
for the system (A.3.9)-(A.3.11); i.e. 2 — 2, as k =+ 00,
(i) A: stable _
(i) There exists a constant matrix T’ sa.tié_fying(
T4- AT =BC A3
ér+Dbc=1 (A.3.15)

PR SRE R BN

Proof: | See.the reference [10]. -



Chapter 4

H Algebraic Riccati Equation
and Parametrization of All H
Filters

1. Introduction

Algebraic Riccati equations (ARE) play very important roles in the state-space solu-
tions of many control and estimation problems. This chapter is concerned with the ARE
related to the infinite-horizon H, filtering problem and its application to the analysis of
the H, filter.

In the H filtering problem, we design a state estimator so that the L, induced norm
(Ho norm) of the error system is smaller than the prescribed bound 4. It has been shown
that a necessary and sufficient condition for the existence of a solution to this problem
is that an Hy, ARE has a positive semi-definite stabilizing solution for which a certain
matrix must be positive definite [40],[51},[52]. |

The Ho, AREs arising in the H,, control and estimation problems have been ex-
tensively examined. For the continuous-time case, Hewer [22] and Gahinet [13] have
shown that the stabilizing solution of the contiruous-time H,, ARE is monotonically
non-increasing convex function of 7, and the behavior at the optimum is considered by
Gahinet [13]. A recursive method for obtaining the solution of the discrete-time H,, ARE

and some related results have been given by Stoorvogel and Weeren [43]. It may be also
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noted that the existence condition of a stabilizing solution to the ARE of general type is
considered based on the Popov function by Ionescu and Weiss [23]. In this paper, we will
derive the infimum of -y for which a stabilizing solution to the discrete-time Hoo ARE ex-
ists, and show that the positive semi-definite stabilizing solution has the monotonicity and
convexity properties for -y, which are discrete-time counterparts of the resﬁlts in [13],[22].

Since the state-space realization of the H, filter is given in terms of the stabilizing
solution of the Ho, ARE, the performance of the H, filter depehds on the stabilizing
solution. Therefore, the analyses of the H,,ARE are very important. A relationship
between the performance of the central He, filter and the prescribed bound « has been
examined based on the monotonicity of the H,, RDE for the time-varying case by the
authors (see Chapter 6). Also, multi-objective filter design problems including Hy/H,,
filtering problem [20],[27] aim at achieving an additional design specification by using
the free parameter contained in the Hy, filter. Thus, the performance for the additional
specification depends on the size of the region where the free parameter ranges. Motivated
by this observation, we will investigate the change of the size of this region with respéct
to the variation of v based on the above properties of the Ho, ARE. Such analyses of the

H filter will provide a guideline for designing an H, filter.

2. Algebraic Riccati Equation

In this section, we will give some results related to the stabilizing solution P.
Similarly to the previous chapters, the following two conditions are assumed for the

system of (2.2.1)-(2.2.3).

(A1) (C,A) is detectable.
A—e*I, B

(A2) rank
C D

=n+gq, YweER

For simplicity of discussion, we hereafter assume the following condition.

(A3) R:=DDT>9

This assumption implies that all elements of 3y are degraded by the disturbance di. Such

a situation can be found in many practical applications. It may be also noted that, in the
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case where D is degenerated, the Hy, filtering problem for the system (2.2.1)- (2.2.3) can
be reduced to the problem for a system with D full row rank by applying the infinite zero
compensation technique [5].

As in Chapter 2, we define A(y) and A(y) as the sets of all H,, filters satisfying
([Tedlloo < 77 and [[Tedlloo < v, respectively. It is shown in Theorem 2.1 that under the
assumptions (Al) and (A2), the H, filtering problem for the system (2.2.1)-(2.2.3) is
solvable, namely A(vy) # ¢, if and only if there exists a positive semi-definite stabilizing
solution P to the ARE

P =APAT — (APCT + )V Y (APCT + 5)T + BBT (4.2.12)
T T
v_ | B+CPC CPL (4.2.1b)
LPCT  —(+*I,—- LPLT)
1 T ;1 T Vi V211‘ = &
with V = Vo1 V|7 Vo1 — Vag > 0, where V = Voo Vou | and where C and S are defined
21 22

by
G =

i},§=[BDT 0]

Under the assumption (A3), we define F and G by

F=A-BDTR™C, G=B(I.-DR'D)

Under the assumptions (A1)-(A3), (C, F) is detectable and (F, G) has no uncontrollable

modes on the unit circle. By the matrix inversion lemma, we see from (4.2.1) that
P = FPFT - FpCTV-1CPFT + GG (4.2.2)

Let P(«y) be the set of all positive semi-definite solutions of the ARE (4.2.2), i.e. (4.2.1),
satisfying ¥ > 0. We also define Yopt = inf{y >0 : A(y) # ¢}. It is clear from Theorem
2.1 that y > yopt holds iff the ARE (4.2.1) has a stabilizing solution in P (7).

Lemma 4.1: Suppose that the ARE (4.2.2) has a stabilizing solution P in P (), namely

¥ > %opt. Then, KerP coincides with the stable (F, G)-uncontrollable subspace.

Proof: See Appendix 4.1. |
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We see from Lemma 4.1 that Ker P is independent of the parameter y. We thus assume
without loss of generality that F, G, C and L have the forms of
Fy Py
0 F |’
o-lo @l o=[n @]

Gy
0

where (Fj,G1) has no uncontrollable modes in the closed unit disk. Then, F is stable
since (F,G) has no uncontrollable modes on the unit circle. In the following, we also
assume that Fy is invertible.

Under the above assumptions, the stabilizing solution P € P(7) is of the form P =

[ 1;1 g and P, is a unique positive definite stabilizing solution of

P = F1P1Fir - F1P16‘1PV_16'1P1F1T + G]_G'IT (4.2.3)

~ C
where C] = !

] and V is expressed as V = ﬁJmpﬁT + 6’1P16'ir. Let P;() be the
1

set of all positive definite solutions of the ARE (4.2.3) such that ¥V > 0 holds. Then, from
the above discussion, the existence of a stabilizing solution P € P(7) is equivalent to that
of the stabilizing solution- P, € Py (y). -

It is difficult to directly analyze the ARE (4.2.3) due to the indefinite coefficient matrix
in V. Instead, we consider the ARE for P!, whose analysis is much easier than the ARE
(4.2.3). By applying the matrix inversion lemma to .the ARE (4.2.3), we observe that
X = Pl—l is a unique anti-stabilizing solﬁtion of |

X =FrXF + FI'XG (I, ~ GTXG) \GT X Fy

—~CTR7ICy +472LT Ly o (4.2.4)
Since F) is assumed to be nonsingular, and since (4.2.3) is expressed as
P =RPFY + RALTV 1L P FT + GGT (4.2.5)

where P, = Pi(I, + C?R‘IC'lPl)‘l and 7 ='.rankP,' P, € Pi(y) implies that X~ =
G16T > 0, ie. | IR
V:=I,~-GIXG1 >0 . (4.2.6)
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Similarly, it is easily proved that when there exists an anti-stabilizing solution X > 0 of
the ARE (4.2.4) satisfying (4.2.6), P} := X! > 0 is a stabilizing solution of (4.2.3) in
Pi(7).

We give some results on the existence of a solution X to the ARE (4.2.4). To this end,
we define X(7) as the set of all solutions to the ARE (4.2.4) such that V > 0.

Theorem 4.1: For a given v > 0, there exists an anti-stabilizing solution X in X(v) if

and only if

(4.2.7)

o0
where

Fo=F +Gi(Im — GT XoG1) ' GT X0 Fy
Go = G1(Im — GTXoGy)™ %

and X is an anti-stabilizing solution of the following ARE such that 17'0 = Im —G'II‘XOGl >
0.

Xo = FrXoF, + FF XoG1(Im — GTXoG1)"IGT XoFy — CFR7IC (4.2.8)

Proof: Since (C}, F}) is detectable and since (F,,G;) has no uncontrollable modes in

the closed unit disk, there exists a positive definite stabilizing solution to the ARE
Py = FiPFL — R P CT(R+ C PCT)ICI P FE + G1GT (4.2.9)

We define Xy = Fy 1 It is easily verified by the matrix inversion lemma that Xg is an
anti-stabilizing solution of the ARE (4.2.8) with ¥ > 0. |

By simple but tedious calculations, we see that the solution of the ARE (4.2.4) is
decomposed as X = Xy + M, where M satisfies

M = FfMFy+ Ff MGo(Im — GEMGo)*GE MFy +2LT L, (4.2.10)
Furthermore, we get
P+ GiVTIGTX By = Fo + GolIn — G MGo) ™' G§ M Fy
V= I”fﬁ(rm - ég"Mc‘;o)%%
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Thus, the existence of an anti-stabilizing solution X satisfying V>0is equivalent to
that of an anti-stabilizing solution M of the ARE (4.2.10) satisfying I,, — Gg MGy > 0.
By the bounded real lemma (Corollary 2.1), such a solution M exists if and omnly if v >
IILi (oI — Fp)~'Golleo. This completes the proof. [ |

It may be noted that the anti-stabilizing solution M is negative semi-definite since Fy
is anti-stable and Im — GFMGy > 0. ’
Moreover, vx is a lower bound of the parameter -, for which the ARE (4.2.2) has a

stabilizing solution, because X! is a stabilization of (4.2.3) if the inverse of X exists.

Theorem 4.2: Suppose that X(v) # ¢ for a given v > 0. Then, there exists a matrix
X € X(v) such that

X2Xa VXi€X(7)

and it is an anti-strong solution, i.e. all the eigenvalues of Fi=F + Glf’“lGrerFl do

not belong to the open unit disk.

Proof: See Appendix 4.2. [ |

Corollary 4.1: For a given v > 0, suppose that P1(y) # ¢ holds. Then there exists a

matrix Py € Pi(y) such that
P].SPB.) VPa.EPl('Y)

and it is a strong solution, i.e. all the eigenva.]ueé of Fy — FlPlé'ir V=16, belong to the

closed unit disk rather than the open unit disk.

Theorem 4.3 shows the monotonicity and concavity of the anti-stabilizing solution X

of (4.2.4).

Theorem 4.3: For given positive constants ) and g, suppose that the ARE (4.2.4)
has anti-stabilizing solutions X () in X(vi) (=1,2).
(a) If 11 > 72 (> vx) holds, then X > X@ holds.
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(b) Define yg = a7y +fvy2 witha+p =1, o, § > 0. Then, there exists an anti-stabilizing

solution X in X(vq), and we have
XO > oxM 4 gx @)
Proof: (a) The AREs corresponding to ; (1= 1,2) are given by
X0 = FIXOp + FIxOG V16T xR
~CTRIC, + 72T Ly . (4.2.11)
where V; = I, - GTXWG,. We define
L=V I6TXWER, Fi=F +GTy
Then (4.2.11) is rewritten as
X0 = FTx®OF - 1T, - TR0y +472LT Ly

+HIi-T)TR(@i-T1) (i=1,2) (4.2.12)

Hence we obtain
X0 - X = FrxO - XO)F — (3% - ) LT Ly
—(P2 = T1) V(T - Ty)

Since F\ is anti-stable and V5 > 0, by Lyapunov’s theorem, X(1) — X > 0 holds when

mn > Ye-
(b) By the definition of vy, we see that 79 > min{y1,72} > vx, and hence the ARE
(4.2.4) has an anti-stabilizing solution X ) in X(v9). The AREs for v; are expressed as

X0 = FTXOF - T§To - CFRTICL+ 472 LT Ly
+(To =T)TVi(To—T:)  (=0,1,2)

We now define X = aX (1) + BX@ — x(©) Then, we see from the above equations
that

X — BFXFy = o(To — T1) VA (Lo — T1) + B(To — T2) *Va(Dp — T2)
+(eri? + Byt — 15 )] In
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Since oy 24 15273 2 Yo 2 holds for any «, 8 > 0 such that @+ 8 = 1, the right-hand side
of the above equation is positive semi-definite. Noting thatFy is anti-stable, we conclude

that X < 0 by Lyapunov's theorem. This completes the proof of (b). |

Corollary 4.2: For given positive constants ) and -ya, suppose that the ARE (4.2.2),
equivalently (4.2.1), has stabilizing solutions P& in P(y:) (i=1,2).

(a) If 71 > 72, (> ~Yops) holds, then PO < P® and P < P® hold, where P} =
PO, + CTR-1C, PO)-1,

(b) Define 79 = ay1 + P2 with o+ =1, a, B 2 0. Then, there exists a stabilizing

solution P(® in P(~g), and we have
PO < oPM 4 gp3)

Proof: The inequality P(1) < P( and the part (b) are immediate from Theorem 4.3.

The inequality P(1) < P2 follows from the fact that
B - p) = (1, - K@) (P@ - PUY(I, - K@)T

+(K(1) _ K(Q))(R + CP(I)CT)(K“) _ K(Q))T
where K() = POCT(R+CPOCT)-1, _ .

Theorem 4.4: The anti-stabilizing solution X € X () converges to a finite anti-strong

solution in X(vx) as v tends to vx + 0.

Proof: Sincevx = ||L1(0r—Fp) " Gollco, We see from Theorem 2.1 of [6] that there exists
a negative semi-definite anti-strong solution to the ARE (4.2.10) such that I, — G MGq >
0 at 4 = 7x. Thus, there exists an anti-strong solution to the ARE (4.2.4) in X(vx). Let
X' be such an anti-strong solution, which is one of the maximal elements of X{vx) by
Theorem 4.2. It is also easy to verify that any maximal element of X(vy) is anti-strong,
if X(7) # ¢. Moreover, similarly to the proof of Theorem 4.3 (a), we can easily prove
that the anti-stabilizing solution X in X(7) satisfies X > X! for a.ﬁy v larger than vy.
Thus, the anti-stabilizing solution X in X(v) is bounded below and monotonically non-
decreasing with--réspect to v (> 7x). Therefore, the anti-stabilizing solution converges to

a finite anti-strong solution in X(-yy) as « tends to yx + 0. Y
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Theorem 4.3 shows that the eigenvalues of the anti-stabilizing solution X € X(v) are
the non-decreasing concave functions of . Similarly, by Corollary 4.2, the eigenvalues of
the stabilizing solution P; € P;(v) are the non-increasing convex functions of 7.

By Theorems 4.1, 4.3 and Corollary 4.2, we see that there exists a stabilizing solution
P e P(y) if v > yx and det(X) # 0, so that yopt = 7x. The behavior of the stabilizing
solution P near 7, depends on the eigenvalues of the anti-stabilizing solution X of (4.2.4)
as v — ¥x -+ 0. There are two possibilities for the behavior of X near v = yx.

Case 1 (711% Amin(X) > 0): In this case, X converges to a finite positive definite
solution as -y tends to op + 0. Hence, the stabilizing solution P converges to a finite
strong solution. In this case, yopt = yx holds.

Bspecially, in the case where Ly = 0 holds, a positive definite anti-stabilizing solution
of (4.2.4) always exists independently of 7. Thus, we see that yop¢ = vx = 0 when Ly = 0.
Case 2 (711%( Amin(X) £0): From Theorem 4.3, we see that as v decreases, aﬁ eigenvalue
of X crosses zero to change its sign from positive to negative. Thus, in this case, there
exists a point v (> 7x) such that X becomes singular. At this point, the stabilizing
solution P of the ARE (4.2.2) diverges to infinity since P = diag[X~! 0]. Moreover,
we see from Corollary 4.2 that sign changes of the eigenvalues of P do not result from
zero-crossing. As -y decreases, the eigenvalues of P change their signs by escaping to 4+c0

and reappearing from —oo.

Lemma 4.2: Suppose that KerC) NKerL; = 0 and/or Ker C) is P\-invariant. We also
define P = P{I,+CTR™1CP)~! for the stabilizing solution P of (4.2.1). Then, P is finite

at v = Yopt.
Proof: We see from the definition that
P = diag[ B, 0] =diag[(X +CTR™IC1)™! 0]

Hence, we need to show that X + CTR™!Cy > 0 for the anti-stabilizing solution X in
x(")’opt);

We assume on the contrary that X +CT R~1C) is singular. Note that X is positive semi-
definite and ¥ > 0 holds at y = Yopt- Let £ be a nonzero element of Ker(X + CER™1Cy).
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Since X > 0 and R > 0, £ € Ker(X + CTR™1C)) implies X{ = 0 and C}§ = 0. Pre-

multiplying (4.2.4) by ¢! and post-multiplying by € yield
ENFIX P + FIXGVI\GTX P+ 2 LTL)E=0

It follows from X > 0 and V > 0 that X F1¢ =0 and L;£ = 0 hold. _ |
In the case where KerC) NKerL; = 0, we get £ = 0 from L1{ = 0 and C1§{ =0, a
contradiction.

. Otherwise, we assume that KerC) is Fi-invariant. Then, we see from X Fi£{ = 0 that
Fe=Fi¢, Y€€ Kex(X +CIR™CY) (4.2.13)

where ﬁ =R+ Glf?_l_GrerFl. Thus, Ker(X + CTR™1C)) is invariant under F. Since
F is anti-stable, F restricted to Ker(X + CTR™!C}) has an unstable eigenvalue A and a

corresponding eigenvector x:
Fz =Xz, [\|>1, z € Ker(X +CTRIC))

It follows from (4.2.13) that Fiz = Az. This contradicts the detectability of (C1, A).
Consequently, it has been proved that X +Cir R7IC) is nonsingular. Hence, P is finite

at ¥ = Yopt. ‘ - e L
This theorem shows that there is a possibility that P remains finite even though

P = diag[X ~1 0] diverges to infinity. For example, if L is nonsingular, P has a finite

value at the optimum.

3. Parametrizatibn of All H, Filters

In this section, we examine the behavior of the si;e of A(7y) for the va.ria,tionr.of ¥
based upon the results given in the previous section. For this purpose, we consider the
parametrization of all Hy, filters T3(o) € A(y). i

We héféa.fter assume ‘tha.t ¥ > Yopt holds. Then, the. coﬁditions (a) and (b) of Theorem
2.1 hold, and by Theorem 2.2, the H,, filter Tf(a)_ € A.(7) is given by o
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Ti(0) = —(USuz — Q22)"H(UQu — Qu2), U(o) € BHEX
Ag | -Ky —Ky

Qo)y=w'y c| I, 0
Lo 1

where W, K = [K; K3] and Ay are defined by (2.4.13),(2.4.16) and (2.4.1"7), respectively.
.Since a matrix W satisfying W JpWT = V is not unique, the degree of freedom of Ti(o) is
expressed in terms of two parameters U(o) and W. This observation makes it difficult to
evaluate the size of A(v) using the above parametrization. Therefore, we first derive a new

parametrization where the degree of freedom is condensed into only one free parameter.

Theorem 4.5: Suppose that A(y) is not empty. Then Ty(¢) € A(vy) is parametrized by

Tr(0) = —(Qoz — Z812) "} Q21 — Z011) E (4.3.1)
s o Ax |-K1 -K»

~ Gn 8 I 0

0(o) = [ﬁ“ ﬁ”} = [ " qv-‘ ; ] c| 1, o (4.3.2)
21 S22 aViy Ip o1 oo I,

where Z(0) an arbitrary transfer matrix in RH2X? such that

Z(o)WV11Z27(e) <V (4.3.3)

Proof: We define
Z{o) = Z(0) — Var V7 C(43.4)
20)=-2Y0)2u(0), |2 Z|=[-v L |Ww™ (4.3.5)

Then, simple algebraic manipulation yields (4.3.1) and (4.3.2). We also obtain

I zy
VU~ L= 2 2 |WI,W" [ AL}

= Zo(2ZV112~ - V) Zy (4.3.6)

Note that [21 (0) Za(0)] is stable and has a right inverse in RL, since U(o) € RHEXY,
We here assume that Z2(c) has a zero A such that |A\| > 1. Then, there exists a non-zero

vector ¢ such that £#Z5()) = 0. Thus, we get
WU~ - L= 0VuZE, o =)
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Since ||U]|oo < 7y and V1) > 0, €8Z{()) = 0 holds. This contradicts the right invertibility
of [21 Z,]. Thus, Zo(c) is unimodular, so that Z(o) is stable. Since Za(0) is unimodular,
1Ulloo < v implies Z(0)V112~(0) < V. '

It is also shown from (4.3.4) and (4.3.5) that

U(o) = —(Wag — ZWi) "} (War — ZW11)

Hence, similarly to the above discussion, we can show that U/{c) belongs to BH(7) if

Z(0o) is stable and satisfies (4.3.3). : . - u

If we fix the matrix W, then the mapping from U(e) to Z(o) is bijective. It may be
also noted that U (o) = 0 ¢ Z(0) = 0 holds when W is given by
' L
V3 0 }
—1 '
VWi ~(Va W' Vel - Vo)
Moreover, taking Z{c) = 0 yields the central filter defined by (2.4.31):

A-KuC | Keo
L MooC | Moo

W=

Ti(o) =

where
Ko = (APCT + BDT)(R+CPCT)™
Mo = LPCT(R+CPCT)™!

Furthermore, as shown in Lemma 4.2, P is finite at the optimum Yopt under a certain

condition. For the central H, filter of (2.4.31), Ko and My can be expressed as
Ko = (FPCT+ BDY)R™!, M, =LPCTR™!
Therefore, there is a possibility that the central Hoo filter (2.4.31) with finite coefficients
exists even though P divefges to infinity at the optimum opt.
We define |
Z(y) = {2(0)| Zvuz~ <V, Z(s) € REEY)

Then, Z(y) is a bou;ided ‘c‘losed‘ convex set, and the.following inéquality holds for: all

Z(0) € Z(v). 3 o o
I_IZIMSJ%"% o 3
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Since ﬁ(cr) is uniquely determined by -y, the degree of freedom contained in the Ho,
filter is condensed into the free parameter Z(o). Therefore, the size of the solution set

A(v) is identical to that of Z(y). Note that the quantity on the right-hand side of (4.3.7)

is useful as a measure of the size of Z(¥y).
Since Z(vy) is characterized by V1; and ¥ which depend on < and P, the results given
in the previous section are very useful to understand the behavior of the set Z(vy) as v

changes.

Theorem 4.6: The size of the set Z(vy) is monotonically increasing with respect to -y in

the sense that

Yopt < Yo < 71 == Z{72) C Z({m1)

Proof: Let Vl(li) and V() denote the values of Vi1 and V for 4; (i = 1,2), respectively.
Since V1 and 7 are respectively expressed as Vi3 = R+CPCT and V= 'yng—LI_’LT,
it follows from Corollary 4.2 that

i< vip, 7> 9@ (4.3.8)

We assume that Z(o) belongs to Z(y2), i.e. ZVl(f)Z”‘ < V). Then, we see from (4.3.8)
that

vz~ < ZviPz~ < VB < PO
Thus, Z(o) € Z(7,) holds, and hence Z(y2) C Z{m1).

Furthermore, it is easy to verify that there exists a constant matrix Z in Z{v,) such

that ||Z]| = \/ Amaxc(VD) Amin (V). In this case, there exists a nonzero vector £ € CP
satisfying
gizvilgTe = HPlg (4.3.9)

Hence, we obtain
gizviD 2% > Azv(zTe = eV Mg > PP

This implies that such a Z € Z(y;) does not belong to Z(y2). Consequently, we have
proved Z(vy2) C Z(y). [ |
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In the following, we consider the size of the set A () as -y tends to the optimum ~gp.
When Lm Apin(X) > 0, all optimal H, filters are parametrized by Theorem 4.5 because
the Agli'}w(féi.&l), i.e. (4.2.2), has a finite strong solution with ¥V > 0 at the optimum ~gpt.
However, if "}i‘%{ Amin (X)) £ 0 holds, the largest eigenvalue of P diverges tp 400 as v tends
to Yopt as observed in the previous section. Hence, it is impossible to characterize the set
A (7opt) in terms of P. Hereafter, we wish to study the limit of the set Z(v) as vy goes to
Yopt + 0 under the assumption that 'a]rﬁalc Amin(X) <0 ‘

Since Vi; and V are symmetric, there exist orthogonal matrices E(y) and E(y)} such

that

!
Vii=ET AT O E, V=ET M0 15 (4.3.10)
1o A 0 M

where A, A', M and M’ are the diagonal matrices satisfying

As = lim A < 4o0, lim A =+ool,_p
7 1vopt Tiv0pt

M,:= lim M >0, lim M =0
71 Yopt Tl vopt

and f(< p) and h(< g¢) denote the dimensions of M and A, respectively. Further, we
~ Y1 Yo
define EZET = | 1 | for Z(0}) € Z(y) according to (4.3.10). We see from (4.3.3)

Yo Yoo
that

YuA'Yy + YAYS < M

YorN'Yyy + Yool Yss < M’

Since A’ — ool and M’ — 0 when « tends to 7o + 0, Y11, Y2, and Yoy converge to 0.
q P g

Then the remaining free parameter Yj2(o) satisfies
Yi2(0)AoY3(0) < Mo
Especially, if f = 0 holds, then we get EZET = [Ya; Yas]. Also, h = 0 implies

-~ Y; : - - : ' Lo -
EZET = Y” - 1t thus follows from (4.3.3) that lim Z(y) = 0 holds in these cases.
21 TiYopt

The next.theorem summarizes the above results. . - .
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Theorem 4.7: Suppose that 1}111 Amin (X) < 0 holds.
7lx

(i) If f > 0 and h > 0, then we have llun Z(y)=1Z, , where
¥ {Yopt

Z, = {3(c)| Z = BT

Em Y.12A0Y1; < Mo:

Yia(0) € REIXPY
E,= lim E(y), E,= lim E(y)

71 Yopt ¥} vropt

(ii) If f = 0 and/or h = 0 holds, then we have Elm Z(vy) =0.
T4 Yopt

The above theorem shows that, in the case where ‘}i‘rm;c Amin(X) < 0, the degree of
freedom of the H, filter decreases at the optimum ~y,p,.

It may be noted that the case (ii) in the above theorem is not a rare case. In fact, the
problem which has a scalar measurement y; € R, namely ¢ =1 and h =0, is an example

of the case (ii), which can be seen in many applications.

4. H,/H, Filtering Problem

In this section, we propose an Ha/H,, filtering algorithm which makes use of the free
parameter Z (o) € Z(v). Suppose that A(y) is not empty for a given v > 0. The Ha/H,,

filtering problem is the optimization problem defined by

min Tedll2, or equivalently, min Teall2
Te(o)eA() I Tedl ‘ Z(o)eZ(7) Tl

In the following, we assume for simplicity that the free parameter Z{c) is a constant

matrix. In this case, we get

[ A+ K23C | Koy — Ko Z
Ti(o) = |22 12257 | oo = B2 (4.4.1)
Lo +2C | My-2
[ A+ K22C | By + K2ZD
Toa(o) = |—2 2 2 (4.4.2)
Lo +2C | (2~ M)D
Hence, the Hp norm of Tpy(o) is given by
| Teall? = Tr{(Loo + ZCYY (Loo + ZC)T 4+ (Z — M)R(Z — Mo)T} (4.4.3)
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where ¥ is the unique positive semi-definite solution to the Lyapunov equation:

0= Y + (Ao + Ko ZC)Y (Aco + K22C)T
+(Boo + Ko ZC)(Boo + K22C)T (4.4.4)

Let J3(Z,Y) and Lyap(Z,Y) be the right-hand sides of {4.4.3) and (4.4.4), respectively. It
then follows that the simplified Hy/H,,, filtering problem is formulated as the optimization

problem:

where Ziconst () is the subset of Z(v) defined by
Zenst(7) ={Z | ZE€RP™, 2ZV11 27 <V}

A necessary condition for the existence of a solution to this optimization problem is

given by the following theorem.

Theorem 4.8: Suppose that v > Yop holds, and that T;(c) € A(y) is given by (4.4.1)
with Z in Zeonst(7). If Z is a solution to the optimization problem of (4.4.5, then there

exist positive semi-definite matrices A and Y such that

(.4 + K2ZC)Y (Aoo + K22C)" + (Boo + K2ZD)(Boo -+ KgZD)T (4.4. 6)

= (Aeo + KQZC')TA(A + K22C) + (Loo + ZC) T (Lo + ZC) a4
Z=E"Y(My — M) + K3 A(Ko — K)} - (4.4.8)
where
E=l+ K7 AK»

M= LYCT(R+ C'YC’T)
K = (AYCT + BDT)(R+CYCT)!
Proof: Since Z belongs torzconst(?y), there exists & positive semi-definite matrix N

satisfying
ZZT+ N = Vv
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In order to minimize J3(Z,Y) with respect to Z,Y and N, we form the Lagrangian

L(2,Y,1) = 5[72(2,Y) + Tr{ATLyap(z, V)}

+Te{¥T(ZV1 2T + N - V)] (4.4.9)

where A and U are the costate matrices. As well known, the necessary condition for the

optimality is that
0L o 0L o 0L _
8z~ 8Y ' ON

By using the formula for the differentiation of the trace of a matrix [1], we obtain (4.4.7)

0

from L/3Y = 0. Since Ao+ K2ZC is stable, A is a unique positive semi-definite solution
to the Lyapunov equation (4.4.7). Moreover, we have 8L/0N = ¥ = 0. It then follows
that

g—g- =EZ(R+CYCT) + LoYCT — MR

+KTA(AYCT + BDT)

Note that Z and R+ CY CT are positive definite since A, Y > 0. Hence, we obtain (4.4.8)

from the above equation. m

The simultaneous equations (4.4.6)—(4.4.8) can be solved by the following algorithm

based on the gradient method.
Step 0: Set the initial value Zy € Zgonst (7)- -

Step 1: Fori=1,2, -, find the solutions ¥; and A; to the Lyapunov equations:
¥ = (Aeo + K2Z:C)Yi(Aoo + K2Z:0)T
+(Boo + K22:D)(Boo + K2Z:D)T (4.4.10)
Ai = (Ao + K2 Z:C)TRi(Ago + K2Z:C)
+(Loo + ZiC)T (Lo + Z:C) (4.4.11)

Step 2: For a prescribed small constant € > 0, check the following inequality
holds or not. ' '
[
0z

If it holds, set Z := Z; and quit. Otherwise, go to Step 3.

<E

] (ZtyiA):(Eh?i :Ai)
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Step 3: Update Z,- by
N A oL
Z1=5,-6 [_} :
A 071 (z,y \y=(Z: Fhi)

with § small positive constant. Goto Step 1.

Remark 4.1: To ensure'20 € Zconst(77), we can choose Zo = 0, which implies we can
start the algorithm from the central H, filter. Note also that as v becomes large, the
central He, filter approaches to the Hz optimal filter. Thus, the fast convergence to the
optimal solution can be achieved by starting from the zero initial value.

Remark 4.2: It may be noted that Ae + K2ZC is stable as long as Z belongs to
Zconst (7). Thus, the solutions to the Lyapunov equations (4.4.10),(4.4.11) exist for any ¢

if we select a sufficiently small 4.

5. Numerical Examples
Example 4.1: We first consider the system given by
0 0
zr + di
ye=[-2 1]m+[0 1]

Zp = - 27
k k

[ 02 —o0s5

T =
kl 15 1

By Theorem 4.1, we get 'yX = 0.806. We also obtain 70};,; = 1.065. The relationships
between v and the eigenvalues of P and X are illustrated in Figs. 4.1 and 4.2, respectively.
We see from the figures that the eigenvalues of P and X are respectively monotonically
non-increasing and non-decreasing functions of v, and that one of the eigenvalues of P
diverges to +o00 and reappears from —co as ¥ traverses Yopt from above Moreover the

eigenvalues of X and P converge to finite values as -y goes to yx.
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Fig. 4.1: Eigenvalues of P (Example 4.1)
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Fig. 4.2: Eigenvalues of X (Example 4.1)
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Example 4.2: The second example is the same system that is considered in Chapter 3.

(5 05 0 00O
The1=|0 2 1 |zk+{0 0 1 ]|dx
(0 0 3 1 00
(1 2 0] ool
. = ey s 0
Yk 100J’“ 00 1|™

r110'm . o
2 = k
k 00 1

We obtain yopt = 3.1120 and yx = 0.4861 for this example. The upper bound of || Z]|eo
given in (4.3.7) is illustrated in Fig. 4.3. As shown in the figure, the upper bound

'\/ )\mux(f}) /Amin(Vi1) decreases as -y approaches 701,;. This implies that the size of Z(vy)
monotonically decreases as -y decreases. We also see that Theorem 4.7 (i) applies to
this example becaﬁse the degree of freedom does not reduce to zero at yop. In fact, it
follows from (4.3.7) that || Z]|ee < 0.6261 when -y = 3.1120, and taking Y35 = 0.6261 yields
Z(0) € Zo and ||Tealleo = 3.1120.

1.5 E ///
Amax(V) 1 : ,/ .
Amin(Va1) V/

3 4 5 [ 7 a8
gamma

Fig. 4.3: Upper bound of ||Z]|, (Example 4.2)
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Example 4.3: As an example of the case (ii) of Theorem 4.7, we consider

[ 5 05 a0 0],
TL = . L
k+1 0 2 k 10 ke

yk=[1 2]$k+[0 1]dk

(11
Zp = Tk
01

For this example, we obtain vep = 3.500 for this example. Fig. 4.4 shows the relationship

between 7 and \/ Amax(V)/Amin(Vi1). As 7 approaches the optimum Yopt from above,

the upper bound \/ /\max(f}) /Amin{V11) converges to zero. Therefore, in this example, the
degree of freedom of Ti(o) reduces to zero at -ygpi, and hence the optimal He, filter is

uniquely determined as the limit of (2.4.31) with v — qop + 0.

0.35 ' ' ' T
=0
Amin(V11) ©-15 / i ; ;

0.05 :/ i %

L

4

N
4]
o
ih
[1)]

gamma

Fig. 4.4: Upper bound of ||Z||e (Example 4.3)

We next apply the mixed Hy/H filtering algorithm given in Séction 4.4 to this
example. The relation between v and the Hy performance is illustrated in Fig. 4.5. When
v is large, the difference of the Hy performance between the central filter and the mixed
H,/H,, filter is very small. This is because as 7y goes to infinity, the Hy, filtering problem
reduces to the Hy optimal filtering problem and hence the central filter reduces to the

67



H, optimal (Kalman) filter. When v is near the optimum 7opt, the degree of freedom
contained in the H, filter is very small, and -hence the Hy performances of the two filters
are very close as shown in Fig. 4.5. Fig. 4.6 also demonstrates the relationship between
v and ||Z|| of the Hy/H, optimal filter. As discussed above, the contribution of the free

parameter Z is small when - is close to yopt, or when 7 is very large.

6. Concluding Remarks

In this chapter, we have examined the behavior of the stabilizing solution of the H,
ARE (4.2.1) with respect to the variation of the prescribed Hy norm bound . The
following results have been obtained.

The infimum of the parameter -, for which a stabilizing solution to the Ho, ARE exists,
is characterized in terms of the L, norm of a certain transfer matrix. The stabilizing
solution P € P(v) is a monotonically non-increasing convex function of 4. Moreover, a
new parametrization of all H,, filter was derived. Based on the above results, we have
shown that the size of the set of all H ﬁlﬁers is monotonically increasing with respect to
7 (> “Yopt), and proved that there are possibilities that the degree of freedom of the Heo
filter reduces at the optimum Yopt- We also propose an Hp/H, filtering algorithm which
makes use of the free parameter Z(¢). The present results provide a.‘guic‘i'eline for selecting
the values of the parameters v and Z (o) € Z(vy). lIt may be also noted that the analyses
in this chapter can be applied to those of the Hy, controllers for 2-block problems.
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Appendix 4.1: Proof of Lemma 4.1

We denote the (F,G)-uncontrollable subspace and the stable (F,G)-uncontrollable

subspace by Crc and Srg, respectively. That is,
Crg={s€C" |G FG --- F*7!G]=0}

Sre = CrgN{EP Ker(Al, —- F)"}
|Al<1

We first prove Spe € KerP C Cpg. Since P is assumed to be positive semi-definite,
we can define P = P(I, + CTR™1CP)~1 > 0. Then, we get

P=FPFT + FPLTV-1LBFT + GGT

Let £ # 0 be any element of Ker P. Pre-multiplying the above equation by ¢ and

post-muitiplying by £ yield
¢F(P+ PLTV'LP)FTE +¢"GGTe =0

Since P € P(v), é8FP = 0 and ¢%G = 0 hold. Thus, by repeating the above argument,
we see that £ € Cpg. Moreover, let Z be a matrix which consists of the bases of Srg.
Then, there exists a stable matrix A such that SHF = AZF and E¥G = 0 hold. Post-
multiplying (4.2.2) by E yields PE = F,(PE)AY, where F,, = F — FPCTV-1C. Since
Fy, and AH are stable, we get P= =0, i.e., Spg C Ker P.
Next, we show Ker P N(Crc©8rg)=0. Since Spg _C_r KerP C Crg, there exists a
similarity transformation T" such that
T7IFT = [F‘ e } TG = [Gl }
0 B 0

P 0

CT=[01 Cz]’ LT=[L; Lz]q f-l'."_lPlT_T= 0 0

where Py > 0 and (F1,G:) has no uncontrollable modes inside the unit disk. By simple

» B v * * -
calculation, we obtain Fy, = T P T—! where * denotes irrelevant terms. Since
2
Fy is stable, so is Fy. This implies Ker PN (Crc © Spg) = 0. Thus, we have proved

Ker P = Srg. N
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Appendix 4.2: Proof of Thorem 4.2

As shown in the proof of Theorem 4.1, there exists a positive definite anti-stabilizing
solution X to the ARE {4.2.8) with Vp := I, — GTXoG; > 0.
Forn=0,1,2, -, we define

Fo=F 4G, T,=V1cTx.F

—~

V, =1, -Gl X,G,
We now show the convergence of the solutions of the Lyapunov equation
Xn—l—l = Ff?xn+1ﬁn - Pzrn - CirR_101 + ’}‘_ZL'II‘Ll (A.4.1)

The main idea of the proof of convergence is sitﬁila.r to the proof in (38]. If X, converges
to a finite value as n goes to infinity, the limit can be obtained by taking X,4+1 = X, and
it satisfies (4.2.4). Since ﬁg is anti-stable, we easily get Xy > X; and 171 > 170 > 0.

We first show that X; > X, holds for all X; € X(v). Simple algebra yields

Xo=Fl XuaFay —T0 i Tn1 = CTRT'CL+ 97 LT Ly

+(Pa - Fn—l)TVa(ra - Fn—~1) (A.4.2)
where V, = I, — G}‘XaGl and 'y = Va'lG'eraFl. Thus, from (A.4.1) and (A.4.2), we get
X1 — Xa = F§ (X1 — X2)Fy — (T — To)"¥a(Ta — To)

Since F} is anti-stable and V. > 0, by Lyapunov’s theorem, X; — X, > 0 holds.

Suppose that F 1 is anti-stable for n =1,2,---,k , and that
Xo2 X122 Xe 2 Koy VXa€X(7)
It is straightforward to show that

X = FTX B, - TITw — CTR™ICL+ v 2LT I

—(Tk = Tre1) "Va(Tk = Tk-1) | (A4.3)
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Thus, we have

Xk — Xo = FI (X ~ Xa)Fe — (Ta - o) TVa(Ta — T)

—(T%.— Tem) TVi(Tk — Thm1) (A4.4)

We here assume that Fj has an eigenvalue A with |A| < 1. Then, there exists a nonzero

vector i such that Fin = Az. It thus follows from (A.4.4) that

(1 - l’\lz)ﬂH(Xk - Xa)"? = _TIHl(Pa - I‘k)Tf;;(Pa - I‘k)"?

—(Cp — Do) V(T — i1

Since X > X, and 17; > f;’k > 0, the both sides of the above equation must be zero. Thus
we get (I‘k - I‘L 1)7 = 0. In this case, we see FL 1= Fk-r,t = An. Th15 contradicts the
fact that FA 1is antl-stable Cousequent]y, FL is also antl— table. |

Furthermore, since
Xp = Xpy1 = FT (-ch — Xi41) B = TET, — (T — D) TV (T — Thmp)
Xip1 = Xo = Ff (Xip1 = Xa) By = (Do = D) Va(Ta — T
holds from (A.4.1),(A.4.2) and (A.4.3), we get Xk > Xiyp1 2 X It follows by induction
that Xp s monotomcally non-increasing and bounded below. Therefore, Xn converges to,

a maximal element X of X(7), and F:= F| + GV~ 1GTX B has no e1genva.lues msxde

the open unit disk. .
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Chapter 5

A Game Theoretic Approach to
H Filtering Problem

1. Introduction

Chapter 2 has given a solution to the infinite-horizon H, filtering problem for time-
invariant systems based on the model matching technique in the frequency domain. Since
H., norm is the Lo induced norm of a system, H, optimization problem is a kind of
minimax optimization problems. In other words, the H, filtering problem is the minimax
optimization preblem of minimizing the maximum of the energy in the estimation errors
over all possible disturbance trajectories. However, the model matching approach given in
Chapter 2 does not directly provide such minimax properties of the H,, filtering problem
since it merely minimize the largest singular value of a certain transfer matrix. In order
to make clear the minimax aspect of the H, filtering problem, it is essential to adopt a
difference game approach in the time-domain.

In this chapter, we will consider the finite-horizon minimax state estimation problems
which are closely related with the H,, filtering and prediction problems. We first derive
necessary conditions for the existence of the minimax solutions by exploiting the sweep
method, which is a straightforward optimization method based on the Lagrange multiplier
technique [4]. Sufficient conditions for the existence of the minimax solutions are given

based on the square completion technique. It is shown that the optimal minimax state
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estimators are identical to the central Ho, filter and Hy predictor.

2. Problem Formulation

In this chapter, we consider a linear time-varying system described by

Tyl = Agz + Brwy (5.2.1)

= Crar + Dpruy ' (5.2.2)

where zr € R, yr € RY are the state vector and the measurement. The exogenous
inputs wr € R™ and v € RY are the process disturbance and the measurement noise,
respectively. Note that the values of wy, v are unknown while wg, v, are arbitrary
L,[0, N] signals. Moreover, we assume that Dj is nonsingular, so that Ry := DiDf >0
holds.

It may be noted that the system (5.2.1),(5.2.2) is different from the system (2.2.1),(2.2.2)
considered in the previous chapters. However, in the time-invariant case, the filtering
problem for (2.2.1),(2.2.2) can be reduced to the problem for (5.2.1),(5.2.2) under the
assumption that D in (2.2.2) is right invertible. For the detail, see Appendix 5.1.

As well as estimating T, we wish to estimate the vector z € R? defined by
2z = Lz (5.2.3)

Let Z; be the estimate of z; based on {vo," . ,yk}. Moreover, without loss of generality,
we assume that tHe estimate of the initial éfate ig is a prioﬂ given By Zo.

In this chapter, we w111 discuss the minimax ﬁlfering and prediction problems which
are closely related with the H,, ﬁltermg and predict:on problems.

- We ﬁrst deﬁne the cost function for the minimax filtering problem The estimate Z},
tries to minimize the squared estimation error SN o Nz — 2|2, wh11e the triple (Zg, wk, Vi)
tries to maximize the squared est1mat10n error, Slnce a,rbltrary large values of ||'w;_|| [zl
and ||:z:0|| cause a.rbltra.ry large va.lue of the estlmatxon error, we define the cost function
J as fo]lows. ‘

J (% 30, w,0) = Z 2k = %l v (Z ||wk||2 + }: loe? + llzo = Zollf-1) (5.2.4)

k=0

74



The second term in the right-hand side is the penalty term on wg,vr and zp; v is a
positive constant which represents the magnitude of the penalty. The weighting matrix II
is positive definite and represents the uncertainty of the initial state zg. From the game
theoretic viewpoint, we can say that the filtered estimate z; and the triple (wy, v, zg) are
the minimizing and maximizing polices of J, respectively.

The finite-horizon H, filtering problem is to find estimates % and % satisfying

EI?I:O ”zk - Ekllz 9 595
wots T o(lwnl? + ok D) + oo — Fols (5.2.5)

This condition is equivalent to

J{(Z; z0,w,v) <0, V(zg,wk,v1) s.t.

N )
Y (Nl + lwell) + llzo — Zollf- # 0 (5.2.6)
k=0 '

Therefore, the minimax estimation problems formulated here are closely related to the
finite-horizon H, filtering problem.

By (5.2.2), we easily see that
v = D (e — Chzi)
Thus, we rewrite the cost function J as

N N
J(Zzo,wyv) = 9 llzk — Zli> = ¥ (O lwl?
k=0 k=0

N

+ 3 llv = Gzl + llzo ~ Zolfi-) (5.2.7)
k=0

Thus the minimax problem between 2z} and (zg,wy,vx) reduces to the problem between
2k and (zo, W, Yk)-

We denote the optimal policies by 2z and (zg, w}, y3), respectively. We call wf the
worst-case disturbance. Also let v be the worst-case noise corresponding to y;. The
quadruple (2}, 23, wy, v;) are referred to as the optimal solution of the minimax problem.

In this chapter, we consider two kinds of minimax problems. In the first problem, the
measurement set {yo,*,Yk—1, Yk} is available for the estimation at time k. We call this
problem “a filtering problem”. The second problem is called “a one-step prediction prob-

lem” or merely “a prediction problem” since {yg,-- -, yg—1} rather than {yo, -, yx—1, %k}
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is available at time k. It may be noted that the problem in which all the measurement
{yo,*,yn} are available for the estimation at any time k € [0,N] is called “a fixed-
interval smooehing problem”. A remark on this minimax smoothing problem is given in
Appendix 5.2.

for the problem of filtering case, since y;. is available for Zj, the order of the minimax

optimization is

ma.x(mm(ma.x - max(min (ma.x

YN T3y UN ve 5 Wk
rnan(mln(trurgggJ)) DRED); (5.2.8)

Similarly, since yy. is not available for Zi, the minimax prediction problem is formulated

by

min{max(max - - - min{max (max
Iy YN UN 2 Yk Wy

-+ min{max(max J)) ---)) - -+)) o (5.2.9)

7 Y0 w00

Remark 5.1: In [40] and [54], the H,, filter and H,, predictor were derived from
the saddle-point policies for the minimax state estimation problems with different cost

functions:

J= E e — Zll® — v {Z(lltwc 112+ lloel®) + llzo = Zollf-1}  (Bltering problem)
k 1

J= Z ll2 — 2l — 72{2(”111;.-‘-1”2 + lloe-111%) + llwo — Zollf-2}  (prediction problem)
k= =

Unlike the above approach, we will show that both central H,, filter and H, predictor

can be derived from the same cost function (5.2.4).

3. Necessary Conditions
‘Maximizing with reSpect to zg and w;

Smce wy is an a.rb1trary L2[0 N} s1gna.l w1thout loss of generahty, it can be a.ssumed
tha.t wk can utilize all the da.ta of {vg, - ,yN} and {20, ,zN} Therefore, we can ﬁ.rst

perform the optxmlzatlon thh respect to zp and {wy, - ,w N}
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To maximize J with respect to z¢ and wy,, we form the Hamiltonian

1 _ -~
Hi = 57 2Lz = 3l = 72wl + g — Cuoallyon))

AT 1 (AkTi + Brwy, — zx41)

where A is the costate vector. The cost function J is related to Hy by

1 o z 1 -2
~y2J =) Hy — 2|0 — Zollf
2 £ 2
=0
N
= SO (Arzi + Brwg — Tg41)
k=0

(5.3.1)

(5.3.2)

Let (z}, A;) be the trajectories of (zy, Ax) corresponding to the worst case disturbance wj.

Then, the necessary conditions of optimality is given by

‘ 8H,
=
k41 (wp,ze drp1)=(wi 2324 0)
OH;
0= —=
awk (wknzklAk-l-l):(w;}m::A;.{,l)
OH,
3 = 2k =0
amk (werk))*k-!-l):(w;lria'\;.i.l)
1% - OH, .
I 1(2‘.'0—3:0):—8——9 =A0
1:0 (wo,ro,Al):(wa,Ia,A;)

Therefore, we have
Thy = Arzk + Brwg, zp =+ II)g
* _ pTyx
wi = Bi Aky

ATAL = M+ (CERICy — v LY Li)ak — CF R i + Lig 3

= )\ - CTR; (g — Crz}) + v 2LL (B — Lizl), Ayyr =0

From (5.3.7)—(5.3.9), we have the two point boundary values problem (TPBVP)

I, —BiB} Thi |
0 4T X

-+

Ay 0
CIR;'Cy —~~2LTL, L
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0 £y = Zo + 1IN}
—CFR e+ 25 | Avgr =0

(5.3.3)
(5.3.4)
(5.3.5)

(5.3.6)

(5.3.7)
(5.3.8)

(5.3.9)

(5.3.10)

(5.3.11)



Since this TPBVP is non-homogeneous and linear with respect to z} and Af, zj can be

expressed as
Th = Tp + Ped}
Then, from (5.3.11) and (5.3.12), we get
Zrpr — AiFe = (BeBf — Pep1) Al + ArPA}

ATNisy = DAt — CF Ry — CiB) +v72Li (B — i)

where

S = In+ (CTR\C, — v 2L L) P,

(5.3.12)

(5.3.13)

(5.3.14)

Since A} is finite, % is nonsingular. It thus follows from (5.3.13) and (5.3.1'4) that

Bpp1— ArBr —APL S CT R (g — CiBr)
+1 2 AR P L (B - LiEe)

= (APET AT+ BiBF = Pert)¥in
Sinpe the above equation is true for a.fbitra.ry A}:’,We, obtain
Pept = AxPsST AT + BuBY, Py = I
Frpr = ABe + AP CERE (ue — Cie)
~7 A PE L (B - LiBr), Bo=30
.Th?le equation (5.3.15) is the well-known Heo-type RDE.
3.2 Minimax optimization with re;sp_ect to 7 and y;
Simple bp‘t‘ tedious c_a.lcula.tion using (5.3.7){5.3.16_) yiglds |

’Y (AL+1 Pk+1 )‘k+1 - ’\k Pk)‘k)

= —l% - Lisi) + 72(|Iwk||2 + "yk ~ ckm;..llﬁ-; )
o T
+ - Zk. ) Qk _Lk“kck Rk

B 7 -—RLICk._.LLT —RkIQkRk

H

8

(5.3.15)

(5.3.16)



where
Qe =1, +y 2L E LT
Q. = v (Ri — CLExCY)
¥ = Yk — CiZx
Zr = 2 — L1 3,

Sk = BIf?

Since A4, =0, 25 = Zo +IIA§ and Py =11, we get

N
S VPO Per1Aip — AT PAL) = Y2 (A% Pes1Aivgr — A5 TPoAg)
k=0
.=~z — Zo[|%-1
It thus follows that

max J (2, 70, w, v) = J (%25, 0", v)

N
=3 "{llLezi — Zl* — ¥ (llwill® + flye — Ckfﬂ;’éllz;:)}
k=0

=72l — Zoll-1

T
N _

Minimax Filtering Problem

Q. —LiECTRY | =
~RIACE(LT —RR:Y || o

](5.3.17)

It is easily seen from (5.3.17) that there exists a unique optimal minimizing policy 2
if and only if |
Q= Ip+ 7 2LiEc L] >0 Vk €[0,N]

Lemma 5.1: Suppose that @ > 0 and P; > 0 hold for the RDE (5.3.15). Then
Pry1 > 0 holds.

Proof: Since P is positive semi-definite, there exists a matrix B := Py (I.+CT R 1CkP) L.

Then, using the matrix inversion lemma, (;, can be expressed as
O = (I, — v 2Lk P L) ™!
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Moreover, We define K = PkCE(Rk + CkPkCE)“l to get
Py = (I, — ExCi) Pe(ln — K .Ci)T + Kp Ry K 2 0
Hence, from the assumption £ > 0, we obtain
Peg1 = Ak BT AT + By BY |
= A(Pe+ 7 2B LT UL P)AT + BuBT 20

This completes the proof. [

In the following, we assume that ;. > 0 holds for all & € [0, N]. Completing the squ.are

with respect to Zj, (5.3.17) reduces to

N
JE g, wy) = 3 (& — O LSk CT Ry 0:) T (B — Q5 LiErCE R 10t

k=0
N
—* 3 #F (R + CLPCE) e (5.3.18)
k=0
Therefore, taking
Z — QL LLEWCT R g = 0 (5.3.19)

yields the optimal estimate Z}. Let Z/; be an estimate of z; based on the measurement
set {yo, -+, ¥:}- Since i can be regarded as an estimate of z; based on {vo,---,¥r-1}

from (5.3.16), we rewrite as Z; 1 = Tx. It then follows that
2 = LiZrm-1 — L Ke(ye — CxBrje—1) = Ik - (5:3.20)
Brpk = Tppr- + Ki(ye — CeBrpe—1) - - (5.3.21)

Trar/k = AkTrjk-1 + ArKie(yr — CiZre—1)
= AZpk,  Bojo1=%0 - (5.3.22)
K = P.CY(Ri + CP.CT) ! | ~ (5.3.23)
If Q) > 0 holds, then Py > 0 and Ri + CPC{ > 0 hold from Lemma 5.1 and
Py =11 > 0. Then, by taking 3 = 0, we get a unique worst case measurement y;. Thus

the worst case noise is given by
"’: = .”."D):;Ck(‘ﬂ"k.— Zk/k-1)
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Moreover, the cost for the optimal solution is given by
J(Z oy, w™,v") =0

Theorem 5.1: Consider the minimax filtering problem (5.2.8). For the existence of a
unique solution to the problem, it is necessary that the RDE (5.3.15} has a positive semi-
definite solution Py and %I, — LB LT > 0 holds for all k € [0, N]. Then the optimal
estimate Z, is given by (5.3.20)- (5.3.23).

Minimax One-Step Prediction Problem

We see from (5.3.17) that there exists a unique worst case measurement y;. if and only
if
O = v2(Ry —~ CLPZICE) >0 Yk € [0, N]

By completing the square with respect to %, (5.3.17) reduces to

N
J(z; 373, why) = - Z(Rgl’gk -+ QEICkEkLEfk)TQk(R;]"y}C + QEICkEkLEEk)
. k=0
N
+ 3 2 Iy — v Lk P L) (5.3.24)
k=0

Thus we get the worst case measurement g} by taking

R g+ Q7 ChER LT 2 = 0 (5.3.25)
Moreover we get N
JE 25w, y") =3 % (Ip ~ Y 2Lk P L) 7 % (5.3.26)
k=0

Therefore, for the existence of the optimal estimate Zy, it is necessary that
2 T ' :
I, — LPLT >0 (5.3.27)

Then we get the optimal estimate Z}; by taking 2 = 0.

2z = LiZypi1 (5.3.28)
Fppie = AiBr/io1 + ApKi(ye — CeBrpen1),  Boyo1 = %o (5.3.29)
Rk = ﬁk‘C’kT(Rk + Ckf;kc;?)_l ' (5.3.30)
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Moreover, from (5.3.25), the worst case noise vy is given by
vp = =D Cr(zk — Brjp—y)
Then the cost function becomes
J(Z*zh,w*,v™) =0
The next lem.ma shows that ék > 0 holds if y?I, — L P Lf > 0.

Lemma 5.2: For the RDE (5.3.15), if P, > 0 and v2I, — Ly P LT > 0 hold, then Qk >0

and Pk+1 2 0.

Proof: Since P, > 0 and 72Ip - LkPkLE > 0, there exists a symmetric matrix jSk such

that

Pi = Pi(I, = v *LE Ly P) ™!
= Py + P LY (42, — Ly P.LT) 'Lk P 2 0
Then we get
772 = Ry — CL P ICE
= Rj — Ck};k(fn + CER;ICkﬁk)_ICE
= (Rp + CeBCH 1 > 0
There also exists a matrix -P" = P(I, + CT R,:lckPk)“l since P, > 0. Thus we obtéin "
.. B =P~ PC} (R + CtPCY)1CLPL < By
El_.:rthe_rmore, since 'szp - LkPkLE > 0, we get
Voo = DBl 2 YLy — P LT >0 . (s.3.31)
We thus get Pyi1 > 0 from Lemma 5.1, . ‘a

In summary, the following theorem gives a necessary condition for the existence of the

minimax prediction problem.
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Theorem 5.2: For the minimax prediction problem (5.2.9), a necessary condition for
the existence of a unique solution is that the RDE (5.3.15) has a positive semi-definite
solution Py such that v2I, — Ly P LT > 0 for all k € [0, N). Then the optimal estimate z}
is given by (5.3.28)—(5.3.30).

Remark 5.2: Suppose that P} satisfies the conditions in Theorems 5.1 and 5.2. Then,
Py is positive definite if A is nonsingular and/or By, has full row rank. Thus, for simplicity

of discussion, we hereafter assume that A; is nonsingular for all k.

4. Sufficient Conditions

In this section, we show that the necessary conditions in Theorems 5.1 and 5.2 are also
sufficient conditions in the case where Ay is nonsingular. Similarly to the reference [12],
we can prove the sufficient conditions by completing the square argument.

In this section, we assume that P, > 0 and I, — Li P L¥ > 0 hold for all k € [0, N].

From (5.3.31), this assumption is valid in both filtering and prediction cases.

Lemma 5.3: Suppose that the RDE (5.3.15) has a positive definite solution P, such that

721',, — LkPkLg > 0. Then there exists a positive definite symmetric matrix X, satisfying

Xi = AT Xpp1 4k + AL X1 BV BE X1 A
+y72Lf Ly — CER;Cy (5.4.1)

Vi=1In=-BfX11Br >0 _ (5.4.2)

Proof: We first define X = Pk_l, s0 that P > 0 implies X > 0. Moreover, since A
and P, are invertible, X} satisfies (5.4.1) by the matrix inversion lemma.

Furthermore, since P > 0 and Q;l = 2L, — Lt B LT > 0, we get
Ep = BT = B+ v PP LI L P > 0 (5.4.3)
Thus we see from (5.3.15) that X,:_&l ~ BBl >0 holds.- This implies (5.4.2). [
We define % by (5.3.16) and %) = z¢ — Zi. Then, from (5.2.1) and (5.3.16), we get
Frp1 = ArZr + Brwe — AkSk(CE R 'k — v ALY 2) (5.4.4)
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It thus follows from (5.3.15),(5.4.1) and (5.4.4) that

Fop1 Xitt Deel — ZF XiEx
= Jwel® + vk = Croellps = 2k — 2kl |
VB Xes1 Ax{Er — Sx(CTRE Gk — LTz )} 2
= lw = Vi " BeXiey1 Ar{Zr — Ex(Cp B Gk — Lic 2)} W

T .
% — L= CTR? z
e IQ’“H i L‘_f S I A (5.4.5)

Furthermore, it is easy to verify that

N .

. = ~Ty ~\_ =T _— ~Tyr—1x
Z($E+1Xk+1$k+1 - kakﬂ?k) = $N+1XN+1$N+1 —xp II-7 %
k=0

Hence, we obtain

N .

J(z;z0,w,v) = —72 Z ||wy, — willﬁ - ')’25"11\}+1XN+15N+1
k=0
X 51" o LR ] [ a ]
S . SRk | (5.4.6)
k=0 | % | | —Bi CeBxly —RySWR | | -
where . - ‘ : _ .
wi = Vi ' BuXip A{Zr — BR(CTR T — LR 2)}) (5.4.7)

Since Vi > 0 for all & € [0, N], the worst case disturbance is uniquely determined by
(5.4.7). Moreover, the next lemma holds for w}, of (5.4.7).

Lemma 5.4: Let wi be defined by (5.4.7), and define )\k—=_Pk_1_-:b"k- If we take wy = wy,
then A satisfies (5.3.14). |

Proof: From (5.4.4) and (5.4%.7), we get .-
w = Vk;lé&-Xk+1(.§.k}1 —Bkwi) o
Noﬁing (5.4.2), we solve éhel abc;\;e equatién :to .get |
| :z“’? - G +w X*+iékj_.l-vé;l-ggéfk?-l5.“;I -

_ Ty .~
= B Xk 41Tk41
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Since Xj = Pk_1 and A = P,:l'm'k, we get wy = BE)\H_I. By substituting this into (5.4.4),

we get
(Pet1 — BEBi)Aet1 = AxPid — AP Z (CT R ik — v 2 LY %)
From (5.3.15), pre-multiplying by (4xP.E;')~! yields
AF Moy = Ek)\k — CL R gk + v 2L 2
[ |

Since Z; and g are independent of z, Zxy+1 = O {equivalently, Axy41 = 0) holds for

the optimal initial state 3. Note that z§ can be uniquely obtained by calculating (5.3.14)

Zk
Uk

Tracing back the discussions in the subsection 3.2 for the above equation, we obtain

backwards. Thus we get

T
N = =, T p-1
-~ % Z 2k Qr — L= CL R
J(z;xﬂaw ,'U)= _ _1 —_ T _l—k __{cl
L=0 | Y _Rk Ck:kLk —RL‘ QkRk

the following theorems.

Theorem 5.3: Suppose that the RDE (5.3.15) has a positive definite solution Py and
v2I, — LB LT > 0 holds for all k € [0, N]. Then the minimax problem (5.2.8) has a

unique optimal solution.

Theorem 5.4: Suppose that the RDE (5.3.15) has a positive definite solution F and
v2I, — Li P LT > 0 holds for all k € [0, N]. Then the minimax problem (5.2.9) has a

unique optimal solution.

5. Relation to H, Filtering Problem

We next show that if the minimax problem (5.2.6) (respectively, (5.2.7) ) has a unique

solution, then the optimal estimate 2} satisfies the H, error bound (5.2.5).

Theorem 5.5: Suppose that the RDE (5.3.15) has a positive definite solution Py, for all
k € [0, N], and
VI, — L B L >0 VE€[0,N]

Then the filter of (5.3.20)-(5.3.23) achieves the Hy, error bound (5.2.5).
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Proof: Let us define Z} by (5.3.20)~(5.3.23). Then we see from (5.4.6) and (5.3.19) that

N N
& m0,w,0) = —7H{Y lhwe = will}, + > 7 (R + CePeCr) ™ o}
k=0 k=0

—V?E g1 XN41EN41 £ 0

Hence the optimal policies for wg, §ix and Zy4+1 which maximize J (z*; zg, w,v) are given

by

n—

wp=wp, =0Ty =0

Using §x = 0,Zn41 = 0 and the definition of 2}, (5.3.14) reduces to
Afdpr1 = Zpde, Ang1=0
This implies Ay = 0, Zz = 0 for all & € [0, N]. It then follows that

v =-D'CiEr =0
wi = Bf A1 =0

§0+HA0=£0 .

zg

Hence we obtain

N .
> (il + ||"UE||§::) + ||z5 — Zollf-1 = 0
k=0

Consequently, (5.2.6) (equivalently (5.2.5)) holds for the filter (5.3.20)-(5.3.23). N |

A similar resﬂt is obtained for the one—steplprediction problerﬁ.
Theorem 5.6: Suppose that the RDE (5.3.15) has a positive definite solution P for all

k € [0, N], and
- Ly P LE >0 VYke[0,N]

Then the one-step predictor (5.3.28)-(5.3.30) achieves the Ha, erfor bound (5.2.5).
Since the filter (5.3.20)-(5.3.23) and the pi'édiétbr .(5.'3.2'8)—(5.3;30) satisfy ‘the Hm
error bound. They are referred to as an H, filter and an H predictor, respecti\"ré.l.y..‘the

also that, 2s v tends to infinity, the filter of (5.3.20)—(5.3.2'3) reduces to the Kalman filter.
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Therefore, the filter of (5.3.20)—(5.3.23) is called the central H, filter. This definition of
the central H, filter is consistent with the definition in Chapter 2.

Remark 5.3: Fujita et al. [12] gave a similar result for filtering case under the condition
of P > 0 and Z; > 0. The equivalence of Z; > 0 and 421, — Ly B LT > 0 is easily shown
using the definition of Zj.

Remark 5.4: If the initial state is exactly known a priori (i.e. o = Zg), then the He,

error bound and cost function J become

N = 112
—0 12 48
>ke=0 ll2e — Zl < 2

o S o (el + v l?)

N N
J&Ew,v) = llae = Bl =2 3 (lwrll® + Hloell?)
k=0 k=0

In this case, the solutions to the minimax problems are irrelevant to the weighting matrix

I, and we have Py = 0.

6. Concluding Remarks

In this chapter, we have shown that the solutions to the minimax filtering and predic-
tions problems are given by the central H, filter and H,, one-step predictor, respectively.
Furthermore, in deducing the minimax solutions, we have derived the worst noise and dis-
turbances in the sense that they maximizes the cost function (5.2.4), or equivalently they
maximizes the energy gain between the estimation errors and the noise disturbances.

In the infinite-horizon time-varying case, in addition to the existence of a solution
to the H,, RDE, it is required for existence of a solution to the H, filtering problem
that the Riccati solution P is an stabilizing solution, that is, the autonomous system

it = FkE;Tfk is exponentially stable (see, e.g. [36] for the continuous-time case).
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Appendix 5.1: Reformulation of Filtering Problem

We here reduce the filtering problem for (2.2.1),(2.2.2) to the problem for (5.2.1),(5.2.2)
under the assumption that D has full row rank.
‘We now define D¥ = DTR~1 to obtain from (2.2.2)

0 == BD¥(~yi + Czi + Ddy)

Subtracting this from (2.2.1) yields

zr11 = (A — BD¥C)zi + BD dp + BD¥y, (A.5.1)

where DL = I, — D#D. By linearity, zy, is decomposed as T = :rg) + mff), where
o), = (4- BD*C)), + BD 4y, o) =z (A.5.2)
355331 =(A—- BD#C')&:E?_El + BD#y,, zl(lz) =0 - (A.5.3)

Clearly, given the history of the measurements, :ci?) is known exactly and the task of

estimation becomes that of estimating x(,l) only. Further, we introduce a new measurement
k Y »

Y = Yk — fo) = C:nil) + Ddj, (A.5.4)
Since D has full row ra.nk, there exists an orthogonal matrix U such that DU =[D' 0]

with D' nonsingular. Accordingly, we partition U as U = [U; U] and define Ug ] —

wy,
T Uirdk : ‘
Utdy = 7 . Then, (A.5.2) and (A.5.4) reduce to
o), = (A— BD*C)z{" + BUow, - (A.5.5)
v, = Col) + D'y o (A58
Since |‘[dk||2 = |Jui|? + llwi]|?, and since the estimation error is only due t(.) the error in

estima.ﬁng mil), the filtering problem for (2.2.1),(2.2.2) reduces to that for (5.2.1),(5.'2.2)

by redefining as follows:
(1)

Ty — I
Vi — Uk
A-BD#¥C — 4
By — B
D —_ D.
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Appendix 5.2: Minimax Fixed-Interval Smoothing Problem

The minimax smoother which minimizes J(Z; z3,w",v) is obtained by taking z; = Ly},

in (5.3.11) since all the measurements {yp,--*,yn~} are available for the estimation at time

k € [0, N]. Thus the minimax smoother is given by

Zy = Lz} (A.5.7)

I, -B.Bf i | _ Ay 0 Tk
A1 CIR;IC: I, AL

0 AT
0 5= 3o+ I
1 o , .'L‘g %0 0 (A.5.8)
—Cy By vk A1 =0

We see from this equation that the smoothed estimate zj in the minimax smoothing is

independent of y and L. This feature makes the H,, smoother identical to the Hy optimal
smoother. A necessary and sufficient condition for the H., optimality of the smoother

was given by Nagpal and Khargonekar [36] and Basar [2].

Theorem A.5.1 [36]: A necessary and sufficient condition for the smoother (A.5.7),(A.5.8)
to satisfy the Ho error bound is that there exists a matrix X; satisfying (5.4.1) with
Xn+1=0and Xy <1
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Chapter 6

Performance of Central Hqo
Filter, Hy Riccati Difference
Equation and Hy, Fixed-Lag
Smoothing Problem

1. Introduction

As shown in the previous chapters, the H,,, filtering problem has been solved from
various viewpoints [12],[19],[20], [62],[53],[55]. At present, however, the performance of
the H,, filter has received much less attention. Thus, in this chapter, we will study the
performance of the central H, filter based on Riccati difference equations. It is well
known that, as the prescribed Ho, bound 7y tends to oo, the Hy, filtering problem redﬁces
to the Hz-optimal filtering problem. Kalman filter offers the optimal state estimates in the
least-squares error sense when the disturbance is zero mean white noise and its covariance
is exactly known. Thus, we first consider the performance in the case when the underlying
disturbance is zero mean white noise by comparing the H,, and Hy (Kalman filtering)
RDEs. Next, we clarify the the relationship between v and the performance of the central
H,, filter based on the monotonicity of the H,, RDE.

Next, for a time-invariant system, we will show that, under a certain condition, the

solution of the H,, RDE converges to a stabilizing solution of the corresponding H,
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ARE. This result gives a connection between the finite and infinite horizon H, filtering
problems.

Furthermore, for the case where a fixed time lag is allowed between measurement and
estimation, the state estimator is termed a fixed-lag smoother. As well-known, there are
many applications particularly to communication systems where a delay sufficient to yield
a useful improvement in estimation from smoothing is acceptable [26],{35]. Based on the
precedent results on the H, filtering problem, we will derive a solution to the H,, fixed-lag

smoothing problem.

2. Performance Analysis of Central H. Filter
2.1 Finite-horizon H,, filtering problem

We now briefly review the result on the finite-horizon H, ﬁltering‘problem. We again

consider the system described by

ZTpy1 = Apzy + Brwy (6.2.1)
Yt = Cray + Dy (6.2.2)
zy = Lyzi (6.2.3)

where z. € R"*, y;. € R7 and z, € RP are the state vector, measurement and the vector to
to be estimated. The exogenous signals w; € R™ and v € R are the process disturbance
and the measurement noise, respectively. Moreover, we assume that Ry := DkDE >0
holds for any k.

The finite-horizon Hy, filtering problem is to find estimates of z and z; based on the

measurement set {yp,--,yx} such that

N _ a2
k=0 llzx — 2kl <2

sup

_ (6.2.4)
wwizo Someo(lwell2 + lvkll?) + llzo — Zoll -

where %} is the estimate of zi, and Zg is a priorl estimate of the initial state zg. Also,
II is a positive definite weighting matrix which represents the uncertainty of the initial

state. As shown in Chapter 5, the central Hy, filter which achieves the above Ho bound
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is given by

B/ = Brsi-1 + Ki(yr — ChZrse-1) (6.2.5)
Zip1/k = AkZh/ks Zo/—1=To - (6.2.6)
2= LiZi | ‘ (6.2.7)

Ky = PoCT(By + CrBCT)™  (6.2.8)

where P} satisfies the RDE
Pipt = APlln + (CERTIC, — v LT LK) P} AT + BiBi, Fo=1 (6.2.9)
and

Vi =42, — Le Pl + CRRF\CLP)TILE > 0 (6.2.10)

2.2 Estimation error covariance
We define
al Y 2 Al 2 2
T =3Iz = 5l = PG lwell® + 2 llwell® + llzo — Zoll-1) (6.2.11}
k=0 h=0 k=0

We see from Theorems 5.1 and 5.3 that the filter of (6.2.5)~(6.2.8) is the optimal minimizing

policy of the minimax problem:

max(min(max - - - max(min(max

YN ‘;N‘ wy Ve g Wk e
- -_r%g-X(n%in(ggg}g DN (6.2.12)

As 7 tends to infinity, the second term in J(Z;zp,w,v) becomes dominant and the

minimax problem reduces to the minimization problem:

N
min {-Zj(nwkn2 + Ik = Chzell3on) + llmo = Zol3- }
" k=0 : _ S
As well-known, this minimization problem is equivalent' to the minimum-variance estima-
tion of least-squares estimation problem where zg is gene_ra.ted by the Gaussian distribution

N (Zg,TI) and where w;, and v, are the Gaussian white noise processes such that

Blw)=0, Bwl=0 (6213

o E ' S = i) R 2.
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Among all causal state estimators, the optimal solution to this problem is given by the
Kalman filter:

Bk = Zpspo1 + Kilyr — CiBrjr—) (6.2.15)
Tit1/k = AkZh/es Toj-1 = To (6.2.16)
K, = PICE(Ri + C PLCT)? ' (6.2.17)

where the matrix P/ is the optimal one-step prediction error covariance matrix
Py, = E{(zk — Trr-1)(@k — Base—1) T}
and satisfies the following RDE.
Pl = AuPLAT — A PICT (R + ChPLCE)ICLPLAT + BLBY, Pyj=1  (6.2.18)

It follows from the above observation that the H, filter is a modified version of Kalman
filter by using the parameter . Hence, it is very important to compare the performances
of the H, and Kalman filters when wy, v and zg are given by the Gaussian white noise
processes. In the following of this chapter, we assume that there exists a positive semi-

definite solution Py to the RDE (6.2.9) satisfying Vi > 0 exists for all k¥ € [0, N].

Theorem 6.1: Suppose that zg ~ N(Zg,I1) and wg, v are the zero mean Gaussian

white noises with unit covariance matrices. Define

Qk = E{(zk — Teyk—1) (Tk = Erye—1) "} |
for the Ho, filter of (6.2.5)-(6.2.8). Then Py, > Q) > P}, holds for all k € [0, N].
Proof: We define

Fi = AK) = A P.CT (R + Cr BL.CE) !

Fl = AuKL = A PLCT (R + CLPLCT) ™!

From (6.2.1)-(6.2.3), (6.2.5) and (6.2.6), the dynamics of the estimation error Z; :=

Tk — Ty k-1 is described by
Fry1 = (Ar — FixCr)Tk + Brwg — FeDpve, To=z0— Zg
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It follows that
Qui1 = (A — FLC)Qu(Ar — FiCi)T + FeRe P + By B, Qo=1TI (6.2.19)
Also, after some simple calculations, the RDE (6.2.9) reduces to

Pes1 = (Ar — FCr) PelAr — FLC)T + FL Ry FE + BrBY -

+ Ak B LY (V2L — L B L) T Lk B AT, PBy=T . (6.2.20)
where P 1= Pi(In + CTR;*Cr)~! > 0. Subtracting (6.2.19) from (6.2.20) yields

Pyl — Qre1 = (Ag — FCy) (P — Q) (Ay ~ FLCi)7T
+ARPLY (1T, — LB LT Lo P AT,  Po—Qo=0

Since Vi = 72Ip— Ly By LT > 0 holds for all k € [0, N], we get Pe—Qy 2 0 for all & € [0, N]
by induction.

- Next we prove @i > P{. It is easily verified that
Ply1 = (A — FICy)Pl(Ax — FLC)T + FLRyF{™ + ByBT |
= (g — FiCi) LAk — F@Ck)T + BiBf + F Ry Ff

—(F. — F)Re(Fe — F)T, Pj=0 (6.2.21)

Subtracting (6.2.19) from this yields
i1 — Qa1 = (i = FeCi)(PL — Qi) Ak ~ FiCr)™ = (Fi — F{)Ry(Fy — F})"
where Fj — Qg = 0. Since Ry >0, we get P — Qi < 0 for all & € [0, N] by induction. W
We now define -
- Pe=PlL+CRTIC )T
- B=P(I.+C{RCR)T

Then we have the following lemma.

Lemma 6.1: For symmetric matrices P, and P| » if Py > Pl > 0 holds, then Pe>PFl>0
holds. o
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Proof: We easily see that
By = (In ~ KxCp)Pe(ln — KiC)T + KR KE > 0 (6.2.22)
Pl = (I, - K\CL)PiI — K4CW)T + KLRKLT > 0 (6.2.23)

where K and K, are defined by (6.2.8) and (6.2.17), respectively. We also rewrite (6.2.23)

as
Py = (I, — KpCh) Pi(In — KxCi)T + K Ry KT

—(K} — Ki)(Re + CLPLCT) (B, ~ Ki)T (6.2.24)

Subtracting this from (6.2.22) yields
Py — P = (In ~ KiCi) (Pr = P)(In = KiCi)*
+(Ki — Ki) (Ri + Ch PLCT ) (K}, — Ki)T (6.2.25)
The right-hand side of the above equation is positive semi-definite since P, > P;, > 0 and
Ry, > 0. Thus we get P, > P > 0. [ |
The gain matrices K and K can be expressed as

K. =BCIR', K= PCIR!
Thus, from Theorem 6.1 and Lemma 6.1, we get | K|l > [|KL]- This implies that the
H,, filter is more sensitive to yr — CkZ/x—1 than Kalman filter. In the case where the

measurement noise vy, is small, the estimate by the H,, filter converges to the actual state

faster than Kalman filter.

2.3 Relationship between v and H,, RDE

We define
Yr(P,7) = P+ PLY(y*I, — Ly PL{) 'L\ P

Then we have the following lemma.

Lemma 6.2: Assume that P() > P(®) > 0 and %I, — Ly PO LT > 0 hold for a given

n X n symmetric matrices P and P}, Then we obtain
- (PO, ) 2 (PP, ) (6.2.26)
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Proof: We define

M) = yPOLT (2L, — LPOLD™ (1=1,2)

MLy, ML
(Pk(P:M)=(In+ 7L>P(In+—7k—) MMT

It is clear that ¢ (P(),v) = or(PO, MJE"))_

For any matrix M € R"*P, we get
i i { 1 1 £ 1 .
ou (PO, M) = pp (PO, M)+ 5 (M) = )Ty — L DM - T (G=1,2)
It follows that

(PP, ) — ¢(PB) ) = m(Pm M) — o (PO, MP)
e (PO, 1) + S - M) 01, - L PO LT (M — MP)T
~pi(PD, M )) |
= (In + Mf)_‘gi) (P — P2 (I + MQ)L‘-)
Y Y
+7 (MY ~ MP) (L, — POLTYY - M)T

Since P(1} > P() and 72Ip — L POLT > 0, we obtain Pi(PW), ) > (PP, ). |

Let P() denote the éolution to the RDE (6.2.9) for given % {t = 1,2). Then,l F_’éi)

satisfies
:5+)1 = AP L+ (CERFCL — v 2L L) PPy AT + B BY, F§? = T1(6.2.27)

We also define o o
B = PP(I, + CE R Ci ()

Theorem 6.2: Suppose that 71 < 72, and that the RDE of (6.2.9) has positive semi-
definite solutions P{) (i = 1,2) such that y?I, — L PO LT > 0 for all k € [0, N]. Then,
PN > PP and B > B hold for all k € [0, N].

Proof: Since P,Sl) > P,SQ) implies P,gl) 2:1_’,5_-2)» by Lefnina 6.1, it suffices’ to pfove
P 2 PP,
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For k = 0, it is obvious that P{") = P{¥ = II.
We assume that P{") > P{®) holds for k = 0,1,---, . Since P{? > 0, BV (i = 1,2) are
well-defined and positive semi-definite. We see from Lemma 6.1 that Pt(l) > Pt(z). It thus

follows from Lemma 6.2 that

BB, 1) = (P, 1) > (P2, 40) : (6.2.28)

By simple calculations, (6.2.9) reduces to

P = 4y (PO, 7) AT + B,BY (6.2.29)

Thus, we get
P~ PR = Ade (PO, m) ~ (PP, 1)) 4T 2 0 (6:2.30)
As a result, we have shown by induction that P}El) > P,Ez) holds for all k € [0, N]. n

The above theorem shows that the solution to the RDE (6.2.9) is monotonically non-
increasing with respect to the parameter . By the discussion similar to the previous
section, as y becomes large, P and E{|\zx — Z4/5-1/|*} become small, while the Ho, filter
gets less sensitive to vy 1= gy — Ck':i:‘k/k_l. As a result, the parameter v represents the

trade off between the mean square error and the sensitivity to the estimation error vy.

3. Convergence of the Solution of H, RDE

In this section, we consider the connection between the finite and infinite horizon H,
filtering problems by showing the convergence of the solution of the Hy, RDE (6.2.9).
‘We here assume that the coefficient matrices of the system (6.2.1)—(6.2.3) are constant.
According to the assumptions (A1),(A2) in Chapter 2, we assume that (C, A) is detectable

and that (A, B) has no uncontrollable modes on the unit circle.

Theorem 6.3: Suppose that there exists a positive semi-definite stabilizing solution of

the ARE
P =AP{I, + (CTR'C —472LTL)P}'AT + BBT (6.3.1)

with V := 42I, — LPL™ > 0, where P =P(I,+CTR™ICP)~!. Then, the solution to the
RDE (6.2.9) with Py = 0 converges to the stabilizing solution P as k tends to infinity.
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Proof: We show that P is monotonically non-decreasing and bounded above, namely
> P> Py = o (6.3.2)

For k = 1, it is obvious from Py = 0 that P, = BBT < P holds.

For k =t+ 1, we assume that

We see from Lemma 6.1 that
P2P2P12P2FR=0 (6.3.3)
Hence, we get
0 < 42I, — LPLY < *I, — LBLT < 4L, — LB I"
It. thus follows from Lemma 6.2 that
Y(P,7) 2 ¥(Pry) 2 ¥(Po1,7) 20
where $(X,7) = X + XLT(y2I, - LXLT)"'LX. Since P; and P are expressed as
| P = Ay(P,7)AT + BBT |
Pry1 = Ap(P,7)AT + BBT

the above inequality implies P > P41 > P;. Thus, we obtain (6.3.2) by induction.

- Furthermore, the stabilizing solution P is minimal among all the positive semi-definite

_solution of (6.3.1) with V' > 0 [43]. Therefore; P, converges to the stabilizing solution of

(631). | BRI | | - ' n
It may be note that the ARE (6.3.1) can be rewritten as

- P=APAT - APCT(R+CPCT)-1CPAT + BET

- T
C . B= DD 0
L1 o 0 __,YQIP- L

Thevrelfore,'fqr the system qf (6..2.,1,)-.(‘6.2,‘3), the ARE (6.3.1) is identical to the ARE (2.4.6)

6'7=

in Theorem 2.1.
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This theorem shows that if the infinite-horizon H, filtering problem is solvable, then
we can obtain a solution to this problem as the limit of the solution to the finite-horizon

problem with zg = Zo.

4. H, Fixed-Lag Smoothing Problem

In this section, we derive a fixed-lag smoother which achieves the H, error bound. We
consider the system of (6.2.1)-(6.2.3) under the assumption that z_;, 1=0,1,---,h are
exactly known. The H, fixed-lag smoothing problem is the problem of finding estimates

Z; and % based on the measurement set {yo,- -, ¥r+r} so that

N = 12
o Zhoe o —
k=0 llZk—h = Zi—nl < o2

sup
wo DA g (llwell? + flvell?)

where the constant A > 0 denotes the smoothing lag. The H, fixed-lag smoothing problem

(6.4.1)

can be easily solved by applying the usual H, filtering algorithm to the augmented system:

ke = Akéi + Brwy, (6.4.2)
yk = Cibr + Doy (6.4.3)
zk_p = Liéy (6.4.4)
where
[ o | [ 4, 0 - 0] [ B |
Th_1 _ I 0 0 _ 0
ge=| |, A=| " | 1, Be=
Toh | 0 In 0| | 0]
C_'k=-ck 0 --- 0}, -Zk=[0 o -- Lk-—h]
Theorem 6.4: Suppose that ¢_;, i = 0,1,---,h are known a priori. There exists an

H,, fixed-lag smoother which achieves the Hoo error bound (6.4.1) if and only if there

exist matrices F; /., B

ik and i (4,9 = 0,1,- -+, k) such that
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Pogjier = ArPogjeAF + Acllo o/ AR + BBy
Poje+1 = AcPojo1pe + Arlloj—1, 7#0

Pijsirr = Biovjorpe + Licygoipp, W #0

Oii/k = P L n(¥*Tp = Lien By ppe Li—n) ™ LinPayx

- Pijjk = Pigsk — PiopkCR (Ric + CrPogskC ) T G Pojifi

and
Poose Popse - Powse
Pionw P - B
B, = 1,-0/L 1,ll/L | 1,-h/k >0, Py=
| Puose Paae ot Pangr ]

’7'21';, - Lk—hph,h/k_LE—h >0

In this case, one of the Ho, fixed-lag smoother is given by
Zp—ifk = Zk—ifh-1 + Kie(yk — CeTis-1)
Tep1/ke = AkZrsk

Zp—h = Lg_nZp_p sk

Kisi = PigjiCF (Ri + CrPogiC) ™!

where £_j;_1 =z, 1=0,1,--,h

(6.4.5a)
(6.4.5b)
(6.4.5¢)

(6.4.5d)

| (6.4.5¢)

(6.4.6)

- (6.4.7)

(6.4.83)
(6.4.8b)
(6.4.8¢)

(6.4.8d)

Proof: Since the He fixed-lag smoothing problem for (621)—(623) is equivalent to

the H,, filtering problem for the é.ugmented sjstem (6.4.2)-(6.4.4), we easily see that an

H,, fixed-lag smoother exists if and only if there exists a positive semi-definite solution

to the RDE -
 Peyy = AP AT+ BLBY, Ry=0
S = Inpiy + (CeRTICy 42 LEL) R,
with
2L~ LBLT > 0
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where Pk = Pk(I(h_;_l)n*{—C—'kTR,:lC_'kPk)—l. We now define ;. = Pkf,',f(fy?Ip—f;kPkEE)‘lEkPk,
and partition X; (X = P,P,II) as

Xoose Xoam - Xopsk

Xione Xy - Xiwn

X o | SO I:I/k | L
| Xnose Xnaze o Xnpse |

Then, by the definitions of Py, and H, (6.4.5) immediately follows from the RDE (6.4.9).
Also, the condition of (6.4.7) is equivalent to (6.4.10).

Futhermore, the central H, filter for the augmented system is given by

/e = Exjk-1 + Ki(ye — Crbrjror) (6.4.11a)
Eerik = Akl Eoym1=6o (6.4.11b)
Zen = Liky)) : (6.4.11c)
Ki = PCF (R + G PCO) ! (6.4.11d)

We now partition Ek/k and K), as

- - - - -

T /k Ko Poo/kCF (Ri + CrPognCF) ™!
~ Te_1/k Ky Py o/kCi (R + CiPo gk CE) ™t
Ersk = : , K= : = )

| Br-nse | | Kne | | PaopkC (Re+ CrPoppC)™

Then, we easily obtain from (6.4.11) the H, fixed-lag smoothing algorithm of (6.4.8). W

For the time-invariant system, based on Theorem 6.3, we are able to obtain a solution

to the infinite-horizon H,, fixed-lag smoothing problem by taking N to infinity.

Theorem 6.5: Suppose that (C, A) is detectable and (A, B) has no uncontrollable modes
on the unit circle. We assume that there exist matrices P; ;, P;; and I; ; (1,5 = 0,1,--, h)

such that
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Pog = APyoAT + ATlggAT + BBT ©(6.4.12a)

Poj = APpj1 + Allpj1, j#0 (6.4.12b)
Pij= Pijo1+Hicyj-1, 4 #0 (6.4.12¢)
;= BpLT(v2 L, — LPA W LT ) L Py (6.4.12d)
P.j=Pi; — PigCT(R+ CPygCTy 'CT Ry (6.4.12¢)

Pog. Pop -+ Pop

Py Py -+ P

e Y (6.4.13)

R"no. Ph,l teT Ph,h
Iy — LPupl™ >0 (6.4.14)

and A{Ipy1yn + P(CTR-1C - ~2LTL)}! has all eigenvalues inside the open unit disk.

Then, there exists an H, fixed-lag smoother achieving -

Nzk—t — Ze-nlly . o
sup _ 6.4.15
od w1l (6:415)

In this case, one of the Hy, fixed-lag smoother is given by

Troifk = Ep—ifir + Kilye = CErpm1) : : (6.4.162)
Bepip = ABge - © (6.4.16b)
Boeh = LEr_ne - (6.4.16¢)
Ki= PoCT(R+CPyoCT)~* : (6.4.164)

Remark 6.1 The necessity of the theorem is also true by Theorem 2.1.

Remark 6.2: Since i;l_ie fixed-lag smoothers of (6.4.8) and (6.4.16) are derived from the
central H, filters, we call them f.he central H, fixed-lag smoothers. It may be n‘o‘t"ed
that the central H, fixed-lag smoother inherits the prbperties of the central He, filter
in Section 6.2, because the smoother is the central H, filter for the augmented system

(6.4.2)—(6.4.4).
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Remark 6.3: It is known that, for the fixed-interval smoothing problem, the Heo
smoother is identical to the Hy optimal one (see Appendix 5.2). But the H, fixed-lag
smoother is different from the Hy optimal one in that II; ;. and II; ; exist in (6.4.8) and

(6.4.16), respectively.

5. Numerical Example
Let us consider the system given by

Ty = + 01wy, zp=1
Yk = Tk + Ve, 2 =T
In the case where II = 1, the optimal value of the parameter v is o, = 1. Fig. 6.1

shows the relationship among Py, P, and Qi for v = 1.25. We see from the figure that
Pi 2 Qi 2 P} holds for all k.

Fig. 6.1: Relationship among Py, Q) and Pj,

Furthermore, in order to compare the performance of the H, filter with that of Kalman
filter, we performed simulations (Fig. 6.2). In the follm-ving simﬂations, we set wp = 0
to see the sensitivity of the filters to vx = yr — CZFy/r—1. The measurement noise vy, is
zero mean Gaussian white noise. Figs. 6.2 (a) and (b) show the simulation results for

E{v%} = (.01 and E{vf} = 0.09, respectively. In the case when the measurement noise
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vk is very small, the central Hy, filter presents a much better tra.nsient response than
Kalman filter. On the other hand, when v} is large, the He, filter is more sensitive to the

measurement noise than Kalman filter.

0.8
4
o
@
[y
-% H,., Filter
= Kalman Filter |
@ T L S

) —

0 10 20 30 40
time
(a) B{vi} =0.01

e i
T
2.
o
E N
-.(3 - - .'“—'\ ----- ,'-...-._‘k e e e T

0.2 . :

0 10 20 30 40

" (b) B{v} =0.09

Fig. 6.2: Comparison of Hy, filter and Kalman filter =~
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The relationship between y and P for k = 25 is illustrated in Fig. 6.3. We see that

Posg is monotohically non-increasing with respect to v. We also obtained the same results

for all k.

.
0.8} ]
p, 0.6|
0.4}
0.2}
1 1.5 2
v

Fig. 6.3: Relationship between v and P

Simulation results for various 7 are shown in Fig. 6.4. The measurement noise is the
zero mean white noise with E{v2} = 0.01. As shown in the figure, the H, filter becomes

less sensitive to vy as v becomes large.

estimation errors

Fig. 6.4: Estimation errors for various values of v
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Next, we apply the Ho fixed-lag smoothing algorithm in Theorem 6.5 to this system.
Fig. 6.5 shows the singular value plots of the transfer matrix from the disturbance [wy v )T
to the estimation error ex := 2zx_p — Zx—p in the case where y = 1.25. We see from the
figure that as the smoothing lag h increases, the Hoo performance of the central He

fixed-lag smoother is improved.

—t
- N
T

.o
o

maximum singular values

0

1073

1072 107" 10° 10
frequency (rad/sec)

Fig. 6.5: Singular value plots of the smoothed error system

6. Concluding Remarks

In this chapter, by using Riccati difference equations, we have compared the perfor-
mances of the central Hy filter and Kalman filter in the case where the disturbances
are zero Gaussian white noises. The relationship between the prescribed Ho, bound vy
and the performance of the central H, filter iz investigated based on t,he monotonicity
property of the H,, RDE. These results also apply to the infinite-horizon time-invariant
case by replacing the RDEs with the corresponding AREs. The above results will provide
a guideline for determining the value of 7. ”

For the time-invariant case, we have proved that the solution of the Hy, RDE converges
to a stabilizing solution of the corresponding ARE if the infinite-horizon H,, filtering
problem is solvable,

Furthermore, we have studied the H fixed-lag smoothing problem by utilizing the
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results on the H,, filtering problem. It has been shown that the central H, ﬁxed—laé

smoother inherits the properties of the central Ho, filter, and that the Hy, and Hy fixed-

lag smoothers are different while the fixed-interval smoothers are identical.
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Chapter 7

Stochastic Minimax Filtering
Problem and Tts Relation to Heo

Filtering Problem

1. Introduction

The previous chapter has given the relationship between the H, filtering problem and
a ‘deterministic’ minimax filtering problem.. In this chapter, we will provide an alternative
game theoretic interpretation of the central H, filter and predictor. We will consider
‘stochastic’ minimax state estimation problems, which are discrete-time equivalents to
the problem discussed in [54]. We will derive saddle point solutions to the stochastic
estimation problems based on the matrix minimum principle by Athans [1]. It is shown
that the mimimizer’s saddle-point policies in the minimax filtering and prediction problems
are identical to the central H, filter and predictof, respectively. Therefore, the results of
this chapter justify the application of the central H, filter and predictor to the stochastic

systems.
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2. Stochastic Minimax Filtering Problem

2.1 Problem formulation

We first formulate the stochastic minimax filtering problem (SMFP) based on the

continuous-time result of [54).
We consider a linear discrete-time system described by
Tyl = ArTi + Brwg + s (7.2.1)
Yk = CrTi + Divge (7.2.2)
where z; € R" and y; € R? are the state vector and the measurements, respectively. The

noise disturbances w € R™ and v, € R are mutually uncorrelated Gaussian white noises

with
Elwp} =0, E{vw}=0

T
E Wi Wy - Im 0O Brr
where 6;; denotes the Kronekar's delta. The initial state zg is generated by the Gaussian
distribution N (Zg, II). We also assume that Dy € RI%¢ is right invertible and we define
Ry := Dy D¥. The disturbance sy € R™ is to be defined below.

Let 2/, be an estimate of 7 based on the measurement set {yo,---,y:}. To guarantee
the unbiasedness of the estimate y/, we assume that T, is generated-by the following
filtering algorithm:

Zrjke = Tsk—1 + Ke(ye — CrTryp-1) (7.2.3)
Trp1ke = ATk Top-1 =730 | , (7.2.4)
where K is the filter gain to be determined.

In this minimax problem, we introduce the fictitious output z, € R? defined by

zr = Lz (7.2.5)

The estimation at time k is disturbed by the disturbance s, defined by

Csp = My (‘fr—" + nk) (7.2:6)
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where e; = 2, — LTy and ny is the Gaussian white noise with E{n;} =0, E{nynl} =
I.6r. We assume that wy, v; and ny are mutually uncorrelated. The block diagram of

the SMFP is illustrated in Fig. 7.1,

nk ? 7'—1
My

e m—— Sk e

1

! Ly -

; Tp €k

Wk Fan) -1

' B, \xzag v .

i i

1 C 1
k 1

E | Ak X :

: i

' ]

: U} —» :

S S i

Fig. 7.1: Diagram of the stochastic minimax filtering problem

We first introduce a cost function as follows. Define the state estimation error T :=

&k — Zx/x. Then from (7.2.1)-(7.2.6), we obtain

MLy,

Zry1 = (In — Kg41Ck41) { (Ak + ) T + Brwg + Mknk} — K1 Dpyrveq:

Zp = zp — Tpyo = (In — KoCo)(mo — Zo) + KoDowvo
Then z; is decomposed as

Tp = Z1k+ T2k, T1,0=T0— Top, T20=0 (7.2.7)

~ ML\ ) : :
Z1 k41 = {(In — Kie1Che1) {(Ak + £ k) T p+ Bk’wk} -~ K41 Dpy 19k (7.2.8)

- (- ML\ :
Z2 41 = (In = Kr41Ck41) {(Ak + :{ L) Zok + Mk'nk} (7.2.9)

where T 1 is the state estimation error due to wy. and vk, and Zo; is the error due to ng.
Arbitrarily large norm values of M}, increases II:'i:'élkll and ||ex|| arbitrarily, and thus a cost

function must contain a penalty imposed on'li','VI;c in order to limit the range that M; may
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attain. We therefore define the following cost function as
N
In(E, M) = kZ% B{Z WSk — 31 WiTa} (7.2.10)
where Wy is a positive definite symmetric bounded matrix, and K = {Kg,-+-,Kx} and
M = {My, -+, My}. This minimax filtering problem can be interpreted as the dynamic
minimax game with a quadratic cost. The minimizer adjusts K so that Jy (K, M) is

minimized, while the maximizer adjusts M} so that Jy(K, M) is maximized.

Lemma 7.1: The cost function of (7.2.10) is expressed as

N-1
Iv = Tr{WnPn}+ > Tr{WiF} (7.2.11)
k=0
where
Py = (I, — KxCo) Pl — KxCi)T + K R KT ' (7.2.12)

MiLi\ - M L\T '
Pk+1=(Ak+ fyk)Pk (Ak+ ]:YL) + By BY — MiMT, By=1 (7.2.13)

Proof: We define P x = E{Z143];} and Pyx = E{F4%],}. Since wg, v and ny are

the uncorrelated white noise, we get

ML ML\ T
Prjy1= {(In — Ki+1Ck+1) (Ak + fr k) } Py {(In — Ki+1Ck41) (Ak + f?’ k)}

+(In — Kp+1Ckt1) Be Bf (In — Ki41Ckr1)T + K1 R Ky (7.2.14)

Pory1 = {(In ~ K 11Cry1) (Ak +.M:/Lk) } Py {(In — K 41Cry1) (A.l: + Mf;‘Lk) }T
+(In = Ko 10 1) MiME (I = K1 Cir)® (7.2.15)
Pro = (In — KoCo)II(I, — KoCo) + KoRoKg, Poo=0 (7.2.16)

We define Py = Py — P and

MiLe\ 5 MiLi\T
Pk+1=(Ak+ ;k)Pk(Ak+ f;k) +BkBE~—MkM;:.r, P=1

Then, from the definition of Jy, we get

N N-1
Jy = Z Te{W P} = Te{WnPn} + Z Te{W P}
k=0 k=0
Furthermore, (7.2.12) directly follows from (7.2.14) and (7.2.15). [ ]
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2.2 Saddle point solution

In this chapter, we wish to find a saddle point sclution to the SMFP and the corre-
sponding saddle point policies K™ = {K{, -+, Ky} and M~ = {Mg, --, Kx}. The saddle

point solution is defined by
In(K, M) < In{(K*,M™) < In(K, M™) (7.2.17)

We derive a saddle point solution of this minimax problem by adopting the matrix

minimum principle [1}. To perform the optimization with respect to K and M, we form

the Hamiltonian

Hi = Te{Wi P} + Te{(Pes1 — Po)ATL (7.2.18)

where A; is the costate matrix. Let P, P! and A; be the values of P, Py and Ay
corresponding to the saddle point policy (K™=, M*), respectively. Then, we can obtain the

saddle point policies by solving the following necessary conditions:

. O0H '
Ay —Al=— — Ay =Wy 7.2.19
T AR k=’ (7:219)
Hy(Kpyy, My) < Hie(Kp1, Mi) VEKipp € R™X9 (7.2.20)
Hi(Kpy1, M) £ Hk(Kk+1,M1:) VM € R**P (7.2.21)

It may be noted that the derivative formulae for trace of matrices in [1] are very useful

for solving the condition of (7.2.19). We see from (7.2.19) that

MELI: M;:Lk

)}T+Wk

Ap = {(I,, — K 1Crp1)(Ax +
- (7.2.22)

)} A { U = KiaGuen) (e +

Since Wy, is positive definite and symmetric, so is A}. Note that Py, and Py can be expressed
as
By = Ky(Ri + CP.CE)KT — Ky Ci Py — PCTKT + P, (7.2.23)
Py = —7_2Mk(72IP - LkPkLE)ME + AkPkAE + 'BkBE

AT ML PAT T AP ME (7.2.24)
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Since A}, is positive definite and P, is independent of K1, we see from (7.2.23) that there
exists a unique Ky, satisfying (7.2.20) if and only if

Vit1 1= Riy1 + Crp1 Pip1Clyy > 0 (7.2.25)

We now assume Py; = Py, ;. Then, the square completion of P41 with respect to Ky

yields

Pery = (K1 ~ Prai O Vi) Vier1 (K1 — PE+1CE+1Vk111)T

= P T -1 *
+Pr1 — PG Viih Cenn P

Thus, (7.2.20) is satisfied by taking K., = P,:“CEHVL.'_}_II. Similarly, there exists a
unique matrix M} satisfying (7.2.21) if and only if

Uy =20, — LPLY >0 (7.2.26)

In this case, M} satisfying (7.2.21) is given by M} = yA By LU L.
Substituting P, = Py, P = P, Kx = K{ and M; = M[ into (7.2.12) and (7.2.13)
yields

Pi1= AP AL + BiBY, P =1 (7.2.27a)
Tk =I,+ (C{ R 'Ce — v 2L{Li) Py (7.2.27b)

and -
B = Pt - PiCYVICWPL = PE(I, + CT R CL P! (7.2.28)

It is easily seen from Lemma 5.1 that P is positive semi-definite if ¥; > 0 for all &.
The equation (7.2.27) is the well-known H., RDE. Hence, the minimizer’s optimal
policy K™ provides the H,, filtering algorithm.

The following theorem summarizes the above discussions.

Theorem 7.1: Suppose that there exists a unique saddle point solution to the SMFP.
Then, there exists a positive semi-definite solution to the RDE (7.2.27) such that ¥, > 0
holds over the interval [0, N].
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We next show that the existence of such a solution to the RDE (7.2.27) is also sufficient

for the existence of a saddle point solution.

Theorem 7.2: Suppose that there exists a positive semi-definite solution to the RDE
(7.2.27) satisfying ¥y > 0. Then, there exists a saddle point solution, and the correspond-
ing saddle point policies are given by

K; = PCF (R + CrPECE)™! (7.2.29)

M} = AP LE(Y I, — e P LE) ™! (7.2.30)
Proof: Define K} and M} by (7.2.29) and (7.2.30). Then, we easily see that

By = (In - KxCO)PL(In — KiC)¥ + KpReKF — KWK (7.2.31)
MpLi\ . MiD\T
Pi= (Ak+ f, ’“) B (Ak + ’"7 *) + By BY — MM

by MO MY (7.2.32)

where Ky = Ky — Ki and My = My — M. We also define AP, = P{ — P, and AP, =
By — B,. Subtracting (7.2.12) from (7.2.31) yields |

APy = (I — KiCi)(AR) (I — KiCh)T - KRV KL (7.2.33)

Similarly, it follows from (7.2.13) and (7.2.32) that

MLy MLy,

T ~ —
APy = (Ak -+ ) (AP) (Ak + ) +7—2Mk‘I’;1ME (7.2.34)

First, we assume K} = Kj. Then, (7.2.33) reduces to
AP, = (I, — K;Ci) (AP (I, — KfCL)T ©(7.2.35)

Since Py = Fy = II, we get AF = 0 and APy > 0. We assume that'; A_Pk > 0 holds
for k = 0,--, It then follows from (7.2.34),(7.2.35) that APs; > 0 and APy > 0
since ¥; > 0. Hence, AP, 2 0" holds for any k > 0 by induction. Thus, we obtain
IN(K™, M) < In(K", M").

Next, we assume My = M for all k. It follows from (7.2.32) that

) (AB) (Ak + M’;ﬂ)T - (1.2.36)

ML,
APpy = (Ak+ fy k
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Thus, similarly to the case where K = K}, we can prove AP, < 0 for all k. This implies
IN(E™, M) < In(K, M").

Consequently, we have proved that the policies of (7.2.29) and (7.2.30) are the saddle
point policies satisfying (7.2.17) for the SMFP. |

3. Stochastic Minimax Prediction Problem

We next consider the stochastic minimax prediction problem (SMPP) where {yo,- - -, ¥x—1}
rather than {yo,-*,¥k—1, Yk} is available for the estimation at time k. The block diagram
of the SMPP is illustrated in Fig. 7.2. The argument in the filtering case is still valid with
slight modifications. In the prediction case, the state éstimate of z, is generated by the
following one-step prediction algorithm:

Zrp1jk = AxTrpeo1 + Kilue — Celipmr), Boj—1 = %o (7.3.1)

Since yi is not available at time &, the disturbance s; is also defined using the one-step
prediction error:

zp — LiZy 1

sk = Mj ( . (7.3.2)

where ny, is the Gaussian white noise with F{n;} = 0 and E{nknz} = I, 0pr.

We here define the state estimation error by . := xx—Z%; 1. Then, Z is decomposed

Tpy =Tk +Tok, T10=To— To, T20=0 (7.3.3)
- MLy -
Tik+l = | Ar+ — KiCr | Ty & + Brwi — K Dyvs (7.3.4)
_ MLy _
To kb1 = (Ak Rk Kka) Tor + Myng (7.3.5)

We define the cost function by

N
In(K, L) =3 B{ELWiE1x — 53, WiTax}

k=0
N-1
= T['{WNPN} + E Tl‘{WkPk}
k=0 .
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Fig. 7.2: Diagram of the stochastic minimax prediction problem

where P = E{El,kirﬂk} - E{Ezkig,k}- Since wy., v and ny, are mutually uncorrelated, it
is easy to verify that

MLy M Ly,

T
Py = (Ak + — Kka) B, (Ak + — chk)

+BkBE + KkRkKE - MkME

Similarly to the filtering case, we obtain a saddle point solution to the SMPP by

applying the matrix minimum principle.

Theorem 7.3: There exists a unique saddle-point solution of the SMPP defined above
if and only if there exists a positive semi-definite solution to the RDE (7.2.27) such that

72’Ip ~ Le PELT > 0 holds. In this case, the saddle point policies are given by
K = A B CY (B + CLBICH) ™ = A PLE ' CERL! (7.3.6)

Mi = YAPER L (7.3.7)
where B = P(I, — v~ 2LTLyPE)~1.

It may be noted that the minimizer’s optimal policy (7.3.6) provides the H,, prediction

algorithm derived in Chapter 5.
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4. Concluding Remarks

In this chapter, we discussed the existence of a saddle point solution to the stochastic
minimax ﬁltermg and prediction problems. It has turned out that the estxma.tors sa.ddle
point pohc1es prov1de the centra.l H,, filter and predictor. These results obta.med in t]:us=

chapter pr0v1de a.ltema.tlve interpretations of these H,,, state estlma.tors, and hence Justlﬁ'

the apphca.tlon of them to stochastic systems.
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Chapter 8

Conclusion

This thesis has considered t;he solutions to the H,, filtering problems and their anal-
yses. The main contributions of the thesis are summarized as follows.

In Chapter 2, we have given a solvability condition of the H, filtering problem based
on the model matching approach using (J, J)-spectral factorization for the infinite-horizon
time-invariant case. We have also derived a complete parametrization of all solutions to the
H,, filtering problem. The pole-zero cancellation structure of the H, filtering problem
has shown by using the chain scattering representation. Furthermore, we have given a
solution to the Ho, prediction problem as a special case of the Hy, filtering problem. The
present approach provides a unified solution to the Hy, filtering and prediction problem.

Similarly to the Hoo control case, the free parameter contained in the parametrization
of H,, filters can be used for achieving an additional design specification, e.g. Hy per-
formance, as well as the H, error bound. In Chapter 3, we have proposed a method
for adjusting the free parameter so that the constraints on the unit circle in the complex
plane are satisfied. By the proposed method, we can reject the undesirable effects due
to the step or periodic disturbances. We have also shown the relationship between the
state-space model of the disturbance and the structure of the proposed H, filter when
the disturbance is a step function. |

In Chapter 4, we have examined the behavior of the stabilizing solution of the He,
ARE with respect to the variation of the prescribed Hy norm bound 4. The infimum of

the parameter -, for which a stabilizing solution to the H,, ARE exists, is characterized in
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terms of the Ly norm of a certa;.iu transfer matrix. The stabilizing solution is a monotoni-
cally non-increasing convex function of y. A new parametrization of all H, filter has been
also derived. Based on the above results, we have shown that the size of the set of all Hy
filters is monotonically increasing with respect to 7, and that there are possibilities that
the degree of freedom of the H, filter decreases at the optimum. We have also developed
an Hy/H,, filtering algorithm which makes use of the free parameter contained in the new
parametrization of H, filters. The present results provide a guideline for selecting the
values of the parameters v and the free parameter. It may be also noted that the analyses
in this paper can be applied to those of the H,, controllers for 2-block problems.

Chapter 5 has shown that the solutions to the minimax filtering and predictions
problems are given by the central H, filter and one-step predictor, respectively. Further-
more, in deducing the minimax solutions, we have derived the worst-case disturbances
in the sense that they maximize the cost function; in other words, they maximize the
energy gain between the estimation error and the disturbances. For the infinite-horizon
time-varying case, in addition to the existence of a solution to the H,, RDE, it is required
that the Riccati solution is a stabilizing solution.

In Chapter 6, by using RDEs, we have compared the performances of the H, filter
and Kalman filter for the finite-horizon filtering problem where the disturbances are Gaus-
sian white noises. The relation between the prescribed Ho, bound -y and the performance
of the central H, filter is examined based on the monotonicity of the Ho, RDE. These re-
sults also apply to the infinite-horizon time-invariant case by replacing the RDEs with the
corresponding AREs. In the time-invariant case, we have also given a sufficient condition
for the convergence of the solution of Ho, RDE. The above resuits in this chapter provide
a guideline for determining the value of . Furthermore, we have derived a solution to
the H,, fixed-lag smoothing problem by reducing the fixed-lag smoothing problem to a
filtering problem. '

In Chapter 7, we have discussed the existence of a saddle point solution to t}ie
stochastic minimax filtering and prediction problems. It has turned out that the mini-

mizer’s saddle point policies generate the Hy, filter and predictor. These results provide
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alternative interpretations of these H, state estimators, and provide a justification of the
application of the H, state estimators to the stochastic system with unknown disturbance
statistics. . _ |

In the following of this chapter, we discuss the direction of the future research. Through-
out this thesis, we have considered the state estimation of the system with unknown dis-
turbance statistics while its dynamics is exactly known. Recently, the robust filtering for
the system with structured uncertain dynamics has been soived via the quadratic stabi-
lization technique, where the Hy, control problem of an uncertain system is reduced to a
certain Hy, control problem of a system without uncertainty [50]. This approach however
does not make clear the relation between the resulting robust He, filter and.the H, fil-
ter for the nominal system. The results in Chapters 2—4 can be extended to clarify this
relationship, and provide an insight into the robustness analyses of the nominal H, filter.

For time-varying systems, the connection between LMS (Leést Mean Square) and H,
filtering algorithms has been studied by Hassibi et al. [21]. They have justified the appli-
cation of the LMS adaptive filtering algorithm theoretically by showing its Heo optimality.
Their results indicate that the LMS algorithm inherits the properties of the central Ho,
filter given in Chapter 6, and that the results in Chapter 6 can be extended to the analyses
of the LMS adaptive filter.

Very few application examples of the H, filtering algorithm have been reported al-
though the solution to the Hoo filtering problem has béten almost established. One of the
most imp_ortanf direction of the future research is the applications of the H, filtering
algorithm to practical problems. The author hopes that the results in this thesis will be

a help for the practical consideration of the H, filter.
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