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ABSTRACT

This thesis is concerned with the H oo filtering problem for linear discrete-time systems.

The H oo filtering problem is a state estimation problem of minimizing the maximum energy

in the estimation error over all possible disturbance trajectories. The state estimation

based on the H oo criterion is valid when there exists a significant uncertainty in the

disturbance statistics. Tills thesis consists of mainly two parts.

The first part considers the infinite-horizon problem for a time-invariant system. We

provide a complete solution to the infinite-horizon Hoc filtering problem for time-invariant

systems from the viewpoint of model matching in the frequency domain. The set of all

H oo filters is characterized in terms of a positive semi-definite stabilizing solution of the

H oo algebraic Riccati equation (ARE).

The free parameter contained in the H oo filter can be used for acilleving an additional

design specification as well as the H oo error bound. In the case where the system is

subject to step and/or periodic disturbances , the state estimates may be degraded by

the biases or periodic fluctuations due to these disturbances. In order to attenuate these

undesirable effects of these disturbances, the transfer functions from the disturbances to

the estimation error must be zero at certain points on the unit circle of the complex plane.

Based on the Nevanlinna-Pick interpolation theory, we propose a method for adjusting

the free parameter so that the boundary constraints on the unit circle are satisfied.

Since the H oo filter is characterized by a positive semi-definite stabilizing solution of

the H oo ARE, the estimation performance of the Hoc filter is dependent on the properties

of the H oo ARE. We derive a lower bound of the H oo error bound 'Y for which there exists

a stabilizing solution of the H oo ARE, and show the monotonicity and convexity of the

stabilizing solution with respect to 'Y. Furthermore, based on the above properties of the

stabilizing solution of the H oo ARE, we study the behavior of the set of all H oo filters

with respect to the change of '"Y. It turns out that the degree of freedom of the H oo filter

decreases at the optimum under a certain condition.

In the second part, the finite-horizon problem for a time-varying system is studied.

Since the Roo norm is the L2 induced norm, the H oo filtering algorithm has a certain



minimax properties. In order to understand this aspect of the H oo filtering problem, it is

essential to exploit the game theoretic approach in the time-domain. It is shown that the

solutions to the minimax filtering and prediction problems are identical to the central H oo

filter and the H oo one-step predictor, respectively. The worst-case disturbance maximizing

the energy in the estimation error is also derived.

By using the Riccati difference equations (RDEs), we compare the performances of

the Roo and Kalman filters in the case where the disturbances are zero mean Gaussian

white noises. The relation between the prescribed H oo error bound! and the estimation

performance of the central H oo filter is examined based on the monotonicity of the H oo

RDE. For time-invariant systems, the connection between the finite and in£nite horizon

Boo filtering problems is made clear by showing the convergence of the solution of Roo

RDE. We also derive a solution to the H oo fixed-lag smoothing problem based on the

result on the H oo filtering problem.

Finally, we discuss the existence of a saddle point solution to the stochastic minimax

filtering and prediction problems. It turns out that the minimizer's saddle point policies are

identical to the central Boo filter and the Boo predictor. These results provide alternative

interpretations of these H oo state estimators and a justification of the application of the

H oo state estimators to the stochastic system with unknown disturbance statistics.
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Chapter 1

Introduction

1. Kalman Filter and Minimax Filters

The filtering problem involves estimating the states of a system using the past noisy

measurements. Since the publication of the fundamental papers by R. E. Kalman [24],[25],

Kalman filtering theory based on the least-squares (H2-optimal) error criterion has been

deeply entrenched in the control and signal processing theories and their applications for

more than three decades (see, for example, [26]'[41)). When the noise disturbances are

white noise processes and their spectral densities are exactly known, Kalman filter offers

the optimal state estimation algorithm in the least-squares and minimum-variance senses

that Ilelb and E{1IekIl2} are minimized, where ek denotes the estimation error. However,

it is difficult to know the exact stochastic properties of the disturbances a priori. In this

case, the state estimates based on the least-squares criterion may be degraded by the

uncertainty of the disturbance statistics.

To cope with this difficulty, a number of researches on the robust filtering have been

reported. One of the major approaches to the robust filtering under uncertain distur­

bance statistics is the minimax filtering based on the game theory.. Mintz [33] and Krener

[30] showed that the Kalman filter has the minimax property for the following pointwise

optimization problem:

where dk denotes the disturbance and k is the time step. Moreover, this minimax state

1



estimation problem has been recently reconsidered by Basar in the prediction and smooth­

ing cases [2]. As a different minimax approach to the design of a robust Kalman filter,

Poor and Looze considered the minimax problem where the disturbances are known to be

white noises, while their covariances are unknown and belong to certain compact convex

sets [37].

This thesis addresses a new minimax approach to the robust filtering problem based

on the Roo error criterion which has received great interest in the robust control theory.

2. H oo Error Criterion

In the last several years, the Roo control theory has brought a remarkable breakthrough

in the field of robust control. The interested readers should refer to the text books such

as [11], [17J and [42]. The two Riccati formula for the state-space solution to the standard

Roo control problem was first derived by Doyle et al. [8], and thereafter many techniques

for solving this problem were reported in the literature (see e.g. [15],[28],[42]).

This thesis addresses a new minimax filtering problem based on H oo error criterion.

That is, we employ the H oo norm of the error dynamics as a measure of the estimation

errors. Since the Boo norm is the L2 induced norm, i.e. the maximum energy in the

output signal over all possible exogenous input trajectories, the filtering algorithm based

on the H oo criterion possesses a minimax property. Thus, H oo criterion is valid in the

case where there exists a significant uncertainty in the spectrum density of the exogenous

disturbance [56J' As shown below, the H oo filtering problem is different from the minimax

problems mentioned in the previous section, because it involves the minimization of the

accumulated estimation error rather than the pointwise minimization of the estimation

error.

We here briefly review the minimax aspect of the H oo filtering problem. We consider

the linear time-invariant case for simplicity. Let Ted(U) be the transfer matrix from the

disturbance dk to the estimation error ek. The z-transfonn of ek is then given by e(u) =

Ted(cr)d(cr). We first assume that dk is an arbitrary deterministic L2 signaL If the filter,

denoted by Tr(cr), is designed to stabilize Ted(cr), ek is also an L2 signal. By Parseval's
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theorem, we see that

lIell~ = ;71" [1'01'0 dH(ejW)Te~(eiW)Ted(eiW)d(ejW)dw

~ ~ 11'0 dH(ejW)d(ejW)lITed(eiW)1I2dw
271" -11"

~ 2~ [1'01'0 dH(eiW)d(ejW)IITedll~dw = IITedll~lIdll~

Hence, the H oo filtering problem of designing a filter Tr(a) satisfying IITedlioo < i for a

given i > 0 has the following minimax property.

Let 'P denote the set of all second-order stationary processes. Suppose that the distur­

bance dk belongs to P. Then, the estimation error ek also belongs to P if Ted (a) E RHoo .

The auto~correlationmatrix of dk is defined by Rd(r) = E{dk+TdI}. The Fourier trans­

formation of Rd(r), denoted by Sd(W), is called the power spectral density matrix of dk'

namely,
00

Sd(W) = L Rd(r)e- jwT

T=-oo

Similarly, we define Se(w) as the power spectral density matrix of ek. It is easy to verify

that

We thus obtain

We also easily see by the inverse Fourier transfonn that

Therefore, the H oo filtering problem has a minimax property for the stochastic noise

disturbances, too.
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3. H oo Filtering Problem

The floo filtering problem was first addressed based on the polynomial approach for

a discrete-time system [18J. This approach employs Kawakernaak's technique [31J which

translates the H oo optimization problem to a certain L2 optimization problem. The poly­

nomial approach was also applied to the fixed-lag smoothing problem [19]:

A state-space approach to the H oo filtering problem was first studi~d for the continuous­

time case [3]. As well known, the bounded real lemma (BRL) is one of the important tools

for solving H oo optimization problems in the state-space setting. Based on the BRL and

Lagrange multiplier technique, Bernstein et ai. [3] considered the problem of minimizing

the upper bound on the L2 norm of the estimation error while maintaining the Roo norm

bound. Shaked [39] also provided a state-space solution for a linear stationary process

based on the duality between estimation and control. Nagpal and Khargonekar [36] em­

ployed a time domain approach based on the game theoretic LQ optimization technique

in order to derive necessary and sufficient conditions for the existence of solutions to both

finite and infinite horizon Roo filtering problems. They also provided a solution to the

Roo fixed-interval smoothing problem, and showed that the H oo smoother is optimal in

the H2 sense [36J. Yaesh and Shaked [51],[54] gave another game theoretic interpretations

of the Boo filter. Recently, the mixed H2/Hoo filtering problem was solved using a convex

optimization technique by Khargonekar and Rotea [27]. Moreover, for the finite-horizon

problems, Uchida and Fujita [47] showed that the central H oo filter and Boo smoother

minimize the exponential quadratic cost. It may be noted that a parametrization of all

Roo filters is given as a solution to the special case ofthe standard H oo control problem [8].

However, this result cannot be directly applied to unstable systems because the control

problem requires the internal stability of the closed-loop system, which cannot be satis­

fied in the filtering problem for unstable systems. Takaba and Katayama [46] provided a

parametrization of all Roo filters based on the Nehariwtype model matching technique.

The results for the discretewtime case in the state-space setting almost parallel the

continuous-time case. The mixed H2/Hoo one-step prediction problem was solved by

Haddad et ai. [20]. The BRL was also applied to the H oo filtering and Roo one-step pre-

4



diction problems by Yaesh and Shaked [52]. Moreover, Yaesh and Shaked [55] provided a

game theoretic interpretation of the Hoc one-step predictor, which is discrete-time coun­

terpart of the result of [54]. However, the above works assumed that the state estimator

has a so-called 'full-order observer' structure. Thus, a complete parametrization of all

H oo filters has not been given. Moreover, unlike the continuous-time case, two full-order

observer structures, namely, a filter and a one-step predictor, are possible in the discrete­

time case. Thus, the solutions to the filtering and prediction problems were derived from

the different problem formulations. For the finite-horizon case, Fujita et ai. [12] recently

derived a necessary and sufficient condition for the existence of an H oo filter based on

the completing the squares and conjugate point arguments without assuming the observer

structure. They also demonstrated the superiority of the H oo filter to the Kalman filter

in a visual tracking system.

4. Overview of the Thesis

Tills thesis mainly consists of two parts. In Chapters 2-4, we study the H oo filtering

problem for time-invariant systems in the frequency-domain setting. Chapters 5-7 are

concerned with the finite time horizon H~ filtering problem for time varying systems.

Chapter 2: The H oo optimization problem is originally formulated in the frequency

domain, which should be solved by the (J, J')-spectral factorization or Nevanlinna~Pick

interpolation techniques. Therefore, Chapter 2 is first dedicated to providing a solution

to the infinite-time horizon H oo filtering problem for time-invariant systems. As stated in

the previous section, a complete parametrization of all H oo filters has not been derived

for the infinite-horizon case in the previous works. Thus, we will derive a solvability

condition and provide a complete parametrization of all solutions of the H oo filtering

problem based on the model matching approach and (J, J')-spectral factorization. The

resulting solution is given in terms of a positive semi-definite solution to a certain indefinite

algebraic Riccati equation (ARE), which is called 'an Hoc algebraic Riccati equation'.

The structure of the H oo filtering problem is also shown by using the chain scattering

representation. Furthermore, the H oo prediction problem is solved by making use of the

5



results in the filtering problem.

Chapter 3: TIlls chapter considers the H oo filtering problem with frequency con­

straints on the unit circle of the complex plane. If the system is subject to step or periodic

disturbances, the state estimates may be degraded due to the biases or periodic fluctua­

tions. In order to remove these undesirable effects, we impose boundary c~mstraints such

that the transfer functions from the step or periodic disturbances to the estimation error

must be zero at certain frequency points on the unit circle. Based on the Nevanlinna-Pick

interpolation technique, we develop a method for adjusting the free parameter of the H oo

filter derived in the previous chapter so that the boundary constraints are satisfied. A

numerical example is also given in order to !iemonstrate the applicability of the proposed

design method.

Chapter 4: Since the state-space solution to the H oo filtering problem is expressed

by the positive semi-definite stabilizing solution of the H oo ARE, the perfonnance of the

H oo filter depends on the stabilizing solution. Therefore, the analyses of the HooARE

are very important. In this chapter, we study some properties of the H oo ARE and the

analysis of the H oo filter. We first derive the infimUm of t, for which a stabilizing solution

to the H oo ARE exists, and show that the positive semi-definite stabilizing solution has

the monotonicity and convexity properties with respect to to

Multi-objective filter design problems including H2/Hoo filtering problem aim at achiev­

ing an additional design specification by using the free parameter contained in the H oo

filter. Since the set of the free parameter is characterized by the stabilizing solution to the

Hoo ARE, we study the behavior of this set when 1 changes based on the above properties

of the H oo ARE. Such analyses of the H oo filter will provide a guideline for designing an

H oo filter.

Chapter 5: This chapter considers the finite-time horizon minimax state estimation

problems closely related to the H oo state estimation problems. As shown in Section 1.1,

the H oo filtering problem has a certain minimax property. However, the frequency domain

approach proposed in the previous chapters does not directly provide this property since

it merely minimizes the largest singular value of a certain transfer matrix. In order to

6



understand the minimax property of the Ho:> filtering problem, it is essential to exploit

the game theoretic approach in the time domain. Based on the Lagrange multiplier tech­

nique, we show that the minimax state estimators are identical to the Ho:> estimators in

both filtering and prediction cases. Furthermore, necessary and sufficient conditions for

the existence of the minimax state estimators are given in terms of an Hpo~type Riccati

difference equation (RDE) satisfying the positive definiteness of certain matrices.

Chapter 6: As shown in Section 1.3, a number of methods for solving the Roo

filtering problems including mixed H2/Hoo problems have been reported. However, the

analysis of the estimation performance of the Roo filter has received much less attention.

Thus, in this chapter, we will investigate the performance of the central Roo filter by using

RDEs. First, by comparing the Roo and R 2 (Kalman filtering) RDEs, we first consider the

estimation performance in the case when the underlying disturbance is zero mean white

noise. Next, we clarify the relationship between the prescribed H oo error bound and the

performance of the central H oo filter based on the monotonicity of the Roo RDE. Also, for

the convergence of the solution of the Roo RDE, we provide a sufficient condition, which

connects the finite and infinite horizon H~ filtering problems. We also provide a solution

of the H oo fixed-lag smoothing problem by reducing the problem to a usual Roo filteting

problem.

Chapter 7: In this chapter, we will provide an alternative game theoretic interpreta­

tions of the central Roo filter and predictor. It may be noted that we have derived solutions

to the minimax state estimation problems in the deterministic framework in Chapter 5.

We will consider an alternative minimax state estimation problems in the stochastic set­

ting, which are discrete-time equivalences to the problem discussed in [54]. It is shown

that the Roo filter and predictor are generated by the minimizer's saddle-point policies

to certain stochastic minimax filtering and prediction problems, respectively. Thus, the

results of this chapter justify the application of the Roo state estimators to the stochastic

systems.

Chapter 8: This chapter summarizes the results obtained in this thesis, and discuss

the direction of the future research.

7



Chapter 2

A Model Matching Approach to

Hoc Filtering Problem

1. Introduction

This chapter considers the state-space solution to the H oo filtering problem for linear

time-invariant systems. As shown in Chapter 1, the discrete-time Roo filtering problem

has been considered from various points of view [52],[53],[55]. In these works, however,

a complete parametrization of all discrete-time Boo filters was not given. Thus, in this

chapter, we will derive a complete parametrization of all H oo filters based on the model

matching approach. The model matching approach to robust state estimation was first

formulated in [9] using a parametrization of stable unbiased filters, though a complete

solution was not given. We first reduce the H oo filtering problem to a model matching

problem (MMP) using the parametrization of all stable unbiased filters [14]. The MMP has

been extensively studied by many researchers [11]'[15]'[28]. We give a state-space solution

to the MMP based on the (J, J')-spectral factorization approach[15]. The present approach

gives a straightforward proof in the pure frequency domain and a clear understanding of

the structure of the Roo filtering problem even though the process disturbance and the

measurement noise are correlated. It may be also noted that the results in this chapter

are the discrete-time counterpart of those in [46].

Furthermore, the solution to the H oo prediction problem is given as a special case of

8



the Boo filtering problem, whereas the problem was solved in a different setting from the

Roo filtering problem in the previous works [52L[53]. The present approach provides a

unified solution to the B= filtering and prediction problems.

2. Problem Formulation

We consider a linear discrete-time system described by

(2.2.1)

(2.2.2)

where Xk E Rn, Yk E Rq and dk E Rm are the state vector, the measurement and the

unknown disturbance, respectively. We also assume that dk is an arbitrary L2 signal. Let

Zk E RP be the linear combination of the state variables given by

(2.2.3)

The matrices A, B, C, D and L are constant matrices of appropriate dimensions.

The following standard conditions are assumed to hold.

(Al) (e, A) is detectable.

(A2) rank [ A-:wln ~] =n+q, IfwER

We wish to estimate Zk based on the measurement set {yti t ~ k} under the above

assumptions. Let Zk be the estimate of Zk and Tr(a) be the transfer matrix of the filter,

namely,

(2.2.4)

We also define the filtered estimation error by ek = Zk - Zk. Then, we see from (2.2.1)-

(2.2.4) that

(2.2.5)

where the transfer matrices from dk to Zk and Yk are given by

(2.2.6)

9



Hence the transfer matrix from dk to ek is given by

(2.2.7)

We consider the following design specifications.

(S1) Te(o} E RH~q

(S2) Ted(a) E RH~m

(53) For a given scalar constant '1 > 0,

(i) IITediloo < '1, (ii) IITed II 00 ::; 'Y

We also define the following sets of the H oo filters.

A('Y): the set of all Te(a) satisfying (81), (82) and (53-i)

A('Y): the set of all Tr(a) satisfying (81), (82) and (83-ii)

The H oo filtering problem is now stated as follows:

(a) Find a necessary and sufficient condition for A('Y) f:. ¢.

(b) If AC!) is not empty, parametrize all elements of Ab) and Ab).

3. Preliminaries

In this section, we give some preliminary results on the (J, J')-spectral factorization,

model matching problem and "a (J, J')-lossless matrix. These results are useful for solving

H oo filtering problem.

Given real symmetric matrices J, J' and a p x m transfer matrix G(a) = [~I ~ ],
the(J, J')-spectral factorization is the problem of finding a unimodular matrix Ilea) such

that

G(a)JG"'(a) =TI(a)J'II"'(a)

If such a matrix TI(a) exists, it is called a (J, J')-spectral factor. The following two lemmas

are related to the state-space computation of (J,J')-spectral factorization.

Lemma 2.1: Given real symmetric matrices J E Rmxm, J' E RPxp and ap x m transfer

matrix G (a) = [ ~ I~ ] with A stable, there exists a unimodular matrix II (a) E G W,;P

such that

G(a)JG"'(a) = lI(a)J'II..... (a)

10



if and only if

(i) Tbe following ARE has a unique stabilizing solution X.

(2.3.1)

where V = DJDT + CXCT.

(ii) Tbere exists a nonsingular constant matrix W E RPxp satisfying

WJ'WT = V

Tben, such a transfer matrix II(a) is given by

ll(u) ~ [ ~ I:. ]w

K = (AXCT + BJDT )V-I

Proof: See Appendix 2.1.

(2.3.2)

(2.3.3)

(2.3.4)

•
Lemma 2.2: For a given real symmetric matrix V = [VII V21] E R(q+p)x(q+p) , we

V2I V22
assume that Vll > a holds. Then a necessary and sufficient condition for the existence of

a nonsingular matrix W E R(q+p)x(q+p) satisfying W JqpWT = V is that

Proof: See Appendix 2.2.

The following corolIary is well known as the bOWlded real lemma.

•

Corollary 2.1: (Bounded Real Lemma)

For a given p x m transfer matrix T(u) ~ [ ~ I~ ], suppose tJ,.t (A, B) is stabiIizable

and (C, A) is detectable. Then, the following conditions are equivalent.

(i) The matrix A is stable and lITl\oo < ,.

(li) There exists a positive semi-definite stabilizing solution of the ARE

(2.3.5)

with V :=,2Ip - DDT - CXCT > O.

11



Proof: Although the lemma is proved in [6] and [52], we give another proof based

on the (J, F)-spectral factorization. Assume that A is stable and IITlloo < {, Then

there exists a unimodular matrix To(a) satisfying {2Ip - TT~ = ToT;;. Thus, by taking

J = [ '}'2Ip 0 ], J' = Ip and G(a) = [Ip T(a)] in Lemma 2.1, we see that the ARE
o -1m .

(2.3.5) has a stabilizing solution X with V > O. Moreover, since A is stable, X is positive

semi-definite by Lyapunov's theorem.

Conversely, if X ~ 0 is a stabilizing solution of the ARE (2.3.5) with V > 0, then A is

stable by Lyapunov's theorem. Moreover, it follows from Lemma 2.1 that there exists a

matrix To(a) E GH~p satisfying '}'2Ip - TT"" = ToT;;. Tllis implies that IITlloo < ')'. •

The next lemma gives a connection between a model matclling problem and the (J, JI)-

spectral factorization.

Lemma 2.3: For given Tl(a) E RL~m and T2(a) E RL~m, suppose tbat G(a) :=

[
Tz 0] has a right inverse in RL~+p)x(q+p). Then the following are equivalent.
Tl -Ip

(i) Tbere exists a Q(a) E RH~q satisfying IITl - QT21100 < 'Y.

(ii) There exists a unimodular matrix II(a) = [lIn lI12
] E GH~+p)X(q+p) such tbat

. IT21 rr~

G(a)JmpG""(a) = II(a)JqpII""(a),

Proof: The proof is immediate from Theorem 2.4 of [15]. •
The notion of a (J, JIHossless matrix is very important for deriving the parametriza­

tion of H oo filters.

Definition 2.1: Given symmetric matricesJ E Rmxm, J' E RPxp, a transfer matrix

8(0') E Rvc:m is called (J, JI)-lossless ifit satisfies

8(0")J6""(0") = J' Va E C

8(a)J8H (0") 5 J' Va s.t. 10'1 ~ 1

A remarkable property of a (J, J')-lossless matrix is shown in the following lemma.

12



Lemma 2.4: Suppose that 8(a) = [8ll 8 12
] E RL~+p)x(m+p) is (Jmp, Jqp)-lossless,

821 822

and define

Then we have

OJ <1'(0') E BH~m if and only if U(a) E BH~q.

(li) <1'(a) E BH~m if and only if U(a) E BH~q.

Proof: For the proof, see the reference [7].

4. Solution via (J, J')-Spectral Factorization

•

In this section, we will give a solution of the H oo filtering problem based on the (J, J')­

spectral factorization approach. Since Tyd(a) and Tz"dCa) may not be stable in general,

we first need to characterize the class of all filters satisfying (51) and (52). This is the

filtering equivalent of the class of internally stabilizing controllers [11].

Lemma 2.5: The set of all filters satisfying (Sl) and (52) is given by

1}(a) = Tn (0') - Q(a)Tf2(a)

Tn(u) = [ A; I~ ], Tm(u) = [ A; I~q ]

(2.4.1)

(2.4.2)

where Q(a) is an arbitrary transfer matrix in RH~q, and where H E Rnxq is a matrix

such that Ay := A - He is stable.

Proof: See Appendix 2.3. •
The filter Tr (a) is strictly proper if and only if Q(a) is strictly proper. If Tf(0") is strictly

proper, then it does not use the measurement Yk for the estimation at time k, namely Tr(O")

is a predictor. Therefore, the above parametrization includes both filters and predictors.

We assume that Tf(O") is expressed by (2.4.1) and (2.4.2). Then, substituting (2.4.1)

into (2.2.7) yields

13



(2.4.3)

(2.4.4)

where BH =B - H D. It thus remains to find a matrix Q(17) E RR~q such that

(2.4.5)

It may be noted that Ted(17) is affine with respect to Q(17), and that Tl(17) and T2(17)

are stable. Thus, the Roo filtering problem reduces to a usual model matching problem

(MMP) to which Lemma 2.3 is applicable.

Theorem 2.1: The set Ah') is non-empty if and only if

(a) The algebraic Riccati equation

has a unique positive semi-definite stabilizing solution P, where

V = [ViI. V21 ] = DJmpDT + CPCT

V21 V22

[
R+CPCT CPLT ]

= LPCT _(,2 Ip - LPLT )

C= [ ~ ] , ij = [~ -~J, s= [BDT 0]

(b) For such a solution P, the following inequality holds.

(2.4.6)

(2.4.7)

(2.4.8)

(2.4.9)

Proof:

(i) Reduction to a (Jmp ,Jqp)- spectral factorization problem: We have only to consider

the existence of a matrix Q(17) E RH~q satisfying (2.4.5). We define

(2.4.10)·

14



where Bn = [BH 0). Under the assumptions (AI) and (A2), G(O") has a right inverse

in RL~+p)x(q+p). Thus, we see from Lemma 2.3 that A(-y) =1= ¢ holds if and only if there

exists a unimodular matrix II(O") = [IIll II12] E GH~+p)x(q+p) satisfying
II21 II22

G(O")JmpG"'(O") = II(O")JqpII ..... (O") (2.4.11)

with IIn(O") E GH~q.

(li) Derivation of the ARE (2.4.6): From Lemma 2.1, there exists a unimodular matrix

II(O") satisfying (2.4.11) if and only if there exists a unique stabilizing solution P of the

ARE

T ~T ~ ~T

P = AHPAH - (AHPC + BHJmpD )

1 ~T ~ ~T T ~ ~T

xV- (AHPC + BHJmpD ) + BHJmpBH

and there exists a nonsingular matrix W E R(q+p)X(q+p) satisfying

It is obvious from (2.4.7) that

Hence, we easily see that (2.4.12) is equivalent to (2.4.6). furthermore, we define

~T ~ ~T 1
KH = (AHPC + BHJmpD )V-

K= (APeT +S)V-1

AK=A-KC

(2.4.12)

(2.4.13)

(2.4.14)

(2.4.15)

(2.4.16)

(2.4.17)

Then, from (2.4.14), we obtain KH = K - H[Iq 0], and thus AK = A H - KHG holds. It

follows that AK is- stable since P is a stabilizing solution of (2.4.12). This implies that P

is also a stabilizing solution of the ARE (2.4.6).

(iii) Inequality (2.4.9) and the positive semi-definiteness of P: We hereafter assume that

the ARE (2.4.6) has a unique stabilizing solution P.

15



(2.4.18)

If there exists a matrix W E R(q+p)x(q+p) satisfying (2.4.13), then, n:om Lemma 2.3,

the (Jmp, Jqp)-spectral factor satisfying (2.4.11) is given by

II(a) = [A! KH] W= [A; K;:l
C Iq+p L W21

where W E R(q+p)x(q+p) is appropriately partitioned as

W - [Wll Wl2] W _ [ Wll] T;rT _ [ W 12 .]- , 1 - , vV2-
W21 W22 W21 .. W22

If II1/(o") E RH~q holds, Wll is invertible and

-1 [Aoo -KHW1] W-l
IIll (a) = w-le I 11

11 q

(2.4.19)

where Aoo := AH - KHWl Wille. Since this realization is stabilizable and detectable, Aoo

is stable. It is also easy to verify from (2.4.14) that Aoo = A - KWI Wille. Moreover,

(2.4.6) is expressed as

(2.4.20)

where

Since the second term in the right hand side of (2.4.20) is positive semi-definite and since

Aoo is stable, P ~ 0 holds. Also, since G(a) is invertible in RLoo , V must be nonsingular.

Together with P ~ 0, this implies Vll = R + CPCT > O. It thus follows from Lemma 2.2

~ -1 Tthat V = V2l Vll V2l - V22 > O.

Conversely, we assume that the conditions (a),(b) hold. Then, from (2.4.7), we get

V11 = R+CPCT > O. Hence, from Lemma 2.2, there exists a nonsingular W E R(q+p)x(q+p)

satisfying (2.4.13). Moreover, there exists a unimodular matrixII(a) E RH~+p)x(q+p) sat­

isfying (2.4.11) and it is given by (2.4.18). Also, since W11 wi). = Vll+'Y2Wl2W~> 0 holds

from VII > 0 and (2.4.7), Wll is invertible. Thus, we can express (2.4.6) as (2.4.20). Since

AK is stable, (Aoo , K) is stabilizable. This implies that the pair (Aoo , Noo ) is also stabiliz­

able [49J. It thus follows from Lyapunov's theorem that Aoo is stable, so II1l(a) E RH6,;q

holds. Therefore, from Lemma 2.3, the MMP (2.4.5) is solvable.
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Next we give a parametrization of all H oo filters Tr(a).

Theorem 2.2: Suppose tlJat the set Ab) is not empty. Then the parametrization of

all Tr(a) E AC1') (resp. Tr(a) E A(,)) is given by

(2.4.21)

(2.4.22)

where U(a) is an arbitrary transfer matrix in BH~q (resp. BH~q), and where K =

[Kl K2] E Rnx(q+p\ AK and W are defined by (2.4.16), (2.4.17) and (2.4.13), respectively.

Proof: We define

8(a) = [8 11 (a) 8 12Ca)] = rr- 1(a)G(a)
821 (a) 822(a)

[

AK B - KiD K2]
= W- l C D 0

L 0 -Ip

Since G(a)JmpG"'(a) = rr(a)Jqpil"'(a) holds, we get

Some simple calculations yield

(2.4.23)

Thus G(a) has the (Jmp, Jqp)-lossless factorization G(a) = TI(a)6(a) with a (Jmp, Jqp )­

lossless ma.trix 8(a) and a. unimodular matrix il(a) . Let Xl (u) E RH~P and X2(a) E

RH~P be defined by

(2.4.24)

17



Then we get

[Ted(a) -Ip ] = [-Q(a) Ip ] G(a)

= [-Q(a) I p ] II(a)8(a)

= [Xl (a) X2(a)] 8(a)

Hence Ted(a) is expressed as

Ted(a) = -{(-U)812 + 822}-1{(-U)8u + 821}

= -(U812 - 822)-1(U8n - 821)

(2.4.25)

(2.4.26)

where U(~) := -Xi1(a)X1(a). Since 8(a) is (Jmp, Jqp)-lossless) it follows from Lemma

2.4 that Ted(a) E BH~m if and only if U(a) E BH~P (resp. Ted(a) E BH~m iff

U(o') E BH~P). Furthermore, from (2.4.24), we see that

-Q(O') = xdin + Xzllz1

Ip = X db2 +X2ll22

where n-1(O') is partitioned as n-1(a) = [~n ~12]. Hence we get
. li21 rr~ .

Substituting this into (2.4.1) yields

Therefore, we obtain the parametrization of (2.4.21)-(2.4.22) by defining 0(0') as

18
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(2.4.28)

(2.4.29)
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Remark 2.1: It may be noted from Theorems 2.1 and 2.2 that the solution of the H oo

filtering problem is independent of the constant matrix H which is introduced in Lemma

2.5.

Remark 2.2: It is easily seen from the proof of Lemma 2.2 that if the H oo filtering

problem is solvable, we can take W12 = 0 as in (A.2.26) without loss of generality. Then,

O(a) of Theorem 2.2 is given by

(2.4.31)

(2.4.30)w-1
11

W-1ur W-l W- l- 22 vV21 11 22

where £' = W:i2I (L - W21Wi'i1C). In this case, by taking U(a) = 0, we obtain

1 [ A - KooC Koo]Tf(a) = -Q22 (a)021 (a) =
L - MooC Moo

It is easy to verify that

K oo = KWlWi1l = (APCT +BDT)(R+ CPCT)-l

Moo =W21 Will = LPCT(R +CPCT)-l

(2.4.32)

(2.4.33)

Hereafter, we refer to this H oo filter as the central H oo filter or the central solution of

the H oo filtering problem. It may be noted that, when 'Y tends to infinity, the H oo ARE

(2.4.6) reduces to the Kalman filtering type (H2-type) ARE, and hence the central H oo

filter reduces to the Kalman (H2-optimal) filter.

5. Structure of Hoo Filtering Problem

In this section, we will study the structure of the H oo filtering problem using the chain

scattering representation[29].

We consider a system described as

(2.5.1)[: ]~ [~:: ~::] [:: ]
where (UI, Y2) and (U2, Yl) are the inputs and outputs of the system, respectively. The

transfer matrix E(a) = [Ell E12] is called I'a chain scattering matrix". This system
E21 E22

can be illustrated as in Fig. 2.1.
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1

U2

~
Y2 Y

Fig. 2.1: Chain scattering representation

Using the chain scattering matrices 'El (u) and E2{O}, the input~outputrelationship of

the cascade connection of two systems in Fig. 2.2 (a) is given by

(2.5.2)

This implies that the cascade connection of systems can be' represented by using the

product of the chain scattering matrices of each system (Fig. 2~2 (b)).

'U3 'U2 'Ul.:J ~2 Gl ~f G
(a)

~ ~~2~1Y3

(b)

Fig. 2.2: Cas~ad~ connection ~f chain'scattering ma.trices
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We next consider a closed-loop system shown in Fig. 2.3. The input~output relation­

ship of this system is described by

(2.5.3)

As shown in Lemma 2.4, if 'E(O") E RL~+p)x(m+p) is (Jmp, Jqp)-lossless, t~en a necessary

and sufficient condition for ~(O") E Bw.;m is Q(O") E BH~q .

•
Q ~

I

Fig. 2.3: Chain scattering representation of a closed-loop system

Based on the above properties of the chain scattering representation, the structure of

the H oo filtering problem is illustrated in Fig. 2.4, where 'Esys(O") and Er(O") are the chain

scattering matrices associated with the system (2.2.1)~(2.2.3) and the filter (2.4.1),(2.4.2),

respectively.

Note that ned) is independent of the matrix H in Lemma 2.5 because of the pole-zero

cancellation between II-l(O") and Er(O"). If the H oo filtering problem is solvable, then

Esys(d) has a (Jmp, Jqp)-lossless coprime factorization Esys = n-18 with ncO") and 8(0")

defined by (2.4.22) and (2.4.23). Conversely, suppose that Esys(O") has a (Jmp, Jqp)-lossless

coprime factorization Esys = 0-18 without assuming any particular realizations of 0(0")

and 8(0"). Then, from Fig. 2.4) and Lemma 2.4, an H oo filter in ACt) is given by (2.4.21)

with U(O") E BHoo . In summary, we have the following theorem.
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Tf
,~------'A~---"""",

Esys
,,,------"''-----.,

n

~r--'II-.......---'lO'---E---cGJ 0-1 O_8__G
~ .....'-----.v,,------/

Q II
.....'------.....v~-------'/

G

Fig. 2.4: Structure of Roo filtering problem

Theorem 2.3: The set ACr) is non-empty if and only if Esys (a) has a (Jmp, Jqp)-lossless

coprime factorization of Esys = ,0-18, wl1ere 8(a) E RR~+p)x(m+p) is (JmPI Jqp)-lossless

and n(a) E RH~+p)X(q+p).

6. Solution of Hoo Prediction Problem

From the discussion in Section 4, we see that the key properties of Roo filters lie in

the biproper Roo filter of (2.4.31)-(2.4.33) which utilizes {yd t ~ k} for the estimation at

time k. Therefore, even if the Roo filtering problem is solvable, there may not exist an

Roo predictor (strictly proper Tr(a)) which uses {Ytl t ~ k-1} rather than {Ytl t S k}. In

this section, we consider the Roo prediction problem as a special case of the Roo filtering

problem.

Theorem 2.4: Suppose that A(-y) i= ¢ holds. Then, a necessary and sufficient condition

for the existence of an Roo predictor satisfying (81)-(83) is that V22 < 0 holds for the

positive serrri-deflnite stabilizing solution of the ARE (2.4.6).

Proof: Necessity: Suppose that there exists an Roo predictor Tr(a) satisfying (Sl)­

(83). By (2.4.21), UOn - 021 must be strictly proper for such a Tr(a). We now assume

W12 = 0 without loss of generality, so that O(a) is given by (2.4.30). Moreover, let the
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realization of U(a) be given by U(a) = [*
U BU] , so that

Cu Du

Thus we obtain Du = -W:i21W21'

Since IlUlloo < , holds from Theorem 2.2, we get

Therefore, V22 < 0 holds.

Sufficiency : Suppose that V22 < 0 holds. Then,

W = [ (Vn- V21V221V21l1j2 -1'- l V21(-V22)-1/2]
o ,-1(_Vn)lj2

(2.6.1)

is nonsingular and satisfies W JqpWT = V. By taking Was in (2.6.1), we get the following

parametrization from Theorem 2.2.

(2.6.2)

(2.6.3)

where U(a) is an arbitrary transfer matrix in BH~q and C' = WillC - WillWI 2W22
1L.

Moreover, taking U(a) = 0 yields an Boo predictor

This completes the proof.

Remark 2.3: It is easy to verify that

Kl = (APCT +BDT)(R+CPCT)-l

P = PUn - 1'-2LT LP)-l

(2.6.4)

•

Thus, as , tends to infinity, the Boo predictor (2.6.4) reduces to Kalman predictor.
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Remark 2.4: Since Vll > 0 holds, weget

Thus we see from Theorems 2.1 and 2.4 that the existence condition of an H oo filter is

more relaxed than that of an H oo predictor. This implies that there exis~s an H oo filter

which achieves the smaller H oo error bound than any H oo predictors.

7. Concluding Remarks

In this chapter, we have given a solvability condition of the H oo filtering problem

based on the model matching approach using (JJ')-spectral factorization. We have also

derived a complete parametrization of all solutions. Similarly to the H oo control case,

the free parameter of the parametrization can be used for achieving an additional design

specification, e.g. H2 performance, as well as the H oo error bound. Such multi-objective

design of an H oo filter will be discussed in the following chapters.

Furthermore, we have given a solution to the H oo prediction problem as a special case

of the H oo filtering problem. The present approach provides a lllified solution to the H oo

filtering and prediction problems.

Appendix 2.1: Proof of Lemma 2.1

It may be noted that the continuous-time result is given in [15] and that the proof of

the discrete-time -result is given by using the bilinear transformation [16]. We here prove

without using the bilinear transformation.

Sufficiency: We assume that there exist a stabilizing solution X to the ARE (2.3.1) and

that a nonsingular matrix W satisfying (2.3.2) exists. We define '1]'(0') := G(u)JG~((T)

and let II(u) and K be defined by (2:3.3) and (2.3.4), namely

ll(u) = [ ~ I~ ]W

K= (AXCT +BJDT)V-1 .
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Since X is a stabilizing solution of the ARE (2.3.1), it is straightforward to show that

rr-'(a) = W-' [ A -;C I-I:] E RH~P

It remains to show that '1T(a) = II(a) J'II"" (a).

From (2.3.1), we get

BJBT = aXa-1 - AXAT + (AXCT + BJDT)V-1(AXCT + BJDT)T

= (aln -A)X(a-1ln _AT) + KVKT

+(aIn - A)XAT + AX(a-1In - AT) (A.2.1)

Pre-multiplying by ~(a) := G(aIn - A)-l and post-multiplying by <P""(a-) yield

<P(a)BJBTcI>(cr)"" = CXCT + «l>(a) KVKTcI>"" (a)

+cI>(a)AXCT +CXAT«l>"'(q)

Since G(a) = «l>(a)B + D, it follows from (A.2.2) that

'1T(a) = DJDT + «l>(a)BJBT<lJ'" (a)

+DJBTcI>""(a) + «l>(a)BJDT

= [41i-]v[*r

(A.2.2)

(A.2.3)

Substituting (2.3.2) into (A.2.3) yields '"M(a) = II(a)J'II"'(cr). This completes the proof of

sufficiency.

Necessity: We first consider the case where (C, A) is observable. The basic idea of the

proof is due to [34]. Since A is stable, there exists a unique solution to the Lyapunov

equation

(A.2.4)

Then we get
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Pre-multiplying by <1>(0') and post-multiplying by <1>"'(0-) yield

Hence, we get

where

w(a) = DJDT + <1>(a)BJB T <1>"'(0")

+it!(a)BJDT + DJBTip""(O')

= DJDT + CXICT + 6(0-) + 6"'(0') (A.2.5)

(A.2.6)

We now assume that there exists a unimodular matrix Il(O') such that W= IlJ'Il"'. From

(A.2.5), we easily see that if ). is a pole of w(a) then 1/), is also a pole of'lr(a), and that

if 1>'1 < 1 then). is an eigenvalue of A. Thus, we can take rI(O") as

II(u) ~ [ ~ I; ]. W: nonsingula;

Note that since (C,A) is observable, r is unique for C, A and Il(a). Since W is nonsingular,

V := W J'WT is also nonsingular. Similarly to the derivation of (A.2.5) and (A.2.6), we

obtain

(A.2.7)

(A.2.8)

where X2 is a unique solution to the Lyapunovequation

(A.2.9)

Since both Q'(a) and II'(a) are in RHg;P and strictly proper, comparing (A.2.5) with

(A.2.7) yields

O(c:r) = Ir(c:r)

DJDT +CX1CT = V + CX2CT
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Moreover, since (e, A) is observable, from (A.2.6),(A.2.8) and (A.2.10), we get

(A.2.12)

Define X := Xl - X 2 . It then follows from (A.2.1l),(A.2.12) and the invertibility of V

that

V =DJDT +excT

f=KW

K= (AXCT +BJDT)V- l '

Substituting above equations into (A.2.9) yields

(A.2.13)

(A.2.14)

(A.2.15)

By subtracting this from (A.2.4), we obtain the ARE (2.3.1). Note that X is unique since

Xl, X2 and r are unique. Moreover, II-I is given by

Since II(a) is unimodular, A - Ke is stable, i.e. X is a stabilizing solution.

Next, we consider the case where (C, A) is not observable. It suffices to show that there

exists a stabilizing solution of the ARE (2.3.1). Without loss of generality, we assume that

A, Band e are in the canonical form

[
An 0 J .[ ] [ Bl JA = , C = Cl 0 , B =
A21 A22' B2

(A.2.16)

where (Cl, An) is observable and A22 is stable. Also, it is easy to verify that G(a) =

[*11 BlJ' .. [Xli XiI]. According to (A.2.16)' we partItIOn X as X :::::: . Then the
el D X21 X22

ARE (2.3.1) reduces to the following simultaneous equations.
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v = DJDT + clxucl

Xu = AllXllATI + BIJBl' - (AllXllCl + BIJDT)

xV- l (AuXu C! + BIJDT)T

X21 = A22X21(Au- KI Cl)T +A2IX U(All - KlCI)T

+B2J (BI - KlD)T

X22 = A22X 22AI2 + A21X llAIl + A22X21 AIl + AilX~AI2

+B2JBi - K2VKi

where K = (AXCT + BJDT)V-I is partitioned as

(A.2.17)

(A.2.18)

(A.2.19)

(A.2.20)

Since G(<7) = [ ;11 I; ], from the result in the case where (C,A) is ohservable, there

exists a unique stabilizing solution Xu to the ARE of (A.2.17),(A.2.18). Hence Au -KlCl

is stable. Since A22 and All.- KICI are stable, it follows from (A.2.19) and (A.2.20) that

X21 and X22 are uniquely detennined for Xu. Furthermore, we have

From the stability of A22 and Au - KICI, A - KG is also stable. Therefore, in the case

where (e, A) is detectable, the ARE (2.3.1) also has a unique stabilizing solution X. •

Appendix 2.2: Proof of Lemma 2.2

Since Vu > 0, the following identity holds.

V= [V21;'i1 ~][ ~1 V" _V,~VIiIV,] ][ ~ VIi;;,]] (A.2.21)

For the existence of a nonsingular W, it is necessary that V22 - V21 V11 l V21 is nonsingular.
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We define

[
WI1 W12] [ I q

W21 W22 - - V21ViiI

Then, from W JpqWT = V and (A.2.21), we obtain

o ] W
I p

- -T 2--T
0= W2IW11 - '"( W22WI2

-1 T - -T 2--T
V22 - 1121 V11 V21 =W2I W2I - '1 W22W22

(A.2.22)

(A.2.23)

(A.2.24)

- -TSince Vll > a and (A.2.22) hold, Wu is invertible. Then, from (A.2.23), we get W21 =
'12WiiIW12W:?;, Substituting into (A.2.24) yields

(~.2.25)

where N = ,WUIWI2. Since Iq - N NT> a holds from (A.2.22), we get Ip - NTN > O.

Thus, it follows from (A.2.25) that V21 v1i1v21 - V22 ~ O. Since V21 Vii IV21 - V22 is

invertible, we obtain

(A.2.26)

Conversely, assume that V21ViiIv21- V22 > a holds. Then it is easy to verify that

[

v:l/2 a ]W- 11
- -1/2 -1 -1 T 1 2V21 Vll ,(V21Vu V21 - V22) /

is invertible and satisfies W JqpWT = V. •
Appendix 2.3: Proof of Lemma 2.5

Although a proof is given in (14), we give a different proof.

Necessity: Under the assumption (A2), there exists a matrix H E Rnxq such that

Ay := A - He is stable. We define

Tn(u) = [ A: I~]
We easily see that Tn(u) satisfies (S1) and (S2). Therefore, without loss of generality, we

can assume that Tr(u) has the form of

Tr(u) = Tn (cr) +T/(u)
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where T!(u) E RH~q. We now define

T.'d(a) = T,d(a) - Tn (q)T'd(a) = [ ;: I~u ] E RIF'~m

where En = B - HD. Substituting (A.2.27) into (2.2.7) yields

(A.2.28)

Using the matrix H, a left coprime factorization of Tyd(U) is given by

where

From (A.2.28), we get

X(a) = [.~] yea) = [ Au IBu
]--=err; , C D

(A.2.29)

Since X(u) and Y(u) are coprime over RHco , it follows from (A.2.29) that T/(u)X-1(a) E

RH~q holds. Therefore, by defining Q(u) = -T[(a)X-1(u) and TrAu) = X(u), we get

the parametrization of (2.4.1).

Sufficiency: The stability of Tf(a) is obvious. If Tf(U) is expressed as in (2.4.1) and

(2.4.2), then a straightforward calcula.tion yields

Since Au is stable and Q(u) E RH~ql Ted(a) E RH~m holds..
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Chapter 3

H oo Filtering with Boundary

Constraints

1. Introduction

In the previous chapter, we have derived the parametrization of all solutions of the

infinite-horizon Roo filtering problem for time-invariant systems. The free parameter of

the Roo filter can be used to achieve an additional design specification as well as the H oo

error bound. As an example of such multi-objective Roo filtering problems, we consider

the H oo filtering problem with frequency constraints on the unit circle of the complex

plane (boundary constraints).

If the system is subject to step or periodic disturbances, then the state estimates may

be degraded by the biases or the periodic fluctuations due to these disturbances. In order

to reject these undesirable effects, we need to impose boundary constraints such that the

transfer functions from these disturbances to the error must be zero at certain points on

the unit circle. Thus, the state estimation with boundary constraints is also important

from the practical viewpoint.

It may be also noted that we can attenuate step and periodic disturbances by apply­

ing the observer design technique to the augmented system incorporating the state-space

model of the disturbances. However, since the augmented system does not satisfy the as­

sumption (A2) in Chapter 2, it is difficult to solve the Boo filtering problem with boundary
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constraints by the conventional observer design technique.

Therefore, in this chapter, based on the Nevanlinna-Pick interpolation technique [45],

[48], we develop a method for adjusting the free parameter of the Roo filter so that the

boundary constraints are satisfied. Moreover, we show that the resulting Roo filter is a

linear function observer for the augmented system including the disturbq.nce model. A

numerical example also shows the applicability of the proposed design method.

2. Problem Formulation

We again consider the system of (2.2.1)-(2.2.3)

Zk = LXk

where ::q ERn, Yk E R q and dk E R m are the state vector1 the measurement and the

disturbance at time k, respectively. Moreover, Zk E RP is the vector to be estimated.

As in Chapter 2, we assume the following.

(AI) (C, A) is detectable.

(A2) rank [ A - ~~In ~] ~ n + q, Vw E R

Let Zk be the estimate of Zk based on the measurement set {Ytl t ~ k}, and Tc(u) be

the filter transfer matrix from Yk to Zk. The standard Roo filtering problem is the problem

of finding a filterTr(u) satisfying the following specifications:

(81) . Tr(o) E RH~q

(82) Ted(U) E RH~m

(83) lITedlloo < 1 for a given constant 1 > 0

where Ted(u) is the transfer matrixfrom dk to the estimation error ek := Zk - Zk.

T,,(q) - [ ~I:]-Tr(q)UI~ ]
In this chapter, we wish to find a filter Tr(O") satisfying the boundary constraints on

the unit circle in the complex plane in addition to the above specifications.
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(84) TJ2 (e jwi ) = a for given T different frequency points Wi E R

(i = 1,' ", r)

where w1i
) is the column vector which consists of the li entries of dk associated with the

i-th constraint, and T!2(a) is the transfer matrix from w1il to the estimation error ek.

Moreover, we define vii) as the column vector which consists of the re~aining m - li

entries of db and let TJtl (a) be the transfer matrix from vii) to ek.

In many practical situations, the disturbance dk may include step or periodic distur­

bances. If dk contains these disturbances, then the estimates may be degraded by the

biases or the periodic fluctuations. In order to remove these undesirable effects, it is re­

quired that the transfer matrix from the disturbances to the estimation error should be

zero at certain points on the unit circle. To see this more specifically, let us consider the

following example.

Example 3.1: We consider the system given by

[~
0.5 0] [0 00]

Xk+1 == 2 1 Xk + 0 0 1 dk

o 3 1 0 a

[~
2 ~ ]x. + [ ~ 10]

Yk = dk
0 o 1

[~
1 nZk =
0

(m=3, n == 3, p =2, q == 2)

We denote the i-th element of dk by di,kl i = 1,2,3, and assume that dl,k contains a step

disturbance and da,k contains both a step disturbance and a periodic disturbance with

frequency W2 > O. We nOw define wli) and vii), i == 1,2 (r = 2), by

will = [ dl,k ], viI) = d2,k
da k

I

(2) _ [ dl,k ]
Vk -

d2,k

Further, we define Te~(a) and T~~)(a) as the transfer matrices from wii) and vii) to ek,

respectively.
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Since will contains step disturbances, we assume that viI) E L2 and

O~k

k<O

where al E R 2 is an arbitrary constant vector. Then, by the final value theorem, we get

limek = lim(l- a-l)T~(a)w(l)(a)
k-HXJ et-+l

= lim (1- a-l)T(l)(a)al 1.
et~OO ew 1 - a-I

= T~~(l)al

Thus, in order to reject the bias due to the step disturbance, we need to design Tr(a) so

that T~~(l) = 0 hold. This implies that T~~(ejwl) = 0 with WI = O.

Next, we consider the effect of the periodic disturbance. Allowing wi2
) to take a

compl~x value for simplicity, we assume that wi2) = a2 exp(jw2k) for some constant a2 E R

and vi2) E L2. Then, the steady-state response of ek is given by

Hence, in order to remove the periodic fluctuation due to the periodic disturbance, we

require that T~~) (e;W2) = 0 should be satisfied.

3. Boundary Constraints

Assume that the conditions (a) and (b) of Theorem 2.1 hold, and that the parametriza­

tion of all Tf{a) satisfying (81)-(83) is given by (2.4.21) and (2.4.22), where U(a) is an

arbitrary transfer matrix in BH~q, and where K = [K1 K2] E R1lx{q+p), AI( and W are

defined by (2.4.16), (2.4.17) and (2.4.13), respectively. Then we see that Ted(a) is given

by

where

[ E1 (a) E2{a)] = [U(a) -Ip ] 8(17)

= [ U8n - 821 U812 - 822 ]

34

(3.3.1)

(3.,3.2)



and eta) is defined by (2.4.23). We here define El'l(a) and L:l~(a) as the transfer matrices

which consist of the column vectors of El (a) corresponding to w~i) and vii), respectively.

In other words, we define L:i? (a) and EW (a) so that

(3.3.3)

The following theorem shows that the boundary constraints can be expressed in terms

(")
of El~ (a).

Theorem 3.1: Suppose that the conditions (a) and (b) of Tbeorem 2.1 hold, and tllat

the H oo filter satisfying (Sl)-(S3) is given by Theorem 2.2. Then, for a given frequency

point Wi E R, TJ2 (eiWi ) = 0 holds if and only if EW (eiWi ) = 0 holds.

Proof: (Necessity) Since L:2(a) E RH~q holds from Uta) E RH~q and eta) E

RH~+p)x(m+p), E2"l(a) does not have a zero at a= eiWi • Hence EW (eiWi ) = ais necessary

in order that TJ2(eiwi ) = ashould hold.

(Sufficiency) Assume that EW(eiWi ) = O. Then, from (3.3.1), it suffices to show that

E2(a) does not have a zero at a = eiWi • Since eta) is (Jmp, Jqp)-lossless, we get

Pre-multiplying this by [U(e iWi ) .Ip] and post-multiplying by [U(e iWi ) Ip]H yield

where Uta) E RH~q is a free parameter satisfying IlUlioa < ,. It follows from L:ii{ (eiWi ) =

a that

(3.3.4)

It may be noted that the left-hand side of this equation is positive define since IlUlioa < 'Y.

If L:2 (a) has a zero at a = eiWi
I there exists a nonzero vector 1} such that 1}H E2 (eiWi ) = O.

Then we see from (3.3.4) that
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This contradicts the positive definiteness of,2Ip ~ UU H• Therefore, E2(0") does not have

a zero at 0" = ejw;. •
We here define eWl (0") and e~j12(0") as the transfer matrices which consist of the

column vectors of 811 (0") corresponding to wii ) and vii), respectively. We similarly define

eWl(O") and e~j{12(0") for 82I(0"), so that

(3.3.5)

(3.3.6)

Since EW(O") is affine with respect to U(O"), from Theorem 3.1, finding a free parameter

U(O") satisfying (84) reduces to the following interpolation problem.

Interpolation Problem: For given r different frequency points Wi (i = 1,"', r),

find a transfer matrix U(O") E BH~q such that

U(eiWi ) = Uj (i = 1,"" r)

where Uj E C pxq is a solution of the linear matrix equation

A solution of this interpolation problem is given by the following theorem.

(3.3.7)

(3.3.8)

Theorem 3.2: Suppose that the conditions (a) and (b) of Theorem 2.1 bold, and tbat

8(0") is defined by (2.4.23). Then there exist a matrix Uj satisfying (3.3.8) if and only if

Ker eCi) (eiWi ) C Ker e{i) (d"";)
111 - 211 (3.3.9)

Ifsuch a matrixUj exists for i= 1," " r, then a. necessary and sufficient condition for the

eJdstence of a free parameter U(O") E BH~q satisfying (3.3.7) is that

(3.3.10)

Proof: From Lemma. A.3.I(i}, there exists a ~atrix Uj satisfying (3.3.8) if and only if

(3.3.9) holds. In this case, from Lemma A.3.1 (iii), the minimum-norm solution aIll0ng all

solutions to (3.3.8) is given by

(3.3 ..11)
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Since \lU\I= < 'Y holds, for the existence of a matrix U(er) E BH~q satisfying (3.3.7),

there must exist a matrix satisfying \lUdl < / among the solutions of (3.3.8). This implies

that (3.3.10) must hold.

Conversely, we assume that the conditions (3.3.9) and (3.3.10) hold. Then there exists

a matrix Uj satisfying (3.3.8) with llUdl < /. If IIUdI < / holds for i = 1,:,' ,T, then the

existence of U(er) E BH~q satisfying (3.3.7) is guaranteed by Lemma A.3,.2. •

In summary, the H oo filter Tr(O') satisfying (Sl)-(84) can be obtained by the following

design procedure.

Step 1: Check if the conditions (a) and (b) of Theorem 2.1 hold or

not. If not, stop.

Step 2: Solve the ARE of (2.4.6),(2.4.7), and obtain 8(0') from

(2.4.23).

Step 3: Check if the conditions (3.3.9) and (3.3.10) hold or not. If

not, stop.

Step 4: Obtain Ui from (3.3.11), and find a U(O') E RH:q satisfying

IlU\loo < / and (3.3.8) using the matrix-valued Nevanlinna­

Pick algorithm [48].

Step 5: Obtain Tr(er) from (2.4.21),(2.4.22) in Theorem 2.2.

In general, the conditions (3.3.9),(3.3.10) depend on the parameter /. However, if A

has no eigenvalues on the unit circle, then we can obtain a condition equivalent to (3.3.9),

which is independent of /.

Lemma 3.1: Suppose that A has no eigenvalues on the unit circle. Then, the following

condition is equivalent to (3.3.9) in Theorem 3.2:

Ker T(i) (eiw;) C Ker T( i) (ejw;)
yw - zw (3.3.12)

where T~2(0') and TJ2(0') are the transfer matrices from wii ) to Yk and Zk, respectively.

Proof: Note that the eigenvalues of A are the invariant zeros of 0(0') of Theorem 2.2.

It follows that, if A has no eigenvalues on the unit circle, there exists a matrix ri E Cpxq

such that

(3.3.13)
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Conversely, if a matrix ri is given, we can get Ui by

(3.3.14)

where

[~11 ~12] = [DU 012]-1
D2l D22 (hI D22

Thus, the mapping from Ui to r i is bijective. Furthermore, a simple calculation of state-

(3.3.15)[
(i)] [ ] [ (i)]8 111 _ Dl1 D12 Tyw

(i) - (i)
8 211 D21 D22 Tzw

Hence, we see from (3.3.8),(3.3.13) and (3.3.15) that the existence of Ui satisfying (3.3.8)

space data yields

is equivalent to the existence of r i satisfying

(3.3.16)

Therefore, by Lemma A.3.1 of Appendix 3.1, the condition (3.3.9) is equivalent to (3.3.12) .

•
4. Relation to Linear Function Observer Theory

In the previous section, we discussed the boundary constraints from the viewpoint of

the zeros of transfer matrices. Therefore, the relationship between the structure of the

resulting H oo filter and the disturbance model is not clear. On the other hand, it is well

known that the linear function observer theory can be applied to the state estimation

for the augmented system incorpora.ting the disturbance model. In this section, we will

clarify the relationship between the resulting H oo filter and the conventional linear function

observer by showing that the resulting H oo filter is a linear function observer for the

augmented system.

Hereafter, we only consider the step disturbance (r = 1, Wl= 0) for simplicity. We

also assume without 10s6 of generality that dk =[w~I)Tv~l)rF and
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accordingly. Then the system of (2.2.1),(2.2.2) is expressed as

(1) (1)
Xk+l = AXk + BIWk + B2Uk

Yk = CXk + DIwi1) + D2vil
)

Since wi1) is a step function, the disturbance model is given by

(3.4.1)

(3.4.2)

(3.4.3)

We assume that the conditions (i),(ii) of Theorem 2.1 hold. We also assume without

loss of generality that a matrix W satisfying (2.4.13) has the form

and define

WI = [ W
l1

], W2 = [ a ]
W21 W22

In the case where r = 1 and WI = 0, the interpolation condition of (3.3.7) and (3.3.8) can

be given by

where

Since Ul E Rpxq, we can choose the free parameter U(u) as

From the above discussion, an Roo filter satisfying (81)-(S4) is given by

[
A- KC K]

Tr(u) = --
L-MC M

K= KWIWill +K2W22UWili

M = W21 Will + W22UWi'il

where K = [KI K2) is defined by (2.4.16).
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Since A - KG is stable, we can define

Simple' calculation yields

T[~
Also, since T;D(l) =0, we get

That is,

(L-MC)T+M[ C Dl] = [L 0]

(3.4.8)

(3.4.9)

It therefore follows from (3.4.8),(3.4.9) and Lemma A.3.3 that Tf(a) of (3.4.5) is a linear

function observer for the augmented system

[ ::~: ] ~ [~ :.:] [ :i~) ] + [ ~' ] vi')

y. = [C Dl] [ :i~) ] + D,vi')

. z. = [L 0] [ :i~) ]

5. Numerical Example

In this section, we consider Example 3.1 again. The infimum of '"f satisfying the con-

ditions (a),(b) of Theorem 2.1 is '"f = 3.112. Thus, in the following, we take '"f = 3.5. In

this case, the stabilizing solution P ~ 0 to the ARE of (2.4.6M2.4.7) is

[

22.375 -12.976 -10.581]

p = -12.976 62.889 .147.537

-10.581 147.537 373.886

Also, a matrix W satisfying (2.4~13) is

w=

14.933

-0.181

7.341

19.033

-0.181

4.831

2.220

-1.477
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Since wil) contains the step disturbance, Wl = 0 for the constraint (54). We also take

W2 = 1r/ 4 by assuming that the periodic disturbance included in wi2) has the frequency

1r/4. Note that the central filter (U(a) = 0) does not satisfy (84) for this example.

In order to find a free parameter satisfying (84), we consider the interpolation problem

in Section 3.3. Let Uj be given by (3.3.11), and let cO = 0.02, where cO is, the parameter

which reduces the interpolation problem on the unit circle to a usual Nevanlinna-Pick

problem (see Appendix 3.2). Then, by applying the matrix-valued Nevanlinna-Pick algo­

rithm [48], one of the solutions to the interpolation problem on the unit circle is given by

the 8th-order transfer matrix

U(a) = _1_ [nn(a) n 12(a)]
d(a) n2l(a) n2da)

d(a) = 0'8 - 6.2060'7 + 17.7080'6 - 30.3220'5 + 33.9970'4

-25.5060'3 + 12.4850'2 - 3.6360' + 0.480

nu(a) = 0.2110'8 - 1.3350'7 + 3.8760'6 - 6.7360'5 + 7.6520'4

-5.8200'3 + 2.8750'2 - 0.8460' + 0.113

n2l(a) =0.9280'8 - 5.4210'7 + 14.6240'6 - 23.6570'5 + 24.9210'4

-17.3950'3 + 7.7940'2 - 2.0220' + 0.228

n12(a) = 0.:3170'8 - 1.9850'7 + 5.6960'6 - 9.7720'5 + 10.9370'4

-8.1570'3 + 3.9520'2 -1.1340' + 0.147

n22(a) = 0.1880'8 - 1.3920'7 + 4.5450'6 - 8.6740'5 + 10.6610'4

-8.6760'3 + 4.5790-2 - 1.4370- + 0.205

For the resulting H oo filter, the values of Ted(cr) for 0- = 1, ei 'lf"/4 are

T. (1) = [0.000 -0.467 0.000]
ed 0.000 0.600 0.000 .

(
~j) [-0.001 + 0.042j -0.415 + 0.069j

Ted e4 =
-0.470 -1.243j -0.240 - 2.812j

0.000 ]
0.000

This shows that the condition (84) is satisfied, that is, the transfer functions from [dl,k d3,kF
and d3,k to ek are zero at frequency w = a and 1T' / 4, respectively.
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Fig. 3.1 shows the singular value (SV) plots of Ted(CT) for the central and proposed

Roo filters. We see from the figure that the H oo error bound IITedl!oo < 3.5 is achieved by

both filters. It may be noted that, due to the constraiut (S4), the SV plot for the proposed

design method has a notch at frequency 1r/ 4 ~ 0.785 and has small singular values at low

frequency band.

00 3.
~ 3
ctl
>....
ctl

5 2
.~
.m
E
:::J 1
E
'x
ctl
E

central
solution

proposed method

............
' ..

0'--------'---------'-----'
10.3 10.2 10.1 10° 101

frequency (rad/s)

Fig. 3.1: Singular value plots of Ted(CT)

A simulation result is also given in Fig. 3.2, where ek = [el,k e2,k]T. In order to

see the effects of the step and periodic disturbances on the estimation errors, we give the

disturbance dk as follows:

o~ k ~ 50

50 < k

O~k

d _ { 0
I,k - 0.5

d2,k = 0

{

1r
0.2cos(4"k)

dSk=· 1r
I 1 + 0.2 cos(4"k)

0::; k ~ 350

350 < k

The initial states of the system and the filters are all set to zero. Fig. 3.2 (a) shows

that the performance of the central H oo filter is degraded by the bias and the periodic

fluctuations due to the step and periodic disturbances. On the contrary, in Fig. 3.2 (b),

the estimation errors of the proposed Boo filter asymptotically converge to zero even in
. .

the presence of the step and periodic disturbances.

42



6. Concluding Remarks

In this chapter, we have proposed a design method of an H oo filter so that the con­

straints on the unit circle is satisfied. By this method, we can reject the undesirable effects

due to the step or periodic disturbances.

We have also shown the relationship between the state-space model of the disturbance

and the structure of the proposed H oo filter in the case where the disturbance is step

function.

~ 0.5g
Q)

6 0=ro
E=~ -0.5
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o 200 400 600
time

(a) Central solution
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(b) Proposed method

Fig. 3.2: Simulation results
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Appendix 3.1: Linear Matrix Equation

Lemma A.3.!; Consider the linear matrix equation

XB=C

for given constant matrices B E cmxn and C E C pxn .

(i) There exists a matrix X E cpxm satisfying (A.3.l) if and only if

Ker B ~ KerC (equivalently, CB#B = C)

(ii) If (A.3.2) holds, the set of all solutions X is given by

(iii) The minimum-norm solution whose norm is minimal among all solutions is

X=CB#

Proof: See, for example, the reference [44].

(A.3.l)

(A.3.2)

(A.3.3)

(A.3A)

•
Appendix 3.2: Interpolation Problem on the Unit Circle

Lemma A.3.2: For given r different frequency points Wi E R (i = 1" .. J r), there exists

a rational transfer matrix X(a) E H~q satisfying I!Xlloo < 1 and

if and only if

X(eiWi ) = Xi (i = 1,' .. ,r)

IIXill<l, (i=l,"',r)

(A.3.5)

(A.3.6)

Proof: The lemma is the discrete-time equivalent of Lemma Bin [45]. Hence, the proof

almost follows the line of the proof in [45].

(Necessity) Obvious.

(Sufficiency) We assume that (A.3.6) holds. We now define ai(e) = et:+iWi for a small

scalar e > O. Note that Ilai(€)!1 > 1 since €>.0; We consider a Pick matrix [48] given by

FCc) = {Pke(c)}

~ ( ) _ Ip - X~Xl _ Ip - XrXl
kl c - 1 _ >:k>"e - 1 _ e-2e-j(Wl:~Wl)
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where Ai = ail and Xdenotes the complex conjugate of A. Since e > 0 and (A.3.B) hold,

we get Pkk(E) > O. Furthermore, as E --+ 0, IIPkk(e)i1 becomes arbitrarily large, whereas

Hence there exists a constant cO > 0 such that P(EO) > a holds. This implies from

the Nevanlinna-Pick theorem that there exists a rational transfer matrix Z(a) E Hg,;<q

satisfying IlZ\loo < 1 and

If we define X(a) := Z(e~oa) for such a Z(a), then X(a) satisfies lIXlioo < 1 and the

original interpolation condition (A.3.5). •
Remark 3.1: Z(a) can be computed by the matrix~valuedNevanlinna-Pick algorithm

[48].

Remark 3.2: In Lemma A.3.2, the existence of a "real" rational X(a) is not guaranteed.

In order to obtain a real rational X(a), we need to impose additional conditions which

are complex conjugates of the original conditions.

In this case, if we get a complex rational solution X 0(a), then a real rational solution X (a)

is given by
1 --

X(a) = 2"{Xo(O") + Xo(iT)}

Appendix 3.3: Linear Function Observer

Let us consider the system described by

(A.3.9)

(A.3.10)

where Xk, Yk and Uk is the state, measurement and the known control input.

We wish to estimate the linear function of the state variables defined by

(A.3.11)
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LemmaA.3.3: Consip.er the ,system given,by

"ek+l =,Aek +BYk+ EUk '

Zk 'Ge;t;'+Dyk '-'
" -.. - [

(A.3.12)

(A.3.l3)

Hthe following c6nditionshold;'the system of (A.3.l2)jCA.3.13) is a linear function'observer'

fOl"thesystem (k3.9)-(A.3.11)ji.e"zk ~zkas k-'-l- 00.

(i) A: stable

(li) There exists a constant matrix T satisfying: t,

Proof: ,See ,;ther~f~rence..[19].
.... . _ .• '_'," .'.. '.' ",- a.',-' . '"('

'TA -':'AT= Be
CT+DC= i

'j'"

. ".)' ·'"<",,·i

(A.3.15)

tAIi6)
I,,:·
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Chapter 4

Hoo Algebraic Riccati Equation

and Parametrization of All H oo

Filters

1. Introduction

Algebraic Rlccati equations (ARE) play very important roles in the state-space solu­

tions of many control and estimation problems. This chapter is concerned with the ARE

related to the infinite-horizon H oo filtering problem and its application to the analysis of

the H oo filter.

In the H oo filtering problem, we design a state estimator so that the L2 induced norm

(Hoo norm) of the error system is smaller than the prescribed bound 'Y. It has been shown

that a necessary and sufficient condition for the existence of a solution to this problem

is that an H oo ARE has a positive semi-definite stabilizing solution for which a certain

matrix must be positive definite [40],[51),[52].

The H oo AREs arising in the Hoo control and estimation problems have been ex­

tensively examined. For the continuous-time case, Hewer [22] and Gahinet [13] have

shown that the stabilizing solution of the continuous-time H oo ARE is monotonically

non-increasing convex function of 'Y, and the behavior at the optimum is considered by

Gahinet [13]. A recursive method for obtaining the solution of the discrete-time H oo ARE

and some related results have been given by Stoorvogel and Weeren [43]. It may be also

47



noted that the existence condition of a stabilizing solution to the ARE of general type is

considered based on the Popov function by Ionescu and Weiss [23}. In this paper, we will

derive the infimum of 1 for which a stabilizing solution to the discrete-time H oo ARE ex­

ists, and show that the positive semi-definite stabilizing solution has the monotomcity and

convexity properties for I, which are discrete-time counterparts of the resl,llts in [13]'[22].

Since the state-space realization of the H oo filter is given in terms of the stabilizing

solution of the H oo ARE, the performance of the H oo filter depends on the stabilizing

solution. Therefore, the analyses of the HooARE are very important. A relationship

between the performance of the central He>:> filter and the prescribed bound 1 has been

examined based on the monotonicity of the He>:> RDE for the time~varying case. by the

authors (see Chapter 6). Also, multi-objective filter design problems including H 2/Hoo

filtering problem [20],[27] aim at achieving an additional design specification by using

the free parameter contained in the H oo filter. Thus, the performance for the additional

specification depends on the size of the region where the free parameter ranges. Motivated

by this observation, we will investigate the change of the size of this region with respect

to the variation of 1 based on the above properties of the H oo ARE. Such analyses of the

H oo filter will provide a guideline for designing an H oo filter.

2. Algebraic Riccati Equation

In this section, we will give some results related to the stabilizing solution P.

Similarly to the previous chapters, the following two conditions are assumed for the

system of (2.2.1)~(2.2.3).

(Al) (e, A) is detectable.

(A2) rank [ A - ~w In ~] ~ n + g, Vw E R

For simplicity of discussion, we hereafter assume the following condition.

(A3) R := DDT:> 0

This assumption implies that all elements of Yk are degraded by the disturbance dk. Such

a situation can be found in many practical applications. It may be also noted that, in ~he
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case where D is degenerated, the Boo filtering problem for the system (2.2.1)- (2.2.3) can

be reduced to the problem for a system with D full row rank by applying the infinite zero

compensation technique [5].

As in Chapter 2, we define A(-y) and A(-y) as the sets of all H oo filters satisfying

IITedlloo < I and IITed ll oo ~ I, respectively. It is shown in Theorem 2.1 that under the

assumptions (AI) and (A2), the Boo filtering problem for the system (2.2.1)-(2.2.3) is

solvable, namely A(f) i= ¢, if and only if there exists a positive semi-definite .stabilizing

solution P to the ARE

(4.2.1a)

(4.2.1b)

. [T ]~ Vll V21 ~ ~
with V = V21 ViiIv21- V22 > 0, where V = , and where C and S are defined

V21 V22

by

c= [ ~ ] , § = [EDT 0]
Under the assumption (A3), we define F and G by

Under the assumptions (Al}-(A3), (C, F) is detectable and (F, G) has no uncontrollable

modes on the unit circle. By the matrix inversion lemma, we see from (4.2.1) that

(4.2.2)

Let Pb) be the set of all positive semi-definite solutions ofthe ARE (4.2.2), i.e. (4.2.1),

satisfying V > O. We also define lopt = infh > 0 : A(f} -=1= ¢}. It is clear from Theorem

2.1 that 'Y > lopt holds iff th~ ARE (4.2.1) has a stabilizing solution in P(f}.

Lemma 4.1: Suppose that the ARE (4.2.2) bas a stabilizing solution P in P(f}, namely

'1 > ')'opt. Tben, KerP coincides witb tbe stable (F, G)-uncontrollable subspace.

Proof: See Appendix 4.1.
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We see from Lemma 4.1 that Ker P is independent of the parameter 'Y. We thus assume

without loss of generality that P, G, C and L have the forms of

F = [:' ;:], G ~ [ ~I ]

C= [CI C2]; L = [LI L2]

where (Fl, Gd has no uncontrollable modes in the closed unit disk. Then, F2 is stable

since (F, G) has no uncontrollable modes on the unit circle. In the following, we also

assume that FI is invertible.

Under the above assumptions, the stabilizing solution P E P(r) is of the form P =

[POl 0°] and PI is a unique positive definite stabilizing solution of

(4.2.3)

where 01 = [ ~: ] and V is expressed as V =DJmpijT + 01P10'[. Let PI(-Y) be the

set of all positive definite solutions of the ARE (4.2.3) such that V > °holds. 'Then, from

the above discussion, the existence of a stabilizing solution PEP ('Y) is equivalent to that

of the stabilizing solution· PI E P I b)· .

It is difficult to directly analyze the ARE (4.2.3) due to the indefinite coefficient matrix

in V. Instead, we consider the ARE for PI-I, whose analysis is much easier than the ARE

(4.2.3). By applying the matrix inversion lemma to the ARE (4.2.3), we observe that

X := PI 1 is a unique anti-stabilizing solution of

X = F'!XF1 + F'!XGl(Im - GrXGl)-lGrXFl

-CfR-1Cl + 'Y~2LIL1

Since Fl is assumed to be nonsingular, and since (4.2.3) is expressed as

(4.2.4)

(4.2.5)

where PI = Pl(Ir +CfR-ICIPd-1 and r = rankP, PI E Pi b) implies that X-I..:...

G I GT > 0, Le.

(4.2.6)
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Similarly, it is easily proved that when there exists an anti-stabilizing solution X > a of

the ARE (4.2.4) satisfying (4.2.6), PI := X-I> 0 is a stabilizing solution of (4.2.3) in

PIC!).

We give some results on the existence of a solution X to the ARE (4.2.4). To this end,

we define XC!) as the set of all solutions to the ARE (4.2.4) such that if > o.

Theorem 4.1: For a given ,> 0, there exists an anti-stabilizing solution X in X(-y) if

and only if

(4.2.7)

where

and Xo is an anti-stabilizing solution of the following ARE such that Vo := I rn -GTXOG I >

o.

(4.2.8)

Proof: Since (Gl , Fd is detectable and since (PI, GI) has no uncontrollable modes in

the closed unit disk, there exists a positive definite stabilizing solution to the ARE

(4.2.9)

We define Xo = POl. It is easily verified by the matrix inversion lemma that Xo is an

anti-stabilizing solution ofthe ARE (4.2.8) with Vo > O.

By simple but tedious calculations, we see that the solution of the ARE (4.2.4) is

decomposed as X = Xo + M, where M satisfies

(4.2.10)

Furthermore, we get

Fl + GIV-1GTXFl = Fo+Go{Irn - GJMGO)-lGJMFo

- -1: -T - -1
V = V02 (Irn - GoMGO)V02
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Thus, the existence of an anti-stabilizing solution X satisfying V > a is equivalent to

that of an anti-stabilizing solution M of the ARE (4.2.10) satisfying Im - 06MOo> O.

By the bounded real lemma (Corollary 2.1), such a solution M exists if and only if I >

IJLl(01r - F'O)-I Co 1100' This completes the proof. •

It may be noted that the anti-stabilizing solution M is negative semi-definite since Fo

is anti-stable and Im - CdM Co > O.

Moreover, IX is a lower bound of the parameter I, for which the ARE (4.2.2) has a

stabilizing solution, because X-I is a stabilization of (4.2.3) if the inverse of X exists.

Theorem 4.2: Suppose that X(-y) =/: ¢ for a given I > O. Then, there exists a matrix

X E X(/) such that

and it is an anti-strong solution, i.e. all the eigenvalues of F := PI + GIV-IGT X PI do

not belong to the open unit disk.

Proof: See Appendix 4.2. •
Corollary 4.1: For a given I > 0, suppose tllat Pl(/) =/: ¢ holds. Then there exists a

matrix PI E Plh·) such that

and it is a strong solution, i.e. a11 the eigenvalues of FI - PIPIelv-Iel belong to the

closed unit disk rather than the open unit disk.

Theorem 4.3 shows the monotonicity and concavity of the anti-sta.bilizing solution X

of (4.2.4).

Theorem 4.3: For given positive constants 11 and 12, suppose that the ARE (4.2.4)

has anti-stabilizing solutions XCi) in X(Jj) (i = 1,2)..

(a) If11 > 12 (> IX) holds, then X(1) ~ X (2) h~lds.
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(b) Define 'YO = a'Yl +/3'Y2 with a+/3 = 1, a, /3 2:: O. Then, tllere exists an anti-stabilizing

solution XCO) in XC!o), and we have

Proof: (a) The AREs cOlTesponding to 'Yi (i = 1,2) are given by

x(i) = F(XCi) PI + F(X(i)GIVj-1Gr XCi) Fl

-C[R-1C1+ 'Yi2LIL1

where Vi = I m - GfX(i)G1. We define

Then (4.2.11) is rewritten as

(4.2.11)

(i=I,2) (4.2.12)

Hence we obtain

Since FI is anti-stable and V2 > 0, by Lyapunov'stheorem, X(l) - X(2) ~ 0 holds when

'Yl > 'Y2·

(b) By the definition of 1'0, we see that 'YO ~ min{')'I,1'2} > 1'x, and hence the ARE

(4.2.4) has an anti-stabilizing solution X(O) in X(1'o). The AREs for 'Yi are expressed as

We now define X ::::: aX(1) + j3X(2) - XeD). Then, we see from the above equations

that
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Since Ci/1 2+ fJI;;2 > /02 holds for any Ct, fJ 2: 0 such that Ct + fJ = 1, the right-hand side

of the above equation is positive semi-definite. Noting thatFo is anti-stable, we conclu9-e

that X ~ 0 by Lyapunov's theorem. This completes the proof of (b). •
Corollary 4.2: For given positive constants 11 and 12, suppose that the ARE (4.2.2),

equivalently (4.2.1), has stabilizing solutions p(i) in Pbi) (i = 1,2).

(a) If 11 > /2, (> 'Yopt) holds, then p(l) ~ p(2) and pel) ~ 1;(2) bold, wbere PCi) ­

P(i)(1n +C!R- I CI P(i»)-I.

(b) Define 10 = a'Yl + fJ/2 with Ci + fJ = 1, a, fJ ;::: O. Then, tlwre exists a stabilizing

solution p(O) in P(/O), and we have

Proof: The inequality p(l) ~ p(2) and the part (b) are immediate from Theorem 4.3.

The inequality P(I) :S P(2) follows from the fact that

p(2) _ p(1) = (In - K(2)C)(p(2) - pCI») (In - K(2)C)T

+(K(l) _ K(2))(R + Cp(l)CT)(KCl) _ K(2»)T

•
Theorem 4.4: The anti-stabilizing solution X E Xb) converges to a finite anti~strong

solution in X(--yx) as I tends to 'YX + O.

Proof: Since IX = IIL1(a1r -F'o)-IGoll oo , we see from Theorem 2.1 of [6] that there exists

a negative semi-definite anti-strong solution to the ARE (4.2.10) such that 1m -G6'MGo >

oat "I = IX. Thus, there exists an anti-strong solution to the ARE (4.2.4) in X{"(x). Let

X' be such an anti-strong solution, which is one of the maximal elements of X("Ix) by

Theorem 4.2. It is also easy to verify that any maximal element of X(--y) is anti~strong,

if X(--y) #- ¢. Moreover, similarly to the proof of Theorem 4.3 (a), we can easily prove

that the anti-stabilizing solution X in X(f) satisfies X ;::: X' for any I larger than IX.

Thus, the anti-stabilizing solution X in x(f) is bounded below and monotonically non­

decreasing with respect to "I (> "Ix), Therefore, the anti-stabilizing solution converges to

a finite anti-strong solution in X(fx) as "I tends to "Ix + O.
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Theorem 4.3 shows that the eigenvalues of the anti-stabilizing solution X E X('Y) are

the non-decreasing concave functions of 'Y. Similarly, by Corollary 4.2, the eigenvalues of

the stabilizing solution PI E PI (-y) are the non-increasing convex functions of 'Y.

By Theorems 4.1, 4.3 and Corollary 4.2, we see that there exists a stabilizing solution

P E P(-y) if'Y > 'YX and det(X) i= 0, so that 'Yapt ~ 'Yx. The behavior of the stabilizing

solution P near 'Yapt depends on the eigenvalues of the anti-stabilizing solution X of (4.2.4)

as "I -+ "Ix + 0. There are two possibilities for the behavior of X near "I = "IX·

Case 1 (lim Amin(X) > 0): In this case, X converges to a finite positive definite
"Yhx

solution as "I tends to 'Yapt + O. Hence, the stabilizing solution P converges to a finite

strong solution. In this case, 'Yapt = "Ix holds.

Especially, in the case where £1 = 0 holds, a positive definite anti-stabilizing solution

of (4.2.4) always exists independently of 'Y' Thus, we see that 'Yapt = "Ix = 0 when £1 = 0.

Case 2 (lim Amin (X) ::; 0): From Theorem 4.3, we see that as 'Y decreases, an eigenvalue
"Yhx

of X crosses zero to change its sign from positive to negative. Thus, in this case, there

exists a point 'Y (~ 'Yx) such that X becomes singular. At this point, the stabilizing

solution P of the ARE (4.2.2) diverges to infinity since P = diag[X- I 0]. Moreover,

we see from Corollary 4.2 that sign changes of the eigenvalues of P do not result from

zero-crossing. As 'Y decreases, the eigenvalues of P change their signs by escaping to +00

and reappearing from -00.

Lemma 4.2: Suppose that KerCI n KerLI = 0 and/or KerC1 is FI-invariant. We also

define P = P{In +CT R-1CP)-1 for the stabilizing solution P of (4.2.1). Then, P is finite

at "I = 'Yapt.

Proof: We see from the definition that

Hence, we need to show that X + c1R-ICI > a for the anti-stabilizing solution X in

X(-Yapt).

We assume on the contrary that X +c1R-IC1 is singular. Note that X is positive semiM

definite and if> 0 holds at "I = 'Yopt. Let ~ be a nonzero element of Ker(X + CfR-1Cd.
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Since X ~ 0 and R > 0, ~ E Ker(X + C'[R-lCd implies X~ = a and Cl~ = O. Pre­

multiplying (4.2.4) by ~H and post-multiplying by ~ yield

It follows from X ~ a and V > 0 that X Fl~ = 0 and Ll~= 0 hold.

In the case where Kerel n KerLl = 0, we get ~ ::::: 0 from Ll~ = 0 and Cl~ = 0, a

contradiction.

Otherwise, we assume that KerCl is Fl-invariant. Then, we see from XFl~ = 0 that

(4.2.13)

where if' = Fl + GlV-lGIXFl . Thus, Ker(X + CJR-lCI) is invariant under F. Since

if' is anti-stable, if' restricted to Ker(X +CfR-lCl) has an unstable eigenvalue A and a

corresponding eigenvector x:

It follows from (4.2.13) that FIX = AX. Thiscontraclicts the detectability of (Gl, Fd.

Consequently, it has been proved that X +CfR-lCl is nonsingular. Hence, P is finite

at '1 = '1opt· •
This theorem shows that there is a possibility that P remains finite even though

P = diag[X-l 0] diverges to infinity. For example, if L is nonsingular, P has a finite

value at the optimum.

3. Parametrization of All H oo Filters

In this section, we examine the behavior of the size of A( '1) for the variation of 'Y

based upon the results given in the previous section. For this purpose, we consider the

parametrization of all Roo filters Tr(u) E .A.b).

We hereafter assume that '1 > (Opt holds. Then, the conditions (a) and (b) of Theorem

2.1 hold, and by Theorem 2.2, the H oo filter Tr(u) E .A.('1) is given by
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Tr(CT) = -(Uf212 - f222)-1(Uf211 - f2 12), U(O") EBH~q

f2(CT) = W-1 [A; -~1 -:2]
L 0 Ip

where W, K = [K1 K21 and AK are defined by (2.4.13),(2.4.16) and (2.4.17), respectively.

Since a matrix W satisfying W JqpW T = V is not tmique, the degree of freedom of Tr(0') is

expressed in terms of two parameters U(CT) and W. This observation makes it difficult to

evaluate the size of A.(i) using the above parametrization. Therefore, we first derive a new

parametrization where the degree of freedom is condensed into only one free parameter.

Theorem 4.5: Suppose that A(j) is not empty. Then Tr(O') E A.(i) is parametrized by

where Z(O') an arbitrary transfer matrix in RH~q such tbat

Z(U)VllZ"'(U) ~ V

Proof: We define

.... 1
Z(O') = Z(O") - V21 Vii

Z(O') = -Z21(0')Z1 (0") , (21 22 ] = (-U Ip ] W-1

Then, simple algebraic manipulation yields (4.3.1) and (4.3.2). We also obtain

'" 2 (~ ~] T [ 21' ]UU - i I p = Zl Z2 W JqpW Z2'

= Z2(ZVl1Z'" - V)2;

(4.3.1)

(4.3.2)

(4.3.3)

(4.3.4)

(4.3.5)

(4.3.6)

Note that [21(0") 22(u) 1is stable and has a right inverse in RLoo since U (0") E RH~ q•

We here assume that 22 (0") has a zero Asuch that IAI ;:::: 1. Then, there exists a non-zero

vector esuch that ~HZ2(A) = O. Thus, we get

O"=A
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Since IlUlioo :::; 'Y and Vll > 0, ~H ZI (-\) = 0 holds. This contradicts the right invertibility

of [21 .22 ]. Thus, 22 (0") is unimodular, so that Z(O") is stable. Since 22 (0") is unimodular,

IlUlloo s: 'Y implies Z(cr)VllZ"'(O") ~ V.
It is also shown from (4.3.4) and (4.3.5) that

Hence, similarly to the above discussion, we can show that U(O") belongs to BHoo(-y) if

Z(O") is stable and satisfies (4.3.3). •
If we fix the matrix W, then the mapping from U(O') to Z(O') is bijective. It may be

also noted that U(O') = a{::} Z(cr) = aholds when W is given by

W = [ VIlla]'
-- 1 T 1

V21 V ll 2 -(V21 Vii V21 - V22):i

Moreover, taking Z{O') =a yields the central filterdefined by (2.4.31):

Tf(O") = [ A - KooG Koo]
L- MooG Moo

where

.Koo = (APeT +BDT)(R+GPGT)~1

Moo = LPGT(R+GPCTr1

Furthermore, as shown in Lemma 4.2, P is finite at the optimum 'Yopt under a certain

condition. For the central Roo filter of (2.4.31), Koo and Moo can be expressed as

Therefore, there is a possibility that the central Hoofilter (2.4.31) with finite coefficients

exists even though P diverges to infinity at the optimum 'ropt.

We define

ZC'Y) = {Z(O')I ZVilZ'" ~ V, Z(O') E RH~q}

Then, Z('Y) is a. bounded closed convex set, and the following inequality holds for ali
Z(O') E Z('r).

>'max(V)
Amin (Vll)
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Since fi(er) is uniquely determined by" the degree of freedom contained in the H oo

filter is condensed into the free parameter Z(a). Therefore, the size of the solution set

ACT) is identical to that of Z(,). Note that the quantity on the right-hand side of (4.3.7)

is useful as a measure of the size of Z(,).

Since Z(,) is characterized by V11 and Ywhich depend on , and p! the results given

in the previous section are very useful to understand the behavior of the set Z(,) as ,

changes.

Theorem 4.6: The size of the set ZCT) is monotonically increasing with respect to, in

tbe sense that

Proof: Let V1(;) and y(i) denote the values of Vll and Y for,i (i = 1,2), respectively.

Since Vl1 and V are respectively expressed as Vl1 = R +C PCT and V = ,21p - LPLT
1

it follows from Corollary 4.2 that

(4.3.8)

We assume that Z{er) belongs to Z(T2), Le. zvg)Z"'::; y(2). Then, we see from (4.3.8)

that

Furthermore, it is easy to verify that there exists a constant matrix Z in Zbd such

that IIZH = V>'max(V(l))/>'min(VR)). In this case, there exists a nonzero vector eE CP

satisfying

(4.3.9)

Hence, we obtain

This implies that such a Z E Z{,d does not belong to Z(-Y2). Consequently, we have

•
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In the following, we consider the size of the set A(() as I tends to the optimum lopt.

When lim Amin (X) > 0, all optimal H oo filters are parametrized by Theorem 4.5 because
1'bx

the ARE (4.2.1), Le. (4.2.2), has a finite strong solution with V > 0 at the optimum lopt.

However, if lim Amin (X) :$ 0 holds, the largest eigenvalue of P diverges to +00 as I tends
1'L1'X '

to ')'opt as observed in the previous section. Hence, it is impossible to char~cterize the set

A(lopd in terms of P. Hereafter, we wish to study the limit of the set Z(I) as I goes to

lopt + 0 under the assumption that lim Amin(X) :5, O.
, 1'in

Since Vll and if are symmetric, there exist orthogonal matrices E(')') and E(I) such

that

Vll = ET [A' 0] E, V = ET [M 0] E
o A 0 M '

where A, A', M and M ' are the diagonal matrices satisfying

(4.3.10)

Ao := lim A < +00,
1'hop,

M o := lim M > 0,
1'l1'op,

lim A' = +ooIq_h
1'bopL

lim M' = 0
il1'oPL

and f « p) and h « q) denote the dimensions of M and A, respectively. Further, we

~ [¥il Yl2]define EZET = . . for Z(u) E Z(')') according to (4.3.10). We see from (4.3.3)
Y2l Y22

that

¥ilA'Yll + Yl2AYl2 5 M

Y2lA'Y21 + Y22AY22 ~ M'

Since A' -. ooIq_h and M'- 0 when')' tends to ')'opt + 0, Yll, Y2l and Y22 converge to O.

Then the remaining free parameter Y12(U) satisfies

Especially, if f = 0 holds, then we get EZET = [Y2l Y22J. Also, h = 0 implies

EZET = [ ¥il ]. It thus follows from (4.3.3) that ~~ Zh)' 0 holds in these cases.
Y2l 1!1'opt

The .next. theorem summarizes the above results..
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Theorem 4.7: Suppose that lim .Amin(X) .:S 0 holds.
1'hx

(i) Iff> °and h > 0, then we have lim Z('Y) = Zo , where
1'l1'opl

~T [0 Y12]
Zo = {Z(cr) I Z = Eo 0 0 ~o,

Y12(a) E RH!;h}

Eo = lim E(r),
1'l1'opt

Eo = lim E(r)
1'h'opl

(ii) Iff = 0 and/or h = 0 holds, then we have lim Z('Y) = O.
1'11'oPl

The above theorem shows that, in the case where lim .Amin(X) .:S 0, the degree of
1'hx

freedom of the H oo filter decreases at the optimum ')'opt.

It may be noted that the case (ii) in the above theorem is not a rare case. In fact, the

problem which has a scalar measurement Yk E R, namely q = 1 and h = 0, is an example

of the case (ii), which can be seen in many applications.

4. H 2/Hoo Filtering Problem

In this section, we propose an H2/Hoo filtering algorithm which makes use of the free

parameter Z(u) E Z(')'). Suppose that A('Y) is not empty for a given 'Y > 0. The H2/Hoo

filtering problem is the optimization problem defined by

~ IITedlb or equivalently, ZC;m)E·nze-.) IITed ll2
Tr(cr)EA("() v ,

In the following, we assume for simplicity that the free parameter Z(u) is a constant

matrix. In this case, we get

Hence, the H2 norm of Ted(U) is given by

Koo - K2Z ]
Moo-Z

Boo +K,ZD ]

(4.4.1)

(4.4.2)
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where Y is the unique positive semi-definite solution to the Lyapunov equation:

0= -Y + CAoo + K2ZC)Y(Aoo + K2ZC)T

+(Boo + K2ZC)(B= + K2ZC? (4.4.4)

Let Jz(Z, Y) and Lyap(Z, Y) be the right-hand sides of (4.4.3) and (4.4.4),·respectively. It

then follows that the simplified HdHoo filtering problem is formulated as the optimization

problem:

min{Jz(Z, Y) : Z E ZconstC!'), Lyap(Z, Y) = O}

where Zconst ('Y) is the subset of Z(')') defined by

(4.4.5)

A necessary condition for the existence of a solution to this' optimization problem is

given by the following theorem.

Theorem 4.8: Suppose that "I > 'Yopt holds, and that Tf(a) E A(')') is given by(4.4.1)

with Z in Zconst('Y). If Z is a solution to the optimization problem of (4.4.5, then there

exist positive semi-definite matrices A and Y such that

where

Y = (Aoo + K2ZC)Y(Aoo + K2ZC)T + (Boo + K2ZD )(Boo + K2ZD?

A = (A oo + K2ZC)T A{Aoo+ K2ZC) + (Loo + ZC)T(Loo + ZC)

~-l - T -Z =::. {(Moo - M) +K2 A(Koo - K)}

:3 = Ip + K'[AK2

M = LYCT(R+ CYCT )

K= (AYCT + BDT)(R+ CYCT)-l

(4.4.6)

(4.4.7)

(4.4.8)

Proof: Since Z belongs to Zconst('Y), there exists a. positive semi-definite matrix N

satisfying

T ~

.ZVnZ +N=V
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In order to minimize J2(Z, Y) with respect to Z, Y and N, we form the Lagrangian

1
£(Z, Y, N) = "2[h(Z, Y) + Tr{ATLyap(Z, Y)}

+Tr{WT(ZVllZT + N - ifn] (4.4.9)

where A and W are the costate matrices. As well known, the necessary condition for the

optimality is that

a£ a£ a£ = 0
az = 0, 8Y = 0, aN

By using the formula for the differentiation of the trace of a matrix [1], we obtain (4.4.7)

from a£lay = O. Since Aoo+K2ZC is stable, A is a unique positive semi-definite solution

to the LyapunoY equation (4.4.7). Moreover, we have a£laN = W = O. It then follows

that

a£ ~ T Taz = cZ(R + CYC ) + LooYC - MooR

+KiA(AooYCT + BDT
)

Note that =: and R+CYCT are positive definite since A, Y ? O. Hence, we obtain (4.4.8)

from the above equation. •
The simultaneous equations (4.4.6)-(4.4.8) can be solved by the following algorithm

based on the gradient method.
Step 0: Set the initial value 20 E ZconstC/).

Step 1: For i = 1,2,"', find the solutions Y; and Ai to the Lyapunovequations:

~ ~ T
+(Boo + K2Z;D)(Bco + K2 ZiD )

~ ~ T~ ~

A; = (Aoo + K2Z;C) Ai(Aoo + K2ZiC)

(4.4.10)

(4.4.11)

Step 2: For a prescribed small constant E > 0, check the following inequality

holds or not.

If it holds, set Z := Z; and quit. Otherwise, go to Step 3.
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Step 3: Update Zj by

~ ~ [8£]z· l-Z·-8 -
1+ --:- 1 8Z ~ ~ .

(Z,Y,A)={Z;,Y;,Aj)

with 8 small positive constant. Goto Step 1.

Remark 4.1: To ensureZo E Zconst(-y), we can choose Zo = 0, which implies we can

start the algorithm from the central H= filter. Note also that as , becomes large, the

central H oo filter approaches to the H2 optimal filter. Thus, the fast convergence to the

optimal solution can be achieved by starting from the zero initial value.

Remark 4.2: It may be noted that Aoo + K2ZC is stable as long as Z belongs to

Zconst(')' Thus, the solutions to the Lyapunov equations (4.4.10),(4.4.11) exist for any i

if we select a sufficiently small o.

5. Numerical Examples

Example 4.1: We first consider the system given by

Xk+l = [-0.2 -0.5] Xk + [0 0] dk
1.5 1 1 0

Yk = [-2 1] Xk + [0 1] dk

" = [~ ~] x.
By Theorem 4.1, we get ,X = 0.806. We also obtain ,o~t = 1.065. The relationships

between, and the eigenvalues ofP and X are illustrated in Figs. 4.1 and 4.2, respectively.

We see from the figures that the eigenvalues ofp and X are respectively monotonically

non-increasing and non-decreasing functions of" and ,that one of the eigenvalues of P

diverges to +00 and reappears froin -00 as , traverses ,opt from above. Moreover, the

eigenvalues of X and P converge to finite values as , goes to 'x.
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Example 4.2: The second example is the same system that is considered in Chapter 3.

X'+1 ~U0.5 0] [0 00]
2 1 Xk + 0 0 1 dk

o 3 100

y, = [ :
2 ~] x, + [ ~ 1 ndk
0 0

z, ~ [ ~ 1 ~ ] x,0

We obtain 'Yopt = 3.1120 and 'Yx = 0.4861 for this example. The upper bound of IIZJloo
given in (4.3.7) is illustrated in Fig. 4.3. As shown in the figure, the upper bound

JAmrur. CO') / Amin (Vi1) decreases as l' approaches lopt. This implies that the size of Z(-y)

monotonically decreases as l' decreases. We also see that Theorem 4.7 (i) applies to

this example because the degree of freedom does not reduce to zero at lopt. In fact, it

follows from (4.3.7) that IIZlloo ~ 0.6261 wheni = 3.1120, and taking Y12 = 0.6261 yields

ZeD") E Zo and /I Ted II00 = 3.1120.

gaJ:11ma

Fig. 4.3: Upper bound of IIZlIoo (Example 4.2)
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Example 4.3: As an example of the case (ii) of Theorem 4.7, we consider

Xw = [~ 0;5] x, + [~ ~] d,

Yk = [1 2] Xk + [0 1] dk

z, ~ [~ ~] x,
For this example, we obtain (Opt = 3.500 for this example. Fig. 4.4 shows the relationship

between ( and JAmax (0") / Amin (Vu). As ( approaches the optimum 1'opt from above,

the upper bound JAmax(V)/AminCVu ) converges to zero. Therefore, in this example, the

degree of freedom of Tr(o") reduces to zero at (Opt, and hence the optimal H oo filter is

uniquely determined as the limit of (2.4.31) with ( --. (Opt + O.
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Fig. 4.4: Upper bound of IIZlloo (Example 4.3)

We next apply the mixed H2/Hoo filtering algorithm given in Section 4.4 to this

example. The relation between l' and the H2 performance is illustrated in Fig. 4.5. When

l' is large, the difference of the H2 performance between the central filter and the mixed

H2/Hoo filter is very small. This is because as l' goes to infinity, the H oo filtering problem

reduces to the H2 optimal filtering problem and hence the central filter reduces to the
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H2 optimal (Kalman) filter. When 1 is near the optimum loPt, the degree of freedom

contained in the H oo filter is very small, and hence the H2 performances of the two filters

are very close as shown in Fig. 4.5. Fig. 4.6 also demonstrates the relationship between

1 and IIZI1 of the H 2/Hoo optimal filter. As discussed above, the contribution of the free

parameter Z is small when 1 is close to lopt, or when 1 is very large.

6. Concluding Remarks

In this chapter, we have examined the behavior of the stabilizing solution of the H oo

ARE (4.2.1) with respect to the variation: of the prescribed H oo norm bound I' The

following results have been obtained.

The infimum of the parameter I' for which a stabilizing solution to the H oo ARE exists,

is characterized in terms of the L oo norm of a certain transfer matrix. The stabilizing

solution P E P(,) is a monotonically non-increasing convex function of I' Moreover, a

new parametrization of all Boo filter was derived. Based on the above results, we have

shown that the size of the set of all H oo filters is monotonically increasing with respect to

1(> lopt), and proved that there are possibilities that the degree of freedom of the Boo

filter reduces at the opti~um loPt. We also propose an H2/Hoo filtering algorithm which

makes use of the free parameter Z (q). The present results provide a guideline for selecting

the values of the parameters I and Z(O") E Z(,). It may be also noted that the analyses

in this chapter can be applied to those of the H oo controllersfor 2-block problems.
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Appendix 4.1: Proof of Lemma 4.1

We denote the (F, G)~uncontrollable subspace and the stable (F, G)~uncontrollable

subspace by CF,G and SF,GI respectively. That is,

CF,G = {x E C n I xH[C FG ... Fn-1G] = O}

SF,G = CF,G n { EB Ker(.\In - F)n}
IAI<1

We first prove SF,G ~ KerP ~ CF,G. Since Pis assumed to be positive semi-definite,

we can define P = P(In + C T R-1CP)-I 2 O. Then, we get

Let e =I: 0 be any element of Ker P. Pre-multiplying the above equation by ~H and

post-multiplying by eyield

Since P E P('Y)1 ~HF P = 0 and eHa = 0 hold. Thus, by repeating the above a~gtunent,

we see that ~ E CF,G' Moreover, let S be a matrix which consists of the bases of SF,G'

Then, there exists a stable matrix A such that SH F = ASH and SH G = 0 hold. Post­

multiplying (4.2.2) by S yields PE. = Fst(PE.)AH, where Fst = F - FPCTV-IC. Since

~t and AH are stable, we get PE. = 0, Le., SF,G £;;; Ker P.

Next, we show Ker P n (CF,G e SF,G) = O. Since SF,G ~ KerP ~ C F,a, there exists a

similarity transformation T such that

T-1FT= [:' ;:], T-1G= [ ~' ]

CT = [C1 Col, LT = [L1 L,], r 1PT-T = [:1 ~]

where PI > 0 and (PI, Gl) has no .uncontrollable modes inside the unit disk. By simple

calculation, we obtain Fst = T [* *] T-l where * denotes irrelevant terms. Since
o F2

Pst is stable, so is F2. This implies Ker P n (CF,G e SF,a) = O. Thus, we have proved

KerP= SF,G.
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Appendix 4.2: Proof of Thorem 4.2

As shown in the proof of Theorem 4.1, there exists a. positive definite anti-stabilizing

solution X to the ARE (4.2.8) with Vo := 1m - GIXOGI > O.

For n = 0,1,2"", we define

~ --1 T .
Fn = Fl + Glrn, r n = Vn Gl XnFl

- TVn = 1m - Gl XnGl

We now show the convergence of the solutions of the Lyapunov equation

(AA.l)

The main idea of the proof of convergence is similar to the proof in [38]. If X n converges

to a finite value as n goes to infinity, the limit can be obtained by taking Xn+l = X n and

it satisfies (4.204). Since Fo is anti-stable, we easily get Xo ~ Xl and i\ ~ Vo> O.

We first show that Xl ~ X a holds for all Xa E X{-y). Simple algebra yields

(AA.2)

- T --1 Twhere Va = 1m- G l XaGl and r a = Va G1 XaFl' Thus, from (Ao4.l) and (Ao4.2), we get

Since Fo is anti-stable and Va :> 0, by Lyapunov's theorem, Xl - X a ~ 0 holds.

Suppose that Fn-l is anti-stable for n = 1,2, ... , k , and that

It is straightforward to show that

Xk =FfXkFk - rlrk - cTR-lCl + -y-2LILl

T--(rk - rk-Il Vk(rk - rk-l)
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Thus, we have

(AAA)

We here assume that Fk has an eigenvalue). with 1>,1 ~ 1. Then, there exists a nonzero

vector.,., such that Fk"" = )..,.,. It thus follows from (AA.4) that

- -Since Xk ~ X a and Va. ~ Vk > 0, the both sidesofthe above equation must be zero. Thus

we get (rk - rk-I)"" = O. In this case, we see Fk-I"" = A.,., = )..,.,. This contradicts the

fact that Fk-I is anti-stable. Cons~quentlY, Fk is also anti~stable.

Furthermore, since

~T . ~. T . T-
Xk';'" Xk+l = Fk (Xk - Xk+l)Fk - rkrk - (rk - rk-I) Vk(fk - rk-I)

.....T .... T-
Xk+l - X a = Fk (Xk+l - Xa)Fk - (ra. - r k ) Va(ra. - fk)

holds from (AA.l),(AA.2)" and (AA.3), we get Xk ~ Xk+1 ~ Xa.' It follows by induction

that X n is monotonically non-increasing and bounded below. Therefore, X n converges to,

a maximal element X of X('Y), and F := F I +GIV-1GIXFI has no eigenvalues inside

the open unit disk. Co :
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Chapter 5

A Game Theoretic Approach to

H oo Filtering Problem

1. Introduction

Chapter 2 has given a solution to the infinite-horizon H oo filtering problem for time­

invariant systems based on the model matching technique in the frequency domain. Since

H oo norm is the L2 induced norm of a system, H oo optimization problem is a kind of

minimax optimization problems. In other words, the H oo filtering problem is the minimax

optimization problem of minimizing the maximum of the energy in the estimation errors

over all possible disturbance trajectories. However, the model matching approach given in

Chapter 2 does not directly provide such minimax properties of the Boo filtering problem

since it merely minimize the largest singular value of a certain transfer matrix. In order

to make clear the minimax aspect of the Boo filtering problem, it is essential. to adopt a

difference game approach in the time-domain.

In this chapter, we will consider the finite-horizon minimax state estimation problems

which are closely related with the Boo filtering and prediction problems. We first derive

necessary conditions for the existence of the minimax solutions by exploiting the sweep

method, which is a straightforward optimization method based on the Lagrange multiplier

technique [4]. Sufficient conditions for the existence of the minimax solutions are given

based on the square completion technique. It is shown that the optimal minimax state
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estimators are identical to the central Boo filter and Hoc predictor.

2. Problem Formulation

In this chapter, we consider a linear time-varying system described by

(5.2.1)

(5.2.2)

where Xk E R n , Yk E R9 are the state vector and the measurement. The exogenous

inputs Wk E R m and Vk E Rq are the process disturbance and the measurement noise,

respectively. Note that the values of Wk, Vk are unknown while Wk, Vk are arbitrary

L2[O, N] signals. Moreover, we assume that Dk is nonsingular, so that Rk := DkDI > °
holds.

It may be noted that the system (5.2.1) ,(5.2.2) is different from the system (2.2.1),(2.2.2)

considered in the previous chapters. However, in the time-invariant case, the filtering

problem for (2.2.1),(2.2.2) can be reduced to the problem for (5.2.1),(5.2.2) under the

assumption that D in (2.2.2) is right invertible. For the detail, see Appendix 5.l.

As well as estimating Xk, we wish to estimate the vector Zk E RP defined by

(5.2.3)

Let Zk be the estimate of Zk based on {YO,' .. , yd. Moreover, without loss of generality,

we assume that the estimate of the initial state Xo is a priori given by xo.

In this chapter, we will discuss the minimax filtering and prediction problems which

are closely related with the Boo filtering and prediction problems.

We first define the. cost function for the minimax filtering problem. The. estimate Zk

tries to minimize the squared estimation error l:k":o IIzk -zkll 2 , while the triple (xo, Wk, Vk)

tries to maximize the squared estimation error. Since arbitrary large values of IIwkll, lIvkll
and lIxoli cause arbitrary large value ,of the estimation error, we define the cost function

J as follows:

N N N
J(z; xo, W, v) =L lIzk - ikll2

- 7"2(2: IIwkll2 + L IIvkll2 + IIxo -'- xoll~-l) (5.2.4)
k=O k=O k=O
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(5.2.5)

(5.2.7)

The second term in the right-hand side is the penalty term on Wk, Vk and Xo; , is a

positive constant which represents the magnitude ofthe penalty. The weighting matrix II

is positive definite and represents the uncertainty of the initial state xo. From the game

theoretic viewpoint, we can say that the filtered estimate Zk and the triple (Wk, Vk, xo) are

the minimizing and maximizing polices of J, respectively.

The finite-horizon Boo filtering problem is to find estimates Xk and £,.; satisfying

sup 'E~=o II zk - zkll
2 < ,2

w,v,xo 2:f=o(\lwkIl2 + IIvk1l2) + Ilxo - xoll~-l

This condition is equivalent to

J(z;XO,W,V) < 0, \f(XO,Wk,Vk) s.t.
N

:E(l!wkIl2 + II vkll 2
) + IIxo- xoll~-l =1= 0 (5.2.6)

k=O
Therefore, the minimax estimation problems formulated here are closely related to the

finite-horizon Boo filtering problem.

By (5.2.2), we easily see that

Thus, we rewrite the cost function J as

N N
J(z; xo, w, v) = :E lIZk - zkll2 - ,2(2: IIwkll 2

k=O k=O
N

+:E IIYk - CkXkll~-l + IIxo- xoll~-l)
k=O k

Thus the minimax problem between Zk and (xo, Wk, Vk) reduces to the problem between

Zk and (XD, Wk, Yk).

We denote the optimal policies by Zk and (xo, wk' yD, respectively. We call wk the

worst-case disturbance. Also let vt: be the worst-case noise corresponding to Yk' The

quadruple (ZZ' xo, wk' vZ) are referred to as the optimal solution of the minimax problem.

In this chapter, we consider two kinds of minimax problems. In the first problem, the

measurement set {YO,'" ,Yk-l,yd is available for the estimation at time k. We call this

problem "a filtering problem". The second problem is called "a one-step prediction prob­

lem" or merely "a prediction problem" since {YO,"', Yk-d rather than {YO,"', Yk~l,yd
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is available at time k. It may be noted that the problem in which all the measurement

{YO,' .. ,YN} are available for the estimation at any time k E [0, N] is called "a fixed­

interval smoothing problem". A remark on this minimax smoothing problem is given in

Appendix 5.2.

For the problem of filtering case, since Yk is available for Zk, the order !Jf the minimax

optimization is

max(min(max ... max(min(max
YN ZN WN Yk Zk Wk

... max(rgjn(max J))" .)) ...))
yo Zk WO,;l;O

(5.2.8)

Similarly, since Yk is Dot available for Zk, the minimax prediction problem is formulated

by

min(max(max ... min(max(max
ZN YN WN Zk Yk Wk

... min(max(max J)) ...)) .. ;))
Zk Yo WO,;l;O

(5.2.9)

Remark 5.1: In [40] and [54], the Hex:> filter and H oo predictor were derived from

the saddle-point policies for the minimax state estimation problems with differ'ent cost

functions:

N N

J = L: II zk - zkll 2
- 12{L(lIwk-lf+ IIvkII2) + IIxo- xoll~-tl (filtering problem)

k=l k=l
N N

J =L: II zk - zkll2
- 1 2{L:(lIwk'-11l2 + II vk_l\l2} + IIxQ - xoliA-tl (prediction problem)

k=l k=l

Unlike the above approach, we will show. that both central H oo filter and Boo predictor

can be derived from the same cost function (5.2.4).

3. Necessary Conditions

3.1 Maximizing with respect to XQ and Wk

Since Wk is an arbitrary L2[O, N] signal, without loss of generality, it can be assumed
• i ,

that Wk can utilize all the data of {YO, ... , YN} and {zQ," " 'iN}. Therefore, we can first

perform the optimization with respec~to XQ and {wQ, ... ,W N }.
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To maximize J with respect to Xo and Wk, we form the Hamiltonian

Hk = ~/~2{IILkxk - 2kll2 -/2(lIw kIl2 + \lYk - CkXkll~;l)}

+Af+l(AkXk + BkWk - Xk+I)

where Ak is the costate vector. The cost function J is related to Hk by

(5.3.1)

(5.3.2)

Let (xk' An be the tra.jectories of (Xk' Ak) corresponding to the worst case disturbance wk'

Then, the necessary conditions of optimality is given by

Therefore, we ha.ve

(5.3.3)

(5.3.4)

(5.3.5)

(5.3.6)

Xk+1 = AkXk+ BkW'k, xii = :fa + IIAii

* BT \*wk = I.: "'k+1

AT\T \* (CTR-IC -2LT L ) * CTR-I LT~I.: "'HI = /lk + k k k - , I.: I.: xl.: - k k Yk + k Zk

= A'k - clRk"I(Yk - CkxtJ + ,-2Lf(Zk - LkXn, AN+I = 0

From (5.3.7)-(5.3.9), we have the two point boundary values problem (TPBVP)

(5.3.7)

(5.3.8)

(5.3.9)

(5.3.10)

(5.3.11)
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Since this TPBVP is non-homogeneous and linear with respect to xk and \i;, x;;' can be

expressed as

Then, from (5.3.11) and (5.3.12), we get

X.\:+l - AkXk = (BkBl - Pk+l»'k+l + AkPk).k

AI).k+! = EkAZ - C'!R;l(Yk -CkXk) +,-2LI(zk - LkXk)

where

(5.3.12)

(5.3.13)

(5.3.14)

Since ).Z is finite, Ek is nonsingular. It thus follows from (5.3.13) and (5.3.14) that

Xk+!- AkXk -AkPkE;lclR;I(Yk - CkXk)

+,-2AkPkI:;1LI (Zk - LkXk)
"

Since the above equation is true for arbitrary A~, we obtain

Pk+l = AkPkE;1 AI + BkBI, Po = IT

Xk+l = AkXk + AkPkE;lclR;l (Yk - CkXk)

(5.3.15)

-2A n '~-ILT(~. L -- )-, k.rkLJkk Zk - kXk,

The equation (5.3.15) is the well-known Hoo-type RDE.

XO = XQ (5.3.16)

3.2 Minimax optimization with respect tO~k and Yk

Simple put ,tedious calculation using (5.3.7)-(5.3.16) yields
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where

Ok = I p + /-2LkSkLI

- 2 ~ T
Ok = / (Rk - Ckt:.kCk )

~ D 'P-l
t:.k ="kLJk

Since .AN+1 = 0, X(j = xo + 11.Ao and Po = 11, we get

N

L ,2(>'k~lPk+1>'k+1 - >'kT Pk>'k) = ,2(Xil+1Pk+1.AN+l - .AoTpo>'o)
k=O

. = --lllx(j - xoll~-l

It thus follows that

max J(z; xo, w, v) = J(z; xo, w·, v)
w,zo

Minimax Filtering Problem

It is easily seen from (5.3.17) that there exists a unique optimal minimizing policy Zk
if and only if

Lemma 5.1: Suppose that Ok > 0 and Pk ~ 0 hold for the RDE (5.3.15). Then

Pk+l ~ 0 holds.

Proof: Since Pk is positive semi-definite, there exists a matrixPk := Pk (In+ClR;lCkPk)-l.

Then, using the matrix inversion lemma, Ok can be expressed as
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Hence, from the assumption Ok > 0, we obtain

Pk+l =AkPk EklAI + BkB'!
- -2 - T - T T

= Ak(Pk +/ PkLkOkLkPk)Ak + BkBk 2: 0

This completes the proof. •
In the following, we assume that Ok > 0 holds for all k E [0, N]. Completing the square

with respect to Zk, (5.3.17) reduces to

N

J(i; xo, w*, Y) = L(zk - 0k1Lk~kCJR;;l yk )TOk(Zk - 0kl Lk'3kCJRklYk)
k=O

Therefore, taking

N

-'l L Yf(Rk + CkPkCJ)-lYk
k=O

- .-.-lL ~ CT R-1 - 0Zk - ~~k k::::'k k k Yk =

(5.3.18)

(5.3.19)

yields the optimal estimate Zk' Let Xk/t be an estimate of Xk based on the measurement

set {YO,"', Yt}. Since Xk can be regarded as an estimate of Xk based on {YO,'" ,Yk-d

from (5.3.16), we rewrite as Xk/k-l =Xk. It then follows that

Zk =LkXk/k-l - LkKk(Yk - CkXk/k-l) = LkXk/k

Xk/k =Xk/k-l +Kk(Yk - CkXk/k-l)

Xk+l/k = AkXk/k-l + AkKk(Yk - CkXk/k-l)

=AkXk/k, XO/-l = :to

K k = PkCJ(Rk + CkPkCl)-l

(5.3.20)

(5.3.21)

(5.3.22)

(5.3.23)

If Ok > 0 holds, then Pk 2: 0 and Rk + CkPkCl > 0 hold from Lemma 5~1 and

Po = IT >0. Then,. by taking Yl.: = 0, we get a unique worst case measurement Yk' Thus

the worst case noise is given by

80



Moreover, the cost for the optimal solution is given by

J(Z"iXO,W·,v'") = 0

Theorem 5.1: Consider the minimax filtering problem (5.2.8). For the existence of a

unique solution to the problem, it is necessary that the RDE (5.3.15) has ~ positive semiH

definite solution Pk and ....?Ip - LkFkLI > 0 holds for all k E [0, N]. Then the optimal

estimate Zk is given by (5.3.20)- (5.3.23).

Minimax One-Step Prediction Problem

We see from (5.3.17) that there exists a unique worst case measurement Yk if and only

if

By completing the square with respect to Yk, (5.3.17) reduces to

N

J(z; xo, w\ Y) = - I:CRk1Yk + 0klCkSkLlzk?OdRklYk +0klckskLIZk)
k=O
N

+L zf(Ip -i-2Lk Pk L'[)-lzk (5.3.24)
k=O

Thus we get the worst case measurement Yk by taking

Moreover we get

R- 1- +n-Ic .... LT - 0k Yk Hk k::'k kZk =

N

J(~ • • '") '" -T(l -2L P LT)-l-z;xo,w,Y = LJzk P -'"'( k k k Zk
k=O

Therefore, for the existence of the optimal estimate Zkl it is necessary that

Then we get the optimal estimate Zk by taking Zk = O.

...... L~
Zk = kXk/k-l

Xk+l/k= AkXk/k-l + AkKk(Yk - CkXk/k-l), XO/-l =xo
- - T - T 1Kk = PJ.:Ck (Rk + CkPkCk )-
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(5.3.29)
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Moreover, from (5.3.25), the worst case Daise vZ is given by

Then the cost function becomes

J(z"'jxo,w*,v*) = 0

- 2 TThe next lemma shows that Dk > 0 holds if "I Ip - LkPkLk > O.

Lemma 5.2: For the RDE (5.3.15), if Pk 2: 0 and 'Y2Ip-LkPkLI > 0 hold, then Ok> 0

and PHI 2: O.

Proof: Since Pk 2: a and "12Ip - LkFkL'[ > 0, there exists a symmetric matrix Pk such

that

Pic = Pic (In - "1-2LILkPk)-1

=. Pk +PkL'[('Y2Ip - LkPkL'[)-1 LkPk 2: 0

Then we get

'Y-20k = Ric - CkPk"E;;lcl

- T I - I T=Rk - CkPk(In + Ck R}; CkPk)- Ck

= (Rk + CkPkclr-i > 0

We thus get Pk+! 2: 0 from Lemma 5.1.

(5.3.31)

•
In summary, the following_t~eoremgives ~ necessary ~onditionfor the existence of the

~ax prediction problem.
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Theorem 5.2: For the minimax prediction problem (5.2.9), a necessary condition for

the existence of a unique solution is that the RDE (5.3.15) has a positive semi-definite

solution Pk suell that ,21p - LkPkLI > 0 for all k E [0, N]. Then the optimal estimate Zk
is given by (5.3.28)-(5.3.30).

Remark 5.2: Suppose that Pk satisfies the conditions in Theorems 5.1 'and 5.2. Then,

Pk is positive definite if Ale is nonsingular and/or Bk has full row rank. Thus, for simplicity

of discussion, we hereafter assume that Ale is nonsingular for all k.

4. Sufficient Conditions

In this section, we show that the necessary conditions in Theorems 5.1 and 5.2 are also

sufficient conditions in the case where Ak is nonsingular. Similarly to the reference 112],

we can prove the sufficient conditions by completing the square argument.

In this section, we assume that Pk > 0 and ,21p - LkPkLI > 0 hold for all k E [0, N].

From (5.3.31), this assumption is valid in both filtering and prediction cases.

Lemma 5.3: Suppose that the RDE (5.3.15) has a positive definite solution Pie such that

2 - T1 1p - LkPk Lk > O. Then there exists a positive definite symmetric matrix Xk satisfying

Xk = AIXk+lAk + AIXk+lBkVk-
1BJXk+lAk

+,-2LILk - clR"k1Ck

Vk = 1m - BlXk+lBk > 0

(5.4.1)

(5.4.2)

Proof: We first define X k = p;;l, 50 that Pk > 0 implies Xk > O. Moreover, since Ak

and Pk are invertible, X/c satisfies (5.4.1) by the matrix inversion lemma.

Furthermore, since Pk > 0 and n;l = /21p - L/cFkLI > 0, we get

(5.4.3)

Thus we see from (5.3.15) that X;;~l - BkBl > aholds. This implies (5.4.2).

We define x/c by (5.3.16) and x/c = Xk - x/c. Then, from (5.2.1) and (5.3.16), we get

•

- A - B A ~ (CTR-1- -2LT - )Xk+l = j;;X/c + kWk - Ie:::'k k k Yk -/ /c Zk
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It thus follows from (5,3.15),(5.4.1) and (5.4.4) that

Furthennore, it is easy to verify that

N

:L(X[+lXk+lXk+l - xIXkxk) = Xlt+lXN+IXN+l - x;rrr~lxo
k=O

Hence, we obtain

(5.4.5)

where

(5.4.7)

Since Vk > 0 for all k E [0, N], the worst case disturbance is uniquely determined by

(5.4.7). Moreover, the next lemma holds for wi:: of (5.4.7).

Lemma 5.4: Let w'k be defined by (5.4.7),anddefine).k- Pi1xk. Hwe takewk = wk'

tben ).k satisfies (5.3.14).

Proof: From (5.4.4) and (5.4.7), we get

Noting (5.4.2), we solve the above equation to get

Wk = (Irn + Vk-lBf'Xk+l:Bk)-lVk"':l Bf'Xk+l Xk+l
. 1 . • ' .. ".. !

= BIXk+l Xk+l
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Since X/c = Pi:1 and Ak = p;;lXk, we get w k= BIAk+I. By substituting this into (5.4.4),

we get

(PHI - BIBk)Ak+! = AkPkAk - AkPk'Ej;I(Cl Rj;IYk - /-2LIzk)

From (5.3.15), pre-multiplying by (AkPk'E;I)-l yields

AT, '" CTR-1 - + -2LT -k .....k+! = LJ/c .....k - k Ie Yk 'Y Ie Zk

•
Since Zk and tik are independent of XIe, XN+l = 0 (equivalently, AN+! = 0) holds for

the optimal initial state x(j. Note that xii can be uniquely obtained by calculating (5.3.14)

backwards. Thus we get

J(Z;xo,w"'V)=t[~k]T[ _Ink~ T -LRk:;~IRREI] [~k]
k=O . Yk -Rk Ck:::'k Lk - Ie Hk k Yk

Tracing back the discussions in the subsection 3.2 for the above equation, we obtain

the following theorems.

Theorem 5.3: Suppose tbat tbe RDE (5.3.15) bas a positive definite solution Pk and

/2 Ip - L/cPkLI > 0 bolds for all k E [0, N]. Tben tbe minimax problem (5.2.8) bas a

unique optimal solution.

Theorem 5.4: Suppose tbat the RDE (5.3.15) bas a positive definite solution Pk and

/2 Ip - LkPkLI > a bolds for all k E [0, N]. Then the minimax problem (5.2.9) bas a

unique optimal solution.

5. Relation to Hoc Filtering Problem

We next show that if the minimax problem (5.2.6) (respectively, (5.2.7) ) has a unique

solution, then the optimal estimate Zk satisfies the Roo error bound (5.2.5).

Theorem 5.5: Suppose tbat the RDE (5.3.15) bas a positive definite solution Pk for all

k E [0, N], and

1'2I p - LkF/cLI >° Vk E [0, N]

Tben the filter of (5.3.20)-(5.3.23) achieves tbe H oo error bound (5.2.5).
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Proof: Let us define Zk by (5.3.20)-(5.3.23). Then we see from (5.4.6) and (5.3.19) that

N N
J(Z"j XO , W, v) = -I'2{L: IIwk- wkll~k + Lyl(Rk + CkPkCl)-lyd

k=O k=O
2-T X - < 0-I' xN+l N+lXN+l_

Hence the optimal policies for Wk,Yk and XN+l which maximize J(Z*jXO;w,v) are given

by

Using Yk =0, XN+l = 0 and the definition of Z;, (5.3.14) reduces to

This implies Ak =0, Xk =0 for all k E [0, N]. It then follows that

.. n-1c - 0. Vk = - k. kXk =

Xo = :Co + n>.o = ito

Hence we obtain
N

L (lIwZlI2 + lIvkll~-I) + IIxo- ito 1I~-1 = 0
k=O k

Consequently, (5.2.6) (equivalently (5.2.5)) holds for the filter (5.3.20)-(5.3.23). •

A similar result is obtained for the one-step prediction problem.

Theorem 5.6: Suppose that the RDE (5.3.15) bas a positive definite solution Pk for all

k E [0, N], and

. I'2Jp - LkPkL'i > 0 'Vk E [O,N]

Then the one-step prtxIict'or (5;3;28)-(5.3.30) achieves the H oo ertor bound (5.2.5).

Sfuce thefllter (5.3.20)-(5.3.23) and the p~edictor (5.3.28)-(5.3.30) satisfY· the IIoo

error bound. They are referred to as an Roo filter and an Roo predictor, respectively. Note

also that, as I' tends to infinity, the filter of (5.3.20)-(5.3.23) reduces to the Kalman filter.
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Therefore, the filter of (5.3.20)-(5.3.23) is called the central Roo filter. This definition of

the central Roo filter is consistent with the definition in Chapter 2.

Remark 5.3: Fujita et ai. [12] gave a similar result for filtering case under the condition

of Pk > aand 3k > O. The equivalence of 3k > 0 and [2Ip - LkhLf > ais easily shown

using the definition of =k.
Remark 5.4: If the initial state is exactly known a priori (Le. xo = :to), then the Boo

error bound and cost function J become

Ef=o IIzk - zkll 2
2

s~~ Ef=o(lIw kIl 2 + Il vkll 2) < [
N N

J(z;w,v) = L IIzk - zkll2 _[2 L(lIwk\l2 + lIvk1l2)
k=O k=O

In this case, the solutions to the minimax problems are irrelevant to the weighting matrix

IT, and we have Po = O.

6. Concluding Remarks

In this chapter, we have shown that the solutions to the minimax filtering and predic­

tions problems are given by the central H oo filter and H oo one-step predictor, respectively.

Furthermore, in deducing the minimax solutions, we have derived the worst noise and dis-

turbances in the sense that they maximizes the cost function (5.2.4), or equivalently they

maximizes the energy gain between the estimation errors and the noise disturbances.

In the infinite-horizon time-varying case, in addition to the existence of a solution

to the Roo RDE, it is required for existence of a solution to the Boo filtering problem

that the Riccati solution Pk is an stabilizing solution, that is, the autonomous system

ek+I = Fk~kTek is exponentially stable (see, e.g. [36] for the continuous-time case).
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Appendix 5.1: Reformulation of Filtering Problem

We here reduce the filtering problem for (2.2.1},(2.2.2}to the problem for (5.2.1),(5.2.2)

under the assumption that D has full row rank.

We now define D# = D T R-1 to obtain from (2.2.2)

Subtracting this from (2.2.1) yields

(A.5.1)

where D.l = 1m - D#D. By linearity, Xk is decomposed as Xk = x11
) + x12

), where

x~1) = XQ

x~2) = 0

(A.5.2)

(A.5.3)

Clearly, given the history of the measurements, xi2) is known exactly and the task of

estimation becomes that of estimating x~l) only. Further, we introduce a new measurement

, (2) (1)
Yk=Yk-Cxk =Cxk +Ddk (A.5.4)

(A.5.5)

(A.5.6)
. . . . .' .

Since IIdkll2 = IIvkil2 + IIwk1l2, and since the estimation error is only due to °the error in

estimating 'x11
), the filtering problem for (2.2.1),(2.2°.2) reduces to that for (5.2.1),(5.2.2)

by redefining as follows:
(I)

xI. --+ XI.

Yk --+ Yk
A- BD#C ----+ A

BU2 --+ B
D' ----+ D
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Appendix 5.2: Minimax Fixed-Interval Smoothing Problem

The minimax smoother which minimizes J(z; XO I w* I v) is obtained by taking Zk = LkXj.

in (5.3.11) since all the measurements {YO, .. '. I YN} are available for the estimation at time

k E [a, N]. Thus the minimax smoother is given by

(A.5.7)

(A.5.8)

We see from this equation that the smoothed estimate Zic in the minimax smoothing is

independent of'Y and Lk. This feature makes the H oo smoother identical to the H2 optimal

smoother. A necessary and sufficient condition for the Roo optimality of the smoother

was given by Nagpal and Khargonekar [36] and Basar [2].

Theorem A.5.l [36]: A necessary and sulficient condition for the smoother (A.5. 7),(A.5.8)

to satisfy the H oo error bound is that there exists a matrix Xk satisfying (5.4.1) with

XN+l = a and Xo <II.
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Chapter 6

Performance of Central Hoc

Filter, H oo Riccati Difference

Equation and Roo Fixed-Lag

Sllloothing Problem

1. Introduction

As shown in the previous chapters, the Hoc filtering problem has been solved from

various viewpoints [12],[19],[20], [52],[53],[55]. At present, however, the performance of

the H oo filter has received much less attention. Thus, in this chapter, we will study the

performance of the central H oo filter based on Riccati difference equations. It is well

known that, as the prescribed Boo bound 'Y tends to 00, the B eo filtering problem reduces

to the H2-optimal filtering problem. Kalman filter offers the optimal state estimates in the

least-squares error sense when the disturbance is zero mean white noise and its covariance

is exactly known. Thus, we first consider the performance in the case when the underlying

disturbance is zero mean white noise by comparing the H eo and H2 (Kalman filtering)

RDEs. Next, we clarify the the relationship between 'Y and the performance of the central

H oo filter based on the monotonicity of the H eo RDE.

Next, for a time-invariant system, we will show that, under a certain condition, the

solution of the H oo RDE converges to a stabilizing solution of the corresponding Hoc

90



ARE. This result gives a connection between the finite and infinite horizon Hoc filtering

problems.

Furthermore, for the case where a fixed time lag is allowed between measurement and

estimation, the state estimator is termed a fixed-lag smoother. As well-known, there are

many applications particularly to communication systems where a delay su,£ficient to yield

a useful improvement in estimation from smoothing is acceptable [26]'[35]. Based on the

precedent results on the Boo filtering problem, we will derive a solution to the Hoc fixed-lag

smoothing problem.

2. Performance Analysis of Central H oo Filter

2.1 Finite-horizon Hoc filtering problem

We now briefly review the result on the finite-horizon H oo filtering problem. We again

consider the system described by

(6.2.1)

(6.2.2)

(6.2.3)

where Xk E Rn, Yk E Rq and Zk E RP are the state vector, measurement and the vector to

to be estimated. The exogenous signals Wk ERm and VI. E R£ are the process disturbance

and the measurement noise, respectively. Moreover, we assume that Rk := DkDl > 0

holds for any k.

The finite-horizon Hoc filtering problem is to find estimates of Zk and XI. based on the

measurement set {YO, ... ,Yk} such that

(6.2.4)

where Zk is the estimate of Zk, and :1:0 is a priori estimate of the initial state xo. Also,

IT is a positive definite weighting matrix which represents the uncertainty of the initial

state. As shown in Chapter 5, the central H oo filter which achieves the above Roo bound
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is given by

XH1/k :=: AkXklk> £O/-l:=::fO

Zk :=: LkXk/k

Kk :=: Pkcl (Rk + CkPkCn-1

where Pk satisfies the RDE

(6.2.5)

(6.2.6)

(6.2.7)

(6.2.8)

and

2.2 Estimation error covariance

We define

(6.2.10)

N N N
J:=: I: I1 zk - zkll2 - ..l(I: IIwkll2 + I: IIvkl1 2 + I1 xo- XOI1~-l) (6.2.11)

~o ~o ~o

We see from Theorems 5.1 and 5.3 that the filter of (6.2.5)-(6.2.8) is the optimal minimizing

policy of the minimax problem:

max(rpn(max ... max(~n(max
YN ZN wN Uk Zk wI<

... max(lJ1in(max J)) .. .)) ...))
- yo zk wo ,:to

(6.2.12)

As 'Y tends to infinity, the second term in J(z; xo, w, v) becomes dominant and the

minimax problem reduces to the minimization problem:

min {I:(I1Wk I1 2 +llvk ~ Ckxkl1~-d + lIxo- xoll~-I}
W,:t k=O k

As well-known, this minimization problem is equivalent to the minimum-variance estima-

tion or least-squares estimation problem where Xo is generated by the Gaussian distribution

N(xo, II) and where Wk and Vk are the Gaussian white noise processes such that
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Among all causal state estimators, the optimal solution to this problem is given by the

Kalman filter:

Xk+l/k = AkXk/k, XO/-l = xO

K~ = PkclcRk + CkPkCl)-1

where the matrix Pk is the optimal one-step prediction error covariance matrix

and satisfies the following RDE.

(6.2.15)

(6.2.16)

(6.2.17)

(6.2.18)

It follows from the above observation that the Roo filter is a modified version of Kalman

filter by using the parameter /. Hence, it is very important to compare the performances

of the Roo and Kalman filters when Wk! Vk and XQ are given by the Gaussian white noise

processes. In the following of this chapter, we assume that there exists a positive semi-

definite solution Pk to the RDE (6.2.9) satisfying Vk > 0 exists for all k E [0, N].

Theorem 6.1: Suppose that Xo '" N(xQ, II) and Wk, Vk are the zero mean Gaussian

white noises with unit covariance matrices. Define

for the Boo filter of (6.2.5)~(6.2.8). Then Pk ~ QIc ~ Pk holds for all k E [0, N].

Proof: We define

T . T 1
Fk = AkKk = AkPkCk (Rk + CkPkCk )~

Fk= AkK~ = AkP£cl(Rk + CkPkCl)-1

From (6.2.1)-(6.2.3), (6.2.5) and (6.2.6), the dynamics of the estimation error Xk :=

Xk - Xk/k-l is described by
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It follows that

Also, after Borne simple calculations, the RDE (6.2.9) reduces to

where Fk := Pk(In + ClRj;lCk)-l ~ O. Subtracting (6.2.19) from (6.2.20) yields

(6.2.19)

(6.2.20)

Since VA: = /2Ip - LkFkLI > 0 holds for all k E [0, N], we get Pk - Qk ~ 0 for all k -E [0, N]

by induction.

Next we prove Qk ~ Pic. It is easily verified that

11+1 = (Ak - F!.Ck)P!.(Ak - F!.Ck)T + F~RkF;? + BkBI

= (Ak - FkCk)Pk(Ak - FkCk)T + BkBf + FkRkF'!

-(Fk - FfJRk(Fk - FDT , P6:::: II

Subtracting (6.2.19) from this yields

(6.2.21)

where PO -Qo =O. Since Rit >0, w~_get Pk - Qk ;$ 0 for all k E [0, N]byinduction. •

We now define

Pk .- Pk(In +clRi;!CkPk)-l .

PI: = Pk(In +CIRj;lCkPfc)-l

Then we hav~ the foliowingJemma.

Lemma 6.1: For symmetric matrices Pic andPL jfPk ;:: Pk.2i 0'bolds;tiien Pk -~ Pk-·~ 0

bolds.
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Proof: We easily see that

- T T
Pk = (In - KkCk)Pk(In - KkCk) + KkRkKk ~ a

p£ = (In - KJPk)P£(In - Ki.Pk)T + K£RkKkT ;::: a

(6.2.22)

(6.2.23)

where Kk and K kare defined by (6.2.8) and (6.2.17), respectively. We also rewrite (6.2.23)

as

-, n/ T T
Pk = (In - KkCk)l-k(In - KkCk) + KkRk K k

-(Kk - Kk)(Rk + ckPI:cl)(Kk - Kk?

Subtracting this from (6.2.22) yields

- -, 'T
Pk - Pk = (In - KkCk)(P" - Pk)(In - KkCk)

+(Kk- Kk)(Rk + ckPI:cl)(K£ - K,,)T

(6.2.24)

(6.2.25)

The right~hand side of the above equation is positive semi-definite since Pk ? Pk ;::: a alld

Rk > O. Thus we get Pk ~ PI: ~ o. •

The gain matrices Kk and Kk can be expressed as

K ' P-'CTR-l
k = kk k

Thus, from Theorem 6.1 and Lemma 6.1, we get IIKkll ;::: IIK£II. This implies that the

H oo filter is more sensitive to Yk - CkXk/k-l than Kalman filter. In the case where the

measurement noise Vk is small, the estimate by the Boo filter converges to the actual state

faster than Kalman filter.

2.3 Relationship between I and Roo RDE

We define

Then we have the following lemma.

Lemma 6.2: Assume tbat p(l) ~ p(2)·~ 0 and ,2Ip - L"p(l)Lf > 0 bold for a given

n xn symmetric matrices p(l) and p(2). Then we obtain

(6.2.26)
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Proof: We define

M~i) = ,pCi)Llc'iIp - LkP(i)Ll)-1 (i = 1,2)

(
MLk) ( MLk)T MMTIf'k(P, M) = In + ----::;- P In + -,- -

It is clear that 1/!k(p(i),,) = If'k(P(i), M~i».

For any matrix ME Rnxp , we get

It follows that

'4Jk(P(l),,) - '4Jk(p(2),,) = If'k(p(l),M?» -If'k(pC2),Mk2))

=rpk(pCI) 1 Mk2» + 12 cMLl) - Mk2» (,2 Ip - LkP(I) L'k) (M~l) - Mk2)?,
-If'kCP(Z) , Mk2»

= (In + Mi~Lk ) (p(l) _ p(')) (In + M~~Lk ) T

+ lzCM11) - Mf»)('YZIp -LkP(l)Lf)(M?) - M1Z»T,
Since pel} ~ p(Z} and 'Y2Ip - LkP(1)L'k > 0, we obtain '4JkCP(1),'Y) ~ '4Jk(p(2},,). •

Let pCi) denote the solution to the RDE (6.2.9) for given 'Yi (i = 1, 2). Then, p~i)

satisfies

Ci) _ A pCi){ (CTR-IC -2LTL )p(i}}-lAT B BT D(i) - II(B 2 27)PHI - k k In + k k k - 'Y k k k k + Ie Ie,.co - ••

We also define

Theorem 6.2: Suppose tHat ,'Y1 '5 ,2, and that the RDE of'(6.2.9) has positive semi­

definite solutions pli
) (i = 1, 2) such that 'Y[Ip - LkPt}LI > 0 for: _allk E [0, N]. Then,

pll ) ~ pk2
} and pl1) ~p~2) hold for all k E [0, N].

Proof: Since p~l) ~ p12) implies p~l) ~ ... p12)hy Lemma 6.1, it stiffices' to prove

pp) ~ p~2).
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For k = 0, it is obvious that pJl) :::: pJ2) = II.

We assume that p?) 2=: p?) holds for k = 0,1"", t. Since p~i) 2=: 0, p~i) (i = 1,2) are

well-defined and positive semi-definite. We see from Lemma 6.1 that p?) 2=: p?l. It thus

follows from Lemma 6.2 that

(6.2.28)

By simple calculations, (6.2.9) reduces to

(6.2.29)

Thus, we get

As a result, we have shown by induction that pp) 2=: pF) holds for all k E [0, N].

(6.2.30)

•
The above theorem shows that the solution to the RDE (6.2.9) is monotonically non-

increasing with respect to the parameter 'Y. By the discussion similar to the previous

section, as , becomes large, Pk and E{ Ilxk - xk/k_11l 2} become small, while the H oo filter

gets less sensitive to Vk := Yk - CkXk/k-l' As a result, the parameter, represents the

trade off between the mean square error and the sensitivity to the estimation error Vk.

3. Convergence of the Solution of H oo RDE

In this section, we consider the connection between the finite and infinite horizon H oo

filtering problems by showing the convergence of the solution of the H oo RDE (6.2.9).

We here assume that the coefficient matrices of the system (6.2.1)-(6.2.3) are constant.

According to the assumptions (AIUA2) in Chapter 2, we assume that (e, A) is detectable

and that (A, B) has no uncontrollable modes on the unit circle.

Theorem 6.3: Suppose tbat tbere exists a positive semi-definite stabilizing solution of

the ARE

(6.3.1)

with V:= ,2Ip - LPLT > 0, where P =P(In +CTR-1CP)-l. Tben, the solution to tbe

RDE (6.2.9) with Po = a converges to the stabilizing solution P as k tends to infinity.
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Proof: We show that Pk is monotonically non-decreasing and bounded above, namely

(6.3.2)

For k = 1, it is obvious from Po = 0 that PI = BBT :S P holds.

For k = t + 1, we assume that

We see from Lemma 6.1 that

(6.3.3)

Hence, we get

It thus follows from Lemma 6.2 that

where 1jJ(X,,) = X + XLT (,·y2Ip - LXLT)-l LX. Since Pk and P are expressed as

- T TPt+! = A1jJ (Pt , ,)A + BB

the above inequality implies P ~ Pt+i~Pt. Thus, we obtain (6.3.2) by induction.

Furthermore, the stabilizing solution P is minimal among all the positive semi-definite

.solution of (6.3.1) with V > 0 [43]. Therefore~ Pk converges to the stabilizing solution of

(6.3.1) ..

It may be note that the ARE (6.3.1) can be rewritten as

•

P=APAT -APCT(R+CPCT)~lCPAT +BBT

"" [ C ] "" [ DDT 0 ]C= I R=
'L. .'- _-. 0 . ,-,2Ip '

Therefore,for the system of(6,2.1)~(6.2.3), theARE (6.3~~) is identical to the ARE (2.4.6)

in r.rheorem 2.1.
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This theorem shows that if the infinite-horizon H oo filtering problem is solvable, then

we can obtain a solution to this problem as the limit of the solution to the finite-horizon

problem with Xo = xo.

4.. H oo Fixed-Lag Smoothing Problem

In this section, we derive a fixed-lag smoother which achieves the Roo error bound. We

consider the system of (6.2.1)-(6.2.3) under the assumption that X~i, i = 0,1,·· . ,h are

exactly known. The H oo fixed-lag smoothing problem is the problem of finding estimates

Xk and Zk based on the measurement set {YO," . ,Yk+h} so that

(6.4.1)

where the constant h 2: 0 denotes the smoothing lag. The Roo fixed-lag smoothing problem

can be easily solved by applying the usual Roo filtering algorithm to the augmented system:

<k+1 = .ih<k + BkWk

Yk = Ck~k + DkVk

Zk-h = Lk~k

where

Xk Ak 0 0 Bk

Xk-l In 0 0
Bk =

0
~k = Ak =

Xk-h 0 In 0 0

Ck = [ Ck 0 ... OJ, Lk = [ 0 0 Lk-h ]

(6.4.2)

(6.4.3)

(6.4.4)

Theorem 6.4: Suppose that X-i, i = 0,1"", h are known a priori. There exists an

Boo fixed-lag smoother which achieves the Boo error bound (6.4.1) if and only if there

exist matrices Pi,j/kl Pi,j/k and IIi,j/k (i, j = 0,1" ", h) such that
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- T T BT
PO,O/HI = AkPO,O/kAk + AkITO,O/kAk + Bk k

PO,j/kH = AkFOJ-I/k + AkIIOJ-I, j -# 0

P.- IT iJ·..j. 0Pi,j/kH = i-I,j-1/k + i-IJ-1/kl r

- T 2 - T -1 -
ITi,j/k = Pi,hLk-hb I p - Lk-hPh,h/kLk-h} Lk-hPhJ/k

FiJ/k = Pi,j/k - Pi,o/kCl(Rk + CkPo,o/kCl)-IClpO,i/k

and

PO,O/k PO,I/k PO,h/k

Pk :=
PI,O/k PI,I/k PI,h/k

~ 0, Po = 0

Ph,O/k Ph,l/k Ph,h/k

2 - T
'Y I p - Lk-hPh,h/kLk-h > 0

In this case, one of the Boo fixed-lag smootber is given by

Xk-i/k = Xk-i/k-I + Ki/k(Yk - CkXk/k-1)

XkH/k = AkXk/k

Zk-h = Lk-hXk-h/k

Ki/k = Pi,ojkCl(Rk + CkPO,OjkCl)-I

where X-i/-I = X~i, i =0,1, ... I h.

(6.4.5a)

(6.4.5b)

(6.4.5c)

(6.4.5d)

(6.4.5e)

(6.4.6)

(6.4.7)

(6.4.8a)

(6.4.8b)

(6.4.8c)

(6.4.'8d)

Proof: Since the Boo fixed-lag smo~thing problem for (6.2.1)-(6.2.3) is equivalent to

the H oo filtering problem for the augmented system (6.4.2)-(6.4.4), we easily see that an

Boo fixed-lag smoother exists if and only if there exists a positive semi-definite solution

to the RJ)E

(6.4.9a)

(6.4.9b)

with

(6.4.10)
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where Fk = Pk(I(h+l)n+clRklCkPk)~l. We now define Ilk = PkLlc-r2Ip-LkFkLI)-l LkFk,

and partition Xk (X = P, P, II) as

XO,O/k XO,l/k

X1,O/k X 1,I/k

XO,h/k

X1,h/k

Then, by the definitions of Pk and Ilk, (6.4.5) immediately follows from the RDE (6.4.9).

Also, the condition of (6.4.7) is equivalent to (6.4.10).

Futhennore, the central Boo filter for the augmented system is given by

fk/k = fk/k-l + Kk(Yk - Ckek/k-l)

fk+l/k = Akfk/k. £'0/-1 = 6

Zk-h = Lkfk/k

-T - -T -1
Kk = PkCk (Rk + CkPkCk)

We now partition fk/k and Kk as

(6.4.11a)

(6.4.11b)

(6.4.11c)

(6.4.11d)

Xk/k KO/k po,o/kCl(Rk + CkPO,O/l.p'[)-l

fk/k =
Xk-l/k

Kk=
K1/k P1,O/kCl(Rk + CkPO,O/kCll-1

-

Xk-h/k Kh/k Ph,O/kClCRk +CkPO,O/kCl)-l

Then, we easily obtain from (6.4.11) the Roo fixed-lag smoothing algorithm of (6.4.8). •

For the time-invariant system, based on Theorem 6.3, we are able to obtain a solution

to the infinite-horizon Boo fixed-lag smoothing problem by taking N to infinity.

Theorem 6.5: Suppose tbat (C, A) is detectable and (A, B) bas no uncontrollable modes

on tbe unit circle. We assumetbat there exist matrices Pi,j, Fi,j and IIi,j (i,j = 0,1"", h)

such that
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PO,O = AFo,oAT + Ailo,oAT + BBT

PO,j = APO,j-l + AIlo,j-l, j f 0

Pi,j = Fi-l,j-l + Ili-l,j~l, ij f 0

- LT( 21 L D LT)-lL DIIiJ = Pi,h , P - 1. h,h 1.-h,j

Fi,j = Pi,j - Pi,oCT(R + CpO,OCT)-lCT PO,j

PO,O" PO,1 PO,h

Pl,O Pl,l Pl,h
~Op.-.-

PhD Ph,1 Ph,h, .

,2Ip - LPh,hLT >0

. (6.4.12a)

(6.4.12b)

(6.4.12c)

(6.4.12d)

(6.4.12e)

(6.4.13)

(6.4.14)

andA.{I(h+l}n + p(CTR-lC - ,-2.iT.in-I has all eigenvalues inside the open unit disk.

Then I there exists an H oo fixed-lag smoother achieving

lIZk-h - Zk-hll~·· 2
sup 12 2 <,
w,v Ilwl2 + lIvlb .

In this ease, one of the H oo fixed-lag smoother is given by

Xk-i/k = Xk-i/k-l + Ki(Yk - CXk/k-l)

Xk+l/k" =AXk/k

K· == p: CT(R + GP, CT)-'lI I,D 0,0

(6.4.15)

(6.4.16a)

(6.4.16b)

(6.4.16c)

(6.4.16d)

Remark 6;1: The "necessitYofthe theorem is also true by Theorem 2.1.

Remark 6.2: Since ihe fixed-lag snihothers ·of (6.4.8) arid (6.4.1'6) are derived from the

central H oo filters, we call them the central Roo fixed-lag smoothers. It may he noted

that the central Boo fixed.-Iag smoother inherits the properties of the central H oo filter

in. Section 6.2, because the smoother is the central H oo filter for the augmented system

(6.4.2)-{6.4.4).
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Remark 6.3: It is known that, for the fixed-interval smoothing problem, the H oo

smoother is identical to the H2 optimal one (see Appendix 5.2). But the H oo fixed-lag

smoother is different from the H2 optimal one in that IT iJ / k and ITiJ exist in (6.4.8) and

(6.4.16), respectively.

5. Numerical Example

Let us consider the system given by

In the case where II = I, the optimal value of the parameter 'Y is 'Yopt = 1. Fig. 6.1

shows the relationship among Pk, PI. and Qk for 'Y = 1.25. We see from the figure that

Pk ~ Qk ~ PI. holds for all k.

1.---....-----.---~-----.-----,

40

---------------------------

20 30
time

10

0.2

Fig. 6.1: Relationship among Pk, Qk and PI.

Furthermore, in order to compare the performance of the H oo filter with that of Kalman

filter, we performed simulations (Fig. 6.2). In the following simulations, we set Wk =0

to see the sensitivity of the filters to Vk = Yk - CkXk/k-l' The measurement noise 'Uk is

zero mean Gaussian white noise. Figs. 6.2 (a) and (b) show the simulation results for

E{'Un = 0.01 and E{'Un = 0.09, respectively. In the case when the measurement noise
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Vk is very small, the central Roo filter presents a much better transient response than

Kalman filter. On the other hand, when Vk is large, the Roo filter is more sensitive to the

measurement noise than Kalman filter.
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The relationship between 7 and Pk for k = 25 is illustrated in Fig. 6.3. We see that

P25 is monotonically non-increasing with respect to 1- We also obtained the same results

for all k.

1

0.8

Pk 0.6

0.4

0.2

1 1.5

7

Fig. 6.3: Relationship between 7 and Pk

2

Simulation results for various '"'I are shown in Fig. 6.4. The measurement noise' is the

zero mean white noise with E{vn = 0.01. As shown in the figure, the H oo filter becomes

less sensitive to I/k as '"'I becomes large.

0.8
~.
0

0.6........
Q)

c:
0.40

1a
E 0.2-.:;
en
Q)

a

-02'0 10

_7=1.01

----- '"'I = 1.25

._._ .• '"'I = 2.0

20 30
time

40

Fig. 6.4: Estimation errors for various values of 7
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Next, we apply the H oo fixed-lag smoothing algorithm in Theorem 6.5 to tIllS system.

Fig. 6.5 shows the singular value plots of the transfer matrix from the disturbance [Wk Vk JT
to the estimation error ek := Zk-h - Zk-h in the case where J = 1.25. We see from the

figure that as the smootlllng lag h increases, the H oo performance of the central H oo

fixed-lag smoother is improved.

(J) 1.2 1=_=_=__=_=__=_::::__=_==__=-----.-----~
Q) ...•••.•.•••..•..•..••. ~~ -- h=O
~ 1 -'-'-'-'-'-'-'-'.:.::::~:~.>'. h=2

ca \'" h 5::l \>.\ =

g' \.\ h=10
~ \~\

E
' 0,.5 \\'.

\.~.. \

'"::::J v.",

E ~~,

~ ~~,
E ~~~~

Ol...-----'--------"------l
10-3 10-2 10-1 100 101

frequency (rad/sec)

Fig. 6.5: Singular value plots of the smoothed error system

6. Concluding Remarks

In this chapter, by using Riccati difference equations, we have compared the perfor­

mances of the central Roo filter and Kalman filter in the case where the disturbances

are zero Gaussian white noises. The relationship between the prescribed H oo bound J

and the performance of the central H oo filter is investigated based on the monotonicity

property of the Roo RDE. These results also apply to the in£nite-horizon time-invariant

case by replacing the RDEs with the corresponding AREs. The above results will provide

a. guideline for detennining the va.lue of J.

For the time-invariant case, we have proved that the~solutionof the 1100 RDE converges

to a sta.bilizing solution of the corresponding ARE if the infinite-horizon H oo filtering

problem is solvable.

Furthermore, we ha.ve studied the H oo fixed-lag smoothing problem by utilizing the
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results on the H oo filtermg problem. It has been shown that the central H oo fixed-lag

8moother~~erits the properties of the central H oo filter, aild that the H oo and H2 fixed­

lag smoothers are different while the fixed-interval sIDoothers are identicaL
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Chapter 7

Stochastic Minimax Filtering

Problem and Its Relation to H oo

Filtering Problem

1. Introduction

The previous chapter has given the relationship between the Roo filtering problem and

a 'deterministic' minimax filtering problem.. In this chapter, we will provide an alternative

game theoretic interpretation of the central Roo filter and predictor. We will consider

Istochastic' minimax state estimation problems, which are discrete-time equivalents to

the problem discussed in [54]. We will derive saddle point solutions to the stochastic

estimation problems based on the matrix minimum principle by Athans [1]. It is shown

that the minimizer's saddle-point policies in the minimax filtering and prediction problems

are identical to the central Roo filter and predictor, respectively. Therefore, the results of

this chapter justify the application of the central Roo filter and predictor to the stochastic

systems.
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2. Stochastic Minimax Filtering Problem

2.1 Problem formulation

We first formulate the stochastic minimax filtering problem (SMFP) based on the

continuous-time result of [54].

We consider a linear discrete-time system described by

(7.2.1)

(7.2.2)

where Xk E Rn and Yk E Rq are the state vector and the measurements, respectively. The

noise disturbances Wk E R m and Vk E R£ are mutually uncorrelated Gaussian white noises

with

E{Wk} = 0, E{vd = 0

E {[ :: ][ ::n~[[;
where 6ij denotes the Kronekar's delta. The initial state Xo is generated by the Gaussian

distribution N(xo, II). Vie also assume that Dk E Rqx£ is right invertible and we define

Rk := DkDf. The disturbance 8k ERn is to be defined below.

Let Xk/t be an estimate of Xk based on the measurement set {YO,' . " Yt}. To guarantee

the unbiasedness of the estimate Xk/k, we assume that Xk/k is generated by the following

filtering algorithm:

(7.2.3)

(7.2.4)

where.Kk is the filter gain to be determined.

In this minimax: problem, we introduce the fictitious output Zk E RP defined by

The estimation at time k is disturbed by the disturbance 8k defined by

Sk = Mk (~ +nk)
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where ek = Zk - LkXk/k and nk is the Gaussian white noise with E{nd = 0, E{nkn;} =

Inokr. We assume that Wk, Vk and nk are mutually uncon-elated. The block diagram of

the SMFP is illustrated in Fig. 7.1.

Fig. 7.1: Diagram of the stochastic nlinimax filtering problem

We first introduce a cost function as follows. Define the state estimation en-or Xk :=

Xk - Xk/k' Then from (7.2.1)-(7.2.6), we obtain

{(
MkLk) _ }Xk+l = (In - Kk+l Ck+l) Ak +-/- xk +BkWk + Mknk - Kk+lDk+l vk+l

X'o =Xo - XO/O = (In - KoCo)(xo - xo) + KoDovo

Then,Xk is decomposed as

Xk = XI,k + X2,k, XI,O == Xo - xo/{), X2,0= 0 . (7.2.7)

Xl,k+l = (In - Kk+lCk+I) { (Ak + M~Lk) XI,k+ BkWk} - Kk+lDk+lVk+l (7.2.8)

X2,k+l = (In - Kk+lCk+l) {(ilk + M~Lk ) X2,k + Mknk} (7.2.9)

where XI,k is the state estimation error due to Wk and Vk, and X2,k is the error due to nk.

Arbitrarily large norm values of Mk incteases Ilx2,kll and Ilekll arbitrarily, and thus a cost

function must contain a penalty imposed on Mk in order to limit the range that Mk may
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(7.2.10)

attain. We therefore define the following cost function as

N

IN(K,M) = I: E{XT,kWkXl,k - Xi',kWkX2,d
k=O

where Wk is a positive definite symmetric bounded matrix, and K = {Ko,"', KN} and

M = .{Mo,···, MN}. This minimax filtering problem can be interpreted ~ the dynamic

minimax game with a quadratic cost. The minimizer adjusts Kk so that J N (K, M) is

minimized, while the maximizer adjusts Mk so that IN(K, M) is maximized.

Lemma 7.1: The cost function of (7.2.10) is expressed as

N-l
IN =Tr{WNPN} + L Tr{WkPkl

k=O

wbere

(7.2.11)

(7.2.12)

Po = II (7.2.13)

- T TPk = (In - KkCk)Pk(In - KkCk) + KkRkKk

(
MkLk) - ( MkLk)T T TPk+l = Ak + -"/- Pk Ak + -"/- + BkEk - Mk Mk ,

Proof: We define PI,k = E{Xl,kXT,~J and P2,k = E{X2,kXi,d· Since WI.:, Vk and nk are

the uncorrelated white noise, we get

Pl,k+l = {(In - Kk+lCk+l) (Ak + M~Lk) } PI,k {(In _ Kk+l Ck+l) (Ak + M~k) } T

+(In - Kk+l Ck+l)BkBr(In - Kk+lCk+l? + Kk+lRk+lKf+l (7.2.14)

P2,k+l = {(In - Kk+lCk+l) (Ak +M~Lk)} P2,k {(In _ Kk+lCk+l) (Ak + M~Lk) } T

+(In - Kk+lCk+l)MkM'l(In - Kk+lCk+l)T (7.2.15)

PI,O = (In - KoCo)II(In - KoCo? + KoRoKJ' , P2,O = 0 (7.2.16)

Then, from the definition of JN, we get

N N-l

IN =L Tr{Wk.h} = Tr{WNPN } + L Tr{Wk.Pd
k=O k=O

Furthermore, (7.2.12) directly follows from (7.2.14) and (7.2.15).
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2.2 Saddle point solution

In this chapter, we wish to find a saddle point solution to the SMFP and the corre­

sponding saddle point policies K* = {Ko,... ,Kiv} and M- = {Mo,... ,Kiv }. The saddle

point solution is defined by

(7.2.17)

We derive a saddle point solution of this minimax problem by adopting the matrix

minimum principle [1J. To perform the optimization with respect to K and M, we form

the Hamiltonian

(7.2.18)

where At is the costate matrix. Let P;, F; and Ai; be the values of Pk, Fk and Ak

corresponding to the saddle point policy (K-, M*), respectively. Then, we can obtain the

saddle point policies by solving the following necessary conditions:

Ak+l - Ai. =- 8Hk I ' AN =WN
8Pk (K,M)=(K-,M-)

Hk(Kk+l,Mk) ~ Hk(Kk+l, Mk) VKk+l E Rnxq

HdKk+l, Mk) ~ Hk(Kk+l, Mk) 'r/Mk E Rnxp

(7.2.19)

(7.2.20)

(7.2.21)

It may be noted that the derivative formulae for trace of matrices in [1] are very useful

for solving the condition of (7.2.19). We see from (7.2.19) that

AZ = {(In - K k+1Ck+d(Ak + M~Lk)} Ak+1 {(In _Kk+lCk+l)(Ak + Mk.:k
)}T +Wk

(7.2.22)

SinceWk is positive definite and symmetric, so is Ak. Note that Pk and?k can be expressed

as

Fk = Kk(Rk +CkPkCl)Kl - KkCkPk - PkclKI + Pk

Pk+l = -,-2Mk('Y2Ip - LkFkLf)Ml + Ak?kAI+BkBl
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Since Ai is positive definite and Fk is independent of Kk+l, we see from (7.2.23) that there

exists a unique Kk+1 satisfying {7.2.20} if and only if

(7.2.25)

We now assume PHI = Pk+I . Then1 the square completion of PHI with r,espect to Kk+l

yields

Pk+l = {Kk+I - Pk+lCf+I Vk-~.\)Vk+dKk+1- Pk+I Cf+1Vk+1
l)T

+Pk+1 - Pk+ICf+IVk+\Ck+1 Pk+l

Thus, (7.2.20) is satisfied by taking Kk+1 = Pk+lCf+I Vk~l' Similarly, there exists a

unique matrix MZ satisfying (7.2.21) if and only if

(7.2.26)

In this case1 Mi satisfying (7.2.21) is given by Mk' = iAkF;LliJr;;I.

Substituting Pk = Pk1 Pk = Pk, Kk = K'k and Mk = Mi into (7.2.12) and {7.2.13}

yields

and .

Po =II (7.2.27a)

(7.2.27b)

(7.2.28)

It is easily seen from Lemma 5.1 that P; is positive semi-definite if W'k > 0 for all k.

The equation (7.2.27) is the well-known H oo RDE. Hence1 the minimizer's optimal

policy K* provides the H oo filtering algorithm.

The following theorem summarizes the above discussions.

Theorem 7.1: Suppose that there exists a unique saddle point solution to the SMFP.

Then, there exists a positive semi-definite solution to the RDE (7.2.27) such that Wk > 0

holds over the interval [0, N].
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We next show that the existence of such a solution to the RDE (7.2.27) is also sufficient

for the existence of a saddle point solution.

Theorem 7.2: Suppose that there exists a positive serill~definite solution to the RDE

(7.2.27) satisfying Wk > O. Then, there exists a saddle point solution, and the correspond­

ing saddle point policies are given by

Kj. = PiCl(Rk + CkPkC!)-l

Mi: = ,AkPkL'lb2Ip - LkPkLI)-l

(7.2.29)

(7.2.30)

Proof: Define KZ and M"k by (7.2.29) and (7.2.30). Then, we easily see that

(7.2.31)

(7.2.32)

where Kk = Kk - K k and Mk = Mk - Mk. We also define .6..Pk = P;; - Pk and t:.Pk =

Pi: - Pk. Subtracting (7.2.12) from (7.2.31) yields

(7.2.33)

(7.2.34)

First, we assume Kk =Kk. Then, (7.2.33) reduces to

(7.2.35)

Since Po = Po = II, we get t:.Po = 0 and b..Po ~ O. We assume that t:..Pk ;::: 0 holds

for k = 0,' .. , t. It then follows from (7.2.34M7.2.35) that t:.Pt+l ;::: 0 andt:..Pt+l ;::: 0'

since Wt > O. Hence, .6..Pk ;::: 0 holds for any k ;::: 0 by induction. Thus, we obtain

IN(K*,M) :5 IN(K*,M*).

Next, we assume Mk =M; for all k. It follows from (7.2.32) that

(7.2.36)
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Thus, similarly to the case where Kk = K kl we can prove tlPk ::; 0 for all k. Tilis implies

Consequently, we have proved that the policies of (7.2.29) and (7.2.30) are the saddle

point policies satisfying (7.2.17) for the SMFP.

3. Stochastic Minimax Prediction Problem

•

We next consider the stochastic minimax prediction problem (SMPP) where {YO, ... ,Yk-l}

rather than {YO, ... ,Yk-l, yk} is available for the estimation at time k. The block diagram

of the SMPP is illustrated in Fig. 7.2. The argument in the filtering case is still valid with

slight modifications. In the prediction case, the state estimate of Xk is generated by the

following one-step prediction algorithm:

(7.3.1)

(7.3.2)

Since Yk is not available at time k, the disturbance Sk is also defined using the one-step

prediction error:

(
Zk - LkXk/k-l )

Sk = Mk . +nk
I

where nk is the Gaussian white noise with E{nd =0 and E{nkn;} = InokT.

We here define the state estimation error by Xk := Xk-Xkjk-l' Then, Xk is decomposed

as

(7.3.3)

(7.3.4)

(7.3.5)

We define the cost function by

N
IN(K,L) = 2: E{Xf,kWkXl,k - Xi,kWkX2,k}

k=O
N-l

= Tr{WNPN} + 2: Tr{WkPkl
k=O
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Fig. 7.2: Diagram of the stochastic minimax prediction problem

where Pk = E{Xl,kXId - E{X2,kXi,k}' Since Wb Vk and nk are mutually uncorrelated, it

is easy to verify that

(
MkLk ) (MkLk )TPk+l = Ak + -"/- - KkCk Pk Ak + -"/- - KkCk

+BkBI + KkRkKI - MkMI

Similarly to the filtering case, we obtain a saddle point solution to the SMPP by

applying the matrix minimum principle.

Theorem 7.3: There exists a unique saddle-point solution of the SMPP defined above

if and only if there exists a positive semi-definite solution to the RDE (7.2.27) such that

,..?Ip - LkP;LI > 0 holds. In this case, the saddle point policies are given by

K; = AkP;CI(Rk + ckP:cl)-l = AkP:'E"k1ClR"k1

M; =1AkP;'E;;lLI

(7.3.6)

(7.3.7)

It may be noted that the minimizer's optimal policy (7.3.6) provides the H oo prediction

algorithm derived in Chapter 5.
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4. Concluding Remarks

In this chapter, we discussed the existence of a saddle point solution to the stochastic
,

minimax filtering and prediction problems. It has turned out that the estimators' saddle

point policies provide the central Boo filter and predictor. These.resul~ obtained iIi tbis

chapter provide alternative interpretations of these Boo state estimators, and lienee justify

the application of them to stochastic systems.
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Chapter 8

Conclusion

This thesis has considered the solutions to the H oo filtering problems and their anal­

yses. The main contributions of the thesis are summarized as follows.

In Chapter 2, we have given a solvability condition of the H oo filtering problem based

on the model matching approach using (J, Jf)-spectral factorization for the infinite-horizon

time-invariant case. We have also derived a complete parametrization of all solutions to the

H oo filtering problem. The pole-zero cancellation structure of the H oo filtering problem

has shown by using the chain scattering representation. Furthermore, we have given a

solution to the Boo prediction problem as a special case of the H oo filtering problem. The

present approach provides a unified solution to the H oo filtering and prediction problem.

Similarly to the H oo control case, the free parameter contained in the parametrization

of H oo filters can be used for achieving an additional design specification, e.g. H2 per­

formance, as well as the H oo error bound. In Chapter 3, we have proposed a method

for adjusting the free parameter so that the constraints on the unit circle in the complex

plane are satisfied. By the proposed method, we can reject the undesirable effects due

to the step or periodic disturbances. We have also shown the relationship between the

state-space model of the disturbance and the structure of the proposed H oo filter when

the disturbance is a step function.

In Chapter 4, we have examined the behavior of the stabilizing solution of the H co

ARE with respect to the variation of the prescribed H oo norm bound,. The infimum of

the parameter" for which a stabilizing solution to the H oo ARE exists, is characterized in
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terms of the Loo norm of a certain transfer matrix. The stabilizing solution is a monotoni­

cally non-increasing convex function of /. A new parametrization of all Boo filter has been

also derived. Based on the above results, we have shown that the size of the set of all Roo

filters is monotonically increasing with respect to /, and that there are possibilities that

the degree of freedom of the Boo filter decreases at the optimum. We have, also developed

an H2/Hoo filtering algorithm which makes use of the free parameter contained in the new

parametrization of Roo filters. The present results provide a guideline for selecting the

values of the parameters / and the free parameter. It may be also noted that the analyses

in this paper can be applied to those of the H oo controllers for 2-block problems.

Chapter 5 has shown that the solutions to the minimax filtering and predictions

problems are given by the central Roo filter and one-step predictor, respectively. FUrther­

more, in deducing the minimax solutions, we have derived the worst-case disturbances

in the sense that they maximize the cost function; in other words, they maximize the

energy gain between the estimation error and the disturbances. For the infinite-horizon

time-varying case, in addition to the existence of a solution to the H oo RDE, it is required

that the Riccati solution is a stabilizing solution.

In Chapter 6, by using RDEs, we have compared the performances of the H oo filter

and Kalman filter for the finite-horizon filtering problem where the disturbances are Gaus­

sian white noises. The relation between the prescribed Roo bound 'Y and the performance

of the central Roo filter is examined based on the monotonicity of the Roo RDE. These re­

sults also apply to the infinite-horizon time-invariant case by replacing the RDEs with the

corresponding AREs. In the time-invariant case, we have also given a sufficient condition

for the convergence of the solution of Boo RDE. The above results in this chapter provide

a guideline for determining the value of /. Furthermore, we have derived a solution to

the Roo fixed-lag smoothing problem by reducing the fixed-lag smoothing problem to a

filtering problem.

In Chapter 7, we have discussed the existence of a saddle point solution to the

stochastic minimax filtering and prediction problems. It has turned out that the mini~

mizer's saddle point policies generate the Boo filter and predictor. These results provide
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alternative interpretations of these B eo state estimators, and provide a justification of the

application of the Hoo state estimators to the stochastic system with unknown disturbance

statistics.

In the following of this chapter, we discuss the direction of the future research. Through­

out this thesis, we have considered the state estimation of the system with unknown dis­

turbance statistics while its dynamics is exactly known. Recently, the robust filtering for

the system with structured uncertain dynamics has been solved via the quadratic stabi­

lization technique, where the Hoc control problem of an uncertain system is reduced to a

certain Hoc control problem of a system without uncertainty [50]. This approach however

does not make clear the relation between the resulting robust B eo filter and.the Reo ill­

ter for the nominal system. The results in Chapters 2-4 can be extended to clarify tills

relationship, and provide an insight into the robustness analyses of the nominal Roo filter.

For time-varying systems, the connection between LMS (Least Mean Square) and Roo

filtering algorithms has been studied by Hassibi et at. [21]. They have justified the appli­

cation of theLMS adaptive filtering algorithm theoretically by showing its Reo optimality.

Their results indicate that the LMS algorithm inherits the properties of the central H oo

filter given in Chapter 6, and that the results in Chapter 6 can be extended to the analyses

of the LMS adaptive filter.

Very few application examples of the Roo filtering algorithm have been reported al­

though the solution tothe Hoc filtering problem has been almost established. One of the

most important direction of the future research is the applications of the H oo filtering

algorithm to practical problems. The author hopes that the results in this thesis will be

a help for the practical consideration of the H oo filter.
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