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Chapter 1
General Introduction

Polymer networks (including polymer gels which are polymer
networks containing solvent), prepared by crosslinking polymer chains, have
been focused in both the academic and the industrial fields as attractive
materials having some unique features which are not seen in uncrosslinked

%2 For instance, polymer networks reveal rubber elasticity (after

polymers.
large deformation is imposed, the original shape is recovered immediately
when the external strain or stress is released). In solvents, polymer networks
do not dissolve nor precipitate, but do swell or deswell accompanied by a
large volume change, depending on solubility of the constituent polymer in a
solvent. These features originate from the 3-dimensional polymer network
structure having infinite molecular weight, and the flexibility of constituent
polymeric chains. Due to these unique features, polymer networks have been
attempted to apply to various kinds of industrial devices. The basic aspect of
physical properties for polymer network systems has also attracted attention
of many physicists as well as chemists.

Polymer networks are often classified into two groups according to the
type of crosslink.> One is prepared by crosslinking polymer chains by means
of a crosslinker which has the reactive sites to the functional groups in the
polymer chains. In this case, the polymer chains are crosslinked by covalent
bonds, and the resulting polymer networks are called chemical gels.
Especially, a system in which a prepolymer has functional groups at both
chain ends is called an end—linkiﬁg system. The end-linking system is often
used as a model network system for the basic studies on rubber elasticity,

because the molecular weight of the prepolymer can be regarded as the



molecular weight between chemical crosslinks under the complete progress of

end-linking reaction.*

On the other hand, polymer network systems crosslinked in different
ways from covalent bonds are called physical gels. For instance, poly(vinyl
alcohol) (PVA) or gelatin forms a gel by cooling its solution. The
crosslinking sites in PVA and gelatin gels are believed to be microcrystalline
domains>® and helical domains,” respectively. Thermoplastic elastomer
(TPE), which has received considerable attention as a new type of polymer
network systems,® also belongs to this category. Generally, TPEs are
multiblock copolymers, or graft copolymers, which form microphase
separated structure (at room temperature) comprising the soft segment
domains revealing entropic elasticity and the hérd segment domains acting as
crosslinking sites. Polystyrene-polybutadiene-polystyrene (SBS) triblock
copolymers and segmented polyurethaneureas (SPUs) are known as the typical
TPEs. The physical properties of TPEs are strongly influenced by the
microphase separated structure. As described above, there are various types
of the structure of crosslinks in physical gels. One commom feature of
physical gels is that the sol-gel transition is thermo-reversible.

Table 1-1 summarizes the categories of polymer networks depending on
the type of crosslinking, together with the structure of crosslinking sites and
examples.” A network by entanglements is also added to the third row in
Table 1-1. Polymer melts and concentrated solutions where polymer chains
are well entangled are known to behave like crosslinked rubbers within a
certain time scale, although they do not have any permanent crosslinks.!°
This behavior is represented by the plateau region of storage modulus in a
time scale.!! Topological constraints, i.e., entanglements, originating from

the uncrossablility of polymer chains, are believed to act as temporary



Table 1-1. Types of polymer networks

Type . Crosslink Structure of Junctions Examples
Chemical gels Covalent bond Points Crosslinked rubber
(Localized) Thermosetting resins
Physical gels Hydrogen bond Domains Biological gels
Ionic bond Thermoplastic
Helix formation, etc. elastomers

(Localized)

Networks by entanglements (Delocalized)

Topological constraints

Polymer melts
Concentrated polymer

solutions




crosslinks,'? which have a finite life time, called "reptation time".> On the
other hand, entanglements trapped in a crosslinked network (so-called frapped
entanglements) are not disentangled due to the existence of crosslinks. The
roles of trapped entanglements in the elasticity of polymer networks have
been one of the most fundamental problems in the physics of rubber elasticity,
as will be described below.

The elasticity of chemically-crosslinked networks has attracted a lot of
theoretical and experimental physicists, and they have tried to rejate it
quantitatively with the structural parameters such as number of network
chains and junctions. Phantom'*>'#and affine'>!® network models were
proposed in 1940's, and they are now classified in classical network models.
Considerable progress has been made in theoretical as well as expernimental
studies on the elasticity of polymer networks, but there is still a dispute about
the effect of trapped entanglements on elastic modulus. Some researchers!’*!
have argued that trapped entanglements suppress the thermal fluctuations of
chemical crosslinks, but do not contribute to elastic modulus. They have
expressed the shear modulus (G) of a polymer network as

G =G (1.1)
where G is the modulus contributed from chemical crosslinks. Equation
(1.1) is common to phantom and affine models. The detailed expression is
given by G=(ve~ue)RT for phantom network model, and G=v.RT for affine
network model. Here, v., i, R, and T are the number of moles of network
chains and junctions per unit volume, the gas constant, and the absolute
temperature. The constrained junction theory by Flory and Erman!” predicts
G lies between the predictions by phantom and affine network models.
Others??2® have insisted that trapped entanglements contribute sifnilarly as

chemical crosslinks to elastic modulus, and shown the following form of G.



G=G.+GN T, (1.2)
Here, G\° is the plateau modulus of an uncrosslinked polymer melt with high
molecular weight, and T is the trapping factor representing the proportion of
the entanglements that contribute to elastic modulus. Equation (1.2) was
phenomenologically derived by Langley** and Dossin and Graessley.” It
should be noted that Eq. (1.2) predicts a larger value of G than Eq. (1.1).

In order to elucidate the effect of trapped entanglements on elastic
modulus, the elastic moduli of model networks, which are prepared in the
bulk state by end-linking prepolymers having a definite molecular weight,
have been measured as a function of the molecular weight of prepolymer by
many researchers.1®1%2528 However, in spite of a considerable accumulation
of such data, the dispute has not yet been settled. Another experimental
approach is necesarry to conclude clearly this dispute. An alternative
experiment for this problem is to measure the elastic moduli of model
polymer networks, which are crosslinked in solution by end-linking
prepolymers with high molecular weight, as a function of polymer
concentration at crosslinking (i.e., at preparation). If elastic modulus is
determined only by the number of chemical crosslinks, G is simply
proportional to the number of polymer chains in solution. Then, G increases
linearly with the polymer volume fraction at preparation (¢.) as

G = ¢ (1.3)

On the other hand, if trapped entanglements contribute to elastic modulus
similarly to chemical crosslinks, G should be scaled as

G x ¢.% (a=2) (1.4)
Equation (1.4) is based on the analogy of the concentration dependence of

12

plateau modulus for polymer solutions. Since the difference in the

exponents for the power laws in Eqgs. (1.3) and (1.4) is significantly large, the



experiment for ¢, dependence of G will clearly conclude the above problem.
However, the quantitative experiments concerning ¢, dependence of G for
polymer networks have never been performed.

One of the ultimate goals in the physics of rubber elasticity is to
determine the strain energy density function (W) for elastomers in an explicit
form. The function W is a fundamental physical quantity governing the
stress-strain behavior of elastomers. Generally, W 1s written as
W=W(l,,I»,I5) using the invariants of deformation tensor, where
L=A 24 A% A58, bh=A2 A%+ A% 3%+ A3%A %, and L=A%Ax*A3%, A; being the
principal ratio in i-direction. The classical theory for rubber elasticity
predicts the form of W as!3-152930 |
w=Z(-3) (15)

The classical theory assumed that the conformation of network chains is
Gaussian, and the polymer network is composed of the hypothetical phantom
chains which can move freely across the other chains. Rivlin and Saunders®!
showed that W is a function of I; and />, which is not in accord with the
prediction by the classical theory, from their experimental results for the
biaxial extension of natural rubber vulcanizates. They also indicated that the
experimental results are well described by the following Mooney equation®?:
W=C{-3)+ C(l,-3) (1.6)

where C; and C; are constants independent of Iy and I,. The constant C, is
often attributed to the interaction between network chains, i.e., entanglements.

3334 for the biaxial extension of

However, the later precise experiments
rubbery materials indicated that the observed results were not correctly
described by Eq. (1.6); C; is not constant but a complicated function of | and
I>. Quite a number of molecular theories'3-173>4! and phenomenological

equations®2424 have been proposed for the explicit form of W. Most of



these molecular theories have concentrated on how to treat entanglements.
However, Gottlieb and Gayload*’ have showed that none of these molecular

theories!3-17:36-39

described the experimental data®® satisfactorily for the
biaxial extension of isoprene rubber, and especially, the disagreement in small
deformation region was pronounced. As /| decreased (the strains became
smaller), the experimental values of 0 W/dl, increased rapidly, and those of
o W/dl, decreased abruptly, in comparison with the theoretical predictions.
Here, it should be noted that all of the past experimental and theoretical
studies assume the incompressibility of elastomers (i.e., Poisson's ratio (u) is
equal to 1/2 and [5=1), resulting in the form of W=W(/,.[>). The reported
values of u for elastomers are close to 1/2, but not exactly equal to 1/2.33:484°
Under this circumstance, elastomers should be treated as compressible
materials, and W should be expressed as W=W(/,[»,[3) for detailed
discussion. The characteristic behavior of dW/dl; and dW/dl» in small
deformation region observed in the experiments may originate from the non-
zero compressibility of real elastomers (u=1/2 and I=1). From this
viewpoint, it is very interesting to eliminate the assumption of
incompressibility, and to analyze the stress-strain behavior using experimental
values of u.

Poisson's ratio u is one of the elastic constants governing the elastic
behavior of materials together with Young's modulus and shear modulus.™

However, there are several studies®>4%4°

on u of polymer networks, while
Young's modulus and shear modulus have been inveétigated by many
researchers.!82851-8  The values of u for polymeric materials reflect the
flexibility of polymer chains. For instance, the values of u for rubbery
materials were reported®>®4° to be very close to 1/2 which means

9

incompressible, while that for glassy polystyrene® was evaluated to be 0.33



which is fairly smaller than 1/2. The flexibility of network chains in polymer
gels depends strongly on the solubility of constituent polymer in solvent. In
the case of physical gels whose crosslinks are microcrystallites, the degree of
crystallinity is also an important factor controlling the flexibility of network
chains. It was reported in a few studies>7 that the stress-strain behavior and
Young's modulus of PVA gels are greatly affected by the solvents as well as
the degree of crystallinity. These factors are expected to influence the value
of u, but the details have not been studied yet.

In addition to rubber elasticity, swelling phenomenon is one of the most
characteristic properties of polymer networks. Thermodynamics for swelling
of polymer networks has been studied by many researchers.?%8:51-5460-70
Floly and Rehner® first treated it theoretically, assuming that the free energy
of polymer network systems consists of the elastic term (F,) related to the
deformation of network chains on swelling and the osmotic term (F ) with
respect to the mixing entropy for the network and the solvent. They
represented F,; by using Gaussian chain statistics, and F,, by employing
mean field theory. The expressions of Fy and F , for polymer networks

crosslinked in solution with the polymer volume fraction ¢, are given by

F

;B‘*—‘T = Np vi(Hte ¢ — Ve 9,22012) (1.7)
Fosm

B =Nan(1-9) + ¢ +x &) (1.8)

Here, Fy and F,, is respectively the elastic and osmotic free energies per site
occupied by a monomer, and N, kg, v|, ¢ and x are the Avogadro's number,
the Boltzmann constant, the molar volume of solvent, the polymer volume
fraction in swollen network, and the polymer-solvent interaction parameter,
respectively. The dependence of the polymer volume fraction in equilibrium
swollen networks (¢.) on @, is given by the minimization of total free energy

with respect to ¢ as follows.5”



¢, x N ~35 g 14 (1.9)

Here, N is the polymerization index of network chain, and ¢ is assumed to
¢«1. De Gennes® argued that Gaussian statistics and mean field theory are not
applicable to semidilute concentration regime in which excluded volume
effect and concentration fluctuation are considerable. The c¢* theorem,
proposed by de Gennes,® assumes that ¢, is identified with the overlapping
concentration for network chains (¢ *) as

po= ¢* x N3 (1.10)
The ¢* theorem postulates the complete disinterpenetration of network chains
(i.e., no overlapping of network chains) in equilibrium swolien state, and
regards ¢* as the reference state irrespective of ¢, The following familiar
scaling relation between ¢, and the elastic modulus of equilibrium swollen
networks (E,) was first derived from the ¢* theorem.

E, < ¢, (1.11)
Equation (1.11) has been experimentally confirmed for various kinds of
polymer network system.’>* The validity of the c* theorem has often been
believed on the basis of the confirmation of Eq. (1.11). However, it should
be emphasized that Eq. (1.11) can be derived without assuming the complete
disinterpenetration of network chains on swelling.®> In other words, the
confirmation of Eq. (1.11) does not necessarily support the validity of c*
theorem. Accordingly, in order to elucidate the interspersion state of
network chains in equilibrium swollen state, another experiments which do
not rely on Eq. (1.11) are necessary (for instanée, the experiments for ¢,
dependence of E; and ¢.), and another theoretical approach may be needed.

The studies on the kinetics of swelling of polymer networks have much
progressed since Tanaka et al.”!-’> proposed the equation of motion for

polymer networks, which is written as



¢ X divs (1.12)

Here, , v and s are the friction coefficient between the network and solvent,
the displacement vector and the stress tensor for small volume elements in
polymer networks, respectively. Swelling processes of tgels with various
shapes have been both theoretically’>7* and experimentally’>” investigated
on the basis of Eq. (1.12).

The studies on the swelling of gels have mainly been made under no
external stress field. Recently, an interesting phenomenon for the swelling of
gels under a constant uniaxial strain has been reported’®. When a constant
uniaxial strain is imposed on an equilibrated swollen gel in solvent, the gel
swells further, and the sustaining stress is simultaneously reduced to a certain
level. Tthe times characteristic of the induced swelling and of the resultant
stress relaxation agree with each other. These results mean that the further
swelling is induced by an external strain or stress, and causes the mechanical
relaxation. The magnitude and the kinetics of further swelling and
mechanical relaxation is expected to strongly depend on deformation modes:
for example, equibiaxial, and strip-biaxial deformations etc.. However, the
effects of deformation modes on further swelling and mechanical relaxation
behavior have not yet been clarified.

The strain-induced swelling suggests that for a polymer gel deformed in
solvent p is essentially a time-dependent quantitiy. Poisson's ratio is generally
defined under a uniaxial deformation by the ratio of the strains parallel and

perpendicular to stretching direction (g and g, , respectively):

- &L
p=-4 (1.13)

The strain-induced swelling makes ¢, time-dependent, which means that u is
time-dependent. The swelling causes the increase in the width of deformed

gels, resulting in the decrease of u. If elongation is made fast so that the



strain-induced swelling would be negligible, we will get u close to 1/2,
reflecting the incompressibility of gel itself. On the other hand, when the
time scale of extension is much longer than the characteristic time for
swelling (i.e., the strain-induced swelling is equilibrated), u is dominantly
determined by the strain-induced swelling. Hereafter, we call the former and
latter w the initial Poisson's ratio (u,) and the equilibrium Poisson's ratio
(1), Tespectively. The value of u,, was theoretically evaluated to be 1/6,”®
which was found to agree well with the experimental results.”” In the time
scale between the two extreme cases, p is time-dependent, and has an
intermediate value between u, and .. The time-dependent Poisson's ratio is
one of the unique properties of polymer gels, but there have been no
quantitative studies on the time dependence of u of polymer gels.

The elastic properties of polymer network systems have mainly been
studied in either preparation or equilibrium swollen state. On the other hand,

there are several studies®>80-82

on the elasticity of deswollen polymer
networks. The "deswollen polymer networks" mentioned here are dry
networks prepared by removing solvent from networks crosslinked in
solution. We here treat a deswollen network whose constituent polymer has a
glass transition temperature much lower than the room temperature. This
deswollen (dry) networks reveal rubber elasticity. The structure and the
elasticity of deswollen networks are still an unsettled subject in the physics of

rubber elasticity.3104

The deswelling process is accompanied by the
reduction of the dimension of network chains due to the volume decrease of
material. The contraction of network chains on deswelling has often been
called supercoiling. Supercoiled chains are assumed to have a contracted
conformation in comparison with Gaussian chains. Hence, the structure and

the mechanical properties of deswollen networks are expected to be much



different from those of the networks crosslinked in the bulk state, although
both of them are dry networks. However, the details on the conformation of
supercoiled chains and the effects of supercoiling on the mechanical
properties of deswollen networks are unclear at present. In the earlier
studies®®2, no attention to the effects of supercoiling on the elasticity of
networks was paid, and the deswollen networks were treated similarly to the
networks crosslinked in the bulk state. Another topic for deswelling is that a
deswollen network, which are prepared at a low concentration, can exhibit a
remarkable extensibility relative to conventional elastomers.””  This
expectation is based on the two reasons: The amount of trapped entanglement
which 1s one of the origins limiting extensibility, is considerably reduced by
crosslinking at a low concentration. The end-to-end distance of network
chains in undeformed state is decreased by deswelling. However, noticeable
extensibility of deswollen polymer networks has not yet been reported.
The main aims in this study are summarized as follows:

1) To estabish how to measure Poisson's ratio of polymer gels,

and to elucidate the time dependece of Poisson's ratio originating from

strain-induced swelling
2) To clarify the origin of the characteristic behavior of the stress-strain

relations at small deformations for real elastomers
3) To establish the theoretical description for the elasticity and

thermodynamics of the swelling for polymer networks
4) To clarify the effect of supercoiling on the elasticity of deswollen

polymer networks

In this chapter, the motive of this thesis has been mentioned. Some

current problems about the swelling and elastic properties of polymer



network systems have been described together with the historical background
of this research field. The contents of this thesis are as follows:

In Chapter 2, the values of initial Poisson's ratio w, of poly(viny!
alcohol) gels are measured. The dependence of u, on the swelling solvents
and the degree of crystallinity is investigated.

In Chapter 3, the dependence of Poisson's ratio of gels, when elongated
in solvent, on the experimental time scale is theoretically and numerically
investigated. The degree of swelling and mechanical relaxation induced by an
external stress or strain under various deformation modes are calculated from
the thermodynamics for the swelling of gels under constraints. The processes
of swelling and mechanical relaxation are simulated on the basis of the
kinetics of swelling for constrained gels.

In Chapter 4, the stress-strain behavior of segmented polyurethaneureas
(SPUs) under pure shear deformation is analyzed using the value of u,
obtained experimentally. The data of stress-strain relations for various

3334 are re-

rubber vulcanizates, which were reported in earlier studies,
analyzed using the experimental values of u,. The theoretical values of
aWiol; (i=1,2,3) at zero strain limit are derived from the infinitesimal
elasticity theory taking the compressibility into account, and the theoretical
predictions are compared with the experimental results for the SPUs and the
four types of rubber vulcanizates.

In Chapters 5 and 6, degree of equilibrium swelling and elastic modulus
of polysiloxane networks crosslinked in solution are investi gated as a function
of polymer concentration at crosslinking. Two types of polysiloxane
networks are employed in order to elucidate the effect of trapped

entanglement on elasticity. One 1is prepared by end-linking

poly(dimethylsiloxane) with high molecular weight which is entangled in the



uncrosslinked state (Chapter 5). The other is made by end-linking
oligo(dimethylsiloxane) with low molecular weight which is not entangled in
the uncrosslinked state (Chapter 6). The experimental results obtained in
Chapters 5 and 6 are compared with the predictions by the c* theorem and the
affine model regarding preparation concentration as the reference state.

In Chapter 7, initial Young's modulus and stress-strain relations of
deswollen polydimethylsiloxane networks are investigated aé a function of
polymer concentration at crosslinking. The details of supercoiled structure
are estimated from the mechanical properties of deswollen networks. The
remarkable extensibility of the deswollen polydimethylsiloxane network,
which is prepared at a low concentration, is both experimentally and

theoretically demonstrated.
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Chapter 2
Effects of Swelling Solvent and Degree of Crystallinity on

Initial Poisson's Ratio of Poly(Vinyl Alcohol) Gels

2.1 Introduction

As mentioned in Chapter 1, Poisson's ratio (u) of polymer gels
deformed in solvent is essentially a time-dependent quantity due to the strain-
induced swelling. Two kinds of limiting values of w are defined as initial
Poisson's ratio (u,) and equilibrium Poisson's ratio (u,) according to the two
limits of the short and long time scales. If a gels is elongated fast so that the
strain-induced swelling would be negligible, we obtain u,. The values of u,
are equivalent to those obtained by experiments in air, even if the elongation
is made in solvent. The values of yu, reflect mechanical properties of the gel
itself. In this chapter, yu, is exclusively discussed. Most of conventional
extensional experiments, which are made under a constant crosshead speed,
correspond to this situation, because the process of strain-induced swelling is
very slow. When the time scale of experiments is comparable to the
characteristic time of strain-induced swelling, the effect of the strain-induced
swelling is significant. We treat this case in Chapter 3.

- Studies on the mechanical properties of polymer gels such as stress-
strain relations and elastic moduli have been performed in air extensively.!*
However, the precise measuments on u, of polymer gels have not been made
yet, in spite of its importance. The values of u, for polymeric materials
reflect the flexibility of the constituent polymer chains. For example, rubber-
like materials show u, close to 0.5,>7 but u, of glassy polymers is much
lower than that of rubbers; p, of glassy polystyrenes is reported to be 0.33.%

The flexibility of network chains of polymer gels is greatly influenced by the
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solubility of the constituent polymer in a swelling solvent. The flexibility of
network chains in the poly(vinyl alcohol) (PVA) gels of which crosslinks are
microcrystallines is strongly dependent on the degree of crystallinity as well
as the swelling solvents. Actually, stress-strain relations and initial Young's
moduli of PVA gels were affected by the solvents used for swelling and the

annealing temperatures.’+*

However, the effects of these factors on u, have
not been investigated yet.

Measurement of u, is also important to examine the true stress-strain
relations, because the evaluation for the cross-section of deformed samples in
process of elongation needs the value of u,. All the past studies have a priori
assumed the incompressibility of materials (¢,=0.5) for the calculation of true
stress.

In this chapter, we evaluate y, from the measurement of dimensional
changes of PVA gels during uniaxial elongation. We investigate p, for the
three types of gels: PVA gels swollen in a good solvent (a mixture of water
and dimethylsulfoxide (DMSQO)), PVA gels swollen in a poor solvent
(ethanol), and PVA hydrogels swollen in water which are prepared by
annealing the PVA gels. The dependence of u, on the polymer content and
initial strain rate is investigated for the PVA gels swollen in the mixed
solvent. The annealing temperature dependence of u, is discussed for PVA
hydrogels. Finally, we show the true stress-strain relations of the gels using

the experimental values of u,.

2.2 Theoretical Background
In order to describe the deformation of gel samples, we set 3-
dimensional Cartesian coordinates as shown in Fig. 2-1. When a sample is

extended in the x-direction, the sample dimension in the x-direction is



Figurre'- 2-1. “Schematic representation of the sample before and after
deformation: (A) Before; (B) after.




increased, and the dimensions in the y- and z-directions are reduced in most
cases. In this deformation, the deformation gradient tensor has only the
diagonal components. Each component (A;, A», A3) of diagonal part can be

written as follows.

x y 2
11=x—0, Az=%, A3=gg (2.1)

Here, xp, vo and z, are the initial dimensions, and x, y and z are those after
extension in each direction. y and z can be time (f) dependent quantity.
Hereafter, we deal with the limiting values of y and z at r—=0. The Finger-
type deformation gradient tensor (F ~!') can be written as follows.” For

isotropic materials, A> = A3.
AM00
010
00A

Fl= (2.2)

A generalized definition for Poisson's ratio u is given by!®

Ay = A H (2.3)
When the deformation is applied to the sample, the increase of volume is
expressed by

detf(F ~') = A, 72+l (2.4)
It can be easily shown from Eq. (2.4) that u is equal to 0.5, when the material
is incompressible (det(F ~') = 1). The cross-sectional area (S) perpendicular
to the direction of extension is given by

S = SpA~* (2.5)
Here, S; is the initial value which is yoZo. Under a uniaxial elongation, all the
components except the xx one of stress tensor (o) are equal to zero. The true
stress (o) is written by

O = 0Ocx = (o-xx)EA'lzy (26)



Here, (0xx)g is the xx component of the engineering stress tensor (og). When
the specimen is extended in x-direction with a constant speed of v, Hencky

strain (&) in x-direction is defined by '!

e=1In Ay 2.7)
The initial rate of strain (&) can be given by

. Vv

to=3 - (2.8)

2.3 Experimental

2.3.1 Gel Samples
The PVA used in this study was supplied by Unitika Co., Japan. The

degree of polymerization was 1700, and the degree of saponification was 99.5
mol%. The solvent used was a mixture (D/W) of DMSO and water (4:1 by
weight). PVA was dissolved into the solvent at 105°C . The hot solution was
casted into 6 x 6 x 20 mm metal mold. Three types of gels were prepared.
(1) The gel sample-coded as PVA GEL (D/W) was prepared by cooling the
solution to -20°C and then maintaining in a freezer for 24h. (2) The gel
sample-coded as PVA GEL (EtOH) was obtained from PVA GEL (D/W) by
exchanging the mixed solvent for ethanol. (3) In order to obtain PVA
hydrogel samples which were coded as PVA HYDROGEL, PVA GEL(EtOH)
were dried in a vacuum oven at 30°C, and then annealed in a oil bath for 1h.
The annealing temperature was designated by T,, which were 100, 105, 110
and 115°C, as shown in Table 2-1, in which all the experimental data obtained
in this study are tabulated. PVA HYDROGEL was finally obtained by
immersing the annealed gel in water until the equilibrium swelling was

achieved.



Table 2-1. Polymer Concentration (c), Crosshead Speed (v), the Constant
of Eq. (2-9) (k), Initial Poisson's Ratio (i) and Initial Young's Modulus (E,)
for PVA GEL (D/W), PVA GEL (EtOH) and PVA HYDROGEL

c (kg/m3) v (mm/min) k U E, (Pa)
PVA GEL (D/W)
77.3 30 0.99 0.474+0.006 5.8x10%
111 0.5 1.18 0.455:0.003 1.3x10°
111 3 1.05 0.453+£0.002 1.6x10°
111 30 1.07 0.472+0.004 1.2x10°
111 100 1.04 0.463+0.004 1.4x10°
111 300 1.10  0.456+0.005 1.1x10°
145 30 1.06 0.470+0.003 3.1x10°
in air 111 30 0.99 0.485+0.005 1.1x10°
PVA GEL (EtOH)
413 30 1.10  0.338+0.003  4.0x107
PVA HY DROGEL
Ta=100°C 542 30 1.18 0.429+0.002 4.5x10°
To=105°C 617 30 1.02  0.430+0.002 6.1x10°
Ta=110°C 723 30 1.04 0.447+0.003  1.0x107

To=115°C 798 30 1.05  0.426+0.003  2.1x10’




2.3.2 Measurements

Uniaxial elongation of PVA gels was performed in solvent by using a
Orientec RTM-250 tensile tester with a specially designed solvent bath. The
extension processes of the samples were recorded with video camera. The
nominal extension rate (A;) was determined by the distance between the
sample cramps. A; was determined by measuring the distance between the
two marked points with relatively short distance (~3mm) in the central region
of sample. The distance was measured on the monitor screen. By comparing
A; with Aa, we confirmed that (A;-1) is proportional to (A;-1) as shown by
the following equation with using a constant k=1 :

A=l = k(Aa-1) (2.9)
Figure 2-2 shows the plots of A; vs. A3 for PVA GEL(D/W) with ¢=111kg/m3
and v=30mm/min. As can be seen from this figure, all data points fall on a
straight line. The slope of the straight line cofresponds to the value of £ in
Eq. (2.9). The value of £ determined by least-square method was 1.07. For
the other samples, A; and A; shows the linear relation similar to those for
PVA GEL(D/W) with c=111kg/m3 and v=30mm/min. The values of k for the
other samples are also listed in Table 2-1. As is seen from Table 2-1, the
experimental values of £ are a little scattered, but they are slightly larger than
unity except PVA GEL(D/W) with 6577.3kg/m3 and that with c=111kg/m3
measured in air. The larger value of k£ than unity suggests that the central
region of the specimen is elongated to larger extent than the edges. This non-
uniform elongation is due to the effect of cramps; the edge part of sample is
collapsed at cramps. When deformation is applied to the system, the extent of
elongation at the collapsed edges would be smaller than that at the central
region. The value k=0.99 for the two samples is close to unity and indicates

that the effect of cramps is small.
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Figure 2-2. Plots of actual extension rate (A;) versus nominal extension

rate(Aa) for PVAGEL(D/W) at ¢=111kg/m3, v=30mm/min.



A, was determined by measuring the width at a guide line position on
the monitor screen. The true stress (o) - strain (&) relations of the various
PVA gels were obtained using the experimental values of u,.

It is well known that PVA gels display aging effects. To avoid the
effects, all the experiments in this study were completed within 2 hours. This

will be discussed later.

2.4 Results and Discussion
2.4.1 Effect of Elongation Speed on u,

Figure 2-3 shows the plots of —log A, vs. log A, for PVA GEL(D/W)
with ¢c=111kg/m3 and v=30mm/min. The relation between -log A, and log A,
is expressed by a straight line. The slope determined by least-square method
was 0.472+0.004. The standard deviation, 0.004 in this case, stands for the
scattering of data points in the ﬂgure.‘ As is evident from Eq. (2.3), the slope
of the line corresponds to u, of the sample. The value of u, for the samples
studied are listed in Table 2-1. There was a linear relation between -log A,
and log A, in all specimens examined in this study, suggesting that u, of each
sample is constant over a wide range of strain examined here.

The value of u, measured at various v for PVA GEL(D/W) at
c=111kg/m3 in solvent and in air are tabulated in Table 2-1. We plotted u,
against £, calculated using v. The plots are shown in Fig. 2-4. The values of
Y, for the samples stretched in solvent show almost the same value in &
range of 4.17x107% s7! to 2.50x107! s7!. This means that u, is almost
constant in the time scales used for the experiments. The experimental time
scale estimated by 1/¢,, is ranging from 4.0x10" s to 2.4x10* 5. As is seen
from Fig. 2-4, the value of u, estimated by extension in air is a little larger

than, but almost the same as that in solvent. This suggests that no solvent flow
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Figure 2-3. Double logarithmic plots of A, versus A, for PVAGEL(D/W)

at c=111kg/m3, v=30mm/min.
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Figure 2-4. Poisson's ratio (u,) plotted against the logarithm of the initial
rate of strain (&,) for PVAGEL(D/W) at c=111kg/m3. Symbols: (0)

extension in solvent; (&) extension in air.
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between inside and outside of gel occur in the time scale of the experiments in
this study.

It was suggested!>!? that a gel swells because of the increased osmotic
pressure due to the stretching in the long time scale, i.e., the strain-induced
swelling. This condition is obtained only when 1/¢, is much larger than the
characteristic time for the diffusion of network (1), which is order of y*/D
where D 1s the diffusion constant for the network. The constant D for PVA
GEL(D/W) is unknown at present, but D for polyacrylamide-water system
was reported to be the order of 107cm?/s.!*!* Using this value for PVA
GEL(D/W), 1 is roughly estimated as 10° s, which is much larger than the
experimental time scale in this study. This estimation means that the strain-
induced swelling is negligible in the elongational experiments in this study. In
order to satisfy the osmotic equili'brium condition, the sample should be
elongated at €, less than the order of 10¢s!, where the equilibrium Poisson's
ratio U, is obtained. However, such a slow extensional experiment is difficult
to be performed for PVA GEL(D/W) because of aging of the samples. For
example, we have observed a stress increase after about 3 hours in the stress
relaxation experiment at the fixed strain of 0.05. The increase of stress is due
to the aging effects and/or the crystallization caused by orientation. This fact
implies that a very slow elongational experiment inevitably involves the
structural change in PVA GEL(D/W). On the other hand, polyacrylamide
gels in water under a constant uniaxial strain, in which no structural change in
the gel occurs in the long time-scale experiments, was repbrted to show the

13

increase in the width of sample at the long times.”> As mentioned before,

Poisson's ratio obtained under this condition is u,, which differs from u,.



2.4.2 Effect of Polymer Concentration and Degree of Crystallinity on w,

The values of u, measured at v=30mm/min (£,=2.50x107! s7!) were
plotted against the polymer concentration ¢ in Fig. 2-5. The value of u, of
PVA GEL (D/W) is independent of ¢ in the range from 75kg/m3 to 145kg/m?3.
The log o - log £ curves for PVA GEL(D/W) in the ¢ range examined here
do not show the shoulder, and the mechanical behavior resembles that of
crosslinked rubbers as also reported before.* The crosslinking density
increases with increasing c. The result shown in Fig. 2-5 indicates that the
crosslinking density has little effect on u, of PVA GEL(D/W) within the ¢
range examined here.

It was reported® that the swelling and mechanical properties of PVA
hydrogels are controlled mainly by T, in course of the hydrogel preparation
process. PVA HYDROGEL shows a shoulder on the log o - log € curve, and
the shoulder is closely related to a bréakdown process of the microcrystalline
domains which behave as crosslink points. The shoulder becomes pronounced
as T, increases, which originates from the increase in the degree of
crystallinity. In this study, the same behavior was also observed: The stress-
strain relation is linear at small strains and becomes nonlinear in large strain
range. All the points in the plot of ~log A, vs. log A, for all specimens of
PVA HYDROGEL fall on a straight line over the entire ¢ range studied here.
This clearly suggests that u, value for PVA HYDROGEL is kept constant
through the whole extension process, regardless of the breakdown of
microcrystalline domains. This experimental fact is a little surprising,
because it implies that the structural change in the gel has no effect on p,,.

As can be seen from Table 2-1 and Fig. 2-5, the values of u, for PVA
HYDROGEL at different T; are almost identical, suggesting that the
crystallinity has little influence upon u, for PVA HYDROGEL within the T,
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Figure 2-5. Poisson's ratio (u,) plotted against the logarithm of the
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range investigated here. The y, values for PVA HYDROGEL were slightly
lower than those for PVA GEL(D/W). The difference might be due to the
difference in the structure of gel network. Naito reported'* that water as well
as the mixed solvent is a good solvent for PVA. This means that the chains
between the crosslinking domains in PVA HYDROGEL and PVA GEL(D/W)
are also flexible. The microcrystalline domains in PVA GEL (D/W) which
has never been annealed are relatively small.* On the other hand, PVA
HYDROGEL has the microcrystalline domains with finite sizes formed by
annealing.®> The flexibility of amorphous chains for PVA HYDROGEL
should be restricted to some extent near the crosslinking domains. The less
flexibility of polymer chains leads to the creation of void in the network
structure during elongational deformation. The difference in the degree of
flexibility of PVA chains originating from the different size of the
microcrystalline domains might explain why u, of PYA HYDROGEL is

slightly lower than that of PVA GEL(D/W).

2.4.3 Effect of Swelling Solvents on u,

The y, value of PVA GEL(EtOH) was evaluated to be 0.338, which is
much lower than those of PVA GEL(D/W) and PVA HYDROGEL as shown
in Fig. 2-5. Ethanol is é poor solvent for PVA. PVA GEL(EtOH) is opaque
resulting from a phase-separated structure, which consists of the PVA-rich
phase and solvent-rich phase.* Most of PVA chains exist in PVA-rich phase.
The glass transition temperature (7,) of PVA has been reported'® to be 85°C.
The PV A chains in PVA GEL(EtOH) are expected to be in glassy state at the
measuring temperature (25°C). The flexibility of PVA chains in PVA
GEL(EtOH) is much lower than that in PVA GEL (D/W) and PVA



HYDROGEL. The low value u,=0.338 obtained for PVA GEL(EtOH) is

analogous to the value ©,=0.33 of a glassy polystyrene.®

2.4.4 True Stress-Strain Relations of PVA Gels

Figure 2-6 shows the double logarithmic plots of o - ¢ relation for PVA
GEL (D/W) with c=111kg/m3 and v=30mm/min in which o was calculated
with ©,=0.472 obtained experimentally. The o - € relation calculated with
1,=0.5 is also shown in the figure. The values of o calculated with p,=0.5
are always larger than those with u,<0.5, because the calculation with u,=0.5
under-estimates the cross-section of the elongated samples. The differences
between the two curves are found to be small, though the difference becomes
larger as the strain increases. The ratio of o calculated with u,=0.472 to that
with 1,=0.5 is 1.08 at the breaking point (e=1.41).

Figure 2-7 shows log o - log € curves for PVA GEL(D/W) with
c=111kg/m3 at various v. The true stress o for each sample was calculated
with u, obtained experimentally. The curves are shifted vertically by a
indicated in the figure in order to prevent from overlaps. The values of E,
for PVA GEL(D/W) at different v are summarized in Table 2-1. The shape
of all the curves are identical, and no shoulder is observed. E; is independent
of v as shown in Table 2-1. This suggests that all curves can be superposed
by vertical shifts. The stress relaxation during extension was not observed
for PVA GEL(D/W) in ¢, range from 4.17x107%! to 2.50x107! s~!. On the
other hand, the shape of log o - log € curve for PVA HYDROGEL was
changed depending on £, ranging from 1.67x1073 s™! to 5.00x10°! s7!23
which was closely related with the stress relaxation in course of extension.

No indication of stress relaxation during the elongation of PVA GEL (D/W)
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Figure 2-6. Double logarithmic plots of stress (o) versus strain (g) for

PVA GEL(D/W) at c=111kg/m3. The solid line is for ©,=0.472; dashed line
for u,=0.5.
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Figure 2-7. Double logarithmic plots of stress (o) versus strain (g) for

PVA GEL(D/W) at ¢=111kg/m3. Numerals in the figure indicate the

crosshead speed (v).
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Figure 2-8. Double logarithmic plots of stress (o) versus strain (g) for

PVA GEL(EtOH) at c=413kg/m3, v=30mm/min. The solid line is for
1,=0.338; dashed line for u=0.5.



suggest that the size of microcrystalline domains is small, which prevents the
stress concentration on the crosslinking domains.

In Fig. 2-8, plots of log o vs. log £ for PVA GEL(EtOH) at
c=413kg/m3 and v=30mm/min are shown. The concentration ¢ was
determined by measuring the weight of a equilibrium deswollen gel in
ethanol. The concentration ¢, is the polymer concentration at which PVA was
initially dissolved in the mixed solvent. The true stress o is calculated by
using u,=0.338 obtained in this study. For a comparison, the curve obtained
by assuming p,=0.5 is also shown by a dashed line. The value of E, of PVA
GEL(EtOH) is listed in Table 2-1. True o values calculated with ©,=0.338 is
lower than that with u,=0.5 in the high & region. At the breaking
point(e=1.59), the ratio of o for u,=0.338 to that for u,=0.5 is 1.67. The
curve calculated with u©,=0.338 shows steeper upturn in high € region,
compared with that with g ,=0.5. The shoulder in the logo-loge curve is
attributed to the breakdown process of the PV A-rich phase in the two-phase

structure.?

2.5 Conclusions

The values of Poisson's ratio p, for the three types of PVA gels were
obtained by uniaxial elongation experiments. The values for PVA géls
swollen in a mixed solvent of DMSQO and water, which are good solvents for
PVA, were close to 0.5, independently of polymer concentration. The
annealed PVA gels swollen in water, which have the crosslinking domains in
finite size, showed the slightly lower value of u, than the unannealed ones.
On the other hand, wu, of PVA gels in ethanol, which is a poor solvent, was
much lower than those of PVA gels swollen in good solvents. The difference

in u, value between those gel samples was explained by the degree of



flexibility of PVA chains. There was a linear relation between —log A; and
log A, over a wide range of £ for each sample, indicating that u, is kept
constant throughout the whole extension process. It was found that u, is time-
independent in the relatively short time region, in which no flow of solvent
occurs. The true stress-strain curve for each gel was obtained using the

experimental value of w,,.



References

1.

Nishinari, K., Watase, M., Ogino, K. and Nambu, M., Polym. Commun.,
24, 345 (1983).

. Cha, W.-1., Hyon, S.-H. and lkada, Y., Macromol. Chem., 193, 1913

(1992).

. Takigawa, T., Kashihara, H. and Masuda, T., Polym. Buil., 24, 613

(1990).

. Takigawa, T., Kashihara, H., Urayama, K. and Masuda, T., Polymer, 33

2335 (1992).

. Wood, L. A. and Martin, G. M., Rubber Chem. Technol., 37, 850

(1964).

6. Holownia, B. P. Rubber Chem. Technol., 48, 246 (1975).

Kawabata? S., Matsuda, M., Tei, K. and Kawai, H., Macromolecules, 14,
154 (1981).

8. Badger, R. M. and Blanker, R. H., J. Phys. Chem., 53, 1056 (1549).
9. Bird, R. B., Armstrong, R. C. and Hassager, O., "Dynamics of Polymeric

10.

11.
12.
13.

14.
15.

Liquids", Vol.1, John Wiley & Sons, New York, 1977,

Yamamoto, M., "Buttai no henkeigaku (Deformation Theory of Bodies)",
Seibundoshinkosha, Tokyo, 1972.

Kamei, E. and Onogi, S. Appl. Polym. Symp., 27, 19 (1975).

Alexander, S. and Rabin, Y., J. Phys.: Condens. Matter, 2, 49 (1990).
Takigawa, T., Urayama, K., Morino Y. and Masuda, T., Polym. J., 25,
929 (1993). |

Tanaka, T. and Filimore, D. J., J. Chem. Phys., 70, 1214 (1979).

Naito, R., Kobunshikagaku, 15, 597 (1958).



Chapter 3
Theoretical Studies on Time-Depedent Poisson's Ratio and

Mechanical Relaxation of Swollen Networks

3.1 Introduction

Studies on the mechanical properties of polymer gels have been
extensively performed by many researchers. Most of them have been
concerned with the mechanical properties of the gel itself. In other words,
the mechanical tests have been performed in air.!# It was recently reported®
that an applied constant strain induces a further swelling of equilibrium
swollen gels in solvent, and the stress relaxation is caused by the strain-
induced swelling. The strain-induced swelling originates from the change of
the equilibrium state due to the application of external strain (stress), and the
degree of the strain-induced swelling is controlled by the thermodynamics of
gel systems. Then, the mechanical behavior of gels in solvent is much more
complicated than that in air, because the results obtained by experiments in
solvent will be dependent on the thermodynamic properties as well as the
mechanical properties of the gel system. The mechanical behavior in solvent
is strongly affected by a characteristic time for swelling governed by the
diffusional motion. When the experimental time scale is much shorter than
the characteristic time for swelling, the results obtained are equivalent to
those in the experiments in air, i.e., the thermodynamic effect (the strain-
induced swelling) is negligible. Actually, most of the past studies on the
mechanical properties of gels have treated this situation. The results shown in
Chapter 2 are also obtained in this situation. On the other hand, if the
experimental time scale is much longer than the characteristic time for

swelling, the results will reflect the thermodynamic properties of the gel



system comprising of the polymer network and the surrounding solvent. In
the time scale between the two extreme cases, gels will show the complicated
mechanical behavior which is the combination of both the mechanical
properties of gel itself and the thermodynamic ones of gel system. One of the
physical quantities, which embody this complicated situation, is the time (/)
-dependent Poisson's ratio (u). As described in Chapter 2, the initial
Poisson's ratio u, of gels in good solvents was close to 1/2 meaning
incompressible. On the other hand, the value of u at thermodynamic
equilibrium, i.e., the equilibrium Poisson's ratio (u,,), was reported to be ca.
1/6 for polyacrylamide gels in water (good solvent).> When the time scale of
extension 1s comparable to that of swelling, the value of ¢ has an intermediate
between u, and u,. In this chapter, the f-dependence of u for gels in solvent
during and after elongation is theoretically and numerically investigated.

The stress relaxation caused by the strain-induced swelling was both
theoretically and experimentally investigated for uniaxially stretched gels.>®
The degree and process of the stress relaxation in the experiments were well
described by a theory based on the thermodynamics and the kinetics for the
swelling of constrained gels. The degree and process of the strain-induced
swelling and the mechanical relaxation are expected to depend strongly on
deformation modes, but the details are unknown at present. In this chapfer,
we investigate theoretically the strain-induced swelling and the resulting
mechanical relaxation (stress relaxation and creep) of gels in solvent under a
constant strain or stress applied by the three types of deformation modes;
equibiaxial, strip-biaxial(pure shear) and uniaxial streching. The magnitude
of the further swelling and mechanical relaxation are derived from the Flory-
type free energy for constrained gels. The kinetics of swelling and

mechanical relaxation is considered on the basis of the equation of motion for



polymer network and the constitutive equation of gels. We consider here a
thin disk-shaped gel in the case of biaxial deformation, and a long rod-shaped
gel for uniaxial deformation. The time dependence of the stress relaxation
and creep is calculated using the two methods different in the treatment of the
process of strain-induced swelling. One assumes the isotropic swelling
process (zero-th order approximation).”> The other considers the anisotropic
swelling process caused by the difference in the dimensionality of diffusion
(first order approximation).® Which of two methods describes the
experimental results more precisely is not clear at present due to the lJack of
experimental data. Therefore, we employ here these two methods.

In the next section, the basic equations on the theromodynamics and
kinetics for the swelling of constrained gels are described. From the basic
equations in Section 3-2, the ¢ dependence of u for a uniaxially stretched gel
in solvent during and after elongation is derived (Section 3-3). The
dependence of the equilibrium properties for constrained gels on deformation
modes is investigated, and the process of mechanical relaxation under each

deformation mode is also shown (Section 3-4 and 3-5).

3.2 Basic Equations of Gel Systems
3.2.1 Thermodynamics of Swelling of Gels under Various Constraints

In a Cartesian coordinates, we consider the uniaxial (in x-direction) and
biaxial deformation (in x- and y- direction) of an isotropic rectangular gel in
solvent, which swells at equilibrium in non-deformed state. The non-
deformed state is refered to as the reference state in this study. In Fig. 3-1
we show schematically the 3-dimensional Cartesian coordinates and the kinds

of deformations employed in this study. Using a free energy expression
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Figure 3-1. Schematic representation for the 3-dimensional coordinates and the types of the

deformations employed in this study.



similar to that of a uniaxially stretched gel proposed by Hirotsu ef al.,” we can

write the free energy (F) for a biaxially stretched gel as follows.
F=Fy + NekgT{In{1 — ¢)+ x ¢} + %NSkBT{ 3 a?-3- zn{vl)}
Q

=r,y,z

- ¥ filio{ai - 1) (3.1

i=x,y

where F, is the free energy of pure polymer and solvent, kg the Boltzmann
constant, T the absolute temperature, Ng the number of a solvent molecule, ¢

the polymer volume fraction, x the polymer-solvent interaction parameter,

N the number of active chains in the reference state, and f; the external
forces in the i-direction. The quantity, ¢;, is a principal ratio in the i-
direction, and axayo;=V/Vo=¢o/¢, where V and V, are respectively the
volumes in deformed and reference state, and ¢o is the value of ¢ in the
reference state. The shear modulus G, in the reference state is given by
Go=NckBT. We obtain the expression for the uniaxially stretched gels, if
fy=0 and ay=qg are used in Eq. (3.1). The osmotic stress (a7, i=x, y and z)
acting normally (inward) on the gel surface perpendicular to i-axis is defined

das

=1 (95-) (3.2)
&0 \d

Hereafter, we deal with the gels with ¢, «1, and also ¢ «1. At equilibrium,

x; =0 1s satisfied, i.e.,

kT . 1.V NkgT 1, K

T _V: (X - -27?502 + zayaz (Zax B O - QyOz =0 (338)
_ ksl LV  NekgTl 1.

my= Vg (X - 2}¢02 + Zazax (Zay h ay) B 87705 =0 (33b)
— &B_T. l\ v chBT _1_ _

-, = Ve (x - 2)¢02 + Daay az - az) =0 (3.3¢c)

Here, the quantities fy/a o, and Jy/oxa, correspond to the external stresses (o

and oy, respectively) exerted normally on the gel surface in the x- and y-



directions. Since E{;’&,,:o and m=0 are satisfied in the reference state

(ox=0ty=0z=1), we obtain

2¢00% 1
Ne="2- (52 (3.4)

From Eqgs. (3.3¢) and (3.4), we have

11 2a
V?' + V N axay - O (35)

When the strain is small, Eq. (3.5) is linearlized using the strain & (g=ai-1).

Then, we obtain the relation between &, & and g, in equilibrium as follows.

&+ &y + 5g=0 (3.6)
The linearlized expressions of o and o, for the biaxial deformation are given
by

~ 3 1

Oy :2G0 £x+-2'Go(sy+ £;) (3.7a)
and

~ 5 1

Oy ='2-Go Ey +§G0(£x+ €;) (3.7b)

The relation corresponding to Eq. (3.6) and the expression of o, for the
uniaxial deformation are obtained from Eqs. (3.6) and (3.7a) with g=¢,,

respectively.

3.2.2 Governing Equations for Small Volume Element of Gel

We focus here a small volume element of the gel, which keeps its
volume constant during the instantaneous deformation. This is equivalent to
the condition that initial Poisson's ratio (u,) of the element is 1/2. The stress-
and strain acting on the small element in the gel (s and u) are respectively
written by the sum of the external ones (§ and &) and those induced by the

osmotic swelling (sos and u") as



§=F + Sos (3.8)

and

u=u-+u' 3.9)

The expression of s.; was obtained by Tanaka et al.®” as

Sos = 2Go (u' — %‘ tr(u ) + Kos tr(u' — u')l (3.10)

Here, u'» corresponds to u' at equilibrium, I the unit tensor, K the osmotic
bulk modulus related to the osmotic pressure, and #r(u') means the trace of
u', ie., tr(u") = u'xx + Uy + u'p. The external stress s for an

incompressible material is described by the elasticity theory!© as follows.

LT

=2Gou +pl =2Go(u—u")y+pl (3.11)
where p is the internal pressure. It is clear from a thermodynamic
consideration that the observable stress in experiments is §. From the
incompressibility of the volume element,

tr(u)=tr(u —u") =0 (3.12)
holds at any f. This equation means that the volume of small volume element
is not changed by the external deformation. Equation (3.12) generates the
relation #r(u)=tr(u') implying that the volume change of small volume
element is caused only by the swelling. The strain tensor, # and u' are
defined by the corresponding displacement vectors v and v' as
ui=1/2(8vi/di+dv/dj) and w;'=1/2(3v;/di+dv;/dj). Here, v and v' are
specified in the reference (non-deformed) frame. Although we deal here with
the case of us=1/2, the constitutive equation corresponding to Eq. (3.11) for
the case of u,=1/2 is expressed by

§ =2Go (u—u') + (Ko—%"Go) tr(u —u")l (3.13)



where K, is the bulk modulus related to the compressibility of gel element
itself.

The vector v must obey the equation of motion shown by Tanaka et

al®® as

Cr=divs (3.14)

where C is the friction coefficient between the polymer network and solvent
molecule. The time dependence of u is obtained from Eq. (3.14). Although
the swelling kinetics can be described by Eq. (3.14), the phenomenon must be
written by the combination of s, and v' (or u') because the external

deformation does not affect the swelling. Then, we have

s %= div sos (3.15)

Equation (3.15) characterizes the time dependence of the strain-induced
swelling. The time dependence of § for the general deformation can be
determined by the set of Egs. (3.14) and (3.15).

It was shown that the equation of motion (Egs. (3.14) and (3.15)) is
generally separated into the two types of the diffusion equations, i.e., the
equations of the longitudinal and transverse modes.>® The diffusion equation

of the longitudinal mode for u is given by

8% tr(u) = DL V> tr(u) (3.16)

where Dy is the diffusion coefficient for the longitudinal mode and

Dy =(Kos+4/3Go)/C. The diffusion equation of the transverse mode for u is
given by

gfrot(v): D+ V2 rot(v) (3.17)



where Dy is the diffusion coefficient for the transverse mode and Dr=Go/C.
As is clear from the definition of Eqs. (3.16) and (3.17), the longitudinal
mode controls the volume change for the small volume elements, while the

transverse mode governs the shape change without the volume change.

3.2.3 Time Dependence of Strain-Induced Swelling

As described in the later sections, the time dependence of u, and the
process of the stress relaxation and creep are controled by the time
dependence of the strain-induced swelling (u'(7)). Here, we employ the two
methods (zero-th and first order approximation) in order to obtain u'(f). We
consider the thin rectangular disk of which thickness is much smaller than its
widths for the biaxial deformation, and the long rectangular rod whose widths

are much smaller than its height for the uniaxial deformation.

3.2.3.1 Zero-th Order Approximation. This approximation assumes the
isotropic process for the strain-induced swelling, irrespective of the gel
geometry. This assumption means that u'xx(f) = u'y(£) = u'z(H) = (1/3)tr(u’).
Accordingly, the time dependence of u' is equivalent to that of tr(u'). The
time dependence of fr(u') is obtained by solving Eq. (3.16) with the
appropriate initial and boundary conditions. For the biaxially stretched gels,
since the sizes in the stretching directions (x- and y-directions) are so long
compared to the thickness (in the z-direction), the diffusions in the x- and y-
directions are negligible. Then, Eq. (3.16) must be solved as the 1D (z-

direction) diffusion problem. The initial condition is given by

tr(u"y=0 at =0. (3.18)
The boundary condition can be written as follows.
tr(u’) = tr(u'w) at boundaries. (3.19)



Equation (3.19) means that the osmotic stress acting on the small element at
the boundaries is zero at any #(>0). The value of tr(u's) is determined by the
degree of swelling at cquilibrium, depending on the deformation mode, and
will be shown later. The solution of Eq. (3.16) satisfying the above

conditions 1s

odd L
tr(u') = Ir(u'm){2 Ay sin ZZ exp(— ki) + 1} (3.20)

Here, a; is the size of gel in the z-direction in the reference state, and A; and
k; are the constants given by A=-4/lx and k;=Dynl*/a’=F/7, where T is the
longest characteristic time of the longitudinal mode and [/ an odd integer.

In the case of uniaxial (x-direction) deformation, Eq. (3.16) can be
solved as a 2D diffusion problem because the diffusional motion in the x-
direction is negligible. The solution of Eq. (3.16) satisfying the Eqgs. (3.18)
and (3.19) for an uniaxially stretched gel is

o . m  nw
tr(u') = r(u'o){ > B sin ,—a—:t'y sin -2 exp(— kna ) + 1} 3:21)

mn
Here, a; is the size of gel in the y- and z-direction in the reference state, and
B, and k,, are B,,=16/mna*> and kp,=Dim(m*+n®/a*=(m*+n?)/21,

where m and n are odd integers.

3.2.3.2 First Order Approximation. Since the diffusions in the stretching
directions (x- and y- directions) can be assumed not to occur in the case of the

biaxial stretching, v ' of a rectangular gel can be assumed by

vx' = u'xx(2) x (3.22a)
vy' = Uu'y(2) y (3.22b)
vzn — vzl(z) (3.22C)



and u 'xx=u'yy holds. From Egs. (3.15) and (3.22a), the following equation is

obtained.

a | !

au xx = D Vguxx (3.23)
The initial condition of Eq. (3.23) is given by

u'yx =0 atr=0. - (3.24)

The boundary condition is expressed as follows.

U'sx = U'xxoo = é'rr(u 'w) at boundaries. (3.25)
Here, u'\xo corresponds to u'yx at t—. Equation (3.23) has the following

solution.

LI | s

t —_
Uxx =

u i 1
tr(u'm){}; Ajsin "z exp(~k'f) + 1} (3.26)

Here, k''=Dinl’/a? =l?/7r, where Tr is the longest characteristic time of the

transverse mode.

Since the diffusion in the x-direction is negligible, ¥ ' in the uniaxial (x-

direction) deformation is assumed by

v = u'xx(y,Z) X (3.27a)
vy =v'y(y,2) (3.27b)
V= ')(,2) (3.27¢)

The solution of Eq. (3.23) for the uniaxial deformation is written as follows.

C 1 P . mx . nm
U =3 tr(u'w){ mzn Bun in ==y sin "=z exp(=k'mn 1) + 1} (3.28

where k 'y,=DrX(m?+n?)a? =(m?*+n2)/2 .



3.3 Time Dependence of Poisson's Ratio of Gels

Here, we derive the ¢ dependence of u for the uniaxially stretched gels
in solvent during and after elongation at a constant strain rate (¢). The
global value of Poisson's ratio (u) for the uniaxially stretched gel is defined
using the global strain £ as

=- % (3.29)
where &, and &, are the global strains paralell and perpendicular to the

stretching direction, respectively.

3.3.1 Two Types of Limiting Values of Poisson's Ratio

Poisson's ratio p of gels is a r-dependent quantity, and the two limiting
values of p (U, and pe) are defined corresponding to the two limiting case.
One is the case where the strain-induced swelling does not occur (+—0). The
other is the case where the equilibrium of the strain-induced swelling is

achieved (#—). The initial Poisson's ratio u, reflects the compressibility of

gel itself, and is related to the other elastic constants as'®
_ 3K, -2G (3.30
= 23K, + G) )

where K, is the bulk modulus of gel itself, and G is the shear modulus. The
equilibrium Poisson's ratio . reflects the osmotic compressibility of the gel
system comprising of the polymer network and the surrounding solvent, and

has the following relation:

_ 3Kos - 2G | (3.31)
He = 2Bk, + G)

where K, is the osmotic bulk modulus for the gel system. Since G in Eqgs.
(3.30) and (3.31) is considered to be same, the qualitative difference between

Mo and po is equivalent to that between K, and K.



3.3.2 Time-Dependent Poisson's Ratio

The each component of u in process of uniaxial (x-directional)
elongation is obtained from Eq. (3.9) as follows.

Usx = E1 (3.32a)

Upy = Uz = —UoEL + 'é-tr(u " (3.32b)
Here, u = €f, and u' = (1/3)tr(u") were used. The ¢ dependence of tr(u') is
given by Eq. (3.21). The global strain g, is obtained by averaging uyy over

the y-z plane,

ds’ ds N
) =PI f

0]‘d?( UoEl + 1Ir(u'))

(3.33)
where dS'=(1+uyy+u,)dS and dS=dydz. The strain €,.(f) can be also written
on the basis of the Boltzmann superposition principle with employing a

response function (m(#-1")) and ¢ as
t“

g (1) = J m(t-t") & dt' (3.34)

and g is expressed as
t"

g(t) = J g dt' (3.35)
The time t" is the time interval in which strain is imposed, and #"=¢
corresponds to the elongational process, while f"=f,=const to the swelling
process after the completion of the imposition of x-directional strain. The
explicit form of m(t-t") is given by comparing Eq. (3.34) with Eqs. (3.21)
and (3.33) as follows

°‘“ —32(ty — o)
(et dyJ & m n mn’
xsin%’!y sin —ar’—‘z expl—k b (t = 1)] = 2t} (3.36)



3.4 Stress Relaxation of Gels
3.4.]1 Equibiaxial Case

Let us discuss the stress relaxation of the gel stretched globally with
ex=8y=& at 1=0. The quantity, &, is the global strain, while u, u' and & are
local strains defined for small volume element. In the case of the equibiaxial
deformation (U =uyy=§,), we have u,—u',=-2(es-u'sx) from the relation

tr(it)=0. From Eq. (3.11) and 5=0, 5; (=§) can be written by

Sx = 8y = 6Go (& — 1) (3.37)
The quantity, s, is the local stress related to the small volume element. The 1
dependence of global (average) external stress, o,(f)(=0(7), can be
expressed by

; S dz' [5 dz 6Go o
gx(t):ffxd2|4 Ei-’. 7 4= arOJ- (Eo—ulxx) dZ (338)

where dz'=(1+u,)dz. In the O-th order approximation, u'yy is substituted by
(1/3)tr(u'), which is represented by Eq. (3.20), while in the Ist order
approximation, Eq. (3.26) is applied to u'.

3.4.2 Strip-Biaxial Case
Let us consider here the stress relaxation of the gel stretched with &=¢,
and &=0 at t=0. From Eq. (3.12) and uyy=0, we get u,—u'p=—(€-2U xx)-

From Eq. (3.11) and §,=0, 5¢ and $y can be respectively written by

- 3 -
sx = 4G (g — 5 U 'w) and Sy =2Goe (& — 3u'xx) (3.39)

The global external stress, dx(f) and &,(f), can be obtained in the same way
as Eq. (3.38). In the 0-th and 1st order approximations, the time dependence
of u 'y is calculated by using Egs. (3.20) and (3.26), respectively.



3.4.3 Uniaxial Case

The uniaxially stretched gel with =g, at =0 is discussed here. From
Eq. (3.12), we get uy—u'yy=—(1/2)(e;~u'xx). From Eq. (3.11) and 5,=5,=0, 5

can be written by
Sy = 3Go (&5 — U'xx) (3.40)
The quantity, G«(f), can be expressed by

3G0 “f
s =P et PP TR oy [ G4

Equations (3.21) and (3.28) is used for the time dependence of u '« in the 0-th

and 1st order approximations, respectively.

3.5 Creep Behavior of Gels
3.5.1 Equibiaxial Case

We now discuss the creep behavior of the gel under constant stresses of
Ox=0y=0, at 1>0. The equation tr(u)=0 gives 2uxxo+u,=0, where uxyo and
U, correspond to Uy and uz at t=0, respectively. The ¢ dependent local

strains, uxx(£)(=uyy(1)) and u,(#) can be expressed from Eq. (3.9) as follows.
Uxx(D) = Uy (F) = Uxxo + U'xx (3.42a)

Up(1) = = 2Uxxo + U'y (3.42b)
The t dependent global (average) strain, &(f) (=gy(f)) and g(#) can be

expressed respectively as

ey <L pl gz [uah o1 C[(umwn) iz (3.432)
ey w2022 L J( Dtgnot ') d2 (3.43b)




In the O-th order approximation, u'yx and u',, are replaced by (1/3)tr(u"),
which is shown by Eq. (3.20). In the 1st order approximation, the time
dependence of u'sx has been given by Eq. (3.26), and u',, is given from Egs.
(3.20) and (3.26) by

'y =tr(u' ){OddA sinlﬂwax (—kr)—g(mA inZ . ki l}
Uy = = 2 ! a * p { 32 [smargexp(— I’)+3

(3.44)
Equation (3.44) shows that the time dependence of u', is governed by
longitudinal and transverse modes. It should be noted that in both the 0-th
and 1st order approximations, the time dependence of u,, in the stress
relaxation experiment where uyx (and uyy) is fixed is governed by only the

longitudinal mode, regardless of the deformation mode.

3.5.2 Strip-Biaxial Case

Let us discuss here the creep behavior of the gel under constant stress
Ox =0, holding &=0 at ~0. Differing from the case of equibiaxial and
uniaxial deformation, uyy and u,, are time dependent, while i \=uxx, is time
independent. This results from that uyy=0 and u'yy=0, and means that the
stress relaxation occurs in y-direction. The relation that uy,=—txxoti'yy is

obtained from #r(u#)=0. From Eq. (3.6), ux(f), uy(f) and uz(f) can be

expressed by
u;x(r) = Uxxo + U 'xx — (3.45a)
U (D) = lyy + U'yy =0 (3.45b)
Up(D) = Uy + U'yy = = Ugo + U'sx + U'n (3.45¢)

The global strain, &(7) and &(f), can be calculated in the same way as Eq.

(3.43). The treatments of u'y and u'z, in the 0-th and Ist order



approximations are the same as in the case of the equibiaxial deformation

except the value of 1r(u's).

3.5.3 Uniaxial Case

Now let us consider the creep behavior of the gel under constant stress
6.=0, at r>0. In the case of uniaxial deformation, tr(u)=0 corresponds

Uyxot+2Uyyo=0. From Eq. (3.6), ux(?) and uy,(f) (=uz(1) can be written by
Unx(1) = Uxxo + U'xx (3.47a)

1

The calculation of &(f) and £,(7) (=g,(?)) is indentical with Eq. (3.33). In the
0-th order approximation, u'yx and u'yy are substituted by (1/3)tr(u') using
Eq. (3.21). In the first approximation, the time dependence of u'y i1s
described by Eq. (3.28), and that of u'y, is obtained by using Eq. (3.21) and
(3.28) as follows.

Y . mmx . nw
'y = tr(u 'm){i > By sin o YsinT oz exp(— K 1)

m n

nz

]
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The longitudinal and transverse modes are involved in the time dependence of
u'yy and u'y, under uniaxial deformation as well as that of ', under biaxial

deformation.



3.6 Numerical Results and Discussion
3.6.1 Time Dependence of Poisson's Ratio

The t dependence of u is given by Egs. (3.29) and (3.34)-(3-36).
Figure 3-2 shows the t-dependence of the reduced value of u calculated for
the €1 values of 0.01, 0.1, 1, and 10. In calculations, the strain imposed (&)
was fixed to be 0.1, and p,=1/2 was used. The value of ps, used was 1/6, and
was obtained from thermodynamic calculation for the degree of swelling of
uniaxially stretched gel systems.> The curves show the discontinuous change
in the slope at the time when elongation stops; the value of u shows the steep
decrease at 1",. It is clearly seen that the curves form the envelopes. We
drew here the upper envelope as the f-dependence curve for £1.=0.001, and
the lower one as the curve for &1.=10000. These are shown by solid curves
in the figure. The upper envelope corresponds to the f-dependence for the
elongational process, and the lower the swelling after uniaxial deformation.
The difference between the two envelopes is due to whether the effect of y,
during the increasing deformation is simultaneously introduced in the time
dependence of u. Namely, p obtained in the elongational process is
determined by both of the osmotic swelling and the increasing external
deformation of the gel, but u in the swelling under a constant deformation
depends only on the osmotic swelling process. This resuits in the higher value
of u in the elongational process than that in the swelling after deformation in
an intermediate time region. The two envelopes, however, coincide with each

other at the short and long time limits.
3.6.2 Stress Relaxation of Gels

Equations (3.6) and (3.7) give the equilibtium stress and the equlibrium

degree of strain-induced swelling for the gel deformed by an arbitrary biaxial
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Figure 3-2. The time (#) dependence of Poisson's ratio (i) for various & 1.
t is reduced by the longest characteristic time for longitudinal mode (1) and

p by the value at the short time limit (14,). The numerals in the figure stand

for the value of £7.




deformation. Table 3-1 summarizes the numerical results with respect to the
initial and equilibrium stress, the magnitude of stress reduction, and the
degree of strain-induced swelling for the gel under the equi-, strip-biaxial and
uniaxial deformation.

Figure 3-3 shows the stress relaxation curves under various
deformation modes. In the figure, 7 and o are respectively reduced by 7 and
o, corresponding to & at /=0. The dashed and solid curves indicate the
results calculated on the basis of the O-th and Ist order approximations,
respectively. As is evident from the treatment, the stress relaxation processes
in the 0-th and lst order approximations are governed by the longitudinal and
transverse modes, respectively. In the 1st order approximation, 7y=(5/2)71_
was assumed.® The solid curves for transverse mode are shifted to long time
region compared with the dashed curves for longitudinal mode, but the shape
of the solid and dashed curves is similar to each other. As can be seen in Fig.
3-3, the magnitude of stress reduction at t—oc under each deformation mode
is much different. The order of the magnitude of the stress reduction is
A&y (strip biaxial) > Ay (equibiaxial) > A& «(strip biaxial} > Ao y(uniaxial)
The magnitude of the stress reduction is controlled by the value of 1r(u'x).
The anisotropy in magnitude of stress reduction in strip-biaxial deformation
results from the anisotropy in the deformation itself, which is represented by
the coefficients of u'y different in x- and y-directions in Eq. (3.39).

The stress relaxation curves under various deformation modes are
shown in Fig. 3-4. The quantities, f and o are respectively reduced by 1 and
the initial stress 6G,g, in equibiaxial deformation. In Fig. 3-4, the absolute
value of stress in imposing a strain &, in each deformation mode can be
compared with each other. The dashed and solid curves indicate the

calculation results for the longitudinal and transverse modes, respectively.



Table 3-1. Degree of volume increase, equilibrium stress, and the degree
of stress reduction of the gels under the constant strain by equi-, strip-biaxial

and uniaxial deformations.

Degree of Initial Stress Equilibrium  Degree of
Volume Stress Stress
Increase Reduction
(AVN ) (Gio) L (Giwo ) (AG )2)
e 8 14
Equibiaxial 5 & 6Goto = Goto ~0.53
Strip-biaxial ‘ 12
(%) 4 4Goto 5 Ooto ~0.40
5%
2
(y) = GoE
. 2Get, 5 © ~0.80
. 2 7
Uniaxial 3 o 3Goto 3 Gogo ~0.22
DAV tr(ae)  2) AG = —e2
Jio

—62—
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Figure 3-3. Stress relaxation curves under uniaxial, equibiaxial and strip
biaxial deformations. Dashed and solid curves indicate the results for the 0-th
and 1st order approximations, respectively. Time ¢ and stress o(f) are
respectively reduced by the longest characteristic time of longitudinal mode

71, and the initial stress o, for each deformation mode.
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Figure 3-4. Time (¢) dependence of stress o(f) under uniaxial, equibiaxial
and strip biaxial deformations. Dashed and solid curves indicate the results
for the 0-th and 1st order approximations, respectively. f and () are
reduced by the longest characteristic time of longitudinal mode 7 and

6Goeo(Go; shear modulus, &,; initial strain), respectively.



The ratio of the stress at /=0 for each deformation mode is 6:4 : 3 : 2. The
ratio at equilibrium moves to 42 : 36 : 35 : 6. It is interesting that the
equilibrium value of oy in strip-biaxial deformation is almost the same as that
in the uniaxial deformation, while the magnitude of the stress reduction for
oy is fairly large reaching ~80%. This means that the difference in mode of
deformation between uniaxial and strip biaxial deformations diminishes as
swelling proceeds, and the fixation of sample in y-direction has little effect on

the stress in x-direction at equilibrium.

3.6.3 Creep Behavior of Gels

The magnitude of creep for the gel under each deformation mode is
obtained from Egs. (3.6) and (3.9). The results are tabulated in Table 3-2
together with the initial and equilibrium strain, and the equilibrium degree of
strain-induced swelling.

Figure 3-5 shows the creep curves in x- and y-directions under the
uniaxial deformation. ¢, & and f are reduced by &, & and 1., respectively.
Here, &, and ¢ is the initial values of & and &. The creep curves are
caiculated by using the two methods. The creep behavior in any direction in
the O-th order approximation is governed by the longitudinal mode. In the
case of the st approximation, the creep behavior in x- (loaded) direction is
determined by the transverse mode, as can be seen In Eq. (3.28). On the
other hand, and the creep process in y- and z- (load-free) directions is
influenced by longitudinal and transverse modes', as shown in Egs. (3.48).
The calculation results for the 0-th and 1st order approximations are
described by dashed and solid curves, respectively. As the swelling proceeds,
the strain in the tensile direction, &, increases and the absolute value of &,

(=g,<0) in the direction perpendicular to the tensile axis decreases. At



Table 3-2.

Degree of volume increase, equilibrium strain and the

magnitude of creep of the gels under the constant stress under equi-, strip-

biaxial and uniaxial deformations

Initial Strain  Equilibrium Magnitude of

Degree of
Volume Strain Creep
Increase

(AVIV,) (&i0) (8i ) (Agi )V

Equibiaxial
(x,y) 2 € 15 ~2.1
3 %o 780
(Z) — 72¢, -g . ~0.43
Strip-biaxial 15
(%) 12 Fo [T ~14
11 ™°
3
@) _ g 11 %o ~0.27
Uniaxial 9
(x) 6 . 7 &
7 €0 © ~1.3
I 3
v.2) ~ 5% 14 %o ~0.43
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Figure 3-5. Time (f) dependence of strain &(f) under uniaxial deformation.
Dashed and solid curves indicate the results for the 0-th and 1st order
approximations, respectively. f and g(f) are reduced by the longest
characteristic time of longitudinal mode 7, and the initial strain g,,

respectively.



equilibrium, &/&xo and &/ &y, amount to ~130% and ~43%, respectively. The
large difference in & between two curves is not seen except the shift of solid
curve to the long time side. On the other hand, the minimum appears in the
behavior of the relative strain (g/¢ey,) in load-free direction in the Ist order
approximation, while &/g,, in the O-th order approximation decreases
monotonously. The ratio, &/€y,, in the 1st order approximation has the
minimum value of ~0.41 at #/11=3.4. The undershoot of /gy, results from
the coupling of longitudinal and transverse modes. The mechanism for the
undershoot of &/&y, is described in the end of this section.

Figure 3-6 shows the reduced creep curves under strip-biaxial
deformation. The strain & increases and the absolute value of &(<0)
decreases with the increase of time. The values of go/&o and g«/g, are
respectively ~140% and ~27%, and there are no large differences in both
values compared with those under uniaxial deformation. The calculation
results in the 0-th and 1st order approximations are represented by the dashed
and the solid curves, respectively. As well as in the case of uniaxial
deformation, the behavior of relative strain (g/¢g,,) in load-free direction in
the 1st order approximation shows the undershoot originating from the
coupling of longitudinal and transverse modes. The magnitude of undershoot
is a little larger than that under uniaxial deformation. The minimum value of
&l &y 18 ~0.23 and located at t/1=3.3.

The reduced creep curves under the equibiaxial deformation are shown
in Fig. 3-7. The dashed and solid curves stand for the results for the O-th and
Ist order approximations, respectively. The strain & (=&y) increases and the
absolute value of £,(<0) decreases as the swelling proceeds. As can be seen
from Fig. 3-7, aléxo is ~210%, and &/€,, ~43%. It is noticed that Ex

reaches the value twice as large as g, at equilibrium. This is because the
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Figure 3-6. Time (f) dependence of strain &) under strip-biaxial
deformation. Dashed and solid curves indicate the results for the 0-th and Ist
order approximations, respectively. f and g{f) are reduced by the longest
characteristic time of longitudinal mode 7. and the initial strain g,

respectively.
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Figure 3-7. Time (#) dependence of strain &(f) under equibiaxial
deformation. Dashed and solid curves indicate the results for the 0-th and 1st
order approximations, respectively. f and &(f) are reduced by the longest

characteristic time of longitudinal mode 7 and the initial strain g,

respectively.




volume change caused by swelling under biaxial deformation is fairly large,
while /€, 1s the same as that in the uniaxial deformation. Actually, the
value of fr(u's) under the equibiaxial deformation is four times larger than
that in the uniaxial deformation. In the Ist order approximation, the time
profile of g, 1s determined by longitudinal and transverse modes, while that of
&x (=&y) by the transverse mode. The creep curve in z- (load-free) direction
in the 1st order approximation also shows the clear minimum and the
magnitude of undershoot is larger than those under uniaxial and strip-biaxial
deformation. The minimum is located at the short time region compared with
those under uniaxial and strip-biaxial deformations. The minimum value of
£ &, 1s ~0.20, which is located at /11 =2.2.

The mechanism of the undershoot of g/g, in the load-free direction
under the 1st order approximation, which is seen in Figs. 3-5 - 3-7, is
described as follows. At first, it should be noted that the value of g in the
load-free direction is negative at any 7. Hence, the undershoot of /g, means
that the overshoot of the size in the load-free direction. The size in the load-
free direction increases with the increase of ¢ at the initial stage, and reaches a
maximum, and then, decreases to an equilibrium value. Figure 3-8 shows the
schematic representation for this process. The overshoot behavior of the size
in the load-free direction originates from its time dependence governed by the
two types of the characteristic time (7. and 7r) different in the character and
the length. As can be seen in Eqs.r(3.16) and (3.17), the longitudinal mode
controls the volume change, and the transverse mode governs the shape
change without volume change. The relation between 1. and 7 is expressed
as 1. =(5/2)7r, which implies that the volume change is completed faster than
the shape change. Accordingly, in the time region 7.< t <%, the shape of gel

is not similar to that at initial state, although the total change of volume is
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Figure 3-8. Schematic representation for the anisotropic swelling process

of the biaxially stretched gel under the constant stresses Gy, = Oyy = O
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Figure 3-9. Time (f) profile of the boundary (Osy=a,, z=0) in the creep
under uniaxial deformation in the 1st order approximation. Numerals in the

figure indicate the values of #/1.



almost completed. At this stage, the size in the loaded direction, whose time
dependence is controled by 7r, does not reach the equilibrium value. In the
time region £>Tr, only the shape change occurs with keeping the volume
constant, which results in the decrease of the size in the load-free direction
together with the increase of the size in the loaded direction. The magnitude
of undershoot and the location of the minimum for &/¢, in the load-free
direction are determined by the relative intensity of the transverse mode to
the longitudinal one in the strain term in Eqgs. (3.44) and (3.48). The relative
intensity is governed by the dimensionality of diffusion and the type of
deformation mode.

Here, we should mention that the strain focused here is a kind of
average one. The time profile of boundary (O<y=a,, z=0) in the creep under
uniaxial deformation is shown in Fig. 3-9. The actual boundary has an arched

shape during the transient process of swelling.

3.7 Conclusion

The degree of the straih-induced swelling and the resulting mechanical
relaxation for the gel deformed under equi-, strip-biaxial and uniaxial
deformation were evaluated on the basis of the thermodynamics for the
swelling of constrained gels. The magnitude of mechanical relaxation was
found to be strongly dependent on the deformation mode. The degree of the
stress reduction for the equibiaxially stretched gel was estimated to be ~53%,
while that for the uniaxially stretched gel to be ~22%. The ratio of the
equilibrium strain to the initial one in the tensile direction for the creep under
equibjaxial deformation is ~210%, while those under the uniaxial and the

strip-biaxial deformations remain at ~130 and ~140%, respectively.




Poisson's ratio for the uniaxially stretched gel during and after the
elongation, the stress in the stress relaxation and the strain in the creep under
each deformation mode were obtained as a function of time by combining the
constitutive equations of gels with a diffusion equation of polymer network.
In the case where the experimental time scale for elongation is comparable to
the characteristic time for the swelling, the value of Poisson's ratio was found
to be intermediate between the two limiting values of Poisson's ratio which
are the initial and equilibrium Poisson's ratio. The width of gel is decreased
by the elongation, and sifnultaneously starts to increase by the swelling, which
resulting 1n an intermediate vaiue beween the initial and equilibrium Poisson's
ratio.

The stress relaxation and creep curves were calculated by employing
two methods. One is based on the assumption that the swelling occurs
isotropically (zero-th order approximation) independently of the gel
geometry, and the other is obtained by introducing the anisotropic swelling
process (first-order approximation) which originates from the anisotropy in
the gel shape. The stress relaxation processes in the O-th and 1st order
approximations are governed by the longitudinal and transverse modes,
respectively. In the 0-th order approximation, the creep behavior in any
direction under each deformation mode is controlled by longitudinal mode.
In the 1st order approximation, the creep in the loaded direction, in which the
diffusion is assumed not to occur, is determined by the transverse mode, and
that in the load-free direction, in which the diffusion occurs, is determined by
longitudinal and transverse modes. According to the Ist order
approximation, it is expected that the overshoot of the size in the load-free
direction occurs as a result of the coupling of longitudinal and transverse

modes. The magnitude of the overshoot and the time showing the peak are



dependent on the deformation mode. The equibiaxially stretched gel shows
the larger magnitude of overshoot, and has the peak located at the shorter

time, in comparison with the gel under uniaxial and strip-biaxial deformation.
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Chapter 4
Stress-Strain Behavior of Typical Polymer Networks Under

Pure Shear Deformation

4.1 Introduction

In Chapter 3 the mechanical behavior of polymer networks in swollen
state is treated. In this chapter, the rubber elasticity of polymer networks in
the bulk state is considered. The strain energy density function (W) has been
considered as a basic quantity to describe elastic properties of materials. As
reviewed by Kawabata and Kawai,! many studies have been made to
investigate the funcﬁonal form of W of rubber-like materials. Most of the
experimental studies were carried out under uniaxial deformation, while
experiments under biaxial deformation’® have been limited although they
give important information on the functional form of W of real elastomers.
It has been shown that the elastic properties of real elastomers can be basically
described by the classical theory’ of rubber elasticity.! Various molecular
theories®* have been proposed to improve the classical theory of rubber
elasticity, and have been compared with experiments by Gottlieb and
Gayload.!> They indicated that none of these molecular theories describe the
experimental results quantitatively, and especially, the descrepancies are
considerable in small deformation region. These molecular theories focus
basically on the entropic elasticity, although some of the theories take
intermolecular interaction by entanglement into accounts. It has been also
pointed out that the intermolecular interactions originating from
intermolecular force must be taken into account for the elasticity of real
elastomers in order to explain the elastic behavior at small deformations.>16-17

However, the origin of the intermolecular interactions occurring in real




elastomers is not unclear at present. Poisson's ratio (u,) of rubber-like
materials has been assumed to be 1/2, as the value at incompressible limit, but
the values for the real elastomers are not identical exactly to 1/2.>!%1% There
is one possibility that the origin of the intermolecular interaction is related to
a volume change of materials. In this case, real elastomers must be treated as
compressible materials. In this chapter, we eliminate the assumption of
u,=1/2, and investigate the elastic behavior of real elastomers at small strains
under pure shear deformation using the experimental value of p,. The stress-
strain relations for the three types of segmented polyurethaneureas (SPUs)
under pure shear deformation are measured. The experimental results are
compared with theoretical predictions proposed here on the basis of a
phenomenological elasticity theory for compressible materials. The values of
o for SPUs are measured by the method described in Chapter 2. The
experimental results at small strains under pure shear deformation for
isoprene rubber® (IR) reported by Kawabata et al., and styrene-butadiene
rubber® (SBR), nitrile-butadiene rubber® (NBR) and butadiene rubber® (BR)

by Fukahori ef al., are also compared with the theoretical predictions.

4.2 Theory
4.2.1 Elasticity Theory

Elastic properties of rubber-like materials can be analyzed by the
infinitesimal elasticity theory as far as applied strains are small enough.*
The assumption of incompressibility has usually been appllied to rubber-like
materials. We eliminate here this assumption and treat the rubbery materials

as a compressible one. According to the infinitesimal elasticity theory for

compressible materials, that is, the Poisson ratio of the material (i,) 1s not



equal to 1/2, one can define the three invariants (J;;i=1,2,3) using components

of the strain tensor (&) as follows.

h=€g+86+8 (413)
J2= £182 + EvEs+ £3€) (4.1b)
A = €166 4.1¢)

Here, &, (p=1,2,3) stands for the principal strain in the p—diréction. The

strain energy density function (W) is written in terms of J; on the basis of the
infinitesimal elasticity theory as follows.

W= [..K_ ¥ ..2..-.G...] J - 2Gh, 4.2)

2 3

Here, K and G are respectively the bulk and shear moduli. The principal
stress in the p-th direction (o) is given by

0= 2Ge, + [K- _2_3(;]], 4.3)

In order to describe a stress-strain behavior of the materials at large
strains, W is conventionally regarded as a function of the three invariants
(13i=1,2,3) for a deformation tensor. Using principal stretch ratio

(Ap;p=1,2,3), which is related to the principal strain (g,) as Ap=g,+1, [; is

given by
I = A% + A2 + A2 (4.42)
I =A225% + A2?As% + Aa2A2 (4.4b)
Iy = A% A% As2 (4.4¢)

The principal engineering stress, which we also assign here as Op, is generally

expressed by

_ ow 2 2y W 2 ,20W
Oy =27, | —+A7 + A + Ag Af 4.
? p[ ol, ( 9 r) al, * 613] (4-5)

where p,g.r=1,2,3. The partial derivative of W with respect to I
(9 W/01;;i=1,2,3) can be calculated by using a set of gy and A, (p=1,2,3).




4.2.2 Pure Shear Deformation

Pure shear (strip-biaxial) deformation is one of the common
deformation mode among biaxial deformations. The schematic representation
for the pure shear deformation is given in Fig. 3-1. We designate the
elongational direction as x;, sustaining direction as x», and the direction in
free motion as x3 for pure shear deformation. The derivatives d W/dl; in the

case of pure shear deformation are obtained from Eq. (4.5), A»=1 and &,=0 as

follows.
ow _ o] A13 o
— - 2 (4.6a)
oh  2af-a2)(af-1) 21-a3){at-1)
oW _ = Oy A.] + (46b)

b oaz- a2 (a2-1) 201- sg)z( ?-1)

W _oM+o _ AL+ 10W 227 + AP A5 + A5 OW 4.60)
Oy 4prfAd  2AfAF 9N 2AZAZ Ob

As can be seen in Eq. (4.6), when uo=1/2, not only the values of A; and A> but
also the value of As is required for the numerical calculation of the value of
o W/al;. Since direct measurement of A; in the pure shear experiment is
usually difficult, A is estimated by calculation. In this case, the value of u, is
required. At small deformations, A3 (or, equivalently ) is easily obtained

from Eq. (4.3). For & we have
E3=— to £] (47)
1 -y, _
because =0 and cs=0 for pure shear deformation. It should be noted that

the stress ratio (o»/01) gives o as

Uo = C’? (4.8)

In order to calculate the value of A; at large strains, we modify Eq. (4.7) to
A= Af Ho/(1 - o) (4.9)



This equation, of course, coincides with Eq. (4.7) at small strains. When i, is

known, we can calculate the value of A3 at both small and large strains by

using Eq. (4.9).

4.2.3 Limiting Values of Partial Derivatives of W

As strain decreases, d W/01I; at large strains approaches its lifniting value
predicted by the infinitesimal elasticity theory. The value at zero strain limit
can be estimated by using the derivative of W with respect to J; (8 W/dJ;

i=1,2,3) at zero strain limit. The quantity 0 W/a/J; is related to d W/91, as
o oI oJ; 0, dJ; 09l 0J;

and the values of the derivatives at zero strain limit (J; ~ 0) are given by

AL (4.11a)
6J1 “

W ., _og - @.11b)
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CALARSN (4.11c)
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assuming that W can be expressed by Eq. (4.2) at small strain limit. The

relations between J; and /; are as follows.

]} =J]2+2Jl -2.]2+3 (4123)
12 = 2.]12 + .]22 + 2]1.]2 - 2.]3]1 + 4.]1 - 6.]3 +3 (412b)
L=1+J4+h+ k)3 (4.12¢)

From Eqs. (4.10)-(4.12), we have the values of d W/dl; at zero strain limit

(I1,I = 3 and I; — 1) as follows:

W _, 56
ol 3 (4.13a)
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It should be noted that the limiting values of 0 W/dl» and d W/0l; are negalive,

while d W/dl, has the positive value at zero strain limit.

4.3 Experimental
4.3.1 Material

Three types of SPUs used in this study were supplied as
dimethylformamide solutions from Toyobo Co., Japan. The three types of
prepolymers of the SPUs differing in the molecular weight of
poly(tetramethylene glycol) (PTMG) were prepared from the mixed solutions
of methylene diisocyanate (MDI) and PTMG. The solvent used was N,N'-
dimethylacetate (DMAc). The prepolymers were chain-extended by using
1,2-diaminopropane (DAP). The number-average molecular weight of
PTMG (M;), weight fraction of PTMG (W), number-and weight-average
molecular weights of SPUs (M, and M,,, respectively), and the ratio of M, to
M, (My/M,) are listed in Table 4-1, together with the sample name. Here. M,
and M,, are reduced molecular weights to polystyrene. Film specimens for

mechanical tests were prepared by solution-cast method.

4.3.2 Uniaxial and Biaxial Elongation

Uniaxial elongation of SPU film was made to estimate u, by using an
Orientec tensile tester (RTM-250) at a crosshead speed of 50mm/min. The
width and thickness of the specimens were respectively Smm and 100-200um.
The crosshead distance at rest was ca. 20mm. Poisson's ratio (uo) was
determined by the method described in Chapter 2. The values of u, were

estimated from

=_log A (4.14)
Ho log A




Table 4-1. Sample codes, number-average molecular weights of
poly(tetramethyleneglycol) (PTMG)(M;), weight fractions of PTMG (Wy),
number-and weight-average molecular weights of SPU (M, and M,,; reduced

to molecular weights of polystyrene), and the ratios of M, to M,.

Sample M, We M, My _ MyM,
SPUSS0 870 0.60 42000 127000 3.0
SPUIS0 1700 074 59000 155000 2.6
SPU3000 3100 084 68000 192000 28




The stretch ratio in the stretched direction (A,) was calculated from distance
between two marked points of the film surface, and the stretch ratio
perpendicular to the stretched direction (A») was calculated from the width in
the central region of the specimen. The distance and width during uniaxial
elongation process were recorded by using a video-tape recorder.

The stress-strain curves of the SPU under pure shear deformation were
obtained by using a specially designed biaxial elongation apparatus (Iwamoto
Seisakusho Co.). The shape of the film specimens used was square with
thickness of 100-200um. The distance between cramps at rest was 50mm and

elongation speed was 0.83mm/sec.

4.4 Results and Discussion
4.4.1 Poisson's Ratio of SPUs

Figure 4-1 shows the plots of —logA; against logA, obtained in the
uniaxial elongation experiment of SPU850. All the data points are
approximated by a single line of slope 0.442, and we assign the slope of line
as Poisson's ratio (y,). The value of A; examined here ranged from 1.035 to
1.468. The stress-strain curve of SPU850 under uniaxial elongation was
linear in the region of A; lower than about 1.2, and the curve showed the
nonlinear relation at larger stretch ratios, although we do not show the curve
here. The linear relation between -logA; and logA; over a wide range of A,
indicates that u, is independent of the magnitude of the applied strain: the
value of u, in the nonlinear stress-strain region- is the same as that in the
linear elasticity region. Similar behavior has been observed for u, of
poly(vinyl alcohol) (PVA) gels as described in Chapter 2. SPU1650 and
SPU3000 also showed the nonlinear stress-strain behavior at large stretch

ratios, but they also showed the linear relation in the —logA; vs. logA; plots
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Figure 4_-1. Plots of —~logA, vs. logA; for SPU850.
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Table 4-2. Poisson's ratios obtained from uniaxial elongation experiment
(to) and from stress ratio under pure shear deformation (u,'), and shear

modulus (&) for SPUs.

Sample Uy o' G /MPa
SPU850 0.442 0.400 12.1
SPU1650 0.471 0.425 5.2
SPU3000 0.494 0.447 2.9
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in the whole range of A;. The values of y, for SPUs are listed in Table 4-2.
The value of u, for the SPUs increases with increasing Ms. SPUs have the
two-phase structure and the phase separation becomes clearer as M;
increases.2! The clear phase separation will make the materials close to ideal
cross-linked rubbers, resulting in the closer value of y, to 1/2 with increasing
M.

In Fig. 4-2, the stresses (01 and o») under pure shear deformation are
plotted against the stretch ratio (A;) for SPU850. The stresses oy and &
increase monotonically with increasing A;, but the inflection point is observed
around A;=1.5 on each stress-strain curve. We measured the stress-strain
curves of three specimens of SPU850 in order to check the reproducibility of
the stress-strain curves. The data obtained in each experiment are well
coincided with one another. Scattering was observed for the data at strains
lower than about 10%, but the deviation was very small. SPU1650 and
SPU3000 showed almost the same stress-strain behavior as SPU850 shown in
the figure. We also found the good reproducibility of the stress-strain curves
for SPU1650 and SPU3000. The stress level in both elongational and
sustaining directions became lower as M; increases.

According to Eq. (4.8), the stress ratio (o»/ay) gives Poisson's ratio.
Figure 4-3 shows the plots of /0y against A, for the three SPUs. The data
are limited to those at relatively small stretch ratios. The stress ratio
increases with increasing A, for the three SPUs. The extrapolated value to the
zero strain limit, which is assigned here as u', is tabulated in Table 4-2. The
value of y,' increases with increasing M, and the value is lower than that of
o obtained from the uniaxial experiment. As far as the infinitesimal
elasticity theory holds, the stress ratio (0»/07) under pure shear deformation

must be constant and it also gives the Poisson ratio of material. We do not
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Figure 4-2. Stresses (07 and o) plotted against stretch ratio (4;) for
SPU850 under pure shear deformation. o, stands for the stress in the

stretched direction and o» for the stress in the sustaining direction.
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Figure 4-3. The stress ratio (o»/o01) against stretch ratio for SPUs.
Symbols: (O) SPU850; (@) SPU1650; (@) SPU3000.



know at present why u,' from pure shear deformation (from Eq. (4.8)) is
smaller than u, from uniaxial deformation (from Eq. (4.14) for SPUs,
although both the values must basically coincide with each other. However,
the fact that u, as well as y,' is not identical to 1/2 clearly indicates that the
SPUs are compressible and volume change occurs during deformation. The
linear stress-strain relation was observed up to stretch ratio of about 1.2 for
uniaxial elongation of all the SPUs, but the stress ratio is /;-dependent over
the range of /; including small /; region. This suggests that the region of
strain, where the linear elasticity holds, is very narrow for pure shear

deformation compared with the linear region for uniaxial elongation.

4.4.2 Shear Modulus of SPUs, SBR, NBR, BR and IR

As can be seen from Eq. (4.13b), (-1/2)(d W/dJ») at zero strain limit
gives the shear modulus (G). Figure 4-4 shows the plots of (~1/2)(d W/d/»)
against /; for the three SPUs. The values of (-1/2)(d W/dJ>) for SPUs were
calculated by the combination of a set of dW/df; and J; (i=1,2,3), since (-
1/2)(0 W/dJ,) is given from Eqs. (4.10) and (4.12) by

oW W
19 9% _(h+ —(1+J+h+h)— (4.15)
295 ol A )613 1+ )313

Data shown in the figure are limited to those at [; smaller than 5. The solid

curve in the figure is the best-fit curve for each SPU. The three curves show
the monotonical decrease with increasing /;. The vertical level of the curve
becomes lower as M, increases. We estimate G for the SPUs as a limiting
value of the curve at I;=3. The value of G for SPUs is listed in Table 4-2.
The value decreases with increasing M.

Figures 4-5 - 4-8 show the plots of (-1/2)(d W/daJ») against I, for IR,
SBR, NBR and BR, respectively. Since the number of the data for SBR, NBR

and BR are not enough in the small /; region, the data in the large /; region
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Figure 4-4. Plots of (-1/2)(d W/aJ,) against I, for SPUs. Symbols are the
same as Fig. 4-3.
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Figure 4-6. Plots of (-1/2)(d W/dJz) against /; for SBR.
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Figure 4-8. Plots of (-1/2)(8 W/aJ,) against I; for BR.



Table 4-3. Poisson's ratios used for the calculation (u,) and shear moduli
(G) for IR, SBR, NBR and BR.

Sample Mo G /MPa
IR 0.499916 0.375
SBR 0.49983% 0.3
NBR 0.49983° 0.43
BR (0.49983¢ 0.48

¢ obtained by Kawabata ef al. (Ref. 5)
b assumed to be equal to u, of BR

¢ obtained by Holownia (Ref. 19)



are included. The curves show a monotonous decrease with increasing [ , as
in the case of SPUs in Fig. 4-4. The values of G were obtained by

extrapolating the curve to /;=3, and are listed in Table 4-3.

4.4.3 Partial Derivatives of W for SPUs

The values of Poisson's ratio (both u, and u,") for SPUs were rather
close to 0.5 but were not exactly identical to 0.5 (Table 4-2), meaning that
SPUs are better to be treated as compressible materials. Figure 4-9 shows the
I; dependence of d W/dl; (i=1,2,3) for SPU8S50. The value of Poisson's ratio
used for the calculation of d W/al; was 0.442 which is the value of u,,
although we had two values for Poisson's ratio, namely, u, and u,'. We chose
U, as Poisson's ratio for the calcﬁlation because u, is in accordance with its
definition. The data points shown in Fig. 4-9a are those at /) larger than 3.5.
The derivatives d W/l and 0 W/31, are positive in this region of /; shown in
Fig. 4-9a and are decreasing functions of ;. The value of d W/dl, is very
small compared with that of d W/dl,. The value of d W/d/; is negative in the
region of I, shown here, and d W/d/3 increases with increasing /;. At large [,
the absolute value of d W/d/; is much smaller than that of d W/dl;. In Fig. 4-
9b, the data at I, smaller than 3.5 are shown. The derivative, d W/dl,,
increases very rapidly as /; approaches three from the larger side of 7, while
d W/dl, shows a maximum around /y=3.4 and the values in the smaller /,
region are negative. The derivative 0 W/dL; shows a rather broad minimum
around /;=3.2, and then it increases steeply as [, decreases further. The I,
dependence is observed for the three derivatives over the entire region of /;
investigated here, but the dependence is weaker in the large I, region (Fig. 4
9a) than in the small /; region (Fig. 4-9b). As stated previously, we examined

stress-strain behavior for three specimens of SPU850. We also calculated the
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Figure 4-9. (a) Plots of d W/dl; against [, for SPU850 for large I, region. (b) Plots of dW/dl;
against /; for SPU850 for small /; region. Symbols: (O) data points for d W/dl, ; (é) for aWidl ; (Q)
for 3W/aL,. The arrows a, b and c represent the theoretical predictions for awral, , OW/dl, and

d W/dl; at zero strain limit, respectively.



I, dependence of dW/ol; (i=1,2,3) using the stress-strain data for each
specimen. The d W/dl; vs. I; curves for the three specimens were almost
identical to one another for i=1, 2 and 3. This indicates that the stronger [;
dependence of the three derivative truely occurs at small strains.

Figures 4-10 and 4-11 respectively show the simtilar plots for SPU1650
and SPU3000. Here, the values of the Poisson ratio used were 0.471 for
SPU1650 and 0.494 for SPU3000, which are the experimental values of p,
for the SPUs. Figures 4-10a and 4-11a represent the /; dependence of the
derivatives in the large I; region, while Figs. 4-10b and 4-11b are the data at
small strains (or small /;). As can be seen from Figs. 4-10a and 4-11la, the
absolute values of dW/dl, and dW/0l5 are smaller compared with that of
o0 W/al, for both SPUs, as in the case of SPU850. In the small region of [,
(Figs. 4-10b and 4-11Db), the shapes of the derivatives for the SPUs are also
almost identical to that for SPU850; 0 W/al; of the SPUs increases steeply and
o W/ol, decreases rapidly, as /1 approaches three from the right side of the /;
axis. The derivative, d W/d/5, shows the broad minimum at smaller /,, and
then it shows the sharp increase as /; decreases further. The three derivatives
of SPU1650 as well as SPU3000 show the relatively weak /| dependence at
large /3, as is the case of SPU850.

In Figs. 4-9b, 4-10b and 4-11b, there are three arrows, each of which is
specified as a, b and ¢. The vertical position of the arrow a indicates the
limiting value of d W/dl;, and those of the arrows b and ¢ correspond to the
limiting values of d W/al, and 0 W/dls, respectively. The limiting values were
calculated from Eqs. (4.13a)-(4.13c), using the value of G listed in Table 4-2.
For SPU850, the limiting values of the derivatives shown by the arrows are a
little different from those estimated from experiment; the vertical level of the

arrow a is almost identical to the experimental value at the second lowest /.
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Figure 4-10. (a) Plots of dW/al; against [, for SPU1650 for large /, region. (b) Plots of d W/dl;
against [; for SPU1650 for small I, region. Symbols: (O) data points for aW/al ; (b) for aW/dl, ;
(Q) for dW/oL. The arrows a, b and ¢ represent the theoretical predictions for W/l , d W/dl, and

8 W/dl; at zero strain limit, respectively.



—001—

(a) SPU3000 | (b) SPU3000

W
al IMPa

3 4 5 6 7 8 3 4
I h
Figure 4-11. (a) Plots of d W/dI; against I; for SPU3000 for large I; region. (b) Plots of d W/dl;

against /) for SPU3000 for small /; region. Symbols: (O) data points for d W/al, ; (C)) for dW/OL ;

(Q) for dW/aL;. The arrows a, b and ¢ represent the theoretical predictions for d W/al; , dW/3L, and
d W/0L at zero strain limit, respectively.



The arrows b and ¢ are also close to the corresponding experimental value at
that /. Although there remains a small deviation of the limiting values of the
derivatives between theoretical prediction and experiment, the theoretical
predictions appear to show the basic features of the experimental data at small
I, limit. The quantitative agreement between theoretical predictions and
experiment for SPU1650 and SPU3000 is not so good compared with the case
of SPU&S50, but the theoretical prediction could qualitatively explain the
asymptotic behavior of the derivatives at small /, limit. As mentioned
previously, the reproducibility of the d W/a1; vs. I (i=1,2,3) curves was fairly
good, but a small scattering was observed at small strains for the SPUs. The
deviation in the limiting values between theory and experiment will originate
from the experimental errors at small strains, because the limiting values
determined by experiment is sensitive to the experimental errors.

The I; dependence of the derivatives was also investigated for three
kinds of SPUs by employing the assumption that the material is
incompressible (i.e., l:=1) for comparison. In this case, only d W/dl, and
OW/3L, are the quantities of interest. For pure shear deformation of
incompressible material, /; is identical to /». The d W/ol; vs. I} (i=1,2) curves
for each SPU was almost identical to the corresponding curves shown here
(Figs. 4-9, 4-10, 4-11 for SPU850, SPU1650, SPU3000, respectively). This
suggests that d W/dI; vs. I, (i=1,2) curves are unchanged whether or not the
volume change during deformation occurs. According to the classical theory
of rubber elasticity for incompressible materiai, dWIAL is independent of I,
and is identical to G/2, and 0 W/3l is also constant to be zero. At large
strains, d W/al, for SPUs showed lower values than G/2, which were weakly
dependent on I;. The derivative d W/dl, also showed slight /; dependence,

although the value is close to zero at large strains. These features at large
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strains appear to resemble the results expected by the classical theory of
rubber elasticity for incompressible material. However, the strong I
dependence of the two derivatives at small strains can not be described by the
classical theory. In addition, the classical theory can also not explain the
negative limiting value of 3 W/dl,. The theoretical predictions for d W/dl»
shown in Sec. 4.2.3 is —G/8, which is negative. This qualitatively agrees with
the experimental results for the SPUs. The classical theory predicts that the
limiting value of d W/d1,=G/2, while our prediction gives d W/dI;=5G/8. The
limiting values of the derivative by experiment (see, Figs. 4-9b, 4-10b and 4-
11b) appear to be higher than 5G/8 for the three SPUs. For the SPUs our
prediction (5G/8) is closer to the experimental value than G/2 (the predicted
value from the classical theory), although the difference between two

predictions is rather small.

4.4.4 Partial Derivatives of W for IR

Figure 4-12 shows the plots of d W/dl; against I; for isoprene rubber
(IR) under pure shear deformation reported by Kawabata et al.> Figures 4-
12a and 4-12b represent the data at large 7/, and at small I;, repectively.
Their data were re-calculated by using ©,=0.499916, the mean value of g,
reported by the authors. The 0 W/dl; vs. I (i=1,2) curves obtained here were
almost identical to the corresponding original curves shown in Figure 10 of
their paper®, which were calculated by assuming the incompressibility of the
material. As can be seen from Fig. 4-12a, the absolute values of d W/d/l, and
dW/0L are very small compared with that of d W/0I; at large I,, and the three
derivatives are also weakly dependent on /;. The experimental data in Fig. 4-
12b show that the three derivatives are strongly dependent on /; at small

strains. We can also see that the limiting values of 0 W/dl, and d W/dl; are
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Figure 4-12. (a) Plots of d W/d1; against /; for IR for large I; region. (b) Plots of d W/dl; against I
for IR for small I; region. Symbols: (O) data points for d W/ol; ; (d)) for dW/dl> ; (Q) for dW/AL.
The arrows a, b and ¢ represent the theoretical predictions for d W/dl; , d W/dl, and dW/dl3 at zero

strain limit, respectively.



negative and that of d W/a/, is positive for IR. There are also three arrows in
the figure and the meaning of the arrows is the same as that in Figs. 4-9b, 4-
10b and 4-11b. The value of G obtained from Fig. 4-5 was used for the
calculation of the derivatives. The value of G is very close to the original
value reported by Kawabata ef al> Each arrow appears to agree fairly well
with the corresponding limiting value estimated from the experimental data.
According to the classical theory of rubber elasticity for incompressible
material, the limiting value of d W/dl; is given by G/2, as stated previously.
The value of G/2 is 0.188MPa for IR, if we use G=0.375MPa. The value G/2
is much lower than the limiting value of dW/0l, determined by the
experiment (Fig. 4-12b). It is also clear that the limiting value of dW/dl,
estimated by experiment is negative, which is not in agreement with the
prediction based on the classical theory for incompressible material, because
the theory gives the limiting value of zero, as mentioned before. These mean
that the classical theory of rubber elasticity for incompressible material can

not correctly predict the limiting values of d W/dI; and d W/dl, for IR.

4.4.5 Partial Derivatives of W for SBR, NBR, BR

' We calculate dW/a/; (i=1,2,3) for SBR, NBR and BR using the
experimental data obtained by Fukahori ef al.® The value of u, for BR was
reported to be 0.49983,'° and those for SBR and NBR are unknown. We used
Uo=0.49983 for the calculation of d W/d1; for three types of rubbers.

Figures 4-13 - 4-15 indicate the plots of d W/al; vs. I for SBR, NBR
and BR, respectively. The I, dependence of @ W/d!; for three types of rubbers
is similar to each other, and resembles that for the SPUs and IR mentioned
before: The 0 W/dl, is almost independent of I; at large I, region, and

increases rapidly as /; approaches to three. The 3 W/3l, is almost constant and
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Figure 4-13. Plots of d W/d1; against [, for SBR. Symbols: .(O) data points
for aW/dl; ; (d)) for aW/dl, ; (Q) for dW/dL. The arrows a, b and ¢
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strain limit, respectively.
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Figure 4-14. Plots of d W/3I; against I; for NBR. Symbols: (O) data points
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close to zero at large /; region, and decreases as /| decreses, and then becomes
negative in the small /; region. The d W/dl3 is negative over the whole [,
region, and has a minimum in the small /, region.

The arrows a-c in Figs. 4-13 - 4-15 indicate the theoretical predictions
for the limiting values of d W/d/; calculated from Eq. (4.13) with measured G.
The agreement of the theoretical predictions with the experimehts are not
necesarrily perfect, but the theoretical values are not so far from the
experiments, considering that the the values of 0 W/d/; in small deformation
region is very sensitive to the experimental errors, and the number of
experimental data points for SBR, NBR and BR is not enough in the small ;
region .

The shapes of 0 W/dl; (i=1,2,3) vs. I, curves of three types of SPUs and
four types of rubbery materials are similar to each other, suggesting that the

shapes of the three derivatives shown here are common to real elastomers.

4.4.6 Some Comments on the Functional Form of W
The function W can be phenomenologically expressed in the foilowing

expansion form.??
W=Y Cuplls- 3P - 31 - 3} (4.16)

PG4T

where C, is the numerical constant and Cy=0. When the material is

incompressible, Eq. (4.16) is reduced to

W= Cgylli - 30l - 3¥ (4.17)
nq

with numerical constant Cp and Cpo=0. Mooney® approximated Eq. (4.17)
as

W——-C]() (11—3)+C01 (12—3) . (418)
The rubber materials dealt in this study is compressible. In this case, the

approximated equation corresponding to Eq. (4.18) is given by
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W = Cioo (1 = 3) + Coio U2 — 3) + Cooy (Iz = 3) . (4.19)
Equation (4.19) means d W/a5,=Cix, 8 W/3Ih=Cp 1o and d W/33=Cyy,. The I,
dependence of d W/dl, (i=1,2,3) for rubbers investigated here is how dW(I;
I, I3 )/6l, changes with 