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Chapter 1
General Introduction

Polymer networks (including polymer gels which are polymer

networks containing solvent), prepared by crosslinking polymer chains, have

been focused in both the academic and the industrial fields as attractive

materials having some unique features which are not seen in uncrosslinked

polymers. 1,2 For instance, polymer networks reveal rubber elasticity (after

large deformation is imposed, the original shape is recovered immediately

when the external strain or stress is released). In solvents, polymer networks

do not dissolve nor precipitate, but do swell or deswell accompanied by a

large volume change, depending on solubility of the constituent polymer in a

solvent. These features originate from the 3-dimensional polymer network

structure having infinite molecular weight, and the flexibility of constituent

polymeric chains. Due to these unique features, polymer networks have been

attempted to apply to various kinds of industrial devices. The basic aspect of

physical properties for polymer network systems has also attracted attention

of many physicists as well as chemists.

Polymer networks are often classified into two groups according to the

type of crosslink.3 One is prepared by crosslinking polymer chains by means

of a crosslinker which has the reactive sites to the functional groups in the

polymer chains. In this case, the polymer chains are crosslinked by covalent

bonds, and the resulting polymer networks are called chemical gels.

Especially, a system in which a prepolymer has functional groups at both

chain ends is called an end-linking system. The end-linking system is often

used as a model network system for the basic studies on rubber elasticity,

because the molecular weight of the prepolymer can be regarded as the
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molecular weight between chemical crosslinks under the complete progress of

end-linking reaction.4

On the other hand, polymer network systems crosslinked in different

ways from covalent bonds are called physical gels. For instance, poly(vinyl

alcohol) (PYA) or gelatin forms a gel by cooling its solution. The

crosslinking sites in PVA and gelatin gels are believed to be microcrystalline

domains5,6 and helical domains? respectively. Thermoplastic elastomer

(TPE), which has received considerable attention as a new type of polymer

network systems,8 also belongs to this category. Generally, TPEs are

multi block copolymers, or graft copolymers, which form microphase

separated structure (at room temperature) comprising the soft segment

domains revealing entropic elasticity and the hard segment domains acting as

crosslinking sites. Polystyrene-polybutadiene-polystyrene (SBS) triblock

copolymers and segmented polyurethaneureas (SPUs) are known as the typical

TPEs. The physical properties of TPEs are strongly influenced by the

microphase separated structure. As described above, there are various types

of the structure of cross links in physical gels. One commom feature of

physical gels is that the sol-gel transition is thermo-reversible.

Table 1-1 summarizes the categories of polymer networks depending on

the type of crosslinking, together with the structure of crosslinking sites and

examples.9 A network by entanglements is also added to the third row in

Table 1-1. Polymer melts and concentrated solutions where polymer chains

are well entangled are known to behave like crosslinked rubbers within a

certain time scale, although they do not have any permanent crosslinks. lO

This behavior is represented by the plateau region of storage modulus in a

time scale. lI Topological constraints, i.e., entanglements, originating from

the uncrossablility of polymer chains, are believed to act as temporary

-2-



Table I-I. Types of polymer networks

T~ _ Crosslink _ S!lJ.lcture of Junc!ions Examples

Topological constraints Polymer melts

Concentrated polymer

solutions

Chemical gels Covalent bond

(Localized)

Physical gels Hydrogen bond

I Ionic bond
w

I Helix formation, etc.

(Localized)

Networks by entanglements (Delocalized)

Points

Domains

Crosslinked rubber

Thermosetting resins

Biological gels

Thermoplastic

elastomers



crosslinks,12 which have a finite life time, called "reptation time II .3 On the

other hand, entanglements trapped in a crosslinked network (so-called trapped

entanglements) are not disentangled due to the existence of crosslinks. The

roles of trapped entanglements in the elasticity of polymer networks have

been one of the most fundamental problems in the physics of rubber elasticity,

as will be described below.

The elasticity of chemically-crosslinked networks has attracted a lot of

theoretical and experimental physicists, and they have tried to relate it

quantitatively with the structural parameters such as number of network

chains and junctions. Phantom13,14and affinel5,16 network models were

proposed in 1940's, and they are now classified in classical network models.

Considerable progress has been made in theoretical as well as experimental

studies on the elasticity of polymer networks, but there is still a dispute about

the effect of trapped entanglements on elastic modulus. Some researchers17-21

have argued that trapped entanglements suppress the thermal fluctuations of

chemical crosslinks, but do not contribute to elastic modulus. They have

expressed the shear modulus (G) of a polymer network as

G=Gc (1.1)

where Gc is the modulus contributed from chemical crosslinks. Equation

(1.1) is common to phantom and affine models. The detailed expression is

given by G=(ve-/le)RT for phantom network model, and G=veRT for affine

network model. Here, V e, /le, R, and T are the number of moles of network

chains and junctions per unit volume, the gas constant, and the absolute

temperature. The constrained junction theory by Flory and Erman17 predicts

G lies between the predictions by phantom and affine network models.

Others22
-
28 have insisted that trapped entanglements contribute similarly as

chemical crosslinks to elastic modulus, and shown the following form of G.
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G =Gc + ern° Tc (1.2)

Here, GNo is the plateau modulus of an uncrosslinked polymer melt with high

molecular weight, and Tc is the trapping factor representing the proportion of

the entanglements that contribute to elastic modulus. Equation (1.2) was

phenomenologically derived by Langlei~2 and Dossin and Graessley.23 It

should be noted that Eg. (1.2) predicts a larger value of G than Eg. (1.1).

In order to elucidate the effect of trapped entanglements on elastic

modulus, the elastic moduli of model networks, which are prepared in the

bulk state by end-linking prepolymers having a definite molecular weight,

have been measured as a function of the molecular weight of prepolymer by

many researchers. 18,19,25-28 However, in spite of a considerable accumulation

of such data, the dispute has not yet been settled. Another experimental

approach is necesarry to conclude clearly this dispute. An alternative

experiment for this problem is to measure the elastic moduli of model

polymer networks, which are crosslinked in solution by end-linking

prepolymers with high molecular weight. as a function of polymer

concentration at crosslinking (i.e., at preparation). If elastic modulus is

determined only by the number of chemical crosslinks, G is simply

proportional to the number of polymer chains in solution. Then. G increases

linearly with the polymer volume fraction at preparation (cPo) as

G 0: epol (1.3)

On the other hand. if trapped entanglements contribute to elastic modulus

similarly to chemical crosslinks, G should be scaled as

G 0: cPoa. (ar:=2) (1.4)

Equation (1.4) is based on the analogy of the concentration dependence of

plateau modulus for polymer solutions. 12 Since the difference in the

exponents for the power laws in Eqs. (1.3) and 0.4) is significantly large, the

-5-



experiment for tPo dependence of G will clearly conclude the above problem.

However, the quantitative experiments concerning tPo dependence of G for

polymer networks have never been performed.

One of the ultimate goals in the physics of rubber elasticity is to

determine the strain energy density function (W) for elastomers in an explicit

form. The function W is a fundamental physical quantity governing the

stress-strain behavior of elastomers. Generally, W is written as

W=W(ll,h,l]) using the invariants of deformation tensor, where

I1=Jt}+A22+Ai, fz=A]2A22+AlA32+A32A12, and h=A]2A22A32, Ai being the

principal ratio in i-direction. The classical theory for rubber elasticity

predicts the form of Was13-15,29,30

G
W = 2 (/] - 3) (l.5)

The classical theory assumed that the conformation of network chains is

Gaussian, and the polymer network is composed of the hypothetical phantom

chains which can move freely across the other chains. Rivlin and Saunders3!

showed that W is a function of It and fz, which is not in accord with the

prediction by the classical theory, from their experimental results for the

biaxial extension of natural rubber vulcanizates. They also indicated that the

experimental results are well described by the following Mooney equation32:

W =Cj(1t - 3) + C2(l2 - 3) (1.6)

where C1 and C2 are constants independent of I) and h. The constant C2 is

often attributed to the interaction between network chains, i.e., entanglements.

However, the later precise experiments33,34 for the biaxial extension of

rubbery materials indicated that the observed results were not correctly

described by Eq. (1.6); C2 is not constant but a complicated function of It and

/Z. Quite a number of molecular theories13-17,35--41 and phenomenological

equations32
,42-46 have been proposed for the explicit form of W. Most of
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these molecular theories have concentrated on how to treat entanglements.

However, Gottlieb and Gayload47 have showed that none of these molecular

theories 13-17,36-39 described the experimental data33 satisfactorily for the

biaxial extension of isoprene rubber, and especially, the disagreement in small

deformation region was pronounced. As 1\ decreased (the strains became

smaller), the experimental values of aWlaI\ increased rapidly, and those of

awlah decreased abruptly, in comparison with the theoretical predictions.

Here, it should be noted that all of the past experimental and theoretical

studies assume the incompressibility of elastomers (i.e., Poisson's ratio (ft) is

equal to 1/2 and h=I), resulting in the form of W=W(l\,!2). The reported

values of f..L for elastomers are close to 1/2, but not exactly equal to 1/2.33 .48,49

Under this circumstance, elastomers should be treated as compressible

materials, and W should be expressed as W=W(!t'/2,1]) for detailed

discussion. The characteristic behavior of aWlah and aWlah. in small

deformation region observed in the experiments may originate from the non

zero compressibility of real elastomers (~1/2 and l]¢l). From this

viewpoint, it is very interesting to eliminate the assumption of

incompressibility, and to analyze the stress-strain behavior using experimental

values of~.

Poisson's ratio f.1. is one of the elastic constants governing the elastic

behavior of materials together with Young's modulus and shear modulus.50

However, there are several studies33,48,49 on ~ of polymer networks, while

Young's modulus and shear modulus have been investigated by many

researchers.18-28.51-58 The values of f.1. for polymeric materials reflect the

flexibility of polymer chains. For instance, the values of p, for rubbery

materials were reported33•48,49 to be very close to 1/2 which means

incompressible, while that for glassy polystyrene59 was evaluated to be 0.33
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which is fairly smaller than 1/2. The flexibility of network chains in polymer

gels depends strongly on the solubility of constituent polymer in solvent. In

the case of physical gels whose crosslinks are microcrystallites, the degree of

crystallinity is also an important factor controlling the flexibility of network

chains. It was reported in a few studies56•57 that the stress-strain behavior and

Young's modulus of PYA gels are greatly affected by the solvents as well as

the degree of crystallinity. These factors are expected to influence the value

of /-l, but the details have not been studied yet.

In addition to rubber elasticity, swelling phenomenon is one of the most

characteristic properties of polymer networks. Thermodynamics for swelling

of polymer networks has been studied by many researchers.3,28,51-54,60-70

Floly and Rehner60 first treated it theoretically, assuming that the free energy

of polymer network systems consists of the elastic term (Fel ) related to the

deformation of network chains on swelling and the osmotic term (Fosm) with

respect to the mixing entropy for the network and the solvent. They

represented Fel by using Gaussian chain statistics, and Fosm by employing

mean field theory. The expressions of Fe! and Fosm for polymer networks

crosslinked in solution with the polymer volume fraction tPo are given by

~e~=NA vI(/-letjJ - ve lfJo2/3 tjJl/3) (1.7)

Fosm A2
ksT = NA (In(l-lfJ) + tjJ + X '1') (1.8)

Here, Fel and Fosm is respectively the elastic and osmotic free energies per site

occupied by a monomer, and NA' kB , VI, tP and X are the Avogadro's number,

the Boltzmann constant, the molar volume of solvent, the polymer volume

fraction in swollen network, and the polymer-solvent interaction parameter,

respectively. The dependence of the polymer volume fraction in equilibrium

swollen networks (fjJJ on tPo is given by the minimization of total free energy

with respect to tP as follows. 67

-8-



4>e ex N -3/5 4>0 114 (1.9)

Here, N is the polymerization index of network chain, and tP is assumed to

4>« 1. De Gennes3 argued that Gaussian statistics and mean field theory are not

applicable to semidilute concentration regime in which excluded volume

effect and concentration fluctuation are considerable. The c* theorem,

proposed by de Gennes,3 assumes that 4>c is identified with the overlapping

concentration for network chains (tP *) as

rpe~ ¢* ex N-4/5 (1.10)

The c* theorem postulates t~e complete disinterpenetration of network chains

(i.e., no overlapping of network chains) in equilibrium swollen state, and

regards rp * as the reference state irrespective of 4>0' The following familiar

scaling relation between t/>c and the elastic modulus of equilibrium swollen

networks (Es) was first derived from the c* theorem.

Es ex rpe 9/4 (1.11)

Equation (1.11) has been experimentally confirmed for various kinds of

polymer network system.51 -54 The validity of the c* theorem has often been

believed on the basis of the confirmation of Eq. (1.11). However, it should

be emphasized that Eq. (1.11) can be derived without assuming the complete

disinterpenetration of network chains on swelling.65 In other words, the

confirmation of Eq. (1.11) does not necessarily support the validity of c*

theorem. Accordingly, in order to elucidate the interspersion state of

network chains in equilibrium swollen state, another experiments which do

not rely on Eq. (1.11) are necessary (for instance, the experiments for 4>0

dependence of Es and tPJ, and another theoretical approach may be needed.

The studies on the kinetics of swelling of polymer networks have much

progressed since Tanaka et al.71 ,72 proposed the equation of motion for

polymer networks, which is written as

-9-



(1.12)

(1.13)

r av d'
I:> at - IV S

Here, ~, v and S are the friction coefficient between the network and solvent,

the displacement vector and the stress tensor for small volume elements in

polymer networks, respectively. Swelling processes of tgels with various

shapes have been both theoretically72-74 and experimentally72-77 investigated

on the basis of Eq. (1.12).

The studies on the swelling of gels have mainly been made under no

external stress field. Recently, an interesting phenomenon for the swelling of

gels under a constant uniaxial strain has been reported78. When a constant

uniaxial strain is imposed on an equilibrated swollen gel in solvent, the gel

swells further, and the sustaining stress is simultaneously reduced to a certain

level. Tthe times characteristic of the induced swelling and of the resultant

stress relaxation agree with each other. These results mean that the further

swelling is induced by an external strain or stress, and causes the mechanical

relaxation. The magnitude and the kinetics of further swelling and

mechanical relaxation is expected to strongly depend on deformation modes:

for example, equibiaxial, and strip-biaxial deformations etc.. However, the

effects of deformation modes on further swelling and mechanical relaxation

behavior have not yet been clarified.

The strain-induced swelling suggests that for a polymer gel deformed in

solvent It is essentially a time-dependent quarititiy. Poisson's ratio is generally

defined under a uniaxial deformation by the ratio of the strains parallel and

perpendicular to stretching direction (£jj and £.L, respectively):
It = - £.L

£.

The strain-induced swelling makes £.L time-dependent, which means that 11 is

time-dependent. The swelling causes the increase in the width of deformed

gels, resulting in the decrease of 11. If elongation is made fast so that the

-10-



strain-induced swelling would be negligible, we will get f.l close to 1/2,

reflecting the incompressibility of gel itself. On the other hand, when the

time scale of extension is much longer than the characteristic time for

swelling (i.e., the strain-induced swelling is equilibrated), f.l is dominantly

determined by the strain-induced swelling. Hereafter, we call the former and

latter f..l the initial Poisson IS ratio (f..lo) and the equilibrium Poisson IS ratio

(Pm), respectively. The value of pm was theoretically evaluated to be 1/6,7H

which was found to agree well with the experimental results.79 In the time

scale between the two extreme cases, fl is time-dependent, and has an

intermediate value between flo and f..lm. The time-dependent Poisson's ratio is

one of the unique properties of polymer gels, but there have been no

quantitative studies on the time dependence of fl of polymer gels.

The elastic properties of polymer network systems have mainly been

studied in either preparation or equilibrium swollen state. On the other hand,

there are several studies53 ,80-82 on the elasticity of deswollen polymer

networks. The "deswollen polymer networks" mentioned here are dry

networks prepared by removing solvent from networks crosslinked in

solution. We here treat a deswollen network whose constituent polymer has a

glass transition temperature much lower than the room temperature. This

deswollen (dry) networks reveal rubber elasticity. The structure and the

elasticity of deswollen networks are still an unsettled subject in the physics of

rubber elasticity.3,10,41 The deswelling process is accompanied by the

reduction of the dimension of network chains due to the volume decrease of

material. The contraction of network chains on deswelling has often been

called supercoiling. Supercoiled chains are assumed to have a contracted

conformation in comparison with Gaussian chains. Hence, the structure and

the mechanical properties of deswollen networks are expected to be much
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different from those of the networks crosslinked in the bulk state, although

both of them are dry networks. However, the details on the conformation of

supercoiled chains and the effects of supercoiling on the mechanical

properties of deswollen networks are unclear at present. In the earlier

studiesSO-82, no attention to the effects of supercoiling on the elasticity of

networks was paid, and the deswollen networks were treated similarly to the

networks crosslinked in the bulk state. Another topic for deswelling is that a

deswollen network, which are prepared at a low concentration, can exhibit a

remarkable extensibility relative to conventional elastomers.7° This

expectation is based on the two reasons: The amount of trapped entanglement

which is one of the origins limiting extensibility, is considerably reduced by

crosslinking at a low concentration. The end-to-end distance of network

chains in undeformed state is decreased by deswelling. However, noticeable

extensibility of deswollen polymer networks has not yet been reported.

The main aims in this study are summarized as follows:

1) To estabish how to measure Poisson's ratio of polymer gels,

and to elucidate the time dependece of Poisson's ratio originating from

strain-induced swelling

2) To clarify the origin of the characteristic behavior of the stress-strain

relations at small deformations for real elastomers

3) To establish the theoretical description for the elasticity and

thermodynamics of the swelling for polymer networks

4) To clarify the effect of supercoiling on the elasticity of deswollen

polymer networks

In this chapter, the motive of this thesis has been mentioned. Some

current problems about the swelling and elastic properties of polymer
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network systems have been described together with the historical background

of this research field. The contents of this thesis are as follows:

In Chapter 2, the values of initial Poisson's ratio P.o of poly(vinyl

alcohol) gels are measured. The dependence of P.o on the swelling solvents

and the degree of crystallinity is investigated.

In Chapter 3, the dependence of Poisson's ratio of gels, when elongated

in solvent, on the experimental time scale is theoretically and numerically

investigated. The degree of swelling and mechanical relaxation induced by an

external stress or strain under various deformation modes are calculated from

the thermodynamics for the swelling of gels under constraints. The processes

of swelling and mechanical relaxation are simulated on the basis of the

kinetics of swelling for constrained gels.

In Chapter 4, the stress-strain behavior of segmented polyurethaneureas

(SPUs) under pure shear deformation is analyzed using the value of flo

obtained experimentally. The data of stress-strain relations for various

rubber vulcanizates, which were reported in earlier studies,33,34 are re

analyzed using the experimental values of P.o' The theoretical values of

a Wlali U=1,2,3) at zero strain limit are derived from the infinitesimal

elasticity theory taking the compressibility into account, and the theoretical

predictions are compared with the experimental results for the SPUs and the

four types of rubber vulcanizates.

In Chapters 5 and 6, degree of equilibrium swelling and elastic modulus

of polysiloxane networks crosslinked in solution are investigated as a function

of polymer concentration at crosslinking. Two types of polysiloxane

networks are employed in order to elucidate the effect of trapped

entanglement on elasticity. One is prepared by end-linking

poly(dimethylsiloxane) with high molecular weight which is entangled in the

-13-



uncrosslinked state (Chapter 5). The other is made by end-linking

oligo(dimethylsiloxane) with low molecular weight which is not entangled in

the uncrosslinked state (Chapter 6). The experimental results obtained in

Chapters 5 and 6 are compared with the predictions by the c* theorem and the

affine model regarding preparation concentration as the reference state.

In Chapter 7, initial Young's modulus and stress-strain relations of

deswollen polydimethylsiloxane networks are investigated as a function of

polymer concentration at crosslinking. The details of supercoiled structure

are estimated from the mechanical properties of deswollen networks. The

remarkable extensibility of the deswollen polydimethylsiloxane network,

which is prepared at a low concentration, is both experimentally and

theoretically demonstrated.
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Chapter 2
Effects of Swelling Solvent and Degree of Crystallinity on
Initial Poisson's Ratio of Poly(Vinyl Alcohol) Gels

2.1 Introduction

As mentioned III Chapter 1, Poisson's ratio (p,) of polymer gels

deformed in solvent is essentially a time-dependent quantity due to the strain

induced swelling. Two kinds of limiting values of !.l are defined as initial

Poisson's ratio (!1n) and equilibrium Poisson's ratio (!.loo) according to the two

limits of the short and long time scales. If a gels is elongated fast so that the

strain-induced swelling would be negligible, we obtain !.lo' The values of !.lo

are equivalent to those obtained by experiments in air, even if the elongation

is made in solvent. The values of {to reflect mechanical properties of the gel

itself. In this chapter, {to is exclusively discussed. Most of conventional

extensional experiments, which are made under a constant crosshead speed,

correspond to this situation, because the process of strain-induced swelling is

very slow. When the time scale of experiments is comparable to the

characteristic time of strain-induced swelling, the effect of the strain-induced

swelling is significant. We treat this case in Chapter 3.

. Studies on the mechanical properties of polymer gels such as stress

strain relations and elastic moduli have been performed in air extensively.I-4

However, the precise measuments on !.lo of polymer gels have not been made

yet, in spite of its importance. The values of Po for polymeric materials

reflect the flexibility of the constituent polymer chains. For example, rubber

like materials show Po close to 0.5,5-7 but !Lo of glassy polymers is much

lower than that of rubbers; Po of glassy polystyrenes is reported to be 0.33.8

The flexibility of network chains of polymer gels is greatly influenced by the
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solubility of the constituent polymer in a swelling solvent. The flexibility of

network chains in the poly(vinyl alcohol) (PVA) gels of which crosslinks are

microcrystallines is strongly dependent on the degree of crystallinity as well

as the swelling solvents. Actually, stress-strain relations and initial Young's

moduli of PVA gels were affected by the solvents used for swelling and the

annealing temperatures.3 .4 However, the effects of these factors on 110 have

not been investigated yet.

Measurement of 110 is also important to examine the true stress-strain

relations, because the evaluation for the cross-section of deformed samples in

process of elongation needs the value of !10' All the past studies have a priori

assumed the incompressibility of materials (110=0.5) for the calculation of true

stress.

In this chapter, we evaluate !10 from the measurement of dimensional

changes of PVA gels during uniaxial elongation. We investigate flo for the

three types of gels: PVA gels swollen in a good solvent (a mixture of water

and dimethylsulfoxide (DMSO)), PV A gels swollen in a poor solvent

(ethanol), and PV A hydrogels swollen in water which are prepared by

annealing the PYA gels. The dependence of 110 on the polymer content and

initial strain rate is investigated for the PYA gels swollen in the mixed

solvent. The annealing temperature dependence of flo is discussed for PV A

hydrogels. Finally, we show the true stress-strain relations of the gels using

the experimental values of flo'

2.2 Theoretical Background

In order to describe the deformation of gel samples, we set 3

dimensional Cartesian coordinates as shown in Fig. 2-1. When a sample is

extended in the x-direction, the sample dimension in the x-direction is
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Figure 2-1'." "Schematic representation of the sample before and after

deformatiqn: (A) before; (B) after.
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(2.1 )

(2.2)

increased, and the dimensions in the y- and z-directions are reduced in most

cases. In this deformation, the deformation gradient tensor has only the

diagonal components. Each component (}1.1, AZ, A3) of diagonal part can be

written as follows.

A = ~ A" = L
1 xo' - Yo'

Here, xo, Yo and 20 are the initial dimensions, and x, y and z are those after

extension in each direction. y and Z can be time (1) dependent quantity.

Hereafter, we deal with the limiting values of y and z at l~O. The Finger

type deformation gradient tensor (F -1) can be written as follows.9 For

Isotropic materials, A2 =A3.

[

AIO 0]
F -1 = 0 A2 0

o OA2

A generalized definition for Poisson's ratio f.l is given bylo

A2 =AI-It (2.3)

(2.5)

(2.6)

When the deformation is applied to the sample, the increase of volume is

expressed by

det(F -1) = A\-2,u+l (2.4)

It can be easily shown from Eg. (2.4) that ~L is equal to 0.5, when the material

is incompressible (det(F -1) = 1). The cross-sectional area (S) perpendicular

to the direction of extension is given by

S = SOAl~2,u

Here, So is the initial value which is Yozo. Under a uniaxial elongation, all the

components except the xx one of stress tensor (0) are equal to zero. The true

stress (0) is written by

o == Oxx =(Oxx)EAl2,u
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Here, (Oix)E is the xx component of the engineering stress tensor (DE). When

the specimen is extended in x-direction with a constant speed of v, Hencky

strain (e) in x-direction is defined by 11

£ = In Al (2.7)

The initial rate of strain (60) can be given by

60 =~ (2.8)
Xo

2.3 Experimental

2.3.1 Gel Samples

The PYA used in this study was supplied by Unitika Co., Japan. The

degree of polymerization was 1700, and the degree of saponification was 99.5

mol%. The solvent used was a mixture (D/W) of DMSO and water (4:1 by

weight). PYA was dissolved into the solvent at 10SOC. The hot solution was

casted into 6 x 6 x 20 mm metal mold. Three types of gels were prepared.

(1) The gel sample-coded as PYA GEL (D/W) was prepared by cooling the

solution to -20°C and then maintaining in a freezer for 24h. (2) The gel

sample-coded as PYA GEL (EtOH) was obtained from PYA GEL (D/W) by

exchanging the mixed solvent for ethanol. (3) In order to obtain PVA

hydrogel samples which were coded as PYA HYDROGEL, PVA GEL(EtOH)

were dried in a vacuum oven at 30°C, and then annealed in a oil bath for 1h.

The annealing temperature was designated by Ta, which were 100, 105, 110

and 11SOC, as shown in Table 2-1, in which all the experimental data obtained

in this study are tabulated. PVA HYDROGEL was finally obtained by

immersing the annealed gel in water until the equilibrium swelling was

achieved.
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Table 2-1. Polymer Concentration (c), Crosshead Speed (v), the Constant

of Eq. (2-9) (k), Initial Poisson's Ratio (!-to) and Initial Young's Modulus (Eo)

for PYA GEL (D/W), PYA GEL (EtOH) and PYA HYDROGEL

c (kg/m3) v (mm/min) k !10 Eo (Pa)

PYA GEL (D/W)

77.3 30 0.99 0.474±0.006 5.8xl04

111 0.5 1.18 0.455±0.003 1.3x105

111 3 1.05 O.453±0.002 1.6xl05

111 30 1.07 0.472±0.004 1.2xl05

111 100 1.04 0.463±0.004 1.4xl05

111 300 1.10 0.456±0.005 1.1 xl05

145 30 1.06 O.470±0.003 3.1xl05

III au 111 30 0.99 0.485±0.005 1.1xl05

PVA GEL (EtOH)

413 30 1.10 0.338±0.003 4.0xl07

PYA HYDROGEL

Ta ==100oC 542 30 1.18 0.429±O.OO2 4.5xl06

Ta ==105°C 617 30 1.02 0.430±0.OO2 6.1 xlO6

Ta =110°C 723 30 1.04 O.447±0.O03 1.0xI07

Ta =115°C 798 30 1.05 0.426±0.OO3 2.1xl07
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2.3.2 Meas'urements

Uniaxial elongation of PVA gels was performed in solvent by using a

Orientec RTM-250 tensile tester with a specially designed solvent bath. The

extension processes of the samples were recorded with video camera. The

nominal extension rate (Aa) was determined by the distance between the

sample cramps. Ai was determined by measuring the distance between the

two marked points with relatively short distance (",,3mm) in the central region

of sample. The distance was measured on the monitor screen. By comparing

AJ with Aa, we confirmed that (Ar 1) is proportional to (Aa-l) as shown by

the following equation with using a constant ked :

A1-1 = k(Aa-l) (2.9)

Figure 2-2 shows the plots of Al vs. Aa for PYA GEL(DIW) with e=111 kg/m3

and v=30mmlmin. As can be seen from this figure, all data points fall on a

straight line. The slope of the straight line corresponds to the value of k in

Eq. (2.9). The value of k determined by least-square method was 1.07. For

the other samples, Al and Aa shows the linear relation similar to those for

PYA GEL(D/W) with c=111kg/m3 and v=30mmlmin. The values of k for the

other samples are also listed in Table 2-1. As is seen from Table 2-1, the

experimental values of k are a little scattered, but they are slightly larger than

unity except PVA GEL(D/W) with c=77.3kg/m3 and that with e=111kg/m3

measured in air. The larger val ue of k than unity suggests that the central

region of the specimen is elongated to larger extent than the edges. This non

uniform elongation is due to the effect of cramps; the edge part of sample is

collapsed at cramps. When deformation is applied to the system, the extent of

elongation at the collapsed edges would be smaller than that at the central

region. The value k=O.99 for the two samples is close to unity and indicates

that the effect of cramps is small.
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Figure 2-2. Plots of actual extension rate (AI) versus nominal extension

rate(Aa) for PVAGEL(D/W) at c=lllkg/m3, v=30mmlmin.
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A2 was determined by measuring the width at a guide line position on

the monitor screen. The true stress (a) - strain (e) relations of the various

PYA gels were obtained using the experimental values of !lo'

It is well known that PVA gels display aging effects. To avoid the

effects, all the experiments in this study were completed within 2 hours. This

will be discussed later.

2.4 Results and Discussion

2.4.1 Effect of Elongation Speed on flo

Figure 2-3 shows the plots of -log ~ vs. log Al for PVA GEL(D/W)

with c=lllkg/m3 and v=30mm/min. The relation between -log ~ and log Al

is expressed by a straight line. The slope determined by least-square method

was 0.472±0.004. The standard deviation, 0.004 in this case, stands for the

scattering of data points in the figure. As is evident from Eq. (2.3), the slope

of the line corresponds to 11-0 of the sample. The value of 110 for the samples

studied are listed in Table 2-1. There was a linear relation between -log i\.z

and log Al in all specimens examined in this study, suggesting that f.lo of each

sample is constant over a wide range of strain examined here.

The value of !to measured at various v for PYA GEL(D/W) at

c=1Ilkg/m3 in solvent and in air are tabulated in Table 2-1. We plotted flo

against eo calculated using v. The plots are shown in Fig. 2-4. The values of

!to for the samples stretched in solvent show almost the same value in eo
range of 4.17xIO-4 s-I to 2.50xIO- I S-I. This means that flo is almost

constant in the time scales used for the experiments. The experimental time

scale estimated by 11 eo' is ranging from 4.0x 100 s to 2.4x HP s. As is seen

from Fig. 2-4, the value of !-to estimated by extension in air is a little larger

than, but almost the same as that in solvent. This suggests that no solvent flow
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Figure 2-3. Double logarithmic plots of ~ versus Al for PYAGEL(D/W)
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Figure 2-4. Poisson's ratio (Ila) plotted against the logarithm of the initial

rate of strain (eo) for PVAGEL(D/W) at c=111kg/m3• Symbols: (0)

extension in solvent; (~ extension in air.
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between inside and outside of gel occur in the time scale of the experiments in

this study.

It was suggested 12,13 that a gel swells because of the increased osmotic

pressure due to the stretching in the long time scale, i.e., the strain-induced

swelling. This condition is obtained only when 1/ i 0 is much larger than the

characteristic time for the diffusion of network (LD) , which is order of .,P/D

where D is the diffusion constant for the network. The constant D for PY A

GEL(D/W) is unknown at present, but D for polyacrylamide-water system

was reported to be the order of 10-7cm2/s. 13 ,14 Using this value for PY A

GEL(D/W), TD is roughly estimated as 106 s, which is much larger than the

experimental time scale in this study. This estimation means that the strain

induced swelling is negligible in the elongational experiments in this study. In

order to satisfy the osmotic equilibrium condition, the sample should be

elongated at i 0 less than the order of 10-6 S·I, where the equilibrium Poisson's

ratio !J.oo is obtained. However, such a slow extensional experiment is difficult

to be performed for PYA GEL(DIW) because of aging of the samples. For

example, we have observed a stress increase after about 3 hours in the stress

relaxation experiment at the fixed strain of 0.05. The increase of stress is due

to the aging effects and/or the crystallization caused by orientation. This fact

implies that a very slow elongational experiment inevitably involves the

structural change in PVA GEL(D/W). On the other hand, polyacrylamide

gels in water under a constant uniaxial strain, in which no structural change in

the gel occurs in the long time-scale experiments, was reported to show the

increase in the width of sample at the long times. 13 As mentioned before,

Poisson's ratio obtained under this condition is {too, which differs from !lo'
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2.4.2 Effect of Polymer Concentration and Degree of Crystallinity on !-to

The val ues of !-to measured at v=30mmlmin (£ o=2.50x 10-1
S-I) were

plotted against the polymer concentration c in Fig. 2-5. The value of !-to of

PYA GEL (D/W) is independent of c in the range from 75kg/m3 to 145kg/m3 .

The log a - log E curves for PYA GEL(D/W) in the c range examined here

do not show the shoulder, and the mechanical behavior resembles that of

crosslinked rubbers as also reported before.4 The crosslinking density

increases with increasing c. The result shown in Fig. 2-5 indicates that the

crosslinking density has little effect on ""'0 of PYA GEL(D/W) within the c

range examined here.

H was reported3 that the swelling and mechanical properties of PYA

hydrogels are controlled mainly by Ta in course of the hydrogel preparation

process. PYA HYDROGEL shows a shoulder on the log a - log e curve, and

the shoulder is closely related to a breakdown process of the microcrystalline

domains which behave as crosslink points. The shoulder becomes pronounced

as Ta increases, which originates from the increase in the degree of

crystallinity. In this study, the same behavior was also observed: The stress

strain relation is linear at small strains and becomes nonlinear in large strain

range. All the points in the plot of -log ~ vs. log A} for all specimens of

PYA HYDROGEL fallon a straight line overthe entire e range studied here.

This clearly suggests that !-to value for PYA HYDROGEL is kept constant

through the whole extension process, regardless of the breakdown of

microcrystalline domains. This experimental fact is a little surprising,

because it implies that the structural change in the gel has no effect on f.lo.

As can be seen from Table 2-1 and Fig. 2-5, the values of !-to for PYA

HYDROGEL at different Ta are almost identical, suggesting that the

crystallinity has little influence upon !-to for PYA HYDROGEL within the Ta
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range investigated here. The l-lo values for PYA HYDROGEL were slightly

lower than those for PVA GEL(D/W). The difference might be due to the

difference in the structure of gel network. Naito reported 14 that water as well

as the mixed solvent is a good solvent for PYA. This means that the chains

between the crosslinking domains in PYA HYDROGEL and PYA GEL(D/W)

are also flexible. The microcrystalline domains in PVA GEL (D/W) which

has never been annealed are relatively small.4 On the other hand, PVA

HYDROGEL has the microcrystalline domains with finite sizes formed by

annealing.3 The flexibility of amorphous chains for PYA HYDROGEL

should be restricted to some extent near the crosslinking domains. The less

flexibility of polymer chains leads to the creation of void in the network

structure during elongational deformation. The difference in the degree of

flexibility of PVA chains originating from the different size of the

microcrystalline domains might explain why l-lo of PVA HYDROGEL is

slightly lower than that of PYA GEL(DIW).

2.4.3 Effect of Swelling Solvents on l-lo

The !-to value of PVA GEL(EtOH) was evaluated to be 0.338, which is

much lower than those of PVA GEL(DIW) and PVA HYDROGEL as shown

in Fig. 2-5. Ethanol is a poor solvent for PYA. PYA GEL(EtOH) is opaque

resulting from a phase-separated structure, which consists of the PYA-rich

phase and solvent-rich phase.4 Most of PYA chains exist in PYA-rich phase.

The glass transition temperature (Tg) of PYA has been reported15 to be 85°C.

The PYA chains in PYA GEL(EtOH) are expected to be in glassy state at the

measuring temperature (2YC). The flexibility of PVA chains in PVA

GEL(EtOH) is much lower than that in PYA GEL (D/W) and PYA
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HYDROGEL. The low value flo=O.338 obtained for PYA GEL(EtOH) is

analogous to the value flo=O.33 of a glassy polystyrene.s

2.4.4 True Stress-Strain Relations of PYA Gels

Figure 2-6 shows the double logarithmic plots of a - £ relation for PYA

GEL (D/W) with c=111kg/m3 and v=30mm/min in which a was calculated

with flo=0.472 obtained experimentally. The a - £ relation calculated with

110=0.5 is also shown in the figure .. The values of a calculated with flo=O.5

are always larger than those with flo<O.5, because the calculation with !lo=O.5

under-estimates the cross-section of the elongated samples. The differences

between the two curves are found to be small, though the difference becomes

larger as the strain increases. The ratio of a calculated with !lo=0.472 to that

with !-to=O.5 is 1.08 at the breaking point (£=1.41).

Figure 2-7 shows log a - log £ curves for PYA GEL(D/W) with

c=111kg/m3 at various v. The true stress a for each sample was calculated

with !-to obtained experimentally. The curves are shifted vertically by a

indicated in the figure in order to prevent from overlaps. The values of Eo

for PYA GEL(D/W) at different v are summarized in Table 2-1. The shape

of all the curves are identical, and no shoulder is observed. Eo is independent

of v as shown in Table 2-1. This suggests that all curves can be superposed

by vertical shifts. The stress relaxation during extension was not observed

for PYA GEL(D/W) in £0 range from 4.17x10-4S- 1 to 2.50x10- 1 s-l. On the

other hand, the shape of log a - log £ curve for PYA HYDROGEL was

changed depending on £0 ranging from 1.67x10-3 S-1 to 5.00xlO- 1 s-I,3

which was closely related with the stress relaxation in course of extension.

No indication of stress relaxation during the elongation of PYA GEL (D/W)
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suggest that the size of microcrystalline domains is small, which prevents the

stress concentration on the crosslinking domains.

In Fig. 2-8, plots of log a vs. log £ for PYA GEL(EtOH) at

c=413kg/m3 and v=30mm/min are shown. The concentration c was

determined by measuring the weight of a equilibrium deswollen gel in

ethanol. The concentration Co is the polymer concentration at which PYA was

initially dissolved in the mixed solvent. The true stress a is calculated by

using ~o=O.338 obtained in this study. For a comparison, the curve obtained

by assuming !lo=O.5 is also shown by a dashed line. The value of Eo of PYA

GEL(EtOH) is listed in Table 2-1. True a values calculated with ~o=O.338 is

lower than that with ~o=O.5 in the high £ region. At the breaking

point(£=1.59), the ratio of a for ~o:=O.338 to that for fl-o=O.5 is 1.67. The

curve calculated with ~o:=O.338 shows steeper upturn in high e region,

compared with that with ~o=0.5. The shoulder in the loga-Ioge curve is

attributed to the breakdown process of the PY A-rich phase in the two-phase

structure.4

2.5 Conclusions

The values of Poisson's ratio /-lo for the three types of PYA gels were

obtained by uniaxial elongation experiments. The values for PYA gels

swollen in a mixed solvent of DMSO and water, which are good solvents for

PVA, were close to 0.5, independently of polymer concentration. The

annealed PYA gels swollen in water, which have the crosslinking domains in

finite size, showed the slightly lower value of ~o than the unannealed ones.

On the other hand, J.lo of PVA gels in ethanol, which is a poor solvent, was

much lower than those of PYA gels swollen in good solvents. The difference

in ~o value between those gel samples was explained by the degree of
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flexibility of PYA chains. There was a linear relation between -log Al and

log ~ over a wide range of E for each sample, indicating that flo is kept

constant throughout the whole extension process. It was found that flo is time

independent in the relatively short time region, in which no flow of solvent

occurs. The true stress-strain curve for each gel was obtained using the

experimental value of Po.
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Chapter 3
Theoretical Studies on Time-Depedent Poisson's Ratio and
Mechanical Relaxation of Swollen Networks

3.1 Introduction

Studies on the mechanical properties of polymer gels have been

extensively performed by many researchers. Most of them have been

concerned with the mechanical properties of the gel itself. In other words,

the mechanical tests have been performed in air. l-4 It was recently reported5

that an applied constant strain induces a further swelling of equilibrium

swollen gels in solvent, and the stress relaxation is caused by the strain

induced swelling. The strain-induced swelling originates from the change of

the equilibrium state due to the application of external strain (stress), and the

degree of the strain-induced swelling is controlled by the thermodynamics of

gel systems. Then, the mechanical behavior of gels in solvent is much more

complicated than that in air, because the results obtained by experiments in

solvent will be dependent on the thermodynamic properties as well as the

mechanical properties of the gel system. The mechanical behavior in solvent

is strongly affected by a characteristic time for swelling governed by the

diffusional motion. When the experimental time scale is much shorter than

the characteristic time for swelling, the results obtained are equivalent to

those in the experiments in air, i.e., the thermodynamic effect (the strain

induced swelling) is negligible. Actually, most of the past studies on the

mechanical properties of gels have treated this situation. The results shown in

Chapter 2 are also obtained in this situation. On the other hand, if the

experimental time scale is much longer than the characteristic time for

swelling, the results will reflect the thermodynamic properties of the gel
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system comprising of the polymer network and the surrounding solvent. In

the time scale between the two extreme cases, gels will show the complicated

mechanical behavior which is the combination of both the mechanical

properties of gel itself and the thermodynamic ones of gel system. One of the

physical quantities, which embody this complicated situation, is the time (1)

-dependent Poisson's ratio (/1). As described in Chapter 2, the initial

Poisson's ratio !to of gels in good solvents was close to 1/2 meaning

incompressible. On the other hand, the value of f.l at thermodynamic

equilibrium, i.e., the equilibrium Poisson's ratio (/100)' was reported to be ca.

1/6 for polyacrylamide gels in water (good solvent).5 When the time scale of

extension is comparable to that of swelling, the value of f.l has an intermediate

between {.lo and {.loo· In this chapter, the t-dependence of f.l for gels in solvent

during and after elongation is theoretically and numerically investigated.

The stress relaxation caused by the strain-induced swelling was both

theoretically and experimentally investigated for uniaxially stretched gels.5,6

The degree and process of the stress relaxation in the experiments were well

described by a theory based on the thermodynamics and the kinetics for the

swelling of constrained gels. The degree and process of the strain-induced

swelling and the mechanical relaxation are expected to depend strongly on

deformation modes, but the details are unknown at present. In this chapter,

we investigate theoretically the strain-induced swelling and the resulting

mechanical relaxation (stress relaxation and creep) of gels in solvent under a

constant strain or stress applied by the three types of deformation modes;

equibiaxial, strip-biaxial(pure shear) and uniaxial streching. The magnitude

of the further swelling and mechanical relaxation are derived from the Flory

type free energy for constrained gels. The kinetics of swelling and

mechanical relaxation is considered on the basis of the equation of motion for
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polymer network and the constitutive equation of gels. We consider here a

thin disk-shaped gel in the case of biaxial deformation, and a long rod-shaped

gel for uniaxial deformation. The time dependence of the stress relaxation

and creep is calculated using the two methods different in the treatment of the

process of strain-induced swelling. One assumes the isotropic swelling

process (zero-th order approximation).5 The other considers the anisotropic

swelling process caused by the difference in the dimensionality of diffusion

(first order approximation).6 Which of two methods describes the

experimental results more precisely is not clear at present due to the lack of

experimental data. Therefore, we employ here these two methods.

In the next section, the basic equations on the theromodynamics and

kinetics for the swelling of constrained gels are described. From the basic

equations in Section 3-2, the t dependence of t-t for a uniaxially stretched gel

in solvent during and after elongation is derived (Section 3-3). The

dependence of the equilibrium properties for constrained gels on deformation

modes is investigated, and the process of mechanical relaxation under each

defonnation mode is also shown (Section 3-4 and 3-5).

3.2 Basic Equations of Gel Systems

3.2.1 Thermodynamics of Swelling of Gels under Various Constraints

In a Cartesian coordinates, we consider the uniaxial (in x-direction) and

biaxial deformation (in x- and y- direction) of an isotropic rectangular gel in

solvent, which swells at equilibrium in non-deformed state. The non

deformed state is refered to as the reference state in this study. In Fig. 3-1

we show schematically the 3-dimensional Cartesian coordinates and the kinds

of deformations employed in this study. Using a free energy expression
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similar to that of a uniaxially stretched gel proposed by Hirotsu et al.,7 we can

write the free energy (F) for a biaxially stretched gel as follows.

F= Fa + NskBT{In{l - t/J) + Xt/J} + 1. NskBT f. L aT - 3 _lnfL))
2 \':::x,y,Z "\V 0

- L filio (ai - 1) (3.1)
i:::x ,y

where Fa is the free energy of pure polymer and solvent, kB the Boltzmann

constant, T the absolute temperature, Ns the number of a solvent molecule, t/J

the polymer volume fraction, X the polymer-solvent interaction parameter,

Nc the number of active chains in the reference state, and Ii the external

forces in the i-direction. The quantity, ai, is a principal ratio in the i

direction, and axayaz=VIVo=t/Jol4>, where V and Vo are respectively the

volumes in deformed and reference state, and l/Jo is the value of l/J in the

reference state. The shear modulus Go in the reference state is given by

Go=NckBT. We obtain the expression for the uniaxially stretched gels, if

fy=O and ay=az are used in Eq. (3.1). The osmotic stress (Jr:i, i~x, y and z)

acting normally (inward) on the gel surface perpendicular to i-axis is defined

as

Hi =- aj~k (::,) (3.2)

Hereafter, we deal with the gels with 4>0 «1, and also 4> «1. At equilibrium,

Xi =0 is satisfied, i.e.,

_ - kBT ex l)~ NckBT (2 _1) fx - 0
Jr:x - vs - 2 l/J02 + 2ayaz ax - ax - ayoz -

_ kBT 1~ NckBT l.... fy
- ny - v ex - 2)A. ? + 2 (2ay - ) - = 0

S 'f'0- azax Oy azax

(3.3a)

(3.3b)

kBT 1 V NckBT 1
- ]f;.L. = ""V; ex - 2) 4>02 + 2oxo y (2az - 0) = 0 (3.3c)

Here, the quantitiesjx/uyuz andjyluxuz correspond to the external stresses (Ox

and Oy, respectively) exerted normally on the gel surface in the x- and y-
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(3.4)

directions. Since ox=ay=O and Jtj=O are satisfied III the reference state

(ux=Uy=uz=1), we obtain

ZifJo2 1
Nc=--(Z-X)

Vs

From Eqs. (3.3c) and (3.4), we have

1 1 2uz
Y" + Y - = 0- UxUy

(3.5)

When the strain is small, Eq. (3.5) is linearlized using the strain £i (£i=Ui-1).

Then, we obtain the relation between £x, £y and £z in equilibrium as follows.

£x + £y + 5£z = 0 (3.6)

The linearlized expressions of ax and Oy for the biaxial deformation are given

by

(3.7a)

and

(3.7b)

The relation corresponding to Eq. (3.6) and the expression of Ox for the

uniaxial deformation are obtained from Eqs. (3.6) and (3.7a) with £y=£z,

respectively.

3.2.2 Governing Equations for Small Volume Element of Gel

We focus here a small volume element of the gel, which keeps its

volume constant during the instantaneous deformation. This is equivalent to

the condition that initial Poisson's ratio (f-lu) of the element is 112. The stress

and strain acting on the small element in the gel (s and u) are respectively

written by the sum of the external ones (s and ii) and those induced by the

osmotic swelling (S05 and u ') as
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S =i + Sos

and

u = u+ u'

The expression of Sos was obtained by Tanaka et al.8
,9 as

sos = 2Go (u' - ~ tr(u ')1) + Kos fr(u' - u '00)1

(3.8)

(3.9)

(3.10)

(3.13)

Here, u '00 corresponds to u' at equilibrium, I the unit tensor, Kos the osmotic

bulk modulus related to the osmotic pressure, and fr(u ') means the trace of

u', i.e., fr(u ') = u IXX + U Iyy + U 'zz' The external stress i for an

incompressible material is described by the elasticity theory 10 as follows.

i =2Go u + pI =2Go (u - u ') + pI (3.11)

where p is the internal pressure. It is clear from a thermodynamic

consideration that the observable stress in experiments is s. From the

incompressibility of the volume element,

fr(u) = tr(u - u') =0 (3.12)

holds at any t. This equation means that the volume of small volume element

is not changed by the external deformation. Equation (3.12) generates the

relation tr(u)=lr(u ') implying that the volume change of small volume

element is caused only by the swelling. The strain tensor, u and u' are

defined by the corresponding displacement vectors v and v' as

uiFl/2(av/ai+av;laj) and uij'=112(av//ai+avi'/aj). Here, v and v' are

specified in the reference (non-deformed) frame. Although we deal here with

the case of !lo=1I2, the constitutive equation corresponding to Eg. (3.11) for

the case of !lo~1/2 is expressed by

s = 2Go (u - u') + (Ko - ~ Go) tr(u - u')1
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where Ko is the bulk modulus related to the compressibility of gel element

itself.

The vector v must obey the equation of motion shown by Tanaka et

al.8,9 as

r dv d'
I.:> df = LV S (3.14)

where f; is the friction coefficient between the polymer network and solvent

molecule. The time dependence of u is obtained from Eq. (3.14). Although

the swelling kinetics can be described by Eq. (3.14), the phenomenon must be

written by the combination of Sos and v' (or u ') because the external

deformation does not affect the swelling. Then, we have

dv'
~ dt = div Sos (3.15)

Equation (3.15) characterizes the time dependence of the strain-induced

swelling. The time dependence of s for the general deformation can be

determined by the set of Eqs. (3.14) and (3.15).

It was shown that the equation of motion (Eqs. (3.14) and (3.15)) is

generally separated into the two types of the diffusion equations, i.e., the

equations of the longitudinal and transverse modes.5,6 The diffusion equation

of the longitudinal mode for u is given by

a
at frCu) = Q V2 tr(u) (3.16)

where Dt is the diffusion coefficient for the longitudinal mode and

Dt=(Kos+4/3Go)~. The diffusion equation of the transverse mode for u is

given by

a f)

at rot(v)= Dr ~- rot(v)
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where Dr is the diffusion coefficient for the transverse mode and Dr=GoI'c;,.

As is clear from the definition of Eqs. (3.16) and (3.17), the longitudinal

mode controls the volume change for the small volume elements, while the

transverse mode governs the shape change without the volume change.

3.2.3 Time Dependence of Strain-Induced Swelling

As described in the later sections, the time dependence of ft, and the

process of the stress relaxation and creep are controled by the time

dependence of the strain-induced swelling (u '(1)). Here, we employ the two

methods (zero-th and first order approximation) in order to obtain u '(1). We

consider the thin rectangular disk of which thickness is much smaller than its

widths for the biaxial deformation, and the long rectangular rod whose widths

are much smaller than its height for the uniaxial deformation.

3.2.3.1 Zero-th Order Approximation. This approximation assumes the

isotropic process for the strain-induced swelling, irrespective of the gel

geometry. This assumption means that u 1
xx(1) =u'yy(t) = u1yz.(t) = (l/3)tr(u').

Accordingly, the time dependence of uris equivalent to that of fr(u '). The

time dependence of tr(u ') is obtained by solving Eg. (3.16) with the

appropriate initial and boundary conditions. For the biaxially stretched gels,

since the sizes in the stretching directions (x- and y-directions) are so long

compared to the thickness (in the z-direction), the diffusions in the x- and y

directions are negligible. Then, Eq. (3.16) must be solved as the ID (z

direction) diffusion problem. The initial condition is given by

tr(u ') = 0 at t=O.

The boundary condition can be written as follows.

tr(u ') = tr(u '(0) at boundaries.
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Equation (3.19) means that the osmotic stress acting on the small element at

the boundaries is zero at any t(>O). The value of fT(U \V:l) is determined by the

degree of swelling at equilibrium, depending on the deformation mode, and

will be shown later. The solution of Eq. (3.16) satisfying the above

conditions is

crl:i in
tT(U ') = fr(u 'oo){f Ai sin Clr Z exp(- kit) + I} (3.20)

Here, Gr is the size of gel in the z-direction in the reference state, and A ( and

k/ are the constants given by A/=-4/in and k/=DotP/a/=[2hL , where TL is the

longest characteristic time of the longitudinal mode and i an odd integer.

In the case of uniaxial (x-direction) deformation, Eq. (3.16) can be

solved as a 2D diffusion problem because the diffusional motion in the x

direction is negligible. The solution of Eg. (3.16) satisfying the Eqs. (3.18)

and (3.19) for an uniaxially stretched gel is

o:li

tr(u ') = fr(u 'oo){ ~ Bmn sin mn y sin nn z exp(- kmn t) + I} (3.21)
mn Gr Or

Here, Or is the size of gel in the y- and z-direction in the reference state, and

Bmn and kmn are Bmn=-16/mn:n:- and kmn=IJL:n:-(m2+n2)/0r2=(m2+n2)/2TL'

where m and n are odd integers.

3.2.3.2 First Order Approximation. Since the diffusions in the stretching

directions (x- andy- directions) can be assumed not to occur in the case of the

biaxial stretching, v ' of a rectangular gel can be assumed by

Vy' = U1yy(z) Y
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and u 'xx=u Iyy holds. From Eqs. (3.15) and (3.22a), the following equation is

obtained.

a-u' - TL rl2 u'a xx - LFf v- xxt

The initial condition of Eq. (3.23) is given by

u 'xx = 0

The boundary condition is expressed as follows.

at t = O.

(3.23)

(3.24)

1
u'xx = U lxxoo = 3 fTCU '(0) at boundaries. (3.25)

(3.26)

Here, u Ixxoo corresponds to u 'xx at t-oo. Equation (3.23) has the following

solution.

1 at! IJr
U 'xx =3 fTCU 'oo){t Ai sin Gr Z exp(- k'it) + I}

Here, k '1=Dr1tf2/al =f2IT:T , where T:T is the longest characteristic time of the

transverse mode.

Since the diffusion in the x-direction is negligible, v ' in the uniaxial (x

direction) deformation is assumed by

I _ I (y )
V x - U xx ,z x (3.27a)

(3.27b)

(3.27c)

The solution of Eq. (3.23) for the uniaxial deformation is written as follows.

(3.28)
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3.3 Time Dependence of Poisson's Ratio of Gels

Here, we derive the t dependence of !l for the uniaxially stretched gels

in solvent during and after elongation at a constant strain rate (i). The

global value of Poisson's ratio (fj) for the uniaxially stretched gel is defined

using the global strain E as
- £1..I-l = - - (3.29)E.

where EI, and E1.. are the global strains paralell and perpendicular to the

stretching direction, respectively.

3.3.1 Two Types of Limiting Values of Poisson IS Ratio

Poisson's ratio l-l of gels is a t-dependent quantity, and the two limiting

values of l-l (Ila and f-loo) are defined corresponding to the two limiting case.

One is the case where the strain-induced swelling does not occur (t-O). The

other is the case where the equilibrium of the strain-induced swelling is

achieved (t-oo). The initial Poisson's ratio 110 reflects the compressibility of

gel itself, and is related to the other elastic constants as 10

!lo = 3Ko - 2G (3.30)
2(3Ko + G)

where Ko is the bulk modulus of gel itself, and G is the shear modulus. The

equilibrium Poisson's ratio f-loo reflects the osmotic compressibility of the gel

system comprising of the polymer network and the surrounding solvent, and

has the following relation:

f.lco = 3Kos - 2G (3.31)
2(3Kos + G)

where Kos is the osmotic bulk modulus for the gel system. Since G in Eqs.

(3.30) and (3.31) is considered to be same, the qualitative difference between

!lo and f-loo is equivalent to that between Ko and Kos·
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3.3.2 Time-Dependent Poisson IS Ratio

The each component of u in process of uniaxial (x-directional)

elongation is obtained from Eg. (3.9) as follows.

Uxx = et
. 1

Uyy =Uv. = -f.1o£ t + 2 fr(u ')

(3.32a)

(3.32b)

Here, Uxx = 8t , and u' = (1/3)tr(u 1) were used. The t dependence of tr(u I) is

given by Eg. (3.21). The global strain £1. is obtained by averaging Uyy over

the y-z plane,

_f Uy y dS I f Uy y dS _1 Gr Gr . 1
£.l(t) - f dS' S!! f dS = al ! dy ! dz (-!J.o£ t + 2 tr(u '»

(3.33)

where dS I=(l+uyy+u7Z)dS and dS=dydz. , The strain £1.(t) can be also written

on the basis of the Boltzmann superposition principle with employing a

response function (m(t-t I» and eas
t"

and £1 is expressed as
til

£I(t) = ! 8 dt l

(3.34)

(3.35)

(3.36)

The time til is the time interval in which strain IS imposed, and t ll=f

corresponds to the elongational process, while t"=to=const to the swelling

process after the completion of the imposition of x-directional strain. The

explicit form of m(t-t l
) is given by comparing Eg. (3.34) with Egs. (3.21)

and (3.33) as follows.

m(t-t I) = 21
? JGr dy JGr dz { ~ -32(& ~ !?)

ar- m 11 mn:n:-

X . m1t . n1t [k ( }sm - y sm - Z exp - Imn t - t 1)] - 2~ar Or
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3.4 Stress Relaxation of Gels

3.4.1 Equibiaxial Case

Let us discuss the stress relaxation of the gel stretched globally with

Ex=Ey=Eo at 1=0. The quantity, E, is the global strain, while u, u I and Ii are

local strains defined for small volume element. In the case of the equibiaxial

deformation (uxx=Uyy=Eo), we have UTL-U 'TL=-2(£o-u 'xx) from the relation

tr(ii)=O. From Eq. (3.11) and sz=O, Sx (=sy) can be written by

(3.37)

The quantity, S, is the local stress related to the small volume element. The 1

dependence of global (average) external stress, ox(t)(=ay(t)), can be

expressed by

_ J Sx dz' J Sx dz 6Go Or I

axCt) = J dz ' eo I dz ::::~J(Eo - Uxx) dz (3.38)

(3.39)

where dz'=(l+uTL)dz. In the O-th order approximation, u'xx is substituted by

(1/3)tr(u '), which is represented by Eq. (3.20), while in the 1st order

approximation, Eq. (3.26) is applied to u 'xx.

3.4.2 Strip-Biaxial Case

Let us consider here the stress relaxation of the gel stretched with Ex=Eo

and Sy=O at t=O. From Eq. (3.12) and uyy=O, we get UTL-U'TL=-(eo-2u 1
XX )'

From Eq. (3.11) and sz=O, Sx and Sy can be respectively written by

Sx = 4Go (eo - ; U IXX) and Sy = 2Go (Eo - 3u 'xx)

The global external stress, ox(t) and all), can be obtained in the same way

as Eq. (3.38). In the O-th and 1st order approximations, the time dependence

of u 'xx is calculated by.using Eqs. (3.20) and (3.26), respectively.
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3.4.3 Uniaxial Case

The uniaxially stretched gel with Sx=fa at t=O is discussed here. From

Eq. (3.12), we get uyy-u 'yy=-(l/2)(so-u 'xx). From Eq. (3.11) and sy=sz=O, Sx

can be written by

Sx = 3Go (fa - u 'xx)

The quantity, (j x(t), can be expressed by

_ f Sx dS' J Sx dS 3Go ,ar ,C1r ( , )
a x( t) = f dS I E!! f dS = a/ dy dz fa - u xx

(3.40)

(3.41)

Equations (3.21) and (3.28) is used for the time dependence of u 'xx in the O-th

and 1st order approximations, respectively.

3.5 Creep Behavior of Gels

3.5.1 Equibiaxial Case

We now discuss the creep behavior of the gel under constant stresses of

ax=ay=ao at t>0. The equation tr(ii)=O gives 2uxxo+uzzo=0, where Uxxo and

U7.:lIJ correspond touxx and Uzz at t=O, respectively. The t dependent local

strains, uxx(t)(=uyy(t» and uzz(t) can be expressed from Eq. (3.9) as follows.

uxx(t) = uyy(t) = Uxxo + U'xx

Uxz(t) =- 2uxxo + U122

(3.42a)

(3.42b)

The t dependent global (average) strain, Ex(t) (=Ey(t» and ez(t) can be

expressed respectively as

) f uxx(t) dz t f uxx(t) dz 1 ,C1r ,
Ex(t = f dz I E!! f dz = a.- (uxxo + u xx) dz

f uxz(t) dz 1 C1r ,
EzCt) S!! I dz =Gr I (-2uxxo + u zJ dz
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In the O-th order approximation, U IXX and u In are replaced by (i/3 )tr(u I),

which is shown by Eq. (3.20). In the 1st order approximation, the time

dependence of U 'xx has been given by Eq. (3.26), and U 17L is given from Eqs.

(3.20) and (3.26) by

IU u
(xi! In 2 ail ln I

=tr(u 'oo){f Al sin Gr z exp(- kit) - 3" t Al sin Gr Z exp(- k!'t) + 3}

(3.44)

Equation (3.44) shows that the time dependence of u'n. is governed by

longitudinal and transverse modes. It should be noted that in both the O-th

and 1st order approximations, the time dependence of Un in the stress

relaxation experiment where Uxx (and Uyy) is fixed is governed by only the

longitudinal mode, regardless of the defonnation mode.

3.5.2 Strip-Biaxial Case

Let us discuss here the creep behavior of the gel under constant stress

ax =00 holding Sy=O at 1>0. Differing from the case of equibiaxial and

uniaxial deformation, uyy and Un are time dependent, while uxx=Uxxo is time

independent. This results from that Uyy=O and u lyy~O, and means that the

stress relaxation occurs in y-direction. The relation that Un--Uxxo+U 'yy is

obtained from tr(u)=O. From Eq. (3.6), uxx(t), uyy{t) and uTL(t) can be

expressed by

uxx(t) = Uxxo + u \x (3.45a)

Uyy(t) = Uyy + U
1
yy = 0

Uu(t) = Uu + U 'zz =- Uxxo + U 'xx. + U IZZ

(3.45b)

(3.45c)

The global strain, sit) and ez(t), can be calculated in the same way as Eq.

(3.43). The treatments of U IXX and u '7L in the O-th and 1st order
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approximations are the same as in the case of the equibiaxial deformation

except the value of tT(U '00)'

3.5.3 Uniaxial Case

Now let us consider the creep behavior of the gel under constant stress

ax=Oo at 1>0. In the case of uniaxial deformation, tT( U)=0 corresponds

uxxo+2uyyo=0. From Eq. (3.6), uxx(t) and uyy(t) (=uzz(t)) can be written by

uxx(t) =Uxxo + U \x

1
Uyy(t) = un(t) = - 2 Uxxo +u 'yy

(3.47a)

(3.47b)

The calculation of £x(t) and £y(t) (=£z(1)) is indentical with Eg. (3.33). In the

O-th order approximation, U'xx and u'yY are substituted by (1/3 )tT(U ') using

Eq. (3.21). In the first approximation, the time dependence of u 'xx is

described by Eq. (3.28), and that of u Iyy is obtained by using Eq. (3.21) and

(3.28) as follows.

I (' ){ 1 ~ B . m:rr . nn (ku yy = tT U 00 2 LJ mn sm -y sm a z exp - 11111 t)
mil C1r r

1 ~ B . mn . n:rr (k r ) l}- 6 LJ Inn sm Y SIll Z exp - mrt t + 3
mn Or Or

(3.48)

The longitudinal and transverse modes are involved in the time dependence of

u 'yy and u 171. under uniaxial defonnation as well as that of u Iv. under biaxial

deformation.
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3.6 Numerical Results and Discussion

3.6.1 Time Dependence of Poisson IS Ratio

The t dependence of "ji is given by Egs. (3.29) and (3.34)-(3-36).

Figure 3-2 shows the t-dependence of the reduced value of Ii calculated for

the f. 'tt values of 0.01, 0.1, 1, and 10. In calculations, the strain imposed (Co)

was fixed to be 0.1, and !-to=l/2 was used. The value of !ko used was 1/6, and

was obtained from thermodynamic calculation for the degree of swelling of

uniaxially stretched gel systems.s The curves show the discontinuous change

in the slope at the time when elongation stops; the value of "ji shows the steep

decrease at t ll
O ' It is clearly seen that the curves form the envelopes. We

drew here the upper envelope as the t-dependence curve for f. LL=O.OOl, and

the lower one as the curve for f.LL=10000. These are shown by solid curves

in the figure. The upper envelope corresponds to the t-dependence for the

elongational process, and the lower the swelling after uniaxial deformation.

The difference between the two envelopes is due to whether the effect of !-to

during the increasing deformation is simultaneously introduced in the time

dependence of"ii. Namely,"ji obtained in the elongational process is

determined by both of the osmotic swelling and the increasing external

deformation of the gel, but "ji in the swelling under a constant deformation

depends only on the osmotic swelling process. This results in the higher value

of"ji in the elongational process than that in the swelling after deformation in

an intermediate time region. The two envelopes, however, coincide with each

other at the short and long time limits.

3.6.2 Stress Relaxation of Gels

Equations (3.6) and (3.7) give the equilibrium stress and the equlibrium

degree of strain-induced swelling for the gel deformed by an arbitrary biaxial
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~igure 3-2. The time (I) dependence of Poisson's ratio Cii) for various e'tL.

f is reduced by the longest characteristic time for longitudinal mode ('ld and

Ii by the value at the short time limit (Ila). The numerals in the figure stand

for the value of i'rL.
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deformation. Table 3-1 summarizes the numerical results with respect to the

initial and equilibrium stress, the magnitude of stress reduction, and the

degree of strain-induced swelling for the gel under the equi-, strip-biaxial and

uniaxial deformation.

Figure 3-3 shows the stress relaxation curves under vanous

deformation modes. In the figure, t and 0 are respectively reduced by 'tL and

00 corresponding to 0 at 1=0. The dashed and solid curves indicate the

results calculated on the basis of the O-th and 1st order approximations,

respectively. As is evident from the treatment, the stress relaxation processes

in the O-th and 1st order approximations are governed by the longitudinal and

transverse modes, respectively. In the 1st order approximation, 'tT=(5/2)'tL

was assumed.6 The solid curves for transverse mode are shifted to long time

region compared with the dashed curves for longitudinal mode, but the shape

of the solid and dashed curves is similar to each other. As can be seen in Fig.

3-3, the magnitude of stress reduction at l~oo under each deformation mode

is much different. The order of the magnitude of the stress reduction is

!lay (strip biaxial) > !lax (equibiaxial) > !laxCstrip biaxial) > 6.0 xCuniaxial)

The magnitude of the stress reduction is controlled by the value of If(U '00)'

The anisotropy in magnitude of stress reduction in strip-biaxial deformation

results from the anisotropy in the deformation itself, which is represented by

the coefficients of u 'xx different in x- and y-directions in Eq. (3.39).

The stress relaxation curves under various deformation modes are

shown in Fig. 3-4. The quantities, t and (1 are respectively reduced by 'tL and

the initial stress 6Go£o in equibiaxial deformation. In Fig. 3-4, the absolute

value of stress in imposing a strain £0 in each deformation mode can be

compared with each other. The dashed and solid curves indicate the

calculation results for the longitudinal and transverse modes, respectively.
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Table 3Ml. Degree of volume increase, equilibrium stress, and the degree

of stress reduction of the gels under the constant strain by equi-, strip-biaxial

and uniaxial deformations.

Degree of Initial Stress Equilibrium Degree of
Volume Stress Stress
Increase Reduction

(!J.VNo) 1) (~o) (~CXl ) (!J.~ )2)

Equibiaxial
8 14
5 Eo 6GoEo 5 00Eo "'0.53

Strip-biaxial 12
(x) 4 400Eo 5 00£0 ",0.40

5 Eo
2

(y) 2GoEo
5 GOEo

"'0.80

Uniaxial
2 7
3 Eo 3GoEo 3 GOEo "'0.22

.... ....

1) !J.VIVo~ tr(uoo) !J.~ =Clio OJ 00

2) ....
Oio
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Figure 3-3. Stress relaxation curves under uniaxial, equibiaxial and strip

biaxial deformations. Dashed and solid curves indicate the results for the O-th

and 1st order approximations, respectively. Time t and stress o(t) are

respectively reduced by the longest characteristic time of longitudinal mode

TL and the initial stress ao for each deformation mode.
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Figure 3-4. Time (t) dependence of stress oCt) under uniaxial, equibiaxial

and strip biaxial deformations. Dashed and solid curves indicate the results

for the O-th and 1st order approximations, respectively. t and ci...t) are

reduced by the longest characteristic time of longitudinal mode 'tt and

6GoEoCGo; shear modulus, Eo; initial strain), respectively.

-64-



The ratio of the stress at t=O for each deformation mode is 6: 4 : 3 : 2. The

ratio at equilibrium moves to 42: 36 : 35 : 6. It is interesting that the

equilibrium value of ax in strip-biaxial deformation is almost the same as that

in the uniaxial deformation, while the magnitude of the stress reduction for

jj y is fairly large reaching ,..,80%. This means that the difference in mode of

deformation between uniaxial and strip biaxial deformations diminishes as

swelling proceeds, and the fixation of sample in y-direction has little effect on

the stress in x-direction at equilibrium.

3.6.3 Creep Behavior of Gels

The magnitude of creep for the gel under each deformation mode is

obtained from Eqs. (3.6) and (3.9). The results are tabulated in Table 3-2

together with the initial and equilibrium strain, and the equilibrium degree of

strain-induced swelling.

Figure 3-5 shows the creep curves in x- and y-directions under the

uniaxial deformation. ex, £y and t are reduced by £xo, £yo and 1:L, respectively.

Here, £xo and £yo is the initial values of £x and £y. The creep curves are

calculated by using the two methods. The creep behavior in any direction in

the O-th order approximation is governed by the longitudinal mode. In the

case of the 1st approximation, the creep behavior in x- (loaded) direction is

determined by the transverse mode, as can be seen in Eq. (3.28). On the

other hand, and the creep process in y- and z- (load-free) directions is

influenced by longitudinal and transverse modes, as shown in Eqs. (3.48).

The calculation results for the O-th and Ist order approximations are,

described by dashed and solid curves, respectively. As the swelling proceeds,

the strain in the tensile direction, ex; increases and the absolute value of £y

C=£z<O) in the direction perpendicular to the tensile axis decreases. At
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Table 3-2. Degree of volume increase, equilibrium strain and the

magnitude of creep of the gels under the constant stress under equi-, strip

biaxial and uniaxial deformations

Degree of Initial Strain Equilibrium Magnitude of
Volume Strain Creep
Increase
(AVNo) (tiO) (tioo ) (AEi ) 1)

Equibiaxial
(x,y) 2 Eo 15 ~2.1

3 to 7 Eo

(z) - 2Eo 6 --G.43
-7 Eo

Strip-biaxial
15

(x) 12 Eo IT Eo ,,-,1.4
IT to

3

(z) - to -IT Eo ....,0.27

Uniaxial 9
(x) 6 7 to

7 to to ,,-,1.3

1 3
(y,z) - 2 Eo - 14 Eo ....,0.43

1) Eioo
AE·=-

I E.
10
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~ 0.6 " £y(t)/ £yox
:: 0.4
...-.
~O.2 TT
tV

0_3 -2 -1 a 1 2
IOg(t/TL)

Figure 3-5. Time (t) dependence of strain Eel) under uniaxial deformation.

Dashed and solid curves indicate the results for the O-th and 1st order

approximations, respectively. t and Ei(t) are reduced by the longest

characteristic time of longitudinal mode 'It and the initial strain Eio,

respectively.
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equilibrium, ExlExo and EylEyo amount to ",130% and -43%, respectively. The

large difference in Ex between two curves is not seen except the shift of solid

curve to the long time side. On the other hand, the minimum appears in the

behavior of the relative strain (Ey!f.yo) in load-free direction in the 1st order

approximation, while EylEyo in the O-th order approximation decreases

monotonously. The ratio, Eyl Eyo, in the 1st order approximation has the

minimum value of ",0.41 at th;u!:3.4. The undershoot of Ey!f.yo results from

the coupling of longitudinal and transverse modes. The mechanism for the

undershoot of ey!f.yo is described in the end of this section.

Figure 3-6 shows the reduced creep curves under strip-biaxial

deformation. The strain ex increases and the absolute value of ezC<O)

decreases with the increase of time. The values of £xoo/exo and ezoole.-m are

respectively",140% and '"-'27%, and there are no large differences in both

values compared with those under uniaxial deformation. The calculation

results in the O-th and 1st order approximations are represented by the dashed

and the solid curves, respectively. As well as in the case of uniaxial

deformation, the behavior of relative strain (&,}&n:J in load-free direction in

the 1st order approximation shows the undershoot originating from the

coupling of longitudinal and transverse modes. The magnitude of undershoot

is a little larger than that under uniaxial deformation. The minimum value of

Stew is --0.23 and located at thU:!3.3.

The reduced creep curves under the equibiaxial deformation are shown

in Fig. 3-7. The dashed and solid curves stand for the results for the O-th and

1st order approximations, respectively. The strain Ex (=Ey) increases and the

absolute value of ez(<O) decreases as the swelling proceeds. As can be seen

from Fig. 3-7, ExoolExo is ,....210%, and Ezoole.-m '"-'43%. It is noticed that ex

reaches the value twice as large as Exo at equilibrium. This is because the
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Figure 3~6. Time (t) dependence of strain E(t) under strip-biaxial

defonnation. Dashed and solid curves indicate the results for the O-th and 1st

order approximations, respectively. t and £i(t) are reduced by the longest

characteristic time of longitudinal mode 'tL and the initial strain Cia,

respectively.
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Figure 3..7. Time (t) dependence of strain £(t) under equibiaxial

deformation. Dashed and solid curves indicate the results for the O-th and 1st

order approximations, respectively. t and ti(t) are reduced by the longest

characteristic time of longitudinal mode TL and the initial strain tio,

respectively.
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volume change caused by swelling under biaxial deformation is fairly large,

while fzoo!£zo is the same as that in the uniaxial deformation. Actually, the

value of tr(u '00) under the equibiaxial deformation is four times larger than

that in the uniaxial deformation. In the Ist order approximation, the time

profile of f z is determined by longitudinal and transverse modes, while that of

f x (=fy) by the transverse mode. The creep curve in z- (load-free) direction

in the 1st order approximation also shows the clear minimum and the

magnitude of undershoot is larger than those under uniaxial and strip-biaxial

deformation. The minimum is located at the short time region compared with

those under uniaxial and strip-biaxial deformations. The minimum value of

f.z/ fro is ~O.20, which is located at th:u::·2.2.

The mechanism of the undershoot of £/ £io in the load-free direction

under the 1st order approximation, which is seen in Figs. 3-5 - 3-7, is

described as follows. At first, it should be noted that the value of fi in the

load-free direction is negative at any t. Hence, the undershoot of fj/ fio means

that the overshoot of the size in the load-free direction. The size in the load

free direction increases with the increase of t at the initial stage, and reaches a

maximum, and then, decreases to an equilibrium value. Figure 3-8 shows the

schematic representation for this process. The overshoot behavior of the size

in the load-free direction originates from its time dependence governed by the

two types of the characteristic time ('tL and 'IT) different in the character and

the length. As can be seen in Eqs. (3.16) and (3.17), the longitudinal mode

controls the volume change, and the transverse mode governs the shape

change without volume change. The relation between 'tL and LT is expressed

as LL=(5/2}1"T, which implies that the volume change is completed faster than

the shape change. Accordingly, in the time region 'tL< t <'IT, the shape of gel

is not similar to that at initial state, although the total change of volume is
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Anisotropic Swelling Process
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Figure 3-8. Schematic representation for the anisotropic swelling process

of the biaxially stretched gel under the constant stresses Oxx = Oyy = 0
0
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Figure 3-9. Time (t) profile of the boundary (Osysllr, z=O) in the creep

under uniaxial deformation in the 1st order approximation. Numerals in the

figure indicate the values of tl'LL'
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almost completed. At this stage, the size in the loaded direction, whose time

dependence is controled by LT, does not reach the equilibrium value. In the

time region 1>LT, only the shape change occurs with keeping the volume

constant, which results in the decrease of the size in the load-free direction

together with the increase of the size in the loaded direction. The magnitude

of undershoot and the location of the minimum for S/Sio in the load-free

direction are determined by the relative intensity of the transverse mode to

the longitudinal one in the strain term in Eqs. (3.44) and (3.48). The relative

intensity is governed by the dimensionality of diffusion and the type of

deformation mode.

Here, we should mention that the strain focused here is a kind of

average one. The time profile of boundary (Osys~, z=O) in the creep under

uniaxial deformation is shown in Fig. 3-9. The actual boundary has an arched

shape during the transient process of swelling.

3.7 Conclusion

The degree of the strain-induced swelling and the resulting mechanical

relaxation for the gel deformed under equi-, strip-biaxial and uniaxial

deformation were evaluated on the basis of the thermodynamics for the

swelling of constrained gels. The magnitude of mechanical relaxation was

found to be strongly dependent on the deformation mode. The degree of the

stress reduction for the equibiaxially stretched gel was estimated to be ---53%,

while that for the uniaxially stretched gel to be ---22%. The ratio of the

equilibrium strain to the initial one in the tensile direction for the creep under

equibiaxial deformation is -210%, while those under the uniaxial and the

strip-biaxial deformations remain at ---130 and -140%, respectively.
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Poisson's ratio for the uniaxially stretched gel during and after the

elongation, the stress in the stress relaxation and the strain in the creep under

each deformation mode were obtained as a function of time by combining the

constitutive equations of gels with a diffusion equation of polymer network.

In the case where the experimental time scale for elongation is comparable to

the characteristic time for the swelling, the value of Poisson's ratio was found

to be intermediate between the two limiting values of Poisson's ratio which

are the initial and equilibrium Poisson!s ratio. The width of gel is decreased

by the elongation, and simultaneously starts to increase by the swelling, which

resulting in an intermediate value beween the initial and equilibrium Poisson's

ratio.

The stress relaxation and creep curves were calculated by employing

two methods. One is based on the assumption that the swelling occurs

isotropically (zero-th order approximation) independently of the gel

geometry, and the other is obtained by introducing the anisotropic swelling

process (first~order approximation) which originates from the anisotropy in

the gel shape. The stress relaxation processes in the O-th and 1st order

approximations are governed by the longitudinal and transverse modes,

respectively. In the O-th order approximation, the creep behavior in any

direction under each deformation mode is controlled by longitudinal mode.

In the 1st order approximation, the creep in the loaded direction, in which the

diffusion is assumed not to occur, is determined by the transverse mode, and

that in the load-free direction, in which the diffusion occurs, is determined by

longitudinal and transverse modes. According to the 1st order

approximation, it is expected that the overshoot of the size in the load-free

direction occurs as a result of the coupling of longitudinal and transverse

modes. The magnitude of the overshoot and the time showing the peak are
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dependent on the defonnation mode. Theequibiaxially stretched gel shows

the larger magnitude of overshoot, and has the peak located at the shorter

time, in comparison with the gel under uniaxial and strip-biaxial deformation.
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Chapter 4
Stress-Strain Behavior of Typical Polymer Networks Under

Pure Shear Defonnation

4.1 Introduction

In Chapter 3 the mechanical behavior of polymer networks in swollen

state is treated. In this chapter, the rubber elasticity of polymer networks in

the bulk state is considered. The strain energy density function (W) has been

considered as a basic quantity to describe elastic properties of materials. As

reviewed by Kawabata and Kawai,1 many studies have been made to

investigate the functional form of W of rubber-like materials. Most of the

experimental studies were carried out under uniaxial deformation, while

experiments under biaxial deformation2-6 have been limited although they

give important information on the functional form of W of real elastomers.

It has been shown that the elastic properties of real elastomers can be basically

described by the classical theory7 of rubber elasticity.1 Various molecular

theories8-14 have been proposed to improve the classical theory of rubber

elasticity, and have been compared with experiments by Gottlieb and

Gayload. 15 They indicated that none of these molecular theories describe the

experimental results quantitatively, and especially, the descrepancies are

considerable in small deformation region. These molecular theories focus

basically on the entropic elasticity, although some of the theories take

intermolecular interaction by entanglement into accounts. It has been also

pointed out that the intermolecular interactions originating from

intermolecular force must be taken into account for the elasticity of real

elastomers in order to explain the elastic behavior at small deformations.5,16,17

However, the origin of the intermolecular interactions occurring in real
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elastomers is not unclear at present. Poisson's ratio <flo) of rubber-like

materials has been assumed to be 1/2, as the value at incompressible limit, but

the values for the real elastomers are not identical exactly to l/2.5.n~.19 There

is one possibility that the origin of the intermolecular interaction is related to

a volume change of materials. In this case, real elastomers must be treated as

compressible materials. In this chapter, we eliminate the assumption of

fLo=l/2, and investigate the elastic behavior of real elastomers at small strains

under pure shear deformation using the experimental value of flo. The stress

strain relations for the three types of segmented polyurethaneureas (SPUs)

under pure shear deformation are measured. The experimental results are

compared with theoretical predictions proposed here on the basis of a

phenomenological elasticity theory for compressible materials. The values of

fLo for SPUs are measured by the method described in Chapter 2. The

experimental results at small strains under pure shear deformation for

isoprene rubberS (IR) reported by Kawabata et aI., and styrene-butadiene

rubber6 (SBR), nitrile-butadiene rubber6 (NBR) and butadiene rubber6 (BR)

by Fukahori et ai., are also compared with the theoretical predictions.

4.2 Theory

4.2.1 Elasticity Theory

Elastic properties of rubber-like materials can be analyzed by the

infinitesimal elasticity theory as far as applied strains are small enough.2o

The assumption of incompressibility has usually been applied to rubber-like

materials. We eliminate here this assumption and treat the rubbery materials

as a compressible one. According to the infinitesimal elasticity theory for

compressible materials, that is, the Poisson ratio of the material (fLo) is not

-79-



(4.4a)

(4.4b)

(4.4c)

(4.5)

equal to 1/2, one can define the three invariants (Ji;i=I,2,3) using components

of the strain tensor (E) as follows.

1] =E] + EZ+ E3 (4.1a)

Jz~ 81£2+ £2£3+ £3El (4.1b)

h=EI EZE3 (4.1c)

Here, Ep (p=::1,2,3) stands for the principal strain in the p-direction. The

strain energy density function (W) is written in terms of .l; on the basis of the

infinitesimal elasticity theory as follows.

W = [~ + 2~JJ1- 2Giz (4.2)

Here, K and G are respectively the bulk and shear moduli. The principal

stress in the p-th direction (up) is given by

up = 2GEp + [K - 2~J 11 . (4.3)

In order to. describe a stress-strain behavior of the materials at large

strains, W is conventionally regarded as a function of the three invariants

(/i;i=I,2,3) for a deformation tensor. Using principal stretch ratio

(Ap;p=:1,2,3), which is related to the principal strain (Ep) as Ap=Ep+1, Ii is

given by

II =A12 + Ai + }",32

/2 =A]2A22 + )...22A32 + A32}..I2

h =A]2 Ai A32

The principal engineering stress, which we also assign here as op, is generally

expressed by

2' [dW ('1 2 '1 2) aw 2 , ? aW]
Up = "'"p - + "'"q + "'"r - + Aq "'"r-

all iJh iJh

where PJq,r=1,2,3. The partial derivative of W with respect to h

(d WI8I;;i=l ,2,3) can be calculated by using a set of up and Ap (p=1,2,3).
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4.2.2 Pure Shear Deformation

Pure shear (strip-biaxial) deformation is one of the common

deformation mode among biaxial defonnations. The schematic representation

for the pure shear deformation is given in Fig. 3-1. We designate the

elongational direction as Xl, sustaining direction as X2, and the direction in

free motion as X3 for pure shear deformation. The derivatives aWlali in the

case of pure shear deformation are obtained from Eq. (4.5), A2=1 and 03=0 as

follows.

_aw__ al Af
aJ1 2(A[ - Af)(A[ - 1)

(4.6a)

(4.7)

aw = al Al + CF2 _ Af + 1 oW _ 2}'} + Af Af + Ai aw (4.6c)
ah 4 A[ Af 2 A[ Ai all 2 Af ;..,l ah

As can be seen in Eq. (4.6), when ~"¢1/2, not only the values of Al and A2 but

also the value of A3 is required for the numerical calculation of the value of

aWlaJi• Since direct measurement of A3 in the pure shear experiment is

usually difficult, A3 is estimated by calculation. In this case, the value of f.lu is

required. At small deformations, A3 (or, equivalently £3) is easily obtained

from Eq. (4.3). For £3 we have

£3 =- f.lo £1
1 - f.lo

because £2=0 and 03=0 for pure shear deformation. It should be noted that

the stress ratio (02/01) gives !lo as
!kJ = 02 (4.8)

a1

In order to calculate the value of A3 at large strains, we modify Eq. (4.7) to

A3 = Al /le/(l - /le) (4.9)
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(4.13c)

(4.13a)

(4. 13b)

This equation, of course, coincides with Eq. (4.7) at small strains. When !-to is

known, we can calculate the value of A3 at both small and large strains by

using Eq. (4.9).

4.2.3 Limiting Values of Partial Derivatives of W

As strain decreases, aWlaIi at large strains approaches its limiting value

predicted by the infinitesimal elasticity theory. The value at zero strain limit

can be estimated by using the derivative of W with respect to ~ (a WlaJi;

i=I,2,3) at zero strain limit. The quantity aWlaJi is related to aWlaIi as

aw = aw ah + aw ah + aw af} , U=I,2,3) (4.10)
aft aII aft ah aft ah aft

and the values of the derivatives at zero strain limit (1; -- 0) are given by

aw -+ 0 (4. 11 a)
all
aw
- -+ - 2G (4.11b)
ah
aw -+ 0 (4.11c)
ak

assuming that W can be expressed by Eq. (4.2) at small strain limit. The

relations between 1; and Ii are as follows.

II =112 + 2ft - 2h + 3 (4.12a)

12 =2h2 + h 2 + 211h - 2.hJI + 411 - 6.h + 3 (4.12b)

h =(l + 11 + Jz + h)2 (4. 12c)

From Eqs. (4.10)-(4.12), we have the values of a Wlali at zero strain limit

(11'/2 -+ 3 and h -+ 1) as follows:
aw -+ 5G
all 8
aw -+ _G
a/z 8
aw -+ _ 3G
ah 8
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(4.14)

It should be noted that the limiting values of aWlal2 and aWlah are negative,

while awlah has the positive value at zero strain limit.

4.3 Experimental

4.3.1 Material

Three types of SPUs used in this study were supplied as

dimethylformamide solutions from Toyobo Co., Japan. The three types of

prepolymers of the SPUs differing in the molecular weight of

poly(tetramethylene glycol) (PTMG) were prepared from the mixed solutions

of methylene diisocyanate (MDI) and PTMG. The solvent used was N,N 1


dimethylacetate (DMAc). The prepolymers were chain-extended by using

1,2-diaminopropane (DAP). The number-average molecular weight of

PTMG (Ms), weight fraction of PTMG (Ws), number-and weight-average

molecular weights of SPUs (Mn and Mw, respectively), and the ratio of Mw to

Mn (MwIMn) are listed in Table 4-1, together with the sample name. Here. Mn

and Mw are reduced molecular weights to polystyrene. Film specimens for

mechanical tests were prepared by solution-cast method.

4.3.2 Uniaxial and Biaxial Elongation

Uniaxial elongation of SPU film was made to estimate !1<J by using an

Orientec tensile tester (RTM-250) at a crosshead speed of 50mm/min. The

width and thickness of the specimens were respectively 5mm and IOO-200 l-lm.

The crosshead distance at rest was ca. 20mm. Poisson's ratio (!1<J) was

determined by the method described in Chapter 2. The values of f.lo were

estimated from
log A')

flo = - .......::~=-

log Ai
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Table 4 ..1. Sample codes, number-average molecular. weights of

pOly(tetramethyleneglycol) (PTMG)(Ms), weight fractions of PTMG (Ws),

fiumoof=and weighHwerage molecular weights of SPU (Mn and Mw ; reduced

to molecular weights of polystyrene), and the ratios of M w to Mn•

Sample M.<: Ws Mn Mw Mw/Mn

SPU850 870 0.60 42000 127000 3.0

SPU1650 1700 0.74 59000 155000 2.6

SPU3000 3100 0.84 68000 192000 2.8



The stretch ratio in the stretched direction (Ad was calculated from distance

between two marked points of the film surface, and the stretch ratio

perpendicular to the stretched direction (A2) was calculated from the width in

the central region of the specimen. The distance and width during uniaxial

elongation process were recorded by using a video-tape recorder.

The stress-strain curves of the SPU under pure shear deformation were

obtained by using a specially designed biaxial elongation apparatus (Iwamoto

Seisakusho Co.). The shape of the film specimens used was square with

thickness of lOO-200flm. The distance between cramps at rest was 50mm and

elongation speed was O.83mm/sec.

4.4 Results and Discussion

4.4.1 Poissonls Ratio of SPUs

Figure 4-1 shows the plots of -logA:! against 10gAl obtained in the

uniaxial elongation experiment of SPU850. All the data points are

approximated by a single line of slope 0.442, and we assign the slope of line

as Poisson's ratio (/lD). The value of Al examined here ranged from 1.035 to

1.468. The stress-strain curve of SPU850 under uniaxial elongation was

linear in the region of Al lower than about 1.2, and the curve showed the

nonlinear relation at larger stretch ratios, although we do not show the curve

here. The linear relation between -logA2 and 10gAl over a wide range of Al

indicates that !-to is independent of the magnitude of the applied strain: the

value of /lQ in the nonlinear stress-strain region is the same as that in the

linear elasticity region. Similar behavior has been observed for !-to of

poly(vinyl alcohol) (PYA) gels as described in Chapter 2. SPU1650 and

SPU3000 also showed the nonlinear stress-strain behavior at large stretch

ratios, but they also showed the linear relation in the -logA2 vs. logAl plots
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Figure 4..1. Plots of -logAz VS. logAl for SPU850.
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Table 4-2. Poisson's ratios obtained from uniaxial elongation experiment

(~) and from stress ratio under pure shear deformation (flD I), and shear

modulus (0) for SPUs.

Sample

SPU850

SPU1650

SPU3000

0.442

0.471

0.494

. -87-

0.400

0.425

0.447

G/MPa

12.1

5.2

2.9



in the whole range of Aj. The values of /1D for SPUs are listed in Table 4-2.

The value of f10 for the SPUs increases with increasing Ms. SPUs have the

two-phase structure and the phase separation becomes clearer as Ms

increases.21 The clear phase separation will make the materials close to ideal

cross-linked rubbers, resulting in the closer value of f.1o to 112 with increasing

Ms·

In Fig. 4-2, the stresses (a] and 02) under pure shear deformation are

plotted against the stretch ratio (A]) for SPU850. The stresses a] and 02

increase monotonically with increasing AI, but the inflection point is observed

around A]=1.5 on each stress-strain curve. We measured the stress-strain

curves of three specimens of SPU850 in order to check the reproducibility of

the stress-strain curves. The data obtained in each experiment are well

coincided with one another. Scattering was observed for the data at strains

lower than about 10%, but the deviation was very small. SPU 1650 and

SPU3000 showed almost the same stress-strain behavior as SPU850 shown in

the figure. We also found the good reproducibility of the stress-strain curves

for SPU1650 and SPU3000. The stress level in both elongational and

sustaining directions became lower as M s increases.

According to Eq. (4.8), the stress ratio (Olio]) gives Poisson's ratio.

Figure 4-3 shows the plots of 02101 against A] for the three SPUs. The data

are limited to those at relatively small stretch ratios. The stress ratio

increases with increasing A.] for the three SPUs. The extrapolated value to the

zero strain limit, which is assigned here as ~!, is tabulated in Table 4-2. The

value of f.Jo' increases with increasing M s, and the value is lower than that of

f.1o obtained from the uniaxial experiment. As far as the infinitesimal

elasticity theory holds, the stress ratio (Olio]) under pure shear deformation

must be constant and it also gives the Poisson ratio of material. We do not
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Figure 4-2. Stresses (al and 02) plotted against stretch ratio (Al) for

SPU850 under pure shear deformation. al stands for the stress in the

stretched direction and 02 for the stress in the sustaining direction.
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Figure 4-3. The stress ratio (Oilol) against stretch ratio for SPUs.

Symbols: (0) SPU850; (e) SPU1650; (e) SPU3000.
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(4.15)

know at present why !10 1 from pure shear deformation (from Eq. (4.8)) is

smaller than !10 from uniaxial deformation (from Eq. (4.14) for SPUs,

although both the values must basically coincide with each other. However,

the fact that !10 as well as !10' is not identical to 1/2 clearly indicates that the

SPUs are compressible and volume change occurs during deformation. The

linear stress-strain relation was observed up to stretch ratio of about 1.2 for

uniaxial elongation of all the SPUs, but the stress ratio is I)-dependent over

the range of h including small h region. This suggests that the region of

strain, where the linear elasticity holds, is very narrow for pure shear

deformation compared with the linear region for uniaxial elongation.

4.4.2 Shear Modulus of SPUs, SBR, NBR, BR and IR

As can be seen from Eq. (4.13b), (-1/2)(aW/ah) at zero strain limit

gives the shear modulus (G). Figure 4-4 shows the plots of (-1I2)(a WIa.J2)

against h for the three SPUs. The values of (-1I2)(a Wlah) for SPUs were

calculated by the combination of a set of aWiali and.li (i=1,2,3), since (

1/2)(a Wlah) is given from Eqs. (4.10) and (4.12) by
1 aw aw aw ( )aw- - - =- - (Jl + h) - - 1 + J) + h + h -
2 ah all ah ah

Data shown in the figure are limited to those at it smaller than 5. The solid

curve in the figure is the best-fit curve for each SPU. The three curves show

the monotonical decrease with increasing II' The vertical level of the curve

becomes lower as M s increases. We estimate G for the SPUs as a limiting

value of the curve at h=3. The value of G for SPUs is listed in Table 4-2.

The value decreases with increasing Ms.

Figures 4-5 - 4-8 show the plots of (-1I2)(a WIa.J2) against II for JR,

SBR, NBR and BR, respectively. Since the number of the data for SBR, NBR

and BR are not enough in the small it region, the data in the large h region
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Figure 4-4. Plots of (-1I2)(aW/dh) against It for SPUs. Symbols are the

same as Fig. 4-3.
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Figure 4-6. Plots of (-1I2)(a wla,h) against II for SBR.
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Figure 4-8. Plots of (-1I2)(aW/ah) against!} for BR.
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Table 4-3. Poisson's ratios used for the calculation (/lD) and shear moduli

(G) for IR, SBR, NBR and SR.

Sample

IR

SBR

NBR

BR

0.499916G

0.49983b

0.49983b

0.49983C

G/MPa

0.375

0.39

0.43

0.48

a obtained by Kawabata et al. (Ref. 5)

b assumed to be equal to /-4J of BR

C obtained by Holownia (Ref. 19)
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are included. The curves show a monotonous decrease with increasing It , as

in the case of SPUs in Fig. 4-4. The values of G were obtained by

extrapolating the curve to lz=3, and are listed in Table 4-3.

4.4.3 Partial Derivatives of W for SPUs

The values of Poisson's ratio (both !J.o and 1-1.0 t) for SPUs were rather

close to 0.5 but were not exactly identical to 0.5 (Table 4-2), meaning that

SPUs are better to be treated as compressible materials. Figure 4-9 shows the

lz dependence of a WlaI; (i=I,2,3) for SPU850. The value of Poisson's ratio

used for the calculation of a WlaI; was 0.442 which is the value of 1-1.0,

although we had two values for Poisson's ratio, namely, 1-1.0 and 1-1.0'. We chose

1-1.0 as Poisson's ratio for the calculation because !J.o is in accordance with its

definition. The data points shown in Fig. 4-9a are those at h larger than 3.5.

The derivatives a Wlalt and a Wlah are positive in this region of h shown in

Fig. 4-9a and are decreasing functions of!}. The value of aWlah is very

small compared with that of a Wlah. The value of a Wla!) is negative in the

region of II shown here, and aWlah increases with increasing II. At large It,

the absolute value of aWla!) is much smaller than that of a Wlalt. In Fig. 4

9b, the data at !} smaller than 3.5 are shown. The derivative, aWlaI I ,

increases very rapidly as II approaches three from the larger side of It, while

a Wlah shows a maximum around / 1=3.4 and the values in the smaller II

region are negative. The derivative a Wla!) shows a rather broad minimum

around 1t=3.2, and then it increases steeply as h decreases further. The II

dependence is observed for the three derivatives over the entire region of h

investigated here, but the dependence is weaker in the large It region (Fig. 4

9a) than in the small h region (Fig. 4-9b). As stated previously, we examined

stress-strain behavior for three specimens of SPU850. We also calculated the
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Figure 4-9. (a) Plots of BWIBIi against 11 for SPU850 for large II region. (b) Plots of Bwlah

against II for SPU850 for small 11 region. Symbols: (0) data points for BWlaII ; (6) for Bwla/z ; (9)

for aWIJh. The arrows a, band c represent the theoretical predictions for aWIJI1 , aWIB/z and
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II dependence of aWlah (i;:;:;] ,2,3) using the stress-strain data for each

specimen. The aWlalj VS. I, curves for the three specimens were almost

identical to one another for i;:;:; I, 2 and 3. This indicates that the stronger h

dependence of the three derivative truely occurs at small strains.

Figures 4-10 and 4-11 respectively show the similar plots for SPU1650

and SPU3000. Here, the values of the Poisson ratio used were 0.471 for

SPUI650 and 0.494 for SPU3000, which are the experimental values of !-to

for the SPUs. Figures 4-10a and 4-11a represent the I} dependence of the

derivatives in the large II region, while Figs. 4-10b and 4-11b are the data at

small strains (or small I}). As can be seen from Figs. 4-10a and 4-11a, the

absolute values of awlah and aWlah are smaller compared with that of

aWlah for both SPUs, as in the case of SPU850. In the small region of II

(Figs. 4-10b and 4-11 b), the shapes of the derivatives for the SPUs are also

almost identical to that for SPU850; aWlah of the SPUs increases steeply and

aWlah decreases rapidly, as It approaches three from the right side of the h

axis. The derivative, aWlah, shows the broad minimum at smaller II, and

then it shows the sharp increase as It decreases further. The three derivatives

of SPU1650 as well as SPU3000 show the relatively weak lr dependence at

large lr, as is the case of SPU850.

In Figs. 4-9b~ 4-10b and 4-11b~ there are three arrows, each of which is

specified as a, band c. The vertical position of the arrow a indicates the

limiting value of aWlaII, and those of the arrows band c correspond to the

limiting values of aWlah and aWlah, respectively. The limiting values were

calculated from Eqs. (4.13a)-(4.l3c)~ using the value of G listed in Table 4-2.

For SPU850, the limiting values of the derivatives shown by the arrows are a

little different from those estimated from experiment; the vertical level of the

arrow a is almost identical to the experimental value at the second lowest II'
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Figure 4-10. (a) Plots of aW1a1i against It for SPU1650 for large /1 region. (b) Plots of aW1a1i

against I] for SPU1650 for small It region. Symbols: (0) data points for BWlah ; (6) for aWIBh ;
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awlah at zero strain limit, respectively.
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Figure 4-11. (a) Plots of aWlah against h for SPU3000 for large h region. (b) Plots of aWIJlj
against h for SPU3000 for small h region. Symbols: (0) data points for J Wlah ; (6) for J WIJh ;
(9) for J WIJh. The arrows a, band c represent the theoretical predictions for aWIJh , J WIJh and
aWIJh at zero strain limit, respectively.



The arrows band c are also close to the corresponding experimental value at

that II. Although there remains a small deviation of the limiting values of the

derivatives between theoretical prediction and experiment, the theoretical

predictions appear to show the basic features of the experimental data at small

II limit. The quantitative agreement between theoretical predictions and

experiment for SPU1650 and SPU3000 is not so good compared with the case

of SPU850, but the. theoretical prediction could qualitatively explain the

asymptotic behavior of the derivatives at small It limit. As mentioned

previously, the reproducibility of the aWlalj VS. II (i=1,2,3) curves was fairly

good, but a small scattering was observed at small strains for the SPUs. The

deviation in the limiting values between theory and experiment will originate

from the experimental errors at small strains, because the limiting values

determined by experiment is sensitive to the experimental errors.

The h dependence of the derivatives was also investigated for three

kinds of SPUs by employing the assumption that the material is

incompressible (i.e., h=l) for comparison. In this case, only aWlal1 and

aWlah are the quantities of interest. For pure shear deformation of

incompressible material, h is identical to h. The aWlaJj VS. II 0=1,2) curves

for each SPU was almost identical to the corresponding curves shown here

(Figs. 4-9, 4-10, 4-11 for SPU850, SPU1650, SPU3000, respectively). This

suggests that aWlaJj VS. It (i=1,2) curves are unchanged whether or not the

volume change during deformation occurs. According to the classical theory

of rubber elasticity for incompressible material, aWlah is independent of It

and is identical to G/2, and awlah is also constant to be zero. At large

strains, aWlah for SPUs showed lower values than G/2, which were weakly

dependent on h. The derivative aWlah also showed slight /1 dependence,

although the value is close to zero at large strains. These features at large
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strains appear to resemble the results expected by the classical theory of

rubber elasticity for incompressible material. However, the strong It

dependence of the two derivatives at small strains can not be described by the

classical theory. In addition, the classical theory can also not explain the

negative limiting value of aWliJh. The theoretical predictions for iJ WliJh

shown in Sec. 4.2.3 is -G/8, which is negative. This qualitatively agrees with

the experimental results for the SPUs. The classical theory predicts that the

limiting value of aWlaII=G/2, while our prediction gives iJ WliJh=5G/8. The

limiting values of the derivative by experiment (see, Figs. 4-9b, 4-10b and 4

II b) appear to be higher than 5G/8 for the three SPUs. For the SPUs our

prediction (5G/8) is closer to the experimental value than G/2 (the predicted

value from the classical theory), although the difference between two

predictions is rather small.

4.4.4 Partial Derivatives of W for IR

Figure 4-12 shows the plots of iJ WliJh against It for isoprene rubber

(lR) under pure shear deformation reported by Kawabata et al.5 Figures 4

12a and 4-12b represent the data at large It and at small It, repectively.

Their data were re-calculated by using ~=0.499916, the mean value of flo

reported by the authors. The iJ WliJIj VS. It U=I,2) curves obtained here were

almost identical to the corresponding original curves shown in Figure 10 of

their paperS, which were calculated by assuming the incompressibility of the

material. As can be seen from Fig. 4-12a, the absolute values of iJ WliJh and

aWlah are very small compared with that of aWliJh at large It, and the three

derivatives are also weakly dependent on II. The experimental data in Fig. 4

12b show that the three derivatives are strongly dependent on II at small

strains. We can also see that the limiting values of aWlah and iJ WliJh are
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Figure 4-12. (a) Plots of aWlah against II for IR for large II region. (b) Plots of aWlaIi against II

for IR for small II region. Symbols: (0) data points for awiaii ; (6) for awlah ; (9) for awlah.
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negative and that of aWlah is positive for JR. There are also three arrows in

the figure and the meaning of the arrows is the same as that in Figs. 4-9b, 4

lOb and 4-11 b. The value of G obtained from Fig. 4-5 was used for the

calculation of the derivatives. The value of G is very close to the original

value reported by Kawabata et al.5 Each arrow appears to agree fairly well

with the corresponding limiting value estimated from the experimental data.

According to the classical theory of rubber elasticity for incompressible

material, the limiting value of awlah is given by G/2, as stated previously.

The value of G/2 is 0.188MPa for JR, if we use G=0.375MPa. The value GI2

is much lower than the limiting value of aWlah determined by the

experiment (Fig. 4-12b). It is also clear that the limiting value of aWlah

estimated by experiment is negative, which is not in agreement with the

prediction based on the classical theory for incompressible material, because

the theory gives the limiting value of zero, as mentioned before. These mean

that the classical theory of rubber elasticity for incompressible material can

not correctly predict the limiting values of aWlah and awlah for JR.

4.4.5 Partial Derivatives of W for SBR, NBR, BR

We calculate aWlali (i=1,2,3) for SBR, NBR and BR using the

experimental data obtained by Fukahori et al.6 The value of Jlo for BR was

reported to be 0.49983,19 and those for SBR and NBR are unknown. We used

/10=0.49983 for the calculation of aWlah for three types of rubbers.

Figures 4-13 - 4-15 indicate the plots of aWlal; vs. It for SBR, NBR

and BR, respectively. The II dependence of aWlali for three types of rubbers

is similar to each other, and resembles that for the SPUs and IR mentioned

before: The aWla/l is almost independent of It at large II region, and

increases rapidly as II approaches to three. The aWliJh is almost constant and
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Figure 4-13. Plots of awlah against h for SBR. Symbols: .(0) data points

for awlah ; (6) for awlah ; (<() for aWla!). The arrows a., band c

represent the theoretical predictions for awlah , awlah and aWlah at zero

strain limit, respectively.
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Figure 4-14. Plots of a W1aJi against h for NBR. Symbols: (0) data points

for aWlah ; (0) for aWlah ; (9) for aWlah. The arrows a, band c

represent the theoretical predictions for awlah , aWlaI2 and aWlah at zero

strain limit, respectively.
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close to zero at large Ii region, and decreases as II decreses, and then becomes

negative in the small h region. The aWlah is negative over the whole II

region, and has a minimum in the small II region.

The arrows a-c in Figs. 4-13 - 4-15 indicate the theoretical predictions

for the limiting values of aWlah calculated from Eq. (4.13) with measured G.

The agreement of the theoretical predictions with the experiments are not

necesarrily perfect, but the theoretical values are not so far from the

experiments, considering that the the values of aW1aIi in small deformation

region is very sensitive to the experimental errors, and the number of

experimental data points for SBR, NBR and BR is not enough in the small II

regIon.

The shapes of aWlaIi (i=1,2,3) vs. It curves of three types of SPUs and

four types of rubbery materials are similar to each other, suggesting that the

shapes of the three derivatives shown here are common to real elastomers.

4.4.6 Some Comments on the Functional Form of W

The function W can be phenomenologically expressed in the following

expansion form.22

W = L Cw (It - 3f(lz - 3Xh - 3y (4.16)
p,q,r

where Cw is the numerical constant and Cooo=O. When the material IS

incompressible, Eq. (4.16) is reduced to
W =L CfXJ (II - 3f(lz - 3~ (4.17)

p,q

with numerical constant CfXJ and Coo=O. Mooney23 approximated Eq. (4.17)

as

W = ClO (It - 3) + COl (lz - 3) (4.18)

The rubber materials dealt in this study is compressible. In this case, the

approximated equation corresponding to Eq. (4.18) is given by
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W = C100 (/1 - 3) + COlO (/2 - 3) + COOl (I) - 3) (4.19)

Equation (4.19) means aWla!]=C1CXh aWlaI2=COl0 and aWla!]=Cool • The II

dependence of aWlalj 0=1,2,3) for rubbers investigated here is how aW(/I,

12, !] )/aI I changes with h on the trajectory SUl, 1:., h ) for pure shear

deformation, where hand h vary as II varies. In this case, the hand /3

dependece might also be involved in the plots of awlah vs. I l for the

experiments. Still, the /1 dependence of aWlal j for the real elastomers (Figs.

4-9 - 4-15) indicates that Eq. (4.19) is insufficient for the better description

of W for the real elastomers at small strains, although Eq. (4.19) appears to

approximate W of the real elastomers in the large 11 region. The rapid

change of aWIBIi at small strains will originate from the fact that W(lI, h, f))

must have the asymptotic form shown in Eq. (4.2) at infinitesimal strains,

although the functional form of WUl, h, I)) remains still unknown at present.

4.5 Conclusions

On the basis of the infinitesimal elasticity theory, the limiting values of

the partial derivatives of W with respect to Ii U=I,2,3) were evaluated. The

limiting value of 0 Wlalt was found to be (5G/8), while both aWIBh and

BW/Bh were respectively (-G/8) and (-3G/8). The Poisson ratios of the

three types of SPUs different in Ms were measured by the experiments under

uniaxial elongation (f.-lo) and under pure shear deformation (f.-lo'). The values

of fAo and fAo' were smaller than 1/2, and increased with increasing Ms. The

value of fAo was larger than that of f1.ol for the SPUs. The limiting values of

the derivatives (0 W/Bh; i=I,2,3) for SPUs were compared with the theoretical

prediction. It was found that the theoretical prediction could explain the

asymptotic behavior of the derivatives at small h limit. The comparison of

the limiting values was also made for the experimental results of isoprene
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rubber (IR) reported by Kawabata et ai., styrene-butadiene rubber (SBR),

nitrile-butadiene rubber (NBR) and butadiene rubber (BR) reported by

Fukahori et at. The agreement of the limiting values between theory and

experiment was also fairly well for these four types of rubbers.
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Chapter 5
Effects of Polymer Concentration at Crosslinking on
Swelling and Elastic Properties of End-Linked
Poly(dimethylsiloxane) Networks

5.1 Introduction

The thermodynamics on swelling of polymer networks and the elastic

properties have been experimentally and theoretically investigated for many

years. However, in spite of tremendous efforts, several problems still remain

unsolved. Especially, the vigorous discussions have been made on the effects

of trapped entanglements on elastic modulus of polymer networks, and the

treatment of reference state in the theory describing the equilibrium swelling

of polymer networks crosslinked in solution. In this chapter and Chapter 6,

the above two problems are focused, and the thermodynamics of equilibrium

swelling as well as the elasticity for polymer networks crosslinked in solution

are investigated.

Trapped entanglements are formed by the uncrossablility of network

chains when crosslinks are introduced in the system. The contribution of

trapped entanglements to elastic modulus has been disputed since the latter

half of 1970's. The central subject of the dispute has been that trapped

entanglements might contribute to elastic modulus together with chemical

crosslinksl-6 or nor7- lO. In order to settle this problem, the elastic moduli of

"model polymer networks", which are prepared in bulk state by end-linking

prepolymer having a definite molecular weight, have been measured as a

function of the molecular weight of prepolymer (Mp).3-7,9 However, in spite

of considerable number of experiments following this line, the dispute still

remains unsettled. In this thesis, as an alternative experiment aiming to solve
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this problem, the elastic moduli of networks prepared by end-linking reaction

in solution are measured as a function of preparation concentration, i.e.,

polymer concentration at crosslinking. The prepolymer used has high

molecular weight enough to form entanglement couplings in uncrosslinked

state. As described later, preparation concentration dependence of elastic

modulus in preparation state clarifies the effects of trapped entanglements on

elastic modulus.

In respect to thermodynamics of swelling of polymer networks

crosslinked in solution, there have been an unresolved problem regarding the

treatment of reference state. Some researchers12- 16 have regarded a polymer

volume fraction at preparation (l/Jo) as a reference state. Others 17-21 have

taken 4'* (the polymer volume fraction at which overlapping of network

chains begins) as a reference state independently of l/Jo (this is so-called the c*

theorem17
). The classical theory regarding l/Jo as a reference state had a weak

point that it was based on Gaussian chain statistics and mean field theory,

because concentration of gels usually belongs to semidilute concentration

regime in which excluded volume effect and concentration fluctuation can not

be neglected. 17
,18 Recently, Panyuhov 15 proposed a scaling form in respect to

the elasticity of gels considering excluded volume effect under the assumption

of the affine displacement of crosslinks on swelling. Obukhov et al. 16 derived

new theoretical predictions considering l/lo as a reference state by combining

the Panyuhov's concept with the scaling theory taking an effect of the

concentration fluctuation into account. On the other hand, the c* theorem

considers that polymer volume fraction of equilibrium swollen network (l/lc)

is equivalent to l/l*.17 The c* theorem gives the familiar prediction for 4'c
dependence of elastic modulus of equilibrium swollen networks (£s) as

follows. 17
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Es ex: ifJc3v/(3v-I) (5.1)

where v is the excluded volume exponent. For instance, in respect to

polymer networks swollen in a typical good solvent (v=3/5), Eq. (5.1) gives

Es ex: ep/14. The validity of the c* theorem has often been believed on the

basis of the experimental confirmation of Eq. (5.1 ).17-21 The c* theorem

postulates the complete disinterpenetration of network chains in equilibrium

swollen state. I? However, as demonstrated later, Eq. (5.1) is also derived

from a model in which crosslinks moves affinely in swelling.22 Under the

affine displacement of crosslinks in swelling, the number of network chains

per unit volume occupied by a network chain is unchanged between before

and after swelling, which means that the affine assumption does not satisfy the

complete disinterpenetration of network chains at equilibrium. This implies

that the confirmation of Eq. (5.1) is not complete support of the validity of

the c* theorem. The same logic holds with respect to the scaling relation for

correlation length (~), ~ ex: epcv/(1-3vl, which has been confirmed by scattering

experiments,23-25 because ~ is related to Es as Es ex: ~3. 17 Eventually, the ifJc

dependence of physical quantities of equilibrium swollen networks does not

give us any information about the interspersion state of network chains. As

mentioned later, the differences between the theories are clearly seen in ifJo

dependence of physical properties of equilibrium swollen networks." In order

to obtain the definite theoretical description for equilibrium swollen

networks, we must investigate physical properties through the epo dependence,

together with the epe dependence.

It is worth while noting that the network samples in this study were

prepared to have as small number of structural defects as possible. The molar

ratio of the reaction sites in crosslinker to the reaction groups in prepolymer

(r) was varied at each epo, and the value of r showing the maximum of epc
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(ropt) was regarded as the condition at which a model network having the least

amount of structural defect is obtained. The details of this method will be

described later. The experimental data for the network samples prepared at

t==fopt were used for the analysis of 'Po dependence of tPe, Ei and Es. It should

be noted that generally, fopt is larger than the stoichiometric ratio (r=1),6 and

in the earlier studies for polymer networks crosslinked in solution,18,26,27 the

samples were prepared at r=l, i.e., not under the optimal condition.

In this chapter, we prepare polymer networks by end-linking the

polydimethylsiloxane (PDMS) whose molecular weight is higher than the

critical molecular weight (Mc=16600)28 for the formation of entanglements in

uncrosslinked state. (The case in which the prepolymers are non-entangled in

uncrosslinked state, i.e., the molecular weight of prepolymer is lower than

Me, is treated in the next chapter.) The polymer networks are attempted to

have as small amount of structural defect as possible. The degree of

equilibrium swelling and initial Young's moduli of networks in both

preparation and equilibrium swollen states are measured as a function of epo.
The experimental results are compared with the theoretical predictions based

on the affine model assuming i/Jo as reference state, and the c* theorem.

5.2 Theoretical Background

In this section, theoretical predictions for <Po dependence of epe and Es
for end-linking type of networks prepared in solution are derived from the

affine model and the c* theorem, respectively.

5.2.1 Affine Model

The affine model employed here is based on the treatment by Obukhov

et alJ6, to which we add the consideration about the concentration regime and
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the contribution of trapped entanglements to elastic modulus. According to

Flory and Rehner1s assumption,29 the free energy of swollen polymer

network consists of osmotic term for the mixing of solution and the elastic

term for the deformation of network. The scaling form of Fmix (the osmotic

part of free energy per site occupied by a monomer) is 17

Fmix = Jt a3 = i/J 3v/(3v-l) (5.2)
kaT kaT

where kB and T is respectively the Boltzmann constant and the absolute

temperature, and Jt is the osmotic pressure, and d is the volume of a

monomer, and p is the polymer volume fraction, and v is an excluded

volume exponent.

Panyukov derived the scaling form of Fel (the elastic part of free

energy per site occupied by a monomer), considering the thermal expansion

effect of chains due to concentration difference between preparation and

swollen state. IS

Fel = E a3 =.L;.,fal (5.3)
ksT kBT Ncf

where E is the elastic modulus, and Ncr is the length in polymerization index

for elastic chains contributing to elastic modulus, and As is the swelling

coefficient defined as As=(i/Jli/Jo)-1I3, and aT is the expansion coefficient

defined as aT = RoIR. Here, Ro is the root of mean square end-to-end

distance of the connected prepolymer chain at i/Jo and R is the end-to-end

distance of the prepolymer chain in unconnected state in solution at i/J.

Equation (5.3) implies that the end-to-end distance of prepolymer chains in

swollen state is equal to ARo, which corresponds to the assumption of affine

displacement of crosslinks. The theoretical descriprion for Nef{¢o ) will be

discussed in the end of this section. Here, we derive the scaling predictions

for Pe and Es without giving the definite form of Nef{¢o)'
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(5.4)

The scaling theory predicts the tjJ dependence of R in semidilute regime

(tP * <tjJ <f/J ** ) as folIows. 17

(

A. )(2V-l)/C2-6V)
R(t/» =R(1) _'1'_

t/> **

Here, R(I) corresponds to the end-to-end distance of prepolymer chain in

melt, i.e., the unperturbed state, and 4> * corresponds to the threshold value of

tjJ where the overlap of polymer chains occurs, ep** being the value of ep at

the boundary for R(¢) between semidilute and the concentrated regime. In

concentrated regime, R(¢) is equal to R(l) due to full screening of excluded

volume effect.

We consider here the two situations for swelling of polymer network

prepared in good solvent: The case that tPo and tPe belong to semidilute

regime, and the case that f/Jo and tPe belong to concentrated and semidilute

regime, respectively. When networks are prepared in good solvent over the

wide range of tPo, the two situations above (lPo < tP ** and lPo > lP **) will be

realized. The difference between the two situations is Ro(¢o): Ro(tPo) in the

region tPo < tP ** is expressed by Eq. (5.4), while Ro(t/Jo) in tPo > tP ** is equal

to R(l). The difference in Ro(t/Jo) between the two situations leads to the

difference in lPo dependence of lPe and Es between the region f/Jo < tP ** and

lPo> f/J**as shown below. From Eqs. (5.3) and (5.4), the scaling expression

for E for each case is as follows.

Fel "'" E a3
"'" 1 tP (9v-4)/(9v-3)f/JJ /(9v-3) (tPo < rp **) (5.5a)

ksT ksT Ne{(¢o)

_ 1 A. (9v-4 )/(9v-3) Ii. **(2v-l )/(1-3v) li.
o
2f3

- 'I' 'I' 'II (tPo> tP**) (5.5b)
Ne{(t/Jo)

The equilibrium swelling is achieved by the minimization of total free

energy with respect to tP. It is found from Eqs. (5.2) and (5.5) that lPe scales

as
A. N(3-9v)/4 Ii. 1/4
'l'e "'" cf '1'0
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(5.9)

~ N:J-9V)/4 l/J u(3-6v)/4l/JJ3v-l)/2 (4)0 > ep **) (5.6b)

The scaling prediction for Es is derived from Eqs. (5.5) and (5.6) as follows.

Es a
3
~ N;j9v/4 ep(~v/(l2v-4} (</>0 < 4>**) (5.7a)

kB T
"'" N;j9v/4 4> **(9v-18v

2
)/(12v-4)epgv/2 (tPo > tP **) (5.7b)

The relation between l/Je and Es is easily obtained from Eqs. (5.6) and (5.7).

Es a3 ~ tP~v/(3v-l) (5.8)
kB T

Equation (5.8) was first derived from the c* theorem assuming the complete

disinterpenetration of network chains in equilibrium swelling state. 17

However, Eq. (5.8) has been derived here on the basis of the affine model

which does not postulate the disinterpenetration of network chains in swelling.

Actually, when the scaling form of Fe! is expressed as Fe! ex: epoa </>b, Eq. (5.8)

is obtained irrespective of a and b, and the exponent for epc dependence of Es

is entirely determined by that for ljJ dependence of n in Eq. (5.1).22 This

means that Eq. (5.8) simply represents a balance between elastic force and

osmotic pressure in equilibrium swelling. In other words, Eq. (2.6) is only

an embodiment of the Flory-Rehner's assumption.

The full expressions for tPo dependence of ljJe and Es reqUlres ljJo

dependence of Nef. The ljJo dependence of Ncf is directly related to ljJo

dependence of elastic modulus in preparation state (E j ) as follows. The tPo

dependence of Ei is obtained from Eq. (5.3) with ep=epo as

E po kB T
i (cfJo) R' Nere cfJo) a!

This is identical with the conventional equation for elastic modulus from

rubber elasticity theory.3o As can be seen in Eq. (5.9), the ljJo dependence of

Ej (Ej 0:: ljJo0) is directly related to t/Jo dependence of Ncf (Ncf ex: tPox 7= I-a).

The value of x includes tPo dependence of any effects of trapped

entanglements on elastic modulus such as the role as additional crosslinks, and
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the suppression effect of thermal fluctuation of crosslinks. The value of x is

greatly influenced by the relative amount of trapped entanglement to chemical

crosslink, and it depends on the details of network system concerned (such as

molecular weight of prepolymer and functionality of crosslinks). In this

sense, x is a phenomenological value depending on the network system used.

In respect to the networks (as treated in this chapter) which has much more

trapped entanglements than chemical crosslinks (Nef = N e where N e is the

length between neighboring trapped entanglements), the scaling form for

Nef(ifJo) will be analogous to that for N e(4Jo). The theoretical prediction for

concentration dependence of Ne has been reported by several authors,17,30-33

and is still unsettled. The theoretical exponent for N e (Ne(ifJo ) <X tPOX
) was

reported to be x=-l by some authors,3°,31 while x=1I(l-3v) (=-5/4 if v=3/5)

was derived for good solvent system on the basis of the blob model. 17,32

Another authors argues that x=-l holds in concentrated regime and x=lI(l

3v) in semidilute regime.33,34 The value of x has been obtained from the

experiments3S-39 and the simulations34 for rubbery plateau modulus of

polymer solution. The reported values of x for good solvent vary from -1.0

to -1.4. It seems to be difficult at present to determine the correct theoretical

value of x from available experimental data. Accordingly, we use here both

x=-l and x=1I(1-3v) for the predictions for tPo dependence of tPe and Es•

The predicted exponents for tPe and Es (fjJe <X f/JoY, Es <X fjJoZ) using x=-1 and

x=1I(l-3v) are shown in Table 5-1, respectively. Here, we used v=O.57

which is evaluated from the relationship between molecular weight and

intrinsic viscosity for PDMS in toluene,40 namely, [1]] <X M3v-l. It can be

seen from Table 5-1 that the theory predicts that the exponents for fjJe and Es

are higher in f/Jo > tP ** than in f/Jo < tP **.
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Table 5-1. Exponents predicted by the affine model and the c* theorem for

the 4'0 dependence of 4'e and Es (V and z, respectively) according to the value

of x. x is the exponent for the l/Jo dependence of Nd".

x y ...

€Po < €Po** €Po> €Po** €Po < €Po** €Po> €Po**
_la 0.78 0.89 1.9 2.1

affine model -1.4b 1.0 1.1 1.8 2.7

-1.1 c 0.84 0.94 2.0 2.3

_l a 0.71 1.7

c* theorem -1.4b 0.99 2.4

-1.1 c 0.78 1.9

a From the uniform network theory.

b From the scaling theory for good solvent system with v=0.57.

CFrom the experimental result of the 4'0 dependence of Ei in this study.

-121-



5.2.2 c* Theorem

According to the c* theorem,17 the polymer concentration of

equilibrium swollen networks is identified with the overlapping concentration

with respect to the network chains with polymerization index N. The c*

theorem predicts that l/Ic scales as

l/Ie ~ l/I* ex: NI - 3v (5.10)

If N in Eg. (5.10) is regarded as the distance between chemical crosslinks, Eq.

(5.10) gives an unrealistic prediction that tPc is constant independently of tPo
for networks prepared by end-linking method. Candau et al. 18 argued that the

c* theorem is valid by substituting Nef for N in Eq. (5.10), i.e., treating

trapped entanglements similarly as chemical crosslinks. Then, l/Ic depends on

t/Jo through the l/Io dependence of Nrf as follows.

l/Ie ex: Nrfl - 3v ex t/Jox(l~3v) (5.11)

Using the relation Es ex tPe INa and Eq. (5.11), we obtain the relation between

Es and l/Ie which is the same as Eq. (5.8). From Eqs. (5.8) and (5.11), the t/Jo

dependence of Es is expressed as

Es ex t/Jo 3vx (5.12)

The value of x in Eqs. (5.11) and (5.12) is related to l/Jo dependence of Ei

through Eq. (5.9).

The values of y and z predicted by the c* theorem are obtained from

Eqs. (5.11) and (5.12) according to x=-1 and -1.4, and are listed in Table 5

1. The difference in theoretical values of y and z by the affine model and the

c* theorem is not so large, but it should be noted that the c* theorem does not

predict the crossover in y and z in contrast to the affine model. This

difference is due to the fact that the c* theorem does not originally treat l/Jo as

an independent variable, and l/Jo dependence of l/Je and Es in Eqs. (5.11) and

(5.12) is indirect one through 4>0 dependence of Nrf.
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5.3 Experimental

The molecular weight of vinyl-terminated POMS (Chisso Co., Japan) is

Mw=4.7x 104, which was determined by light scattering measurement, and the

value of Mw/Mn measured by gel permeation chromatography (GPC) is 1.6.

Here, M w and Mn is the weight and the number average molecular weight,

respectively.

The gel samples were prepared by hydrosilylation in toluene between

the vinyl groups at both ends of POMS and silane hydrogens in

tetrakisdimethysiloxysilane (TOMS). HZPtCl·6H20 dissolved in 2-propanol

(the Spier's catalyst) was used as a catalyst for hydrosilylation.41,42 The

solutions were prepared at the seven kinds of polymer volume fraction (4'0),

and r was varied at each 4'0'. The solution was casted into Teflon mold with

sealing apparatus. The reaction was carried out at 100°C for 24h. In

preliminary experiments, sol fraction for the samples with 4'0'=0.191 (the

lowest ,po' in this study) prepared under various reaction temperature was

measured. The hydrosilylation reaction at low concentration involved

difficulties at low reaction temperature, differing from that in bulk state.

The samples with ,po'=O.191 prepared below 100°C showed the larger sol

fraction or no gelation. Though some types of side reaction in

hydrosilylation reaction are known to occur at high temperature,43,44 the

sample prepared at 100°C were regarded as the network with the least amount

of structural defect on the basis of the lowest value of sol fraction. The loss

of toluene during the reaction process was prevented by sealing the mold. We

confirmed that the loss amount of toluene was very small (less than 0.3

weight percent) by comparing the mold weight with sample between before

and after the reaction.
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The obtained gel samples were immersed in toluene until equilibrium

of swelling was achieved. Toluene was properly renewed. The fully swollen

gels were weighed, and then were kept drying in air to obtain fully deswollen

networks. The weight of fully deswollen network was measured, and the

value of tPe and the weight fraction of soluble material for each sample was

calculated. The sol fraction for each sample with r=ropt (where iPe has the

maximum in r dependence of iPe) was less than eight weight percent. The

values of l/Jo were re-calculated by subtracting sol fraction from f/Jo', taking

the unreacted portion of prepolymer into account.

The original and the fully swollen networks prepared at each l/Jo with

r=ropt were used for mechanical measurements. The values of Ei and Es at

each f/Jo were obtained by uniaxial elongational measurement. The values of

1>0' ropt, iPe, Ei and Es at each f/Jo' are summarized in Table 5-2.

5.4 Results and Discussion

5.4.] r Dependence of l/Je at Each l/Jo' I

The r dependence of tPe at l/Jo';::;O.191, 0.298, and 0.430 is shown in

Fig. 5-1. The r dependence of l/Je at each tPo' has the maximum, and the

location of peaks is at r:;tl. The other samples have the similar r dependence

of tPe, and the data are not shown. The results in Fig. 5-1 qualitatively agree

with those for the networks crosslinked in bulk state reported by Patel et al.6

One of the reasons why the location of peak shifts to high r region is the

unequal reactivity in the functional sites of tetrafunctional crosslinker. The

reactivity of the fourth site of crosslinker with three reacted sites is much

lowerd by sterle hindrance.6,45 The existence of dangling ends and structural

defects should lead to decrease of iPe.6 ,46 The cyc1ization in end-linking of

PDMS at low concentration was investigated by Vasiliev et a1.27 They
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Table 5-2. Polymer volume fraction of the solution for preparation (CPo'),

polymer volume fraction and Young's modulus of the network in preparation

state (CPo and Ei, respectively) and in equilibrium swollen state (CPe and Es,

respectively) and, the optimal ratio of silane hydrogen to vinyl group (ropt).

CPo' CPo ropt Ei xl0-4(Pa) Es xl0-4(Pa) CPe

1.00 1.00 1.15 34 10 0.187

0.861 0.852 1.20 28 8.1 0.155

0.725 0.709 1.14 19 5.2 0.126

0.564 0.544 1.07 8.9 2.2 0.0933

0.430 0.411 1.24 5.8 1.4 0.0778

0.298 0.281 1.18 2.6 0.68 0.0549

0.191 0.179 1.20 0.89 0.28 0.0381
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Figure 5-1. The ratio of sHane hydrogens to vinyl groups (r) dependence

of the polymer volume fraction of equilibrium swollen network Ct/Je) for the

samples prepared at 4>0' =0.191 (.0.); 0.298 (0); 0.430 (0). 4>0' is the polymer

volume fraction in solution for sample preparation.
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(5.13)

reported that the degree of cyclization in 10% solution decreases with

increasing M of prepolymer, and that the formation of loop does not occur at

M==1.1 x 104• The formation of loop defects should be negligible in this study

because M of prepolymer in this study is much larger than 1.1 x 104• We

regard the sample with r:=ropt as the network with the least amount of

dangling end and the structural defect. The ¢o dependence of ¢e, Ei, and Es

in this study is for samples with r:=ropt at each tPo.

5.4.2 tPo Dependence of Ei

The tPo dependence of Ei is shown in Fig. 5-2. The all data points fall

on the straight line with the slope 2.1. If the elastic modulus is determined

only by the number of chemical crosslinks (i.e, trapped entanglements do not

give any contribution to elastic modulus), Ej is simply proportional to

number density of prepolymer as

Ei ex: tPo 1

Equation (5.13) is also obtained from Eq. (5.9) with N e[(1'o) := N where N is

the polymerization index of prepolymer. The relation Ei ex: ¢o2.1 is similar

to concentration dependence of plateau modulus of polymer solutions, which

suggests that trapped entanglements have dominant contribution to elastic

modulus for all samples in this study. It is found from Ej cx: tPo2
.
1 and

Eq.(5.9) that Ne[(tfJo) scales as

Nef(t/Jo) ex: tPo-1.1 (5.14)

This exponent is within the results (-1 ~ x ~ -1.4) obtained from rubbery

plateau modulus of polymer solution,35-39 and is closer to the value from

uniform network theory (x==_l)30,31 than that from scaling theory 17,32

(x==1/(3v-l)=-1.4). Equation (5.14) holds in the wide range of tPo (0.178 ~

tPo ~ 1), which is the similar result for rubbery plateau modulus of polymer
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of the network in preparation state, and Ei is the Young's modulus of the
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solution.35-38 With regard to this point. Takahashi et al.38 concluded that for

the understanding of plateau modulus of polymer solutions the scaling concept

of a semidilute region is not necessary. and the uniform network model (x=

1) is enough for the description of Ne(¢Jo). Our experimental data (tPo

~0.178) seem to support their idea. The data for Ei of samples prepared at

lower tPo may be necessary in order to discuss strictly whether the crossover

in tPo dependence of Ei exists or not. but the elongation of samples with

tPo<0.178 was very difficult due to the softness of material.

Here, the exponents of y and z predicted with the experimental result

x=-l.l are added to the third and sixth row of Table 5-1. This ad hoc

procedure would be significant under present situation that the definite

theoretical description for Ne(¢Jo) is not established. The prediction with X=

1.1 gives the somewhat higher exponents than that with x=-l.

5.4.3 tPo Dependence of tPe a,nd Es

The tPo dependence of tPe is shown in Fig. 5-3. The tPo dependence of

tPe showed the crossover: tPe ex: tPo 0.82 in low tPo region. and l/Je ex: tPo 1.1 in

high 4'0 region. The exponents were determined by the least square method

for the four data points in each region. The value of l/Jo at the boundary is

estimated to be ca. 0.58.

The theoretical evaluation of l/Jo** is given by the following equation.47

l/Jo** ""' (T -S)/S (5.15)

where S is the S temperature. The value of l/Jo** is evaluated to be 0.22 by

using Eq. (5.15) with T=298K and El=234K for PDMS in toluene.48

However. Adachi et at. showed that the value of l/Jo ** predicted by Eq. (5.15)

is quite different from the experimental value of tPo** obtained from

concentration dependence of R of cis-polyisoprene in good solvent by means
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respectively. The crossover point is estimated to be 4'0 = 0.58.
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of dielectric spectroscopy.49 The dielectric spectroscopy has been the only

method to measure R directly.49,5o The measurement is possible only on the

so-called type-A polymers having the dipole moment aligned parallel in the

same direction along chain contour.50 (Poly(dimethyl siloxane) does not

correspond to type-A polymer.) According to their study,49 the crossover

concentration for R of cis-polyisoprene in benzene between semidilule and

concentrated regime was evaluated to be 0.55g/cm3, which is converted into

0.60 in polymer volume fraction with the density of cis-polyisoprene

(0.913g/cm3). The value of v for cis-polyisoprene in benzene was reported

to be 0.578,49 which is close to v=0.57 for the system in this study.

Assuming that CPo ** is dominated by the affinity between the polymer and the

solvent,51,52 their result (CPo** = 0.60) would be considered as a rough

estimation of CPo** for the system in this study. The crossover point in Fig.

5-3 is close to their result (l/Jo** = 0.60), suggesting that the crossover of CPo

dependence of CPe occurs at CPo**.

As can be seen from Table 5-1, the experimental value of y in the

region l/Jo < CPo** is close to those expected by the affine model with x=-l or

x=-l.l, while the dependence in tPo > CPo** is stronger than the predictions

with x=-l or x=-l.1. The prediction by the affine model with x=-1.4 is

higher than the experimental exponent in low tPo region, while that is in good

agreement with the experiment in high CPo region. On the other hand, the

theoretical exponent by the c* theorem with x=-l or x=-1.1 is close to the

experimental one in l/Jo < CPo**, but the c* theorem does not explain the

crossover in tPo dependence of tPc in the experiment.

The results in earlier studies18,26,27 for tPo dependence of CPe in good

slovent were rather different from our results. In Ref. 18, the exponent was

0.71 and 0.75, and the crossover was not observed. This discrepancy may be
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due to three reasons: Their samples were prepared at r;:t;ropt and did not have

much trapped entanglements due to low molecular weight of PDMS

prepolymer (M=9700) , and the data in low 4>0 region below CPo** were

lacking (the lowest 4'0 was 0.458). The exponent from the data in Refs. 26

and 27 yields 0.71 and 0.54-1.1, respectively. However, the exponents are

estimated from a small number of data, and their samples were not prepared

at r=ropt.

We indicate 4>0 dependence of Es in Fig. 5-4. The crossover in tPo

dependence of Es is observed, and the change of slope occurs more clearly,

compared with that in the 4'0 dependence of 4'e. The value of 4'0 at crossover

point is estimated to be ca. 0.53, which is close to that for lfro dependence of

4>e and also 4'0**=0.60 reported by Adachi et al.49 The crossover point for

4>0 dependence of Es would be considered as 4>0**' The 4>0 dependence of

Es in each region is as follows: Es ex: tPo 1.9 in the region tPo < tPo **; Es ex:

4>0 2.5 in tPo > 4'0**' The determining method for the exponent in each

region is the same as that in 4>0 dependence of tPe. The prediction by the

affine model with each value of x explains the experimental results in tPo <

4'0**, while the experimental exponent in lfro > tPo** is intermediate between

the predictions with x=-I.1 and x=-I.4. As is the case in tPo dependence of

tPe, the prediction by the c* theorem shows the good agreement with the

experiment in either 4'0 < tPo** or 4>0 > tPo**, depending on the value of x

employed. However, the crossover in tPo dependence of Es in the experiment

is not explained by the c* theorem.

In the earlier studies, the exponent for Es was estimated to be 1.8,18

1.918 and 1.6-2.3,27 and the crossover was not reported at all. The reason

why their results are different from ours will be the same as that in the case

of 4'0 dependence of tPe as mentioned before.
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Figure 5-4. The tPo dependence of Es• l/Jo is the polymer volume fraction

of the network in preparation state, and Es is the Young's modulus of the
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2.5, respectively. The crossover point is evaluated to be tPo ~ 0.53.
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In the comparison of experimental results in Figs. 5-2 - 5-4 with the

predictions by the affine model with three kinds of x value, the ad hoc

procedure using x=-l.l seems to be superior to the others in the quantitative

description of experimental results, though the experimental results of y and z
in ¢o > 4>0 ** are somewhat higher. The predictions with x=-l.4 succeeds in

the description of y in ¢o > ¢o**, but the employment of x=-I.4 would not

be reasonable, because there is a noticeable difference between x=-l.4 and

x=-l.l obtained experimentally, and it seems to be unreasonable that the

scaling concept for good solvent system is valid from semidilute regime to

melt. The fairly good agreement of theoretical predictions by the ad hoc

procedure with experimental results supports the validity of the affine

assumption for the displacement of crosslinks on swelling and the treatment

of trapped entanglements in this study, though the problem on the strict

theoretical description of NeftifJo) still remains.

The exponents for tPe and Es by the c* theorem are close to those by

the affine model, and this fortuitous coincidence made it somewhat difficult to

discuss the difference between both theories. However, the crossover in tPo
dependence of tPe and Es observed experimentally is explained by the affine

model, while it is not described by the c* theorem. This result strongly

suggests that tPo need to be considered as the reference state for networks

crosslinked in solution, and the displacement of crosslinks on swelling is

affine.

5.4.4 ¢e Dependence of Es

The plots of logEs against 10gtPe are indicated in Fig. 5-5. The relation

between logEs and logq>e is represented by the straight line with slope 2.3.

Equation (5.8) with v =0.57 predicts the relation between Es and tPe as Es
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ex: f/Je2.4. The theoretical exponent is in good agreement with the experimental

value. Equation (5.8) has been experimentally confirmed by many

experiments for good solvent system. 17-21 Equation (5.8) is not influenced by

the details of sample preparation and the amount of entanglements in the

network, as described previously.

5.5 Conclusions

In this chapter, the degree of equilibrium swelling and the elastic

modulus of equilibrium swollen networks were investigated as a function of

preparation concentration. The polymer networks were prepared by end

linking the prepolymers with high molecular weight which are entangled in

uncrosslinked state. The network samples were attempted to have as small

amount of structural defects as possible. The preparation concentration

dependence of elastic modulus in preparation state coincided with the

concentration dependence of plateau modulus of polymer solutions, which

suggests that trapped entanglements act similarly as chemical crosslinks, and

those dominantly contribute to elastic modulus. The crossover in preparation

concentration dependence was observed both for the volume fraction and the

elastic modulus of equilibrium swollen networks. The crossover

concentration for both cases coincided with each other, and corresponded to

the concentration where full screening of eXcluded volume effect for polymer

chains occurs. The theoretical predictions for preparation concentration.

dependence of swelling and elastic properties were derived on the basis of the

affine model which regards preparation concentration as a reference state,

and assumes the affine displacement of crosslinks on swelling. The

experimental results quantitatively agreed with the predictions by the affine

model, while the c* theorem considering ~* as a reference state did not
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explain the crossover in preparation concentration dependence of the degree

of equilibrium swelling and the elastic modulus of equilibrium swollen

networks. The above results suggests that the displacement of crosslinks

moves affinely on swelling, and the complete disinterpenetration of network

chains does not occur in equilibrium swelling state when there is the high

degree of overlapping of network chains in preparation state.
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Chapter 6
Effects of Polymer Concentration at Crosslinking on
Swelling and Elastic Properties of End-Linked
Oligo(dimethylsiloxane) Networks

6.1 Introduction

In the previous chapter, the swelling and elastic properties of the

networks crosslinked in solution using polydimethylsiloxane (POMS) as a

prepolymer were described. The PDMS had high molecular weight enough

to be entangled in uncrosslinked state. The dependence of elastic modulus of

PDMS networks in preparation state (E i) on polymer concentration at

crosslinking was in accord with the concentration dependence of plateau

modulus of polymer solutions, which strongly suggests that trapped

entanglements dominantly contribute to elasticity of crosslinked networks. In

this chapter, the networks considered are prepared by end-linking

oligodimethylsiloxanes (ODMS) which is not entangled in uncrosslinked state

due to the low molecular weight. It is very interesting to investigate that

trapped entanglements are formed or not in this system, and if any, how is the

magnitude of their contribution to elastic modulus of polymer networks.

In the previous chapter, polymer volume fraction and initial Young's

modulus in equlibrium swollen state (tPe and Es, respectively) were measured

as a function of polymer volume fraction in preparation state (epa) in respect

to the networks prepared by end-linking PDMS. The experimental results

were compared with predictions by the two theories (i.e., the affine model

and the c* theorem) describing equilibrium swelling of polymer networks.

The epa dependence of epe and Es obtained experimentally showed the

crossover at tPo=ep** as predicted by the affine model, where tP** is the value
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of 1'0 at which the excluded volume effect for polymer chains is completely

screened. The crossover in 1'0 dependence of l/Jc and Es is a evidence of the

validity of the affine model, but the exponents for l/Jo dependence of tPc and Es
(in the region l/Jo<CP**) predicted by the affine model and the c* theorem

were accidentally close to each other, which made the discussion about the

difference between the two theories somewhat ambiguous. However, in

respect to the networks prepared using ODMS as a prepolymer, there

expected to be a significant difference between the exponents for CPo

dependence of 'Pc and Es predicted by the two theories. As described in

Chapter 5, the theoretical exponents for CPo dependence of of 'Pc and Es are

dependent on the exponent (x) for 'Po dependence of the length of elastically

effective chain (Nd ). (See, Eqs. (5.6), (5.7), (5.11) and (5.12).) The value of

x is changed by the degree of contribution of trapped entanglements to elastic

modulus which is greatly influenced by the molecular weight of prepolymer

used. Actually, the employment of ODMS as a prepolymer has enabled us to

discuss the difference between the two theories more clearly, as will be

demonstrated later.

In this chapter, the tPo dependence of Ej, tPc and Es is investigated for

the networks prepared by end-linking ODMS in solution. The contribution of

trapped entanglements to elastic modulus is discussed on the basis of tPo

dependence of Ej. The tPo dependence of l/Je and Esobtained experimentally is

compared with the predictions by the affine model and the c* theorem. The

theoretical predictions by the two theories were given previously in Chapter

5. (See, Eqs. (5.6), (5.7), (5.11) and (5.12).).
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6.2 Experimental

The samples were prepared by hydrosilylation in toluene between

methacryloyl(CH2=C(CH3)COO)-terminated oligodimethylsiloxane (ODMS)

(Shinetsu Chemical, Co.) and tetrakisdimethylsiloxysilane (Chisso Co.). The

number average molecular weight (Mn) of ODMS is Mn=4.4x 103, which was

determined from the intrinsic viscosity on the basis of the relation [11](ml/g)

=7.55x10-2-Mno·50 for ODMS (2xl03 ~ Mn ~ Ixl04) in toluene at 25°C.\ The

value of Mn of ODMS is lower than the critical molecular weight (=1.66xl04)

for the formation of entanglements for PDMS.2 The value of Mw/Mn

measured by gel permeation chromatography was 1.7 where Mw is the weight

average molecular weight.

The network samples were prepared in the same mannar as described in

Chapter 5. The solutions with the eight kinds of polymer volume fraction

(pOl) (0.331 ~ epOl ~ 1) were prepared, and the ratio of silane hydrogens to

methacryloyl groups (r) was varied at each epOI. The reaction was made at

100°C for 24h. The details of evaluation for Pc, Po and weight fraction of

soluble species (Wsol) are described in Chapter 5.

The reaction condition (lDoac and 24h) employed was determined from

the following preliminaly experiment. We compared the values of Wsol for

the samples with POl =0.411 prepared under various reaction temperature and

reaction time. We adopted the reaction condition at which the sample with

the least Wsa\ was obtained as a regular one.

The r dependence of Pe at each epa' was investigated to obtain network

samples with the least amount of structural defect. The samples with r:::ropt at

which the r dependence of tPe at each tPo' showed the maximum were used for

the measurements of tPe, Ei and Es. The details of r dependence of Pe at each
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4>0' are described later. The value of Wsol for all the samples prepared at

r=ropt were less than ten weight percent.

The dynamic Young's moduli of network samples in preparation and

equilibrium swollen state (designated as Ej' and Es', respectively) were

measured by means of DVE-V4 Rheospectra (Rheology Engineering, Co.,

Japan). The measurements were made at room temperature under

compression mode, and the strain amplitude was 0.01. The frequency (m)

was varied from ls- 1 to 100 S-l. Both Ej' and Es ' for all the samples were

almost constant over the examined range of w. We adopted the average

values of Ej' and Es ' over ls-lswslOO S-l.

The values of tPo, ropt, tPe , Ej' and Es I at each tPo' are summarized III

Table 6-1.

6.3 Results and Discussion

6.3.1 r Dependence of tPe at Each tPo'

Figure 6-1 indicates r dependence of tPe at tPo'=0.331, 00411, 0.531,

0.620. As can be seen, the r dependence of l/Je at each tPo' shows the clear

maximum which locates at r>1. The samples prepared at tPo'~0.656 showed

the similar behavior in r dependence of l/Je, and the data are not shown here.

The results in Fig. 6-1 are qualitatively in accord with those obtained for the

networks prepared by PDMS (See, Fig. 5-1). As there is the larger amount

of structural defect such as dangling chains and loop in network, a network

shows the smaller value of tPe, i.e., swells larger.3 The value of r having the

maximum of tPe was regarded as the optimal condition (r=ropt) that network

samples with the least amount of structural defect are obtained. The major

origin of 'opt>1 is mainly attributed to unequal reactivity of reactive sites in

crosslinker due to steric hindrance, the details of which are described in
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Table 6-1. Polymer volume fraction of the solution for preparation (tPo') ,

polymer volume fraction and dynamic Young 1s modulus of the network in

preparation state (tPo and Ei', respectively) and in equilibrium swollen state

(epe and ES1, respectively) and, the optimal ratio of silane hydrogen to

methacryloyl group (ropt).

tPo' tPo r opt Ei 'xlO-5(Pa) Es 'x10-5(Pa) tPe

1.00 1.00 1.76 20.4 7.52 0.275

0.801 0.777 1.70 12.7 4.46 0.216

0.701 0.654 1.76 9.90 4.11 0.208

0.656 0.601 1.60 8.92 3.57 0.194

0.620 0.585 1.90 9.04 3.40 0.195

0.531 0.504 1.61 7.24 2.99 0.180

00411 0.381 1.76 4.49 1.59 0.140

0.311 a 0.298 2.00 1.83 0.872 0.109

Clfhis sample has many structural defects. The data were omitted for the

determination of the exponents for the tPo dependence of Ei', tPe and Es' .
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Chapter 5. The data for the samples prepared at r=ropt for the analysis of <Po

dependence of Ei I, cPe and Es' are employed.

6.3.2 epa Dependence oj Ei l

Figure 6-2 shows the double logarithmic plots of Eil vs. epa. It is found

that epo dependence of Ej' in the region epa ~0.381 is expressed by Ej I 0:: cPo1.52,

and the value of Ei ' at <Po=0.298 deviates downward from this relation. The

exponent was determined from the least square method. As is well-known,

the non-negligible degree of loop formation occurs at the crosslinking in

solution with low concentration.4 Actually, epo'=0.331 at which the sample

with epo=0.298 was prepared is close to ep*""'0.34 evaluated from (11] of the

prepolymer. Here, ep* is the threshold value of polymer volume fraction at

which overlapping of prepolymer chains occur. The elastic modulus of a

network having many loops is lower than that expected for network with no

loops, because loop structure does not contribute to elastic modulus. The low

value of Ei' at cPo =0.298 should be due to the considerable number of loops

in the network structure. The value of Wsol for the sample prepared at

cPo'=O.331 was comparable to those at epo'~0.411. This suggests that the

reaction at cPo' =0.331 proceeded to the same degree as that at epa' ~0.411, but

the considerable part of reaction was consumed for loop formation. The

preparation of polymer network with small number of defects may be

difficult in the region tPo=tP* due to inevitable loop formation. The abrupt

decrease of elastic modulus at <Po' =0.331 suggests that the number of loop

defects is considerable at tPo' sO.331, while it is small enough not to prevent

the quantitative discussion about elasticity of networks prepared at tPo' ~0.411.
The data of the sample prepared at tPo' =0.331 in the determination of
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exponents for 4'0 dependence of Ej I , 4'c and Es I were omitted, because it has

many structural defects.

The exponent a=1.52 for 4'0 dependence of Ej I (Ej l ex: 4'0U) in Fig. 6-2

IS fairly lower than a=2 expected for networks in which trapped

entanglements dominantly contribute to elastic modulus. We explain the

experimental exponent quantitatively on the basis of the following simple

evaluation for4'o dependence of Ej. We express the number density of total

elastic chains contributing to elastic modulus (vcr) as a sum of the number

density of a chain between neighboring chemical crosslinks (Vch) and that

between neighboring trapped entanglements (vc) as follows.
f!!J!sl Ppo

Vef (t/Jo) =Vch(t/Jo) + ve(t/Jo) = Mch + M
e
(4b) (6.1)

where p is the density of prepolymer, Mch is the molecular weight between

neighboring chemical crosslinks, and Me is the molecular weight between

neighboring trapped entanglements. Using the value of Me for network

prepared in bulk state (Mea), we express Vef (t/Jo) as

E j ( 4b) l!..!1!9. l!!1!l (6 )
Vef (1Jo) = 3R T = Mch + Moo .2

where the relationS M e(4b) = Moo CPo-1 is used. Equation (6.2) corresponds to

the modification of the Langley6 and Graessley's? expression of elastic

modulus under the condition that thermal fluctuation of crosslinks is fully

suppressed and trapping factor is equal to unity, i.e.,
Ej(l) GN°
3RT = vch(1) + RT (6.3)

where GN° is the plateau modulus of polymer melt in uncross linked state.

Patel et al.3 showed that shear moduli of model networks by end-linking in

bulk state the POMS with a series of molecular weights is well described by

Eq. (6.3). From Eq. (6.2), if the number of chemical crosslinks is much

larger than that of trapped entanglements (namely, Vch(1Jo) » Ve(4b)), the
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relation Ej ex tPo 1 is obtained. (As described later, this situation is very

difficult to realize.) On the other hand, when the total number of junctions is

dominantly occupied by the number of trapped entanglements (namely, vc(t/Jo)

» Vch(ttb), we get the relation Ej ex ifJo2 . The latter relation was

experimentally confirmed for PDMS networks using the prepolymer with

Mp>Me, which was described in Chapter 5. The value of Meh for end-linking

type of network can be regarded as M p under the complete progress of end

linking reaction and r=l. However, this condition is difficult to realize,3,8.9 as

is seen in Fig. 6-1 and the non-zero value of Wsol. In this case, Meh=Mp is a

poor approximation. The correct value of Meh has often been calculated on

the basis of the Macosko and Miller model lO of nonlinear polymerization.3,8,9

According to this model, Meh is calculated from the values of Mp, Wsol and r

for the preparation in bulk state. The details of this model are described in

Ref. 10. Using r=1.76 and wsoJ=7.4lxlO-2 for ifJo=l, we obtain Mch=8.8xl<Y

for the system in this study. The value of Meh larger than molecular weight

of prepolymer (Mp=4.4xl<Y) is due to ropt larger than unity, and the non-zero

value of W so).3,8-10 Assuming that Moo is the same as the molecular weight

between entanglements (=8.1xlD3) determined from GN° of PDMS melt in

uncrosslinked state,5 we can calculate the ifJo dependence of Ej using Eq. (6.2)

with Mch=8.8xlD3, Meo=8.1x163 and p=O.975g/cm3 . The results are

represented by the dash-dot curve in Fig. 6-2. It is found that the dash-dot

curve fairly well explains ifJo dependence of Ej obtained experimentally, and

the curve is approximated by a straight line, although its slope is slightly

lower than the experimental value of a. For the network system in this study,

the two terms in Eq. (6.2) concerning chemical crosslinks and trapped

entanglements are of the same order, resulting in a intermediate between

unity and two.
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(6.4)

By eliminating the second term originating from trapped entanglements

in Eg. (6.2), we get lPo dependence of Ej corresponding to the affine limit of

the constrained junction theory 11 as follows.
Ej{rfJo) _ ~

3RT - Mch

The constrained junction theory II considers that trapped entanglements act as

the suppression of thermal fluctuation of crosslinks, but do not contribute to

elastic modulus. When the thermal fluctuation of crosslinks is fully

suppressed (Le., affine limit), elastic modulus in the constrained junction

theory has the maximum. Equation (6.4) corresponds to lPo dependence of

the maximum of Ej predicted by the constrained junction theory. The

prediction by Eq. (6.4) is represented by the dashed line in Fig. 6-2. The

dashed line is located under all the data points at epo~O.381, which clearly

indicates that the constrained junction theory, which neglects the contribution

of trapped entanglements to elastic modulus, under-estimates elastic modulus.

The value of E j I at lPo=O.298 is lower than the prediction by Eg. (6.4), which

results from many defects in the network structure.

The under-estimation of Eq. (6.4) for lPo dependence of E j means that

trapped entanglements significantly contribute to elastic modulus, even if

there are no entanglements in uncrosslinked state. The reason why trapped

entanglements are formed without entanglements in uncrosslinked state is

qualitatively explained as follows: Even if the length of prepolymer is too

short to form entanglement couplings, some degree of overlapping of

prepolymer chains exists in uncrosslinked state when lPo is larger than cjJ*.

Most of the overlapping points of polymer chains are trapped by the

introduction of chemical crosslinks, leading to trapped entanglements. In

order to obtain polymer networks with no or negligible amount of trapped

entanglement, the network must be prepared at lPo"""lP*' However, as

-151-



mentioned before, the preparation of polymer networks at tPo~tP* with

negligible amount of structural defect is very difficult due to loop formation

inevitably accompanying the reaction at low concentration.

(6.5a)

(6.5b)(affine model),

6.3.3 fjJo Dependence oj fjJc and Es'

The value of x (Nef oc tPOX
) is experimentally determined to be -0.52

(=l-a) from tPo dependence of Ej I. As mentioned in Sec. 5.2, the theoretical

exponents for tPo dependence of fjJc and Es depends on x. Here, using x=-0.52

obtained experimentally, we calculate the exponents predicted by the affine

model and the c* theorem, respectively. From Eqs. (5.6) and (5.11), the tPo

dependence of fjJc predicted by each theory is obtained as

tPc oc t/J oO.53 (t/Jo < t/J**)

ex: fjJ oO.63 (f/Jo> t/J**)

and

(6.7a)

(6.7b)(affine model),

f/Jc oc f/Jo°.37 (c* theorem). (6.6)

Here, v=O.57, which was the value reported for PDMS in toluene,12 was used.

The 4'0 dependence of Es derived from each theory is obtained from Eqs.

(5.7) and (5.12) with x=-O.52 and v=O.57 as follows.

Es oct/J01.3 (4'0 < fjJ**)

oc 4'01.5 (4'0 > fjJ **)

and

Es ex: fjJoO.89 (c* theorem). (6.8)

As can be seen in Eqs. (6.5)-(6.8), there is a significant difference in the

theoretical exponents between the two theories, in contrast to the case in

PDMS networks treated in Chapter 5. (See, Table 5-1.)

We show tPo dependence of f/Jc in Fig. 6-3. The relation between tPo and

tPc in the region t/Jo~O.381 is found to be expressed by 4'0 oc tPcO.652. The data
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for the sample with tPo=O.298, which has many structural defects, is much

lower than the value expected from the above relation. A network with many

structural defects swells larger (shows the smaller ¢e) due to low elasticity

than that having negligible amount of defect does. Although the affine model

predicts the crossover in ifJo dependence of cjJe at epo"""ep**"""O.6013
, the

crossover IS not experimentally observed. However, the experimental

exponent is in good agreement with the theoretical prediction in the region

tPr:Y:>tP**. On the other hand, the exponent predicted by the c* theorem is

much lower than the experimental value.

Figure 6-4 shows epo dependence of Es I. The ifJo dependence of Es I in

the region epo~O.381 obeys the relation EsI rx ifJo1,49. The data of the sample

with cjJo=O.298 is located under the extrapolation by the above relation, which

results from many structural defects not contributing to elastic modulus. The

exponent obtained experimentally agrees very well with the prediction in the

region epr:Y:>ep** by the affine model, although the crossover in epo dependence

predicted by the theory is not seen in the experiment. On the other hand, the

experimental exponent is much higher than the theoretical value of the c*

theorem.

As mentioned above, both the epo dependence of cpe and EsI obtained

experimentally agree well with the predictions in the region CPr:Y:>l!Jo** by the

affine model. The reason why the crossover in f/Jo dependence of t/Je and Esl

was not experimentally observed is not clear at present, but it may be

attributed to low molecular weight of ODMS used. When molecular weight

of a polymer is sufficiently low, the excluded volume effect is negligible. 14,15

Actually, the experimental relation between [11] and Mn in respect to ODMS in

toluene l ([tI] rx MnO.50) gives v=O.50. This means that end-to-end distance of

ODMS chain in uncrosslinked state is equal to the unperturbed dimension
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over the entire range of tPo. The concept of concentration blob in scaling

theory postulates that a prepolymer as a constituent of network behaves as an

excluded volume chain, since a network itself is affected by excluded volume

effect. Nevertheless, the negligible excluded volume effect of prepolymer

itself may diminish tPo dependence of Ro, which identifies the region tPo<tP**

with l{J0>q,**. In addition to the above supposition, it should be mentioned

that the difference in the predicted exponents in tjJa>q,** and tPo<q,** is small,

which makes the experimental confirmation of crossover behavior difficult.

On the other hand, the considerable discrepancies are observed between

the experimental results for tPo dependence of l/Jc and EsI and the predictions

by the c* theorem. In Chapter 5, we indicated that the c* theorem did not

succeed in the description of cpo dependence of CPe and EsI for the network

system where high degree of overlapping of polymer chains exists in

preparation state. Including the present results for the system where

overlapping degree of polymer chains is relatively low, we conclude that the

complete disinterpenetration of the network chains in equilibrium swollen

state, which is a strong postulate of the c* theorem, does not occur,

irrespective of overlapping degree of polymer chains in preparation state.

The success of the affine model in the description of experimental results in

previous and present studies means that the displacement of crosslinks moves

affinely on swelling independently of overlapping degree of polymer chains

in preparation state, and it is necessary to regard q,o as a reference state in

order to describe theoretically tequilibrium swelling of polymer networks

crosslinked in solution.

Candau et ai. 17 reported tPo ex lPoO.71 and Es ex lPo1.8 for PDMS networks

in toluene, and argued that the experimental results were well explained using

Eqs. (5.11) and (5.12) with x=-l by the c* theorem. Their results and
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conclusion are different from those in this study, which is due to the

following reasons: Their results are likely to be influenced by the

considerable amount of structural defects in the samples, because their

samples were prepared at r= 1, not at r=ropt; and they a priori assumed x=-l

without the experimental evidence such as the data of tPo dependence of Ej.

The condition x=-l is expected for networks in which trapped entanglements

dominantly contributes to elastic modulus, i.e., networks prepared by long

prepolymer chains which are well entangled in uncrosslinked state. Since the

molecular weight of PDMS prepolymer in their study (Mp=9.7xlQ3) is much

lower than M c(=1.66xl04), the employment of x=-l should be not suitable

for their experimental condition.

6.3.5 q,e Dependence of Es I

Figure 6-5 indicates the double logarithmic plots of EsI vs. tPc. All the

data fall on the straight line with the slope of 2.30. This result is in accord

with the theoretical prediction EsI rx. <Pc2.4 by Eq. (5.8) with v=0.57. It should

be noted that the data for the sample with q,o=0.298, which has many

structural defects, is located on the line, meaning that Eq. (5.8) does not

depend on the details of the network structure. This result is naturally

expected by the fact that Eq. (5.8) simply embodies the Flory-Rehner's

assumption. Equation (5.8) is valid regardless of the details of network

structure, if the network concerned is in equilibrium swollen state. The

absolute values of Es and q,e are influenced by structural defects, respectively,

but the influence is cancelled in the relation between Es and q,c. Equation

(5.8) and the related scaling relations, i.e., the <Pc dependence of physical

quantities of equilibrium swollen networks are the universal laws independent

of the details of network structure. However, we cannot discuss the
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interspersion state of network chains on the basis of the r/Jc dependence. As

can be seen in Figs. 6-3 - 6-5, the examination of r/Jo dependence of physical

properties of equilibrium swollen networks is necessary in order to obtain the

definite description of equilibrium swelling.

6.4 Conclusions

The swelling and elastic properties of the networks prepared by end

linking short polymer chains in solution were investigated as a function of

polymer concentration at crosslinking. The preparation concentration

dependence of elastic modulus in preparation state suggests that trapped

entanglements are formed by the introduction of crosslinks, and those

contribute to elastic modulus considerably, even if the prepolymers are non

entangled in uncrosslinked state. The experimental exponents for preparation

concentration dependence of the degree of equilibrium swelling and the elastic

modulus in equilibrium swollen state were well explained by the affine model

considering preparation concentration as a reference state, although the subtle

crossover in concentration dependence predicted by the model was not

observed. On the other hand, the exponents predicted by the c* theorem were

much lower than the experimental ones. These results strongly suggest that

network chains do not disinterpenetrate each other in equilibrium swelling

state, and the displacement of crosslinks affinely moves on swelling. It was

also shown that the dependence of physical quantities of equilibrium swollen

networks on equilibrium concentration, which has been experimentally

investigated by many researchers, is insufficient to test the theories for

equilibrium swelling of polymer networks crosslinked in solution.
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Chapter 7
Mechanical Properties of Deswollen Polydimethylsiloxane
Networks with Supercoiled Structure

7.1 Introduction

In Chapters 5 and 6, the elasticity of swollen polymer networks was

investigated. In this chapter, the elasticic properties of deswollen polymer

networks which are prepared by removing solvent completely from the

networks crosslinked in solution are examined. The deswelling process is

accompanied by the collapse of network chains due to the volume decrease of

material, which complicates the quantitative understanding of elasticity of

deswollen networks. The contraction of polymeric network chains on

deswelling has often been called supercoiling. l -4 The supercoiled chains is

expected to have a more contracted conformation compared with Gaussian

chains. Actually, recent neutron scattering experiments showed5,6 that the

radius of gyration of a network chain in fully deswollen state is smaller than

the unperturbed dimension. Vasiliev et al.4 argued the existence of

supercoiling on the basis of their experimental result that the density of

deswollen network prepared at low concentration is higher than that of

network crosslinked in the bulk state. However, the details of the

conformation of supercoiled chains and the effects of supercoiling on

mechanical properties of polymer networks are not elucidated.

Recently, the topological structure of collapsed polymer systems, which

is represented by deswollen networks, has attracted attention.7-9 Several

authors7-9 have discussed the applicability of "polymer chain in an array of

obstacles" (peAO) modeJ7-12 to collapsed polymer systems. The peAO is

modeled by a random walk on the lattice with the obstacles corresponding to
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topological constraints. The fractal dimension (D) of peAO model for a

closed random walk (a ring chain) is reported7-12 to be 0=3 or 4 depending

on whether with or without the excluded volume effect, respectively. The

peAO model has strongly collapsed conformation compared with Gaussian

chain (D=2). Obukhov et af.7 have applied the peAO model to supercoiled

structure, and predicted that deswollen networks with supercoiled structure

have the rather different stress-elongation relation from a network composed

of Gaussian chains. They have also pointed oue the possibility of high

extensibility for the deswollen networks prepared at low concentration, which

originates from the reduction of end-to-end distance of network chains on

deswelling and the decrease of trapped entanglements by lowering

preparation concentration.

The experiments on the elasticity of deswollen networks have been

reported by several researchers.3,13-15 Vasiliev et al.4 indicated that the

concentration dependence of elastic modulus of deswollen networks prepared

at low concentrations is quite different from the prediction by the classical

theory of rubber elasticity. According to their results, the considerable

degree of supercoiling occurs for networks prepared at low concentration,

and with the network chains having relatively large polymerization index (N).

In the other studies,13-15 the effect of supercoiling on elasticity was not clearly

observed, which is due to their experimental conditions where the magnitude

of supercoiling was small; The preparation concentrations were not so low,

andlor N of the network chain was small.

The complicated concentration dependence of elastic modulus of

deswollen networks, which implies the formation of supercoiled structure,

have been reported,3 but the stress-elongation relation of deswollen networks

with supercoiled structure, which includes the important information about
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the topological structure of networks, has never been experimentally

investigated. In this study, we have prepared the networks by end-linking

procedure with the prepolymer having relatively large N over the wide range

of concentration. The concentration dependence of elastic modulus and

stress-elongation relation of deswollen networks is investigated. The effects

of supercoiling on elastic modulus and stress-elongation behavior are

demonstrated by comparing the mechanical properties of networks between in

preparation and deswollen state. (We call later a network in preparation state

the original network.) The stress-elongation behavior of deswollen networks

with supercoiled structure is analyzed on the basis of the treatment of large

defonnation for a flexible polymer chain by Pincus. 16 The fractal dimension

of supercoiled structure is evaluated from the dependence of stress on

elongation ratio in large deformation region. We also show that the

deswollen network prepared at low concentration exhibits a remarkable

extensibility.

7.2 Experimental

The original network samples (before deswelling) were common to

Chapter 5 and this chapter.· The details of the preparation of original

networks are described in Chapter 5. The original networks were prepared

in toluene by end-linking the bifunctional polydimethylsiloxane whose weight

average molecular weight is 4.7x Iif. Polymer volume fraction at

preparation (tPo') was varied from O.0985stPo'sl. The sample with

tPo'=O.0985 was newly prepared for this study. The crosslinking reaction at

tPo'~O.191 was made at IOOoe for 24h, but the sample with tPo'=O.0985 was

cured for 3 days since the cure for 24h was insufficient for complete

reaction. After the reaction, original network samples were divided into the
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two parts. One was used for the mechanical measurements as original

network sample. The other was kept in air to obtain fully deswollen network

for mechanical measurements. The complete drying required about several

days. The effect of drying rate on the structure of deswollen networks will

be described later. Polymer volume fraction of a network in preparation

state (CPo) was re-calculated by subtracting the unreacted prepolymer from

¢o'. The fraction of unreacted prepolymer was less than 8wt% for samples

with CPo'~0.191. For the sample with CPo'=0.0985 , the sol fraction was

12.1wt%, which was somewhat larger than those for other samples. This

would be due to the difficulties involved in the crosslinking reaction at very

low concentration.

The drying rate of samples possibly influences the structure of dry

networks. In order to check the effect of deswelling methods on the structure

of dry network, we prepared the dry network with <Po l=0.191 by removing

solvent as slowly as possible: The composition of solvent for deswelling was

changed gradually, i.e, the ratio of methanol to toluene was gradually stepped

up from 0% to 100% with the step of 20%. The achievement of equilibrium

swelling at each stage was checked through the weighing of samples. The size

of deswollen sample in 100% methanol was comparable to that of dry sample.

Finally, methanol was vaporized in air to obtain the dry network. The dry

network sample prepared by the slow deswelling process showed the same

stress-elongation behavior and elastic modulus as that prepared by drying the

original network sample in air. This result suggests that the two deswelling

methods are regarded as quasi-static process. We did not employ the slow

deswelling process described above as the standard deswelling method in this

study, because the process requires a longer period, i.e., several months.
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Stress-elongation relation and initial Young's modulus of samples in

preparation and dry state (Ej and Ed, respectively) were measured by the

uniaxial elongation at room temperature. The initial length of samples was

ca. 20mm, and the elongation was carried out at the constant crosshead speed

(v) of 10mm/min. This condition satisfied the quasi-equilibrium condition,

which was confirmed by the fact that the stress-elongation relation of each

sample was independent of v in the region of v~20mm/min. The effect of

unreacted species in samples on the elastic behavior was eliminated, because

unreacted species do not contribute the elastic behavior of networks under

equilibrium condition. The elongational experiment for the original network

with tPo=O.0877 could not be made due to the softness of material. The values

of tPo, r opt> Ej and Ed at each 4'0' are tabulated in Table 7-1.

7.3 Results and Discussion

7.3.1 Effect of Supercoiling on Elastic Modulus

In Chapter 5 and 6, it was shown that 4'0 dependence of elastic modulus

of original and fully swolllen networks is interpreted in terms of the model

proposed by Panyukhov17 together with our consideration about the effect of

trapped entanglements and the concentration regime in preparation state on

elasticity. The model is based on the assumption of the affine displacement of

crosslinking points relative to global network. Here, we attempt to interpret

tPo dependence of elastic modulus of fully deswollen networks by means of

this model. The expression of the elastic modulus (E) of network with

polymer volume fraction 4', which is prepared at 4'0' is given by Eq. (5.3) as

follows.

(7.1)
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Table 7·1. Polymer volume fraction of the solution in preparation (epo'),

polymer volume fraction and initial Young's modulus of the network in

preparation state (epo and Ei, respectively) and initial Young's modulus of the

fully deswollen network (Ed) and, the optimal ratio of silane hydrogen to

vinyl group (rapt).

l/J0' l/Jo r opt 10-4Ei (Pa) 10-4Ed (Pa)

1.00 1.00 1.15 34 34

0.861 0.852 1.20 28 30

0.725 0.709 1.14 19 22

0.564 0.544 1.07 8.9 16

0.430 0.411 1.24 5.8 14

0.298 0.281 1.18 2.6 10

0.191 0.179 1.20 0.89 6.9

0.0985 0.0877 1.10 3.3

arhe values of Ei for the samples with ep~0.179 have been reproduced

from Table 2-2 in Chapter 2.

-167-



where NeIf.4Jo) is the length in polymerization index between neighboring

junctions at tPo regardless of whether these are trapped entanglements or

chemical crosslinks, As is the swelling coefficient defined as As = (tP/tPo)-l/3,

and aT is the expansion coefficient defined as aT =Ro/R. Here, Ro is the root

of mean square end-to-end distance of the connected prepolymer at tPo, and R

is the end-to-end distance of the prepolymer chain in unconnected state in the

solution at tP. According to scaling theory,2R scales as R ex tP(2v-l)/(2-6v) in

semidilute regime where v is the excluded volume exponent, while R in

concentrated regime is equal to the unperturbed dimension corresponding to

v=1/2. Equation (7.1) with tP=4>o gives the description of Ej (=E(¢o,¢o) as Ej

extPoNd¢o)-l. The expression of Ed (~E(¢o,l) is obtained from Eq. (7.1) with

tP=1 as Ed extPoll(9v-3)Nd¢o)-1 in which v=0.57 in the region tPo<tPo** and

v=1/2 in tPa>tPo** is employed, respectively. Here, l/Jo** is the value of l/Jo at

the boundary in respect to Ro between the semidilute and concentrated

regimes, and v=0.57 is the value reported for PDMS in toluene. I8 The

relation between Ej and Ed is obtained as follows.

Ed ~ l/J~- 911+4)/(9v-3) Ej (7.2)

Figure 7-1 shows the plots of Ed l/Jo(9v-4)/(9v-3)/Ej against tPo. Here, we used

v=0.57 for the samples prepared at the region l/Jo<0.6, and v=1I2 for those at

tPo>O·6. The value of l/Jo** was regarded as 4>0**=0.60, which was reported

by Adachi et al.. 19 The validity of this treatment for tPo** was discussed in

Chapter 5. It is seen in Fig. 7-1 that the quantity, Ed l/Jo(9v-4)/(9v-3)/Ej, is almost

equal to unity in l/JQ>O.7, while it is larger than from unity in the region

l/Jo<O.7 and the deviation from unity becomes larger as 4>0 decrease"s. The

model (Eq. (7.1) considers the changes of the two physical quantities

accompanying deswelling for the evaluation of elastic modulus: the number

density of elastic effective chains and the end-to-end distance of network
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chains. The change of end-to-end distance of network chains is estimated on

the basis of the consideration for the Gaussian or excluded volume chain.

The end-to-end distance of network chains in deswollen state should be

smaller as the volume decrease on deswelling is larger. I~ low 4>0 region

where the volume decrease of network accompanying deswelling is large

(As<l), the conformation of network chains in dry state deviates largely from

Gaussian conformation. The phase space around network chains is expected

to decrease due to the contracted conformation of supercoiled chains, which

leads to the higher elastic modulus than that predicted by the theory for the

Gaussian or excluded volume chain. This effect of supercoiling on elastic

modulus is recognized by the experimental values higher than unity in low 4>0

region in Fig. 7-1.

On the other hand, it is seen in Fig. 7-1 that Eg. (7.1) succeeds in the

description of experimental results in high 4>0 region. In high 4>0 region, the

magnitude of supercoiling of network chains is small, because the volume

change accompanying deswelling is small, namely, As~l.

7.3.2 Effect of Supercoiling on Stress-Elongation Behavior

Figure 7-2 shows the double logarithmic plots of reduced stress against

elongation ratio for original networks. The stress (ae) is the engineering

stress defined by the force divided by the cross-sectional area in undeformed

state. The elongation ratio (A) is defined by }";='I/Io where Io and I is the length

of sample in undeformed and deformed state, respectively. The stress in Fig.

7-2 is renormalized by Ej of each sample. The dashed curve corresponds to

the stress-elongation relation for Gaussian network20 expressed as q)Ej = (A

- ;""-2)/3. It is seen that the experimental curves are described by the dashed

curve in small ;.." region, while those deviate downwards from the dashed
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curve as A increases. This is the well-known result for the stress-elongation

behavior of usual elastomers. 1,4,22 Qualitatively, the downward deviation is

C . h M R' I" . 14"" Thinterpreted similarly as the 2 term In t e ooney- IV In equatIOn. ' ,~~ e

major factor for the downward deviation has often been attributed to the

effect of entanglements.} ,4,22 The number of trapped entanglements decreases

as ifJo is lowered. It can be seen in Fig. 7-2 that as the network is prepared at

lower concentration, the degree of deviation from the dashed curve is

smaller, which supports the above consideration qualitatively. The decrease

of ifJo, i.e.; the decrease of the number of trapped entanglements also leads to

the increase of extensibility as seen in Fig. 7-2.

Figure 7-3 indicates the stress-elongation relations for deswollen

networks. The stress is renormalized by Ed of each sample. It is found that

the stress-elongation relations of deswollen networks are classified into two

groups: the networks prepared at ifJo sO.281, and those at ifJo~0.411. The

overlapping of the curves suggests that the deswollen networks in each group

have the common topological features. The major difference of curves in

each group is only in the extensibility. The dependence of Oe on ). for the

deswollen networks with ifJo~0.281 is found to obey oerx ).O.65 in the region

2.1~~5.5. It is also seen that the deswollen network prepared at ifJo=0.0877

shows the high extensibility reaching A.=18. The detailed analysis of the

dependence of 0e on). and the extensibility will be discussed later.

Figure 7-4 shows the comparison of the stress-elongation relation in the

deswollen and preparation state for f/Jo=O.411 and 4'0=0.179. Stress for the

deswollen and original network is reduced by Ed and Ej , respectively. The

dry network prepared at tPo=0.411 is found to show almost the same stress

elongation relation as the original network. For all other samples prepared at

tP~0.411, the curves for dry and preparation state almost overlap each other,
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(and the data are not shown in the figure), suggesting that the deswelling does

not has the great influence on the stress-elongation behavior for the networks

prepared at tPo~0.411, and the topological structure of networks does not

change greatly on deswelling. The effect of supercoiling on Ed is also

relatively small in the region tP~0.411 as seen in Fig. 7-1.

On the other hand, the stress-elongation behavior of dry network

prepared at tPo=O.179 deviates much from that of Gaussian network as

indicated in Fig. 7-3, and is rather different from that of the original network

as shown in Fig. 7-4. The similar result is obtained for the sample with tPo

=0.281. The large difference of stress-elongation behavior between the dry

and original network in the region tP~0.281 should be due to the supercoiled

structure formed on deswelling, the details of which will be described later.

The stress-elongation relations of deswollen networks with supercoiled

structure have the weaker dependence of Gc on A in the region A55.5

compared with those of original networks. The stress-elongation relation in

A55.5 is independent of tPo, and the relation Gc rx)...O.65 in 2.1~A55.5 is

common to the stress-elongation behavior for the dry networks with

supercoiled structure. In the region tPo:s:0.281, the effect of supercoiling on

Young's modulus is also large as seen in Fig. 7-1.

The clear classification of stress-elongation relations into two groups

appears to suggest that the supercoiling of network chains occurs abruptly at a

critical value of tPo, which is located at 0.281:s:tP~0.411. On the other hand,

the effect of supercoiling on elastic modulus appears in the region 4>0:s:0.54,

and increases gradually as 4>0 decreases as seen in Fig. 7-1. Elastic modulus

may be more sensitive to the supercoiling of network chains than stress

elongation relationship. However, the overlapping of stress-elongation curves

in low 4>0 region strongly suggests that the supercoiled structure settles into
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the steady one specific to the system in this study as l/Jo decreases. We

estimate the fractal dimension (D) of the (steady) supercoiled structure from

the dependence of Gc on A. under the disentanglement process of supercoiled

structure as shown below.

7.3.3 Analysis of disentanglement process of supercoiled structure

We analyze here the stress-elongation behavior of deswollen networks

on the basis of the treatment of large deformation for a flexible polymer

chain by Pinclls. 16 According to their treatment,16 a strongly stretched

polymer chain is regarded as the nearly linear sequence of the smaller units

(Pincus blobs) with the size of ~p. Features of Pincus blob are summarized as

follows:2,7,16;21 Inside a Pincus blob (the distance r < ~p), an applied force (j)

is a weak perturbation, while f is a strong perturbation at the scale r > ~p.

This condition postulates the relation f~p t=:l kaT; and the correlation inside a

Pincus blob (r < ~p) is the same as for the global chain. This means that the

structure of global chain is preserved inside a Pincus blob during elongation

process as long as the network structure concerned is not completely

disentangled by elongation, and the blob size is given by ~ralgpllD where a l

is the unit length, and gp is the number of monomers in Pincus blob, and D is

the fractal dimension of the polymer chain. Assuming the affine deformation

in the scale larger than the size of the polymer chain, we obtain the following

relation between A andf.2

A ~ (N/gp) ~p ~ N a' (.sU)D-l (7.3)
RO RO kB T

where RO is the end-to-end distance of the polymer chain in undeforrned state.

The global stress for the network composed of the above polymer chains, ac,

is related to f through ae <= 1JRof where f.L is the number density of effective

elastic chains. We get the following relation between ae and A.
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Oe ex: A,1!CD- 1) (7.4)

It can be seen in Fig. 7-3 that the dependence of Oe on 'A for the

deswollen networks with supercoiled structure obeys Oe ex:'A0.65 in the region

2.1 sAs5.5. Considering the region 2.1 sAs5.5 as the disentanglement process

of supercoiled structure, we evaluate the fractal dimension for supercoiled

structure to be 0=2.5 from Eq. (7.4). This fractal dimension (0=2.5) is

larger than 0=2 for Gaussian chain, while it is smaller than lJ;=.3 or 4 for

PCAO model. The exponent of the dependence of Oe on A (ae ex:AP) is p=l

for Gaussian network, and p=l/2 and 1/3 for PCAO model with 0=3 and 4,

respectively. Obukhov et al.7 predicted Oe ex: Al/3 by applying the PCAO

model with 0=4 to supercoiled structure. Our experimental result suggests

that the present supercoiled chain is more contracted than Gaussian one, while

it is not collapsed as strongly as PCAO models. The reason for the smaller D

in this study than those of PCAO model might be that peAO model requires

the very long network chain: NINr::r in PCAO model is so large that the

distance between neighboring obstacles is regarded7,12 as bNcf1l2. The value

of NINer(l) in this study is estimated to be ca. 6 using Mc=8100 for PDMS22

where Me is the molecular weight between neighboring entangled points in

melt in uncrosslinked state. Furthermore, the value of NINr::r for the networks

prepared at low 4Jo becomes much smaller, because Nfi increases as tPo
decreases. From the viewpoint of NINe. the experimental condition in this

study may not match sufficiently with the situation where peAO model is

applicable.

7.3.4 Analysis of the whole elongation process of supercoiled structure

We clarify here the changes in the topological structure of supercoiled

chains during the whole elongation process by comparing the stress-
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elongation behavior in the deswollen and preparation state. Here, we assume

that crosslinking points moves affinely relative to the global network on

deswelling and elongation. We define the reduced elongation ratio for

deswollen network (Ap) by regarding the undeformed state of original

network as the reference state for elongation as follows.

Ap = 4>01/3 A (7.5)

Figure 7-5 indicates the stress-elongation relation for the deswollen network

with ¢0=O.179 where Ap is employed as elongation ratio (Aji"'O.56A). The

stress-elongation relation for the original network with ¢o=O.179 is also

shown in the figure (Ap=A). The stress in the figure for the deswollen and

original network is reduced by Ed and Ej, respectively. It is seen that the

disentanglement process of supercoiled structure begins at Ap =1.2, meaning

that the disentanglement of supercoiled chains starts when the end-to-end

distance of network chains reaches the distance slightly larger than Ro• The

disentanglement process of supercoiled structure continues up to Aji"'3.1, and

then the dependence of 0e on A becomes stronger in Ap>3.1. The following

two significant points should be noted for the comparison of stress-elongation

curves of the deswoJlen and original network in Fig. 7-5: Both curves

coincide just at Ap=3.1 where the supercoiled structure has been completely

disentangled; Both curves almost overlap each other in the region Ap~3.1,

Le., after the complete disentanglement of supercoiled structure. These

results suggest that the topological structure of network chains of deswollen

gel just at the end of the disentanglement process of supercoiled structure is

similar to that of the original network elongated to A.=3.1. Figure 7-6 shows

the schematic representation for the whole elongation process of deswollen

network with supercoiled structure and the corresponding states of the

original network.
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Figure 7-5. Comparison of the reduced stress-elongation relations of the

network with tPo;:::O.179 at the preparation and the dry state. Ap is the reduced

elongation ratio defined by Eq. (7.5). Symbols: (0) dry state; (.) preparation

state. The dashed straight line has a slope of 0.65.
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It should be noted that the stress-elongation behavior of dry network

prepared at 4>0=0.0877 has the interesting features. It can be seen in Fig. 7-3

that the dependence of Oc on 'A obeys oc",-,'A°.65 in the region 2. b::As5.5 as

similarly as for 4>0=0.179, while in the region 7s'As12 where the supercoiled

structure is completely disentangled, the relation is expressed as oc"'-''AI.O

corresponding to that for a Gaussian network in the large deformation

region. The region 5.5s'As7 is the marginal regime where the dependence of

Oc on 'A changes from 'A0 .65 to 'Al.o. The linear relation between Oc and 'A in

the region 7sAs 12 suggests that the topological structure of the network

chains where the supercoiled structure is completely disentangled is similar to

that of the Gaussian chain. In Fig. 7-2 we showed that the stress-elongation

behavior in preparation state is closer to Gaussian one as 4>0 decreases. The

stress-elongation behavior of the original network with l/Jo=0.0877 is expected

to be closer to Gaussian one than that with l/Jo=O.179, though it was not

measured due to the softness of the material. If the stress-elongation behavior

of the original network with l/Jo=0.0877 is assumed to be Gaussian, the whole

elongation process of dry network with l/Jo=O.0877 is interpreted in the same

manner as indicated in Fig. 7-6.

The crossover in the dependence of Oc on 'A from the specific behavior

of the structure concerned to Gaussian behavior has been theoretically

predicted by several authors.7,23 However, the crossover was not reported

experimentally at all, which is due to the fact that usual polymer networks do

not possess the high extensibility enough to bear the large elongation reaching

the crossover region. The perfect crossover to Gaussian behavior may occur

for the networks with high extensibility and few trapped entanglements,

because the dependence of Oe on A in high A region for 4>0=0.179 obeys

OC'Ao.77, while the perfect crossover to Gaussian behavior is observed for
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CPo=O.0877. The exponent smaller than unity for CPo=O.179 might result from

the effect of trapped entanglements. Actually, the stress-elongation behavior

of the original network with tPo=O.179 does not agree perfectly with Gaussian

one due to the effect of trapped entanglements as seen in Fig. 6-2. The

perfect crossover to Gaussian behavior for tPo=O.0877 would be due to no or

negligible amount of trapped entanglements in the network. The estimation

of the amount of trapped entanglements for the network with CPo=O.0877 will

be shown later.

In Fig. 7-3 the stress-elongation curve of the dry network with

tPo=O.0877 is found to indicate the upturn in the region ),>12. The strong

dependence of Oe on A in the region A>12 is due to the deviation of the

network structure from Gaussian one by the large elongation. The large

elongation leads to the approach to the full extension of network chains. It is

well-known22 for the stress-elongation behavior of crosslinked rubbers that

the approach to the full extension of network chains results in the strong

dependence of Oe on A .

7.3.5 High extensibility of the deswollen network prepared

at low concentration

The deswollen network prepared at tPo=0.0877 exhibits the remarkable

extensibility reaching h=18 as seen in Fig. 7-3. (Here, we mention that the

perfect size recovery has been observed for the deswollen network with tPo

=0.0877 elongated up to ~15.) The possibility of high extensibility for

deswollen networks prepared at low cpo has been theoretically pointed out by

Obukhov et al..7 The high extensibility results from the two main factors: the

reduction of the distance between neighboring junctions on deswelling; the

decrease in the number of trapped entanglements, which is an origin of
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failure, due to the low ljJo. It is qualitatively confirmed in Fig. 7-3 that the

extensibility of deswollen networks increases as 4>0 decreases. According to

their simple evaluation for extensibility of polymer network,? the theoretical

limit of extensibility (Amax) for the deswollen network prepared at ljJo is

estimated as follows.

a Ner<~) NJI'2(rA»)Amax ::::0 - (7.6)
aNJ/2(ifu) 4>J/3 ljJJI3

The quantity, Nr:f{r!Jo), for the system 10 this study was obtained as

Ncf{r!Jo)=Ncf{l)ljJo-Ll from ljJo dependence of Ej in the region 4>o~0.179 in

Chapter 5. The value of Nedl) is estimated to be ca. 13 Kuhn segments from

Me=810022 and the number of real bond per freely joint link for POMS

(=17).23 If NrI(t/Jo)=Ncf(l)q>o-l.l is employed for the estimation of N c at

4>0=0.0877, the calculated value of Ncr is found to be much larger than N of

the prepolymer. Here, N of the prepolymer with M=4.7x 104 is estimated to

be ca. 75 Kuhn segments. This means that the number of trapped

entanglements is negligible compared with that of chemical crosslinks for the

network at 4>0 =0.0877. Accordingly, we should use N of the prepolymer

instead of Ncf in Eq. (7.6) for the network with 4>0=0.0877. We get Amax=20

from Eq. (7.6) with N =75. It is well known24 that the failure phenomena is

primarily governed by the defects of the sample, which complicates the

quantitative comparison of experimental results with the theory. However,

the experimental failure point for the dry network with 4>0 =0.0877 (A.=18) is

close to the theoretical value. Here, we should mention that ~18 is the

highest extensibility that we have observed for the samples with 4>0 =0.0877,

and that is hot an average one.
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7.4 Conclusions

The formation of supercoiled structure on deswelling of PDMS

networks crosslinked in solution was demonstrated by investigating the

preparation concentration dependence of the elastic modulus and the stress

elongation behavior of deswollen networks. The pronounced effects of

supercoiling on mechanical properties of deswollen networks appeared for

the networks prepared at low concentration at which the volume decrease is

large on deswelling. The deswollen networks with supercoiled structure had

the higher elastic modulus than that expected by the theory for Gaussian or

excluded volume chain, and show the stress-elongation relation with the

region where the dependence of stress on elongation is much weaker

compared with that for the original network. On the other hand, the

deswollen networks prepared at high concentration, whose volume does not

change largely on deswelling, showed the elastic modulus explained by the

theory, and the similar stress-elongation behavior to the original networks.

The fractal dimension of supercoiled structure was estimated from the

dependence of stress on elongation ratio in terms of the concept of Pincus

blob. The dependence of stress on elongation ratio under the disentanglement

process of supercoiled structure is independent of preparation concentration,

and common to the deswollen networks with supercoiled structure. The

obtained fractal dimension was larger than that of Gaussian chain, and smaller

than those of peAO model. The supercoiled chain is expected to be

contracted in comparison with the Gaussian one, but not collapsed so strongly

as the PCAO models.

The reduced stress-elongation behavior of deswollen network, where

the elongation ratio is reduced by the undeformed state of the original

network, was similar to the stress-elongation relation of the original network
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after the supercoiled structure is completely disentangled. This suggests that

after the complete disentanglement of supercoiled structure, the topological

structure of network chains of deswollen networks is identical with that of the

elongated original network.

The deswollen networks with supercoiled structure prepared at low

concentration showed the remarkable extensibility originating from the

reduction of the distance between network junctions and the decrease in the

number of trapped entanglements. Especially, the extensibility of the

deswollen network prepared at ca. 9% has reached ca. 1700%, which was

found to be close to the theoretical limit of extensibility for the sample.
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Summary

In Chapter 1, the motives of this thesis were described along with the

historical background of the research field in respect to the swelling and

elastic properties of polymer network systems. The current problems

remaining unsolved in this research field, which are treated in this thesis,

were briefly reviewed.

In Chapter 2, initial Poisson's ratio (f-lD) of gels obtained under the

condition 'that the swelling induced by applied strain is negligible, was

discussed. A method to measure f-lD of gels during uniaxial elongation was

established. The value of /l<J was obtained from measurements of the size of

gels in the directions parallel and perpendicular to stretching direction. The

measurements were made under the condition that elongation rate is so fast

that the strain-induced swelling is negligible. The values of /l<J for the three

kinds of Poly(vinyl alcohol) (PVA) gels were measured. The value of {to of

the PYA gels swollen in good solvent (a mixture of dimethylsulfoxide and

water) was close to 1/2 meaning that the gel can be regarded as an

incompressible material. The value of {to close to 112 reflects the high

flexibility of PYA chains in the network. The annealed PYA gels with the

higher degree of crystallinity in good solvent (water) showed the slightly

smaller value of !to in comparison to the unannealed PVA gels. The annealing

developed the size of microcrystalline domains acting as crosslinking points,

which should lower the flexibility of PVA chains, resulting in the lower 110.

The value of {to of the PYA gels in poor solvent (ethanol) was ca. 0.3, which

is comparable to {to of glassy polymers. The PVA gels in ethanol were

opaque, indicating the two-phase structure composing of the PVA-rich phase

and the solvent-rich one. Since the glass transition temperature of PYA is
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much higher than the room temperature, most of the PYA chains in the gel

are in the glassy state, leading to the same order of flo as glassy polymers.

In Chapter 3, the effects of strain-induced swelling on !-t<.) and

mechanical relaxation (stress relaxation and creep) of swollen gels were

theoretically investigated. Two types of the limiting values of Poisson's ratio

according to the short and long time scale were defined as !-t<.) and fl-oo.

Equilibrium Poisson's ratio !.Loo is obtained under the condition that the time

scale for elongation is so long that the strain-induced swelling is equilibrated.

Time dependence of fl of a gel during and after uniaxial elongation was

calculated on the basis of the kinetics of a constrained gel. The numerical

results demonstrated the intermediate value of !-l between ~ and {lcr:J in the

time scale between the two extreme cases. From the thermodynamical

consideration based on the Flory-type free energy for a constrained gel, the

degree of the strain-induced swelling and the resultant mechanical relaxation

was found to strongly depend on the deformation modes. The degree of

volume increase and the magnitude of stress reduction and creep for an equi

biaxially stretched gel were much larger than those for a uniaxially one.

Time dependence of the strain-induced swelling was calculated from the

kinetics of a constrained gel. Process of mechanical relaxation caused by the

strain-induced swelling was calculated in respect to a thin disk-shaped gel for

biaxial elongation, and a long rod-shaped gel for uniaxial elongation. In

respect to a gel under constant stress, if the anisotropy in diffusional

dimensionality originating from the anisotropy in gel geometry is taken into

account, it is expected that the overshoot of the size in load-free direction

occurs: As the time increases, the size in load-free direction exceeds the

equilibrium value, and then, it decreases to the equilibrium one. The reason

for the overshoot behavior of size in load-free direction is that the time
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dependence is governed by the two kinds of diffusion modes different in the

character and characteristic time, i.e., the longitudinal diffusion mode

controling the volume change of gels, and the transverse one governing the

shape change without volume change.

In Chapter 4, the stress-strain relations of polymer networks in the bulk

state under pure shear deformation were investigated from the viewpoint of

strain energy density function CW). Especially, the behavior of the partial

derivatives of W in respect to the invariants of deformation tensor ca W/a1i;

i=I,2,3) was investigated in small deformation region. The assumption of

incompressibility C!lo=1I2) which has conventionally been employed for

elastomers, was eliminated, and the experimental values of !lo were used for

the analysis of stress-strain relations. The values of aw/ah U=I,2,3) at zero

strain limit were theoretically derived on the basis of the infinitesimal

elasticity theory for compressible materials. The theoretical limiting values

of aWlah U=I,2,3) at small strain were obtained as aW/alI = 5G/8, aW/ah :=:

-G/8 and aWlah = -3G/8 where G is the shear modulus. Three kinds of the

segmented polyurethaneureas (SPUs) different in the molecular weight of soft

segment block were employed as the samples. The stress-strain relations of

the SPUs under pure shear deformation were measured, and the values of flo

for the SPUs were evaluated from the two kinds of experiments: the

dimensional changes during uniaxial elongation; and the stress ratio under

pure shear deformation. The values of !lo obtained were smaller than 112,

which shows that the SPUs should be treated as a compressible material. As

the molecular weight of soft segment block increases, the value of flo became

larger. The asymptotic behavior of aWlah 0=1,2,3) in the experiments was

satisfactorily explained by the theoretical predictions. The experimental data

for pure shear deformation of isoprene rubber reported by Kawabata et al.,
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styrene-butadiene rubber, nitrile-butadiene rubber and butadiene rubber

reported by Fukahori et ai. were re-analyzed using the experimental values of

~. The behavior of aWlalj (i=1,2,3) at small deformations for the four types

of rubber vulcanizates was similar to that for SPUs, and their asymptotic

behavior was also well explained by the theory. It was also shown for the

SPUs and four types of rubber vulcanizates that the classical theory of rubber

elasticity succeeds to a degree in large deformation region, but it can not

describe the asymptotic behavior of aWIBlj (i=1,2,3) at small deformation

region. The success of the theory in this study in many rubber systems

suggests that W for real elastomers must have the asymptotic form as

described by the infinitesimal elasticity theory for compressible materials,

although the difinite functional form of W at large deformations remains still

unknown.

In Chapters 5 and 6, the degree of equilibrium swelling and the elastic

modulus of the networks crosslinked in solution were investigated as a

function of the polymer concentration at crosslinking in order to elucidate the

thermodynamics of swelling and the relationships between the elasticity and

the topological network structure. For examining the effect of entangled state

of prepolymer before crosslinking on the elasticity of resultant crosslinked

network, two types of networks were prepared in toluene by end-linking

polydimethylsiloxane (PDMS) and oligodimethylsiloxane (ODMS),

respectively. The PDMS has the molecular weight high enough to be

entangled in uncrosslinked state, while the molecular weight of ODMS is so

low that any entanglements are not formed in uncrosslinked state. Model

networks having as small amount of structural defect as possible were

prepared by varying the reaction conditions such as reaction temperature,

reaction time, and molar ratio of crosslinker to prepolymer. The model
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networks prepared by PDMS and ODMS were used as samples in Chapters 5

and 6, respectively.

In Chapter 5, the dependence of the initial Young's modulus in

preparation state (Ei) on polymer volume fraction at preparation (4)0) scaled

as Ej ,..., 4>02. 1 which is analogous to the concentration dependence of plateau

modulus of polymer solutions. This similarity indicates that trapped

entanglements act similarly as chemical crosslinks, and those dominantly

contribute to elastic modulus. The 4>0 dependence of both the polymer

volume fraction and the initial Young's modulus of equilibrium swollen

networks (ifJe and Es, respectively) showed the crossover at ifJo=4>** where

tP** is the polymer volume fraction at which the excluded volume effect of

polymer chains is fully screened. The crossover in tPo dependence ifJe and Es

was not explained by the c* theorem which considers t/J* (the value of tP at

which the overlapping of network chains begins) as a reference state

irrespective of tPo. The tPo dependence of tPe and Es and the crossover

behavior were quantitatively described by the affine model which takes ifJo as

a reference state and assumes the affine displacement of crosslinks on

swelling.

In Chapter 6, tPo dependence of Ei, ifJe and Es was investigated for the

networks prepared by end-linking ODMS. The ifJo dependence of Ei and the

absolute values of Ej suggested that trapped entanglements are formed and

considerably contribute to elastic modulus, even if the prepolymers are not

entangled in uncrosslinked state. The magnitude of the contribution of

trapped entanglements to elastic modulus is smaller than that in the networks

prepared by PDMS, which led to the more significant difference in the

theoretical exponents for tPo dependence of tPe and Es between the c* theorem

. and the affine model, compared with the networks prepared by PDMS. This
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enabled us to discuss the differences between the two theories more clearly.

The experimental results for 4>0 dependence of 4>c and Es were well explained

by the affine model, while the theoretical exponents by the c* theorem were

much lower than the experimental ones. The following conclusions were

obtained from the results in Chapters 5 and 6: Trapped entanglements are

inevitably involved in networks (at least, in networks prepared by end-linking

method) irrespective of the length of prepolymer, and trapped entanglements

contribute to elastic modulus similarly as chemical crosslinks, although the

maginitude of its contribution is influenced by the length of prepolymer used~

and the displacement of crosslinks moves affinely on swelling, and the

complete disinterpenetration of network chains as the c* theorem predicts

does not occur in equilibrium state. It was also shown that f/Je dependence of

physical properties of equilibrium swollen networks, which has been

experimentally investigated by many researchers, is insufficient to test the

molecular theories for equilibrium swelling of polymer networks.

In Chapter 7, the details of supercoiled structure which is formed by

removing solvent (deswelling) from networks crosslinked in solution was

investigated through the mechanical properties of deswollen POMS networks.

The effects of supercoiling on the mechanical properties of networks were

clearly observed in respect to the deswollen networks prepared at low

concentrations at which the volume decrease of material on deswelling is

large. Deswollen networks with supercoiled structure showed the higher

elastic modulus than that predicted by the theory for Gaussian chain, and the

much weaker dependence of stress Cae) on elongation (A) in the region A<6 in

comparison with the networks in preparation state. The fractal dimension (D)

of supercoiled structure was evaluated to be 2.5 from A dependence of Oc

common to the samples prepared at low concentration on the basis of the
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scaling treatment of large deformation of a flexible polymer. The value of D

obtained experimentally suggests the conformation of supercoiled chains is

contracted in comparison to that of Gaussian chain (D=2), while it is not

strongly collapsed relative to.that of IIpolymer chain in an array of obstacles"

models (D=.3 or 4) which are often theoretically applied to collapsed polymer

systems. The remarkable extensibility (Amax"",18) of the deswollen network

prepared at low concentration (tjJo"",O.09) was experimentally and theoretically

demonstrated. This high extensibility was attributed to the two factors: the

decrease in the number of trapped entanglements which is a origin to limit

extensibility due to the low concentration at crosslinking; and the reduction in

the end-to-end distance of network chains in undeformed state on desweUing.

The theoretical value of Amax based on the above consideration was in good

agreement with the experimenal one.
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