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Abstract

This thesis studies linear matrix inequality (LMI) approaches to multiobjective controller

design problems. By multiobjective controller design problems, we mean design problems

with a mixture of different design specifications such as the Hoo performance, the H2 per

formance, the regional pole placement constraints and so on. Recent studies show that

these design specifications are characterized as matriX' inequalities that include controller

variables and so-called Lyapunov variables in their bilinear forms. When we deal with a

single design specification, the matrix inequality corresponding to the design specification

can be reduced successfully to an LMI and hence we can obtain a desired controller easily

via well-established convex optimization techniques. On the other hand, when we deal with

multiple design specifications, this is no longer true. Namely, the coupled matrix inequali

ties that reflect multiple design specifications are considered to be essentially bilinear matrix

inequalities (BMI's). Solving BMI's is a non-convex optimization problem and quite hard

from the viewpoint of numerical computation. In order to avoid the difficulties in deal

ing with such BMI's, a so-called common Lyapunov variable has been forced for all design

specifications so that the BMI's can be converted into LMI's. However, the restriction to a

common Lyapunov variable is quite confining and this approach brings some conservatism

into the design. The goal of this thesis is to get around the conservatism, and we tackle the

multiobjective controller design problems with non-common Lyapunov variables.

This thesis proposes three approaches to the multiobjective controller design problems

with non-common Lyapunov variables, where the first and second ones deal with the state

feedback problems, while the third one deals with both state- and output-feedback problems.

In the first approach, we impose some additional constraints on the Lyapunov variables

so that we convexify the problem and obtain LMI characterizations while keeping the state

feedback gain directly as one of the variables. Because of the freedom left in the Lyapunov

variables under the constraints, our .formulation turns out to give a set of LMI characteriza

tions that allow non-common Lyapunov variables.

On the other hand, in the second approach, we perform a standard procedure called

change of variables, and represent the resulting variables as a set of affine functions of



yet new variables. These affine functions are chosen to have a crucial characteristic that

troublesome non-convex constraints are satisfied regardless of the new variables. With these

affine functions, we readily derive a set of LMI characterizations that allow non-common

Lyapunov variables. We also show that a simple combination of this second approach with

the above first approach leads to an effective iterative algorithm, with which we can get

around the conservatism considerably.

The third approach we propose is quite distinct from the above two. In this approach, we

derive new dilated matrix inequality characterizations for the design specifications, where the

decoupling between the controller variables and the Lyapunov variables has been achieved

and hence the bilinear terms between them disappear. This is achieved by the introduction

of new auxiliary variables that form product with the controller variables instead of the

Lyapunov variables. These new dilated matrix inequalities lead us to a new approach which

convexifies the problems with non-common Lyapunov variables but with a common auxiliary

variable. It is shown that we can guarantee this approach to achieve better performance than

that with the conventional approach.

Although our main interest in this thesis is the multiobjective controller design problems,

it turns out that the new dilated characterizations for the design specifications have another

potential in dealing with robust performance analysis and synthesis problems for real poly

topic uncertainty. Roughly speaking, the conventional approach to these problems is such

that they seek a common Lyapunov variable over the whole uncertainty domain and hence

arrives at conservative results. On the other hand, the new dilated characterizations enable

us to employ a so-called parameter-dependent Lyapunov variable, and hence the conservatism

of the conventional approach can be circumvented successfully.

The idea to decouple the Lyapunov variables and the controller variables in the matrix

inequality characterizations is quite important in dealing with such involved problems as

the multiobjective controller design problems, robust performance analysis and synthesis

for real polytopic uncertainty and so on. This thesis offers an intriguing methodology that

could cover such involved problems, and ensures improvement of the performance over the

conventional approach.
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Notations and Definitions

R

c
Om,n

AT

A*
A-I

A-T

a(A)

i7(A)

trace(A)

He [A]

Al EB A2

Al ®A2

A.l

The set of all real numbers.

The set of all n-dimensional real vectors.

The set of all n x m real matrices.

The set of all complex numbers.

The m x n zero matrix. The subscripts m and n are omitted when the size

is not relevant or can be determined from the context.

The n x n identity matrix. The subscript n is omitted when the size is not

relevant or can be determined from the context.

Transpose of the matrix A.

Complex conjugate transpose of the matrix A.

Inverse of the matrix A.

Shorthand notation for (A-If.

The set of the eigenvalues of the matrix A.

The largest singular value of the matrix A.

Trace of the matrix A.

Shorthand notation for A + AT.

The direct some of the matrices Al and A2 .

The Kronecker product of the matrices Al and A2 •

For the matrix A E Rnxm where n > m, the matrix A.l is defined as a matrix

satisfying the following three conditions, where r is the rank of A.
A.l E R(n-r)xn, A.lA = 0, A.lA.lT > 0

Abbreviations

LMI

BMI

MIMO

LTI

Linear Matrix Inequality

Bilinear Matrix Inequality

Multi-Input Multi-Output

Linear Time-Invariant
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Chapter 1

Introduction

This thesis studies linear matrix inequality (LMI) approaches to the multiobjective controller

design problems for continuous-time multi-input multi-output (MIMO) linear time-invariant

(LTI) systems. By multiobjective controller design problems, we mean design problems with

a mixture of different design specifications such as the Hoo performance, the H2 performance,

the regional pole placement constraints and so on. Some frequency-domain design objectives

are best captured by the Hoo performance, noise or disturbance insensitivity is naturally

expressed by the H2 performance and the transient behavior is effectively tun€d by the con

straints on the closed-loop pole locations. Although a design framework to satisfy each of

these design specifications is well-established, practical design objectives are rarely covered

by a single design specification. Namely, it is important in practice to satisfy these multiple

design specifications at the same time. However, once we take these multiple design speci

fications into account, the design problem turns out to be surprisingly difficult. Thus, the

multiobjective controller design problems have their roots in practical controller design, and

are also quite attractive from a theoretical point of view. Many researchers have dealt with

the multiobjective controller design problems, and some of the contributions are summarized

below.

The regional pole placement problem taking account of other design specifications was

studied intensively in the 1980's in terms of the linear quadratic (LQ) type regulator theory.

Furuta and Kim [13], and Kim and Furuta [24] dealt with the problem to find a static state

feedback controller that minimizes an LQ type cost functional while placing the closed-loop

poles in a specified disk. Their approach was such that they seek weighting matrices of the

cost functional so that the optimal controller associated with the cost functional places the

closed-loop poles appropriately. Namely, the cost functional was not fixed in advance, and

their attention was paid mainly on clarifying the relation between the weighting matrices

and the closed-loop pole locations. On the other hand, Haddad and Bernstein [19] dealt
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with the design problem to find state- or output-feedback controllers that minimize the H2

cost of a closed-loop transfer function subject to the regional pole placement constraints.

They showed that a modified Lyapunov equation which reflects the regional pole placement

constraints leads directly to an upper bound of the cost functional, and they reduced the

problem into a minimization problem of this upper bound subject to the modified Lyapunov

equation. This minimization problem was completely solved by Sivashankar et al. [42] via

a discrete-time H 2 synthesis technique. The idea to minimize an upper bound of the cost

functional is quite important for the tractability of the problem, and this idea led to the

multiobjective controller design via LMI optimization.

It has been recognized recently that a wide variety of problems arising in system and

control theory can be reduced to optimization problems involving LMI's [4],[43]. Since solving

LMI's is a convex optimization problem, the LMI formulations are quite appealing from the

viewpoint of numerical computation, and also offer a tractable means for such problems

that lack analytical solutions. In addition, because the framework of LMI's enables us to

deal with design specifications as constraints on the closed-loop system, many researchers

have attacked the multiobjective controller design problems via LMI's [6],[7],[22],[23],[26],

[28]'[36].

In the framework of LMI's, generally speaking, controller design is carried out in the

following two steps.

1. First, the design specifications are characterized as matrix inequalities with respect

to the controller variables and some additional variables. Since most practical de

sign specifications inherently require stability of the closed-loop system, the matrix

inequalities include the Lyapunov inequality, and the additional variable that forms

the Lyapunov inequality is called Lyapunov variable. Because of this fact, the matrix

inequalities that characterize each of the design specifications have bilinear terms be

tween the Lyapunov variables and the controller variables [4],[43]. Namely, the design

specifications are characterized as bilinear matrix inequalities (BMI's). It is known

that solving BMI's is a non-convex optimization problem and quite hard from the

viewpoint of numerical computation [45].

2. Second, some algebraic manipulations are applied to these BMI's so that they can

be reduced to LMI's. Representative methods are elimination of variables [14],[22],

[43] and change of variables [4],[6],[17],[23],[26],[28],[36]. In these methods, the con

troller variables are parametrized as nonlinear functions with respect to the Lyapunov

variables and some other variables.

An important fact in the LMI-based controller design is that the design specifications cannot
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be characterized directly as LMI's with respect to the controller variables, and if we employ

the elimination or change of variables techniques, the controller variables are parametrized

in such a way that they depend nonlinearly on the Lyapunov variables, as stated above.

This fact imposes no limit when we deal with a sing1e design specification, in which situation

the above techniques are successfully applied so that we can obtain a desired controller

easily. In fact, recent studies show that many controller design problems can be solved

efficiently with these two representative methods [36],[43]. However, when we deal with

multiple design specifications, this is no longer true. This is because, although the multiple

design specifications are naturally characterized with non-common Lyapunov variables for

each of the design specifications, the controller parametrization does not allow non-common

Lyapunov variables. Thus, general multiobjective controller design problems are considered

to be the ones essentially characterized as BMI's. In order to avoid the difficulties in dealing

with these BMI's, a so-called common Lyapunov variable has been forced for all design

specifications [6],[7],[26],[36]. As a benefit, these BMI's have been converted into LMI's with

the change of variables technique. Specifically, Chilali and Gahinet [6], Masubuchi et al.

[26] and Scherer et al. [36] gave a unified framework for general multiobjective controller

design problems, based on a common Lyapunov variable. It should be noted, however, that

convexity there is recovered essentially by forcing a common Lyapunov variab,le for all design

specifications, and this approach brings some conservatism into the design.

Although the existing LMI approach with a common Lyapunov variable offers a tractable

means for the multiobjective controller design problems, the resulting controllers sometimes

fail to have a satisfactory performance because of the conservatism of the design. The goal

of this thesis is to get around the conservatism, and we tackle the problem with non-common

Lyapunov variables.

Several researchers also have tried to solve the problem with non-common Lyapunov

variables. We summarize some of the contributions in the following. Shimomura and Fujii

have proposed an effective iterative algorithm for the state- and output-feedback multiob

jective controller design problems [38]-[40]. They showed that completing the square with

respect to the Lyapunov variables and the controller variables converts the bilinear term

between them into another set of bilinear terms: quadratic terms with respect to the Lya

punov variables and the controller variables. An advantage of this manipulation is that the

resulting bilinear terms can be replaced by their upper bounds, where the upper bounds can

be chosen as linear terms with respect to the Lyapunov variables and the controller variables.

With a suitable replacement of the parameters in these upper bounds, an effective iterative

algorithm has been derived. A similar idea was also proposed by Oliveira et al. [32]. In

these approaches, however, we need another effort to determine suitable initial parameters
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in the upper bounds, and in general, the initial parameters are sought by the conventional

approach with a common Lyapunov variable.

In contrast with the iterative approaches, the output-feedback multiobjective controller

design problems have been solved with non-common Lyapunov variables via finite-dimensional

Q-parametrization [47] by Chen and Wen [5], Hindi et al. [21] and Scherer [37]. In this ap

proach, the controller variables are assembled to a specific part of the Q-parameter so that

the bilinear term between the Lyapunov variables and the controller variables disappears.

As a benefit, we can employ non-common Lyapunov variables for each design specification

without any difficulty. This approach is quite effective in the sense that the conservatism

can be made arbitrarily small, but there is inherent inflation of the size of the LMI's and

high order controllers tend to be designed.

In the late 1990's, Oliveira et al. showed a new direction for the state- and output-feedback

multiobjective controller design problems in the discrete-time setting [29],[30]. They showed

that the dilation of the matrix inequality characterizations and the introduction of auxiliary

variables achieve decoupling between the Lyapunov variables and the controller variables

and thus the technical restriction to a common Lyapunov variable can be avoided. They

have shown a constructive way to derive dilated characterizations that are equivalent to

the original ones. The advantage of working with these dilated characterizations lies in

the fact that if we consider a set of dilated matrix inequality characterizations, then it

includes the corresponding set of the original ones as a special case. More specifically, if

one chooses the newly introduced auxiliary variable the same as the Lyapunov variable, the

set of dilated characterizations reduces to the original one [29],[30]. Because of this nice

property, the dilated characterizations are successfully applied to a wide range of problems

including multiobjective control [30] and robust control for real polytopic uncertainty [29] to

circumvent the conservatism, with the use of non-common or so-called parameter-dependent

Lyapunov variables. Unfortunately, however, the study in [29],[30] relies on the features

of the matrix inequality characterizations in the discrete-time setting, and hence analogous

dilated characterizations in the continuous-time setting do not follow in a parallel fashion.

Namely, we need another effort, as is suggested in [1].

In this thesis, we propose three approaches to the multiobjective controller design prob

lems with non-common Lyapunov variables in the continuous-time setting, where the first

and second ones deal with the state-feedback problems, while the third one deals with both

state- and output-feedback problems.

In the first approach, we impose some additional constraints on the Lyapunov variables

so that we convexify the problem and obtain LMI characterizations while keeping the state

feedback gain directly as one of the LMI variables. Because of the freedom left in the
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Lyapunov variables under the constraints, our formulation turns out to give a set of LMI's

that allow non-common Lyapunov variables. If we choose the additional constraints reason

ably, this approach leads to a feedback gain that achieves better performance than the one

based on a common Lyapunov variable. Furthermore, an effective iterative algorithm follows

immediately from this approach.

In the second approach, we perform the standard procedure called change of variables [4],

[17], [23], [28], and represent the resulting variables and the Lyapunov variables as a set of

affine functions of yet new variables. The reason why we introduce such new variables is that.
the variables resulting from the change of variables and the Lyapunov variables are subject

to non-convex constraints, since the feedback gain is parametrized only by their nonlinear

function. It is to get around the difficulties stemming from such non-convex constraints that

the yet new variables are introduced. Indeed, the affine functions are chosen to have a crucial

characteristic that the troublesome non-convex constraints are satisfied regardless of the new

variables. With these affine functions, we readily derive a set of LMI characterizations that

allow non-common Lyapunov variables. If we choose the parameters included in the affine

functions reasonably, this approach yields a feedback gain that achieves better performance

than that with the conventional approach. Thus, in the first and the second approaches, we

arrive at two distinct sets of LMI's for the multiobjective state-feedback controller design

problems. It turns out that each set of LMI's is obtained by freezing some different portion

of the freedom in the Lyapunov variables. Hence, applying these two approaches by turns,

it is expected that we can use the freedom of the frozen portion complementarily. This

consideration directly leads to an effective combined iterative algorithm, with which we can

get around the conservatism considerably.

The third approach we propose is quite distinct from the above two. Motivated by the

study in [29],[30], we propose a general approach to the dilated matrix inequality char

acterizations for continuous-time controller design. As stated before, the study in [29],
[30] fully relies on the features of the matrix inequality characterizations in the discrete

time setting, and hence analogous characterizations in the continuous-time setting do not

follow in a parallel fashion. Therefore, making another effort, we reveal that a particu

lar application of the Schur complement technique [4] and the introduction of an auxiliary

variable lead to a constructive way to derive dilated characterizations that are suitable for

controller synthesis. In addition, it is shown that the set of the new dilated characteriza

tions includes the corresponding set of the original ones as a special case, via a particular

choice of the auxiliary variable. These are very nice and interesting properties that are

to some extent analogous to the ones already obtained in the discrete-time setting [29],
[30]. With these dilated matrix characterizations, we successfully reduce the multiobjective
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controller design problem to a convex optimization problem with non-common Lyapunov

variables.

Although our main interest in this thesis is the multiobjective controller design, the

new dilated characterizations have another potential in dealing with the robust performance

analysis and synthesis problems for real polytopic uncertainty [4]. Roughly speaking, the

conventional approach to these problems is such that they seek a common Lyapunov variable

over the whole uncertainty domain [4],[6] and hence arrives at conservative results. On the

other hand, the new dilated characterizations enable us to employ a parameter-dependent

Lyapunov variable [1], [12], [16],[29],[34], [35], and hence the conservatism of the conventional

approach can be circumvented successfully.

The above three approaches have been reported in separate papers [8]-[11]. This thesis

assembles these contributions, with a plenty of numerical examples to illustrate the effec

tiveness of them. The thesis is organized as follows.

Chapter 2 gives a formal description of the multiobjective controller design problems to

be dealt with in this thesis. The conventional LMI approach with a common Lyaptmov

variable [6],[7],[17],[23],[26],[28],[36] is also reviewed, where we point out the conservatism of

this approach and clarify the goal of this thesis.

Chapter 3 discusses two LMI approaches to the multiobjective state-feedback controller

design problems with non-common Lyapunov variables: we call these approaches a subspace

approach and an affine representation approach, respectively. As stated before, it turns

out that two iterative algorithms follow from these approaches. Numerical examples in

this chapter demonstrate that the application of the new approaches results in significant

improvements over the conventional approach based on a common Lyapunov variable.

Chapter 4 describes a general approach to the dilated matrix inequality characterizations

for continuous-time controller design. With these dilated matrix inequality characterizations,

we readily reduce the multiobjective controller design problem to a convex optimization

problem with non-common Lyapunov variables but with a common auxiliary variable. A

remarkable prominence is that we can guarantee this new approach to achieve a better upper

bound than that with the conventional approach. Numerical examples show that the actual

cost is also improved, in general, due to the freedom gained by the non-common Lyapunov

variables. The dilated characterizations also enable us to develop a new approach to the

robust multiobjective synthesis for real polytopic uncertainty [4],[6], where we successfully

employ non-common parameter-dependent Lyapunov variables. The effectiveness of this new

approach is also illustrated through numerical examples.

Chapter 5 is the conclusion, where we summarize the achievements in this thesis and

discuss future topics.
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Chapter 2

Multiobjective Controller Design

Problems and Conventional LMI

A pproach with a Common Lyapunov

Variable

The purpose of this chapter is to describe formally the multiobjective controller design

problems to be dealt with in this thesis. The conventional LMI approach with a common

Lyapunov variable [6],[7],[17],[23],[26],[28],[36] is also reviewed, where we point out the con

servatism of this approach and clarify the goal of this thesis.

2.1 Multiobjective Controller Design Problem

Throughout this thesis, we consider the continuous-time multi-input multi-output (MIMO)

linear time-invariant (LTI) plant described by

{

X Ax + Bww + Bu

z Czx + Dzww + Dzu (2.1)

y - Cx + Dww

where x ERn, U E R m, y E RP are respectively the state, control input and measured

output, and wand z are the vectors of exogenous input and output signals related to the

performance of the control system.

The controller that we consider is the full-order output-feedback controller K given by

AKxK + BKy

CKXK + DKy

7
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In the state feedback case (0 - I, Dw = 0), we also consider the static state-feedback

controller K given by

u = Kx (2.3)

With the plant (2.1) and the controller given by (2.2) or (2.3), the closed-loop system can

be written in the form of

{
Xel = AXel + Bw

(2.4)
z = CXel + Vw

and we denote its transfer matrix from w to z by Tzw(s).
In the multiobjective controller design problem, several design specifications are imposed

on different channels of the closed-loop system at the same time, which is often necessary to

accommodate practical design objectives. In this thesis, we consider the Hoo performance,

the H 2 performance and the regional constraints on the closed-loop pole locations, motivated

by the following considerations [36]'[43].

• The Hoo norm of a stable system Tzw(s) is defined by

IITzw(s)lloo:= sup o-(Tzw(jw))
wER

(2.5)

The H00 norm can be interpreted in the following two ways. One is a measure for the

worst-case disturbance rejection level. The other is a measure for robustness (robust

stability or robust performance). For example, from the small gain theorem [47], the

closed-loop system remains stable for all perturbations of the plant represented by

w = L1z with 11L1(s)lloo ~ /,-1 if and only if IITzw(s)lloo < /'.

• The H2 norm of a stable and strictly proper system Tzw(s) is defined by

(2.6)

The H2 norm can be interpreted in the following way. In most cases, the disturbance

signal is considered to be a Gaussian white noise and an important control objective

is to minimize the IO@t-mean-square (RMS) of the output signal of interest. The RMS

of z for the Gaussian white noise w is nothing but the H2 norm IITzw (s)112'

• The transient behavior of the closed-loop system is closely related to the closed-loop

pole locations. By confining close-loop poles within a suitable subregion D contained

in the open left-half plane, some bounds can be put on the time-domain objective such

as the rise time, the settling time and so on. This regional pole placement constraints

is called D-stability constraints [6], [19], [42].
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In dealing with the H oo performance and the H 2 performance imposed on different chan

nels of the closed-loop system, the general description of the plant (2.1) amounts to the

following specific form.

x - Ax. + BooWoo + B2W2 + Bu

Zoo - Coox + Doowoo + Dzoou

C2x + D2W2 + Dz2u
(2.7)

Z2 -

Y Cx + Dwoowoo + Dw2W2

Here, the pair (woo, zoo) is concerned with the H oo performance while the pair (W2, Z2) is

concerned with the H2 performance. The diagram of the above plant is shown in Fig. 2.1.

ru;J
I
I
ILuu m~

Figure 2.1: Multiobjective Controller Design

Let us denote the closed-loop transfer matrix from Wj to Zj by Tzjwj(s) (j = 00,2). The

transfer matrix Tzjwj (s) has the following state space realization.

For the output-feedback controller K, the coefficient matrices in (2.8) are

A = [A+BDKC BCK], Bj = [Bj +BDKDWj] ,
BKC AK BKDwj

Cj = [ Cj + DzjDKC DzjCK ], V j = Dj + DzjDKDwj

while for the static state-feedback controller K, the coefficient matrices are given by

(2.8)

(2.9)

(2.10)

For the H 2 norm IITzzwz (s)112 to be well-defined, it is necessary that V 2 = 0 in (2.8). In order

to assure V 2 = 0 in a simple manner, in this thesis, we assume that the plant (2.7) satisfies
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D 2 = O. In addition, we force D K = 0 in the output-feedback controller (2.2), which implies

that the full-order output-feedback controller K is strictly proper.

Now, we are ready to describe formally the multiobjective controller design problem to

be dealt with in this thesis.

Problem Consider the continuous-time multi-input, multi-output, (MIMO), linear time

invariant (LTI) plant described by

X Ax + BooWoo + B2W 2 + Bu

Zoo - Coox + Doowoo + Dzoou
(2.11)

Z2 - C2x + Dz2u

y - Cx + Dwoowoo + Dw2W 2

For the prescribed Hoo performance /00 > 0 and the prescribed closed-loop pole placement

region D contained in the open left-half plane, find a controller K, full-order output-feedback

(2.2) or static state-feedback (2.3), such that

• the Hoo performance IITzoowoo (s)lloo < /00 is achieved;

• the closed-loop poles lie in the prescribed region D;

• the H2 performance IITZ2W2 (s) Ib is minimized subject to the above two constraints.

The above problem includes the H2 specification, the Hoo constraint and the D-stability

constraint and hence we call this problem multiobjective H2/ Hoo/D-stability problem. This

problem was addressed by Chilali and Gahinet [6]. In this thesis, we also deal with a special

case of the above problem, i.e., multiobjective H2/D-stability problem without the Hoo
constraint, which was treated by Haddad and Bernstein [19] and Sivashankar et aL [42].

Concerning the pole placement region D, we consider the so-called LMI regions [6] rep

resented by

D := {A E c: M + AN + >"NT < 0} (2.12)

Here, M = M T and N are constant real matrices that characterize the region D. The LMI

region (2.12) includes a-stability regions, circular regions and conic sector regions, which are

frequently used in the regional pole placement constraints [6],[19]. The following notations

specify these regions contained in the open left-half plane.

H(a)

C(c, r)

S(k)

.- {A E C:

.- {A E C:

.- {A E C:

Re[A] < -a} (a> 0)

IA - cl < r} (c < -r < 0)

11m [A] I < kl Re [A] I } (k > 0)

10
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(2.15)

Furthermore, the intersection of regions is denoted by n. For example, the region shown

in Fig. 2.2 is denoted by n{H(a), C(c, r), S(k)}. The regions (2.13) are characterized by

setting M and N in (2.12) as follows.

For H(a) : M=2a, N=l

For C(c, r) : M = [ -r -c], N= [~ ~ ]-c -r (2.14)

For S(k) : M=O, N= [:1 ~]

1m

Figure 2.2: The regional pole placement

Some observations concerning the regions H(a), C(c, r) and S(k) are worth noting [6],

[19]. For simplicity, let A = -(wn ± jWd be a pair of closed-loop poles, where 0 < ( < 1 is

the damping ratio, Wn = IAI is the undamped natural frequency, and Wd := wn yll - (2 is the

damped natural frequency. Then, if A E C(c, r), it follows that

(>Jl-(~)2, wd<r, -c-r<wn<-c+r, -c-r«wn<-c+r

11



(2.16)

In practice, it is important to consider such constraints. as ( > (min and (wn > ~. By

confining the closed-loop pole A into S(k) and 1i(a), we have

1
(> VI + k2 ' (wn > a

and hence the constraints can be achieved by

(2.17)

Thus, we can ensure an appropriate decay rate, damping ratio, undamped natural frequency

and damped natural frequency in a flexible fashion, using the parameters a, c, rand k in

(2.13).

Now, we have given some comments on the usefulness of the D-stability constraints.

Recall that our multiobjective controller design problem includes the H2 specification and

the Hoo constraint as well as the D-stability constraints. In the following, we review some

standard results on the characterizations of these design specifications in terms of matrix

inequalities [4],[6],[43].

Lemma 2.1 (The Hoo Performance) For the system described by

(2.18)

the following two conditions are equivalent.

(i) The matrix A is stable and the Hoo cost 11Tzoowcx'(s) 1100 is bounded by '"'100 > O. Namely,

(ii) There exists a matrix Xoo > 0 such that

(2.19)

[

AXoo + XooAT

BT
00

CooXoo

(2.20)

Lemma 2.2 (The Regional Pole Placement) The following two conditions are equivalent.

(i) The matrix A satisfies a(A) CD for the region

D := {A E C: M + AN + 5..NT < 0}

12
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(ii) There exists a matrix X D > 0 such that

(2.22)

where @ denotes the Kronecker product.

Lemma 2.3 (The H2 Performance) For the system described by

(2.23)

the following two conditions are equivalent.

(i) The matrix A is stable and the H2 cost IITz2W2 (S)lb is bounded by "12> O. Namely,

(2.24)

(ii) There exist matrices X 2 > 0 and Z2 > 0 such that

(2.25)

In Lemmas 2.1-2.3, new variables X oo , XD, X 2 and Z2 are introduced to characterize each

of the design specifications as matrix inequalities. Since the design specifications inherently

require stability of the closed-loop system, we can see that the matrix inequalities (2.20),

(2.22) and (2.25) include the Lyapunov inequality of the form

(2.26)

Because of this fact, the variables X oo , Xn and X 2 are called Lyapunov variables for each

design specification.

With (2.20), (2.22) and (2.25), we readily obtain the following formulation of our problem.

Basic Formulation of Our Problem

Minimize "I~ subject to (2.20), (2.22) and (2.25). Here, the variables are X oo , Xn, X 2,

Z2, "I~ and the controller variables included in A, 13 and C.

As is easily seen, the characterizations (2.20), (2.22) and (2.25) involve bilinear terms be

tween the Lyapunov variables and the controller variables as in AXj +XjAT (j = 00, D, 2)t.

tNote that the matrix A contains the controller variables.
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Hence, the above formulation is of no use in practice since the resulting optimization prob

lem involves BMI's. Solving BMI's is a non-convex optimization problem and quite hard

from the viewpoint of numerical computation [45]. Many researchers have tried to overcome

this difficulty, and the change of variables technique has been applied so that the resulting

optimization problems involve only LMI's. This conventional approach has been partially

successful by forcing a common Lyapunov variable for all design specifications [6],[7],[17],

[23],[26],[28],[36], which we will review in the next section.

2.2 Conventional LMI Approach with a Common

Lyapunov Variable

In the preceding section, the multiobjective controller design problem has been formu

lated as an optimization problem involving BMI's. To recover convexity in the optimization

problem, a common Lyapunov variable

X := X oo = Xo = X 2 (2.27)

has been forced for all design specifications in the previous studies [6],[7],[17],[23],[26],[28],

[36]. This conventional approach can be described formally as follows.

LMI Formulation of Our Problem with a Common Lyapunov Variable

Minimize "Y~ subject to (2.20), (2.22) and (2.25) with a common Lyapunov variable (2.27).

Here, the variables are X, Z2, "Y~, and the controller variables included in A, Band C.

With the restriction (2.27), the problem actually results in a convex optimization prob

lem represented by LMI's [6],[7],[17],[23],[26],[28],[36]. Clearly, this restriction brings some

conservatism into the design and only an upper bound of the cost functional will be mini

mized, but there is no further conservatism [36]. In the rest of this section, we will review an

existing method to linearize the BMI's (2.20), (2.22) and (2.25) under the restriction (2.27).

State-Feedback Case

In the state-feedback case, it follows readily from (2.10) that the restriction (2.27) admits

a simple change of variables technique [4],[17],[23],[28]

Y:=KX (2.28)

so that the constraints (2.20), (2.22) and (2.25) result in LMI's with respect to X, Y, Z

and "Y~' Once the variables X and Y have been found, the state-feedback gain K can be

determined by

14



K=YX-I (2.29)

Thus, we are led to the conclusion that under the restriction (2.27), the linearization is

completed without any further conservatism.

Output-Feedback Case

In the output-feedback case, we need a much more involved change of controller variables

technique, and we will follow the result proposed by Scherer [36].

Let us partition X and its inverse P as

P = X-I = [Pn PI2]
P0. P22

(2.30)

where X n E R nxn, Pn E Rnxn and the other variables have compatible dimensions. We

assume that X I2 and PI2 are nonsingular without loss of generality [6]. With (2.30) and the

controller variables given in (2.2) where DK = 0, we define the following matrices.

= ._ [] Xn]
'-'x .- T'o X I2

Sp.= [Pn ]]
. P0. 0

(2.31)

The matrices Sx and Sp are nonsingular and satisfy the following equality.

XSp = Sx (2.33)

Applying appropriate congruence transformations with the matrix Sp given by (2.31) to

(2.20), (2.22) and (2.25) under the restriction (2.27.), we obtain the following matrix inequal

ities for the Hoo constraint, the D-stability constraints and the H2 specification.

STXC
T

]P 2 < 0
2] ,

-"(2
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We can see that the above matrix inequalities only involve the following terms.

(2.37)

The above terms are affine with respect to Xn, Pn, AK , BK and OK. Accordingly, the

matrix inequalities (2.20), (2.22) and (2.25) result in the LMI's (2.34), (2.35) and (2.36)

with respect to the variables Xn, Pn, AK , BK , OK, Z2 and 'Y? Once the variables Xn, Pn,

AK , BK and OK have been found, the output-feedback controller (2.2) can be determined

through (2.32) by

(2.39)

where X 12 and P12 are nonsingular matrices satisfying

(2.40)

Note that above change of variables is based on the congruence transformations, and thus

the linearization is completed under (2.27) without any further conservatism.

Now, the existing change of variables techniques have been reviewed. Summing up,

our multiobjective controller design problem can be cast as a convex optimization problem

involving LMI's only, under the restriction on the Lyapunov variables that they are taken

to be common. It follows that the use of a common Lyapunov variable is the core of the

change of variables techniques. However, recall that the restriction to a common Lyapunov

variable is very confining and hence the conventional LMI approach results in conservative

design. This crucial fact motivates us to improve the study on the multiobjective controller

design problem. Namely, the purpose of this thesis is to get around the conservatism of the

conventional approach arising from seeking a common Lyapunov variable. To this end, we

tackle the multiobjective controller design problem with non-common Lyapunov variables.
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Chapter 3

LMI-Based Multiobjective

State-Feedback Controller Design

with Non-Common Lyapunov

Variables

In this chapter, we propose two LMI approaches to the multiobjective state-feedback H 2/ Hoo /

D-stability problems with non-common Lyapunov variables. We call these approaches a sub

space approach and an affine representation approach.

In the subspace approach, we impose some additional constraints to the Lyapunov vari

ables so that we convexify the problem and obtain LMI characterizations while keeping the

state-feedback gain directly as one of the LMI variables. Because of the freedom left in the

Lyapunov variables under the constraints, our formulation turns out to give a set of LMI

characterizations that allow non-common Lyapunov variables. If we choose the additional

constraints reasonably, it is shown that this approach leads to a feedback gain that achieves

better (no worse) performance than the conventional approach. Furthermore, an effective

iterative algorithm follows immediately from this approach.

On the other hand, in the affine representation approach, we perform the change of

variables [4],[17],[23],[28] with non-common Lyapunov variables, and represent the resulting

variables and the Lyapunov variables as a set of affine functions of yet new variables. Because

the feedback gain is parametrized only by a nonlinear function of the Lyapunov variables

and those variables resulting from change of variables, they are subject to non-convex con

straints. It is to get around this difficulty that we introduce the yet new variables, and the

affine functions are chosen to have a crucial characteristic that the troublesome non-convex

17



constraints are satisfied regardless of the new variables. With these affine functions, we

readily derive a set of LMI characterizations that allow non-common Lyapunov variables.

In addition, a reasonable choice of the parameters included in the affine functions assures

that this approach attains better (no worse) perfromance than the conventional approach.

Thus, with the above two approaches, we derive two distinct sets of LMI characterizations

for the multiobjective state-feedback controller design problems. It turns out that each set

of LMI characterizations is derived by freezing some different portion of the freedom in the

Lyapunov variables, and hence applying these two approaches by turns, we can use the free

dom of the frozen portion complementarily. This consideration directly leads to a combined

iterative algorithm, with which we can circumvent the conservatism successfully.

The effectiveness of the two approaches as well as the two iterative algorithms resulting

from these approaches are demonstrated by numerical exmaples in this chapter. We also

examine the effectiveness of the iterative algorithms in comparison with the algorithm pro

posed by Shimomura and Fujii [38]-[40]. Numerical examples show that the conventional

approach with a common Lyapunov variable is very conservative, and the conservatism is

successfully reduced with the use of non-common Lyapunov variables.

3.1 Preliminaries

As in the preceding chapter, we consider the continuous-time MIMO, LTI plant given by

Ax + Boowoo

Coox + Doowoo
C2x

+ B2W2 + Bu

+ Dzoou

+ Dz2u

(3.1)

where x E Rn and u E Rm and all other signals and matrices have appropriate dimensions.

In the state-feedback problems, the matrix inequalities (2.20), (2.22) and (2.25) for the

Hoo constraint, the D-stability constraint and the H2 specification, respectively, can be

rewritten as follows.

[

He[(A:~K)X=] ~;

(Coo + DzooK)Xoo Doo

Xn >0

Xoo (Coo + DzooKf ]
DT < 000

-,~I
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M 0 Xn + He[N @ {(A + BK)Xn}] < 0

[
He[(A + BK)X2] X 2(02 + D z2K)T ] < 0

(02+ Dz2K)X2 -I'~I

(3.3b)

(3.4a)

(3.4b)

(3.4c)

Here, the variables are X oo , Xn, X 2, Z2, I'~ and the controller variable K. As we have seen

in the preceding chapter, the inequalities (3.2)-(3.4) are BMI's. To avoid the difficulties in

dealing with these BMI's, a common Lyapunov variable

X := X oo = Xn = X 2 (3.5)

has been forced in [17],[23],[28]. This common Lyapunov variable admits a simple change of

variable

Y:=KX (3.6)

so that the constraints (3.2)-(3.4) result in LMI's with respect to X, Y, Z2 and I'i. Once the

variables X and Y have been found, the state-feedback gain based on a common Lyapunov

variable can be determined by

(3.7)

Here, assuming that the problem is feasible with a common Lyapunov variable, let us

denote by 1'~c the optimal value of I'~ obtained with a common Lyapunov variable. It should

be noted that 1'2c is nothing but an upper bound of the H2cost achieved by the corresponding

feedback gain Kc given by (3.7); the actual H2 cost achieved by K c can be calculated by

minimizing I'~ subject to the following LMI's.

[
He[(A + BKc)Q2] Q2(02 + Dz2Kcf ] < 0

(02+ Dz2K c)Q2 -I'P
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Here the variables are Q2, Z2 and "Y~. If we denote the optimal value of "Y~ obtained by this

procedure by "Y~c' we have

(3.9)

Remark 3.1 In the following, we assume n > m, which means that the number of the

states of the plant is larger than that of the control inputs. Note' that this is naturally

satisfied in practical plants.

3.2 Subspace Approach

In this section, we state the basic idea of the subspace approach, and derive a set of LMI

characterizations that allow non-common Lyapunov variables. We also consider an iterative

algorithm which follows immediately from this approach.

To begin with, let us define the new variables Poo , Pn and P2 as follows.

(3.10)

In the following, we also call the variables PrX)' PD and P2 Lyapunov variables. With (3.10),

the inequalities (3.2)-(3.4) can be rearranged into

[

He[(A + BKfPool PooBoo

B~Poo -1

Coo + DzooK Doo

Pn > 0

(3.11a)

(3.11b)

(3.12a)

M®PD +He[N® {(A+BKfPD}] < 0

20

(3.12b)

(3.13a)
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where the variables are Poo , Pn, P2 , K, Z2 and I~. As is easily seen, these matrix inequalities

are not LMI's, either, because of the bilinear terms PjBK + K T B T Pj (j = 00, D, 2). How

ever, there is a remarkable difference between the matrix inequalities (3.2)-(3.4) and (3.11)
(3.13); the matrix inequalities (3.2)-(3.4) have bilinear terms of direct products between the

Lyapunov variables and the controller variable, while the bilinear terms in (3.11)-(3.13) are

indirect products between the Lyapunov variables P00' Pn and P2 and the controller variable

K through the constant matrix B E Rnxm. Because of this difference, the matrix inequal

ities (3.11)-(3.13) turn out to enable us to derive a set of LMI characterizations that leave

the feedback gain K directly as an LMI variable. This is achieved by freezing only some

portion of the Lyapunov variables P00' Pn and P2 and the freedom in the remaining portion

enables us to have non-common Lyapunov variables. The rest of this section is devoted to

showing the details of such LMI characterizations.

To this end, we impose the following additional constraints on the Lyapunov variables

Poo , Po and P2:

(3.14)

Here, Uoo E R mxn , Un E R mxn and U2 E R mxn are constant matrices and given in advance

in some reasonable way, the details of which will be discussed later in Subsection 3.2.2. Under

the constraints (3.14), it is clear that there is still some freedom left in the variables Poo , Pn

and P2 because of the assumption n > m. We begin by analyzing in details the freedom so

that we can use it to derive a set of LMI characterizations that allow non-common Lyapunov

variables. For the ease of description, we suppress the subscripts 00, D and 2 that denote

the design specifications for the time being, and consider the constraint

(3.15)

on the symmetric matrix P, where U E Rmxn is some prescribed matrix.

3.2.1 Parametrization of P such that BTp = U

This subsection gives the parametrization of a general solution of P satisfying (3.15).

With this parametrization, we represent explicitly the freedom left in the variables P under

the constraint (3.15). In the sequel, we assume that the matrix B E Rnxm has full column

rank for simplicity and let the singular value decomposition of BT be

(3.16)

where E is a positive definite diagonal matrix.

First, we consider if such P exists that satisfies (3.15). The following lemma gives the

answer.
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Lemma 3.1 [43] Given a matrix U E Rmxn, there exists some symmetric matrix P satis

fying B T P = U if and only if UB is symmetric.

We can give a general solution of (3.15) based on a constructive proof of the above lemma.

Lemma 3.2 [43] Suppose U is such that UB is symmetric and define

[ R 8 ] := WTUVT, R E R mxm , 8 E Rmx(n-m)

Then, a general solution of P satisfying (3.15) is given by

(3.17)

T-P = Po + V IIV, fI = Om,m EB II (3.18)

where II E R(n-m)x(n-m) is an arbitrary symmetric matrix.

Lemma 3.2 shows that the constraint (3.15) freezes only some portion of the symmetric

matrix P E Rnxn; to put it reverse, we still have freedom which is indicated by II E

R(n-m)x(n-m) under the constraint. This observation is quite important to derive a set of

LMI characterizations that allow non-common Lyapunov variables, as is described in the

following subsection.

3.2.2 New LMI Characterization with the Subspace Approach

Now, we are ready to give our main result in this section, where we give a set of LMI

characterizations for the multiobjective state-feedback controller design problem that allow

non-common Lyapunov variables. Applying Lemma 3.2 to the constraints (3.14), we define

T [ t;-lRoo t;-18 ] [ Roo 800 ] := WTUooV T
Pooo := V 8~E-I

00 V (3.19)o '

T [ t;-lRD t;-lSD ] V [RD 8D]:= WTUDVT (3.20)PDO := V 8'bE - I o '

T [ t;-lR, t;-ls ]
[R2 82 ] := W TU2V T

P20 := V 8fE-I
2 V (3.21)o '

Then, the general solutions of Poo , PD and P2 satisfying (3.14) are given by

D D + VTII- V II- 0 ffi II II
oo

E R(n-m)x(n-m)
.Loo = .L000 00' 00 = m,m \I7 00'
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p. p. + V TII- V II- 0 ffi II II
2

E R(n-m)x(n-m)
2 = 20 2, 2 = m,m \I7 2, (3.24)

Using (3.22)-(3.24) together with (3.14), we can rewrite the BMI's (3.11)-(3.13) into the

LMI's (3.25)-(3.27) given below, where (3.25) reflects the Hoo constraint, (3.26) the D

stability constraint and (3.27) the H 2 specification.

T-
P000 + V llooV > 0

[

He[AT(pooo + VTllooV) + KTUoo]
T T-Boo(Pooo + V llooV)

Coo + DzooK

(Pooo + VTllooV)Boo
-I

(3.25a)

(Coo + DzooKf]
D~ < 0 (3.25b)

-~/~1

T-F'no+ V llnV> 0

[
T T-)]Z2 B2(P20 + V ll2V

(P20 + VTll2V)B2 P20 + VTll2V > 0

trace(Z2) < 1

(3.26a)

(3.26b)

(3.27a)

(3.27b)

(3.27c)

Here, the variables are lloo' lln, ll2' K, Z2 and '"Y? with lloo' lln and ll2 given by (3.22)

(3.24).

Observe that the above characterizations (3.25)-(3.27) are in fact LMI's that leave the

feedback gain K directly as one of the LMI variables. With these LMI characterizations,

the multiobjective state-feedback H2/ Hoo/D-stability problem can be cast into a convex

optimization problem as described formally in the following.

Subspace Approach with Non-common Lyapunov Variables

Minimize '"Y? subject to the LMI's (3.25)-(3.27). Here, the variables are lloo' lln, ll2' K,

Z2 and '"Y? with lloo' lln and ll2 given by (3.22)-(3.24).

Remark 3.2 In the optimization subject to the LMI's (3.25)-(3.27), the variables lloo'

lln and ll2 can take distinct values and hence the Lyapunov variables Poo , Pn and P2given

by (3.22)-(3.24) are not the same, in general. The implication is that we have given a new

approach that allows non-common Lyapullov variables.
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The approach presented above with non-common Lyapunov variables was obtained by

introducing the additional constraints (3.14). Hence, the choice of Uoo , Un and U2 in the

constraints would have strong influence on the feasibility of the LMI's (3.25)-(3.27) as well

as the control performance achieved by the resulting feedback gain. Regarding the choice of

Uoo , Un and U2 , they have to satisfy at least the conditions that UooB, UnB and U2B are

all symmetric (see Lemma 3.1). With this in mind, we propose to dBtermine Uoo , Un and

U2 by

(3.28)

Here, X is the common Lyapunov variable (3.5) obtained by the conventional approach [6]

and Q2 is obtained by minimizing 'i'~ in (3.8) for the feedback gain K c resulting from the

conventional approach. By this choice, UooB, UnB and U2B become symmetric. Moreover,

it is easy to see that the constraints (3.14) with (3.28) admit special solutions

(3.29)

Because the inequalities (3.11)-(3.13) are feasible for 'i'2 = 'i'2c with the Lyapunov variables

(3.29) and the feedback gain K = Kc, we are led to the following result.

Theorem 3.1 If we take Uoo , Un and U2 given by (3.28), then the LMI's (3.25)-(3.27)
are feasible. Moreover, suppose we minimize 'i'~ subject to the LMI's (3.25)-(3.27) with Uoo ,

Un and U2 given by (3.28), and denote the optimal value of 'i'~ by i~n' Then, we have

(3.30)

Namely, we can obtain a feedback gain that achieves better (no worse) performance than

the one based on a common Lyapunov variable.

If we determine Uoo , Un and U2 by (3.28), the explicit description of the subspace ap

proach will be as follows.

Step o. Minimize 'i'i subject to (3.2)-(3.4) with a common Lyapunov variable X and a

variable Y given by (3.5) and (3.6), respectively [6]. Denote the optimal value of'i'i

by iic and the resulting feedback gain by K c:= y X-I.

Step 1. Minimize 'i'~ subject to (3.8). Denote the optimal value of 'i'~ bY'i'ic'

Step 2. Define Uoo , Un and U2 by (3.28), where X and Q2 are those obtained in Step 0

and Step 1, respectively.

Step 3. Minimize'i'i subject to the LMI's (3.25)-(3.27) to get the feedback gain K.
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In Step 3, let us denote the resulting optimal value of 'Y~ by i~n' Since i2n is only an

upper bound for the H 2 cost achieved by the gain K, minimize 'Y~ subject to (3.8) with K c

replaced by K to get the exact value of the H 2 cost achieved by the feedback gain K, and

denote the resulting optimal value of 'Y~ by 'Y~n' Then, it is clear that

(3.31)

This implies that we can arrive at the H2 cost 'Y2n, which is better (no worse) than 'Y2c

achieved by the conventional approach.

3.2.3 Iterative Algorithm Based on the Subspace Approach

In order to get around the conservatism of the conventional approach with a common

Lyapunov variable as much as possible, it will be effect'ive to apply the subspace approach

iteratively. Such an iterative algorithm is immediately available if the constant matrices Uoo ,

Un and U2 in the additional constraints (3.14) are updated, in a reasonable fashion, based

on K resulting from this approach.

One primitive way to obtain new U00 with given K is such that we determine U00 by

Uoo := BT Foo , where Foo is the solution minimizing moo under the following inequality

constraint.

(3.32)

Here, Hoo(Foo , K) denotes the left-hand side of (3.11b) with Poo replaced by Foo.

Similarly, new Un can be determined by Un := BT Fn , where Fn is the solution mini

mizing mn under the following inequality constraint.

-Fn EB D(Fn , K) < mnI (3.33)

Here, D(Fn, K) denotes the left-hand side of (3.12b) with Pn replaced by Fn .

Concerning the constant matrix U2 , it would be reasonable to determine it by U2 .

B T Q21
, where Q2 is the solution of (3.8) with K c replaced by K.

In the above two procedures to determine new U00 and Un, it is assured that moo and

mn result in negative numbers, because the feedback gain K actually achieves both of the

Hoo and D-stability constraints. As a consequence, it follows that the LMI's (3.25)-(3.27)

are feasible under these new Uoo , Un and U2 • This is because the constraints (3.14) with

these new Uoo , Un and U2 admit special solutions

(3.34)
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Note that the inequalities (3.11)-(3.13) are satisfied for "(2 set to the actual cost achieved by

K, with the Lyapunov variables (3.34) and with the given state-feedback gain K.

Noting that Step 0 of the subspace approach is just one simple method to obtain Uoo , Un

and U2 that assure the feasibility of the LMI's (3.25)-(3.27), we can still follow the remaining

steps with these new matrices. This idea leads directly to the following iterative algorithm.

Iterative Algorithm Based on the Subspace Approach

Step O. Minimize "(~ subject to (3.2)-(3.4) with a common Lyapunov variable X and a

variable Y given by (3.5) and (3.6), respectively. Denote the resulting feedback gain

by K(i) := YX-I, where we set i = O.

Step 1. Minimize "(~ subject to (3.8) with K c replaced byK(i). Denote the optimal value of

"(~ by ("(~i))2, and check the stop criterion with respect to "(~i).

Step 2. Calculate Foo and Fn minimizing moo and mn under the constraints (3.32) and

(3.33), respectively, with K replaced by K(i). With P00 and Po together with Q2

obtained in Step 1, determine Uoo , Un and U2 by

(3.35)

Step 3. Set i := i+1 and minimize "(~ subject to theLMI's (3.25)-(3.27) to get the feedback

gain K(i). Then, go to Step 1.

As mentioned above, we can always assure the feasibility of the LMI's in Step 3. It is

also assured that the H2 cost "(~i) is monotonically nonincreasing throughout the iterative

algorithm. The stop criterion in Step 1 can be specified with the decreasing rate of the H2

cost "(~i) or the number of iterations, and so on.

lt should be noted that there exists a conventional iterative algorithm in which the

Lyapunov variables Poo , Pn, P2 and the feedback gain K in (3.11)-(3.13) are alternately fixed

and the corresponding LMl's are solved by turns with respect to unfixed variables. Indeed,

the conventional method given below is one primitive method to obtain better performance

than the one based on a common Lyapunov variable, which clearly shows the similarities

and differences between these two iterative algorithms.

Conventional Iterative Algorithm

Steps 0 and 1 are the same as in the iterative algorithm based on the subspace approach.

Step 2. Calculate Poo and Pn minimizing moo and mn under the constraints (3.32) and

(3.33), respectively, with K replaced by K(i).
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Step 3. Minimize I~ subject to (3.11)-(3.13) for the variable K by freezing Poo , Pn to Poo ,

Pn obtained in Step 2 and P2 to Q"2 1 obtained in Step 1, respectively. Set i := i + 1

and denote the resulting feedback gain by K(i). Then, go to Step 1.

The effectiveness of the new iterative algorithm will be studied in Section 3.5 in compar

ison with this conventional iterative algorithm.

3.3 Affine Representation Approach

In the preceding section, we introduced the additional constraints (3.14) to the Lyapunov

variables so that we can convexify the problem, and obtained LMI characterizations that

leave the feedback gain directly as one of the variables. Because of the freedom left in the

Lyapunov variables under the additional constraints, thi~ approach turned out to give a set

of LMI characterizations (3.25)-(3.27) that allow non-common Lyapunov variables.

This section describes another approach to the multiobjective state-feedback H2 / Hoo/D

stability problems: the affine representation approach. In this new approach, we perform a

standard procedure called change of variables [4], [23] and represent the resulting variables

as a set of affine functions by introducing yet new variables. These affine functions are

chosen to have a crucial characteristic that troublesome non-convex constraints are satisfied

regardless of the new variables. With these affine functions, we readily derive a set of

LMI characterizations that allow non-common Lyapunov variables. Furthermore, a simple

combination of the subspace approach and the affine representation approach leads to another

effective iterative algorithm, with which we can get around the conservatism successfully.

3.3.1 Change of Variables via Affine Functions

Let us focus on the inequalities (3.2)-(3.4) again. Applying the change of variables

to (3.2)-(3.4), we get

Xoo > 0

(3.36)

(3.37a)

[

He[AXoo + BYoo] Boo

BT -1
00

CooXoo + DzooYoo Doo

Xn >0

(CooXoo + DzooYoof ]
D T < 000

-/~1
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M ®Xn + He[N ® (AXn + BYn)] < 0

[
He[AX2 + BY2] (C2X 2+ Dz2Y2f ] < 0

C2X 2+ D z2Y2 -l'iI

(3.38b)

(3.39a)

(3.39b)

(3.39c)

Here, the variables are Xoo , Xn, X 2 , Yoo , Yn , Y2, Z2 and I'i. Note that the size of Yoo , Yn

and Y2 are the same as that of the feedback gain K and hence m x n.

It follows from the change of variables (3.36) that the variables Xoo , Xn, X 2 and Y00'

Yn, Y2 are subject to the non-convex constraint given below.

(3.40)

This is inevitable as long as we do change of variables as in (3.36), and the common variables

(3.41)

correspond to the simplest way to meet the constraint. Here an intriguing interpretation

of the common variables is that the original variables Xoo , Xn, X2 and Yoo, Yn , Y2 are

respectively represented by affine junctions (in fact, identity functions) of the new variables

X and Y in such a way that the constraint (3.40) is satisfied regardless of the new variables

X and Y. Generalizing this interpretation, we are led to the key observation in this section

that, to convexify the problem, it is actually enough for the variables Xoo, Xn, X 2 and Yoo,

Yn, Y2 to satisfy the following two conditions.

Condition 1. The variables Xoo , Xn, X 2 and Yoo , Yn , Y2 are represented as some affine

functions of other new variables.

Condition 2. The variables Xoo, Xn , X 2 and Yoo, Yn, Y2 satisfy the constraint (3.40)

regardless of these new variables.

Taking account ofthe first condition, let us introduce the new variables [200' [2n, [22 and

roo, r n , n, and, for the moment, represent Xoo , Xn, X 2 and Yoo , YD, Y2 as

(3.42a)

(3.42b)
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where Xocl), Xo(')' X2(·), Ycx:l) , YoU and Y2(') are some matrix-valued affine functions

to be determined. Substituting (3.42) into (3.37)-(3.39), the variables are regarded to be

Doo ' Do, D2, roo, ro, r 2, Z2 and 1'~. In the sequel, we will give explicitly a set of affine

functions such that the second condition above is also satisfied, or equivalently,

(3.43)

(3.44)

regardless of Doo , Do, D2 and roo, r o , r2 (in fact, we will take roo = ro = r 2), while the

conservatism being circumvented as much as possible. To derive such affine functions, we

make the following assumption.

Assumption 3.1 A set of matrices Xoo , Xo, X 2, Yoo, Yo, Y2 (and Z2) that satisfy (3.37)

(3.39) for some 1'2 = 1'20 > 0 is given. Furthermore, denoting these matrices by Xooo, Xoo,
X 20 and Yooo, Yoo, 120, they satisfy

YoooX~~ = YooXj)6 = Y20X;1 =: K o

Without loss of generality, we assume that K o has full row rank.

The above assumption is necessary in our derivation of the affine functions. A reasonable

way to determine the matrices in Assumption 3.1 will be discussed later in Subsection 3.3.2.

Based on the constant matrices Xooo , Xoo, X 20 and Yooo, Yoo, 120, we derive affine

functions as in (3.42) with the above-mentioned properties. The outline of the derivation

will be as follows.

1. We first construct symmetric-matrix-valued affine functions Xoo(Doo ), Xo(Do) and

X2(D2) such that

(3.45)

regardless of Doo ' Do and D2•

2. For the affine functions Xoo(Doo), Xo(Do ) and X2 (D2 ) constructed in the first step,

we next construct matrix-valued affine functions Yoo(r(0), Yo(ro) and Y2(r2) such

that (3.43) holds regardless of the variables Doo ' Do, D2 and roo, ro, r2 (in fact, we

will take roo = ro = r2 ).

Once these affine functions are constructed, our new approach to the multiobjective state

feedback controller design problem will be completed simply by substituting them into

(3.37)-(3.39). The rest of this subsection is devoted to the details of the above procedure

for the derivation of the affine functions.

In the following, let the singular value decompositions of Yooo E Rmxn, Yoo E Rmxn and

Y20 E Rmxn be respectively
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(3.46)

The matrices E oo , Eo and E 2 can be represented respectively in the following forms.

(3.47)

Here, Yooo , Yoo and Y20 have full row rank because K o does by A~sumption 3.1. Hence,

Eoo E Rmxm, Eo E Rmxm and E2 E R mxm are positive-definite diagonal matrices.

Construction of Xoo , Xo and X2

Now, we consider the first step: we construct the symmetric-matrix-valued affine func

tions Xoo (Doo ), Xo(Do ) and X2 (D2 ) satisfying (3.45). For that purpose, it is useful to

explore symmetric matrices Poo , lb and P2 satisfying

(3.48)

Regarding the existence of such symmetric matrices, the following proposition is a direct

consequence from Lemma 3.1.

Proposition 3.1 Symmetric matrices Poo , lb and P2 satisfying (3.48) exist if and only if

there exists some K E Rmxn such that

(3.49)

In particular, if (3.49) holds, then there exist symmetric matrices Poo , Po and P2 satisfying

(3.50)

It is clear from (3.44) that we actually have (3.49) for K = Ko, so that there exist

symmetric matrices Poo , Po and P2 satisfying (3.48). Hence, based on Proposition 3.1, let

us suppose that we are given a matrix K satisfying (3.49) (perhaps K = K o, but this is not

necessarily assumed). Then, a crucial problem is to give a general class of Poo , lb and P2

satisfying (3.50). Regarding this problem, we obtain the following proposition immediately

from Lemma 3.2.

Proposition 3.2 Suppose that Yooo , Yon, Y20 and K satisfying (3.49) are given, and con

sider the singular value decompositions given by (3.46) and (3.47). Then the general solutions

of P00' Po and P2 satisfying (3.50) are given by
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[ ~ ~ ] f'l- l W T KVT
"::001 "::0012 := .000 00 00'

[
~ ~ ]. f'l-lTXTTKTTT..::n1 ..::n12 := L.Jn ""n I'n,

[ ~ ~ ] f'l- l w:T KV;T"::2,1 "::2,12 := .02 2 2

(3.51)

where = E R mxm = E Rmx(n-m) = E Rmxm = E Rmx(n-m) = E R mxm ..and
~001 , ~0012 , ~n1 , ~n12 , ~2,1

5 212 E Rmx(n-m) are constant matrices while 5 00 E R(n-m)x(n-m), 5n E R(n-m)x(n-m) and,
52 E R(n-m)x(n-m) are arbitrary symmetric matrices.

Recall that the general solution (3.51) is derived under the condition that a matrix K

satisfying (3.49) is given. For the time being, we consider to fix K to K o given by (3.44) in

Assumption 3.1, so that the constant matrices 5 001 , 5 0012 , and so on, in Proposition 3.2 will

be determined by setting K = K o in (3.51); we will return to the case of K =/:. K o later on.

We are now in a position to give affine functions Xoo(.ooo ) , Xn(.on) and X2(.o2) satisfying

(3.45), or to be more precise,

(3.52)

(3.53)

Proposition 3.3 Under the notation of Proposition 3.2 with K set to K o given by (3.44),

consider the affine functions Xoo(.ooo ), Xn(.on ) andX2(.o2) given respectively by

Xoo (.o06) = 8 00 + A~.oooAoo,

Xn(.on ) = 8n + Af>.onAn,

X2(.o2) = 8 2 + A~ .o2A2

where 8 00 , Aoo , 8n, An, 8 2 and A2 are constant matrices defined by

~ ] Voo ,

~] VD,

~ ] V2,

Aoo := [-.=T 12.=-11 I] '\/,00-00 -00

A .- [ =T =-1 I] TT2·- -~2,12~2,1 1'2

(3.54)

and .000 E R(n-m)x(n-m) , .on E R(n-m)x(n-m) and .02 E R(n-m)x(n-m) are symmetric. Then,

Xoo(.ooo) , Xn(.on) and X2(.o2) are symmetric and satisfy (3.52) for any .000 , .on and .02.
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This proposition is based on the idea presented in [39]. A proof of the proposition is

given below to complete our exposition.

Proof. Applying the matrix inversion formula [47] to Poo given by (3.51), we have

P -1 Cl AT (~ ~T ~-1 ~ )-lA
00 = 0 00 + 00"=00 - "=0012"=001"=0012 00 (3.55)

(3.56)

Hence, defining floo := (500 -5~125~i 5 0012 )-1, we can see that p~l is nothing but Xoo(floo )

in (3.53). Now, since Poo satisfies Ko = YoooPoo for any symmetric 5 00 (and hence, for any

symmetric floo ) by Proposition 3.2, it is obvious that Xoo(floo ) given by (3.53) satisfies

Ko = YoooXoo (floo)-l for any floo • Similarly for Xn(fln ) and X2(fl2). Q.E.D.

Proposition 3.3 gives a candidate for the set of desirable affine functions Xoo (floo ),

Xn(fln ) and X2(fl2 ) that satisfy (3.45). In fact, they satisfy (3.52). However, from the

viewpoint of deriving a new feedback gain K from the initial gain K o based on the affine

functions Xoo = Xoo(floo ), Xn = Xn(fln) and X2 = X2 (fl2 ), it is imperative for these affine

functions to satisfy the less restrictive constraint (3.45), rather than (3.52). In other words,

we need to regard K in Proposition 3.2 as a variable. From (3.51), this means that we must

pay attention to the dependence of 5 001, 5 0012 , 5n1, 5n12, 5 2,1 and 5 2,12 on K.
To keep the affine nature of (3.53) with respect to the variables even under this viewpoint,

it is necessary to restrict somehow the way we regard K as a variable. Indeed, by inspection,

it would be reasonable from (3.51), (3.53) and (3.54) to take K = 7]-1Ko, where the scalar

"1 is a new additional variable. Then, we readily arrive at the following proposition.

Proposition 3.4 Consider the affine functions Xoo ("1, floo ), Xn(7], fln) and X2(7], fl2) given

respectively by

Xoo (7], floo ) = 7]f}00 + A~flooAoo,

Xn(7], fln) = 7]f}n + AbflnAn,

X2(7], fl2) = "1f}2 + Af fl2A2

where n E Rand fl E R(n-m)x(n-m) fl E R(n-m)x(n-m) fl E R(n-m)x(n-m) while 0'/ ,00 , n , 2 1700'
Aoo ' f}n, An, f}2 and A2 are all the same as in Proposition 3.3. Then, for any 7], floo ' fln
and fl2 , we have (3.45), or to be more precise,

(3.57)
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Construction OfYOOl YD and Y2

Now, we consider the second step: we construct affine functions Yoo(Too ), YD(TD) and

Y2(n) satisfying (3.43), or to be more precise,

(3.58)

for the affine functions Xoo (1], ,000)' XD(1], 'oD) and X2(1], ,02) given by (3.56). Regarding

this construction, we simply introduce a new variable T := Too = TD = T2 and define

(3.59)

We then have the following result.

Proposition 3.5 For the affine functions Xoo (1], ,000)' XD(1], 'oD) and X2(1], ,02) given by

(3.56) and Yoo(T), YD(T) and Y2(T) given by (3.59), we have (3.58) for any 1], ,000' 'oD, ,02
and T. In particular, we have

Remark 3.3 It will turn out in the following subsection that the H2 cost will be minimized

over a set of gains K of the form

(3.61)

in our new approach, because of the form (3.60). In this sense, the scalar variable 1] may

look redundant in the above construction, but this is not the case. The variable 1], together

with ,000' 'oD and ,02, corresponds to the scaling of Xoo , XD and X2 in (3.37)-(3.39) (see

(3.65)). It is known that the scaling of the Lyapunov variables is an important factor to get

around the conservatism [25].

3.3.2 New LMI Characterization with the Affine Representation

Approach

Now, we are ready to give our main result in this section. Substituting the affine functions

Xoo (1], ,000)' XD(1], 'oD) and X2(1], ,02) given in (3.56) and Yoo(T), YD(T) and Y2(T) given

in (3.59) into (3.37)-(3.39), and recalling (3.60), we arrive at the LMI's (3.62)-(3.64) given

below, where (3.62) reflects the Hoo constraint, (3.63) the D-stability constraint and (3.64)

the H 2 specification.

(3.62a)
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[

He[A(1]800 + A~J200Aoo) + Bryooo] Boo

BT -I00

Coo (1]800 + A~J200Aoo) + Dzooryooo Doo

(1]800 + A~J200Aoo)C~ + Y~orTD;oo ]
DT < 0

00 ,

-'Y~I

1]8n + AbstnAn > 0

M0 (1]8n + AbstnAn) + He [N 0 {A(1]8n + AbstnAn) + BrYno}] < 0

(3.62b)

(3.63a)

(3.63b)

(3.64a)

(3.64b)

(3.64c)

Here, the variables are 1], stoo , stn, st2, r, Z2 and 'Y~, and the constant matrices 8 00 , Aoo ,

en, An, e2 and A2 are defined through (3.46), (3.47), (3.51) and (3.54) with K in (3.51)

set to Ko given by (3.44). The optimal feedback gain K is given by (3.61).

With these LMI characterizations, the multiobjective state-feedback H2/ Hoo/D-stability

problem can be cast into a convex optimization problem as is described formally in the

following.

Affine Representation Approach with Non-common Lyapunov Variables

Minimize 'Y~ subject to the LMI's (3.62)-(3.64). Here, the variables are 1], stoo , stn, st2 ,

r, Z2 and 'Y~

Remark 3.4 In the optimizatiqn subject to the LMl's (3.62)-(3.64), the variables stoo ,

stn and st2 can take distinct values and hence the Lyapunov variables Xoo , Xn and X2

given by

are not the same, in general. The implication is that the affine representation approach

allows non-common Lyapunov variables.
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It should be noted that the LMI's described by (3.62)-(3.64) that allow non-common

Lyapunov variables have been obtained under Assumption 3.1. Hence, before solving these

LMI's, we have to determine the constant matrices Xooo , Xno, X 20 , Yooo , Yno, Y20 (and Ko)

satisfying (3.44). Regarding this problem, as in the preceding section, we propose to choose

these matrices as

(3.66)

where X and Yare the common variables (3.41) obtained by the conventional approach [6],

K c is given by K c = YX-I, and Q2 is obtained by minimizing I~ in (3.8) for the gain K c.

We assume that K c is of full row rank; if this is not the case, we can add a small perturbation

to the common variable Y so that Assumption 3.1 is satisfied.

An advantage of the choice (3.66) is now shown. Because the inequalities (3.37)-(3.39)

are feasible for 12 = 12c with

(3.67)

it can be claimed that the LMI's (3.62)-(3.64) are feasible for 12 = 12c if we set the variables

as follows.

(3.68)

Here, E oo , 5 001 , 5 0012 , 5n, 5nl' 5n12, 52, 5 2,1 and 5 2,12 are defined with the matrices

X ooo , Xno, X 20 and the singular value decompositions (3.46) by

V; X- 1v:T =' [500150012] Vi X- 1V;T =' [EnI5nI2] v;x- 1'v;T =' [ __5
T

2,1
5__2,12] (3.69)00 000 00 . =T = ,n no n . =T = ,2 20 2 . ~ ..

~0012 ~oo ~n12 ~n ~2,12 ~2

To see the above claim, it is enough to note that with the special choice of the variables

given in (3.68), each of the affine representations in (3.65) and Yoo = ryooo, Yn = rYno,

12 = ry20 reduces to

X oo = Xooo = X, Xn = Xno = X, X2 = X 20 = Q2,

Yoo = Yooo = Y, Yn = Yno = Y, Y2 = Y20 = K cQ2

Thus, we are led to the following result.

(3.70)

Theorem 3.2 If we take Xooo , Xno, X 20 , Yooo , Yno, Y20 given by (3.66), then the LMI's

(3.62)-(3.64) are feasible. Moreover, suppose we minimize I~ subject to the LMI's (3.62)

(3.64) and denote the optimal value of I~ by :Y~n' Then, we have
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(3.71)

where '"Y2c is the actual cost achieved the feedback gain K c. Namely, we can obtain a feedback

gain that achieves better (no worse) performance than the one based on a common Lyapunov

variable.

If we determine the matrices Xooo, X DO , X 20 , Yooo, YDO, Y20 by (3.66), the explicit

description of the affine representation approach will be as follows.

Step O. Minimize '"Y~ subject to (3.2)-(3.4) with a common Lyapunov variable X and a

variable Y given by (3.5) and (3.6), respectively. Denote the optimal value of '"Y~ by

i~c and the resulting feedback gain by K c := YX-I.

Step 1. Minimize '"Y~ subject to (3.8). Denote the optimal value of '"Y~ by '"Y~c'

Step 2. Define the constant matrices Boo, Aoo , BD, AD, B2 and A2 through (3.66), (3.46),
(3.47), (3.51) and (3.54), with K in (3.51) replaced by K c .

Step 3. Minimize I'~ subject to the LMI's (3.62)-(3.64) to get the feedback gain K given

by (3.61).

In Step 3, let us denote the resulting optimal value by i?n' Furthermore, minimize '"Y?

subject to (3.8) with K c replaced by K to get the exact value of the H 2 cost achieved by the

feedback gain K designed in Step 3, and denote the resulting optimal value by '"Y~n' Then,

it is clear that

(3.72)

This implies that we can arrive at the H2 cost '"Y2n, which is better (no worse) than '"Y2c

achieved by the initial gain K c .

Now, the affine representation approach has been given explicitly. This approach leads to

the LMI's (3.62)-(3.64), that are quite different form those (3.25)-(3.27) with the subspace

approach. Moreover, it follows that the affine representation approach has a different prop

erty from the subspace approach. Before closing this subsection, let us give a few remarks

on the comparison between them as well as the one proposed by Shimomura and Fujii [38]

[40], especially from the viewpoint of the structure of the feedback gains obtained by these

approaches. In order to implement each of the approaches, we need K o, the initial feedback

gain. As stated before, the feedback gain K obtained by the affine representation approach

is always of the form (3.61), which means that the resulting gain K is dependent on the

initial gain K o in a particular form. On the other hand, if we take the subspace approach or

the one given in [38]-[40], the initial gain K o does not restrict the resulting gain K in such a
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structural way. This is because, in these approaches, the feedback gain K is chosen directly

as an LMI variable.

Because of this fact, it seems that iterative applications of the affine representation ap

proach do not work effectively, even though such an"iterative algorithm can readily be derived

in principle. However, by combining the affine representation approach and the subspace

approach, we obtain an effective iterative algorithm as described in the following subsection.

3.3.3 Combined Iterative Algorithm

We have proposed two approaches to the multiobjective state-feedback H2 / Hoo/D-stability

problem: the subspace approach and the affine representation approach. We can see that

each approach obtains a distinct set of LMI characterizations by freezing some different por

tion of the Lyapunov variables. Thus, applying these approaches by turns, it is expected

that we can use the freedom of the frozen potion complementarily. This idea leads directly

to the following combined iterative algorithm.

Combined Iterative Algorithm

Step O. Minimize 'Y? subject to (3.2)-(3.4) with a common Lyapunov variable X and a

variable Y given by (3.5) and (3.6), respectively. Denote the resulting feedback gain

by K(i) := Y X-I, where we set i = O. For the subsequent design steps, define X oo := X

andXD :=X.

Step 1. Minimize 'Y? subject to (3.8) with K c replaced by K(i). Denote the optimal value of

'Y? by ("(~i))2, and check the stop criterion with respect to 'Y~i). In this step, the variable

Q2 is updated, which will be used in the following Step 2.

Step 2. Define Uoo , UD and U2 by

(3.73)

where X oo , XD and Q2 are those obtained in the previous design steps. Set i := i + 1

and minimize 'Y? subject to the LMI's (3.25)-(3.27) to get the feedback gain K(i). In

this step, the variables Poo and PD given by (3.22) and (3.23) are updated, which will

be used in Step 4.

Step 3. Minimize 'Y? subject to (3.8) with K c replaced by K(i). Denote the optimal value of

'Y? by ('Y~i))2, and check the stop criterion with respect to 'Y~i). In this step, the variable

Q2 is updated, which will be used in the following Step 4.
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Step 4. Define Xooo, Xoo, X 20 , Yooo , Yoo and Y20 by

X ooO = p;;/,
Y '= K(i)p-l

000 • 00 ,

XDO = pi/, X 20 = Q2,

YDO:= K(i)pi/, Y20 := K(i)Q2
(3.74)

where P00' PD and Q2 are those obtained in the previous design steps. With these

constant matrices, further define the constant matrices 8 00 , Aoo , 81), AD, 8 2 and

A2 through (3.46), (3.47), (3.51) and (3.54), with K in (3.51) replaced by K(i). Set

i := i + 1 and minimize l~ subject to the LMI's (3.62)-(3.64) to get the feedback gain

K(i). Then, go to Step 1. In this step, the variables Xoo and XD given by (3.65) are

updated, which will be used in Step 2.

In this algorithm, Step 0 corresponds to the conventional approach with a common Lya

punov variable to obtain an initial feedback gain K(O). Step 2 corresponds to the subspace

approach provided in the preceding section, and Step 4 corresponds to the affine represen

tation approach. Steps 1 and 3 calculate the actual cost achieved by the feedback gain K(i)

resulting from each design step, and check the stop criterion with respect to 'Y~i). In this

combined algorithm, we can always assure the feasibility of the LMI's in Steps 2 and 4. It

is also assured that the resulting H2 cost 'Y~i) is monotonically nonincreasing throughout the

iterative algorithm.

Remark 3.5 In Step 2 of the combined iterative algorithm, the matrices Uoo , UD and U2

for the subspace approach are updated with the matrices obtained by the affine representa

tion approach in Step 4. This clearly shows the difference between the combined iterative

algorithm and the iterative algorithm based on the subspace approach given in Subsec

tion 3.2.3. It is possible for the combined iterative algorithm to include such procedure of

minimizing moo and mo under the constraints (3.32) and (3.33) as in the algorithm based

on the subspace approach, although these procedures are not employed for simplicity.

With this combined iterative algorithm, it is expected that we can get around the con

servatism in the conventional approach. For the same purpose but in a different fashion,

Shimomura and Fujii also proposed an iterative algorithm [38]-[40]. The effectiveness of

these iterative algorithms are illustrated and compared through numerical examples in Sec

tion 3.5.
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3.4 Robust Multiobjective State-Feedback Controller

Design for Real Polytopic Uncertainty

In the preceding sections, we have proposed two approaches to the multiobjective state

feedback H2/ Hoo/D-stability problem. These approaches can be readily extended to the

problem for the plant with polytopic uncertainty [4]. In this section, we deal with a robust

multiobjective state-feedback H2/ Hoo/D-stability controller design problem for real poly

topic uncertainty.

Let us consider the plant described by (3.1) again. Supposing that there is no uncertainty,

it is enough to represent the plant by just one model {A, Boo, B2, B, Coo, C2,Doo , Dzoo , Dz2 }.
However, if the parameters of the plant have uncertainties, we cannot determine such a single

model and need to represent the plant with some set. It is sometimes useful to represent the

plant as a polytope [4] described by

roo
-

-

Z2 -

where

A ('l/J)x

Coo ('l/J)x

C2('l/J)x

+ Boo('l/J)woo + B2('l/J)W2 +
+ Doo('l/J)woo +

+

B('l/J)u

Dzoo('l/J)u

D z2 ('l/J)u

(3.75)

[

A('l/J) Boo('l/J) B2('l/J) B('l/J)] p

Coo('l/J) Doo('l/J) 0 Dzoo('l/J) = ~ 'l/JiMi,
C2 ('l/J) 0 0 Dz2 ('l/J) -

[ :':i ~:: B;i D~:i] =: Mi (i = 1"" ,p),

C2i 0 0 DZ2i

'l/J = ('l/Jl'''','l/JP)T, 'l/J E If/:= {'l/JI 'l/Ji ~ 0 (i = 1,· .. ,p), t,'l/Ji = 1}

(3.76)

We assume that the uncertain parameter 'l/J is time-invariant, and that the matrices {Ai' Booi ,

B2i , Bi,Cooi , C2i ,D ooi ,D zooi , Dz2i } in Mi (i = 1,'" ,p) are given matrices.

Consider the multiobjective state-feedback H2/ Hoo/D-stability controller design problem

for the plant (3.75) with the polytopic uncertainty (3.76). The problem is to find a state

feedback gain K minimizing the worst case H2 cost defined by

(3.77)

subject to the Hoo and D-stability constraints for all possible values of'l/J E If/.

The conventional approach [6] to this problem is such that they minimize Ii subject to
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[

He[~XT+ BiY] B._OOi (CooiX +:zooiYf ]
Booi I Dooi < 0

CooiX + DzooiY Dooi -'Y~1

M0X+He[N0(AiX+BiY)] <0 (i=l,···,p)

[
He[~X + BiY] (C2i X + Dz2iYf ] < 0

C2X + Dz2iY . -'Y~1

trace(Z2i) < 1 (i = 1,,'" p)

(i=l,.··,p) (3.78)

(3.79)

(3.80a)

(3.80b)

(3.80c)

where the variables are X, Y, Z2i (i = 1"" ,p) and 'Y~' Once the variables X and Y
have been found, the state-feedback gain can be determined by K c = y X-I. Note that if

(3.78)-(3.80) are satisfied for 'Y2 = 12c, we readily obtain

[

He[(A(1/J) + B(1/J)Kc)X] Boo (1/J) X(Coo (1/J) + Dzoo (1/J)Kc)T ]
Boo (1/J)T -I Doo (1/Jf < 0

(Coo (1/J) + Dzoo (1/J)Kc)X Doo (1/J) -'Y~1

M 0 X + He[N 0 {(A(1/J) + B(1/J)Kc)X}] < 0

[
He[(A(1/J) + B(1/J)Kc)X] X(C2(1/J) + Dz2 (1/J)Kcf ]

-2 < 0
(C2(1/J) + Dz2 (1/J)Kc)X -'Y2J

[
Z2(1/J) B2(1/J)T] > 0
B2(1/J) X

(3.81)

(3.82)

(3.83a)

(3.83b)

(3.83c)

p

regardless of 1/J, where Z2(1/J) = L1/JiZ2i' Consequently, we can assure the achievement of
i=I

'Y2,w.c. :::; 12c under the Hoo and D-stability constraints.

Remark 3.6 As in the uncertainty free case, the value 12c is an upper bound for 'Y2,w.c.

achieved by K c . A better upper bound can be sought by minimizing 'Y~ subject to

[
He[(Ai + BiKc)X2] X 2(C2i + DZ2iKcf] < 0

(C2i + DZ2iKc)X2 -'Yi1
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[
Z2i B~] > 0
B2i X 2

trace(Z2i) < 1 (i = 1"" ,p)

(3.84b)

(3.84c)

where the variables are X 2 and Z2i (i = 1"" ,p). If we denote the optimal value of I~

obtained by this procedure by ,ie, we have

< <12,w.c. _ 12c _ 12c (3.85)

In contrast to the uncertainty free case, it should be noted that the value 12c is still an

upper bound for 12,w.c. achieved by K c . In fact, the calculation of 12,w.c. is known to be quite

hard under the polytopic uncertainty setting. Once the feedback gain Kc is determined, the

problem to calculate the worst case H2 cost 12,w.c. amounts to an analysis problem, and this

problem will be addressed as a robust H 2 performance analysis problem for real polytopic

uncertainty [35] in Chapter 4.

Although the conventional approach given above offers a tractable means for the problem,

this approach is quite conservative, and the conservatism arises from the following two causes.

1. A common Lyapunov variable X is forced for all design specifications, as in the uncer

tainty free case.

2. A fixed Lyapunov variable X is employed to test performance over the whole uncertainty

domain, for each of the design specifications (see (3.81)-(3.83)). In dealing with time

invariant uncertainties, however, it is well known that the use of a fixed Lyapunov

variable tends to be very conservative [16]. Instead, parameter-dependent Lyapunov

variables are useful to get around this sort of conservatism, and the methodology for

parameter-dependent Lyapunov variables has been studied extensively since the late

1990's [1], [2], [12], [16], [18], [20], [27], [29]-[32] ,[34], [35].

It is clear that the two approaches presented in the preceding sections work fine to get

around the conservatism arising from the first cause stated above, because we can employ

non-common Lyapunov variables for different design specifications. Note however that to

apply the subspace approach under the polytopic setting, we need an additional assumption

that the coefficient matrix B of the plant has no uncertainty. In the application of the affine

representation approach, we need no additional assumption.

To circumvent the conservatism arising from the second cause, neither of the two ap

proaches is helpful. Overcoming this problem will be deferred to Chapter 4, where we pro

vide a new approach to the multiobjective controller design problem for real polytopic uncer

tainty that allows not merely non-common Lyapunov variables but non-common parameter

dependent Lyapunov variables for multiple design specifications.
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3.5 Illustrative Examples

In this section, we give some numerical examples to illustrate our approaches. The goal

of this section is described in the following.

1. We show that the application of the new approaches with non-common Lyapunov

variables results in significant improvements over the converitional approach with a

common Lyapunov variable.

2. We compare the effectiveness of the new approaches and the one proposed by Shima

mura and Fujii [38]-[40] in a single step of the iteration.

3. We examine and compare the effectiveness of the iterative algorithms resulting from

the new approaches and the one proposed by Shimomura and Fujii [38]-[40] in their

limiting performance.

For the ease of description, we name each of the approaches and the iterative algorithms

as follows.

Table 3.1: Name for the approaches

Conventional Approach The conventional approach with a common Lyapunov variable.

Approach I The subspace approach presented in Subsection 3.2.2.

Approach II
The affine representation approach presented in Subsection

3.3.2.

Approach III
The approach proposed by Shimomura and Fujii [38]-[40] with

the iteration carried out only once.

Table 3.2: Name for the iterative algorithms

Conventional Algorithm
The conventional iterative algorithm presented in Subsection

3.2.3.

Iterative Algorithm I
The iterative algorithm based on the subspace approach,

presented in Subsection 3.2.3.

Iterative Algorithm II
The combined iterative algorithm, presented in Subsection

3.3.3.

Iterative Algorithm III
The iterative algorithm proposed by Shimomura and Fujii

[38]-[40].
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Remark 3.7 Concerning the D-stability constraints, we have used in Sections 3.2 and 3.3

a single Lyapunov variable Xn irrespective of the regions, for notational simplicity. In the

following numerical examples, we employ non-common Lyapunov variables such as X7-l, Xc

and Xs for each of the regions H(a), C(e, r) ana S(k) to get around the conservatism as

much as possible. This modification is straightforward and hence we suppress the detailed

descriptions for it.

Remark 3.8 We have used such notation as K c that denotes the feedback gain obtained

by Conventional Approach. In the following, we also use such notation as K r, that denotes

the feedback gain obtained by Approach 1. Similarly, Ki5
) denotes the feedback gain obtained

by Iterative Algorithm I with five iterations. Further, Ki denotes the feedback gain resulting

from Iterative Algorithm I in the limit. Similarly for K~30), Kn, Kin and so on.

Remark 3.9 On the implementation of the iterative algorithms, we decided to set the

stop criterion by b~i) - "Y~i+l) I < c, where "Y~i) is the H2 cost after the ith iteration. We arrive

at the value c = 10-4 by trial and errors, aiming at a reasonable compromise between the

resulting H2 cost and the computation time. The value c = 10-4 will be sufficiently small to

evaluate the limiting performance of each algorithm for the problems treated in this section.

In the following, all LMI-related computations were carried out with the LM! Control

Toolbox [15], on PENTIUM-III 933MHz.

3.5.1 Multiobjective State-Feedback Controller Design Problems

First, we consider the multiobjective state-feedback controller design problems for sys-

tems without uncertainty.

Problem 1 (H2/D-stability Synthesis)

Consider the LTI plant described by

0 0 1 0 0 0

0 0 0 1 0 0
x - x + w + u,

-k k -f f 1 1

k -k f -f 0 0

[ 0 ] x,
(3.86)

Zoo 0 1 0

[
1 0 0 0

] x [~Z2 - 0 1 0 0 + u

0 0 0 0
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where k = 0.245 and f = 0.0219 [3]. The problem is to find a state-feedback gain K

minimizing IITz2W l1 2 subject to the D-stability constraint (}(A) c n{H(0.5),S(tan(37rj8))}

(see Figs. 3.1 and 3.2).

Applying to Problem 1 the (non-iterative) approaches listed in Table 3.1, we get the H2

costs shown in Table 3.3. More specifically, this table shows the actual H2 cost resulting from

each approach as well as the computation time~ We can see that Approaches I-III achieve

better H2 costs than Conventional Approach. In particular, Approach I successfully achieves

the best performance with less computation time than Approaches II and III. Approach III

takes much more computation time than the other approaches, and one of the possible

reasons is that this approach deals with the LMI's enlarged by some algebraic manipulations

to allow non-cornmon Lyapunov variables [39],[40].

Table 3.3: The resulting H2 costs by the approaches listed in Table 3.1

Approach (Corresponding gain) H2 cost CPU time (sec)

Conventional Approach (Kc) 1.5924 0.15

Approach I (K1) 1.4848 0.39

Approach II (Kn) 1.5046 0.43

Approach III (Km) 1.5478 0.98

The feedback gains resulting from these approaches are given below for comparison.

K c = [ -4.5752 -0.9647 -3.0720 -13.8032 ] (3.87)

K1 = [ -3.3489 -0.3486 -2.4225 -9.4676 ] (3.88)

Kn = [ -3.3765 -0.7120 -2.2671 -10.1868 ] (3.89)

Km = [ -4.0642 -0.6690 -2.8955 -11.7070 ] (3.90)

For reference, the H2 optimal feedback gain (without taking account of the D-stability

constraint) is given in the following.

K H2 = [-1.3271 -0.0871 -1.6334 -1.9464] (3.91)

This feedback gain achieves IITz2W I12 = 1.2780.

Because of the nature of Approach II, the feedback gain Kn depends on Kc in the following

form.
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K n = 0.7380Ke (3.92)

On the other hand, the feedback gains K1 and KIll do not depend on K e in such a structural

way. As is typically shown in (3.92), it turns out that Approaches I-III arrive at lower gains

than that of Conventional Approach. From another point of view, it can be said that the

feedback gains (3.88)-(3.90) successfully come close to the optimal gain K H2 given by (3.91)

so that they attain better H 2 costs than K e .

It is expected that Approaches I-III achieves better performance because of their less

conservative nature. Indeed, the less conservative nature of Approaches I-III can be seen

in the closed-loop pole locations. The closed-loop pole locations under the feedback gains

KH2 , K e and K 1 are shown in Fig. 3.1, where we suppressed those under K n and KIll for

simplicity.

x

2.0

1.0

lIE 0

0.0 ._-_ __ --- ..-.. --- .. ---- - - - .
lIE 0

x
-1.0

lIE 0

-2.0

-1.0 -0.5 0.0

Figure 3.1: Pole locations under KH2 , K e and K1

The above figure shows that the feedback gain K H2 does not satisfy the D-stability constraint,

while the feedback gains K e and K 1 do satisfy the constraint as required. However, the figure

suggests that there is a big margin left for the D-stability constraint under Ke. In other

words, Conventional Approach yields an excessively high feedback gain so that it achieves

the D-stability constraint in a conservative fashion. On the other hand, the closed-loop

pole locations under K 1 are close to the boundary and the feedback gain K 1 indeed achieves

considerably better H 2 cost than K e . These facts lead us to the conclusion that Conventional

Approach with a common Lyapunov variable is conservative, and the conservatism has been

circumvented by Approach I with the use of non-common Lyapunov variables. Note that

similar observations apply also to Approaches II and III.
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Next, we investigated the effectiveness of the iterative algorithms. Applying to Problem 1

the iterative algorithms listed in Table 3.2 under the stop criterion b~i) - ')'~i+l) I < 10-4 ,

we get the H2 costs shown in Table 3.4, where we also show the number of iterations and

computation time for each algorithm.

Table 3.4: The resulting H2 costs in the limit by the iterative algorithms listed in Table 3.2

(N: number of iterations)

Algorithm (Corresponding gain) H2 cost N CPU time (sec)

Conventional Algorithm (K;) 1.3898 1458 286.10

Iterative Algorithm I (Ki) 1.3887 31 12.78

Iterative Algorithm II (KiI) 1.3004 26 7.31

Iterative Algorithm III (Ktn) 1.3025 16 14.25

The above table shows that Iterative Algorithms I-III all achieve better performance than

Conventional Algorithm with much less computation time. In particular, with Iterative Al

gorithms II or III, the H2 cost is considerably improved. In this problem, Iterative Algorithm

II successfully achieves the best performance with the least computational effort, which leads

to the state-feedback gain

K;I = KI~26) = [ -1.6287 0.2147 -1.9579 -2.9135] (3.93)

The closed-loop pole locations under Kil are shown in Fig. 3.2 to see the less conservative

nature of Iterative Algorithm II. This figure shows that the feedback gain KtI achieves the

D-stability constraint without any margin.

2.0 0 KiI

1.0

0.0 ----.-." --- - -.- --- -_ __ - __ __ _- .

-1.0

-2.0

-1.0 -0.5 0.0

Figure 3.2: Pole locations under Kil
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Although Iterative Algorithm II is such that it uses the feedback gain K c given by (3.87)

as an initial feedback gain, the resulting feedback gain KiI given by (3.93) is quite different

from K c . It is also a quite interesting fact that the second element of the feedback gain has

changed its sign during the iterations from K c to KiI in the Iterative Algorithm II.

Here, let us observe the Hoo costs corresponding to the feedback gains resulting from

these iterative algorithms. We take wand Zoo for the input and output, respectively, to

measure the Hoo costs (see the state space realization (3.86) of the plant). The following

Table 3.5 shows the results.

Table 3.5: The resulting H oo costs for the iterative algorithms

Algorithm (Corresponding gain) Hoo cost (1ITzoowll oo )

Conventional Algorithm (K;) 0.3891

Iterative Algorithm I (Ki) 0.5647

Iterative Algorithm II (KiI) 0.7091

Iterative Algorithm III (Kin) 0.7215

It is clear from the above table that none of the feedback gains achieve the H oo costs less

than 0.3. With this in mind, we further include the additional constraint 1ITzoow I100 < 0.3

to Problem 1. Namely, as the next problem, we consider the following multiobjective state

feedback H2 / Hoo/D-stability problem.

Problem 2 (H2/ Hoo/D-stability Synthesis)

Consider again the LTI plant described by (3.86) where k = 0.245 and f = 0.0219. The

problem is to find a state-feedback gain K minimizing IITz2W l1 2 subject to the H oo constraint

IITzoow ll oo < 0.3 and the D-stability constraint a(A) en {1i(0.5), S(tan(37r/8))}.

As in the preceding problem, we first show the effectiveness of the (non-iterative) ap

proaches listed in Table 3.1, and we second demonstrate that the performance is further

improved by the application of the iterative algorithms listed in Table 3.2.

Applying the non-iterative approaches to Problem 2, we get the H2 costs shown in Ta

ble 3.6, where we also show computation time for each approach. We can see from this table

that Approaches I, II and III achieve better H 2 costs than Conventional Approach, and that

Approach I achieves the best performance with less computation time than Approaches II

and III. It turns out that the H 2 costs shown here are naturally worse than those in Table 3.3

because of the additional Hoo constraint.
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Table 3.6: The resulting H 2 costs by the approaches listed in Table 3.1

Approach (Corresponding gain) H2 cost CPU time (sec)

Conventional Approach (Kc ) 1.7111 0.19

Approach I (Kr) 1.6180 0.51

Approach II (Kn) 1.6393 0.52

Approach III (Km) 1.6696 1.25

The feedback gains obtained by these approaches are given below for comparison.

Kc = [ -5.9037 -4.9351 -3.5089 -21.8058 ] (3.94)

Kr = [ -4.7255 -2.5468 -2.8125 -15.7032 ] (3.95)

Kn = [ -4.7141 -3.9407 -2.8019 -17.4120 ] = 0.7985Kc (3.96)

Km = [ -5.3411 -4.0142 -3.3389 -18.9957 ] (3.97)

Similarly to the preceding problem, Approaches I-III yield lower gains than Conventional

Approach. For reference, the H2 optimal feedback gain (without any care for the Hoo and

the D-stability constraints) is again given in the following.

K H2 = [-1.3271 -0.0871 -1.6334 -1.9464] (3.98)

Recall that this H2 optimal feedback gain achieves IITZ2W 112 = 1.2780.

One of the possible reasons why Approaches I-III arrive at better performance is that

they successfully circumvent the conservatism of Conventional Approach. Indeed, we can see

the less conservative nature of Approaches I-III than Conventional Approach via the Hoo

costs and the closed-loop pole locations under the resulting feedback gains (3.94)-(3.97). To

see this, we show the Hoo costs achieved by these gains in Table 3.7. The closed-loop pole

locations under KH2 , Kc and Kr are shown in Fig. 3.3, where those under Kn and Km are

omitted for simplicity.

Table 3.7: The resulting Hoo costs under the constraint jlTzoow 1100 < 0.3

Approach (Corresponding gain) Hoo cost (1ITzoowlloo )

Conventional Approach (Kc ) 0.0923

Approach I (Kr) 0.1375

Approach II (Kn) 0.1155

Approach III (KIll) 0.1069

H 2 optimal (KH2 ) 0.9702
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Figure 3.3: Pole locations under I\H2' K c and K 1

Table 3.7 and Fig. 3.3 show that the feedback gain K H2 satisfies neither the Hoc con

straint nor the D-stability constraint, while the feedback gains K c and K 1 do satisfy both of

the constraints as required. In particular, we can see that the feedback gain K 1 satisfies both

of the constraints in a less conservative fashion: the feedback gain K 1 leaves less margins for

the constraints than K c. Noting that the feedback gain K 1 indeed achieves better perfor

mance than K c, we can conclude that Conventional Approach is conservative, and Approach

I successfully reduces the conservatism with the use of non-common Lyapunov variables.

Similar comments also apply to Approaches II and III.

Next, we investigated how the H2 cost is further improved by the iterative algorithms

listed in Table 3.2. Applying them to Problem 2 under the stop criterion h/~i) _1'~i+l)I < 10-4 ,

we get the H2 costs shown in Table 3.8, where we also show the number of iterations and

computation time for each algorithm.

Table 3.8: The resulting H 2 costs in the limit by the iterative algorithms listed in Table 3.2
(N: number of iterations)

Algorithm (Corresponding gain) H2 cost N CPU time (sec)

Conventional Algorithm (K;) 1.4151 873 233.14

Iterative Algorithm I (Ki) 1.4152 42 23.36

Iterative Algorithm II (KiU 1.4138 16 5.53

Iterative Algorithm III (Kin) 1.3985 14 14.75

The above table shows that all of the algorithms achieve the H2 costs nearly 1.4, which is

significant improvement over the results of the (non-iterative) approaches where Approach
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I achieved the best cost 1.6180. This suggests that these algorithms have worked better to

reduce. the conservatism. Indeed, the less conservative nature of them can be seen from the

way they satisfy the Hoo and D-stability constraints. For example, Iterative Algorithm II

arrives at the feedback gain

K;I = Kg6
) = [ -2.5713 -0.8917 -2.1339 -6.9047] (3.99)

and this feedback gain. achieves Hoo cost 0.2907 and places the closed-loop poles as shown

in Fig. 3.4. Comparing these results with those in Table 3.7 or Fig. 3.3, we can see that the

feedback gain KiI satisfies both constraints in a less conservative fashion.

2.0

1.0 o

o

o

o

-1.0

0.0 ·········································f············ >K

-2.0

-1.0 -0.5 0.0

Figure 3.4: Pole locations under KiI

In this example, as shown in Table 3.8, Iterative Algorithm III arrives at the best perfor

mance. Although Conventional Algorithm achieves almost the same performance as Iterative

Algorithms I and II, it needs much more computation time than the latter two algorithms.

This clearly suggests the advantage of Iterative Algorithms I and II over Conventional Al

gorithm.

3.5.2 Robust Multiobjective State-Feedback Controller Design

Problem for Real Polytopic Uncertainty

In the preceding subsections, we considered multiobjective state-feedback controller de

sign problems for a plant without uncertainty, and demonstrated the effectiveness of the new

approaches and the iterative algorithms. The aim of this subsection is to show that they are

also effective for the multiobjective state-feedback controller design problems under the poly

topic uncertainty setting. To this end, let us consider a simple multiobjective state-feedback
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controller design problem for real polytopic uncertainty. In dealing with the problem, it is

desirable to employ non-common Lyapunov variables for the design specifications where the

Lyapunov variables are at the same time parameter-dependent over the uncertainty domain.

However, we concentrate our attention on clarifying the advantage of the use of non-common

Lyapunov variables for the design specifications, and hence, for the whole uncertainty do

main, we evaluate each design specification with a fixed Lyapunov variable. As described in

Section 3.4, the two approaches in this chapter enable us to do so.

Problem 3 (H2/D-stability Synthesis for Real Polytopic Uncertainty)

Consider the LTI plant (3.86) where the parameters k and f have the following ranges

of uncertainties.

0.09 ~ k ~ 0.4, 0.0038 ~ f ~ 0.04 (3.100)

(3.101)

The problem is to find a state-feedback gain K minimizing the worst case H 2 cost of the

closed-loop system defined by

'Y2,w.c. :=~:r IITz2W (s)112

subject to the D-stability constraint such that the closed-loop poles for all possible values

of the parameters k and f lie in n{1i(0.15), S(tan(37r/8)n.
In order to deal with the uncertainties of the parameters k and f, we describe the plant

as a polytope with four vertices M i (i = 1, ... , 4) (see Section 3.4). In the sequel, we refer

to the model corresponding to each vertex as Modell, 2, 3 and 4, respectively.

Applying to Problem 3 the non-iterative approaches listed in Table 3.1, we get the H 2

costs shown in Table 3.9, where we also show the computation time for each approach.

Recall that the H2 costs here are obtained by forcing a fixed Lyapunov variable over the

whole uncertainty domain and hence nothing but an upper bound for the worst case H2 cost

'Y2,w.c. achieved by each approach.

Table 3.9: The resulting H2 costs by the approaches listed in Table 3.1

Approach (Corresponding gain) H 2 cost CPU time (sec)

Conventional Approach (Kc ) 2.0199 0.85

Approach I (Kr) 1.8296 1.82

Approach II (Kn) 1.9182 2.16

Approach III (KIll) 1.9856 5.63
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The above table shows that Approaches I-III achieve better performance than Conventional

Approach. In particular, Approach I achieves considerably better performance than Ap

proaches II and III with less computation time. Note that in the preceding Problems 1 and

2, Approach I also arrived at the best performance. One of the reasons why Approach I (i.e.

the subspace approach) works fine is that we can take a large subspace of the Lyapunov vari

ables in these problems because the plant of interest has four states while only one control

input (see (3.22)-(3.24)).

These approaches lead to the following feedback gains.

Kc = [-10.0449 4:5272 -5.2278 -30.1554]

K 1 = [ -6.0300 2.9961 -3.7987 -16.9341]

Kn = [ -7.8782 3.5507 -4.1002 -23.6509] = 0.7843Ke

Km = [ -9.3438 4.2518 -4.9842 -27.6284]

(3.102)

(3.103)

(3.104)

(3.105)

Although all of the Approaches I-III are such that they use K e as an initial gain, we can see

that the resulting gains K1, Kn and Km are quite different from Ke.

lt is expected that Approaches I-III successfully arrive at better performance because of

their less conservative nature. To see this, the closed-loop pole locations on each vertex under

KH2 , Ke and K1 are shown in Figs. 3.5, 3.6 and 3.7, respectively. Here, K H2 is a feedback

gain that minimizes the upper bound of the worst case H2 cost without taking account of

the D-stability constraint and achieves an upper bound 1.7584. These figures show that

KH2 slightly violates the D-stability constraint, while Ke and K1 do satisfy the D-stability

constraint as required. Specifically, Fig. 3.7 suggests the less conservative nature of Approach

I: the feedback gain K 1 achieves almost the boundary for the D-stability constraint.
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Figure 3.5: Pole locations under K H2
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Figure 3.7: Pole locations under K 1

Next, we demonstrate the effectiveness of the iterative algorithms under the polytopic

setting. Applying to Problem 3 the iterative algorithms listed in Table 3.2 under the stop

criterion h~i) - 'Y~i+l) I < 10-4, we get the H2 costs shown in Table 3.10, where we also show

the number of iterations and computation time for each algorithm.
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Table 3.10: The r~sultingH 2 costs in the limit by the iterative algorithms listed in Table 3.2

(N: number of the iterations)

Algorithm (Corresponding gain) H 2 cost N CPU time (sec)

Conventional Algorithm (K~) 1.9351 75 61.34

Iterative Algorithm I (Kj) 1.8023 9 14.09

Iterative Algorithm II (KiI) 1.8044 14 18.25

Iterative Algorithm III (Kin) 1.7986 44 216.58

As shown in the above table, Iterative Algorithms I-III achieve considerably better perfor

mance than Conventional Algorithm. For reference, Iterative Algorithm I arrives at

K; = Ki9
) = [-5.2378 2.6604 -3.8654 -13.8780] (3.106)

We can see that the above feedback gain is quite different from the initial feedback gain K c

given by (3.102).

It follows from Table 3.10 that Iterative Algorithms I and II achieve almost the same per

formance as Iterative Algorithm III with much less computation time. This clearly suggests

the effectiveness of Iterative Algorithms I and II.
In this subsection, we clarified the advantage of the use of non-common Lyapunov vari

ables in dealing with the robust multiobjective controller design problems for real poly

topic uncertainty. The new approaches indeed enabled us to employ non-common Lyapunov

variables, but the Lyapunov variables are fixed over the whole uncertainty domain. To

circumvent the conservatism arising from seeking fixed Lyapunov variables, we propose a

new approach in Chapter 4 which enables us to employ not merely non-common Lyapunov

variables but non-common parameter-dependent Lyapunov variables for multiple design spec

ifications.

3.6 Summary

In this chapter, we have proposed two approaches with non-common Lyapunov variables

to the multiobjective state-feedback controller design problem. In Section 3.2, we proposed

the subspace approach, where we introduced some additional constraints to the Lyapunov

variables. This additional constraints successfully enabled us to derive a set of LMI's that

leave the feedback gain directly as one of the LMI variables and also allow non-common

Lyapunov variables. With a suitable replacement of the parameters included in the additional

constraints, we arrived at an iterative algorithm based on the subspace approach. On the

other hand, in Section 3.3, we proposed the affine representation approach. In this approach,

54



we performed a standard procedure called change of variables and represented the resulting

variables as a set of affine functions. These affine functions are constructed in such a way that

troublesome non-convex constraints are avoided. Because of this nice property, we readily

derived a set of LMI's that allow non-common Lyapunov variables. In addition, the idea of

simply combining the subspace and the affine representation approaches led us to another

effective iterative algorithm.

The above approaches and iterative algorithms seem to be effective in reducing the con

servatism and attaining better performance as is demonstrated by numerical examples in

Section 3.5. Despite the advantages, we have to admit some deficiencies in our study

and drawbacks of our approaches. First, we gave no analytical results concerning the ef

fectiveness of our approaches: we introduced no quantitative index for the degree of the

conservatism in the conventional approach with a common Lyapunov variable, and hence

we could not give any analytical results about how much the conservatism can be circum

vented with our approaches. Second, our iterative algorithms as well as the one proposed

by Shimomura and Fujii [38]-[40] are not able to guarantee the achievement of global op

timality. Concerning the dynamic feedback control problems, some approaches [5],[21],

[37] based on the finite-dimensional Q-parametrization achieve global optimality for the

multiobjective H2 / Hoo problems, although there are inherent inflation of the size of the

LMI's and thus the order of the controller. These approaches are very effective for the dy

namic feedback control problems, but it seems difficult to deal with the static state-feedback

control problems in a parallel fashion to [5], [21], [37]. Hence, in spite of the above deficiencies

and drawbacks, our approaches will be useful indeed when we need a static state-feedback

gain.
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Chapter 4

New Dilated LMI Characterizations

for Continuous-Time Controller

Design and Robust Multiobjective

Synthesis

In the preceding chapter, we have proposed two LMI approaches with non-common Lyapunov

variables to the multiobjective state-feedback controller design problems. The effectiveness

of these approaches was demonstrated through several numerical examples. Although these

approaches as well as the one proposed by Shimomura and Fujii [38]-[40] indeed solve the

problem with non-common Lyapunov variables, they require some auxiliary steps before

being implemented. More specifically, these approaches include some parameters to be de

termined in advance, and the conventional approach with a common Lyapunov variable

seems indispensable for their reasonable and systematic setting. In this context, unfortu

nately, these approaches cannot be self-contained ones that are actually free from the use of

a common Lyapunov variable.

As we have seen in the preceding chapters, the reason why we come to employ a common

Lyapunov variable is that most matrix inequality characterizations in control theory make

use of the Lyapunov variables in such a way that they appear as products with the controller

variables [4],[43]. This leads to unnecessary restrictions on the variables for a set of LMI's:

a common Lyapunov variable has been forced for all LMI characterizations. This restriction

is the most important source of the conservatism not only in the LMI-based multiobjective

controller synthesis [6],[26],[36] but also in robust performance analysis and synthesis for real

polytopic uncertainty [4],[6].
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To overcome the difficulty, Oliveira et al. showed a new direction in the discrete-time

setting [29],[30]. They showed that the dilation of the matrix inequality characterizations

and the introduction of auxiliary variables achieve decoupling between the Lyapunov vari

ables and the controller variables and thus the technical restriction to a common Lyapunov

variable can be avoided. They have shown a constructive way to derive dilated charac

terizations that are equivalent to the original ones. The advantage of working with the

dilated characterizations lies in the fact that if we consider a set of dilated matrix in

equality characterizations, then it includes the corresponding set of the original ones as

a special case. More specifically, if one chooses the auxiliary variable the same as the

Lyapunov variable, the set of dilated characterizations reduces to the original one [29],
[30]. This property is very promising in dealing with a wide range of problems. Indeed,

they are successfully applied to multiobjective control [30] and robust control for real poly

topic uncertainty [29] to get around the conservatism in the conventional approaches.

Unfortunately, the study in [29],[30] fully relies on the features of matrix inequalities in

the discrete-time setting, and hence analogous dilated characterizations in the continuous

time setting do not follow in a parallel fashion. It follows from [29],[30] that in dealing with

synthesis problems, we have to derive dilated characterizations with a single square auxiliary

variable being involved in the products with the controller variables. This restriction can be

relaxed when we deal with analysis problems, and thus the well-known Elimination Lemma

[14],[22],[43] works fine to arrive at the dilated characterizations in both the discrete- and

continuous-time settings, with the use of several auxiliary variables [33]-[35]. However, the

restriction on the number of the auxiliary variables to address synthesis problems cannot

be handled with a simple application of the Elimination Lemma. Namely, we need another

effort as is suggested in [1], [30].
In this chapter, we propose a general approach to the dilated characterizations in the

continuous-time setting. The key idea in this approach is a particular application of the

Schur complement technique [4], which leads to a constructive way to derive dilated charac

terizations that are suitable for controller synthesis. Moreover, it is shown that a set of the

new dilated characterizations includes the corresponding set of the original ones as a special

case, via a particular choice of the auxiliary variables introduced for dilation. These are very

nice and interesting features that are to some extent analogous to the ones already obtained

in the discrete-time setting. Because of these features, it turns out that the dilated char

acterizations can be applied to robust multiobjective control for real polytopic uncertainty

in a reasonable fashion, with the use of non-common and parameter-dependent Lyapunov

variables.
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4.1 Useful Results and Relevant Studies

In this chapter, we consider the continuous-time multi-input multi-output (MIMO) linear

time-invariant (LTI) system with the state-space representation

{
X=AX+BW

(4.1)
z =Cx +Vw

where the state vector x E R n and all other vectors and matrices have appropriate di

mensions. We assume that for analysis problems, the coefficient matrices {A, B, C, V} are

given matrices while for synthesis problems, they include controller variables to be deter

mined. The following lemma is useful in characterizing a variety of control performance of

the system (4.1) and plays a crucial role in our study.

Lemma 4.1 Let a matrix A E Rnxn, scalars 81 > 0, 82 > 0, a matrix L1 of column

dimension n, and a scalar b = a-I> 0 be given. Then, the following two conditions are

equivalent.

(i) There exists a matrix X > 0 such that

AX + XAT + 81X + 82AXAT + XL1TL1X < 0 (4.2)

(ii) There exist matrices X > 0 and G such that

0 -X X 0 XL1T A

-X 0 0 -X 0 1

X 0 -811X 0 0 +He 0 G [1 -b1 b1 1 bL1T] <0 (4.3)

0 -X 0 -821X 0 0

L1X 0 0 0 -1 0

Moreover, for every solution X = X > 0 of (4.2), [ X G] = [X - a(A - aI)- I X ] is a

solution of (4.3), irrespective of81l 82 and L1. Conversely, every matrix X > 0 such that

(4.3) holds for some G also satisfies (4.2), irrespective of 81,82 and L1.

Note that (4.2) in the condition (i) can be regarded as a standard characterization for the

analysis and synthesis of continuous-time systems frequently used in the previous studies [4]'

[43], while (4.3) in the condition (ii) is a new dilated characterization of (4.2). Since X is a

Lyapunov variable in (4.2), the above lemma validates us to call X a Lyapunov variable even

in (4.3), although it does not contain such terms as AX + XAT as is desired. The matrix G

is an auxiliary variable introduced for the dilated characterization.

Using the parameters 81 , 82 and L1 in Lemma 4.1, we can represent varieties of control

performance. For example, if we simply take 81 = 82 --7 0 and L1 = 0, the inequality (4.2)

reduces to
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AX+XAT<O (4.4)

The above inequality is nothing but the Lyapunov inequality that characterizes stability of

the matrix A. On the other hand, the inequality (4.3) reduces essentially to

[_~ -;] + He {[ ~ ] G [I -bI]} < a (4.5)

(4.6)

which gives our dilated characterization of the Lyapunov inequality.

In the following, we give a proof of Lemma 4.1, in which the relation between the solutions

of (4.2) and (4.3) is clear. This nice and interesting relation is quite important in our

study, especially in dealing with multiobjective controller synthesis. The following lemma is

repeatedly used in the proof.

Lemma 4.~ (Schur complement)[4],[43] Let a matrix <p = <pT is given with a partition

[
<Pn i <P12 ] h .c 11' h d' . . 1<p =: ----T--·~·------- . Then, t e 10 owmg tree con 1tlOns are eqmva ent.
<P12 : <P22

(i) q> < 0

Proof of Lemma 4.1. First, we show that the condition (i) implies (ii). Applying the

Schur complement technique to (4.2) with the given scalar a > 0, we have

__~_~_~_~_l _. ~_~_~_~ .__. j _.g__.. _._ .. ._~ ._. ._._? _
- 2aX j (A - aI)X + X (A - aI)T i -X -AX -XLlT

-·----o---··T-----------------·--~-X--·-----------------1--~-;S~-iX---------O--------------()------ < 0

o j -XAT j 0 -821X 0

O! - LlX i 0 0 - I

Here, (A - aI) is nonsingular because A is stable by the condition (i). Hence, the above

inequality admits a congruence transformation with I EEl (A - aI)-l EEl I EEl I EEl I to get
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(4.7)

<0

o
-(A - aI)-IX L1T

o
o

-1

o
-(A - aI)-IX

-b1I x
o
o

-2aX(A - aI)-T

(A - aI)-IX + X(A - aI)-T

-X(A- aI)-T

-x - aX(A - aI)-T

-L1X(A - aI)-T

o
-x - a(A - aI)-IX

o
-b2I X

o

-2aX

-2a(A - aI)-IX

o
o
o

Defining G:= -(A - aI)-IX, we have X = -(A - aI)G, and thus we readily obtain

2aX + 2aHe[(A - aI)G]
~ ~T T

2aG - X - G (A - aI)

X +GT(A- aI)T

aX + aGT(A - aI)T

L1X + L1GT(A - aI)T

~T ~

2aG - X - (A - aI)G
.-. ·-T

-G-G

GT

-X+aGT

L1GT

aX + a(A - aI)G

-X+aG

o
-b2I X

o

X + (A- aI)G

G
-b1I X

o
o

XL1T + (A- aI)GL1T

GL1T

o
o

-1

<0

(4.8)

The above inequality can be written as follows.

2aX -X X aX XL1T

-X 0 0 -X 0

X 0 -b1IX 0 0

aX -X 0 -b2IX 0

L1X 0 0 0 -1

A-al

1

+He 0 G[2al -1 1 al L1T ] < 0

o
o

(4.9)
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Performing a congruence transformation with [~ ~] Ell I Ell I Ell I on (4.9), we arrive at

(4.3) in (ii), where G := aGo
It remains to show that the condition (ii) implies the condition (i), which is a simple task

since

1 -A 0 0 0

o 0 1 0 0

o 0 0 1 0

o 0 0 0 1

A
1

o
o
o

.1
o

-X
X

o
LlX

-X
o
o

-X
o

o
-X
X

o
LlX

XLlT

o
o
o

-1

-X X

o 0

o -b11X

-X 0

o 0

T.l

A
1

o
o
o

o XLlT

-oX 0

o 0

-b21X 0

o -1

1 000

-AT 0 0 0

o 1 0 0

o 0 1 0

o 001

(4.10)

_.~~.±_~.~~_L .~.. ~~._ .. ~~~__
X i -b11X 0 0

XAT 0 -b21X 0
,

LlX 0 0 -1

<0

Applying the Schur complement technique to the above inequality, we have (4.2) in the

condition (i). Q.E.D.

The advantage of working with the dilated characterization (4.3) instead of (4.2) is that

the Lyapunov variable X appears nowhere as a product with A. This is quite appealing in

dealing with a wide range of problems including multiobjective control, robust performance

analysis or synthesis for real polytopic uncertainty and so on, because the technical restriction

to a common Lyapunov variable (i.e., a common Lyapunov function) in the conventional

approach can be avoided. Namely, we can employ non-common and/or parameter-dependent

Lyapunov variables. Moreover, the relation between the solutions of (4.2) and (4.3) shown in

Lemma 4.1 is quite important to clarify the advantage of the dilated characterization over the

conventional one, especially in dealing with the multiobjective controller design problems.

In the following, we repeatedly refer to the relation between the solutions of (4.2) and

(4.3). For the convenience in referring to this relation, we introduce the following definition.
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Definition 4.1 We say that the dilated characterization (4.3) recovers the original one

(4.2) via G = G(X) if the matrix function G(X) is such that [ X G ] = [ X G(X) ] is a

solution of (4.3) whenever X = X > 0 is a solution of (4.2).

With this definition, the relation shown in Lemma 4.1 can be represented simply by saying

that the dilated characterization (4.3) recovers (4.2) via G = G(X) := -a(A - aI)-lX.
In the following, several properties of Lemma 4.1 are studied. First,'we give some remarks

on a possible independent proof of Lemma 4.1 with the Elimination Lemma stated below,

which is frequently used to derive dilated characterizations in the previous studies [1], [33]-

[35].

Lemma 4.3 (Elimination Lemma) [14],[22],[43] Let matrices E E RkXI, F E Rmxk and

Y = y T E R kxk be given. Then, the following two conditions are equivalent.

(i) The following two conditions hold.

EJ.Y(EJ..)T<O (k>l)

(FT)J..YFJ.. < 0 (k > m)

or EET > 0 (k::; 1),

or F T F > 0 (k::; m)
(4.11)

(ii) There exists a matrix Q E R1xm such that

Y + He [EQF] < 0 (4.12)

As is shown in the Appendix section, Section 4.7, it is possible to apply the Elimination

Lemma to show the equivalence between (4.2) and (4.3). However, we would like to stress the

indispensability of our particular proof stated above, especially in the following two points.

1. The Elimination Lemma originally moves from the condition (ii) to (i) to eliminate

the variable Q [14],[22]. Hence, the Elimination Lemma itself gives no constructive

way to derive the dilated characterization (4.12) from the original condition (4.11). To

see this, note that the original conditions are rarely given in such a form as in (4.11)

with the matrices E and F given explicitly, and in general, it is hard to find out these

matrices such that the original conditions are equivalent to the conditions in (4.11) (see

the proof of Lemma 4.1 with the Elimination Lemma given in the Appendix section).

To overcome the difficulty, we certainly need another effort, as is also suggested in [1],

[30],[33].

2. We have shown a nice and interesting relation between the solutions of (4.2) and

(4.3). Namely, the dilated characterization (4.3) recovers the original one (4.2) via the

particular choice of the auxiliary variable
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G = G(a,A,X) := -a(A - aI)-IX (4.13)

This relation is successfully obtained by our particular proof and does not follow di

rectly by applying the Elimination Lemma. This is because the general solution Q
to (4.12) given in [14],[22],[43] is a complicated function with respect to Y, E and F.

Although the solution G that satisfies (4.3) for a given X = X > 0 is not unique, the

above recovery property with a special choice of G is quite important in dealing with

multiobjective controller synthesis (see Section 4.3).

In this chapter, we deal with not only the multiobjective controller design problems but

also the robust performance analysis and controller synthesis problems for real polytopic

uncertainty. It turns out that because of the relation described by (4.13), our new approach

based on the dilated characterizations ensures an advantage over the conventional approach

in dealing with the multiobjective controller design problems. Unfortunately, however, the

choice (4.13) of the auxiliary variable depends on the coefficient matrix A and hence we

need another effort to ensure an advantage in dealing with the synthesis problems under the

polytopic uncertainty setting. Here, by inspection, we have

G = lim G(a,A,X) = X
a->oo

(4.14)

where the dependence on A disappears. This suggests that the dilated characterization

(4.3) recovers the original condition (4.2) via the particular choice G = G(X) := X for

sufficiently large a. Even though the relation (4.14) does not seem strong enough to validate

this observation immediately, we can indeed establish the following result.

Lemma 4.4 For every solution X = X > a of (4.2), [ X G ] = [X X ] is a solution

of (4.3) if a > amin > 0, where amin = amin(X) is characterized by the infimum of a > 0

satisfying the following two inequalities.

AX +XAT +(hX + 82AXAT +XL1TL1X

+R(X)(-8IX - XL1L1TX + 2aX)-IRT(X) < 0

Here, R(X) := AX + 8IX + XL1T L1X.

Proof. See the Appendix section of this chapter for the proof.
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Remark 4.1 In the above lemma, we have shown that the dilated characterization (4.3)
recovers (4.2) via G = G(X) := X if we take a sufficiently large a > O. If we let a -+ 00,

however, it is also seen that all admissible auxiliary variables G tend to X and hence the

dilated characterization (4.3) "reduces" to (4.2). To see this, let us consider the inequality

(4.5). Note that the feasibility of (4.5) is a necessary condition for the feasibility of (4.3).
With this in mind, let us rewrite (4.5) in the following form.

[
AG + GTAT GT - X - bAG]

G - X - bGTAT -b(G + GT) < 0
(4.17)

Applying the Schur complement technique to the above inequality, it follows that (4.5) is

equivalent to

AG + GTAT + a(GT - X)(G + GT)-I(G - X)

-He[(GT - X)(G + GTtIGTAT] +a-IAG(G + GT)-IGTAT < 0

G+GT > 0

(4.18)

The above two inequalities imply that if we let a -+ 00, G =f X is not allowed for the

feasibility of (4.5) and hence for the feasibility of (4.3). This together with Lemma 4.4

establishes the assertion.

The relations between the inequalities (4.2) and (4.3) obtained above are summarized in

the following.

• The dilated characterization (4.3) recovers the original one (4.2) via the specific choice

of the auxiliary variable G = G(X) :- -a(A - aI)-IX.

• The dilated characterization (4.3) recovers the original one (4.2) via the specific choice

of the auxiliary variable G = G(X) := X if we take sufficiently large a. If we let

a -+ 00, however, all admissible auxiliary variables G tend to X and hence the dilated

characterization (4.3) "reduces" to (4.2). Namely, we lose the advantage of working

with the dilated characterization if a is taken excessively large.

Note that the above relations are to some extent analogous to those already obtained in the

discrete-time setting [29], [30].

Here, we will give another intriguing interpretation of (4.3) in comparison with the dilated

characterizations frequently used in the previous studies [33]-[35]. With Lemma 4.1 and with

the idea of the Elimination Lemma, we readily obtain the following result.

Lemma 4.5 The following condition is also equivalent to the conditions (i) and (ii) given

in Lemma 4.1.
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(iii) There exist matrices X > 0 and Q = [ Q1 Q2 Q3 Q4 Q5 ] such that

0 -X X 0 X.dT A
-X 0 0 -X 0 I

X 0 -811X 0 0 +He 0 Q <0 (4.19)

0 -X 0 -821X 0 0

.dX 0 0 0 -1 0

Moreover, for every solution X = X> 0 of (4.2), there exists a sufficiently small e > 0 such

that [ X Q1 Q2 Q3 Q4 Q5 ] = [X X - eX 0 X 0] is a solution of (4.19), irrespective of 81 ,

82 and .d. Conversely, every matrix X > 0 such that (4.19) holds for some Qi (i = 1"",5)

also satisfies (4.2), irrespective of 81, 82 and .d.

Proof. See the Appendix section of this chapter for the proof. Q.E.D.

The dilated characterization (4.19) is nothing but a general description of the LMI's used

in [33]-[35], where robust performance analysis problems for real polytopic uncertainty are

addressed. Note that in dealing with analysis problems, the inequality (4.19) can be regarded

as an LMI with respect to X and Qi (i = 1"",5). However, for synthesis problems, the

characterization (4.19) is of little use since it employs several auxiliary variables involved in

the products with the controller variables, which prevents us from applying the change of

variables technique. In this context, the dilated characterization (4.3) can be interpreted as

a special case of (4.19) which successfully reduced the number of auxiliary variables so that

controller synthesis problems can be also addressed.

Thus, we have shown that the original characterization (4.2) allows dilated ones (4.3) and

(4.19) that are suitable for controller synthesis and performance analysis, respectively. The

advantage of these dilated characterizations will be demonstrated in the rest of this chapter.

In spite of the advantages, unfortunately, it could be said that the original characterization

(4.2) is not thoroughly comprehensive in dealing with practical design specifications. For

example, the H oo specification is shown to be the one that cannot be characterized in the

form of (4.2). However, if we confine our attention to analysis problems, we arrive at a

more comprehensive matrix inequality characterization than (4.2) that allows a dilated one.

This is enabled by the fact that, in dealing with analysis problems, there is no technical

restriction on the number of auxiliary variables and hence several difficulties in deriving

dilated characterizations are avoided. Before closing this section, we provide such a matrix

inequality characterization for the control performance of continuous-time systems.
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Lemma 4.6 Let a matrix A E Rnxn, matrix functions M : Rnxn -+ Rnxnl, N: Rnxn -+

Rnxm, matrices Ll l E Rlxl > 0 and Ll2 E Rmxm > 0 be given. Then the following two

conditions are equivalent.

(i) There exists a matrix X > 0 such that

(4.20)

(ii) There exist matrices X > 0 and Q E R nx {n(2+l)+m} such that

0 -X M(X) N(X) A
-X 0 0 0 I

Q (4.21)
MT(X) -Ll1l ® X

+He <0
0 0 0

NT(X) 0 0 Ll-l 0- 2

Moreover, for every solution X = X > 0 of (4.20), there exists a sufficiently small e > 0 such

that the pair X = X, Q = [X - eX On,nl+m] is a solution of (4.21), irrespective of M, N,
Ll l and Ll2. Conversely, every matrix X > 0 such that (4.21) holds for some Q also satisfies

(4.20), irrespective of M, N, Ll l and Ll2 .

Proof. The assertion follows immediately from the Elimination Lemma and a similar

methodology to the one given in the proof of Lemma 4.5. Q.E.D.

Remark 4.2 If the matrix functions M and N in Lemma 4.6 are affine functions, then

the inequality (4.21) can be regarded as an LMI with respect to X and Q in dealing with

analysis problems.

4.2 New Dilated Characterizations for Continuous

Time Controller Design and Performance

Analysis

In this section, we give some new dilated matrix inequality characterizations for practical

controller design and performance analysis in the continuous-time setting. These dilated

characterizations are readily obtained by the application of Lemmas 4.1, 4.5 and 4.6.
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4.2.1 New Dilated Characterizations for Stability

This subsection describes new dilated characterizations for stability. In the following

theorem, the equivalence between the conditionsJi) and (ii) is well-known [4],[43], and a

similar condition to (iv) is also derived in [33]'[34].

Theorem 4.1 (Stability) Let a matrix A E Rnxn and a scalar b = a-I> 0 be given. Then,

the following four conditions are equivalent.

(i) The matrix A is stable in the continuous-time sense.

(ii) (Lyapunov inequality) There exists a matrix X.c > 0 such that

(4.22)

(iii) There exist matrices X.c > 0 and G.c such that

(4.23)

(iv) There exist matrices X.c > 0 and F.c = [ F.cl F.c2 ] such that

(4.24)

Proof. The equivalence between the conditions (i) and (ii) is well-known. The equivalence

between the conditions (ii) and (iii) immediately follows by the application of Lemma 4.1

with 81 = 82 -+ 0, L1 = 0 and with X := X.c, G := G.c. Similarly, the equivalence

between the conditions (ii) and (iv) immediately follows by the application of Lemma 4.5

with 81 = 82 -+ 0, L1 = 0 and with X := X.c, Q := F.c. Q.E.D.

The following two corollaries describe specifically the relation between the solutions of

(4.22)-(4.24).

Corollary 4.1 For every solution X.c = X > 0 of (4.22), [X.c G.c ] = [X -a(A-aI)-1X]

is a solution of (4.23). Conversely, every matrix X.c > 0 such that (4.23) holds for some G.c

also satisfies (4.22).
Corollary 4.2 For every solution X.c = X > 0 of (4.22), there exists a sufficiently small

e > 0 such that [ X.c Fn F.c2 ] = [X X - eX ] is a solution of (4.24). Conversely, every

matrix X.c > 0 such that (4.24) holds for some F.c also satisfies (4.22).
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4.2.2 New Dilated Characterizations for D-stability

Let us consider the new dilated characterizations for the regional pole placement (D

stability) constraints. Concerning the pole placement region D, we consider the a-stability

region H(a), the circular region C(c, r) and the conic sector region S(k) given by (2.13). The

pole placement in each of the LMI regions H(a), C(c, r) and S(k) is given in order, where

in each of the theorems, the equivalence between the conditions (i) and (ii) is a well-known

result derived in [6]. In the previous studies, Peaucelle et al. investigated some tests for

robust D-stability analysis problem in [34], and arrived at similar conditions to (iv) given in

each of the theorems.

Theorem 4.2 (a-stability Region) Let a matrix A E Rnxn and a scalar b = a-I> 0 be

given. Then, the following four conditions are equivalent.

(i) The matrix A satisfies u(A) C H(a).

(ii) There exists a matrix X 1i > 0 such that

(4.25)

(iii) There exist matrices X 1i > 0 and G1i such that

(4.26)

(iv) There exist matrices X 1i > 0 and F1i = [F1i1 F1i2 F1i3 ] such that

(4.27)

Proof. The equivalence between the conditions (i) and (ii) is a well-known result [6]. The

equivalence between the conditions (ii) and (iii) immediately follows by the application of

Lemma 4.1 with 61 = 2a, 62 -+ 0, L1 = 0 and with X := X 1i , G := G1i . Similarly, the

equivalence between the conditions (ii) and (iv) immediately follows by the application of

Lemma 4.5 with 61 = 2a, 62 -+ 0, L1 = 0 and with X := X 1i , Q := F1i . Q.E.D.

Corollary 4.3 For every solution X 1i = X> 00f(4.25), [X1i G1i ] = [X -a(A-aI)- I X]

is a solution of (4.26). Conversely, every matrix X 1i > 0 such that (4.26) holds for some G1i

also satisfies (4.25).
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Corollary 4.4 For every solution X H = X > 0 of (4.25), there exists a sufficiently small

e > 0 such that [ X H FHI F H2 F H3 ] - [X X - eX 0] is a solution of (4.27). Conversely,

every matrix X H > 0 such that (4.27) holds for some FH also satisfies (4.25).

Theorem 4.3 (Circular Region) Let a matrix A E Rnxn and a scalar b = a-I> 0 be

given. Then, the following four conditions are equivalent.

(i) The matrix A satisfies a(A) C C(c, r).

(ii) There exists a matrix Xc > 0 such that

[
-rXc AXc - cXc ]

T <0
XcA - cXc -rXc

(iii) There exist matrices Xc > 0 and Gc such that

(4.28)

0 -Xc Xc 0 A

-Xc 0 0 -Xc I
Gc [ I I ]

Xc ~Xc
+He -bI bI <0 (4.29)

0 0 0

0 -Xc 0 cXc 0

where (3 := c2 - r2(> 0).

(iv) There exist matrices Xc > 0 and Fc = [ FCl FC2 FC3 FC4 ] such that

0 -Xc Xc 0 A

-Xc 0 0 -Xc I
(4.30)

~Xc
+He Fc <0

Xc 0 0 0

0 -Xc 0 cXc 0

where (3 := c2 - r2(> 0).

Proof. The equivalence between the conditions (i) and (ii) is a well-known result [6]. Since

(4.28) in the condition (ii) is equivalent to

T (3 1 T
AXc +XcA - -Xc - -AXcA < 0,

c c
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the equivalence between the conditions (ii) and (iii) immediately follows by the application

of Lemma 4.1 with 01 = -~ (> 0), 02 = -! (> 0), ,1 = 0, and with X := Xc, G := Gc.
Similarly, the equivalence between the conditions (ii) and (iv) immediately follows by the

application of Lemma 4.5 with 01 = -~, 02 = -!, ,11 = 0 and with X := Xc, Q := Fc.

Q.E.D.

Corollary 4.5 For every solution Xc = X> 0 of (4.28), [Xc Gc ]= [X -a(A-aI)- l X]

is a solution of (4.29). Conversely, every matrix Xc > 0 such that (4.29) holds for some Gc
also satisfies (4.28).

Corollary 4.6 For every solution Xc = X > 0 of (4.28), there exists a sufficiently small

e> 0 such that [Xc FC1 FC2 FC3 Fc4 ] = [X X - eX 0 X] is a solution of (4.30). Con

versely, every matrix Xc > 0 such that (4.30) holds for some Fc also satisfies (4.28).

Theorem 4.4 (Conic Sector Region) Let a matrix A E Rnxn and a scalar b = a-I > 0

be given. Then, the following four conditions are equivalent.

(i) The matrix A satisfies a(A) C S(k).

(ii) There exists a matrix X s > 0 such that

[
k(AXs + XSA

T
) AXs - XSA

T
] < 0

XSAT - AXs k(AXs + XsAT ) .

(iii) There exist matrices X s > 0 and Gs such that

(4.32)

o -kXs Xs 0

-kXs 0 0 -Xs
Xs 0 0 -kXs
o -Xs -kXs 0

+He

A 0

I 0
o I

o A

[
Gs 0] [.k1 -bk1 b1 I]
o Gs -I -b1 -bk1 k1

<0(4.33)

(iv) There exist matrices Xs > 0 and PSi (i = 1, . ",8) such that

o -kXs Xs 0

-kXs 0 0 -Xs
+He

Xs 0 0 -kXs
o -Xs -kXs 0

A 0

I 0
o I

o A
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Proof. The equivalence between the conditions (i) and (ii) is a well-known result [6].

To show the equivalence between the conditions (ii) and (iii) or (ii) and (iv), we cannot

apply Lemma 4.1 or Lemma 4.5 directly because' of the form (4.32). However, by closely

following a similar methodology to that in Lemma 4.1 or Lemma 4.5, we can show that the

conditions (ii), (iii) and (iv) are equivalent, the details of which are thoroughly described in

the Appendix section of this chapter. Q.E.D.

Because of the proof of this theorem given in the Appendix, we readily obtain the fol

lowing results.

Corollary 4.7 For every solution Xs = X > 0 of (4.32), [Xs Gs ]= [X -a(A-aI)-1X]

is a solution of (4.33). Conversely, every matrix X s > 0 such that (4.33) holds for some Gs
also satisfies (4.32).

Corollary 4.8 For every solution X s = X > 0 of (4.32), there exists a sufficiently small

e > 0 such that [Xs FSI FS2 FS3 FS4 FS5 FS6 FS7 FS8 ] = [X kX - eX 0 X - X 0

-eX kX] is a solution of (4.34). Conversely, every matrix X s > 0 such that (4.34) holds

for some FSi (i = 1" ",8) also satisfies (4.32).

Remark 4.3 It should be noted that a simple application of the well-known Elimination

Lemma (i.e. Lemma 4.3) does not lead to the equivalence between the conditions (ii) and (iii)

in a straightforward fashion, because in (4.33) the solution corresponding to Q in (4.12) has

a structure of the form Gs EB Gs . Since the condition (i) of Theorem 4.4 is equivalent to the

stability condition of a complex matrix, it is expected that an extension of the Elimination

Lemma to complex-valued matrices [43] might diminish the difficulty. However, it seems

that a possible proof in this direction is still involved, so that even if such a direction is

successful, the arguments could be even more involved than the methodology given in the

Appendix, which is similar to the proof of Lemma 4.1.

4.2.3 New Dilated Characterizations for the H2 Specification

This subsection describes new dilated characterizations for the H 2 specification. In the

following theorem, the equivalence between the conditions (i) and (ii) is a well-known result

from [4],[43].

Theorem 4.5 (The H2 Performance) Let us consider the system described by

T.w(s) :~ [ : I: ] (435)
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For a given scalar b = a-I> 0, the following four conditions are equivalent.

(i) The matrix A is stable and the H2 cost IITzw (s)112 is bounded by '"'{2 > 0. Namely,

(4.36)

(ii) There exist matrices X 2 > °and Z2 > °such that

(4.37)

(iii) There exist matrices X 2 > 0, Z2 > °and G2 such that

(4.38)

(iv) There exist matrices X 2 > 0, Z2 > °and F2 = [ F21 F22 F23 ] such that

(4.39)

Proof. The equivalence between the conditions (i) and (ii) is a well-known result [4],[43].

The equivalence between the conditions (ii) and (iii) immediately follows by the application

of Lemma 4.1 with 81 = 02 -+ 0, L1 = C, and with X := X 2 , G := G2 . More specifically,

from Lemma 4.1 together with Lemma 4.2, the first inequality in (4.37) is equivalent to

(4.40)
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(4.41)

By the same congruence transformation as stated above, we arrive at

[-:' T]1] + He {[n[F21 F" F"CT

+F" ]}< 0

The above inequality is nothing but the first inequality in (4.39),

F22CT + F23 .

(4.42)

by redefining F23 by

Q.E.D.

Corollary 4.9 For every solution [X2 Z2 ] = [X Z] of (4.37), [X2 Z2 G2 ] = [ X Z 

a(A - aI)- l X ] is a solution of (4.38). Conversely, every pair of the matrices X 2 > 0 and

Z2 > 0 such that (4.38) holds for some G2 also satisfies (4.37).

Corollary 4.10 For every solution [ X 2 Z2 ] = [X Z] of (4.37), there exists a sufficiently

small e > 0 such that [ X 2 Z2 F2I F22 F23 ] = [ X Z X - eX 0 ] is a solution of (4.39).

Conversely, every pair of the matrices X 2 > 0 and Z2 > 0 such that (4.39) holds for some F2

also satisfies (4.37).

Remark 4.4 It is a quite important fact that we can rewrite (4.40) as (4.38), and (4.41)

as (4.39). In (4.40) and (4.41), the Lyapunov variable X 2 is involved in the product with

the matrix C and hence the decoupling between the Lyapunov variable and the controller

variables has not been achieved. On the other hand, in (4.38) and (4.39), the Lyapunov

variable X 2 is not involved in any products with the controller variables and hence the

decoupling has been achieved completely.

In recent studies, several dilated characterizations similar to (4.38) have been reported [1],

[41]. However, these studies achieve the dilation based on the Elimination Lemma and hence

they have not reached such result as what we have given in Corollary 4.9. It should be noted

that this corollary plays an essential role in dealing with multiobjective controller design

problems (see Section 4.3), and that it is our particular proof of Lemma 4.1 that led to this

important corollary.
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4.2.4 New Dilated Characterization for the H oo Specification

This subsection considers a new dilated characterization for the Hoo specification. In the

following theorem, the equivalence between the conditions (i) and (ii) is a well-known result

from [4],[43], and a similar condition to (iii) can be found in [33].

Theorem 4.6 (The Hoo Performance) For the system described by>

(4.43)

the following three conditions are equivalent.

(i) The matrix A is stable and the H00 cost IITzw ( s)1100 is bounded by "100 > O. Namely,

(4.44)

(ii) There exists a matrix Xoo > 0 such that

(4.45)

(iii) There exist matrices X oo > 0 and Foo = [ Fool F002 F003 F004 ] such that

0 -Xoo B 0 A
-Xoo 0 0 0

+He
I

(4.46)Foo <0
BT 0 -I 1)T 0

0 0 V -"I~I C

Proof. The equivalence between the conditions (i) and (ii) is a well-known result [4],

[43]. Since (4.45) in the condition (ii) is equivalent to

(4.47)< 0,AXoo + XooAT _ [B XooCT ] [ - I V~ ] -1 [ BT ]
V -"1001 CXoo

the equivalence between the conditions (ii) and (iii) immediately follows by the application

of Lemma 4.6 with

.1
2

:= _ [-I VT
] -1 > 0

1) -"I~I
(4.48)
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and with Q := Foo , where Li l > 0 is chosen arbitrarily. More specifically, from Lemma 4.6,

the inequality in (4.45) is equivalent to

0 -Xoo B XooCT A
-Xoo 0 0 0 1

[ Fool F 004 ] (4.49)+He F 002 F oo3 <0
BT 0 -1 1)T 0

CXoo 0 1) -'Y~1 0

It remains to perform a congruence transformation with I Ell [~ ~ ~] on (4.49) to get

0 -Xoo B 0 A
-Xoo 0 0 0 1

[ FOOl' F oo2 F003 F002CT + F OO4 ] < 0 (4.50)+He
BT 0 -1 1)T 0

0 0 1) -'Y~1 C

The above inequality is nothing but the inequality (4.39), by redefining F oo4 by F002CT + F oo4 '

Q.E.D.

Corollary 4.11 For every solution Xoo = X > 0 of (4.45), there exists a sufficiently small

E > 0 such that [ X oo Fool Foo2 F oo3 F 004 ] = [ X X - EX 0 0 ] is a solution of (4.46).

Conversely, every matrix X oo > 0 such .that (4.46) holds for some F00 also satisfies (4.45).

Remark 4.5 Similarly to Remark 4.4, it is a quite important fact that we can rewrite

(4.49) as (4.46). In (4.49), the Lyapunov variable Xoo is involved in the product with C and

hence the decoupling between the Lyapunov variable and the controller variables has not been

achieved. On the other hand, in (4.46), the Lyapunov variable Xoo is not involved in any

products with controller variables and hence the decoupling has been achieved completely.

Remark 4.6 In contrast to the D-stability constraints and the H2 specification, unfortu

nately, Lemma 4.1 and Lemma 4.5 cannot be applied to the Hoo specification because we

cannot rewrite the characterization (4.45) into the form of (4.2). This is one of the reasons

why we introduced Lemma 4.6, with which we can derive the dilated characterization (4.46)

for the Hoo specification.
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(4.51)

(4.52)

4.3 Multiobjective H2/D-stability Synthesis with

Non-Common Lyapunov Variables

In the preceding section, we have derived new dilated characterizations for the regional

pole placement (D-stability) constraints, the H2 specification and the H oo specification.

Specifically, for the D-stability constraints and the H2 specification, we have derived dilated

characterizations with a single square auxiliary variable involved in the products with the

controller variables, which is crucial to addressing synthesis problems. These dilated char

acterizations are successfully applied in this section to the multiobjective H2/D-stability

controller design problems with non-common Lyapunov variables.

Let us consider the continuous-time MIMO, LTI plant described by

{

X = Ax + B2W2 + Bu

Z2 = C2x + D z2u

Y =Cx +Dw2W 2

The controller that we consider is the full-order strictly proper output-feedback controller

K given by

{
XK = AKxK + BKy

U =CKXK

In the state feedback case (C = I, DW2 = 0), we also consider the static state-feedback

controller

u=Kx (4.53)

(4.54)

With the plant (4.51) and the controller given by (4.52) or (4.53), the closed-loop system

can be written as

{
Xel = Axel + BW 2

Z2 = CXel + 1)W 2

and we denote its transfer function from W2 to Z2 by TZ2W2 (s). For the dynamic controller

K, the coefficient matrices in (4.54) are given by

while for the static state-feedback controller K, the coefficient matrices are given by

(4.56)
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Now, we consider the multiobjective H2/D-stability controller design problem [6],[19],
[26]'[36]. Recall that the problem is to find a controller K, full-order output-feedback or

static state-feedback, that minimizes IITZ2W2 (s) 112 subject to the regional pole placement

constraint a(A) C n{1t(a),C(c,r),5(k)}.

We can describe two approaches for the problem via the characterizations given in the

preceding section.

(i) Conventional Approach [6],[26],[36]

Minimize "Y~ subject to the constraints (4.25), (4.28), (4.32) and (4.37).

(ii) New Approach

Minimize "Y~ subject to the constraints (4.26), (4.29), (4.33) and (4.38). Here, the

scalar b = a-I is arbitrarily chosen in advance.

In the following, we compare the above two apprbaches in terms of the conservatism of

the design, following the arguments given in [36].

As we have seen repeatedly in the preceding sections, the characterizations (4.25), (4.28),

(4.32) and (4.37) involve such products between the Lyapunov variables and the controller

variables as AXj + XjAT (j = 1t, C, 5,2). Hence, the conventional approach results in a

non-convex optimization problem. Convexity can be recovered by forcing those inequalities

to have a common Lyapunov variable [6],[26],[36]

X := X 1i = Xc = Xs = X2 (4.57)

With the restriction (4.57), the conventional approach reduces to a convex optimization

problem via the change of controller variables technique [6],[26],[36], as we have seen in

Chapter 2. Clearly, this restriction brings conservatism into the design and only an upper

bound of the cost functional will be minimized, but there is no further conservatism in this

approach as shown in [36].
On the other hand, in the new approach, the characterizations (4.26), (4.29), (4.33) and

(4.38) involve no products between the Lyapunov variables and the controller variables and

hence it is very promising that we can arrive at the use of non-common Lyapunov variables

for different design specifications. Unfortunately, the auxiliary variables Gj (j = H, C, 5,2)

form products with the controller variables as in AGj + GJAT, and thus the new approach

still results in a non-convex optimization problem. As is clarified below, however, convexity

can be recovered by forcing those inequalities to have a common auxiliary variable

G := G'}-l = Gc = Gs = G2
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With the restriction (4.58), the new approach reduces to a convex optimization problem

involving LMI's only. Clearly, this restriction again brings conservatism into the design, and

only an upper bound of the cost functional will be minimized. However there is no further

conservatism in this approach, either, the details of which are clarified later on.

Based on the above arguments, we readily arrive at the following theorem, which assures

the advantage of the new approach.

Theorem 4.7 For the multiobjective H 2/D-stability controller design problem, suppose

that the conventional LMI approach with a common Lyapunov variable (4.57) achieves an

upper bound 'Y2c > 0 of the cost functional. Then, the new LMI approach with a common

auxiliary variable (4.58) and a common prescribed scalar b = a-I but with non-common

Lyapunov variables always achieves a better (no worse) upper bound than 'Y2c, irrespective

of the choice of a > O.

Proof. The assertion follows immediately from Corollaries 4.3, 4.5, 4.7 and 4.9. Indeed,

suppose that the conventional LMI approach achieves an upper bound 'Y2c with the variables

XJf. = Xc = X s = X2 = X, Z2 = Z (4.59)

in the constraints (4.25), (4.28), (4.32) and (4.37). Then, from the above-mentioned corol

laries, the new LMI approach ensures the achievement of the same upper bound 'Y2c with the

variables

XJf. = Xc = X s = X2 = X, Z2 = Z

GJf. = Gc = Gs = G2 = G = G(a, A,X) := -a(A - aI)-IX
(4.60)

in the constraints (4.26), (4.29), (4.33) and (4.38). Observe the roles of the above corollaries

in ensuring the condition (4.58). Q.E.D.

In the previous studies, the multiobjective H 2 /D-stability problems have also been re

duced to the convex optimization problems of an upper bound of the cost functional, but

the upper bounds there are ensured by forcing a common Lyapunov variable [6],[19],[26],

[36]. This could be regarded as a standard tractable approach, but sometimes results in

excessively conservative design. The new approach is quite different from those in that

non-common Lyapunov variables are employed. Although Theorem 4.7 assures only the im

provement of an upper bound of the cost functional, the actual cost will be also improved in

general, due to the freedom of non-common Lyapunov variables and the auxiliary variable

G (see the illustrative examples in Section 4.5). Moreover, from the above theorem, we
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can see that the new approach allows a line search with respect to the scalar a > 0 in a

reasonable fashion, ensuring the achievement of a better (no worse) upper bound than that

of the conventional approach.

The rest of this section is devoted to the linearization of the new characterizations (4.26),

(4.29), (4.33) and (4.38), via change of controller variables, under the restriction (4.58).

State-Feedback Case

In the state-feedback case, it follows readily from (4.56) that (4.58) admits a simple

change of variable

W:=KG (4.61)

so that the constraints (4.26), (4.29), (4.33) and (4.38) result in LMI's with respect to X7i ,

Xc, Xs, X 2 , Z, G, W and "Y~. Once the variables G and W have been found, the state

feedback gain K can be determined by

K=WG-1

Note that the nonsingularity of G is assured by the constraint

(4.62)

(4.63)

included in all of the LMI characterizations (4.26), (4.29), (4.33) and (4.38). Thus, we are

led to the conclusion that under the restriction (4.58), the linearization is completed without

any further conservatism.

Output-Feedback Case

In the output-feedback case, we need a much more involved change of controller variables

technique. The technique given below is based on the result proposed by Scherer [36] and

similar to its variant presented in [1],[30].

Let us partition G and its inverse H as

(4.64)

where Gll E Rnxn, H ll E Rnxn, and other variables have compatible dimensions. We

assume that G21 and H21 are nonsingular without loss of generality [1],[6]. Recall that Gis

nonsingular by (4.63). With (4.64) and the controller matrices given in (4.52), we define the

following matrices.
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=' '= [I GIl]
~G' ,o G21

(4.65)

B- '- H T B C-·- C GK·- 21 K, K·- K 21,

The matrices 5 G and 5 H are nonsingular anq. satisfy the following equality.

(4.66)

(4.67)

(4.69)

Appropriate congruence transformations with the matrix 5 H can be applied to (4.26), (4.29),

(4.33) and (4.38) so that the resulting constraints only involve the following terms (the

detailed manipulations are given in the Appendix, Subsection 4.7.5).

SJ,XjSH ~ Xj (j = 1£, C, S, 2), E'J,GSH = SJ,SG = [; ~1] (4.68)

=,TB _ [ H'EB2 + 13K Dw2 ] [ ]~H - , CG5H = C5G = O2 C2GIl + D z20K ,
B2

=,TAG=' _ =,TA=' _ [ H'EA + 13KC AK _ ]
~H ~H - ~H ~G-

A AGIl +BOK

We can see that the above terms are affine with respect to Xj (j = 'It, C, S, 2), GIl, H Il ,

II, AK, 13K and OK. Accordingly, the matrix inequalities (4.26), (4.33), (4.29) and (4.38)

amount to LMI's with respect to the variables Xj (j = 'It, C, S, 2), GIl, HIl , II, AK , 13K ,
- 2 - - -
CK, Z and "12' Once the variables GIl, H Il , II, AK, BK and OK have been found, the

output-feedback controller (4.52) can be determined by

-T { - [T - ] [A B] [GIl]} -1AK = H 21 AK - H Il BK 0 0 OK" G21

where G21 and H 21 are nonsingular matrices satisfying

HfrG21 = II - HfIGIl

(4.70)

(4.71)

Remark 4.7 It is always possible to find the nonsingular matrices G21 and H21 satisfying

(4.71). This is verified by assuring the nonsingularity of II -H'frGIl , which is proved below.

After performing the linearizing congruence transformations and change of variables

(4.68) and (4.69), the resulting LMI's include the following constraint corresponding to

(4.63).
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(4.72)

The above inequality ensures the nonsingularityof the two matrices SJrSc and Gn . With

Gn , we can define the nonsingular matrix

The product of the two matrices SJrSc and iP leads

slIsciP _ [H'E II] [-Gn 0] = [ II - H'EGn II]
1 Gn 1 1 0 Gn

which assures the nonsingularity of II - H'E Gn .

(4.73)

(4.74)

Remark 4.8 In the change of variables (4.68) and (4.69) andthe derivation of the con

troller matrices (4.70), the variables Gn , G21 , H n and H 21 are involved. Recalling that

the original variable is G, and H is its inverse as in (4.64), we must ensure the existence

of the consistent eliminated matrices G12 , G22 , H 12 and H 22 • However, simple algebraic

manipulations show that

G12 = (I - GnHn)Hi/,

H 12 = (1 - Hn Gn )G2l,

actually satisfy GH = 1.

G22 = -G21 Hn Hi/,

H22 = -H21Gn G2l
(4.75)

Remark 4.9 The above change of variables is based on congruence transformations, and

thus the linearization is completed under (4.58) without any further conservatism.

In summary, we gave a linearization technique of the multiobjective H 2 /D-stability prob

lem based on the characterizations (4.26), (4.29), (4.33) and (4.38). This, together with

(4.58), led to non-common Lyapunov variables for different specifications and convexity is

essentially recovered without any further conservatism. This ensures the achievement of

a better upper bound than the one based on the conventional approach with a common

Lyapunov variable of the form (4.57) (see Theorem 4.7).
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(4.76)

4.4 Robust Performance Analysis and Synthesis for

Real Polytopic Uncertainty

In the preceding section, the dilated characterizations were successfully applied to the

multiobjective controller design problems with the use of non-common Lyapunov variables,

where the plant was assumed to be free from uncertainties. In this 'Section, we show that

the dilated characterizations are also useful in dealing with the robust performance analysis

and robust multiobjective synthesis problems for real polytopic uncertainty.

4.4.1 Robust Performance Analysis for Real Polytopic

Uncertainty

In this subsection, let us consider the continuous-time LTI system with polytopic uncer

tainty [4] described by

{

j; = A(1/7)x + B(1/7)w

z =C(1/7)x +V(1/7)w

where

[
A(1/7) B(1/7) ] P [A Bi] .
C(1/7) V (1/7) = ~ 1/7iMci, Ci Vi =: Mci (z = 1,,,· ,p),

1/7 = (1/71,·'·, 1/7p )T, 1/7 E l]/ := {1/7I1/7i ~ 0 (i = 1,·,· ,p), t 1/7i = I}
t=l

(4.77)

We assume that the uncertain parameter 1/7 is time-invariant, and that the matrices {Ai' Bi,Ci,
Vi} corresponding to the vertices Mci (i = 1"" ,p) are given matrices.

For the uncertain system (4.76) with (4.77), several robust performance analysis problems

have been addressed [1],[18],[20],[33]-[35]. In this subsection, we confine ourselves to the

robust H2 performance analysis problem [35] given below, assuming that A(1/7) is stable and

V(1/7) = 0 for all 1/7 E l]/.

Robust H2 Performance Analysis Problem

For the uncertain system (4.76) with (4.77) such that A(1/7) is stable and V(1/7) = 0 for

all 1/7 E l]/, find the worst case H 2 cost '"Y2,w.c. defined by

(4.78)

As is shown in [35], the worst case H2 cost '"Y2,w.c. can be characterized as the infimum of

'"Y2 > 0 such that
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(4.79)

for some X2('I/J) > 0 and Z2('I/J) > O. However, the optimization problem of "Y~ subject to

(4.79) is not easily tractable in this form, first because (4.79) includes an infinite number of

inequalities and second because there is no general and systematic way to formally deter

mine X 2('I/J) and Z2('I/J) as functions ofthe uncertain parameter vector 'I/J [29]. As numerically

tractable methods" the three approaches described below follow from the LMI characteriza

tions given in Subsection 4.2.3.

(i) Conventional Approach with a common Lyapunov variable.

Minimize "Y~ subject to

[
~X2 +X2A[ X2C[] < 0

Ci X 2 -1

[
Z2i B[] > 0, trace(Z2i) < "Y~ (i = 1"" ,p)
Bi X 2

Here, the variables are X 2, Z2i (i = 1"" ,p) and "Y~'

(ii) New Approach with a common auxiliary variable G.

Minimize "Y~ subject to

[
Z2i B[] > 0, trace(Z2i) < "Y~ (i = 1"" ,p)
Bi X 2i

(4.80a)

(4.80b)

(4.81a)

(4.81b)

Here, the variables are X 2i, Z2i (i = 1, ... ,p), G and "Y~. In this approach, we have to

determine b (= a-I) > 0 in advance.

(iii) New Approach with common auxiliary variables Fk (k = 1,2,3).

Minimize "Y~ subject to
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[
Z2i B[ J > 0 trace(Z2i) < '"Y~ (i = 1"" ,p)
Bi X 2i '

Here, the variables are X 2i , Z2i (i = 1"" ,p), Fk (k = 1,2,3) and '"Y~.

(4.82a)

(4.82b)

Observe that a common Lyapunov variable X 2 is forced for all vertices of the polytope

1ft in the approach (i), while a common auxiliary variable G is forced in the approach (ii)
and common auxiliary variables Fk (k = 1,2,3) are forced in the approach (iii). With these

restrictions, all of these approaches result in convex optimization problems subject to a finite

number of LMI's, although they ensure the robust H2 performance in different ways. Namely,

the approach (i) ensures the robust H2 performance via the following inequalities resulting

from (4.80).

[
A(~)X2 +X2A(~Y X2C(~Y J < 0,

C(~)X2 -I

[
Z2(~) B(~)T J > 0 trace(Z2(~)) < '"Y~, (4.83)
B(~) X 2 '

P

Z2(~) := L ~iZ2i > 0
i=l

These inequalities imply that a fixed Lyapunov variable X 2 is forced to ensure the robust

H2 performance over the whole uncertainty domain. On the other hand, the approach (ii)

performs differently and ensures the robust H2 performance via

~ ] + He { [ A~~) ] G[I -b1 O]} < 0,
-I C(~)

(4.84)

P

Z2(~) := L ~iZ2i > 0
i=l

The above inequalities are readily obtained from (4.81), and clearly shows an interesting

fact that the approach (ii) ensures the robust H2 performance with the use of the parameter

dependent Lyapunov variable
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p

X 2('l/J) = L'l/JiX2i > 0
i=1

(4.85)

Namely, the restriction to a fixed Lyapunov variable in the approach (i) has been avoided in

the approach (ii). Similar comments also apply to the approach (iii).

As we have seen, the new approaches (ii) and (iii) have very promising properties. In the

following, several results on the comparison between the above three approaches are given.

First, the advantage of the approach (iii) over the approach (i) is clarified.

Proposition 4.1 For the robust H 2 performance analysis problem, suppose that the LMI's

(4.80) with the approach (i) are feasible. Then the LMI's (4.82) with the approach (iii) are

feasible. Moreover, if we denote the optimal values of 'Y2 achieved by the approaches (i) and

(iii) by 'Y2c > 0 and 'Y2F > 0, respectively, then we have

'Y2,w.c. :::; 'Y2F :::; 'Y2c (4.86)

Namely, the approach (iii) achieves a better (no worse) upper bound for 'Y2,w.c. than that

with the approach (i).

Proof. The assertion follows immediately from Corollary 4.10. Indeed, suppose that the

conventional approach (i) achieves an upper bound 'Y2c with the variables

X 2 = X, Z2i = Zi (i = 1"" ,p) (4.87)

in the inequalities (4.80). Then, from Corollary 4.10, there exists a sufficiently small E > 0

such that the inequalities (4.82) hold for

X 2i = X, Z2i = Zi (i = 1"" ,p), F I = X, F2 = -EX, Fs = 0, 'Y2 = 'Yc (4.88)

This implies that the new approach (iii) ensures the achievement of the same upper bound

'Y2c, which completes the proof. Q.E.D.

Next, we show the advantage of the approach (iii) over the approach (ii).

Proposition 4.2 For the robust H2 performance analysis problem, suppose that the LMI's

(4.81) with the approach (ii) are feasible. Then the LMI's (4.82) with the approach (iii) are

feasible. Moreover, if we denote the optimal values of 'Y2 achieved by the approaches (ii) and

(iii) by 'Y2G > 0 and 'Y2F > 0, respectively, then we have

'Y2,w.c. :::; 'Y2F :::; 'Y2G
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Namely, the approach (iii) achieves a better (no worse) upper bound for /2,w.c. than that

with the approach (ii).

Proof. The assertion follows immediately because (4.81) is a special case of (4.82) with

[Fl F2 F3 ] = G [I - bI 0]. Q.E.D.

Finally, we compare the approaches (i) and (ii). Unfortunately, for an arbitrarily chosen

a > 0, we cannot conclude that the approach (ii) achieves a better upper bound than

that with the approach (i), in spite of the very promising use of a parameter-dependent

Lyapunov variable in the approach (ii). This is in sharp contrast to the case without plant

uncertainties studied in the preceding section. The difficulties in the comparison here arise

from the unfortunate fact that in the case of (polytopic) uncertainties, we cannot ensure the

existence of a common auxiliary variable G satisfying (4.81) even if there exists a common

Lyapunov variable X 2 satisfying (4.80). Observe that the crucial choice of the auxiliary

variable in the uncertainty free case represented by

(4.90)

does not generate a common G under the polytopic uncertainty setting, because the coeffi

cient matrix A in (4.90) should be replaced by A(i = 1",' ,p) for each vertex. However,

Lemma 4.4 in Section 4.1 plays an important role in this situation to arrive at the following

result, which clarifies the advantage of the approach (ii) over the conventional approach (i)

under an appropriate condition.

Proposition 4.3 For the robust H2 performance analysis problem, suppose that the LMI's

(4.80) are feasible and let us denote the optimal value of/2 achieved by the approach (i)

by /2c > O. Then, there exists amin > 0 such that whenever a > amin, the LMI's (4.81)

are feasible and the new approach (ii) ensures the achievement of a better (no worse) upper

bound than /2c' Namely, if we denote the optimal value of /2 achieved by the approach (ii)

by /2G > 0, we have

/2,w.c. ~ /2G ~ /2c (a > amin) (4.91)

Proof. It follows from Lemma 4.4 with 61 = 62 --t 0, L1 = Ci and with A := Ai, X := X 2i

that the inequality (4.81a) for the new approach (ii) corresponding to the ith vertex M i

recovers
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[
AiX2i + X 2i Ar X2iC[] < 0

CiX 2i -1
(4.92)

via G = G(X2i ) := X 2i whenever a > a min,i(X2i), where a min,i(X2i ) depends not only on X 2i
but also on Mi' However, the approach (i) corresponds to the common Lyapunov variable

X 2i = X 2 (i = 1"" ,p). Hence, confining ourselves to this common Lyapunov variable,

we see that a min,i(X2i ) = a min,i(X2) depends only on the vertex Mi , and (4.92) reduces to

(4.80a). Since there are only a finite number of vertices, amin := .max a min,i(X2) is well-
~=l,.··,p

defined. Summarizing the above arguments, if a > amin and if X 2 = X > 0 satisfies the

inequality (4.80a), then X 2i = X(i = 1"" ,p) and G = X satisfy the inequality (4.81a) for

i = 1, "', p. This completes the proof. Q.E.D.

Remark 4.10 It should be noted that the specific choice of a > amin is only a sufficient

condition for the approach (ii) to achieve a better (no'worse) upper bound than 'Y2c' Because

the restriction to a common Lyapunov variable in the approach (i) is considerably relaxed in

the approach (ii), the latter results in improvements in most problems, even without special

care on a. For example, a simple thoughtless choice such as a = 1.0 would even give a

satisfactory result (see illustrative examples in Section 4.5). .

Although we have confined ourselves to the robust H2 performance analysis problem in

this subsection, the robust D-stability analysis problems [34] or the robust Hoo performance

analysis problems can be addressed in a similar fashion, based on the dilated characterizations

given in Subsections 4.2.2 and 4.2.4. Similar results to Propositions 4.1, 4.2 and 4.3 also

follow in the context of such problems.

4.4.2 Robust Controller Synthesis for Real Polytopic Uncertainty

As we nave seen in the preceding subsection, the dilated characterizations exhibit their

potentials under the robust performance analysis problems for real polytopic uncertainty. It

is shown in this subsection that the dilated characterizations are also useful in dealing with

robust controller synthesis for real polytopic uncertainty.

Let us consider the case where the plant (4.51) has the polytopic uncertainty described

by

{

i; = A(7jJ)x + B2(7jJ )W2 + B(7jJ)u

22 = C2(7jJ)x + D z2 (7jJ)u

y = C(7jJ)x + Dw2 (7jJ)W2

where
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[

A(7j;) B2(7j;) B(7j;)] P [Ai B2i Bi]
G2(7j;) 0 Dz2 (7j;) = t; 7j;i Mi, G2i 0 DZ2i =: Mi (i = 1,," ,p),

G(7j;) Dw2 (7j;) 0 Gi DW2i 0 (4.94)

7j; = (7j;1"", 7j;p)T, 7j; E tf/ := {7j;1 7j;i 2: 0 (i = 1,," ,p), t, 7j;i = I}

As in the previous problem, we assume that the uncertain parameter 7j; is time-invariant.

Note that {Ai, B2i , Bi,G2i , Gi,D z2i , Dw2i } (i = 1"" ,p) are given matrices.

The problem considered here is the robust state-feedback H2 synthesis problem for real

polytopic uncertainty described in the following.

Robust H2 Synthesis Problem

For the uncertain system (4.93) with (4.94), find a state-feedback controller K minimizing

the worst case H2 cost 'Y2,w.c. defined by

(4.95)

In the case where the plant has the polytopic uncertainty, the closed-loop system also

has the polytopic uncertainty of the form

{
± =A(7j;)x+B(7j;)W2

Z2 = C(7j;)x + V(7j;)W2 '

[
A(7j;) B(7j;)] _ P .M.
C(7j;) V(7j;) - ~ 7j;2 C2' [

A. B-]
2 2 =: M ci (i = 1, ... ,p)

Ci Vi

(4.96)

It turns out that the matrices {A, Bi,Ci,Vi} in the vertex Mci are

(i=l,''',p) (4.97)

Note that (4.97) denotes the coefficient matrices of the closed-loop system corresponding to

the vertex Mi of the polytope (4.94).

For this problem, we can provide two approaches by the LMI characterizations (4.37)

and (4.38) given in Subsection 4.2.3.

(i) Conventional Approach with a common Lyapunov variable.

Minimize 'Y~ subject to

(4.98a)
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(i=l,""p) (4.98b)

Here, the variables are X 2, Z2i (i = 1"" ,p), /~ and the controller variable K.
(ii) New Approach with a common auxiliary variable G.

Minimize /~ subject to

o
o

o ] {[ Ai + BiK ] }o + He I G [I -bI 0] < 0

- I C2i + Dz2i K

(4.99a)

[
Z2i B~] > 0 trace(Z2i) < /~ (i = 1"" ,p)
B2i X 2i '

(4.99b)

Here, the scalar b = a-I is arbitrarily chosen in advance and the variables are X 2i , Z2i, (i =

1" .. ,p), G, /~ and the controller variable K.

It can be seen that the approach (i) forces a common Lyapunov variable X 2 for all vertices of

the polytope, while the approach (ii) forces only a common auxiliary variable G. With these

restrictions, each approach results in LMI's with a simple change of contro!ler variables tech

niques represented by (2.28) and (4.61), respectively. Note that the dilated characterization

(4.39) cannot be applied to synthesis problems because of the multiple products between the

controller variable and the auxiliary variables F2k (k = 1,2,3).

Similarly to the preceding analysis problem, the approach (ii) performs differently from

the approach (i) and the former attains robust H2 performance via a parameter-dependent

Lyapunov variable of the form (4.85). Namely, the restriction to a fixed Lyapunov variable

in the approach (i) has been avoided successfully in the approach (ii).

In spite of this attractive feature, however, we cannot conclude that the approach (ii)

achieves a better upper bound than the approach (i) for an arbitrarily chosen a > O. The

reason is the same as what has been described for the analysis problem in the preceding

subsection. However, Lemma 4.4 again plays a crucial role to lead us to the following result,

which clarifies the advantage of the new approach (ii) over the conventional approach (i).

Proposition 4.4 For the robust H2 synthesis problem, suppose that the LMI's (4.98) are

feasible and let us denote the optimal value of /2 achieved by the approach (i) by /2c > o.
Then, there exists amin > 0 such that whenever a > amin, the LMI's (4.99) are feasible and

the new approach (ii) ensures the achievement of a better (no worse) upper bound than /2c.

Namely, if we denote the optimal value of /2 achieved by the approach (ii) by /2G > 0, we

have
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"Y2,w.c. :s; "Y2G :s; "Y2c (a > amin)

Proof. The proof is similar to that of Proposition 4.3 and hence omitted.

(4.100)

Q.E.D.

Remark 4.11 As in the preceding analysis problem, the specific choice of a > amin is only

a sufficient condition for the approach (ii) to achieve a better (no wors~) upper bound than

"Y2c and similar comments to Remark 4.10 apply.

Although we have confined ourselves to the robust H2 synthesis problem in this sub

section, the robust D-stability synthesis problems can be addressed in a similar fashion,

based on the dilated characterizations given in Subsection 4.2.2. Similar results to Proposi

tion 4.4 follow also in that context, which show the advantage of the new approach over the

conventional approach.

4.4.3 Robust Multiobjective H2/D-stability Synthesis for Real

Polytopic Uncertainty

In the preceding subsection, we have proposed a new approach to the robust controller

synthesis for real polytopic uncertainty. The idea is readily extended to the robust multiob

jective controller synthesis for real polytopic uncertainty in this subsection.

Let us consider again the case where the plant has the polytopic uncertainty described by

(4.93) with (4.94). The problem considered here is the robust multiobjective H2/D-stability

synthesis problem for real polytopic uncertainty. For the ease of description, let us consider

the following example of robust multiobjective H2/D-stability synthesis problems.

Robust Multiobjective H2/D-stability Synthesis Problem

For the uncertain system (4.93) with (4.94), find a state-feedback controller K minimiz

ing the worst case H2 cost "Y2,w.c. defined by (4.95), subject to the D-stability constraint

(J(A(1jJ)) C H(a) (\l1jJ E 1[/).

As in the preceding problem, we can describe two approaches for this problem.

(i) Conventional Approach with a common Lyapunov variable.

Minimize "Y~ subject to

[
(Ai + BiK)X + X(Ai + BiKf X(C2i + Dz2iKf ] < 0

(C2i + Dz2i K)X -1
(4.101a)

trace(Z2i) < "Y~ (i = 1"" ,p) (4.101b)
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and

(4.102)

Here, the variables are X, Z2i (i = 1, ... ,p), l'~ and the controller variable K.

(ii) New Approach with a common auxiliary variable G.

Minimize l'~ subject to

o
o

o ] {[ A· + HK ] }o + He 2 I 2 G [I -bI 0] < 0

- I C2i + Dz2iK

(4.103a)

[
Z2i B~] > 0 trace(Z2i) < l'~ (i = 1"" ,p)
B2i X 2i '

and

(4.103b)

Here, the scalar b = a-I is arbitrarily chosen in advance and the variables are X 2i ,

X1ii, Z2i (i = 1, ... ,p), G, l'~ and the controller variable K.

Observe that the conventional approach (i) forces a common Lyapunov variable X for the two

design specifications as well as for all vertices of the polytope. On the other hand, the new

approach (ii) forces only a common auxiliary variable G and a common scalar b = a-I> O.

Here, the latter common scalar is enforced· only to simplify the exposition, and it is indeed

possible to use distinct scalars for each design specification.

Because of the restriction on the Lyapunov variables or auxiliary variables, the change

of controller variables techniques represented by (2.28) and (4.61) are successfully applied so

that each of the approaches results in LMI's. In particular, the dilated characterizations in

the approach (ii) enables us to employ Lyapunov variables

p

X 2('l/J) = L'l/JiX 2i'
i=I

p

X 1i ('l/J) = L'l/JiX 1ii
i=I
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to attain robust H 2 performance under the D-stability constraint, where these Lyapunov

variables are parameter-dependent and at the same time non-common for the two design

specifications.

Yet again, however, for an arbitrarily chosen a> 0, we cannot conclude that the approach

(ii) achieves a better upper bound than the approach (i), in spite of the very promising use of

non-common and parameter-dependent Lyapunov variables in the app,roach (ii). The reason

is the same as what we have seen for the analysis and synthesis problems in the preceding

subsections. As before, however, we are led to the following result, by which the advantage

of the approach (ii) over the conventional approach (i) is ensured.

Proposition 4.5 For the robust multiobjective H2/D-stability synthesis problem, suppose

that the set of LMI's (4.101) and (4.102) is feasible and let us denote the optimal value of

"/2 achieved by the approach (i) by "/2c > O. Then, there exists amin > 0 such that whenever

a> amin, the set of LMI's (4.103) and (4.104) is feasible and the new approach (ii) ensures

the achievement of a better (no worse) upper bound than "/2c' Namely, if we denote the

optimal value of "/2 achieved by the approach (ii) by "/2G > 0, we have

"/2,w.c. ::; "/2G ::; "/2c (a > amin) (4.106)

Proof. It is a direct consequence from Proposition 4.3 that there exists amin,2 > 0 with

the following property.

• If X > 0 and a feedback gain K satisfy the LMI's (4.101) and if a > amin,2, then the

matrices X 2i = X (i = 1",' ,p) and G = X satisfy the LMI's (4.103) for the same K.

Similarly, it follows that there exists amin,1i > 0 with the following property.

• If X > 0 and a feedback gain K satisfy the LMI's (4.102) and if a> a min,1i, then the

matrices X 1ii = X (i = 1"" ,p) and G = X satisfy the LMI's (4.104) for the same K.

These facts clearly show that if X > 0 and a feedback gain K satisfy the LMI's (4.101)

and (4.102) and if a> amin := max{amin,2, amin,1i}, then X 2i = X1ii = X (i = 1",' ,p) and

G = X satisfy the LMI's in (4.103) and (4.104) for the same K, which completes the proof.

Q.E.D.

Similarly to Propositions 4.3 and 4.4, it should be noted that the specific choice a > amin

in Proposition 4.5 is only a sufficient condition to ensure the advantage of the new approach

(ii). This can be viewed from the proof given above that evaluates the performance of the

new approach (ii) with only a common Lyapunov variable X 2i = X 1ii = X (i = 1,," ,p).
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However, recall that the new approach (ii) essentially allows non-common and parameter

dependent Lyapunov variables, and this fact is quite promising in reducing the conservatism

of the conventional approach (i). Because of this nice property, we can say that the new

approach (ii) is more effective than the conventIonal approach (i) in general, even without

special care on the scalar a. Indeed, a numerical example in Section 4.5 demonstrates that the

application of the new approach (ii) results in significant improvements over the conventional

approach (i), with a simple thoughtless choice of the scalar a such as a = 1.0.

4.5 Illustrative Examples

This section illustrates the effectiveness of the new dilated LMI approaches provided

in the preceding section through numerical examples. In the following, all LMI related

computations were carried out with the LM! Control Toolbox [15], on PENTIUM-III 933MHz.

4.5.1 Multiobjective H2/D-stability Controller Design

First of all, let us demonstrate the effectiveness of the new approach to the multiojbec

tive H2 /D-stability controller design problems presented in Section 4.3. Here, the plant is

assumed to be free from uncertainty.

State-Feedback Problem

Consider the LTI plant described by

0 0 1 0 0 0

0 0 0 1 0 0
X= x + w + u

-k k -f f 1 1

k -k f -f 0 0 (4.107)

Z= [

1 0 0 0

]x +[n u0 1 0 0

0 0 0 0

where k = 0.245 and f - 0.0219 [3]. The problem is to find a state-feedback gain K

minimizing IITzw(s) 112 subject to the D-stability constraint O"(A) c n{1-l(0.5), S(tan(37l"18))}
(see Fig. 4.1). This problem is nothing but Problem 1 studied in the preceding chapter,

Section 3.5.

Applying to this problem Conventional Approach and New Approach provided in Sec

tion 4.3, we get the H2 costs given in Table 4.1, where we show both upper bounds and
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the actual costs resulting from these approaches and computation time. Recall that New

Approach successfully employs non-common Lyapunov variables to circumvent the conser

vatism of Conventional Approach. Indeed, this table shows that the upper bound of the cost

functional is considerably improved by New Approach (as is expected from Theorem 4.7).

Note that actual cost is also improved. It is an interesting fact that even the upper bound

ensured by New Approach is considerably better than the actual cost achieved by Con

ventional Approach. Unfortunately, however, it is inevitable for New Approach to increase

computation time because of the the dilation of the matrix inequalities and the introduction

of the auxiliary variable.

Table 4.1: The resulting H2 costs

Approach (Corresponding gain) upper bound actual cost ,CPU time (sec)

Conventional Approach (Kc) 1.7545 1.5924 0.15

New Approach with a = 1.0 (K) 1.4878 1.4197 1.58

As shown in the above table, New Approach performs considerably better than Conven

tional Approach. Indeed, New Approach with a = 1.0 arrives at the feedback gain

K = [-2.7551 -0.1113 -2.3042 -7.0435]

which is quite different from Kc given by

K c = [-4.5752 -0.9647 -3.0720 -13.8032]

(4.108)

(4.109)

For reference, the H2 optimal feedback gain (without taking account of the D-stability

constraint) is given in the following.

K H2 = [-1.3271 -0.0871 -1.6334 -1.9464] (4.110)

This feedback gain achieves IITzw (s)112 = 1.2780.

It is expected that the less conservative nature of New Approach leads to the improvement

of the cost functional over Conventional Approach. To see this, Fig. 4.1 shows the closed

loop pole locations under K H2 , K c and K. It follows from this figure that the feedback gain

K H2 does not satisfy the D-stability constraint. The feedback gains K c and K do satisfy

the constraint as required, and in particular, the feedback gain K achieves the constraint in

a less conservative fashion than K c.
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Figure 4.1: Pole locations under K H2 , K c and K

It is worth mentioning that New Approach has another advantage over Conventional

Approach. Namely, as we have seen in Section 4.3, New Approach allows a line search with

respect to the scalar a > 0 in a reasonable fashion, ensuring the achievement of a better (no

worse) upper bound than that with Conventional Approach. In order to demonstrate this

nice property, the line search with respect to a > 0 is performed to get the result shown

in Fig. 4.2. From this figure, we can ascertain that New Approach achieves better upper

bounds than 1.7545 for the cost functional (which is achieved by Conventional Approach)

irrespective of a > O. This figure also suggests that New Approach leads to satisfactory

results even without special care on the scalar a.
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\ actual cost __----

\ ------------------------------------
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The line search parameter a

Figure 4.2: The H2 cost achieved by New Approach
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As stated before, this problem was also dealt with in Section 3.5. For reference, the

results there are summarized in the following.

• Approach I (i.e. the subspace approach provided in Subsection 3.2.2) achieved the

best H 2 cost 1.4848 among the non-iterative approaches as shown in Table 3.3. The

computation time was 0.39 (sec) .

• Iterative Algorithm II (i.e. the combined iterative algorithm provided in Subsection 3.3.3)

achieved the best H2 cost 1.3004 among the iterative algorithms as shown in Table 3.4.

The computation time was 7.31 (sec).

Recall that New Approach presented in this chapter arrives at the H 2 cost 1.4197 with the

computation time is 1.58 (sec). Although New Approach takes more computation time than

Approach I, the former achieves a considerably better H2 cost. On the other hand, Itera

tive algorithm II indeed achieves a better H2 cost than New Approach, but those iterative

algorithms naturally lead to drastic increase in computation time. Here, recalling that the

iterative algorithms provided in the preceding chapter need an initial feedback gain for their

implementation, it is clear that New Approach has another usefulness. Namely, New Ap

proach will be also helpful to those algorithms in providing better initial gains so that further

better performance and quick convergence can be obtained.

In the next problem, we deal with the output-feedback multiobjective H2 /D-stability

controller design problem. Output-feedback multiobjective synthesis with non~commonLya

punov variables is an important achievement in this chapter. Note that the approaches and

the algorithms in the preceding chapter only deal with stat~feedbackproblems.

Output-Feedback Problem

Consider the LTI plant described by

[ ~1
10

~5 ] x + [ ~ ] w + [ ~ ] ux= 1

2

z - [

0 1 0

]x +[~]u
(4.111)

0 0 1

0 0 0

y=[ 0 1 0 ] x + 2 w

The problem is to find a full-order dynamic controller K minimizing IITzw(s)lb subject to

the D-stability constraint (J(A) c C(-20,19) (see Fig. 4.3).
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Applying to this problem Conventional Approach and New Approach provided in Sec

tion 4.3, we get the H2 costs shown in Table 4.2, where we show both upper bounds and the

actual costs resulting from these approaches and computation time. Similarly to the preced

ing state-feedback problem, this table shows the advantage of New Approach. Namely, New

Approach achieves a considerably better upper bound of the cost functional as is expected

from Theorem 4.7, and indeed arrives at a better actual cost. Unfortunately, however, New

Approach takes much more computation time than Conventional Approach.

.Table 4.2: The resulting H2 costs

Method (Corresponding controller) upper bound actual cost CPU time (sec)

Conventional Approach (Kc) 71.3675 36.2192 0.31

New Approach with a = 1.0 (K) 42.6631 30.8958 19.75

The two approaches arrive at the following (full-order) controllers.

-36.3896(8 + 5.0979)(8 + 1.7193)
K c(8) = (8 + 8.4616)(8 + 4.9328)(8 + 2.7321)

K(s) _ -28.9937(8 + 5.0907)(8 + 0.9733)
- (8 + 7.2741)(8 + 4.9554)(8 + 2.1750)

(4.112)

(4.113)

(4.114)

These controllers place the closed-loop poles as shown in Fig. 4.3 where we also show the

closed-loop pole locations under the H2 optimal controller (without any care for the D

stability constraint) given by

-5.0701(8 + 5.0951)(s - 0.2754)
K (8) - ~--'--:-:-n---'-'-----~

H2 - (8 + 5.0863)(82 + 3.37328 + 9.9288)

This controller achieves IITzw (8) 112 = 13.7335. From this figure, we can see that the controller

K H2 does not satisfy the D-stability constraint. Although both of the controllers K c and K

do satisfy the D-stability constraint as required, the controller K leaves a less margin for

the constraint, which suggests the less conservative nature of New Approach.
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4.5.2 Robust Performance Analysis for Real Polytopic

Uncertainty

As we have seen in Subsection 4.4.1, the dilated LMI characterizations have very promis

ing nature that they allow the use of parameter-dependent Lyapunov variables in dealing

with the robust performance analysis problems for real polytopic uncertainty. This subsec

tion demonstrates the effectiveness of the dilated LMI's in such problems through simple

numerical experiments.

Robust Stability Analysis Problem [18]

Let us consider a simple robust stability analysis problem. The problem is to determine

the maximum value of if such that a set of matrices A(O) := A + Ogh remains stable for all

101 < if, where A, 9 and h are given in the following.

0 1 0 0 0

A=
0 0 1 0 0

h=[3300] (4.115)g=
0 0 0 1 0

-12 -12 -25 -1 1

It follows that the uncertain matrix A(O) (101 < if) can be described as a polytope with

two vertices A(if)r := A + ifgh and A(ifh := A - ifgh. We applied the following three

approaches to determine the maximum value of if.
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(i) Conventional Approach with a common Lyapunov variable.

Maximize B subject to (4.22) with {A,X,c} replaced by {A(B)i'X} (i = 1,2). Here,

the variables are X and B.

(ii) New Approach with a common auxiliary variable G.

Maximize B subject to (4.23) with {A,XL:,G,c} replaced by {A(B)i,Xi,G} (i = 1,2).

Here, the variables are Xi (i = 1,2), G and B. On the choice of the scalar b= a-I> 0,

we test a = 1, 10 and 100.

(iii) New Approach with common auxiliary variables Fh (k = 1,2).

Maximize Bsubject to (4.24) with {A, XL:, FD , FL:2} replaced by {A(B)i' Xi, F I , F2} (i =

1,2). Here, the variables are Xi (i = 1,2), F I , F2 and e.

The above approaches correspond to the three approaches provided in Subsection 4.4.1,

respectively. Recall that the approaches (ii) and (iii) ensure robust stability with the use of

parameter-dependent Lyapunov variables.

Applying the above three approaches to this problem, we get the maximum values of B
shown in Table 4.3. In this problem, we can verify easily that the exact maximum value

of B is 4.0. As is expected from Propositions 4.1 and 4.2, the approach (iii) achieves the

best value among these approaches, and it successfully attains the exact maximum value.

Although the approach (iii) provides only a sufficient condition, this approach turns out to

be not conservative in this example. On the other hand, the approaches (i) and (ii) lead to

conservative results. However, the approach (ii) achieves better results than the approach

(i) irrespective of the scalar a > 0, which suggests the advantage of the approach (ii).

These results indicate that the robust stability analysis with a common Lyapunov variable

is quite conservative, and the conservatism has been circumvented successfully with the use

of parameter-dependent Lyapunov variables.

Table 4.3: Maximum value of B
Method ()

Approach (i) 2.15

Approach (ii) with a = 1 3.42

Approach (ii) with a = 10 2.74

Approach (ii) with a = 100 2.36

Approach (iii) 4.00

The exact maximum value 4.00
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Robust D-stability Analysis Problem

The goal here is to clarify the advantage of the dilated LMI's in dealing with the robust D

stability analysis problems. For that purpose, let us consider the robust D-stability analysis

problem for a polytope matrix A('ljJ) given by

A('ljJ) ='ljJA I + (1-7j;)A2 , Al = [-2 1], A2 = [-3 0 ], 0~ 7j; ~ 1(4.116)
-1 -2 -1 -2.2

In the following, we examine whether the three approaches given below work fine to

ensure O"(A('ljJ)) E D, where D is a prescribed region such that O"(A('ljJ)) E D is indeed the

case whenever 0 ~ 7j; ~ 1. Note that a similar experiment was also carried out in [34].

(i) Conventional Approach with a common Lyapunov variable X based on the LMI's (4.25),

(4.28), and (4.32).

(ii) New Approach with a common auxiliary variable G based on the dilated LMI's (4.26),

(4.29), and (4.33), which admits the use of a parameter-dependent Lyapunov variable

to ensure the robust D-stability. On the choice of the scalar b = a-I> 0, we test

a = 1, 10 and 100.

(iii) New Approach with common auxiliary variables Fk based on the dilated LMI's (4.27),

(4.30), and (4.34), which admits the use of a parameter-dependent Lyapunov variable

to ensure the robust D-stability.

The regions considered here are 1i(1.9), C(-2,1.4), C(-2,1.3), C(-2,1.2), C(-2,1.1) and

the intersection of these regions. Fig. 4.4 shows these regions, as well as the variation of the

eigenvalues of A('ljJ) when the parameter 'ljJ moves from 0 to 1. We can see that the eigenvalues

of A('ljJ) are actually contained in the regions considered here regardless of 0 ~ 'ljJ ~ 1.

-3 -2 -1

Figure 4.4: Pole placement regions D and pole locations
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Applying the three approaches to each region, we get the results shown in Table 4.4,

where the symbol 0 denotes the success in ensuring robust D-stability while x denotes the

failure. As is expected from Propositions 4.1 and 4.2, the approach (iii) works better than the

other two approaches. In particular, the approach (iii) are successful in all regions considered

here, which suggests the effectiveness of this approach. Although the approaches (i) and (ii)

arrive at conservative results, the approach (ii) achieves better results than the approach (i)

irrespective of a > O.

Table 4.4: Pole placement regions and results

Pole placement regions Approach (i)
Approach (ii)

Approach (iii)
a=1 a = 10 a= 100

H(1.9) 0 0 0 0 0

C(-2,1.4) 0 0 0 0 0

C(-2,1.3) 0 0 0 0 0

C(-2, 1.2) x 0 0 0 0

C(-2,1.1) x x x x 0

n{H(1.9), C(-2, 1.4)} 0 0 0 0 0

n{1-l(1.9) ,C(-2, 1.3)} x x 0 0 0

n{1-l(1.9), C(-2,1.2)} x x x x 0

n{1-l(1.9) ,C(-2, 1.1)} x x x x 0

Robust Hoo Analysis Problem

As for the H oo specification, we have arrived at a dilated characterization (4.46). In

dealing with robust Hoo analysis problems for real polytopic uncertainty, this dilated char

acterization becomes a powerful tool as illustrated below.

Consider the LTI plant described by

(4.117)

Zoo = [ 1 o ]x
where k and f have the following ranges of uncertainties.

0.6 :::; k :::; 0.8, 0.2:::; f :::; 0.8

The problem here is to find the worst case Hoo cost '"Yoo,w.c. defined by
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(4.119)

for all possible values of the parameters k and f.
Since k and f have the uncertainties (4.118), we describe the plant as a polytope with

four vertices and applied the following two approaches to this problem.

(i) Conventional Approach with a common Lyapunov variable X based on the LMI (4.45).

(ii) New Approach with common auxiliary variables Fk based on the dilated LMI (4.46),

which allows the use of a parameter-dependent Lyapunov variable to ensure the robust

H00 performance.

Solving the problem with these two approaches, we get the results shown in Table 4.5. We

can see the effectiveness of the new approach (ii) over the conventional approach (i).

Table 4.5: The upper bounds for the worst case Hoo cost

Approach upper bound

Approach (i) 15.1212

Approach (ii) 6.5094

In this problem, it can be shown analytically that the exact value of '"Yoo,w.c. is nothing but the

Hoo cost on the vertex corresponding to k = 0.6 and f = 0.2, whose value is 6.5094. Hence,

we can conclude that the approach (ii) successfully achieves the exact maximum value.

4.5.3 Robust H 2 Synthesis for Real Polytopic Uncertainty

In this subsection, we deal with an example of the robust H2 synthesis problem for real

polytopic uncertainty, based on the arguments provided in Subsection 4.4.2.

Consider the LTI plant described by (4.107), where the parameters k and f have the

following ranges of uncertainties [15].

0.09 ::; k ::; 0.4, 0.0038 < f ::; 0.04 (4.120)

The problem is to find a state-feedback gain K minimizing the worst case H 2 cost defined

by

(4.121)

for all possible values of the parameters k and f.
Since k and f have the uncertainties (4.120), the plant can be described as a polytope

with four vertices. In the following, we refer to the model corresponding to each vertex as

Modell, 2, 3 and 4, respectively.
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Solving this problem by Conventional Approach and New Approach provided in Subsec

tion 4.4.2, we get the upper bounds of the worst case H2 cost shown in Table 4.6, where we

also show the computation time for each approach.

Table 4.6: The upper bounds for the worst case H2 cost

Approach (Corresponding gain) upper bound CPU time (sec)

Conventional Approach (Kc ) 1.7584 0.23

New Approach with a = 1.0 (K) 1.3989 0.96

These approaches arrive at the state-feedback gains given below.

K c = [-4.2380 1.8329 -3.0918 -9.6993]

K = [ -1.6224 0.1055 -2.1086 -3.6594]

(4.122)

(4.123)

It follows that New Approach leads to the above gain K that is quite different from K Cl

yielding a considerably better upper bound of the worst case H 2 cost. Recall that New Ap

proach designs the state-feedback gain K through a parameter-dependent Lyapunov variable

so that the conservatism of Conventional Approach can be reduced.

Although the upper bound is indeed improved by New Approach, this result is not strong

enough to conclude that the feedback gain K achieves better performance than K c . To see

this more carefully, the following Table 4.7 shows the H 2 costs on each vertex achieved by

these gains. This table shows that the H2 costs achieved by K c on each vertex are larger than

the upper bound 1.3989 of the worst case H 2 cost achieved by K. Hence, we can conclude

that the feedback gain K resulting from New Approach indeed achieves better performance

than K c .

Table 4.7: The H2 costs on each vertex achieved by K c and K

Modell Model 2 Model 3 Model 4

K c 1.5763 1.5751 1.5320 1.5258

K 1.3251 1.3442 1.2904 1.3012

4.5.4 Robust Multiobjective H2/D-stability Synthesis for Real

Polytopic Uncertainty

As we have seen in Subsection 4.4.3, the dilated characterizations enabled us to pro

pose a new approach to the robust multiobjective H2/D-stability synthesis problem for real
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polytopic uncertainty, with the use of non-common parameter-dependent Lyapunov vari

ables. This subsection demonstrates the effectiveness of this new approach through a simple

numerical example.

Consider again the LTI uncertain plant described by (4.107) and (4.120). The problem

here is to find a state-feedback gain K minimizing the worst case H 2 cost defined by (4.121)

subject to the D-stability constraint such that the closed-loop poles for all possible values of

the parameters k and f lie in n{1i(0.15), S(tan(31r/8)n. This problem is nothing but the

Problem 3 studied in Section 3.5.

We can see that the two approaches provided iri Subsection 4.4.3 are ready to be applied

to this problem, by including the corresponding LMI's for the sector region. Applying them

to this problem, we get the upper bounds of the worst case H2 cost shown in Table 4.8,

where we also show the computation time for each approach. Although New Approach takes

much more computation time, it achieves significant improvement of the upper bound over

Conventional Approach. Note that these upper bounds are naturally worse than those of

the preceding problem because of the additional D-stability constraint.

Table 4.8: The upper bounds for the worst case H2 cost

Approach (Corresponding gain) upper bound CPU time (sec)

Conventional Approach (Kc) 2.1816 0.88

New Approach with a = 1.0 (K) 1.7801 11.51

The state-feedback gains resulting from these approaches are given in the following for

comparison.

Kc = [ -10.0449 4.5272 -5.2278 -30.1554]

K = [-5.1862 2.4977 -4.0846 -13.1273]

(4.124)

(4.125)

In order to examine the performance of these feedback gains, we calculate the H2 costs

achieved by them on each vertex and obtain the results shown in Table 4.9. This table

shows that the H 2 costs achieved by K c on each vertex are larger than the upper bound

1.7801 of the worst case H 2 cost achieved by K, which leads us to the conclusion that the

feedback gain K indeed achieves better performance than Kc.

Table 4.9: The H 2 costs on each vertex achieved by K c and K

Modell Model 2 Model 3 Model 4

K c 1.9714 1.9559 1.9265 1.9075

K 1.6954 1.6901 1.6648 1.6568
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One of the possible reasons why New Approach arrives at better performance than Con

ventional Approach is that it circumvent the conservatism of Conventional Approach success

fully. Indeed, we can s~e the less conservative nature of New Approach via the closed-loop

pole locations on each vertex under the feedback -gains K c and K shown in Figs 4.5 and 4.6.

With a comparison between these two figures, we can see that New Approach is less conser

vative: the feedback gain K achieves almost the boundary for the D-stability constraint.

3.0 Modell +

2.0
Model 2 0

Model 3 lIE
lIE
x

1.0 Model 4 x

+ 0
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Figure 4.5: Pole locations under K c
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Figure 4.6: Pole locations under K

As stated before, this problem was also dealt with in Section 3.5, where we applied some

approaches that only allow non-common Lyapunov variables for the design specifications.

Namely, in contrast with New Approach, the Lyapunov variables there were fixed over the

whole uncertainty domain. The results there are quickly reviewed in the following.
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• Approach I (i.e. the subspace approach) achieved the best upper bound 1.8296 qf the

worst case H2 cost among the non-iterative approaches as shown in Table 3.9. The

corresponding feedback gain K 1 is given by (3.103) .

• Iterative Algorithm I-III achieved almost the same performance, and Iterative Algo

rithm I (i.e. the iterative algorithm based on the subspace approach) achieved an upper

bound 1.8023 of the worst case H2 cost with the least computation time 14.09 (sec) as

shown in Table 3:10. The corresponding feedback gain K; is given by (3.106).

Summing up these results and that of New Approach, we'obtain the following table, which

shows that the feedback gain K resulting from New Approach achieves the best upper bound.

Table 4.10: The upper bounds for the worst case H2 cost

Approach (Corresponding gain) upper bound CPU time (sec)

Approach I (K1) 1.8296 1.82

Iterative Algorithm I (Ki) 1.8023 14.09

New Approach with a = 1.0 (K) 1.7801 11.51

Although the feedback gain K achieves the best upper bound, we cannot conclude that

the gain K achieves the best performance. In order to evaluate the performance achieved

by K 1, K; and K more carefully, we calculate the H2 costs on each vertex achieved by these

gains and obtain Table 4.11. Here, aiming at the exact evaluation, we further solve the

robust H2 performance analysis problems for given gains K 1, K; and K by the approach

(iii) provided in Subsection 4.4.1. This enables us to have better upper bounds of the worst

case H2 cost than those in Table 4.10, and the resulting upper bounds are denoted by 'Y2F

in Table 4.11.

Table 4.11: The H 2 costs on each vertex achieved by K 1 , Kj and K

Modell Model 2 Model 3 Model 4 'Y2F

K 1 1.7333 1.7256 1.6793 1.6658 1.7362

K* 1.6878 1.6821 1.6486 1.6390 1.6906I

K 1.6954 1.6901 1.6648 1.6568 1.6980

The above table readily leads us to the following conclusions.

• The feedback gain K indeed achieves better performance than K 1, which follows im

mediately from the fact that the H 2 costs achieved by K 1 on Models 1 and 2 are larger

than the upper bound 'Y2F = 1.6980 of the worst case H 2 cost ensured by K.
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• The feedback Ki indeed achieves better performance than K, which follows immedi

ately from the fact that the H 2 cost achieved by K on Modell is larger than the upper

bound r2F = 1.6906 of the worst case H2 cost ensured by Ki-

Although New Approach fails to attain better performance than the Iterative Algorithm

I, we can see that New Approach achieves comparable performance. It should be noted

that New Approach achieves the performance with less computational effort than Iterative

Algorithm I as shown in Table 4.10.

In this subsection, we have dealt with an example of the robust multiobjective H2 /D

stability synthesis problem for real polytopic uncertainty. The problem treated here fortu

nately allows a feasible common Lyapunov variable, which is indispensable in applying the

approaches and the algorithms provided in the preceding chapter. To put it reverse, they

are of little use for such problems that lack a feasible common Lyapunov variable. In dealing

with such problems, however, New Approach in this chapter will be still helpful so that

parameter-dependent Lyapunov variables can be sought.

4.6 Summary

In this chapter, we have derived new dilated matrix inequality characterizations for

continuous-time controller design and performance analysis. We have shown that a par

ticular application of the Schur complement technique leads to a constructive way to derive

dilated characterizations, exhibiting some analogous properties to the ones already obtained

in the discrete-time setting [29], [30].

The results obtained about the dilated characterizations could be summarized as follows.

1. For the D-stability constraints and the H2 specification, we derived new dilated char

acterizations that are suitable for controller synthesis. These dilated characterizations

enabled us to propose a new approach to the multiobjective H2/D-stability controller

design problems with non-common Lyapunov variables. It was shown that the new ap

proach leads to a better (no worse) upper bound for the cost functional than that with

the conventional approach [6], [26], [36]. Numerical examples showed that the actual

cost is also improved, and the application of the new approach resulted in significant

improvements over the conventional approach.

2. With the dilated characterizations, we proposed a new approach to the robust multi

objective H2/D-stability synthesis for real polytopic uncertainty, where we successfully

employed non-common parameter-dependent Lyapunov variables. We showed that a

specific choice of the scalar included in the dilated characterizations ensures the new
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approach to achieve a better (no worse) upper bound for the cost functional than that

with the conventional approach. Thjs choice is only a sufficient condition to ensure

the advantage of the new approach, and a numerical example showed that the new ap

proach achieves considerably better performance than the conventional approach even

without a special care on the choice of that scalar.

3. For the D-stability constraints, the H2 performance and the Hoo performance, we

have derived dilated matrix inequality characterizations that are suitable for robust

performance analysis for real polytopic uncertainty [33]-[35]. The effectiveness of these

new characterizations is demonstrated through numerical examples.

The above three are the most important achievements in this chapter, gained by the di

lated matrix inequality characterizations. Specifically, it is a remarkable contribution that we

have reduced the multiobjective H2/D-stability problem into a convex optimization problem

with non-common Lyapunov variables in a reasonable fashion.

In spite of the above achievements, we have the following future topics.

1. For the Hoo performance, we have not derived a dilated characterization with a single

square auxiliary variable being involved in the product with the controller variables.

Such a characterization is indispensable to address the multiobjective H2 / Hoo problem

[23] or the multiobjective H2/ Hoo/D-stability problem [6],[26],[36] with non-common

Lyapunov variables in a straightforward fashion.

2. We expect that the new dilated characterizations presented in this chapter have another

potential to show new directions in such problems as the fixed order dynamic output

feedback control problem [44], the decentralized control problem [46] and so on. It

is known that these problems are quite hard to solve with the conventional matrix

inequality characterizations because of the product between the Lyapunov variables

and the controller variables.

We would like to stress, however, that the first topic given above has been partially

achieved by the dilated characterization presented in this chapter. To see this, let us fo

cus on the following dilated characterization for the Hoo performance, which is derived in

Theorem 4.6.

0 -Xoo B 0 A

-Xoo a a a
+He

1
(4.126)BT vT Foo <0

a -1 a
a a v -1~1 C
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Here, the variables are Xoo and Foo = [ Fool F002 F003 F004 ]. This inequality characterizes a

necessary 3Jld sufficient condition for IITzw (s)1100 < ')'00 where Tzw(s) ~ [ : I~ ]. Moreover,

we have shown that this inequality successfully recovers the original one (4.45) via F00 =

Xoo [I - FEI 0 0 ] if the scaler FE > 0 is taken sufficiently small (see Corollary 4.11).

We have dealt with the dilated characterization (4.126) as a tool for robust performance

analysis problems in this chapter. However, it should be noted that this characterization can

be readily converted into a suitable form for controller synthesis if we impose some restriction

on the variable Foo . To keep the above mentioned nice recovery property of (4.126) even under

such restriction, it is reasonable to consider F00 = G [I - bI 0 0 ], where G is a new square

variable and b = a-I is a positive scaler. Then, we obtain the following matrix inequality

with respect to Xoo and G, which characterizes a sufficient condition for IITzw ( s) 1100 < "100'
Note that a similar characterization can be found in .[41].

0 -Xoo B 0 A
-Xoo 0 0 0 I

G [I -bI 0 0] (4.127)+He
BT 0 -I V T 0

0 0 V -"I~I C

An advantage of working with this inequality is that it allows controller synthesis. Moreover,

we can see that this inequality has the following interesting properties.

• There exists a sufficiently large a (= b-l ) > 0 such that the dilated characterization

(4.127) recovers the original one (4.45) via G = G(Xoo) := Xoo , which is a direct

consequence from Corollary 4.11.

• It is also true that if we let a ~ 00, all admissible auxiliary variables G in (4.127) tend

to X oo and hence the dilated characterization (4.127) "reduces" to (4.45).

These facts have strong similarities to what we have given in Section 4.1 on the dilated

characterization (4.3). However, these similarities arise only when a sufficiently large a

is considered. Namely, for arbitrarily chosen a > 0, the dilated characterization (4.127)

performs differently from (4.3) and the former reduces to only a sufficient condition for the

original one. It should be noted that the dilated characterization (4.3) is equivalent to the

original one (4.2) irrespective of a > 0, and this property has played an essential role in

dealing with the multiobjective controller synthesis for plants without uncertainties.

Based on the above arguments, we give the following remarks on the use of the dilated

characterization (4.127).
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Remark 4.12 It is possible, in principle, to address such problems as the multiobjective

H 2 / Hoo problem [23] or the multiobjective H 2 / Hoo/D-stability problem [6],[26],[36] with

non-common Lyapunov variables, using the LMI's (4.26), (4.29), (4.33), (4.38) and (4.127).

However, the inclusion of the Hoo specification weakens the corresponding assertion to The

orem 4.7. Namely, all we can assure for the new approach reduces to that there exists

amin > 0 such that whenever a > amin, the new approach ensures the achievement of a

better (no worse) upper bound of the cost functional than that with the conventional ap

proach, which clearly shows the difference between the assertion of Theorem 4.7 for the

multiobjective H2/D-stability problem.

Remark 4.13 It is possible, in principle, to address such problems as the robust multi

objective H2/ Hoo/D-stability problem for real polytopic uncertainty [6] with non-common

parameter-dependent Lyapunov variables, using the LMI's (4.26), (4.29), (4.33), (4.38) and

(4.127). All we can assure for the new approach is that there exists amin > 0 such that

whenever a > amin, the new approach ensures the achievement of a better (no worse) upper

bound of the cost functional than that with the conventional approach, which is the same

consequence, on the surface, as we have given in Proposition 4.5. However, it should be

noted that the inclusion of the Hoo specification brings another sort of conservatism into the

new approach arising from the fact that the inequality (4.127) itself is merely a sufficient

condition for the H oo specification.

4.7 Appendix

4.7.1 Proof of Lemma 4.1 with the Elimination Lemma

Proof. Let us define the following matrices.

XLlT
T

0 -x X 0 A 1

-X 0 0 -X 0 1 -b1

Y:= X 0 -bI 1X 0 0 E'- 0 Q:=G, F:= 1 (4.128).-

0 -X 0 -bi1X 0 0 b1

LlX 0 0 0 -1 0 bLl

Then, the inequality (4.3) in the condition (ii) in Lemma 4.1 can be described as (4.12).

Hence, to establish the equivalence between the conditions (i) and (ii) in Lemma 4.1, it is

enough to show that the two conditions EJ..YE-1T < 0 and (FT)J..YFJ.. < 0 with the matrices

given by (4.128) are equivalent to the original condition (4.2).
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As we have seen in (4.10), the condition El.YgJ...T < 0 is equivalent to the original

condition (4.2). On the other hand, it turns out that the condition (FT)l.YFl. < 0 is

equivalent to an implicit condition hidden in (4.2). To see this, let us consider (4.2) again.

Completing the square with respect to A in (4.2) yields

(4.129)

Hence, we can see that

(4.130)

(4.131)

is a necessary condition for the feasibility of (4.2). Applying the Schur complement technique

to (4.130) with the given scalar a > 0, we have

-2aX 0 -2aX 0

o -611X; -X 0
---_ ------------------ --------------------------- --------------

-2aX -x i -2aX - 621X !-XL\T
_________________________ • __ -1 ... _

o 0 i -L\X !-1, ,. .

From the above inequality, we readily obtain

(FT)l.YFl.
l. Tl.

1 0 -X X 0 XL\T 1

-b1 -x 0 0 -X 0 -b1

b1 X 0 -611X 0 0 b1

1 0 -X 0 -621X 0 1

bL\ L\X 0 0 0 -1 bL\

0 -X X 0 XL\T 1 0 0 0
1 a1 0 0 0 L\T (4.132)-X 0 0 -X 0 a1 1 a1
0 1 1 0 0

-611X- X 0 0 0 0 1 0 0
0 a1 0 1 0

-621X0 -X 0 0 0 0 1 0
0 L\ 0 0 1

L\X 0 0 0 -1 0 0 0 1

-2aX 0 -2aX 0

0 -611X -X 0
-

-2aX - 621X -XL\T
<0

-2aX -X

0 0 -L\X -1

which completes the proof. Q.E.D.
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(4.133)

4.7.2 Proof of Lemma 4.4

Proof. Note that amin is well-defined since (4.2) holds with X = X by assumption and since

X > O. It is obvious that the inequalities (4.15) and (4.16) hold for any a > amino With this

in mind, let us apply the Schur complement technique to (4.15) under the condition (4.16)

to get

[
AX +XAT + 61X + 62AXAT +X.1T.1X AX + 61X +X.1T.1X ] < 0

XAT +61X + X i1Ti1X 61X + X .1.1TX - 2aX

Applying again the Schur complement technique to (4.133), we obtain

AX+XAT AX i X AX X.6.T

XAT -2aX i X 0 Xi1T
---------_._._-----------------------~-------------_.- ---------------------------

X X i -St1X 0 0 < 0

XAT 0 i 0 -6i1X 0
,

i1X i1X i 0 0 -1

It remains to perform a congruence transformation with [ ~
inequality to get

(4.134)

bA ] 1 E8 1 E8 1 on the above
b1

AX+XAT -bAX bAX+X AX bAXL1T + XL1T

-bXAT -2bX bX 0 bX.1T

bXAT +X bX -611X 0 0 <0 (4.135)

XAT 0 0 -6i1X 0

bL1XAT +i1X bL1X 0 0 -1

This inequality is nothing but (4.3) with X = G = X. This completes the proof. Q.E.D.

4.7.3 Proof of Lemma 4.5

Proof. It is easy to show the equivalence between (4.2) and (4.19) by the Elimination

Lemma, with
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(4.136)

(4.137)

(4.138)

A

1

o ,
o
o

<0

E:=

o
o
o

-1

o -X X 0 XLlT

-X 0 0 -X

Y:= X 0 -811X 0

o -X 0 -821X

L\X 0 0 0

Q := [Q1 Q2 Q3 Q4 Q5]' F:= 1

and with (4.10). In the following, however, we give another proof of the fact that (4.2)

implies (4.19), in which the relation between the solutions of (4.2) and (4.19) is clear.

For every solution X = X > 0, there exists e > 0 such that
1

AX + XAT + 81X + 82AXAT + XLlTL\X + 2eAXAT < 0

Applying the Schur complement technique to the above inequality, we obtain

AX + XAT! -eAX X AX XLlT'
-- ~ --_. -------- -.- - ----..- ---- .--- -. -- --- --.- --- ------- ------ -- -- - - - - - ---- -- - -----

-eXAT ! -2eX 0 0 0

X i 0 -811X 0 0

XAT i 0 0 -821X 0

L\X i 0 0 0 -1

The above inequality is nothing but the LMI condition (4.19) with [ X Q1 Q2 Q3 Q4 Q5 ] =

[X X - eX 0 X 0]. Q.E.D.

4.7.4 Proof of Theorem 4.4

Proof. The equivalence between the conditions (i) and (ii) is a well-known result [6]. The

condition (iii) and (iv) imply the condition (ii) since

-L T-L
A 0 0 -kXs X s 0 A 0

1 0 -kXs 0 0 -Xs 1 0

0 1 Xs 0 0 -kXs 0 1

0 A 0 -Xs -kXs 0 0 A

0 -kXs X s 0 1 0 (4.139)

= [~ -:
0

~ ] -kXs 0 0 -Xs -AT 0

-A X s 0 0 -kXs 0 -AT

0 -Xs -kXs 0 0 1

= [ k(AXs + XSA
T

) AXs-XsAT
]

<0
XSAT -AXs k(AXs + XSAT)
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Because the condition. (iii) implies the condition (iv), it remains to show that the condition

(ii) implies (iii). In the following, we give a proof of the fact that the condition (ii) implies

(iii), in which the relation between the solutions of (4.32) and (4.33) is clear.

Applying the Schur complement technique to (4.32) with the given scalar a and with a

simple manipulation AXs - XSAT = (A - aI)Xs - Xs(A - aI)T, we obtain

- 2akXs j -2akXs o! > 0
---------------- ....-----_._._-------------------_._._---------_._-----_._._-----_._------------------_._._--- -------~----_._---------

, T'-2akXs i kHe [(A - aI)Xs ] (A - aI)Xs - Xs(A - aI) i 0
: T : < 0(4.140)

o iXs(A - aI) - (A - aI)Xs kHe [(A - aI)Xs] i-2akXs
--------o------r----------------------o-------------------------------------------=2~kX;-----------------r-~2~kX;-

Here, (A - aI) is nonsingular because A is stable by the condition (ii). Hence, the above

inequality admits a congruence transformation with I E8 (A - aI)-l E8 (A - aI)-l E8 I to get

-2akXs (A - aI)-T

kHe [Xs(A - aI)-T]

(A - aI)-lX s - Xs(A - aI)-T

o

-2akXs
-2ak(A - aI)-lX s

o
o

o
Xs(A - aI)-T - (A - aI)-lX s

kHe [Xs(A - aI)~T]

-2akXs (A - aI)-T

o
o

-2ak(A - aI)-lX s
-2akXs

<0

(4.141)

Defining Gs := -(A - aI)-lXs , we have Xs = -(A - aI)Gs , and thus we readily obtain

(4.142)

<0

o
~T T-Xs - Gs(A - aI)

2akGs - kXs - k(A - aI)Gs
2akXs + 2akHe [(A - aI)Gs ]

~T ~

2akGs - kXs - k(A - aI)Gs

-k(Gs + GJ)
~T ~

Gs -Gs
-Xs - (A - aI)Gs

2akXs + 2akHe [(A - aI)Gs ]
~ ~T T

2akGs - kXs - kGs(A - aI)
~T TX s + Gs(A - aI)

o

Xs + (A - aI)Gs
~ ~T

Gs-Gs
~ ~T

-k(Gs + Gs )

2akGJ - kXs - kGJ(A - aI)T

The above inequality can be written as follows.
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2akXs -kXs X s 0

-kXs 0 0 -Xs
Xs 0 0 -kXs
0 -Xs -kXs 2akXs

+He

A-al

1

o
o

o
o
1

A-al

[
Gs 0] [2akl -kIlO ]
o Gs 0 -1 -kl 2akl

<0

(4.143)

Performing a congruence transformation with [1al] [1 0]E9 on (4.143), we have
o 1 al 1

(4.144)

(4.33) in (iii), where Gs := aGs and b:= a-I.

It is easy to give an alternative proof of the fact tnat the condition (ii) implies (iv), where

the relation between the solutions of (4.32) and (4.34) is clear. If (4.32) holds, there exists

c > 0 such that

[
k(AXs + XSAT) + 1cAXsAT AXs - XSAT ]
TTl T <0

XsA - AXs k(AXs + XsA ) + 2"cAXs A

<0

Applying the Schur complement technique to the above inequality, we have

T T 'k(AXs + XsA) XsA - AXs 1 -cAXs 0

XsA - ATXs k(AXs + XSAT) i 0 -cAXs
--------=~X~AT-------------------------(i--------------r-=2~X;----------O-------

,

o -cXSAT
! 0 -2cXs

(4.145)

This inequality admits a congruence transformation with

1 0 0 0

o 0 1 0

o 001

010 0

to get

k(AXs + XSAT) -cAXs 0 AXs-XsAT

-cXSAT -2cXs 0 0
(4.146)<0

0 0 -2cXs -cXSAT

XSAT -AXs 0 -cAXs k(AXs + XSAT)

It is easy to see that the above inequality is nothing but the LMI condition (4.34) in (iv)

with [ FSI FS2 FS3 FS4 FS5 FS6 FS7 FS8 ] = [kXs - cXs 0 X s ~ Xs 0 - cXs kXs ].
Q.E.D.
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4.7.5 LMI's for the Output-Feedback Controller Synthesis

In this subsection, we show that the constraints (4.26), (4.29), (4.33) and (4.38) can be

reduced to LMI's by congruence transformations with EH given by (4.65).

a-stability region (4.26)

Performing a congruence transformation with EJ; EEl EJ; EB EJ; on (4.26) under the con

straint (4.58), we obtain

(4.147)

The above constraint only involves the terms E};X7-lEH' EJ;GEH and EJ;AGEH. Since

these matrices can be represented as in (4.68) and (4.69), it is an LMI with respect to X7-l,

Gn , Hn , il, AK , BK and OK'

Circular region (4.29)

Performing a congruence transformation with EJ; EB EJ; EB EJ; EB EJ; on (4.29) under the

constraint (4.58), we obtain

0 ~TX ~ ~TX ~ 0-'::'H C'::'H '::'H C'::'H
~TX ~ 0 0 ~TX ~-'::'H C'::'H -'::'H C'::'H
~TX ~ 0 C~TX ~ 0'::'H C'::'H 73'::'H C'::'H

0 -TX ~ 0 ~TX ~-'::'H C'::'H c'::'H C'::'H

~TAG~ -bEJ;AGEH bEJ;AGEH ~TAG~
~H '=H ~H '=H

~TG~ b~TG~ b~TG~ ~TG~

+He
'::'H '::'H -'::'H '::'H ::;H ~H '::'H '::'H

0 0 0 0

0 0 0 0

(4.148)

<0

The above constraint only involves the terms EJ;XcEH, EJ;GEH and EJ;AGEH, which

enables us to see that it is an LMI with respect to Xc, Gn , Hn , il, ..4x , BK and OK.

116



Sector region (4.33)

Performing a congruence transformation with SJ; E9 SJ; E9 SJ; E9 SJ; on (4.33) under the

constraint (4.58), we arrive at

0 k~TX ~ ~TX ~ 0- '=H S'=H '=H S'=H
k~TX ~ 0 0 ~TX ~- '=H S'=H -'=H S'=H
~TX ~ 0 0 k~TX ~'=H S'=H - '=H S'=H

0 ~TX ~ k~TX ~ 0-'=H S'=H - '=H S'=H

+He

kSJ;AGSH

k ~TG~:=H ~H

~TG~-'=H '=H

-SJ;AGSH

-bkSJ;AGSH

-bkSJ;GSH

b ~TG~- ~H ~H

-bSJ;AGSH

bSJ;AGSH

b~TG~~H ~H

-bkSJ;GSH

-bkSJ;AGSH

<0

(4.149)

Similarly to (4.147) and (4.148), the above constraint only involves the terms SJ;XSSH,

SJ;GSH and SJ;AGSH and hence (4.149) is an LMI with respect to Xs , Gn , Hn , II, AK ,

BK and OK.

The H2 Specification (4.38)

Performing a congruence transformation with SJ; E9 SJ; E9 I on the first inequality in

(4.38) under the constraint (4.58), we get

o
o

-bSJ;AGSH O]}
-bSJ;GSH 0 < 0 (4.150)

-bCGSH 0

(4.151)

On the other hand, a congruence transformation with I E9 SJ; on the second inequality in

(4.38) leads to

[
Z2 BTSH] > 0
~TY.! ~TX ~
.=HLJ .=H 2'=H

It turns out that the constraints (4.150) and (4.151) involve only the terms given in (4.68)

and (4.69) and hence we can conclude that they are LMI's with respect to X2 , Gn , Hn , II,

AK , BK and OK'
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Chapter 5

Conclusion

In this thesis, we proposed several LMI approaches to the multiobjective controller design

problems with non-common Lyapunov variables. The robust performance analysis and syn

thesis problems for real polytopic uncertainty are also studied, based on the dilated LMI

characterizations derived for the multiobjective controller design. As a concluding chapter,

we now summarize the achievements in this thesis and discuss future topics.

In Chapter 2, we gave a formal description of the multiobjective controller design prob

lems that we dealt with in this thesis. The conventional LMI approach was also reviewed,

where we clarified that the conventional approach is conservative because of the use of a

common Lyapunov variable.

In order to get around the conservatism, in Chapter 3, we provided two LMI approaches

to the multiojbective state-feedback controller design problems with non-common Lyapunov

variables. First, we proposed the subspace approach. The key to this approach was an

introduction of the additional constraints on the Lyapunov variables, which led us to a set

of LMI's that leave the state-feedback gain directly as one of the LMI variables. This was

achieved by freezing only some portion of the freedom in the Lyapunov variables. Hence,

using the unconstrained portion of the freedom, the set of LMI's turned out to allow non

common Lyapunov variables. In particular, it was shown that this approach yields a feedback

gain that achieves better (no worse) performance than that with the conventional approach

if we choose the parameters included in the constraints reasonably. An iterative algorithm

was also derived with a suitable replacement of these parameters.

Second, we proposed the affine representation approach. In this approach, we performed

a standard procedure called change of variables and represented the resulting variables as

a set of affine functions by introducing yet new variables. These affine functions were cho

sen to have a crucial characteristic that troublesome non-convex constraints are satisfied

regardless of the new variables. With these affine functions, we readily derived a set of LMI
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characterizations that allow non-common Lyapunov variables. In addition, we showed that

a reasonable choice of the parameters included in the affine functions assures an advantage

of this approach over the conventional approach. The affine representation approach also

enabled us to have another effective iterative algorithm by simply combining it with the

subspace approach.

The effectiveness of these approaches as well as the iterative algorithms was demonstrated

through numerical examples in this chapter. Applying them to several problems, we obtained

considerably better performance than that with the conventional approach. These results

suggest that the conventional approach with a common Lyapunov variable is conservative,

and the conservatism is circumvented successfully with the use of non-common Lyapunov

variables.

Although the approaches provided in Chapter 3 achieved satisfactory results in numerical

examples, they have some drawbacks. From a theoretical point of view, the most crucial

drawback lies in the fact that they cannot be self-contained ones that are actually free

from the use of a common Lyapunov variable, which is also the case with the algorithms

presented in the previous studies [32],[38]-[40]. To overcome this drawback, we derived

in Chapter 4 new dilated matrix inequality characterizations for continuous-time controller

design. We showed that a particular application of the Schur complement ~echnique leads to a

constructive way to derive dilated characterizations, exhibiting some nice recovery properties.

The advantage of working with these dilated characterizations is that the technical restriction

to a common Lyapunov variable can be avoided. Indeed, they enabled us to propose some

very promising approaches to several problems including the multiobjective controller design

problems, as summarized in the following.

• We proposed a new LMI approach to the multiobjective H2/D-stability controller

design problems with non-common Lyapunov variables. This approach was readily

obtained by the dilated characterizations for the D-stability constraints and the H2

specification. Specifically, because of the nice recovery property of these dilated char.,.

acterizations, we showed that the new approach achieves a better (no worse) upper

bound for the cost functional than the conventional approach. Numerical examples il

lustrated that the actual cost is also improved, and the application of the new approach

resulted in significant improvements over the conventional approach.

• A new approach was proposed to the robust multiobjective H2/D-stability controller

design problems for real polytopic uncertainty, where we successfully employed non

common parameter-dependent Lyapunov variables. The dilated characterizations led

us directly to this new approach. In addition, we proved that a specific choice of the
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scalar included in the dilated characterizations ensures the new approach to achieve a

better (no worse) upper bound for the cost functional than that with the conventional

approach. This choice is only a sufficient condition to ensure the advantage of the

new approach, and numerical examples demonstrated that the new approach without

a special care on the choice of the scalar even achieves considerably better performance

than the conventional approach.

• We proposed new LMI approaches to the robust performance analysis problems for

real polytopic uncertainty with the use of parameter-dependent Lyapunov variables.

This was readily achieved by the dilated matrix inequality characterizations for the

D-stability constraints, the H2 specification and the Hoo specification we derived. The

effectiveness of the new approaches was illustrated through several numerical examples.

The above three are the most important achievements in Chapter 4, gained by the di

lated matrix inequality characterizations. Specifically, it is a remarkable contribution that

we directly reduced the multiobjective HdD-stability problem into a convex optimization

problem represented by LMI's with non-common Lyapunov variables in a reasonable fashion.

In closing, we describe some future topics and possible extensions of the results on the

dilated characterizations obtained in this thesis. As for the Hoo specification, although we

arrived at a new dilated characterization that is suitable for the robust Hoo performance

analysis problems, it is desirable to derive another dilated characterization that enables us

to address the Hoo synthesis problems in a straightforward fashion. On the other hand, in

contrast with the Hoo specification, we actually derived new dilated characterizations for

the D-stability constraints and the H2 specification that are suitable for controller synthesis.

These dilated characterizations are indeed useful in dealing with the multiobjective controller

design problems and robust controller synthesis for real polytopic uncertainty. Furthermore,

we expect that they have another potential to show new directions in such problems as fixed

order dynamic output-feedback controller design, decentralized controller design and so on.

In dealing with these problems, it seems indispensable to attain the decouplingbetween the

Lyapunov variables and controller variables in the matrix inequalities, which is achieved in

the dilated characterizations provided in this thesis.
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