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Abstract

In this thesis, plants that are described by finite-dimensional linear continuous-time peri-
odic (FDLCP) differential equations are examined via the harmonic analysis. That is, the
control system concerned has a linear continuous-time state-space realization with a finite-
dimensional state vector and the system matrices are periodic with respect to the time
variable. The well-developed Fourier series analysis technique and its relevant theorems and
lemmas are the main tools and working bases of this study but these results are utilized
mainly from an operator-theoretic point of view. The discussion focus lies on analysis of
a class of general FDLCP systems. Topics include: asymptotic stability and the harmonic
Lyapunov equation; the frequency response operator and its properties; and the H, and
H,, norms and their individual equivalence between the time-domain and frequency-domain
definitions. Numerical implementations for stability criteria and norm computations, with
various convergence problems taken into account, are tackled rigorously.

Previous efforts on analysis and synthesis about FDLCP systems are briefly reviewed
in Chapter 1, centering around asymptotic stability, frequency-domain analysis and the
H; and H, norms. In particular, the frequency response definitions through the lift-
ing technique, fast sampling/fast hold approximation, parametric transfer function and in-
put/output steady-state analysis are sketched, and their individual advantages and draw-
backs are pointed out and compared, while for the H, and H,, norm computations it is
shown that the solutions of periodic Lyapunov and/or Riccati differential equations are also
useful approaches. The basic properties of FDLCP systems such as the Floquet theorem,
and several convergence lemmas about the Fourier series pertinent to our arguments are
quickly summarized in Chapter 2. As further preparations, mathematical notations and
preliminaries such as the Toeplitz transformation are also included in Chapter 2.

In Chapter 3, at first from the Floquet theorem and the Toeplitz transformation, the
Floquet transformation on state vectors is shown to be equivalent to what we call the sim-
ilarity transformation relations stated on some infinite-dimensional linear spaces (I, and I3,
respectively under suitable conditions) in terms of the state transition matrix knowledge of
FDLCP systems. Next, by means of the similarity transformation relations, the harmonic
Lyapunov equation densely defined on the Hilbert space 5 is established for the asymptotic
stability analysis of FDLCP systems for the first time. The harmonic Lyapunov equation is
also useful and necessary in establishing the ezact trace formula for the H, norm in FDLCP



systems, which is parallel to the trace formula that we have in linear time-invariant (LTI)
continuous-time systems but in terms of infinite-dimensional input or output matrices and
the solution of a corresponding harmonic Lyapunov equation. Also through the similarity
transformation relations, the Gerschgorin theorem is extended to operators defined on the
Hilbert space {2, which leads to a sufficient disc-group stability condition for asymptotic sta-
bility of FDLCP systems. Again, from the similarity transformation relations, the frequency
response operator is established for FDLCP systems via the input/oufput steady-state anal-
ysis. It is shown that the frequency response operator thus introduced is guaranteed to be
densely defined on the Hilbert space Iy and be well-defined on the whole Banach space [y
under suitably strengthened conditions. The equivalences of the Ho norm as well as the
H,, norm between the time-domain and frequency-domain definitions are verified on the
frequency response operator thus defined.

In contrast to the operator-theoretic arguments of Chapter 3 about the basic proper-
ties of FDLCP systems, Chapter 4 is devoted to the numerical implementation problems of
FDLCP systems analysis. First, for asymptotic stability testing of FDLCP systems, an ap-
proximate modeling approach is suggested, which gives a necessary and sufficient condition
if an approximate model is constructed in a dense subset and the transition matrix of the ap-
proximate model can be determined explicitly. Corollaries giving necessary and/or sufficient
conditions are derived thereupon, which have lower computational loads. Second, for the Hy
and H., norm computations, the skew truncation and its modification, the staircase trunca-
tion, are introduced on the frequency response operators such that these two norms can be
asymptotically computed by means of finite-dimensional LTI continuous-time systems, while
the well-known lifting technique converts the problems to those of finite-dimensional linear
shift-invariant (LSI) discrete-time systems. Although the Hs and H, norm computations
can only be asymptotically carried out, uniform convergence is ensured under mild assump-
tions in most practical systems. Under these mild assumptions, upper bounds for the norm
computation errors can be given explicitly, which leads to size assessments inequalities for
the truncations. Furthermore, the limit of the trace formula for the Hy norm computation
developed via the skew truncation on the frequency response operator goes to the eract trace
formula developed in Chapter 3 in terms of the harmonic Lyapunov equation. On the other
hand, the staircase truncation analysis makes it possible to extend the Hamiltonian test for
the H,, norm to the FDLCP setting and thus a modified bisection algorithm is developed
for the H., norm computation. Finally, the Hs and H., norm computations via approximate
models are also considered. There are examples to illustrate the computation efficacy for
the above problems.

In the final chapter, Chapter 5, we first summarize the main contributions of this work in
which an operator-theoretic harmonic analysis approach is adopted in the analysis of FDLCP
systems, and then we suggest some subsequent research directions and possible extensions,
and sketch difficulties in the suggested research directions.

The major contributions of this thesis contain: firstly, asymptotic stability of FDLCP
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systems is connected to the harmonic Lyapunov equation and a Gerschgorin-like stability cri-
terion is established; secondly, the existence conditions and properties of frequency response
operators defined through the input/output steady-state analysis are completely clarified;
thirdly, the well-definedness of the Hy and H., norms of the frequency response operators
and their time-domain /frequency-domain equivalences are fully investigated and manifested.
Finally, the numerical implementations of the above theoretical analysis results form another
group of achievements of this study.
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Notations and Glossary

a.e.
CAC
CPCD
EMP
FR
FSFH
LSI
LTI
FDLCP
FDLDP
pc

PCC
PCD

almost everywhere

continuous and absolutely convergent

continuous and piecewise continuously differentiable
exponentially modulated periodic

frequency response

fast sampling/fast hold

linear shift-invariant

linear time-invariant

finite-dimensional linear continuous-time periodic
finite-dimensional linear discrete-time periodic
piecewise constant

piecewise continuous and convergent

piecewise continuous and differentiable a.e.

the field of complex numbers

the Fourier series expansion operator from Ls[0, h] to I5

the frequency interval [—%k, €b) where wy, := 27/h (h is the period)

the field of real numbers

the set of all strictly positive-definite self-adjoint bounded operators

on the Hilbert space Iy, ie., if S € §*, then (Sz,z) >0, V0O# z € I,

the ring of integers

the set of all the eigenvalues of a matrix (-)

the Euclidean norm of a finite-dimensional vector (-) and the matrix

norm induced by this vector norm

an infinite-dimensional vector with finite-dimensional vector entries xy,
z:=1[- ,le,xg",x”{’.. .]T

the k-th entry of the infinite-dimensional vector g, i.e., [z]x = 2
the (i, k)-th entry of an infinite-dimensional matrix (-)

the set of continuously differentiable functions with compact support
the set of infinite-dimensional vectors z satisfying
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z]|1 = SukPHinH <00

the set of infinite-dimensional vectors z satisfying

lelly, =1 3~ flaelP]? < oo

k=—00
where 1 < p < 0.
L, the set of all vector functions z(¢) defined on [0,00) satisfying

eIz, = [ lle®)|Pat]’? < oo,
where 1 < p < 0.
Ly the set of all vector functions z(t) defined on [0, 00) satisfying
[20)llee == sup_Jl2(B)]] < o0

€[0,00
where the sup should be understood as the essential supremum.
L»[0, h) the set of all vector functions x(¢) defined on [0, h] satisfying

h
o) zator = [ ()Pt < o0
L[0,h) the set of all vector functions z(¢) defined on [0, h] satisfying
[|z()lleo == sup |lz(#)]] < o0
t€[0,h

¥

where the sup should be understood as the essential supremum.

Lpcpl0, A the set of all functions f defined on [0, h] that are piecewise
continuous and differentiable at a.e. ¢ € [0, A]

Lpccl0, h) the set of all functions f defined on [0, h] that are piecewise
continuous and whose Fourier series expansions are convergent
to f(to) for a.e. to € [0, A)

Leacl0, h) the set of all continuous functions f defined on [0, h] whose Fourier
series expansions are absolutely convergent

Lepepl0, A] the set of all continuous functions f defined on [0, h] whose first-
order derivatives are piecewise continuous in [0, h]

Lyc[0,h) the set of all piecewise constant functions f defined on [0, A]

F(t) € L,[0,h] means that F is a matrix function, each element of which is
h-periodic and belongs to L»[0, h] when its domain is restricted
to [0,h). Similarly for other function sets defined over [0, A].

|- 1lx the endowed norm on the linear normed space X
- x/v the induced norm of the operator (-) from Y to X
W llx/vez) the induced norm of the operator (-) from the subset Y of Z to X,
where the norm || - ||z endowed on the linear normed space Z is
used to the subset Y, that is,
|- llx/v(z) == sup Il

ozvey |Yllz
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Chapter 1

Introduction

Quite a large class of practical control plants are such systems that can be described by pe-
riodically time-varying continuous-time models. Typical representatives are machines whose
dynamic state motions have rotating characteristics such as steam turbines, alternating cur-
rent electric generators and propellers of helicopters. Periodic models also come from the
nature system itself; for instance, the sun rises up in the east and falls down in the west
everyday; four seasons are running consecutively one round once a year; tide surges in and
ebbs out monthly; and so on and so forth. Such examples are actually too numerous to
mention here. In summary, periodic vibration phenomena exist ubiquitously both in artifi-
cial engineering systems and in the evolution of the nature itself. Thus, it is a quite natural
and even primitive desire but actually an unavoidable task of the human being to try to
understand and then apply control to systems which consist of periodically time-varying
components internally or are driven by some external periodic forces. This prevalence can
best explain the reason that efforts in this direction have such a long and unbroken history
both in pure and applied mathematics and in the relatively young control theory as well.
To reflect this historic fact, we mention several prestigious mathematicians who had made
outstanding contributions to the periodic world: Parseval (1755), Fourier (1768), Faraday
(1831), Mathieu (1835), Floquet (1883), Raileigh (1883), and Hill (1886). Obviously, it
is impossible to retrieve all the motivations behind the long-lasting enthusiasm among re-
searchers, and we can only mention several points from our own research experience facing
the universality of cycling vibration examples around us.

In this thesis, plants whose dynamic behaviors are described by finite-dimensional linear
continuous-time periodic (FDLCP) differential equations are examined via the harmonic
analysis approach from an operator-theoretic viewpoint. That is, the plant concerned has a
linear continuous-time state-space realization with a finite-dimensional state vector and the
system matrices are all periodic with respect to the time variable t. Namely, we will consider
the FDLCP system given by the state space equation

{ i = A(t)z + B(t)u

y = C(t)z + D(t)u (1.1)



where the system matrices A(t), B(t),C(t) and D(t) are h-periodic, and z,u,y are finite-
dimensional state vector, input vector and output vector, respectively. For this sort of
FDLCP systems, stability analysis [25], [38],[51], [71], controllability/observability [9], [56],
[80], frequency-domain properties and evaluation [39], [69], [70], [84], [85], controller synthe-
sis [21] are frequently attacked research targets. Before any concrete scrutiny for some of
these problems, we must clarify the motivations and significance of these efforts first.

e Periodic process analysis itself is quite intuitive and has simple engineering interpre-
tations. In particular, there are inseparable connections between the time-domain
properties of periodic precesses and those of the complex-domain counterparts. In
fact, the Fourier analysis about periodic functions is the prelude and kernel of various
frequency-domain techniques in signal, systems and control theory [10],[31],[42] by
virtue of the various well-established theorems and lemmas about uniqueness, conver-
gence, completeness and so on in the Fourier analysis [17], [28], [41],[47]. Therefore,
works in periodic systems are significant in developing frequency-domain techniques
for various control problems in FDLCP and linear time-invariant (LTI) systems.

e Confining only to the system control field, periodic control can bring some excellent
control effects that are otherwise difficult or impossible to be realized through con-
ventional LTI control designs; these include gain margin improvement [43] and zero
assignment [50]. In particular, in the latest decade, together with the swift devel-
opment of computer technology, the popular research on the sampled-data systems
has aroused great interests [1],[2], [4], [3], [16], [24], [27],[34], [63], [72], [77], [78], [79], in
which a continuous-time plant is closed with discrete-time controller feedback. In this
sort of hybrid systems where continuous-time signals and discrete-time ones co-exist,
if the input/output relations are analyzed from the continuous-time viewpoint, the
sampled-data system is periodically time-varying because of the installation of sam-
plers and holds. Due to this specific structure property of the sampled-data systems,
it is urgently needed to find ways to deal with analysis and synthesis problems in
control systems when discrete-time control algorithms are involved. These necessities
mentioned above force researchers and engineers to re-evaluate the periodic control
problems in a hybrid system configuration background.

e Analysis and synthesis of FDLCP control systems can be a feasible intermediate bridge
between the well-established control theory for LTI and/or linear shift-invariant (LSI)
systems and its possible extensions to general time-varying control systems. Indeed,
discussions about periodic systems, both continuous-time and discrete-time ones, are
frequently included as a chapter in most textbooks of differential and/or difference
equations analysis, such as [6],[19],[25], [38], [51], [54], [59]. It is expected reasonably
that if we succeed in dealing with periodic systems at a certain control problem, then
we would apply the same technique to general time-varying systems via the period
interval extension in some appropriate sense.
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It must be pointed out that although researchers have devoted lots of their attentions and
efforts to the periodic world, some quite important problems are still remaining open because
it is difficult to give a closed-form and exact motion description for a general FDLCP system.
This situation is best manifested by the stability problem of FDLCP systems. There are
many ramifications or branch cases in stability analysis of FDLCP systems [3], [25], [53], and
only those with specific state matrix structures have been understood fully [51], [54], [71]; oth-
erwise, one has to make do with only primitive results, such as the Floquet theorem, or resort
to approximate analysis. This is also the case for other problems in FDLCP systems such
as controllability/observability problem [9], [56],[80] and the Hy and H,, control [20],[21].
Bearing these in mind, we are in a position to survey the previous works about the topics re-
lated to FDLCP systems which will fall into the scope of this thesis. To be concise, different
topics are surveyed in different sections.

1.1 Asymptotic Stability of FDLCP Systems

Compared with the stability analysis of LTI continuous-time systems, it is much harder
to deal with asymptotic stability of a general FDLCP system. The difficulty comes from
the fact that it is impossible to determine the state transition matrix for an FDLCP system
exactly in a handy form, though there are lasting efforts [68] in this direction. The celebrated
Floquet theorem reveals that such a transition matrix can be expressed in the so-called Flo-
quet factorization form and asymptotic stability is completely determined by the eigenvalues
of the corresponding monodromy matrix. Generally speaking, however, except in some spe-
cial cases, for example, the system state matrix A(t) is scalar and continuous with respect
to the time variable [54], or A(t) is piecewise constant [25],[71] or A(t) is commutative [51],
the monodromy matrix cannot be determined explicitly in a closed form. Facing this diffi-
culty, many researchers turn their eyes to methods that test stability of the original FDLCP
system via that of some approximate models if stability of the approximate models can be
determined easily. One typical way was suggested in [38] which relies on an LTI continuous-
time approximate model. This result is proved by the variation-of-constants formula about
the solutions of differential equations and the well-known Gronwall’s Lemma [25],[38]. The
proof frame is an asymptotic analysis process of differential equations, which is a prevailing
technique in tackling the stability problem in FDLCP systems.

There are also some studies which try to solve the stability problem in FDLCP sys-
tems by a frequency-domain approach. For example, in [39],[70], the Nyquist criterion is
extended to closed-loop FDLCP systems via the frequency response operators. The gener-
alized Nyquist criterion is claimed through determinant relations defined on the frequency
response operators. However, since the frequency response operators are infinite-dimensional,
the implementation of the extended Nyquist criterion remains open. One possible way to
solve this problem is by truncating the determinant defined on the infinite-dimensional fre-
quency response operators as suggested in [39],[70], but the convergence induced has not
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been warranted. As a side note of this Nyquist criterion, it should be pointed out that the
well-definedness of the determinant on the frequency response operators should be scruti-
nized further for general FDLCP systems. The thesis of [70] did provide some arguments
for this definition validity based on absolute convergence results of infinite-dimensional de-
terminants in [53, pp. 36-38], but it is validated only when the FDLCP system concerned
can be described by the canonical form of the Mathieu differential equation and thus the
infinite-dimensional determinant is actually a pre-Hill determinant [70, p. 50]. Our ob-
servation about the same problem reveals that it is generally not trivial to show that the
infinite-dimensional determinant thus defined belongs to the class of so-called trace-class
operators [29, vol. I, pp. 104-119],[83] (for a trace-class operator G, the determinant of the
“operator I + G, i.e., det(I + G), is well-defined). l

For FDLCP systems that have the Mathieu or Hill differential equations as their dynamic
behavior descriptions, the stability problem has been attacked more deeply and some better
understandings exist [3], [53], [39], [81]. These classes of FDLCP systems have attracted much
attention in the study of the vibrations of stretched elliptical membranes, gravitationally
stabilized earth pointing satellites, and the rolling motion of ships. Other important examples
include the control of helicopter vibrations and wind turbines.

1.2 Frequency Responses of FDLCP Systems

There are several ways to define frequency response relations in finite-dimensional LTI
continuous-time systems, for example, the steady-state analysis [64], the Fourier trans-
form [42] and the Laplace transform [18] (via impulse convolution relations). It is well-known
that these definitions are equivalent to each other when the convergence region [42] of the
Laplace transform of the impulse response g(t) of the LTI system concerned contains the
imaginary axis, in which case the Fourier transform of g(t) is meaningful in the sense that
the Fourier transform is well-defined. This can be guaranteed if the LTI system is asymptot-
ically stable with a proper rational transfer function. However, in general FDLCP systems,
definitions are much more difficult because it is hard to compute the impulse response and
establish the Fourier transform and/or Laplace transform relations about the input and
output signals. The lifting technique [4],[5], fast sampling/fast hold approximation [44],
parametric transfer function [48],[57],[82] and input/output steady-state analysis [70] are
the frequently adopted approaches in the literature for the frequency response definitions in
FDLCP systems. Generally speaking, each of these methods has its own advantages and
drawbacks in theoretical analysis and numerical computations. The main points of these
approaches are summarized as follows. '

In defining frequency response relations of FDLCP systems, the continuous-time lifting -
technique is a powerful tool. By the lifting treatment, a continuous-time signal f(-) € Ly,
1 < p < oo is first segmented into (infinitely many) sub-signals fi(-). For each &, fi()
belongs to L,[0, ] and takes the value of f(-) during the time interval [kh, (k + 1)h). Now
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create an (infinite-dimensional) vector f(-) := [fo(-)T, f1(-)T,---,]%, which is called the lifting
of f(-) and denoted by f(-) = W,f(-). Then, it is shown [4] that the lifting operator
Wyp: L, — lﬁp[o’h] is invertible and W), and W;! are isometrically isomorphic, where ZIE,, 0]
is the set of all f(-) defined in the above. If the lifting is applied to the input and output
signals simultaneously of the h-periodic FDLCP system (1.1), and thus we get u(-) = Whyu(-)
and y(-) = Why(-), then the lifted system operator G : u(-) — y(-) commutes with the
standard shift operator on 7 ;. This feature can be taken as the indication of the time
invariance of the operator G. From this, an integral operator-valued sequence {G’k} can
be explicitly determined to express the operator G. Noting that the sequence {ék} can
connect the segmented input signal and the segmented output signal in a discrete-time
convolution manner, it is natural to introduce a Z-transform to represent this relation.
Based on this consideration and some results of [65], it is shown [4] that in the case of p = 2,
G(2) := T2, G 7* is a well-defined operator-valued bounded analytic function (on the unit
disk) and has all the standard properties of the Z-transform. From G(z), the frequency
response relation is defined by letting z = e/#", which is an operator acting on L0, ).
It is shown [74] that this frequency response relation can be interpreted in a steady-state
sense. The frequency response relation defined in the above has brought fruitful applications
in the sampled-data control problems [4], [5], [72], [73], [74], [75],[76]. It should be pointed
out that the frequency response relation defined by the continuous-time lifting involves an
operator-valued complex function. This brings us difficulties in such numerical:‘computations
as frequency response gains, and we will give the reasons for this difficulty in the forthcoming
H, and H,, norms section of this chapter.

Another physically intuitive way to define the frequency response relations in FDLCP
systems is through the input/output steady-state analysis. The general idea is completely
the same as what we do in LTI continuous-time systems, but there is an essential difference.
In LTI continuous-time systems, corresponding to a sinusoid wave input, the steady-state
output response is also a sinusoid of the same angular frequency with a (probably) different
amplitude and phase if the system is asymptotically stable. However, in stable FDLCP sys-
tems this is not the case, which can be shown by simple input/output computations [39], [70].
In fact, in stable FDLCP systems, for each sinusoid input there are infinitely many sinusoid
waves of the angular frequencies that are higher or lower than that of the input sinusoid
wave by integer multiples of the angular frequency corresponding to the system period.
From this observation, the input signal is switched to a summation of infinitely many sinu-
soids called an EMP signal [70], where EMP stands for exponentially modulated periodic.
To this sort of inputs, the steady-state output response is expected to be also EMP, and
then the frequency response operator is introduced to connect these two EMP signals in
a harmonic balance fashion. This idea has been throughly examined in establishing the
so-called FR-operator (FR is abbreviated from frequency response) in sampled-data sys-
tems [2],[34], [35], [36], [37], [73]. However, in FDLCP systems, the existence conditions and
properties of the frequency response operator thus defined have not been well understood



because of the various convergence problems induced by the Fourier series analysis and an
unboundedness property of operators related to differential operations. Our study reveals
that the central problem here is how to interpret the similarity transformation relations
- suggested in [70].

The works of [44], [76] suggest that the frequency response relations of FDLCP systems
can also be defined ‘approximately’ via the discrete-time lifting after proper ‘discretization
approximation’ about the input and output signals. The discrete-time lifting has been applied
for defining frequency responses in discrete-time periodic systems [30], [85], i.e., the systems
described by finite-dimensional linear periodic difference equations; for brevity this class
of systems will be termed FDLDP systems. The survey paper [7] provides a thorough
investigation about the frequency response relations in FDLDP systems defined via the
discrete-time lifting, cyclic, frequency lifting and Fourier analysis besides a novel notion
of generalized frequency response suggested therein. However, before applying discrete-
time lifting to define an approximate frequency response relation in an FDLCP system,
the FDLCP system should be first approximated by an FDLDP model. It is the studies
of [44],[76] that suggest to get such a ‘discretization approximation’ model via the fast
sampling/fast hold (FSFH) technique. The general idea of FSFH is: by subdividing the
period h into N subintervals, inputs are approximated in each subinterval by step functions.
This operation is denoted by u,(-) = Hp/nSh/nu(-) if applied on the input signal of the system
(1.1), where Sy/» and Hp/n are the operators corresponding to sampling and (zero-order)
hold. Outputs are likewise approximated by taking sampled values from these subintervals
and denoted by 9a(-) = Hn/nSh/ny(-). Then an approximate input/output relation of the
system (1.1) can be given by Hu/nSp/NGHu/NSh/N - u(+) — ya(-), where G denotes the
mapping from u(-) to y(-) in the system (1.1). It is clear by the Floquet theorem and
simple input/output analysis that the approximated system (more precisely, the discretized
system Sy nGHaw : ta(-) = Ya(-), where ug(-) and ya(-) are the sampled-data counterparts
of u(t) and y(t)) then turns out to be a finite-dimensional discrete-time periodic (FDLDP)
system in the approximated input/output sense, and then the frequency response of this
FDLDP approximate model can be defined via the discrete-time lifting or other approaches
as suggested in [7] and be represented by a finite-dimensional matrix. Different from the
definitions by the continuous-time lifting and the input/output steady-state analysis, the
frequency response defined via the FSFH approximation and discrete-time lifting is only an
approximation of that of the original FDLCP system at most, although the matrix expression
of the latter frequency response definition is explicit. It is expected intuitively that as
N — 00, the frequency response goes to that of the FDLCP system. However, the installation
of sampling and holding processes inevitably imposes some constraints both on the structure
of the original FDLCP system and the admissible input signals since the operator Hp/nSh/n
is guaranteed to work well on signals that are relatively smooth [14]. In other words, to
ensure the desired convergence in some specific sense, some extra conditions on the system
structure and input signals are needed. Unfortunately, these problems have not been fully



understood in the literature. Further explanations about these problems are given in the Hy
and H,, norm section of this chapter.

Parametric transfer function is another worthwhile method to define frequency rela-
tions for time-varying systems [82], in particular for FDLCP systems and sampled-data
systems [48]. The parametric transfer function w(t,s) for a time-varying system is de-
fined by a 7-variable Laplace transform on the impulse response g(¢,7) of the system, i.e.,
w(t,s) == f5° g(t,7)e~*"dr for each fixed parameter ¢ under appropriate convergence condi-
tions. It is shown that the parametric transfer function w(¢, s) possesses general properties
similar to those of the standard transfer function for LTI continuous-time systems [57], [58].
Thus, hopefully, by letting s = jw in w(t, s) a frequency-domain relation w(t, jw) is estab-
lished between input and output. This idea does work in FDLCP systems, at least in theory,
since in this case the time-domain input/output relation is a Volterra integral operator (see,
e.g., [55] for the definition of Volterra integral operators) by the Floguet theorem [61], so
that the single-variable Laplace transform introduced in the above will become well-defined
if the convergence conditions for the Laplace transform and the conditions for integral-order
interchanges involved are satisfied. Unfortunately, however, the definition of the parametric
transfer function (and thus its corresponding frequency-domain relation) also relies on the
transition matrix knowledge, which is not easy to calculate by a handy and closed-form
formula in general FDLCP systems.

1.3 H, and H,, Norms of FDLCP Systems

The H; and H., norms are used to quantify system performances and as objectives for
control system synthesis [32], [84], [85],[91]. Their computations in LTI systems have been
solved respectively by the trace formula involving the solution of algebraic Lyapunov equa-
tions, and by the solution of algebraic Riccati equations according to the well-known bounded
real lemma or the Hamiltonian test [32]. However, in FDLCP systems, the computations are
much more difficult. The well-known lifting technique, differential equation solutions, fast
sampling/fast hold approximation, parametric transfer function approach and truncations
on frequency response operators defined via steady-state analysis are the frequently adopted
approaches in the literature.

By the lifting technique [4], [5], the H2 and H,, norms of periodic systems can be com-
puted with some corresponding ‘equivalent’ LSI discrete-time systems. As one of the most
successful applications of this technique, in sampled-data systems which are also periodic [24],
explicit formulas for the Hy and H,, norm computations are given in terms of corresponding
‘equivalent’. LSI discrete-time systems [4], [5],[13],[15], [72]. However, no readily and numer-
ically implementable algorithms are available if the systems are FDLCP. To be more precise,
by the continuous-time lifting, an FDLCP system can be represented by an operator-valued
shift-invariant discrete-time system (with a finite-dimensional state space while the input
and output spaces are infinite-dimensional) equivalently in the H, and H,, norm sense (see
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also Section 1.2 in the above). It is based on this operator-valued shift-invariant discrete-
time system that the equivalences between the frequency-domain H, and H,, norms and
their time-domain counterparts are verified. Unfortunately, however, this operator-valued
shift-invariant discrete-time model is by no means numerically implementable, though the
finite-dimensional state space structure guarantees that this operator-valued shift-invariant
discrete-time system can have an equivalent finite-dimensional LSI discrete-time state space
realizations through operator composition computations. However, the operator composi-
tions involved are neither explicit nor trivial in a general FDLCP system if one notes that
the monodromy matrices of some augmented h-periodic state matrices are needed in the
operator composition computations [4], [5].

Another available method for the Hy and H,, norm computations of FDLCP systems is
through solutions of differential equations. For example, for the H, norm computation, it
can be done by solving a periodic Lyapunov equation and doing integration of a certain trace
function about the solution [20]. The existence of the solution of the periodically time-varying
Lyapunov equations can be guaranteed under some standard assumptions [9]. In general,
the solutions can be determined only numerically. As for the H,, norm, the well-known
bounded real lemma leads us to the necessary and sufficient Hamiltonian test [20] for the
H,, norm of the FDLCP system (1.1) to be less than or equal to a prescribed positive scalar
~. This Hamiltonian test is stated via an associated h-periodic Hamiltonian matrix H(t,).
Hence the H,, norm can be computed to any degree of accuracy via a bisection algorithm
by checking if H(t,7) has characteristic multiplier (see Remark 2.1 for its definition) on
the unit circle. In general, this method also needs repeated numerical computations of the
monodromy matrices corresponding to H(t,v) because of the iterative steps with respect to
the prescribed scalar 7. Another celebrated contribution of the differential equation approach
is that the parameterization of state-feedback Hs and H controllers in FDLCP systems is
solved [21].

There are also efforts to compute the H, norm by the parametric transfer functions of
FDLCP systems [48], which lead to a closed-form formula for the Ha norm. This formula is
stated by defining a so-called correlation function of the parametric transfer function w(t, s),
which is given by the integral process By(s) := (1/h) [y w(t, —s)w*(t, s)dt. Therefore, the Hy
norm formula thus derived is actually a multiple integral about the complex function w(t, s)
so that its numerical implementation is not so simple, besides the computation problem of
an infinite summation defined on the above correlation function By(s). In addition, how to
compute the H,, norm via the parametric transfer function has not yet been discussed, and
the equivalence of the Hs norm defined on the parametric transfer function with the usual
time-domain counterpart remains to be an open problem.

As for the Hy and H,, norm computations of FDLCP systems by the frequency response
operator defined via input/output steady-state analysis [39],[69], [70], the numerical imple-
mentation is also not trivial since the frequency response operators are infinite-dimensional.
To solve this problem, the square truncation is proposed in [69]. However, its convergence has



not been verified, which is nontrivial especially when the operator involved is non-compact.
There have been no discussions to clarify the relations between the original FDLCP fre-
quency response operator and the square truncated one, either. The possible reasons may
be attributed to the fact that the square truncation neglects the ‘symmetrical’ mathematical
structure of the frequency response operator, which makes such discussions hard.

One can also consider the norm computations via the fast sampling/fast hold (FSFH)
approximation of the frequency response of FDLCP systems. The FSFH approach is first
proposed in [44] and recently is applied by [76] to the frequency response approximation
in sampled-data systems. As we have seen in Section 1.2, it is naturally expected that the
frequency response relation defined via the FSFH treatment in an FDLCP system approaches
that of the original FDLCP system as N — oo, and thus so do the Hs and H,, norms. To
show these convergences is seemingly trivial. However, the works of [14], [76] show that this is
actually not very easy. One of the difficulties we would encounter is how to ensure that in the
FDLCP system (1.1), as N — 0o, both the imposed input u(¢) and the corresponding output
y(t) can be suitably approximated by the FSFH approximation. This becomes a serious
question because of the introduction of the operator Hy nSk/n, which is unbounded on L,
for any 1 < p < oo [14]. For example, in the H,, norm case, the worst-case input/output is
relevant. A natural question is if these ‘worst” input and output can be properly represented
by their FSFH counterparts. Unfortunately, however, no one can know the ‘worst’ input and
output in advance. It is well-known that a proper representation of a signal can be ensured
if the signal is relatively smooth [14],[16]. Bearing this in mind, it follows naturally that
to satisfy this smoothness requirement (and therefore the convergence desired) in a general
FDLCP system, the input should be confined to an admissible signal set to satisfy the well-
behavedness of the operator Hy/nSy/n; at the same time the system concerned should be
of certain structure such that even the worst-case output signal (for the He, norm) can
be properly approximated. In less rigorous words, the FSFH approach would work well
if the frequency response of the original system is low-pass and the input signal is chosen
from a set of signals that are relatively smooth. Some similar problems also appear in the
H, norm computation. It is evident that the FSFH operator Hy nSp/n does not behave
well on the é-function no matter what N is taken since the J-function is neither smooth
nor band-limited. Hence, the approximation error between the actual impulse response of
the original FDLCP system and the FSFH approximation is hard to be assessed in the
time-domain. Therefore, a time-domain proof for the Hy norm convergence seems to be
nontrivial. We believe that a frequency-domain proof for the desired convergence also needs
much more involved discussions about the relations among the frequency responses defined
via the FSFH treatment, continuous-time lifting and input/output steady-state analysis,
and these discussions are of independent significance from the experience of this author.
However, we will not probe into these topics in the main context of this thesis.

Finally, it must be pointed out that there exist no available formulas or algorithms in
the literature established via an FSFH approach for the Hy and H,, norms computations in



the FDLCP setting. Thus, the real purpose to include the above paragraph here is to show
some considerations about why the FSFH approach has not been successful so far, instead
of a survey about the FSFH approach and its application.

1.4 Scope of the Thesis

Having given a survey on the existing studies on FDLCP systems in the preceding sec-
tions, we will concentrate our attention in the forthcoming chapters only on the analysis of
FDLCP systems through the harmonic analysis approach both theoretically and numerically.
Before our formal discussions, the contents of the rest of the thesis are sketched as follows.

The basic properties of FDLCP systems such as the well-known Floquet theorem and the
principal results of the Fourier series analysis closely related to our arguments are quickly
summarized in Chapter 2. As further preparations, some other mathematical notations and
preliminaries such as the Toeplitz transformation are also included in Chapter 2.

In Chapter 3, at first from the Floquet theorem and the Toeplitz transformation, it is
shown that the Floquet transformation about the state vector can be equivalently expressed
as the similarity transformation relations stated on some infinite-dimensional linear spaces
(I and [,, tespectively under suitable conditions) in terms of the transition matrix of an
FDLCP system. Next, by means of the similarity transformation relations, the harmonic
Lyapunov equation densely defined on the linear space Iy is established for the asymptotic
stability analysis of FDLCP systems for the first time. The proof arguments are given
only through simple matrix algebra so that the existence problem of steady-state periodic
solutions of a periodically time-varying Lyapunov differential equation [9] is circumvented
completely. The harmonic Lyapunov equation is helpful in proving a stability criterion for
FDLCP systems based on approximate modeling in Chapter 4, and this equation is also
useful and necessary in establishing the ezact trace formula for the H, norm in FDLCP
systems, which is parallel to the trace formula expression that we have in LTI continuous-time
systems but in terms of infinite-dimensional input and /or output matrices and the solution of
a corresponding harmonic Lyapunov equation. Also through the similarity transformation
relations, the Gerschgorin theorem is extended to operators defined on the Hilbert space
l,, which leads to a sufficient disc-group stability condition for FDLCP systems. Next,
again from the similarity transformation relations, the frequency response operators are
established for FDLCP systems via the input/output steady-state analysis. It is shown
that the frequency response operator thus introduced is guaranteed to be densely defined
on the Hilbert space I and be well-defined on the whole Banach space {; under suitably
strengthened conditions. The respective equivalences about the Hs and Hy norm between
the time-domain and frequency-domain definitions are verified when the frequency response
operator thus defined is used in their frequency-domain definitions.

In contrast to the operator-theoretic arguments of Chapter 3, Chapter 4 is devoted to
the numerical implementations of the results in Chapter 3. First, for asymptotic stability of
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FDLCP systems, an approximate modeling approach is suggested, which yields a necessary
and sufficient condition if the transition matrix of an approximate model can be determined
explicitly. Here, the sufficiency proof is via the harmonic Lyapunov equation, while the ne-
cessity one follows from the Gronwall’s Lemma and-the variation-of-constants formula [38].
Several corollaries giving necessary and sufficient conditions are derived thereupon, which
relax the requirements on the transition matrices of approximate models. Second, for the
H, and H,, norm computations, the skew truncation and its modification, the staircase
truncation, are introduced on the frequency response operator such that these two norms
can be asymptotically computed by means of finite-dimensional LTI continuous-time sys-
tems, while the lifting technique converts the problems to those of finite-dimensional LSI
discrete-time systems. Although the computations are only asymptotically carried out, uni-
form convergence can be easily ensured under mild assumptions in most practical systems.
Upper bounds of computation errors can be given under these mild conditions so that in most
practical FDLCP systems, it is possible to assess the truncation size in advance. Moreover,
the limit of the asymptotic trace formula for the H, norm computation developed via the
skew truncation on the frequency response operator is shown to go to the ezact trace formula
developed in Chapter 3 through the infinite-dimensional harmonic Lyapunov equation. On
the other hand, the staircase truncation analysis also makes it possible to extend the Hamil-
tonian test for the H,, norm to the FDLCP setting and thus a modified bisection algorithm
is developed for the H,, norm computation. Finally, the Hy and H, norm.computations
via approximate models are also considered. There are numerical examples to illustrate the
efficacy of the numerical implementation algorithms.

In Chapter 5, we summarize the main results of this thesis and point out the problems that
have not been solved up to the present stage, and sketch the difficulties we have encountered
in solving them. Finally we move on to suggest some possible subsequent research topics.
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Chapter 2

Preliminaries to FDLCP Systems

The purpose of this chapter is to lay the mathematical foundations for the subsequent discus-
sions. In Section 2.1, the state-space description of finite-dimensional linear continuous-time
periodic (FDLCP) systems is presented first and the Floquet theorem is reviewed. Remarks
about the Floquet theorem are given, which play a key role in understanding the transition
matrix and asymptotic stability of a general FDLCP system. Next in Section 2.2, several
convergence lemmas about the Fourier series expansions of periodic functions are quoted from
textbooks. Based on these preparations, the Toeplitz transformation is re-defined rigorously
and several important lemmas and propositions stated via the Toeplitz transformation for
FDLCP systems are proved thereafter. These lemmas and propositions are the main tools
in establishing the similarity transformation formulas of FDLCP systems in Section 2.3 and
useful in discussing the eigenvalue structure of FDLCP systems in Section 2.4. These lemmas
and propositions will also be used to assure various convergence and validity in theoretical
analysis and numerical computations in the coming chapters.

2.1 FDLCP Systems and the Floquet Theorem
Consider the FDLCP system

[ z=A(t)x+ B(t)u
G { y= C(t)z + D(t)u (21)

where 2 € R*,u € R™ and y € R' are the state vector, input vector and output vector,
respectively. Accordingly, A(t), B(t), C(t) and D(t) are the n x n state matrix, n X m input
matrix, [ x n output matrix and [ x m feedthrough matrix, which are h-periodic time-varying
matrices. The transition matrix of the system (2.1) is denoted by ®(t,t,) when the initial
time is ;. The system (2.1) is said to be strictly proper if D(t) = 0,Vt € [0,h]. In the
following, all the dimensionality subscripts will be suppressed if no confusion is caused.
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Theorem 2.1 (Floquet Theorem [38],[51],[61]) Assume in the system (2.1) that A(t) €
L1[0,h]. Then the transition matriz ®(t,to) is continuous with respect to t and can be ex-
pressed as ®(t,to) = P(t,10)e?%) where P(t,t,) is absolutely continuous in t, nonsingular
and h-periodic both int and ty, and Q is a constant-matriz. Moreover, the system is asymp-
totically stable if and only if the eigenvalues of the monodromy matriz, ®(h + to, to), are in
the open unit disk, or equivalently, the eigenvalues of Q lie in the open left-half plane.

Remark 2.1 In [19),[38],[51],[56],[59], the eigenvalues of the monodromy matriz ®(h +
to,t0) are also called characteristic multipliers of A(t) while the eigenvalues of the matriz Q
are named characteristic exponents of A(t). The characteristic exponents are unique in the
sense of modulo (27j/h), and the characteristic multipliers are actually independent of the
initial time tg. Hence it would lose no generality to let to = 0 in the discussions so that we will
take a zero initial time in general. Noting that absolute continuity implies continuity [55], [60],
it follows that P(t,ty) is continuous with respect to t. Generally speaking, Q is complex
(derived through a matriz logarithm [19]) and this may bring difficulties in certain practical
design problems. This difficulty can be overcome by resorting to a real Floguet factorization,
that is, Q can be given by an appropriate real matriz, as stated in Corollary 8.1.4 of [51).
In [81), Theorem 2.1 is named the Flogquet-Lyapunov theorem, in which it is also asserted
that for any arbitrary constant matriz Q and h-periodic matriz P(t,0) that is nonsingular for
all t, continuous, and has a piecewise-continuous derivative, there is some h-periodic system
whose transition matriz is P(t,0)e%".

Remark 2.2 In the literature there are two ways to express the Floguet factorization (or
decomposition) of the transition matriz of an FDLCP system. One way is as we have stated
in Theorem 2.1. In some references [56],[61], one can also see the Floquet factorization in
the form of ®(t,to) = P(t)e@t) P~Y(to). It is worth mentioning that these two forms are
actually equivalent. This can be proved as follow.

From Theorem 2.1, it is clear that ®(t,0) = P(t,0)e%* and ®(to,0) = P(t,0)e?%. Then,
we obtain from the basic properties of a transition matriz that

(I)(ta tO) = Q(t7 O)q>(07t0> = @(t, 0)‘1)—1(7507 0)
= P(t,0)e% (P(ts,0)e%) " = P(t,0)e%*= )P (t,0)
If we rewrite P(t) = P(t,0), then the equivalent expression follows immediately.

Therefore, the Floquet factorization of the transition matriz ®(t,to) of the FDLCP system
(2.1) always means that ®(t, o) = P(t,10)e?™) in the discussions of this thesis.

The Floquet theorem is merely an existence theorem and as such is useful in theoretical
work. However, the computation for the Floquet factorization pair (P(t,1o), Q) of the state
transition matrix of a general FDLCP system is usually difficult to the best knowledge
of the author except in the cases when the state matrix A(¢) has special structures; for
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example, A(t) is a scalar and continuous (Theorem 2.4.1 in [54]), A() is piecewise constant
([25],[71]) or A(t) is commutative ([51]). It is worth mentioning that in the last case, only
the computation of Q is reduced to the ‘DC’ matrix computation about A(t) on [0, A], and
the computation for the periodic portion P(t,%o) is still difficult in general.

Combining the Floquet theorem with Theorem 6.3.2 of [51], simple deductions yield

P(t,0) = ®(¢,0)e™ %, %P(t,o)z[A(t)@(t,O)—@(t,O)Q]e”Qt (a.e.) 22)
2.2
P1(t,0) = e2'(0, 1), %P'l(t,o)zth[th(O,t)—cI)(O,t)A(t)] (ae)

The equations of (2.2) play a key role in analyzing the convergence properties of the Fourier
series expansions of the periodic functions P(t,0) and P~1(t,0).

Based on the Floquet theorem, introduce the state transformation Z = P~'(t,0)z to the
FDLCP system (2.1). Then it follows readily after simple derivations that

[ 2=Qi+ B(t)u
G: { y =Gt + D(t)u (23)
with the matrices B(t) and C(t) given by
B(t) := P7(t,0)B(t), C(t)=C(t)P(¢,0) (2.4)

It is clear that the FDLCP system (2.3) is equivalent to that of (2.1) in the Lyapunov
sense. That is, the system (2.1) is asymptotically stable if and only if the system (2.3) is.
Another important structure feature of the system (2.3) is that the state matrix is a constant
matrix. In the literature, the state transformation # = P~1(¢,0)z is called the Floquet state
transformation, which brings some mathematical convenience in the discussions.

2.2 Fourier Series and the Toeplitz Transformation

In this section, the Toeplitz transformation is introduced and its validity is considered.
Some results from the Fourier series analysis that pertain to the subsequent arguments are
summarized simply as mathematical preparations. To this end, first let us assume that X (t)
is an h-periodic time-varying matrix function belonging to L»[0, h]. Now define

wp =27/h

and expand X(¢) to its Fourier series expansion, i.e., X(t) = 12 Xne™»t which is
well-defined in the sense that

+co )
|| X () - Z Xmejm“”'(')HLg[o,h] -0

m=—oC
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The Toeplitz transformation on X (¢) [70], denoted by 7 { X (¢)}, maps the matrix function
X(t) € L2[0, k] into a doubly infinite-dimensional block Toeplitz operator [70] (or to be more
precise, block Laurent operator [29, Vol. II, p. 564]) of the form

[ : : :

o Xo X Xoo
T{X:=|- X1 Xo X4 - |=X (2.5)

Xo X1 Xp

It is straightforward to show that
T{XO+Y®)}=T{X®)}+T{Y(®)}

when X (t) and Y'(t) are h-periodic and belong to L[0, h]. However, the situation is different
for the Toeplitz transformation of the product of two h-periodic matrix functions. To clarify
the conditions under which the Toeplitz transformation can be interchanged with matrices
multiplication computations, the Mertens theorem is stated below.

Lemma 2.1 (Mertens Theorem [12], [45]) Let S50_ am and S55_, b be two convergent in-
finite series and let ¢ = X4 qom Gpbg. The series S5 cm is called the Cauchy product of
Yom=00m and 370 o bm. Provided that one of the infinite series Y50 am and 3.50_o by, is
absolutely convergent, then Y.ov_, cm i convergent and satisfies

o0 [+ 0] o0
2 6m=2 am) bn
m=0 m=0 n=0

It is worth mentioning that by the proof of the Mertens theorem provided in [12], [45], it is
nontrivial to extend this theorem to two-sided infinite series like ¥o°__ __ a,,. Because in this
latter case, the Cauchy product involves terms of infinite summations so that an iterative
relation of partial summations fails to hold (this relation is an essential point of that proof).
This is why we give a lengthy and seemingly redundant proof for the following lemma in
which the Mertens theorem is applied. By Lemma 2.1, the interchangeability problem we
mentioned in the above can be solved. Now we consider two compatible h-periodic matrix
functions X(¢) and Y (t) with the Fourier series expansions X(t) = 1 _ X,e/™? and

Y(t) = 2 Yi.ef™* respectively. Then we have the following lemma, in which it is
implicitly assumed that both X(¢)Y (¢) and Y (¢)X(¢) make sense.

Lemma 2.2 Suppose that the Fourier series ezpansion of X (t) € Ls[0, h] converges to X (to)
for almost every (a.e.) to € [0,h]. Also suppose that Y(t) € L»[0,h] is continuous and the
Fourier series expansion of Y(t) is absolutely convergent. Then, the Fourier series expan-
sion of X ()Y (t) (or that of Y ()X (t), respectively) converges to X(to)Y (to) (Y (t0)X(to),
respectively) for a.e. to € [0,h], and

15



T{XOY ()} = T{XOYT{Y(®)}, T{YOX®)}=T{Y®OrT{X([®)}

Proof By the absolute convergence of the Fourier series expansion of Y(¢), it follows that
it is uniformly convergent with respect to ¢ over [0, k]. Thus, the Fourier series expansion of
Y (t) defines a continuous function over [0, h]. By the property of the Fourier series expansion
as noted above, together with the continuity of Y(¢), it follows that this continuous function
is nothing but Y (¢). In other words, for every ¢y € [0, h], the Fourier series expansion of Y'(¢)
converges to Y'(¢o). Now rewrite the Fourier series expansions of X (¢) and Y (¢) as

X()= 3 Xat) Y()= 3 Val)

m=0
with Xo(t) = Xo and Xp(t) = Xpne™# + X_e7™rt m = 1,2,-++, and Yy,(t), m =
0,1,2,--- are defined similarly. Hence, by the assumption on X(¢) and the Mertens theorem,
for each ty € [0, h] at which the Fourier series expansion of X(t) converges to X (to), we have

+o00 +o0 +00
X(to)Y (to) = ( > Xm(to))( Z_Oym(to)) = Z—o Zm(to) (2.6)

m=0
where Zn(to) = T uro=m Xul(lo)Yo(to). That is, the right-hand side of (2.6) is the Cauchy
product of ¥+ X,,(to) and ¥, Vi (to). Simple computations lead us to

m=0
Zo(te) = XoYo
Zi(t)) = (XoYi+ X1Yo)e™r™ 4 (XY ) + X_1Yy)e dwnto
Zo(te) = (XoYa+ X3Vi + XoYa)el?® 4+ (X1Y_1 + X_1Y3)
+H(XoY_o + X 1Y 1 + X_oYp)e im0

.........

Now we construct the following array from the above computation results.

0 0 0
0 0 (X0Y_2 + X 1Y 1+ X_QYb)e—jzwhtO
0 (X()Y_l + X_l%)e—_jwhto 0
XoYo 0 (XY, + X_lyvl)
0 (XOYVI + X1Y0)€jw’lt° 0
0 0 (XoYa + X1Yi + XoYa)el2nt
0 0 0

For simplicity, the (p, ¢)-th entry in this array is simply denoted by a,,. Here, {ap,} with
pe Zand ¢g=0,1,2,--- forms a double sequence [12]. It is obvious that the summation
of all the entries in the g-th column is just Zy(t0),q¢ = 0,1,2,--- and 3224 Z,(to) is nothing
but the sum of the repeated-series-by-columns of the double sequence {a,,} according to the
terminology of [12], [52]. In other words, we obtain
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+oco “+oo

> ( > apq) =Y Zy(to)

g=0 p=-—c0 =0
Similarly, Ep__oo (E;' 0 apq) is called the sum of the repeated-series-by-rows of the given
double sequence. To our current purpose, we further consider the so-called rectangular
partial summation defined on the double sequence {a,,}, which is given by

I r
=D D an
p=—1q=0

According to [52], the convergence of the sum of the repeated-series-by-rows as well as that of
the repeated-series-by-columns can be ensured based on the convergence of the rectangular
partial summation. To exploit this fact, we first aim at establishing the convergence of the
rectangular partial summation, which can be guaranteed by the convergence of the sum of the
repeated-series-by-columns by the specific structure of the double sequence {a,,}. Indeed, it
is easy to see that if I > r, then S, = ¥7_ Z,(to). Hence, the convergence of $°/55 Z,(to) (by
the Mertens Theorem under the given assumptions) implies that the double sequence {Si}
itself is convergent to ¥7.% Z,(to), which in turn is called the sum of the double sequence
{ape} by definition and can be expressed as

S = i Zq(t())

g=0

On the other hand, for any fixed p € Z, the p-th row of the array {a,,} satisfies

Z Upq = Z XpkYie'Porl

q=0 k=—0c0

Then it is clear by the Cauchy-Schwarz inequality and the Parseval theorem that

“Zapq||< Z |1 Xl - | lYk||<[Z |1 Xp—k P Z Ya]]]1? < o0

k=—o00 k=—00 k'_—oo

which says that the array {a,,} is convergent for each row. Summarizing these arguments,
the conclusion of [52] tells us that the sum of the repeated-series-by-rows of {a,}, ie.,
Zp__oo (ZZ‘;U apq), is also convergent and the sum of the repeated-series-by-rows is equal to
S. That is

f (%apq) = “§:° ( i" X *kn)ejWhto =5= izq(tO)
p=—co q=0 p=—00 k=-o00 q=0

Using this relation in (2.6), we eventually obtain
+00

+00 _
X(to)Y(to)= Y ( 3 Xpoi¥i)elPord (2.7)

P=—00 k=—00
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which holds for almost all ty € [0,h] by the assumption on X (¢). Noting that it is in the
form of the Fourier series expansion, it immediately follows that {3{2° o Xp—xYi} 12 is

indeed the Fourier coefficients sequence of X (¢)Y(t), because we readily have

+00

Xy - X ( 5 Xpi¥e) el

=00  h=—

Lo0h]

(since (2.7) holds for a.e. to € [0,h]) and the Fourier series expansion is unique. This gives
T{X@t)Y(®)} = T{X®}T{Y(?)}. Similarly for T{Y(¢)X(t)} = T{Y(t)}7{X(¢)}. This
completes the proof. Q.E.D.

The following lemma [17, p. 104, Theorem 2] gives some sufficient conditions under which
the Fourier series expansion of a given h-periodic matrix function is absolutely convergent.

Lemma 2.3 Let X(t) be h-periodic and continuous, and suppose that its first-order deriva-
tive is piecewise continuous. Then the convergence of the Fourier series expansion of X(t)
is absolute and thus uniform with respect to t € [0, h].

If the conditions in Lemma 2.3 are relaxed [28, p. 173, Theorem 10'], we get Lemma 2.4.

Lemma 2.4 Let X(t) be h-periodic, piecewise continuous and differentiable at a.e. t € [0, h].
Then, the Fourier series expansion of X (t) converges to X(to) for a.e. to € [0,h)].

To validate a useful result about the Toeplitz transformation on the derivative of an
h-periodic time-varying matrix function (i.e., the equation (2.15) given below), we need the
following lemma, [17, p. 106, Theorem 3].

Lemma 2.5 Let X(t) be h-periodic and continuous, and suppose that the first-order deriva-
tive of X(t) is piecewise continuous. Then, att € [0, h] where the second-order derivative of
X(t) exists, X(t) = Lr2_ . imwpXpne™* . Namely, the termwise differentiation is valid.

m=—

Remark 2.3 A function X(t) defined on the interval [0, h) is said to be piecewise continuous
if [0, ] can be divided into finitely many sub-intervals, on each of which X (t) is continuous
and the unilateral limits of X (t) at the ends from the interior of the sub-interval exist [55].
X(t) is said to be piecewise smooth on [0, h] if X(t) is continuous on the whole interval [0, h]
and continuvously differentiable except ot finitely many points of [0, h], at each of which the
left and right derivatives exist. Following the proofs of Lemmas 2.3 and 2.5 [17], or following
the arguments in [28] regarding the results corresponding to these lemmas, we can readily
see that the conditions on X (t) in these two lemmas can actually be replaced by the weaker
condition that X (t) is h-periodic and piecewise smooth. Given this fact, but with a slight
abuse of terminology, we neglect the slight difference in these two conditions in this thesis.
Namely, when we say that a function is continuous and its first-order derivative is piecewise
continuous, the exact meaning should be interpreted to be that the function is piecewise
smooth. We follow this convention, since the former wording seems more intuitive and
provides some ease in descriptions. However, this does not cause any loss of rigorousness.
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Now we define some sets of h-periodic functions as follows.
_ f(t) is piecewise continuous and }
~ differentiable at a.e. t € [0, ]

{ £8) ~ f(t) is piecewise continuous and its Fourier series }
" expansion is convergent to f(to) for a.e. ty € [0, h]

Lrcp[0, A] == {f(t)

Lpccl0,h]

f(t) is continuous and the Fourier series
L 0,h] = t): L
cacl0,h] {f( ) expansion of f(t) is absolutely convergent } C Lrce[0, )
t) is continuous and the derivative of
Lcpep[0, b == {f(t) : 1(t) } C Lpcp[0,h]

" f(t) is piecewise continuous in [0, A]

where PCD stands for piecewise continuous and differentiable and PCC is short for piecewise
continuous and convergent while CAC and CPCD are abbreviated from continuous and
absolute convergent, and continuous and piecewise continuously differentiable, respectlvely
By Lemma 2.3 and Lemma 2.4, respectively, it is clear that

Lcpepl0,h] C Leac[0,h),  Lepen(0,h] C Lpep(0, h] C Lpcc[0, A]

which are helpful in interpreting relevant results stated on different classes of FDLCP sys-
tems. The following results are helpful in our subsequent arguments.
It is not hard to show the following lemma [46].

Lemma 2.6 If the matriz functions X(t),Y (t) € Lcacl0, h] have compatible dimensions,
then X(t)Y(t) € LCAC[Oa h]

Proof Expand X(t) and Y(¢) into their Fourier series expansions as we have done just
before Lemma 2.2. Then under the assumptions about X (¢) and Y (¢), it is clear that

+oo +o0

Y I Xml <00, Y [[¥m]] <0

m=—o0 m=—0o0

On the other hand, by the proof of Lemma 2.2, it follows that for any ¢ € [0, h]

+oo +oo

X(t)Y(t) = Z Z X _kYkejpw"t
p=—00 k=—00
and 372° X, Y% is the p-th Fourier coefficient of the h-periodic matrix function X ()Y (¢).
To complete the proof, it remains only to show that 35 || =52 | X, +Yi|| < 0o. To this
end, we observe that

SIS %< S 5 Xl Il

p=—00 k=—00 p=—00 k=-—00

£ ] | £ 1

< o0
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where we used the fact that {||X,—«|| - ||Y%||} is a double-side inﬁnite sequence with non-
negative terms, and thus the convergence of the summation ¥1°° 5722 || X, &l - [|Yzl|
does not change no matter how the terms are rearranged. Q.E.D.

Lemma 2.7 Lcac|0,h] is dense in Lo[0, h).

Proof Take an arbitrary f(t) € Lo[0,h] and expand it into the Fourier series expansion
F@) = Tt faemrt with f o= [, fI T fE, -] € la (by the Parseval theorem).
Noting that for any € > O we can find d € I, such that ||f — d||;, < e since [; is dense in Is.
Now construct d(t) := 372 o d.e™™*%. 1t is easy to see that d(t) € Lcac(0, h] and

+co .
17 = dO|zapory = || 3o (Fa = dn)e™ O g0 = [|f = dlli, <€

n=—od

which follows again by the Parseval theorem. This completes the proof. Q.E.D.

Lemma 2.8 Let X(t) € Lpcc[0,h] and X be the Toeplitz transformation of X (t) defined in
(25), i.e., X =T{X(t)}. Then, ||X|li,/1, = SuPsejou [IX ()| and X is bounded on l,.

Proof Taking f(t) € Lcac|0, k] and expanding it into the Fourier series expansion f(t) =

+o g eimnt it follows readily that f := [, fTy, fT, ff,--]T € h. It is evident that
the converse is also true. On the other hand, by the assumption on X(t), it follows from
Lemma 2.2 that X f = y, where y is defined similarly to f but in terms of the Fourier
coefficients of X (¢)f(¢). Thus it follows that

| X £l
Xl /11(12) == SUP =
H H2/1() ;éfell{ ”lez }

IXOfOllzaoriy .y 5y

o#(::)eLvo[o h] | | 22104

Obviously, ||X |1, /i) = 1| X||i/1, since Iy is dense in l5. Similarly, from Lemma 2.7, it follows
that [|X ()|« = ||X()]|z210,n)/ 2200, Hence, we obtain

X212 = IX (N Lafo,h)/ 22000 = sup_ || X ()]
t€[0,h]

Since X (t) € Lpcc[0, k] by the assumption, the boundedness assertion follows. Q.E.D.

Remark 2.4 By the terminology of [29, p. 565], the h-periodic matriz function X(t) of
Lemma 2.8 is the defining function of the (block Laurent) operator X. Then, it is easy to
see that Lemma 2.8 is only a special case of Corollary 2.2 of [29, p. 567]. However, an
independent proof is provided here for Lemma 2.8 through the harmonic analysis approach.

The following proposition describes the basic properties of the Fourier series expansions
of the h-periodic matrices P(t,0) and P~'(¢,0), which are the periodic portion and the
corresponding inverse of the transition matrix ®(¢,0) of the FDLCP system (2.1), together
with the characteristics of their Toeplitz operator expressions.
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Proposition 2.1 Assume in the system (2.1) that the state matriz A(t) is piecewise contin-
wous in [0,h] and let T{P(t,0)} =: P. Then, the Fourier series expansions of P(t,0) and
P1(t,0) are absolutely convergent, or equivalently, P(t,0) and P~*(¢,0) belong to Lcac[0, h].
Moreover, T{P~Y(t,0)} = P7". .

Proof From (2.2), the assumption on A(t) clearly says that P(t,0) and P~'(t,0) are con-
tinuous and their first-order derivatives are piecewise continuous. Hence, by Lemma 2.3,
the Fourier series expansions of P(t,0) and P~'(¢,0) are absolutely convergent. On the
other hand, P(t,0)P~1(t,0) = I,Vt € [0, h]. Hence, from Lemma 2.2, applying the Toeplitz
transformation on the above equation gives :

I=T{P(t,0)P7'(t,0)} = T{P(t,0)}T{P7'(t,0)}
where I := T{I} is the identity operator on lo. Similarly, I = T{P~'(t,0)}T{P(t,0)}.
Hence, we have 7{P~1(¢,0)} = P! by the uniqueness of the inverse operator [22]. Q.E.D.

To show various convergences involved in the subsequent chapters, we derive the following
proposition as a further preparation.

Proposition 2.2 In the system (2.1), assume that A(t) € Lpcpl0,h] and B(t),C(t) €
Loac[0, k). Then B(t) and C(t) belong to Lcac|0,h], where B(t) and C(t) are given in
(2.4). Furthermore, if letting B :== T{B(t)} and C :=7T {C(t)}, then it holds that

1Bl /ta < ||B()||eMAOIHIRIDE &1, < [|C()]|eNAOIHIRIDA
where ||A(-)|| := supseion [|AW@)|], and ||B(-)|| and ||C()|| are defined similarly but in terms
of B(t) and C(t), respectively.

Proof From the assumption on A(t), Proposition 2.1 shows that P~'(¢,0) and P(t,0)
belong to Lcac0, h]. Since B(t), C(t) € Leacl0, b, it follows readily from Lemma 2.6 that
B(t) = P~(t,0)B(t), C(t) = C(t)P(t,0) belong to Lcac|0, A]. This gives the first assertion.
Thus, it makes sense to do the following arguments by Lemma 2.8.

1Bl = 1P, 0BO maopy/zaion < sup [IP7H(E,0)]] sup [|BE)]
t€[0,h] t€[0,h]
< |IBO)|| sup |[€%] sup ||®(0,1)]| < ||B(-)|[elAOIHIRIDA
t€[0,h] 1€{0,h]

The last inequality follows from Lemma 4.2 in Chapter 4 (i.e., Lemma 6.3.1 of [51]) and
leads to the inequality for ||B||;,,- The inequality for ||C||;,/1, follows similarly. Q.E.D.
2.3 Similarity Transformation Formulas

Equipped with the Floguet theorem and the lemmas in Section 2.2, we are ready to es-
tablish the (Floquet) similarity transformation relations in FDLCP systems. These relations
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play a key role in verifying such features as validity of various definitions, convergence and
stability related to FDLCP systems. The rigorous proof and interpretation for the similarity
transformation relations will be established separately on the linear spaces lo and /; in this
section, which form one of the main contributions of this thesis, but it should be pointed out
that the original ideas partially come from [69], [70].

2.3.1 Similarity Transformation Formula on I,

To state the similarity transformation formula, we define the infinite-dimensional matrix

E(](ﬂ) = dla‘g[ v ,j@—21>j99—1[aj(POLj(PleQ%Ia o ]

Here
Wh W
Or =+ kwn, QE [——’1 h) =T, (2.8)
and the jgol-block is at the center of E(jyp). The infinite-dimensional matrix E(j¢) will
also be used for the frequency-response operator definition via the input/output steady-state
analysis in Chapter 3. Now we further define the subset [z of s by

lg:= {1’ €ly: (]O)JI € lz} (2.9)

where E(j0) = E(j¢)|p=0. Now we prove the following lemma which describes some basic
properties of the subset [g of lo.

Lemma 2.9 [z is dense in the Hilbert space l5. Also, lg is a proper and dense subset of l;
in the lo-norm sense.

Proof Let z € l. For any € > 0, there exists ' € ls with only finite nonzero entries such
that ||z — 2||;, < e. Obviously, E(j0)z’ € I, and thus 2’ € Ig, which implies that the subset
Ig of I5 is dense in [s.

Furthermore, it is clear that z € lg if and only if }:m_;;o m2wi||[z]m||? < co. Tt follows

from the Cauchy-Schwarz inequality that if z € [g, then

400 T 1
3 il = 3 e millaal
" mf:bo 1, too
< (X 2N E mligal) <2 <o
m#0 m#0

for some M > 0. Thus, if € g, then z € [;. The fact that [ is dense in I; can be shown
exactly the same as in the proof for the first assertion (i.e., via truncation). Now take

[.’IJ] —_-{ #{1,0,---,0]7“ (771750)
o 0 (m = 0)
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Clearly, z € I; but E(j0)z ¢ l>. Namely, Iz is a proper subset of {;. Q.E.D.

Now we are in the right position to state the so-called (Floquet) similarity transformation
relations in a general class of FDLCP systems.

Theorem 2.2 In the system (2.1), let A(t) € Lpcp0, h] and B(t), C(t) € Lpcc|0,h]. Then,
Ig is P-, P™'-, P*- and P -invariant, where P~ := [P, P is invertible on lg and the
unique inverse of P on lg is P! restricted to lg. It holds on 1 g Cls that

P(E(j0) - QP ' = E(j0) - A (2.10)

where Q = T {Q}. Moreover, letting B = T{P‘l(t,'O)B(t)} and C := T{C(t)P(t, O)},/ it
holds on the whole 1y that '

B=p'B, C=CP (2.11)
Proof By the equations in (2.2), we obtain
P(t,0)Q = A(t)P(t,0) — P(t,0) (ae.) (212

By Proposition 2.1, the Fourier series expansion of P(t,0) is absolutely convergent. Note
also that by Lemma 2.4, the Fourier series expansion of A(t) converges to A(tq) for a.e.
to € [0, R] from the assumption. Hence, by Lemma 2.2, we have

T{A(t)P(t,0)} = T{A®)}T{P(t,0)) ” (2.13)

Again by (2.2), under the assumption about A(t), the first-order derivative of P(¢,0) is
piecewise continuous and the second-order derivative of P(t,0) exists a.e. in [0, 2]. Thus, by
Lemma 2.5 it holds that

. iy )

P(t,0)= Y jmwaPne™** (ae.) (2.14)
through the termwise differentiation, where {P,}}*__ is the Fourier coefficients sequence
of P(t,0). In other words, {jmwpPm}$>_, is the Fourier coefficients sequence of P(t,0), so
that by some simple algebra [70], we are led to

T{P(t,0)} = E(j0)P - P E(j0) (2.15)

Note that T{P(t,0)} is bounded on I, (which follows from Lemma 2.8 since P(t,0) belongs
to Lpccl0, h] by the assumption on A(t) and Lemma 2.4), but that the two operators on
the right-hand side of the above equation are unbounded on I5 since E(;0) is. This means
that we are not allowed to consider the operators E(jO)P and P E(j0) separately if the
underlying space is /3. To get around the problem, we have to restrict the domain of these
operators to g C l>. Now take z € Ip C lo. Then T{P(¢,0)}z € I, by Lemma 2.4 and
Lemma 2.8 if we note the properties of P(t,0) mentioned above. Also, P E(j0)z € I, since
E(j0)z € I3 and P is bounded on I (which follows again from Lemma 2.8 by the fact that
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the Fourier series expansion of P(t,0) is absolutely convergent as stated in Proposition 2.1).
It follows from (2.15) that E(j0)P z € ls, which clearly says that |g is P-invariant.

Similarly, by repeating the arguments about P(t,0) on P~1(¢,0), it readily follows that
I is also P -invariant. Hence, P and P! are actually mappings on lg. From this, it can
be asserted that P is invertible on [z and the unique inverse of P on [g is nothing but P!
restricted to Ig C lo since P"'Pz=PP 'z =2,Vz € Ig.

On the other hand, the equations (2.13) and (2.15) actually say thdt the Toeplitz trans-
formation applies to each term of (2.12) under the given assumptions, so that we obtain

PQ=AP - E(jO)P + P E(50)

Therefore, if we work on Iz instead of I3, the operators involved are well-defined from Iz to
lo, i.e., the above equation can be rewritten as

P(E(j0) - Q) = (E(j0) - A)P (2.16)

which, together with the fact that P is invertible on I, gives (2.10).
To see that Ig is P”-invariant, we note that

Py PF Py - «eo. Py P, P,

_-P_*: Pil Pa‘ Pl* = _131 PO P——l
_":2 le PS‘ P2 Pl PO

which implies that

=P { / (t,0)e ™t} = = /OhP*(t,O)e‘jm“htdt

From this, it follows readily that P* = 7{P*(t,0)}. It is evident from the assumption
about A(t) that the first-order derivative of P*(¢,0) is piecewise continuous in [0,h] and the
second-order derivative of P*(t,0) exists a.e. in [0, h]. Then from Lemma 2.5, it is true that

T{P*(t,0)} = E(j0)P* — P*E(j0)

From this the assertion follows immediately. Similarly, one can show that (g is P~ -invariant.
Note that the Fourier series expansion of P~1(¢,0) is absolutely convergent by Proposi-
tion 2.1. This, together with the assumption on B(t¢) and Lemma 2.2, implies that

T{P~!(t,0)B(t)} = T{P~'(t,0)}T{B(t)}

Combining this with the second assertion of Proposition 2.1, the first equation of (2.11) ‘
follows. Similarly for the second relation of (2.11). This completes the proof. Q.E.D.

Now we give remarks about the (Floquet) similarity transformation formulas.
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Remark 2.5 The infinite-dimensional matriz equations (2.10) and (2.11) form the so-called
similarity transformation relations in terms of the Toeplitz operators on the Hilbert space
lo, which are first given partially in [69],[70], but the proofs given there have not paid full
attention to the convergence problems related to the Fourier analysis. This is why we include
an alternative proof here. In mathematical form, (2.10) and (2.11) are similar to what we
have when a state vector transformation is introduced to LTT continuous-time systems. That
is why the equations (2.10) and (2.11) are also called similarity transformation formulas.
Since (2.10) and (2.11) are only stated under the assumption that the Floguet factorization
of the state transition matriz ®(t,0) of the FDLCP system (2.1) is available, it seems better
to include the term ‘Floguet’ to clarify this. However, for the sake of simple statements, the
term ‘Floquet’ will be dropped in this thesis. Also, it is important to notice that (2.10) is stated
only on the dense subsetlg of la (by Lemma 2.9) while (2.11) has no such constraint. In other
words, (2.10) is guaranteed to be only densely defined on the Hilbert space ly [29],[55,p. 486],
while (2.11) is well-defined on the whole ly. Generally speaking, densely defined operators
are related to derivative operations [22), as seen in (2.15).

It is straightforward to see that the relation (2.16) is true under the assumption that
A(t) € Lpcpl0, h] when we view it as an aggregated expression of infinitely many simulta-
neous finite-dimensional matrix equations. However, when we try to establish the inverse of
E(j0) — A through (2.16) (this is needed in the frequency response operator definition), we
quickly come to the fact that both E(j0) — Q and E(j0) — A are unbounded in the ly-induced
norm (though A and @ are bounded on l5), so that the ranges of E(j0) — Q and E(j0) — A
are not in lo. This causes us a difficulty to define the inverses of these two operators. It is
also for us to get around this obstacle that the set g is introduced and, thereupon, (2.10) is
claimed only on this set [g. From our discussions in the proof of Theorem 2.2, one can con-
clude that by restricting the domains of E(j0) — Q and E(j0) — A to g, these two operator
can be treated as operators from (g to ls.

Now we answer the question that under what conditions the operator E(j0) — A is
invertible. This problem remains unsolved in [69],[70], on which this thesis is particularly
based, and thus we also tackle basic properties about the inverse operator of E(j0) — A. It
is evident by (2.10) that E(j0) — A is invertible if and only if E(j0) — @ is and that if such
an inverse exists, the inverse operator is a mapping from [l to [g. Theorem 2.3 gives the
answer to this question in a slightly more general form.

Theorem 2.3 Assume in the system (2.1) that A(t) € Lpcp|0,h] and that the system is
asymptotically stable. Then, E(jp) — A :lg — ly is invertible for all ¢ € Iy and

(E(jo) — A~ = P(E(jp) - Q)P (2.17)
where E(jp) = E(j0) + jol and
(E(jp) — Q)" = diag---, (jo-1l = Q)7 (Jool = Q)™ (jor I = Q)] (218)
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With O = © + mwy, m € Z. Moreover, (E(jo) — A)~! : Iy — lg is compact and uniformly
bounded over ¢ € .

Proof From the assumption on A(t), we have (2.10) so that for any ¢ € I,

P(E(jp) — QP = E(jy) —

Also, by the stability assumption, ali the eigenvalues of Q — j@.,,I,Vm € Z have negative
real parts. Thus, the operator on the right-hand side of (2.18), denoted by D(Q, ), is
well-defined and bounded on l5. To see the latter, we note that there exists K > 0 such that

NGomI = Q)7H| < Kf(m) (m € 2,V € Iy) (2.19)
where f is defined in Appendix A.1. Noting that D(@Q, ¢) is block-diagonal, it follows that

12(Q, )iz, = suD NGomI — Q) S K (Vo € o) (2.20)
Simple computations show that

D(Q,0)(E(jp) - Q) =1, (E(y)—-QDQ,¢)=1

\WhiCh, together with the fact that P and P! are invertible on I, and Iz, respectively,
establishes (2.17). Noting that (E(jo) — Q)~' is uniformly bounded from I to Ig over
¢ € Ty by (2.20) and that P and P! are bound on Iz and I, respectively, then the uniform
boundedness of (E(j¢) — A)~! from Is to lg over ¢ € I follows from (2.17).

To see the compactness of (E(j¢) — Q)~!, we define

(E(i9) — @)~y = diagl--+,0, (Jo_nI = Q)7H, -+, (JonI = Q)71,0,- -]

It is clear that for any fixed N, the operator [(E(jy) — @) *]n is bounded on ls by (2.19)
and its range has finite rank so that [(E(j¢) — Q)~']w is a compact operator. Furthermore,
it is easy to see from (2.19) that for any ¢ € Z,,

dim [(E(o) - Q)7 v = (E(jp) - Q)7

in the l-induced norm sense. These facts tell us from Theorem 2 of [22, p. 112] that (E(jp)—
Q)! is a compact mapping on l. Noting that P and P71 are bounded on Iz and I,
respectively, it follows from (2.17) that (E(j¢) — A)~! is also compact. Q.E.D.

2.3.2 Similarity Transformation Formula on [,

To state the similarity transformation formulas on the linear space I;, we define the set

le={ze€li:E(jO)z e} (2.21)

and state the following lemma, which can be shown in a similar way to Lemma 2.9.
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Lemma 2.10 . [, is a proper dense subset of l; and [, C lg.

Proof We only show that [, C lg. Let z € [.. By definition

lEGOE, = 3 il -
< max{|mlwh/lz]n|I} Jg;o (72 on ][]

= max{|m|wl[[z]m||} [ E(70)z]]:

Since E(70)z € l; by the definition of I, max,,{|m|ws||[z]m]|} is well-defined. Hence, it can
be asserted that E(j0)z € ly, which implies that z € [5. Q.E.D.

Lemma 2.10 says that the role of the subset . of ; is similar to that of the subset [z of
I, so that (E(j0) — A)~! can be derived as a mapping from /4 to I, from (2.16). For brevity,
the exact assertions are stated in the following theorem, which is helpful in establishing the
frequency response relation of the FDLCP system in terms of a mapping on /.

Theorem 2.4 In the system (2.1), let A(t) € Lcpcpl0,h] and B(t),C(t) € Lcacl0,h].
Then, P and P71 are bounded on ly. 1. is P- and £“1-z'nvam'ant, and hence P is invertible
on l.. The unique inverse of P on I, is P71 restricted to l,. It is true that onl, C I

P(E(j0) - QP! = E(j0) — A (2.22)
Moreover, it holds on the whole 1 that )
B=pP'B, C=CP (2.23)

Furthermore, if the system (2.1) is asymptotically stable in the Floguet theorem sense, then
E(jo)— A:l. — 1y is invertible for all ¢ € Iy, and

P(E(jo) - @)'P 7 = (E(jp) — A7 (2.24)

which is a mapping from ly to l.. Also, (E(jo) — AL : Iy — 1. is compact and uniformly
bounded over ¢ € 1.

Proof A complete proof can be given by similar steps to those in the proofs of Theorems 2.2
and 2.3. Here, it remains only to show the nontrivial points that the operators 7 {P(t,0)},
P, P!, B and C are bounded on [, and that (E(jy) — @) is uniformly bounded from /; to
l. over ¢ € Zy. By (2.2) and the assumption on A(t), it follows that P(t,0) is continuous and
the first-order derivative of P(t,0) is piecewise continuous in [0, 4]. Hence, by Lemma 2.3,
the Fourier series expansion of P(t,0) is absolutely convergent. Now we denote the Fourier
coefficients sequence of P(t, 0) by {Pm}"'°° It is easy to see that if z € Iy, then

, o0 +oom-_:-oo-
T{P(t,0)}zll, = _2_: ||k_z_ P |
< 55 Wl = (5 1l el
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where Zm#_oo || B|| < o0 by the absolute convergence. From this, it follows readily that the
operator T{P(t,0)} is bounded on /;. Similarly, since the Fourier series expansions of P(t,0)
and P~1(t,0) are absolutely convergent, P and P~" are bounded on /;. The boundedness of
B and C on [, follows directly from the assumption that B(t) and C(t) belong to Lcacl0, h].
The last assertion follows from the above discussions, (2.19) and (2.24). Q.E.D.

Remark 2.6 The relations (2.22) and (2.23) form the similarity transformation relations
on the Banach space 1y in terms of the Toeplitz transformation (see also Remark 2.5). In
addition, the compactness of (E(jp) — A)™" should be interpreted on the Banach space l; in
Theorem 2.4, which is in contrast to the Hilbert space Iy in Theorem 2.3.

2.4 Eigenvalue Properties of FDLCP systems

In Section 2.3, it is clarified that (2.16) holds under the assumption that A(t) € Lpcpl0, A}
when we see this equation as an aggregated expression of infinitely many simultaneous
finite-dimensional matrix equations. However, when one tries to establish the eigenvalue-
eigenvector relation on and between A— E(j0) and Q — E(;0), the difficulty that A — E(j0)
and @ — E(j0) are unbounded (even though A and @ are bounded on ) emerges again.
To recover the desired eigenvalue-eigenvector relation, the introduction of the set g is also
helpful. In fact, from the above section, if the domains of A — E(j0) and Q — E(j0) are
restricted to g C lo, then the ranges of these operators will fall into l5. Therefore, the
eigenvalue and eigenvector concepts are recovered by following Definition 6.5.1 of [55]. To
be clear, the definition is restated as follows.

Definition 2.1 Let T be a linear transformation with its domain lg and range lo. A scalar
A\ such that there does exist an x € lg,x # 0, satisfying Tx = A\x, is said to be an eigenvalue
of T : lg — lo. Here, x is said to be an eigenvector of T corresponding to the eigenvalue A.

Then, the next task is to determine the set of the eigenvalues of the system operator
A — E(50) and to make sure that for each eigenvalue of A — E(j0) there is a corresponding
eigenvector z belonging to [g. To this end, let us define

A={)AeC:(Q— E(j0)z =Az,0 # 3z € l5}

That is, A is the set of all eigenvalues of the operator @ — E(j0). Now let A be an eigenvalue

of Q with an associated eigenvector z. Clearly, z is also an eigenvector of Q + jmwpl,

Ym € Z, corresponding to the eigenvalue A + jmwy. For each specific m € Z, taking
=[--,07,27,07,.-.]7(€ Ip) in which z is located at the m-th position of z, we observe
at (@ — E(j0))z = (A + jmwp )z, which implies immediately that :

A={\NQ)+jmw,:m € Z} (2.25)
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To see this, it is enough to show that there isno o ¢ {AQ)+jmw, :me€ Z} and 0 # z € I
such that (@ — E(j0))z = az. Suppose the contrary. Then by the block-diagonal structure
of @ — E(j0), one must conclude that (Q — jmwy)[z]m = @[z]m, where [z],, means the m-th
position entry of z. This implies that « is the eigenvalue of @ — jmwy I if [z],, # 0. This is
contradictory to the assumption. Now we show the following result.

Theorem 2.5 Suppose in the system (2.1) that A(t) € Lpcp[0,h]. Then the system is
asymptotically stable if and only if the set A of the eigenvalues of Q — E(jO) lies in the open
left-half plane. Moreover, A = A4 where A, is the set of the eigenvalues of A — E(j0).

Proof From the Floquet theorem and (2.25), the first assertion follows immediately. For
each A € A, there exists a nonzero z € lg such that (Q — E(j0))z = Az by definition. Noting
that Pz € lg since g is P-invariant, it follows from Theorem 2.2 that

(A-E(j0))Pz=P(Q - E(j0))z = NPz

This implies that A C A4 since P is invertible on [g. Similarly we obtain A4, C A. Q.E.D.
Now we give the definition of the eigenvalues of an FDLCP system.

Definition 2.2 The operator A — E(j0) : lg — s is called the system operator of the
FDLCP system (2.1). By the eigenvalues of this FDLCP system, we mean the eigenvalues
of its system operator. ’

It is easy to see from Theorem 2.5 that the set of all the eigenvalues of an FDLCP system
is countably infinite. This can be interpreted as another reflection of the uniqueness modulo
j2m /h = jws, of the characteristic exponents of the system matrix A(t) (see also Remark 2.1).
One can also see that if A(t) is n xn, the eigenvalues of the corresponding FDLCP system are
distributed on n lines parallel to the imaginary axis, on each of which eigenvalues are located
equitably with the distance 27 /h = wy, for any adjacent two. This geometrical interpretation
is useful in extending the Gerschgorin theorem to the system operator A — E(j0) that is
infinite-dimensional as discussed in Chapter 3.
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Chapter 3

Theoretical Harmonic Analysis of
FDLCP Systems

The objective of this chapter is to develop an operator-theoretic explanation about properties
of a class of FDLCP systems in a similar way to what has been done in LTI continuous-time
systems. The main mathematical tools, as we have reviewed in Chapter 2, are the Fourier
series analysis and the Toeplitz transformation. Due to the widespread utilization of the
Fourier analysis in the discussions, the analysis approach adopted in this thesis is named
‘harmonic analysis’ by following the conventional terminology. The targets in this chapter
include: asymptotic stability analysis via the operator-valued harmonic Lyapunov equation
involving the system operator A— E(50) in Section 3.1, an extended Gerschgorin criterion in
Section 3.2 stated for the system operator, the frequency response operator derived through
the input/output steady-state analysis and its properties in Section 3.3, the Hs and H,
norms and their respective equivalences between the time-domain and frequency-domain
definitions in Section 3.4; in particular, in Subsection 3.4.3, the trace formula is recovered
for the Hy norm of FDLCP systems based on the harmonic Lyapunov equation.

3.1 Stability and Harmonic Lyapunov Equation

Asymptotic stability analysis is one of the central topics about FDLCP systems, which
is much harder to deal with than that of LTI systems, and only some primitive results are
available [25], [38]. Roughly speaking, the well-known Floquet theorem seems to be the best
result at hand when we deal with the stability problem of general FDLCP systems [39], [51].
In this section, we establish a stability test in terms of an infinite-dimensional Lyapunov
equation for an FDLCP system, which can be seen to be the counterpart to the Lyapunov
equation for a finite-dimensional LTI continuous-time system. Although methods to solve
this equation and the positive definiteness test of the solution remain to be problems, the
harmonic Lyapunov equation really reveals that an FDLCP system is essentially linear time-
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invariant as long as asymptotic stability is concerned. The harmonic Lyapunov equation also
gives help in establishing a trace formula for the Hs norm of FDLCP systems and proving
applicable stability criteria from an operator-theoretic viewpoint. The main results in this
section have been presented in [89]. -

To begin with, we need some discussions on the adjoint operator of the unbounded
operator A — E(50) viewed on /g, which we denote by (4 — E(j0))". By Lemma 2.9, Ig is
dense in Iy, and thus it is said that A — E( j0) is densely defined on I [55, p. 486]. However,
the functional F, defined on Iz by Fy := ((A — E(j0))z, y) with y € [ may be unbounded
and thus the Riesz representation theorem (Theorem 5.21.1 of [55]) does not apply. In other
words, the adjoint of the operator A— E(j0) may not exist in the usual definition for a linear
bounded operator. Hence we must modify the definition of (4 — E(j0))*.

From [29, vol. I, p. 290], the domain of the operator (A — E(j0))" is given by

[{(A - E(j0)z,y)|
D{(4 - E(j0))"} = {yelz S Ililjm =B < o0}

However, since A is bounded on I, (by the assumption that A(t) € Lpcpl0, 2] C Lrcc(0, Al
and Lemma 2.8), it follows that

{(A E(]O) } {y€l2 OSup M

p S < o) = DIEG)

Now take y € D{E(j0)*}. Noting that [z is dense in I, it follows from [22] that the closure
Ip of I is nothing but lo, ie., [z = lo. Hence, the functional F, has a unique bounded
linear extension Fy to the whole l5. Therefore, the Riesz representa%ion theorem ensures the
existence of a unique z € Iy such that F,(z) = (z,2),Vz € lg. If we define (4 — E(j0))" by
(4 - E(j0))"y = z, then |

(A- E(jO))z, y) = (z, (A- E(jO))y), (z€lp,y e D{E(O)}) (3.1)

The above arguments show that (A — E(j0))* is well-defined if its domain is restricted to
D{E(j0)*}. To complete our understanding about (4 —E(j0))", we must know the structure
of D{E(j0)*} and the matrix representation of (A — E(j0))". The following lemma gives
these desired answers, which can be proved by following Example 7.10.1 of [35, p. 528] (a
complete proof is given in Appendix A.2). Here D{E(j0)} = I by definition.

Lemma 3.1 D{E(j0)*} = D{E(j0)} = lg. Moreover, the matriz representation of E(j0)*
coincides with the usual complex conjugate transpose of that of E(40).

From Lemma 3.1, we have actually verified that (A — E(j0))* is also defined on Ig and
that the matrix representation of (A — E(j0))* coincides with the usual complex conjugate
transpose of that of A — E(50). Hence, from (3.1), we have

(A— E(j0)z, y) = (z, (A— E(j0))'y) (z,y €lr) (3.2)
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The above results indicate that the operator (A — E(j0))* can be interpreted as both an
infinite-dimensional matrix and an operator densely defined on o (i.e., a mapping from Ig
to I). Equipped with these facts, we are now in a position to give the theorem about the
harmonic Lyapunov equation. In this theorem ST is the set of all strictly positive-definite
self-adjoint bounded operators on the Hilbert space ls, i.e., if the operator S belongs to St,
then (Sz,z) > 0, for all 0 # z € I5.

Theorem 3.1 Suppose in the system (2.1) that A(t) € Lpcp(0, h]. Then the system (2.1) is
asymptotically stable if and only if for any W € S*, there exists a unique V. € S* satisfying

(A- E(j0))"V. + V(A - E(j0)) = -W ' (3.3)

which is called the (infinite-dimensional) harmonic Lyapunov equation of the system (2.1)
densely defined on la (or more precisely, defined on the dense subset Iz of lo).

Before giving the proof, we make a few remarks about the harmonic Lyapunov equa-
tion. First the harmonic Lyapunov equation (3.3) should be viewed as an operator-valued
Lyapunov equation densely defined on I, (i.e., the domains of the operators involved in the
equation are restricted to /g, which is dense in I; by Lemma 2.9). The precise implication of
this is that when we post-multiply z € I on (3.3), z should belong to Ig to gnarantee that
it makes sense to deal with (A — E(50))*V.z and V(A — E(j0))z separately and that the
inner product is validated in the sense of (3.2). Now we show that this is indeed the case.

This is equivalent to showing that for the solution V. of (3.3),Vz elgforanyz €lp. To
this end, take z € Iz and post-multiply it on (3.3). Then, since W,V and A are bounded on
l», it follows that V(A — E(j0))z € l» and W z € lo. Now we are led to (A— E(j0))'V.z € I
which, in particular, implies that —E(j0)*V.z € l,. However, since —E(j0)* = E(j0), we
can conclude that V. z € I as we claimed. The meaning of this first remark is that it makes
sense to consider the inner product ((4 — E(j0))*V z, y) = (Vz, (4 — E(j0))y) for any
z,y € lg since V.z € lg = D((4 — E(j0))*). Simply speaking, in the following arguments,
the inner product is validated by this sort of reasoning.

Second, it is easy to see that (3.3) could be derived by applying the Toeplitz transforma-
tion to the h-periodic time-varying Lyapunov equation —24V(t) = A(t)TV(t) + V(1) A(t) +
W(t) provided that W(t) € L,[0,h] and that there exists a steady-state h-periodic solution
to this matrix equation. However, to accomplish the proof in this direction, one has to im-
pose some conditions to ensure that such an h-periodic solution has an absolutely convergent
Fourier series expansion before applying the Toeplitz transformation. In contrast, our ap-
proach will involve only simple matrix algebra analysis and will not rely on the assumption
about the existence of a periodic solution. Therefore, in Theorem 3.1, W is not confined
to an infinite-dimensional block Toeplitz operator. For the solution of a class of general
h-periodic Lyapunov equations, some results are given in [9].

The final point is that the harmonic Lyapunov equation (3.3) is not a special case of
the operator Lyapunov equation in Theorem 1.6.1 of [29] since the operator A —E(j0) is
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unbounded. It should be noted that Theorem 1.6.1 of [29] is stated and established under
the assumption that the operator involved in the Lyapunov equation is bounded. Therefore,
this study shows that the Lyapunov equation established by the harmonic analysis about
A(t) is nontrivial. Moreover, the solution can be expressed in a closed form with explicitly
defined components without directly defining the exponential operator exp[(4 — E(j0))t].

Proof of Theorem 3.1 From Theorem 2.5, the system (2.1) is asymptotically stable if
and only if all the eigenvalues of A — E(j0) lie in the open left-half plane. The proof will
follow some similar steps to what we do in the LTI case. However, since we are dealing with
infinite-dimensional matrices, the validity of such deductions must be justified.

(Sufficiency) Suppose the equation (3.3) holds for some W,V € S*. Let A be an eigen-
value of A — E(j0) with an associated eigenvector z € [g C lo. Then, post-multiplying (3.3)
by z and taking the inner product with z, we obtain

Wz,z)

>\+>\=—m<0

~ where the inner product is validated from the above discussions. This inequality implies that
Re()) < 0. Thus, the stability assertion follows.

(Necessity) Assume that the FDLCP system (2.1) is asymptotically stable. It must be
shown that for any W € S, there exists a unique operator V. € S* such that (3.3) holds on
lg. To this end, we define the infinite-dimensional exponential matrix function

_e.(Qa t) = dlag[ e 76(Q+jWhI)ta th> e(Q_jth)tv . ] (34)

By the definition, it follows that e(@,t) is well-defined and uniformly bounded on I, over
¢t > 0 under the stability assumption. To see this, noting that all the eigenvalues of Q) have
negative real parts, then, it follows from [25,p. 20] that there exist a pair of numbers K>0
and o > 0 such that

Re{\MQ)} < —a, |le?|| < Ke " (Vt2>0) (3.5)
On the other hand, observing that (@, t) is block-diagonal, we have

1@ )l lia2, = sup [|e@Hm™+ D] = sup ||e]] < Ke™ < K (¥t 2 0) (3.6)
meZ meZ
Next, we construct the operator
Vo= [T eQryWeQrir (3.7)
0

where Ef_ = P*W P € S*. In the sequel, we first show that 2 € St and then show that it
is a unique solution of

~

(Q - E(jO))'V + V(Q — E(j0)) = -W (3.8)
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in the elementwise sense (that is, here we regard (3.8) as infinitely many simultaneous equa-
tions of finite-dimensional matrices with infinitely many finite-dimensional matrix variables).
We complete this in three steps.

Step 1. It is shown that V. € S*. Since e(Q, 7) is invertible for all 7, it follows that V is
strictly positive definite. Furthermore, from (3.6), we have

Wb, < sup{ [ 1@, )W (@, malldr -l =1}

< sup{ [ 1e(Q, 7V W (@ 7l lzlludr : lell = 1}

z€lp

< [ Ne@ IR
® r9 9 7 K?
< [ R dr Wl = 5 Wl (39)

~

Finally, it is evident from the definition that f/_* = V.. Hence, we have l/_ e St.
Step 2. It is shown that V of (3.7) is a solution of (3.8). By the definition of e(Q,t), it
is straightforward to see that

Q(Q’ t)|t=0 = .La Q(Qat)h:oo = Q (310)

5e(Q.1) = (@ - E(j0)e(@,#) = ¢(Q,)(@ - E(j0) (.)

Using (3.10) and (3.11) in (3.8), we obtain
(Q - E(j0))"V. +1(Q — E(50))
= [ (@) We@r) + [ el@, ) (de(@, )
= QM) We@,7)| =-W (3.12)

In the above deductions, there are frequently order interchanges of infinite-dimensional ma-
trix @ — E(j0) with infinite integral and derivative defined on infinite-dimensional matrix.
Noting that both @ — E(j0) and e(Q, 7) are block-diagonal, the just-mentioned order inter-
changes are actually ones acting in the elementwise sense and thus are validated.

Step 3. It is shown that (3.8) has a unique solution. To see this, denote the (m,n)-th
block entry of V and W by [V}(mny and [W]im.n, Tespectively. Then, by comparing both
sides of (3.8), it follows that

(@ + mwnD)" Wimmy + W mm) (@ + j1w0nI) = = [W](mm) (3.13)
By the stability assumption, all eigenvalues of () have negative real parts, so that

MNQ + jmwp I+ A[(Q + jnwnl)] #0 Vm,ne 2
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where A[-] denotes the eigenvalues of the matrix [-]. Hence, by Theorem 4.4.6 of [40], the
equation (3.13) has a unique solution [V](mn) for any [W](mn. Since m,n € Z are arbitrary,
it follows that (3.8) has a unique solution.

The above arguments indicate that the assertion we made about the equation (3.8) is
true in the elementwise sense. However, repeating the arguments about the adjoint operator
of A — E(j0) on Q — E(j0), it follows readily that (3.8) can also be viewed as an operator-
valued (but with an infinite-dimensional matrix representation) Lyapunov equation defined
on lg C s and that [ is V-invariant.

Noting that /g is P~ '-invariant by Theorem 2.2, it follows that on {5 C Iy

P™(Q - E(j0))"V.P™' + P7V(Q — E(j0))P™' = —-P~W P~

by pre-multiplying P~(= [P~!]*) and post-multiplying P~ on (3.8). On the other hand,
since lg is P~1-, V- and P™*-invariant, it is clear that PV P lzelpifzels. Therefore,
it can be claimed that on lg C 5

P™(Q - E(jO)y PPV P '+ PV P'P(Q - E(jO)P ! = P W P!

where P*P™ = I and P~!P = I correspond to the identity operators on Iz and I, respec-
tively. Thus, it follows that on (g C I

(A - E(j0))"P~V P~ + P~V P~Y(A - E(j0)) = ~P~"W P~
because P(Q — E(j0))P~! = A— E(j0) on I by (2.10) of Theorem 2.2 and because P~(Q —
E(j0))*P" = (A — E(j0))* from (2.10) and the fact that the matrix representation of (Q —
E(j0))* is the complex conjugate transpose of that of @ — E(70). Finally, since PW Pt =
W, it follows that V := P™*V P! € S* is a unique solution of (3.3). Q.E.D.

Remark 3.1 Theorem 3.1 clearly says that FDLCP systems are essentially linear time-
invariant as long as the asymptotic stability property is concerned and the conclusion is
necessary and sufficient. Moreover, the solution of the harmonic Lyapunov equation has
been expressed in a closed form as follows.

V=P /O " e(Q,7) PW Pe(Q,7)drPt (3.14)

However, it still involves the knowledge of the state tramsition matriz, which is hard to
determine in general FDLCP systems. In view of this, the value of Theorem 3.1 is limited
to theoretical analysis. However, it plays a key role in establishing a trace formula for the
H; norm in FDLCP systems. Qur discussions in Chapter 4 show that Theorem 3.1 can also
provide us with some very useful stability tests which are practically applicable.
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3.2 Extended Gerschgorin Criterion

As explained in the last paragraph of Section 2.4, the eigenvalues of the system operator
A — E(3j0) have a strip distribution pattern along the imaginary axis. This inspires us with
the idea to extend the Gerschgorin criterion to exploit this fact. In this section, we discuss a
sufficient stability condition by extending the Gerschgorin theorem to linear operators on the
linear space lo, which utilizes the fact that the eigenvalues of A — E(j0) can be constrained
by countably infinitely many discs.

Theorem 3.2 Assume that the n X n matriz A(t) belongs to Lpepl0,h] N Leac(0, k] and
{An}F2  is the Fourier coefficients sequence of A(t). Then the system (2.1) is asymptot-

ically stable if the disc-group Do := Ui, Dok lies in the open left-half plane. Here
DOk = {Z eC: |z—a0kkl < Ak} k= 1,2,---,n

with A = X7 T3 |Gmki| — |aokk| where amp: s the (k,1)-th entry of the matriz A,,.

Furthermore, if there are m(< n) discs Doiy, Doiyy - -« » Doi,, Such that Dy + jlwy, and Dy,
with Dy := Ug=i i, Dok and Dy := Ugtig i Dok, are disjoint for all 1l € Z. Then, the
system (2.1) is unstable if either Dy or Dy lies in the closed right-half plane.

First we give some remarks. The assumption A(t) € Lcac|0,h] guarantees that the
disc-group is meaningful in the sense that Ay < oo,Vk = 1,2,---,n. By Lemma 2.3,
Lecpep[0,h] C Lpep[0, k] N Leac0, h]. Hence, Theorem 3.2 applies if the state matrix A(t)
belongs to Lepep[0, A]. The assumption that A(t) € Lepenl(0, A is satisfied by a large class
of practical FDLCP systems and can be tested simply.

Proof of Theorem 3.2 Since A(t) € Lpcpl0,h], Theorem 2.5 applies. Now let A be an
eigenvalue of A — E(j0) with £ € lg C I, being an associated eigenvector. Then (A4 —
E(j0))z = Az. Now denote £ = [--,2_1,%0, 21, --]* where z; is a scalar, and let |z,| =
MaXmez |Tm| > 0 which can be attained at a finite s since z € l. Using arguments similar

" t0 [49], one can show that the eigenvalues of A — E(j0) lie in Uf_; U, Die where

le:{zEC:Iz—agkk+jlwh|§Ak}, ZEZ, k€{1,2,~--,n}.

However, by the definition of Dy, it follows that for each &k, Dy = Dy + j(I — m)wy, in the
pointwise sense (VI,m € Z). Hence, if for some | € Z, the disc-group Ujp_; Di lie in the
open left-half plane, then so do all the other disc-groups. This gives the first assertion.

To see the second part, we define A(p,t) = D + p(A(t) — D) with p being a constant
in [0,1] and D = diag[aei1, o2, -, aomn)- It is clear that for each p € [0,1], A(p,t) €
Lpcp[0,h] N Leacl0,h]. Hence, by means of Theorem 2.5 and Gronwall’s Lemma [25], [38]
(i.e., Lemma 4.1), it can be shown that the eigenvalues of A(p) — E(j0), with A(p) :=
T{A(p,t)}, are continuous with respect to p (i.e., Proposition 4.1 in Chapter 4).

Now let us define the discs
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le(p)—_-{zEC:|z—a0kk'+jlwh|gpAk}, le Z, k€{1,2,~-~,n}

Noting that Du(p) C Dy, Vp € [0,1], 1 € Z and k = 1,2,---,n, it turns out that D'(p) :=
U oo Uk=iy i Di(p) and D"(p) 1= U2 o Urstiy i Di(p) lie in U2 o Uk=iy s, Diic and
UL o Uty i Dike» TeSPeCtively. -

On the other hand, note that Dy(p) is defined from A{p, ) in the same geometric meaning
as Dy is defined from A(t). Therefore, the first assertion says that for any p € [0,1], the
eigenvalues of A(p) — E(j0) lie in D(p) := Ui, UL, Dulp) = D'(p) UD"(p). Then the
second assertion follows from Theorem 2.5 and the assumptions about Dj and Dfj, which are
the discs defined by letting p = 1, if we show that for any p € [0, 1], both D'{p) and D"(p)
contain at least one eigenvalue of A(p) — E(50).

To see this, let p = 0 and note that the eigenvalues of A(0) — E(j0) are ag11 + jlwn, ooz +
Jlwh, -+, Gonn + jlwn, | € Z, which are the centers of the discs Dip(p),k=1,---,n,l € Z,p €
[0,1]. By the continuity of the eigenvalues of A(p) — E(j0) in p and the fact that D'(p) and
D"(p) are disjoint since D} and Df are disjoint, the desired result follows. Q.E.D.

Generally speaking, the Gerschgorin criterion is conservative and cannot be used directly
on the Fourier series expansion of A(t) when the average matrix Ao of A(t) lacks some di-
agonal predominance. One way to get around this problem is to introduce the constant
similarity transformation R on A(#) such that R~ AgR is diagonal or at least diagonal pre-
dominant. However, this means that the original state matrix is changed to R~ A(#)R. Since
the transform matrix R may be complex, it should be ensured that after such transforma-
tion, the results above are still valid because the Floquet theorem is stated for real systems.
Now we show that this is the case.

In the original (real) system, we have known that

P(Q - E(j0))2™" = A - E(j0)

on lg C lo under the assumption that A(t) € Lpcp[0,h]. Now pre-multiplying the above
equation with 7{R™'} = R™! and post-multiplying with 7{R} = R and noting that I is
R-invariant by the block-diagonal form of R, it follows that

B(R'QR - E(j0))P = R'AR - E(j0) (3.15)

onlg C Iy with P := R™'PR. Here, it is easy to show that [z is P-invariant and E—l—
invariant. This, together with (3.15), implies that the set of the eigenvalues of R'AR -
E(j0) is equal to that of R~'Q R— E(j0), which in turn is clearly equal to that of @ — E(;0).
However, R AR is just the Toeplitz operator of R A(¢)R. Therefore, Theorem 3.2 is valid
even if a complex similarity transformation is applied to A(t).

Example 3.1 We consider the stability problem of the lossy Mathieu differential equa-
tion 3], [59), [70) by the Gerschgorin criterion. The FDLCP system is given by

2(t) +2€2(t) = [L — 28 coswpt]u(t), wp=2 (i.e.,h=m) (3.16)
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which leads to the state-space model below:

Ao(t)=[8 _125}’ B(t)z[l—%()coswht}’ C(t):{(l)r

By the output feedback u(t) = ky(t) where k is a scalar, the closed-loop state matriz is

0 1
Alt) =
®) { k(1 — 2B coswpt) —2¢ ]
which is h-periodic and each element of A(t) is continuous and differentiable in [0, h).

It is clear that the closed-loop state matrix satisfies the condition that A(t) € Lcpep(0, A
However, since the structure of A(t) prevents us from applying the criterion effectively, it
is necessary to introduce a similarity transformation on A(t) so that the ‘DC part’ becomes
diagonal. This does not affect the stability as we described just before this example.

The results are given in Figure 3.1. In these figures, areas marked by circles correspond
to coeflicients ranges at which stability of the corresponding FDLCP systems is uncertain
(that is, stability cannot be tested by the Gerschgorin criterion). The areas left empty are
the coefficients range in which the FDLCP systems are asymptotically stable. O

3.3 Frequency Response of FDLCP Systems

Another important aspect of FDLCP systems analysis is how to establish their frequency
response relations, which may give us an alternative tool to deal with problems in periodically
time-varying systems. Several ways to define frequency response relations have been surveyed
in the introduction chapter, so that here we concentrate our attention only on the definition
through the input/output steady-state analysis. This is first proposed in [69], [70], and the
basic idea can be described as follows. First, impose an [,-EMP signal v with 1 < p < 00
(where EMP stands for exponentially modulated periodic) to the system (2.1). By definition,
such u is given by

+00 +o0
wt) = Y un Tt = N yemt (22> 0,0 € Ty, om = @ + muwh)

where the infinite-dimensional vector u := [---,uT,,ul, uf,--]T belongs to I,. Second,
measure the steady-state output y of the system, which is (assumed to be) also an [,-EMP
signal under the asymptotic stability assumption of the FDLCP system and represent the
signal y by the infinite-dimensional vector y := [---,y%,, 48,97, - |7 € I, according to the
definition of [,-EMP signals. Finally, the input-output response relation observed in the
above is expressed as a mapping G(jp) :u >y : l, = I,

In the above arguments the Fourier series expansions of A(t), B(t),C(t) and D(t) as
well as the Toeplitz operators expressions of these h-periodic matrix functions are used
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repeatedly. It should be pointed out that the validity of such use has not been verified
rigorously in [69],[70]. In the following, we will reconsider the above-mentioned arguments
and scrutinize the convergence problems of the Fourier series expansions and the Toeplitz
transformations involved [87]. Ouly the cases of p = 2 and p = 1 are considered.

3.3.1 Frequency Response Operator Viewed on [y

First we investigate the frequency response relation when the input is an lo>-EMP signal.
To this purpose, we note from the Floquet theorem and Remark 2.2 that

y(t) = C(t)P(t,0)e%" Pty 0)x
+C(t)P(t,0) /t Q=7 p=1(7. 0) B(r)u(r)dr + D()u(t)

= COHIEPg+ [ I B(ryu(r)dr] + Dltu(t) (3.17)

with B(t) := P~1(t,0)B(t),C(t) := C(t)P(t,0) and g := P~!(ty,0)zo. The second rela-
tion of (3.17) says that if we introduce the initial value transformation gy = P~(to, 0)zo,
the system (2.1) can be represented equivalently in the input-output sense by the system
configuration shown in Figure 3.2.

D(t)
" B(t) > ++ f 1 Jdomd— y
Q

Figure 3.2: Equivalent system configuration

Now we are in a position to establish the frequency response relation in the system of
Figure 3.2 by imposing an lo-EMP sinusoid input  to the system and measuring the steady-
state output y. From Figure 3.2, this can be completed by showing that under certain
assumptions given below, the steady-state responses of p, ¢ and y are also l>-EMP signals so
that the input-output response relation u — y can be written as a mapping of u + y : lo — Is.
We complete this in three steps.

Step 1. Take an h-periodic continuous signal @(t) € Ly[0, k] such that F{u(-)} =: 4 €
Iy C ls. Then, the Fourier series expansion of 4(t) is absolutely convergent. Constructing
the input l,-EMP signal as u(t) = (t)e’#', ¢ € Ty (where Ty is defined in (2.8)), it follows
that the corresponding output of B(t) to this l,-EMP signal is

p(t) = p(t)e? (¢t > 0,9 € Iy)
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where p(t) = B(t)a(t) = P1(t,0)B(t)i(t).

Now assume that B(t) € Lpcc0, h]. Then, based on the choice of & and Lemma 2.2 (the
assertion is expressed in terms of the operator F rather than the Toeplitz transformation,
by taking the central column), we obtain -

F{B()u()} =BF{a()} =Ba

where @ := F{u(-)} and the Fourier series expansion of B(t)i(t) is convergent to B(to)i(to)
for a.e. to € [0, A].

Furthermore, let us assume that A(t) € Lpcp|[0, A]. Then from Proposition 2.1, P71(£,0)
is continuous and the Fourier series expansion of P~1(¢,0) is absolutely convergent. Again
by Lemma 2.2 and Proposition 2.1, we obtain

F{PT(,0)B()a(")} = T{P™'(-, 0)}F{B()a(-)} = P'Bd
Which can be interpreted as
F{p()y = p=P'Biel, (3.18)

The assertion that p € I follows from the facts that P71 and B are bounded on I, under the
assumptions on A(t) and B(t). From these arguments, it follows that p(t)e’?* = p(¢) is also
lo-EMP. In other words, one can conclude that p(t) = Y12 p.e/*T™) with p, 1= [p]m.

Remark 3.2 The reason why we constrain the domain of @ is that if we work on a general
u(t) € Ls[0,h], we may not arrive at the above conclusions for some & € lo because of the
convergence problems in the Fourier series expansions and the Toeplitz transformation.

Step 2. Now impose the signal p to the LTI subsystem of Figure 3.2. We suppose that
this subsystem is asymptotically stable (i.e., all the eigenvalues of ) have negative real
parts). Then, by the superposition principle of linear systems (Theorem 5.6.2 [55, p. 237]),
the output g of the LTI subsystem to p is

+
0

Qt [ G QT_
= o\ JPmi—)T
e (qo +m=Z_oo /0 e dTpm)
+oo +oo o
= w+ X (Q=ijonl)m)+ 2 (Goml = Q) Ipne (3.19)

On the other hand, by the stability assumption of @, (2.19) is true for all ¢ € Zy. Therefore,
we observe by the Cauchy-Schwarz inequality and Lemma A in Appendix A.1 that
+o0

S @ denl)y pall < 3 1@ = jouD) I lIpml

m=—o0 m=—0Q
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400 ] 102 % +oco 9 _;_
< (X @Q@=-jenD™) (X lioml?)
+0 1
< K(Y f(m)?)llpll, < VEK||pll, (3.20)
where
p:= [ e ap?lapg,p{>" ] = 1_3 € 12 (321)

The inequality (3.20) implies that the summation ¥ ° _(Q — jomI) lp, is absolutely
convergent for any ¢ € Z,. Combining this fact with (3.19), it follows that as ¢ — oo, the
steady-state response of ¢ is

(3 Goml = Q) pae™)e% (¢ 0)

m=—od

since €9 — 0. This steady-state output g of the LTI subsystem can be expressed as

q(t) == §(t)e’** (£ >0)

where §(t) = S+ /™ with G := (JomI — Q) 'ppn. The inequality (3.20) indicates
that F{4(-)} =: § € ly C l5. Consequently, §(t) € L[0,h] and the Fourier series expansion
of §(t) is absolutely convergent. Obviously, ¢(t) is an I,-EMP signal.

Here, the fact that § € I; C lo can be shown in another way. By the definition of g,
i=(E(p)-Q7'p (3.22)

where (E(jo) — Q)" = diag[- - -, (jo1 ] = Q)™ (ol — Q)" (jprl — Q)"+ --]. Then the
assertion that § € [ C I, follows readily since (E(jp)— Q)" is a mapping from Iy to Ig C Iy
by Theorem 2.3 and Lemma 2.9.

Step 3. Since the Fourier series expansion of P(t,0) is absolutely convergent, the assertion
in the last paragraph of Step 2 actually says that the Fourier series expansion of P(t,0)4(¢)
is also absolutely convergent by Lemma 2.6. Now repeating the arguments in Step 1 on the
matrix function C(t)P(t,0)4(t), the relation

FoO)=g=CPg (3.23)

can be asserted if C(t) € Lpcc[0, h], where § is the output of C(t) = C(t)P(t,0) to §(t). It
is clear that § € I, and thus the output y of C(t) to the input g(t) = §(t)e?, ¢ € Ty is an
l[o-EMP signal.

Finally, from (3.18), (3.21), (3.22) and (3.23) and by Theorem 2.3, we obtain

y=CP(E(jp)- QP 'Bu=C(E(jp)— A)'Bu

by setting u := @ and y := §. Summarizing the above discussions together with D(¢) taken
into consideration, we can state the following main result of this subsection.
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Theorem 3.3 Assume in the system (2.1) that A(t) belongs to Lpcpl0,h], B(t),C(t) and

D(t) belong to Lecc[0,h] and that the system is asymptotically stable. Then the steady-
state response of the FDLCP system (2.1) to the lo-EMP input u(t) = £5%__ ume??=t with
= [ ulul ul - T €l Clyis also an 13-EMP signal y(t) = 5% yme?®m! with

— [ . e y’fh yg" y,]T’ . .]T = Q(]Q)y,_ € 12, 'LUh;e're
G(jo) :==C(E(jo)— A~'B+D (3.24)

e e

which is a densely defined mapping on ly for each v € Ly. Also, G(jp) is uniformly bounded
over @ € Iy in the sense that ||G(Jo)||i,/nu) < K < 00,V € Iy for some K >0, where

IG(jp)z
ST leim ")

NG ayn) = O;Sé}lp

Proof By the assumption on D(t), it is easy to see that F{D(-)u(-)} = Du. From this
fact, together with the preceding arguments, the assertion about (3.24) follows. It is also
clear from the above arguments that G(jy) is a mapping from /; into 5. However, [; is dense
in I5 so that the frequency response operator established via the input Joutput steady-state
analysis is a densely defined operator on Iy [55, p.486]. To see the uniform boundedness of
G(j) over the interval Zy, we note that B, C and D are bounded on /> by the assumptions
on B(t),C(t) and D(t) from Lemma 2.8. Then, the uniform boundedness assertion of G(j¢)
follows from Theorem 2.3. Q.E.D.

Remark 3.3 Note in Theorem 3.3 that we have used the ly-norm on the linear space ly.
Accordingly, ||G(50)||i,/n40) 5 the la-induced norm of G(jp) on the dense subset Iy of l.
It is also clear from the mathematical expression of the frequency response operator of the
FDLCP system (2.1) that this operator can have two interpretations. The first one is to view
it as a mapping from ly into ly, which has a clear steady-state analysis interpretation as we
discussed in the above; the second is to treat it as a mapping on ls. The second viewpoint
makes sensc because it can be seen as a mapping with the extended domain ls instead of the
original domain Iy and this mapping itself is bounded on ly (since all the operators in G(jy)
are bounded on ls, and this fact is used in the uniform boundedness proof of G(jy)).

Here, to distinguish these two interpretations in the above remark about the frequency
response operator, the frequency response operator in the first interpretation is denoted
by G(j¢) while the second is by G(jg). In other words, G(jy) and G(j¢) have the same
matrix expression but are defined on different domains. Compared with G(j¢), the frequency
response operator G(j¢) defined via the input/output steady-state analysis is ‘deficient’
in the sense that the domain of G(jo) is a dense subset of I,. However, the following
corollary shows that the />-induced norm of Q( Ji) from 1; to I, coincides with the lo-induced
norm of G(jp) on lo. This validates the existing studies on the definition (Section 3.4) and
computation (Chapter 4) of the H, norm of the FDLCP system (2.1) based on the frequency
response operator G(j).
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Corollary 3.1 Suppose in the system (2.1) that A(t) belongs to Lpcp[0, h], B(t),C(t) and
D(t) belong to Lpccl0,h] and that the system is asymptotically stable. Then, G(jp) is
bounded on ly uniformly over ¢ € Zy and for all p € Iy, it holds

NGy = 1GGO) 1ats

Proof By Theorem 3.3 and Remark 3.3, the first assertion that G(jy) is bounded on I
uniformly over ¢ € Z, follows readily. To see the second assertion, we note that i C Is.
Then it is obvious that ||G(io)|i/ua) < ||G(5¢©)|]i,1,- Hence, the proof becomes complete
if we show that for all p € Z,

NGO ) = IGGO i, (3.25)

By definition, for any u > 0, there exists z € Iy with ||z||;, = 1 such that

NGO e < NGG0)Zlli, + 12

Since I; is dense in Iy, for any € > 0, there exists z’ € Iy such that ||z — 2'||;, < e. Therefore,
from the fact that G(j¢) and G(jp) have the same matrix expression on l;, we observe

1GGONep < GG + 1GGE)z = 2, + 1
< NIGGRE N + GG epllz = 2|, + p
< NGERN izl + |GG, + 1

< NGUOM iyl + €) + N GG a2 + 12

If € is small enough, the above inequality can be rewritten as

) 1+4+e€, ~,.: U
HQ(](Q)”h/lz < 1___'_€||G—(]99)”12/11(12) +

1—c¢
which implies the desired assertion of (3.25) since p can be arbitrarily small and for suffi-
ciently small e > 0, it is true that {££ > 1 and lim,_o 1€ = 1. Q.E.D.

3.3.2 Frequency Response Operator Viewed on [;

Under certain conditions, the frequency response operator can be established via the
steady-state analysis as a mapping on Iy (i.e., from /; to ;) based on the similarity trans-
formation formulas on [; stated in Subsection 2.3.2. Now imposing an [;-EMP signal,
u(t) = TFe _unetmto € Ty with u = [---,uly,uf,uf,---]T € l1, to the system of

Figure 3.2, the steady-state output y(¢) is measured, from which the frequency response op-
erator is defined similarly as in Subsection 3.3.1. Theorem 3.4 summarizes such discussions.

Theorem 3.4 Assume that A(t) € Lepepl0,h], B(t), C(t) and D(t) belong to Lcacl0, A
and that the system (2.1) is asymptotically stable. Then the steady-state response of the
system (2.1) to the [,-EMP input u(t) = ¥12_  upe?®t withu = [+, ul,uf o, [T €l
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is also an [,-EMP signal y(t) = =42 yme?*™t withy = [,y 90,97, |7 = Glip)u €
L, where G(jy) is given in (3.24). Hence the frequency response operator G(jy) is well-
defined on 1y for each ¢ € Zy. Also, it is uniformly bounded over ¢ € Iy in the sense that
NG < K <00,V € Iy for some K > 0. -

Remark 3.4 It is worth mentioning that Theorem 3.4 is not a special case of Theorem 3.3.
To see this, the following facts are mentioned. (i). In Theorem 3.3, the EMP signal u(t)
is viewed as an lo-EMP signal even though u(t) itself is [;-EMP; (i1). Theorem 3.3 and
Theorem 3.4 are proved by using Theorem 2.3 and Theorem 2.4, respectively, which hold on
different linear spaces (see also Remark 2.6 ); (4it). The uniform boundedness of the frequency
response operator G(jy) in Theorem 3.3 is stated in the lo-induced norm sense from the dense
subset I of Iy to ls while that of Theorem 3.4 is in the l;-induced norm sense.

3.4 H,; and H,, Norms of FDLCP Systems

As the first task of this section, it is shown that the Hy and H,, norms are well-defined
on the frequency response operator of the FDLCP system (2.1) that is defined through the
input/output steady-state analysis as discussed in Section 3.3. The definition validity of
the Hy and H,, norms of the frequency response operator is in question if the definitions
are given simply in some direct extended forms from what we have in LTI continuous-
time systems, noting the facts that the frequency response operator is infinite-dimensional
and ‘deficient’ in the sense that the frequency response operator is densely defined on Is
instead of on the whole Hilbert space lo. It is also from these facts about the frequency
response operator that the respective equivalences of the H, and H,, norms between the
time-domain definitions and their frequency-domain counterparts need to be re-examined
carefully before any applications. The re-examination of the equivalences is the second task
of this section. It must be pointed out that the respective equivalences of the H, and
H,, norms between their time-domain and frequency-domain definitions in general FDLCP
systems have been verified only through the lifting approach [4],[5] so far in the literature
(in [20], the same conclusions are drawn again by solution of differentiable equations but still
the lifting technique is utilized), in which the frequency-domain H, and H,, norms are defined
on the frequency response relations derived from the lifted system operator [4], [5],[73]. In
sampled-data systems, these equivalence questions have been solved both via the lifting
approach and the so-called FR-operator approach [2],[34], [35], [36], [37].

3.4.1 Time-Domain Definitions and Computation Formulas

First we give the time-domain definition for the H, norm and the definition of the Lo-
induced norm in general FDLCP systems. The latter Ls-induced norm is conventionally
called the time-domain counterpart of the H, norm defined on the frequency response
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operator because of their equivalence between the time and frequency domains we will show
shortly. Thus, with a bit of abuse of terminology, the Ls-induced norm is also called the
time-domain H,, norm of the given FDLCP system. To complete our tasks here, let us first
define the modal (or formal) frequency response operator of the system in Figure 3.2 by

Gije) =C(E(jo) —Q)'B+D

where B = T{B(t)}, C = T{C(t)} and D = T{D(t)}. For G(j) to make sense, we assume
that A(t) € L»[0, ] and the system is asymptotically stable so that E(jp) — Q is invertible
for all ¢ € Zy. We also assume that B,C and D are bounded on l,. Thus, the assumptions
on the system matrices {A(t), B(t),C(t), D(t)} are ‘seemingly’ relaxed. However, one must
bear in mind that G(j¢) is defined without any connections to the input Joutput steady-state
analysis. It is from this that comes the name of the ‘modal’ frequency response operator.

The purpose to introduce this ‘modal’ frequency response operator is that the time-
domain Hs and Ls-induced norm definitions of an FDLCP system are independent of the
steady-state analysis so that some mismatch appears in the arguments if we use G(jp)
directly, which is derived by the steady-state analysis. It will be seen shortly that these
time-domain norms are more naturally connected with Q(jap) rather than G(jy) although
under some strengthened assumptions on the system matrices given below, the matrix rep-
resentations of these two frequency response operators can be shown eventually to coincide
with each other. This coincidence will help to recover the equivalences between these two
norms and their counterparts in terms of the frequency response operator.

Now we link the time-domain H; norm with the modal frequency response operators
of FDLCP systems. In the sequel, we assume that the FDLCP system (2.1) is strictly
proper whenever the Hy norm problem is considered. The definition given below is widely
used [5], [13], [16], [32], [70], [84] and a typical proof for its validity (in the sense that the Ho
norm is finite) is given in [32] for general time-varying continuous-time systems.

Definition 3.1 The time-domain Hs norm of the FDLCP system (2.1) is the quantity

1912 = { /Oh [ wwace(g(t, g(t, ) dedr )

where g(-,-) is the impulse response of the system (2.1).

The proposition below links the time-domain H» norm with the modal frequency response
operator introduced in the above.

Proposition 3.1 Suppose in the system (2.1) that A(t) € Ls[0, ], the system is asymptot-
ically stable. Also, assume that B(t) and C(t) belong to Lcac|0, h]. Then, it holds that

I9lire = { [ 7, trace(Gie) Civ)) o)

46



Proof By the Floquet theorem, i.e, Theorem 2.1, the state transition matrix of the FDLCP
system (2.1) can be written as ®(¢,0) = P(¢,0)e?! when the initial time t, = 0. Thus, the
impulse response of the system to the input e;6(t — 7) (6(¢ — 7) is the delta function imposed
at t =7 > 0, ¢; is the i-th natural basis of R™) is-given by

Q(t-7) p-1( 7)e; T
(i - | SOOI 080 (127 o0

Here, we further define BT := [---, BT, BY BT ,...|T,C :=[---,(1,Co,C1,-- -] and A(t) :=
[, e[ I e~d@nt] ...]T with {B}}®__ and {C}} ®__ being the Fourier coefficients se-

m=—00 m=—0o0

quence of B(t) and C(t), respectively. Then, we obtain
C(t)P(t,0)eR¢"" P~ (7,0)B(1)e; = CA(t)e? "D B(1)e;

since by the assumptions on B(t) and C(t), B(t) = A(7)*B and C(t) = CA(t) hold. There-
fore, taking the Fourier transformation on (3.26) about ¢, we obtain

Fl(Gess )] Gw) = [ CADE T B(r)eie'd
too , ! N
= / CA(t)eRte ™t dt B(T)e;
_ C~' /+00 A(t)eQ(t—T)e—jwtth(T)*Bei
= C(E(jw) — Q) 'A(T)A(T)"Be;e™i" ' (3.27)

In (3.27), the order of the integral and the infinite summation caused by C(¢)A(t) is inter-
changed. Now we show that this is valid under the given assumptions. To this end, we
note from [25] that the inequality (3.5) holds by the stability assumption of the system.
Therefore, we obtain

oo too . .
Z / ||CmejmwhteQ(t—T)e—]wt]Idt
r

too . ryes
<X NGl [T fee et
400 . +oo , I’A{ 400 R
< X NGall [T Reeta < = Y [|Cnl] < o0 (3.28)

since C(t) € Lcac[0,h]. This, together with the Levi theorem [55, p. 577], tells us that the
order interchange mentioned above is valid.
Hence, by the time-domain definition of the Hs norm, we have

l61f = / " / = (TZI(Geiér)*(t)(Ge,-é,)(t))dt ar

_ % i " i +e trace(i(Geié,)(t)(GeiéT)*(tDdtdT
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= h/ Ztrace /+ (Ge:b,)(t)(Ge;é )(t))dtdr
- 27rh/ ;tra"e/ F[(Ge:b.)(t)] (jw) F [(Gess: )(t)] (jw)dw ) dr
- 27rh/ Ztra"e / " C(B(jw) ~ Q) MT)A(r)" Be:

€] B"A(T)A(7)"(E(jw) — Q)" C"dw)dr

= o [ orace( [ é(ﬁuw)—cz)-lA(r)A(r)*é
B A(T)A(r)(E(jw) — Q) Cdw)dr

= §%ﬁ/_-;mtratce(/ C(E(jw) — Q) 'A(T)A(r)*B
B A(T)A(7)"(E(jw) — Q)" Cdr) dw (3.29)

by the Parseval Theorem and (3.27). In the last equation of (3.29), the order of the double
integrals are interchanged. This can be validated by the fact that

trace(C(E(jw) — Q)" A(T)A()"BB"A(T)A(7)"(E(jw) - Q)*C*) > 0
and the Fubini theorem [55, p. 598]. The fact that the trace computations here are actually

only finite summations is also used repeatedly.
Next, it is shown that (3.29) can be rewritten as

161 = 5 [ trace(C(EGW) - @)
| /0 A()A(TY BB A)A(r) dr| (E(jw) — Q) C") dw (3.30)

To this purpose, define the infinite-dimensional vector function

[+ s s-1()Ts0(7)T s1(0)T, T = A(T)A(T) BB A(T)A(T)(E(jw) — Q) C
Then some direct computations give

sm(T) = ™ B(r)B(r)"A(1)(E(jw) - Q) °C* (me€ 2)
By (2.19) and the assumptions on B(t) and C(t), there exists K > 0 such that

Ism(T)|| < K (Ym € Z,Y7 € [0,h],Vw € (—00,+00)) (3.31)
Again, by (2.19) and the assumption of C(t) € Lcac|0, h], we can conclude that the infinite
series 312 [|Cm(j(w + mwi)T — Q)~'}| is absolutely convergent over w € (—00, +00).

These facts lead to

S [ 16+ mon)T - Q) su(r)ldr

m=—0co

< hK Z 1Com (i (w 4+ mwi)T — Q)Y < o0

m=—co
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which implies from the Levi theorem that
h . ~ o~ ~
| €(EGY) - @ AMAG) BB M)A (E(jw) - Q) Cdr

= C(EGY) - Q7] [ MDA BEADAC) (EGw) - Q" C'ar]  (332)

Repeating the above arguments on the integral term of the right-hand side of (3.32), the

relation (3.30) follows. The repeated arguments are developed on an infinite-dimensional

vector term by term. However, this brings in no essential difficulty in the discussions.
Furthermore, it is easy to see that

A(T)A(T)"B B"A(T)A(1)"
)

= A7 B’(T)B(T)*A(T)* )
T B
e?“v"B(T) e’rT B(T)
= B(r) B(7)

e~ B(T) e~ 1r7 B(7)

i : L : |

= R(T)A(T)A(T)*R(7) (3.33)
where R(7) := diag[ - -, B(), B(7), B(7),- --]. Then, from this definition, the (n, k)-th entry
of the matrix R(7)A(7)A(7)*R(7)* satisfies

[R(ATA(T) R(T) Y = B(r)B(7) ek

By the assumption, B(7) can be extended into an absolutely convergent Fourier series expan-
sion B(7) = T2 o By’® 7. Hence, it follows from the proof of Lemma 2.2 that B(1)B(7)*
has the absolutely convergent Fourier series expansion and

~ ~ +w +w ~ ~ .

BMB(ry = Y, (X Bn-aB;)em™
Hence, it follows readily that

h / m)B(r)y et dr = Z ByinBy

q=—00

which implies that

- / (NA(MA(T) R(r)dr = BB (3.34)

49



with B := T{B(t)}. Finally, using (3.34) in (3.30) yields

uau%f?— 7 trace ( QBB (B(jw) - Q)€ du
+°o A Ak ~

- = 3 / trace(C(E(jon) - QBB (E(jgn) — Q) C")dy
m_lL +o0 o o

= 27r/% _Z_ trace( E(jom)—Q)'BB (E(jcpm)—g)‘*c*)dgo

- 217r trace(Q(ﬂjap) - QBB (E(jo) - Q)C )dy

= L 7 wrace(GURGG) )

In the above, we have interchanged the order of the integral and the summation. To validate
this, it suffices to show that the convergence of
> trace(C(E(jom) — QBB (E(jiom) - Q)C)
[m|<M
= trace(LyC(E(j9) -~ QBB (E(jv) - QC L)
= trace(LyG(jy) G(jo) i) — trace(G(jv) G(jp))

is uniform over ¢ € I,, where

I., := diag]- - - _
LM dla‘g[ ,Oa Ia 7-[, Oa ] (3 35)
2M+1

To see this, we note from [55] that if {u,};2° . is an orthonormal basis of I with u, =
[-++,07,uI,07,-- ], then it holds

7 ¥ n?

trace(G(jv)"G(j¢)) — trace(1nG(i0) G(jo) i)
= 3 (16UomIE - I GUPmIR)

k=—o0
+oo

< Y (IuGGe)mlln + 1GGRmL) (I = L) GG u )

fe=—00
+oo

< |3 (GGl + 116G e)w) ]| > (L = L) G0l ]

k=-—00 k=—00

< V2 [trace( wG(ip) Gi9) i) + trace(G (i) G(iv))]”

[ Z H(l"lM)Q(E(]Q) —Q-)—l-B-ﬂkHng]%

k=—00

Noting also that trace (l MQ(jg?)*Q(jgﬁ)l*M) < trace (Q(jcp)*_@_( jcp)) for any ¢ € Zy and that
trace(Q( Jo)*G(j cp)) is uniformly bounded over ¢ € 7, [86], it is easy to see that the proof

D=

1
g
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will become complete if it is shown that Y72° _||(I — I )C(E(j@) — Q) 'Bu w|[7, goes to
zero uniformly over p € 7y as M — oo. To see this, we note that

f (L= L) C(EG9) — @ Bl

< 2[,9_‘20”1 LG Lu(EG) - @ Bl
+k§o”" L)C(I - Ly)(E(j9) - Q) B }]

< 2[||<1—1M>01Nn,2/12k;@u (0) - Q' Bully
+||<1—LM>QH%2/,2miua-h)(ﬁ(m—@-I_B_ukni]

< [,,EN”C”)2EOO” QrBulp
HICIE s 3 1L~ (B0 - @7 Bl (3.36)

where we have assumed that M > 2N. This assumption ensures that

(L= L)CInllum < Y 1G]]

|n{>N

which can be shown by noting the structure of (I — I,;)C Ly, and has been used in (3.36).
Furthermore, noting that Y32° . [[(E(j¢) — Q)" B u||? is uniformly bounded over ¢ €
Ty by (2.19), it follows from the assumption of C(t) € Lcacl0, ] that

(S IGI S B - Q Bl ~0 (Vo eT) (3.37)
|n]>N k=—c0
as N — 00. Also, it is easy to see by the choice of the orthonormal basis {u;}{2° . that

+oo

5 - L&) - O Bl
400 . +o0 .

< 2 2 Mol = Q7THPUBa—kl? £ X0 NGenl = Q)7THP Y 1Bl
k=—co [n|>N |n|>N k=—00

which, together with (2.19), implies that

Z (L (E(o) = Q' Bullf, » 0 (Vo € Lo) (3.38)

k=—oc0
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as N — oo. Using (3.37) and (3.38) in (3.36), one can claim that for any € > 0, there exists
an integer N(e) > 0 such that

Z 1L~ Ln)C(E(9) = Q)" Bullf, <e (VM 2 2N(e),Vy € Io)

k=—o00
which implies the desired result. Q.E.D.

Next we define the Ls-induced norm of FDLCP systems and discuss its computation
through what we call the modal frequency response operator. This will lead to a proposition
which is useful for verifying the equivalence of the H,, norm in FDLCP systems between the
time-domain definition and the frequency-domain one.

Definition 3.2 The Ls-induced norm of the FDLCP system (2.1) is

_ Hy( Mzs
1Glz,/2, = sup [lu()lz.

0#u€Lls

To state the following proposition, we introduce the so-called SD-Fourier transform [2].
For z € L, its SD-Fourier transform is defined as

Xsp(j9) = [+ X (Go-1)T, X (Gwo)T, X (Ge)T, - - " (3.39)

where X (jw) is the Fourier transform of z € Ly and X (jy,) = X(j(o+nws)),n € Z, ¢ € Lo.
It can also be said that Xgp(j) is the lifted version of X (jw) in the frequency domain. This
kind of frequency-domain lifting technique has been used in sampled-data system sensitivity
analysis [11] and signal processing [62].

Proposition 3.2 Suppose in the system (2.1) that A(t) belongs to Ls[0, ], B(t), C(t) and
D(t) belong to Lcacl0,h] and that the system is asymptotically stable. Then

1). Yop(j) = G(i9)Usp(j9), Yo € Ty for any u(t) € CL, where C} denotes the space of
continuously differentiable functions with compact support;

2). O3, = % iz Usn(i9)G (79)G(i9)Usp (i) de for any u(t) € C§;
where Ugp(jp) and Ygp(jp) are the SD-Fourier transforms of u(t) and y(t), respectively.

Proof By the asymptotic stability assumption, together with the Floquet theorem, the
Lo-stability assertion is obvious [67]. From this, for any u(t) € Lo, the corresponding output
y(t) belongs to L,. Also, C} is a dense subset of Ly (Exercise D.13.3, [55, p. 593]). Therefore,
it makes sense to define the Fourier transforms U(jw) and Y (jw) for the input u(t) € C§
and the corresponding output y(¢). Now we compute Y (jw) in four steps.

Step 1. The Fourier transform of the signal p (see Figure 3.2) is given by

P(jw / ( Z Bne™ ) u(t)e ! dt = +Zoo BoU(5(w — mwn)) (3.40)

m=—0oQ m=-—co



which is well-defined since B(t) is Ly-stable (by the boundedness of B(t) on [0,%]). Here,
the order of infinite integral (f*2°) and infinite series (35 __ ) is interchanged. This is valid
by Levi Theorem [55] because of the absolute convergence of the Fourier series expansion of
B(t) and the fact that u(t) has compact support. -

Step 2. Imposing p to the LTI subsystem of Figure 3.2, the Fourier transform of ¢ is

Q) = (I Q) 3 BaU((o — men) 3.4)

Since u(t) € CL, it is clear that B(t)u(t) € L;. Also, by the stability assumption, the LTI
subsystem of Figure 3.2 is L;-stable (Theorem 6.30 of [67]). Hence, ¢(t) € L;. Now truncate
g(t) as follows. It is easy to see that ¢,(t) € L.

_Ja) (05t<T)
QT(t)—{o (t > T)

Based on the fact that ¢(t) and ¢,(¢) belong to Ly, VT' > 0, we have

lim Qr(jw) = Q(jw) (3.42)
uniformly over w € (—00, +00) for the Fourier transform Qr(jw) of ¢,(t) since
1Q2(w) - QUwlll = Il [ (as(t) - a®))e et

< [T lla®—a@llat » 0 (T o00)

Step 3. Let §(t) be the output of C(t) to the input g(t), and let §,.(t) be the output
of C(t) corresponding to the truncated signal g,.(t), which has compact support. Then we
clearly have §,.(t) = C(t)q,(t), so that by repeating the arguments about (3.40) on C(t), the
Fourier transform of y,.(t) is given by

Vr(jw) = ijo CrnQr(j(w — nwy)) (3.43)

n=—o

It is obvious that §(t) and §,.(t) belong to L, since C(t) is bounded on ¢t > 0. Based on
this fact, repeating the arguments about ¢(¢) and ¢,.(¢) on y(t) and y.(¢), it follows that
limy_,, Yr(jw) = Y (jw) uniformly over w € (—00, +00). This further gives the relation

V(jw) = Z CQUj(w — nwy)) (3.44)

n=—oo

since it is evident that

IS Grliw—rno) - 3 CaQliw - nun)|

n=—=co n=-—-oo

< Jf 1Call - 1Q1(5(w = nwn)) = Qj(w — nwn))l| = 0 (T — o)

n=—oo
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uniformly over w € (—o00,+00) by (3.42) and T3 _||Cul| < o0, which follows from the
absolute convergence assumption of the Fourier series expansion of C(t).

Step 4. Taking the term D(t) into consideration and lifting the Fourier transform Y (jw)
of the whole output to its SD-Fourier transform Y gp(j¢) leads to the assertion 1).

To show the assertion 2), by the well-known Parseval theorem, we note that

)||L2 o / ]w)dw— Z/ (W)Y (jw)dw

m=—co

_ 1 Z /IO (§om)"Y (om)dp = W/IOY_SD(j(P)*XSD(j(P)d(P

2 m=-—00

1 C NK Y AR i
= 57;/1 Usn(j9)* G(i9) " G(ie)Usp(jp)dye

where Z,,, := [—wp/2 + jmws,wr /2 + jmwy),m € Z. To complete the proof, it remains to
show that the order interchange of the integral and summation is valid. To this end, it is
enough to show that the convergence of YM_ . Y (jom) Y (jom) = Ysp(i9)Yep(fo) as
M — ¢ is uniform over ¢ € Z;. We accomplish this in three steps.

Step 4.1. Since u(t) € C{, there exist numbers K, > 0 and Q, > 0 such that

(|wl < Qu)

WGl < { ol Sy (3.45)

which can be shown similarly to Lemma A of [2], and implies that Ugp(jp) € o, Vo € I,.
Furthermore, from (3.41) and (3.45), we have

QG < N1GwI- Q7 S 1Ball UG —nan)l

+co R
< KJJ|GwI-Q)7Y 3 ||Ball (3.46)

which implies that there exist Ko > 0 and Qg > 0 satisfying

Ko (lw] < Qq)

ot <{ £20 i 1o S0 (347

Step 4.2. Let us define the infinite-dimensional vector Y ,(j¢) by
XM(](P) = [ Tt OTaY(j(p—M)T7 e ’Y<j990)T9 T aY(j(pM)Ta OTa e ']T

Apparently, Y ,(§¢) = Ly Ysp(jy) where I, is given by (3.35). We now show that Y ,,(j¢)
converges to Y¢p(jp) uniformly over ¢ € Zy as M — oo. To this end, we first note that

Y35 0) = Ysp (59l < € Qury (5011, + 110D Usp (o), (3.48)

with £,, := I —I,;. Now observe that the first term on the right-hand side of (3.48) satisfies
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120€ Qg (590)1i2 < 1L € @y (G0l lex + 1L € (Qp (50) — @ (Gl (3.49)

where Q, (j¢) is defined similarly to ¥,/ (jp) but in terms of Q(jym), m = 0,1, £N.
We also assume that M > 2N. Noting that only the (2N + 1) block-columns of I,,C at the
center are involved in the computation of ||1,,C Q o), it follows readily that

12uC Qo) = 12 InQep (5o lts < s C LIl o] @ (560
< X G 11Qsp G0y (3.50)
In|>N

On the other hand, since [ MQ is only a sub-matrix of C, it follows immediately that

123 C (Qgp (59) — @GN < 1€ 1/ ]1Q5p (9) — @ (0) 1 (3.51)

Combining (3.51) with (3.47), one can claim that for any € > 0, there is an integer N(€) > 0
sufficiently large such that

€ (Qp(50) = QNI < 7 (VN 2 N(e), Voo € 1)

At the same time, from (3.50) together with (3.47), it is guaranteed that for this N(e),
another integer M(N(e),€) > 2N(e) can be taken such that

1EwC Qe < 7 (VM > M(N(),€),Vp € To)

since Yjnsn ||Call = 0 as N — oo by the assumption on C(t).

Summarizing the above discussions, the inequality (3.49) actually tells us that for any
€ > 0, there exists some integer M(¢) > 0 ensuring that

~ . €
€ Qe (il < 5 (VM > M(e), Yy € To)

Noting that D has the same structure as C and that the inequality (3.45) is similar to (3.47),
we can repeat the above arguments to the second term on the right-hand side of (3.48). Hence
it follows immediately that Y ,,(j¢) converges to Y ¢p(jy) uniformly over ¢ € Zy as M — oo.

Step 4.3. We show that 7\ V(5§ )Y (jom) converges to Yep(j)Yep(i@) uni-
formly over ¢ € 7y as M — oo. We note by the Cauchy-Schwarz inequality that

(X0 (G0) Y ar(Go) — Ysp(io) Ysp(G9)l]

Y (Ge)" (Xar(Go) — Ysp Gl + [[(Xar(G) — Ysp(J9)) Ysp(G9)l|

2[|lY 0 (G9) — Ysp (o)l [[Ysn (G0 |is

2/[Y 0 (79) ~ Ysn(G0)l |GG 22| Usn (G0)] 1

Here the fact that ||Y (7o)l < Y sp(G9)ll, is used. Thus, the assertion follows readily
by the uniform convergence of Y ,,(jp), since ||Usp(jo)l|i, is uniformly bounded by (3.45)

and ||G(j¢)||i. 1, is uniformly bounded over ¢ € Zy (which can be seen in a similar fashion
to the arguments for G(j¢)). This completes the proof. Q.E.D.

IA A A
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3.4.2 Time-Domain/Frequency-Domain Equivalences

Proposition 3.1 and Proposition 3.2 clearly relate the time-domain H, and Ls-induced
norms of FDLCP systems with the modal frequency response operators. It is quite intu-
itive to draw the respective equivalences of the H, and H,, norms between the time- and
frequency-domain definitions if the equivalence of the modal frequency response operator
Q( jo) and the frequency response operator G(j¢) is established. Before we state the final
results about the desired equivalences, we first define the H, and H,, norms on the frequency
response operator G(jp) and examine their well-definedness.

First we consider the Hy norm of FDLCP systems. Here it is our standing assumption
that the FDLCP system is strictly proper whenever the Hy norm is concerned.

Definition 3.3 ([70],[84]) The frequency-domain Ha norm of the FDLCP system (2.1) is
the quantity '

9llr = {o [ j trace(Glj)"Gli0))do)

Since in this H, norm definition a trace operation is involved on an infinite-dimensional
operator, it is necessary to clarify the validity of such definition before any further discussions.
The following lemma gives an answer to this question. We must stress that the frequency
response operator G(j¢) is defined on the whole 5, which is formed by the domain extension
described in Remark 3.3. The proof idea for this lemma will also be used frequently in the
subsequent convergence arguments with respect to truncations.

Lemma 3.2 Suppose in the system (2.1) that A(t) € Lpcpl0,h], B(t),C(t) € Lpcc[0,h]
and that the system is asymptotically stable. Then, the frequency-domain Hy norm of the
system (2.1) is well-defined in the sense that ||G||r2 < o0.

Proof Note under the given assumptions that G(j) is uniformly bounded and compact
for any ¢ € Zy by Theorem 3.3 and Theorem 2.3. Thus, by [55, p. 392], we have

k [}
trace {G(j¢)"G Z Z G0 unilly, (3.52)
where {u,; :t=1,2,---,k}oo __ is any orthonormal basis of the linear space I5¥. For sim-
plicity, we assume that k¥ = 1 and this will result in no loss of generality. For our purpose,
define u, := [ --,0,uy,,0,--]7 with ||u4]| = 1,Vn € Z. Then

trace {G(jo)"G(@)} < ICIii Z I(EG9) -~ Q7' Bullf

n=—0oo0

= [IClLm > X Noml — Q) Buontal®

Nn=—00 M=--00

< G, X X 1GomI = Q7P Brallua]?

nN=—00 Mm=—00
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€I 2 2 K2f(m)?|| Buenl?

n=—oo m=—0oo

= €L, Y K2F(m)? > ||Bmeall? (3.53)

m=—0oc n=—=—~co

IA

In (3.53), we have used the facts that the norm of the m-th entry of the infinite-dimensional
vector (E(jo) — Q)"'Bu, can be bounded from above by ||(jomI — Q)| - || Bm-xl|| and
that there exists a number K > 0 such that

NGomI — Q)| < Kf(m) (3.54)

where the function f(-) is defined in the Appendix A.1. Indeed, the inequality (3.54) is a
re-statement of (2.19) for reading convenience. Since @ is stable by the stability assumption,
K can be chosen to be independent of ¢ € Zj. Noting that C(t) € Lpcc|0,h] by the
assumption, it follows that C is bounded on l; by Lemma 2.2, Proposition 2.1 and Lemma 2.8.
Furthermore, since B(t) € Lpcc[0,h], it follows that S5°___ ||Bnm||? < oo. Hence, the
assertion follows from (3.53) and Appendix A.1. Q.E.D.

Remark 3.5 The proof of Lemma 3.2 actually shows that under the given assumptions
about the FDLCP system (2.1), the frequency response operator G(jp) is a Hilbert-Schmidt
operator [55, p. 387] on 2 for each ¢ € Ly. Since G(jo) is compact, it is suggested that we
can assess the Ho norm by truncating G(j@), which is left as a topic in the next chapter.

Now we state the equivalence of the Hs norms between the time and frequency domains.

Theorem 3.5 Suppose in the system (2.1 ) that A(t) belongs to Lpep|0,h], B(t) and C(t)
belong to Lcacl0, h] and that the system is asymptotically stable. Then, ||G||r2 = ||G||F2-

Proof Under the given conditions, it is clear from Theorems 2.2 and 2.3 that G(jo) =
G(j¢). Hence, by the result in Proposition 3.1, it remains to show that the Fourier series
expansions of B(t) = P~1(t,0)B(t) and C(t) = C(t)P(t,0) are absolutely convergent. To
see this, it is enough to note that the Fourier series expansions of P1(¢,0) and P(t,0) are
absolutely convergent from Proposition 2.1. Then, by Lemma 2.6 and the assumptions on
B(t) and C(t) and the stability assumption on A(t), we have the desired results. Q.E.D.

Because of the equivalence stated in Theorem 3.5, we will not distinguish in which domain
the H, norm is defined and simply denote it by ||G||2 in the following.

Next we consider the frequency-domain H,, norm of an FDLCP system.
Definition 3.4 ([70]) The frequency-domain H., norm of the FDLCP system (2.1) is

16110 = max |G . (3.55)
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Lemma 3.3 Suppose in the system (2.1) that A(t) belongs to Lpcp|0, h], B(t), C(t) and D(t)
belong to Lpcc|0, h| and that the system is asymptotically stable. Then, the frequency-domain
H,, norm of the system is well-defined.

Proof By Corollary 3.1, ||G(j®)|li,/1, is well-defined for each ¢ € Z, under the given
conditions. Furthermore, by Theorem 2.3 and Theorem 3.3, it is straightforward to show
that ||G(j©)|i./1, is continuous with respect to ¢ € Zo in the lo-induced norm sense. Hence
the maximum value is attainable, and this implies that ||G|| is well-defined. Q.E.D.

Based on Proposition 3.2, we establish the equivalence between the Ls-induced norm
(which is called the time-domain H,, norm) of the system (2.1) and the maximum (3.55) of
the ls-induced norm of G(jp) over ¢ € Zy.

Theorem 3.6 Suppose in the system (2.1) that A(t) belongs to Lpcp[0,h], B(t),C(t) and
D(t) belong to Lcac|0, h] and that the system is asymptotically stable. Then

19112272, = 1|91l

Proof By the assumptions on A(t), B(t) and C(t), together with Proposition 2.1 and
Lemma 2.6, it follows that the Fourier series expansions of B(t) and C(t) are also abso-
lutely convergent. This implies that Proposition 3.2 applies to the FDLCP system (2.1)
under the given assumptions. In view of this, it follows that

ly()llz. A
G = su = max ||G 3.56
” ”Lg/Cé(Lz) O;éue%é Hu()”Lg wel, H (]99)”12/12 ( )
which can be established by similar arguments to those in the proof of Theorem 5 of [2]. Fur-
thermore, under the given assumptions, it is obvious that G(j@) = G(j¢) by Theorems 2.2
and 2.3. On the other hand, since C} is dense in L, and the system is Lo-stable (i.e., G is
bounded on Ls), it follows by similar arguments to those in the proof of Corollary 3.1 that

G112, /c3 (o) = 191|122, This, together with (3.56), completes the proof. Q.E.D.

3.4.3 Trace Formula Based on the Harmonic Lyapunov Equation

In this subsection, the relation is discussed between the Hs; norm of the frequency re-
sponse operator of the FDLCP system (2.1) and the harmonic Lyapunov equation (3.3) in
Theorem 3.1. The purpose of this study [90] is to express the H, norm by a trace formula
via the solution of the harmonic Lyapunov equation so that the well-known trace formula
is recovered in an LTI continuous-time fashion but with an infinite-dimensional matrix ex-
pression. In some less rigorous sense, the Hs norm of an FDLCP system can be ‘computed’
just as we do in finite-dimensional LTI continuous-time systems. Again in this subsection,
the FDLCP system is assumed to be strictly proper, i.e., D(t) = 0,Vt € [0, h].

Theorem 3.7 Suppose in the system (2.1) that A(t) € Lpcp[0, h], B(t),C(t) € Lcacl0, h]
and that the system is asymptotically stable. Then it holds that
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IG5 = trace(b"V. b) = trace(c W ¢") (3.57)

where b := [-++,BL,,BY BT -..|]T, ¢ := [--,C1,Co,C_1,- -] with {B,}T% and {Cn}t
being the Fourier coefficients of B(t) and C(t), respectively. The (infinite-dimensional) ma-
trices V. and W are, respectively, the solutions of the harmonic Lyapunov equations

(A - E(jO))'V. + V(4 - E(j0)) = -C°C (3.58)
(A - E(j0))W + W(A - E(j0))" = -B B~ (3.59)

Before giving a proof to this theorem, we make a few remarks about the harmonic Lya-
punov equations involved and the basic idea of the proof. In Section 3.1, it is shown that the
harmonic Lyapunov equation should be viewed as operator-valued equation densely defined
on [y, or more precisely on [z (which is dense in ls by Lemma 2.9). It is also clarified that the
adjoint operator, denoted by (A — E(50))”, of the unbounded operator A — E(j0) defined on
I is also defined on the whole /g and that the matrix expression of (4 — E(50))* is just the
complex conjugate transpose of the matrix expression of A — E(50). Therefore, the relation
between the second equality of (3.57) and the harmonic Lyapunov equation (3.59) can be
proved exactly in the same way as in showing the relation between the first equality of (3.57)
and (3.58) by introducing a complex conjugate transpose dual system. In view of this, only
the proof for the latter relation is given. In addition, the proof will follow some idea similar to
what we do in LTI continuous-time systems. Because of the infinite-dimensional structure
of the frequency response operator G(j¢), however, there are frequent order interchanges
between infinite integrals and infinite summations so that one must pay attention to the
validity of such order interchanges.

Proof of Theorem 3.7 Let b:=[--,B7;, BT, BT, .- .|T where {B,}}>_.. is the Fourier
coefficients sequence of B(t) = P~1(t,0)B(t). Apparently, under the given assumptions, it
holds that b = P~'b. Hence by Theorems 2.2 and 2.3 and the structure of B, we obtain

161 = o [ woce( B (BGR) - @€ EEG) - @' B
= LIS tvae(i (Bliw) - @€ B0 - 9o

1 +o00 +Zb

= o ¥ [ trace(E (Bliom) - QC CBwm) - 'E) s

2r = -4
= %/f‘”trace( ( (]w) Q)_*Q*Q(_E(jw)—g_)—1§>dw (3.60)

In (3.60), the order of the integral and the infinite summation is interchanged. To see the
validity of this interchange, it suffices to show that the convergence of

3 trace( E(jom) — Q)C C(E(jom) — Q) 152)

|m|<M o

— trace(B (E(jp) - Q)C C(E(jo) — Q' B) (3.61)
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is uniform over ¢ € Iy as M — oo. We also note that the last term of (3.61), i.e
trace( (Q—-E(j i) C C’(Q E(p) ™ B), is bounded with an upper bound independent
of ¢ (see the proof of Lemma 3.2). Under the given conditions, some similar arguments to
those in the proof of Proposition 3.1 will lead to the above assertion (3.61).
Now we truncate the infinite-dimensional vector b to b ~, which is defined by
by:=1[-,0,By,---, BT, ... By ,0,-- T

Noting that we are dealing with the trace of a finite-dimensional matrix, it is clear that

oll; = itrace(/_j(;gr;o b)(E(jw) - Q) C C(E(jw) — @) 'bdw)

27
= Jim Strace( [ By(B(w) - Q°C CEGW) - @~ bdv)
= lim 1trace(b /+°°(E(' ~C'C(E hd 3.62
= Jim —trace(by | (E(jw) - QT C C(E(jw) - Q) 'hdw)  (3.62)

by changing first the order of the infinite integral (/2°) and the limit (limy_,), and then
the order of the infinite integral (f*°°) and the summation caused by the multiplication
with by. The latter order interchange is validated by the fact that for any fixed N, the
corresponding summation in fact is only a finite one. It should be pointed out that only Q*
is truncated, but b is not.

To see the validity of the first order interchanged we just mentioned, we need some extra
work which is given in Appendix A.3 to keep our mainstream proof clear.

Next we further show that (3.62) can be rewritten as

+oo

161 = Jim strace(By [ (E(jw) - @€ C(EGw) ~ @ dwb) (3.63)

by altering the order of the infinite integral (f*°) and the infinite summation caused by the
infinite-dimensional vector b, the validity proof of which is also given in Appendix A.3.

Furthermore, since (E(jw)— @)™ is block-diagonal, the integral (f72°) can apply to each
entry of ¢ C. Denoting the (i, k)-th block entry of a matrix by [-](i ), we obtain

217r [/+ (E(jw) - Q)C C(E(jw) - Q)'ldw] -
- 'fziw/m(j(w”wh)f ~ Q)7IC Clsw((w + kwn)] = Q)7 dw
= [ (eI IE sy ey
= [/0+°° Q(Q,T)*Q*QQ(Qy T)dT](i,k) (364)

by the well-known Parseval theorem. In the last equation of (3.64), the fact that e(Q,7) is
block-diagonal is used again. Now substituting (3.64) into (3.63), and using the fact that
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the'operator I e(@Q, T)*_C’_*Q_ e(Q, 7)dr is bounded on Is, it follows that
iGN = Jim trace(by | T e(Q, 7y € Ce(@,r)drh)

= trace((}} é )/ e(Q,7)" Q*QQ('Q,T)dTﬁ)

i 13) :trace(b PV P 1b) = trace(

~

= ftrace @

Ak

where V := e e@Q,7)C Ce(Q,7)dr and V = P~V P!, which, by Theorem 3.1 (see
Remark 3.1), is the unique solution of the harmonic Lyapunov equation (3.58).  Q.E.D.

In general, it is hard to find the solutions of (3.58) and (3.59). Corollary 3.2 below states
the results in terms of @ — E(j0), which gives convenience in analysis and computations.

Corollary 3.2 Under the same assumptions as in Theorem 3.7, it holds that ||G||3 =
trace(b V. b) = trace(¢W &"). Here the infinite-dimensional matrices V. and W are, respec-
tively, the solutions of the harmonic Lyapunov equations

(@ - E(0)"V+V(Q - E(j0)) =-C C (3.65)
(Q - E(jO)W + W(Q — E(j0))" = -BB (3.66)
where b and ¢ are defined similarly to b and ¢ but in terms of B(t) and C(t), respectively.

Remark 3.6 If the FDLCP system (2.1) is LTI continuous-time, the harmonic Lyapunov
equation can be seen as the ‘lifted’ version of the usual algebraic Lyapunov equation. Hence
the trace formula of Theorem 3.7 reduces to that in the LTI continuous-time case [32),[91].
Unfortunately, however, the trace formula for general FDLCP systems involves the infinite-
dimensional matrices b and V.. This difficulty more or less confines the value of Theorem 3.7
to the theoretical analysis. In Chapter 4, we derive some modified trace formulas for the Ho
norm via the approzimate modeling approach, in which the trace formulas of Theorem 3.7
and Corollary 3.2 play o central role.

3.4.4 Upper Bound Formula for Frequency Response Gains

In Chapter 4, a bisection algorithm will be developed for the Hy norm computation in
FDLCP systems. As is well-known in [91], in using this kind of algorithms, the knowledge
about upper bounds of the H,, norm of the corresponding frequency response operator is
necessary. In this subsection, we derive an upper bound for the ls>-induced norm of the
frequency response operator G(jy) for each ¢ € I, that is, the frequency response gain
of the FDLCP system at the frequency ¢ € Zy. Although the upper bound is claimed for
the frequency response gains on each fixed frequency ¢ in the frequency interval Zo, it is
straightforward to see that it actually also gives a way to determine an upper bound for the
H,, norm that is needed for the bisection algorithm iterative computations.
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Theorem 3.8 Suppose in the system (2.1) that A(t) belongs to Lpcp|0, h] while B(t), C(t)
and D(t) belong to Loac(0, h], and that the system is asymptotically stable. Then

1G(GO)lz 2 < 157 SUR{[I(G0omT — Q7+

for every ¢ € Iy. Here,

— -1 — e
1= max [PL0OBO, e = max ICOPE O, o= max 1D

Proof By the definition of the frequency response operator G(jy), it follows that

NGOt < NC Pl (EG ) = Q)i |27 Bl + 1D,

From the block-diagonal structure of the operator (E(j¢) — @)™, it is easy to see that
I(EGP) = Q7 llnse = sup{iltion ~ @)1}
Furthermore, under the given assumptions and by Lemma 2.8, we obtain that

127 Bl i, = sup [|P7H(t,0)B(t)|| = max [|P~(t,0)B(t)||(= 7s)
t€(0,h] 1€[0,h]

The last equality comes from the fact that P~(¢,0)B(t) belongs to Lcac|0,h] by Proposi-
tion 2.1 and thus P~!(¢,0)B(t) is continuous with respect to ¢ € [0,h]. Similarly for the
coeflicients 7o and 7p. Q.E.D.

Remark 3.7 v5,7¢ and vp are the mazimum singular values of the finite-dimensional ma-
trices defined on a finite time interval. Hence the algorithms can be implemented. In addi-
tion, g, Yc and vp are time-domain factors while sup,,c z {||(7omI — Q)71||} is given in the
frequency domain. Therefore, the upper bound is a mized-type estimation for the lo-induced
norm. If only the H, norm s concerned, an obvious upper bound is given by

NGl < B7¢l|Qllo + 7D

where [|Qlo 1= SUD¢(—co,00) ||(JWI—Q) 7| s the Ho, norm of the equivalent LTI continuous-
time subsystem (Q, I, I). In addition, by Proposition 2.2, some upper bound formulas for the
frequency response gains and H,, norm can even be given without the knowledge of the
periodic portion P(t,0) and P~1(t,0) of the transition matriz of a given FDLCP system but
at the price of higher conservativeness.
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Chapter 4

Numerical Harmonic Analysis of
FDLCP Systems

Chapter 3 consists of the theoretical results about FDLCP systems derived through the
Fourier analysis but at an operator-theoretic level. These results clarify the basic properties
of FDLCP systems and lay the foundations for further analysis and synthesis discussions
from an operator-theoretic viewpoint. However, simple observations reveal that the matrix
expressions for these results are usually infinite-dimensional. This is a hurdle for the numer-
ical computations based thereupon. The main purpose of this chapter is to implement these
equations and formulas numerically and prove the resulting convergences when problems
are reduced to finite-dimensional ones. The problems in this chapter include: a necessary
and sufficient stability theorem based on approximate modeling (derived from the harmonic
Lyapunov equation and Gronwall’s lemma) and its corollary in Section 4.1; asymptotic trace
formulas for the H; norm computation and an asymptotic Hamiltonian test for the H.
norm computation developed via skew and staircase truncations on the frequency response
operator in Section 4.2 [86]. In addition, since it is hard to get the closed-form knowledge
of the transition matrix of a general FDLCP system, the Hs and H, norm computations
via approximate modeling are also considered in Section 4.3. The implementation problem
of the trace formulas of Theorem 3.7 and Corollary 3.2 is discussed in Section 4.4.

4.1 Stability Criteria via Approximate Modeling

In general, the difficulty in applying the Floquet theorem is that we have to determine
the transition matrix that is usually much harder to find, compared with the cases in lin-
ear discrete-time periodic systems [8] and sampled-data systems [26]. One may consider to
compute ®(h + ty,to) by a numerical solution of the corresponding differential equation. In
this case, however, an approximate modeling error will be inevitable. To put it another way,
this approach amounts to testing merely stability of some approximate model of the given
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FDLCP system unless the modeling error is taken into account. An obstacle in using the
harmonic Lyapunov equation (Theorem 3.1) is that the solution is infinite-dimensional so
that there is no way to test the positive definiteness of this solution besides the difficulty in
determining the solution itself. To surmount these difficulties, we revisit the approximate
modeling method [25], [38]. The basic idea is that if we construct an approximate model to
the original FDLCP gystems in some sense such that the transition matrix of this approx-
imate model can be determined explicitly in a closed form (so that this transition matrix
knowledge can be used in stability testing of the approximate model), then we are confronted
with such a question: under what condition, can one guarantee the stability of the original
FDLCP system by that of the approximate model? The main difficulties in such & stability
analysis method include: how to measure the modeling error and how to assess its effect on
the stability of the actual system.

4.1.1 Stability Criteria Derived via Different Approaches

There are several ways to deal with the modeling error and investigate its effect on asymp-
totic stability of the actual systems. In this subsection, two approaches will be considered:
the harmonic analysis of an approzimate system operator, A, — £(j0), and the asymptotic
analysis of an approzimate differential equation, (t) = A,(t)z(¢).

To express the approximate modeling idea, we decompose the state matrix of (2.1) as

A(t) = Ad(t) + Aa(t) (4.1)

where A,(t) is an approximate state matrix and A (t) is the error matrix. Here, we assume
that A,(t) and Aa(t) are h-periodic. Now construct the approximate FDLCP model

Go: 7= A (1) (4.2)

which has the (explicit) transition matrix ®,(¢,0) = P,(t,0)e?+. By (4.1), A = A, + Ax
with A, := T {A.(t)} and A, := T {Aa(t)}. Again, by using the Fourier series expansion
from L5[0, h] to Iy, it follows from Lemma 2.8 that

1Aallie = sup |[Aa(®)]] =: [[Aa()l]
t€[0,h]

if AA(t) € Lpcpl0, h] C Lpcc]0, h]. Based on these preparations, the following theorem gives
an answer to the question we posed.

Theorem 4.1 Suppose A(t) € Lpcpl0,h] and let L,[0,h] be a dense subset of Lpcpl0, h)
in the Lo[0, h]-norm sense (and hence L,[0,h] is dense in Lpcp[0,h] also in the L0, h]-
norm sense). Then the system (2.1) is asymptotically stable if and only if there exists an
approzimate h-periodic system G, as defined in (4.2) such that

1). Au(t) € L[0,R];
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2). G, has the transition matriz ®,(t,0) = P,(t,0)e% and all the eigenvalues of Q, have
negative real parts;

3). for Aa(t) = A(t) — Au(t), there exist numbers K, > 0 and o > 0 satisfying

e

< K,e™® (vt >0), sup ||P7L(t,0)Aa(t)Pu(t,0)]] < o/ K2

t€[0,h]

From the condition 3) of Theorem 4.1, it can be said that the asymptotic stability of
FDLCP systems is essentially robust in the sense that a stable FDLCP system can be
approximated by an h-periodic model which remains stable under some weak perturbations.
The necessity and sufficiency proofs for Theorem 4.1 will be given separately.

Sufficiency Proof of Theorem 4.1 Assume that the conditions 1) through 3) hold.
Since L,[0,h] C Lpcp[0, k], Theorem 3.1 applies to the approximate model G,. Therefore,
the assumption that the approximate system G, is asymptotically stable implies that, for
any W, € ST, the harmonic Lyapunov equation '

(4. — E(j0))'V, + V. (4, - E(j0)) = -W, (4:3)

has a unique solution V, € S*. In particular, let P2 W, P, = I € ST by taking W, =
P;* Pl € S*. Then, we have

Vo =P [ e(Qar)e(Qu r)dr} ;! | .
Vo= EB{ [ e(Qu ) elQur)dr (14)
On the other hand, from (4.3), we obtain

(Ao + Ax — E(J0))"V, + Vo (A, + An — E(§0O))
= W, + ANV, +V,Ar = —(P;"P;' — ALV, —V,Ap) (4.5)

Now take 0 #£ z € lg C ls. Then

((B;*P_l - A*Aza - Y—aAA)£7 l)

=a

(B2, Pr'e) — (43R { [ e(Qai ) e(Qu n)dr )Pz, @)
~(B{ [ Q7 eQu, 1)dr I Anz 2) (4.6)
By the well-known Cauchy-Schwarz inequality [22], we obtain
(B { [ e(@u Qe r)ir e, )
= [(EanP{ [ eQur) Qa,>} 2z, Py')]
< [(Pr'e Pr'z) (PIALP, {/ &(Qa, 7)"€(Qa 7T} P71,
PP [ eQu 1 e(Qu n)dr} BT )]
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122l B4R M | le@ar )" e(Qas Tl

< (1B 2l 1B AnPallu, [ K2e 7

K2 1, _
YSI §H£a1&||122 (4.7)

1P 2|, sup [|P7(t,0)Aa(t)Pult, 0)]]
t€[0,h]

where we used the assumption 3) and followed a similar derivation as in the proof of
Lemma 2.8 on the operator P;'AA P, since P;1(t,0)Aa(t)Pa(t,0) € Lpcpl0, h]. It is clear
that the arguments in (4.7) can be repeated on the third term of the right-hand side of (4.6).
Also, for any 0 # z € lg C I, P;'z # 0. Summarizing the above arguments, it can be
concluded that for any 0 £ x € g C Iy

(PP — ANV, =V, ANz, 2) > 0 ‘ (4.8)

Finally, we confine z to be an eigenvector of A, + A, — E(j0)(= A— E(50)) corresponding to
an eigenvalue A. Post-multiplying z on (4.5) and taking the inner product with g, it follows
from (4.8) that 2Re(A)(V,z, z) < 0. Noting that V., € S, this inequality actually says that
all the eigenvalues of A — E(j0) have negative real parts. This ensures by Theorem 2.5 that
the original FDLCP system G is asymptotically stable. Q.E.D.

It is worth mentioning that the sufficiency proof does not rely on the assumption that
L,[0,h] is dense in Lpcp|0, A]. This implies that A,(¢) can be any approximate model as long
as A,(t) € Lpcpl0, h] and its corresponding transition matrix can be determined explicitly
by some approach. Indeed, [38] gave a similar stability test by using constant state matrix
approximation, which is derived by the well-known Gronwall’s Lemma [25], [38], [61]. In the
following, we state this lemma for the necessity proof of Theorem 4.1. A complete proof for
this lemma is given in Appendix A.4.

Lemma 4.1 (Gronwall’s Lemma) Let v and f be continuous functions defined on the in-
terval [t1,t2), f(t) = 0,V € [t1,t] and K is a constant. If u(t) < K + [ f(r)u(r)dr for
t € [t1,1a), then u(t) < Kexp([, f(r)dr).

In the necessity proof of Theorem 4.1, we also need the following lemma, (Lernma 6.3.1
of [51]) about the norm inequality of the transition matrix of a general linear time-varying
system. This lemma also plays a key role in simplifying the stability conditions of Theo-
rem 4.1 to get Corollary 4.1 in the following discussions.

Lemma 4.2 Let A(t) be the state matriz of a time-varying state-space system. Assume that
A(t) is locally integrable on the time interval J C [0,00) in the sense that [;||A(t)||dt <
K < o0. Then for all (t,7) € J x J, the corresponding transition matriz ®(t,T) satisfies

|®(t, 7)]| < € J2 1A(o))do]
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Necessity Proof of Theorem 4.1 Now assuming the FDLCP system (2.1) is asymptoti-

cally stable, it is shown that there is an approximate FDLCP system defined as in (4.2) such

that the conditions of Theorem 4.1 are satisfied. We accomplish the proof in four steps.
Step 1. It is shown that for any ¢ € [0, ]

||®(¢,0) — @a(t,0)|| = 0,

et — e =0 4.9
R e L asiatadll (4.9)

where the convergence is uniform with respect to t. From (4.2), we observe
®,(t,0) = A(t)®,(t,0) — Aa(t)®,(2,0)
According to the variation-of-constants formula [38], it follows that

By (t,0) — B(t, 0)
_ /0 " ®(t, 1) An(F)Ba(, 0)dr

= - /0 t@.(t,T)AA(T)[‘I)a(T, 0) — &(r,0)]dr — /0 t@(t, 7)AA(7)®(r,0)dr

which implies that for any ¢ € [0, A
[|124(2,0) — 2(¢, 0)]
< [ 18t DIl 14a (DI - 12a(r,0) - &(r,0)|dr
+ [ 18- 1Al 18(r 0lldr
It is obvious that there exists a number K > 0 such that

sup ||®(7,0)[| < sup [|®(t,7)|| = K < o0

7€[0,h] T,0€[0,A]

since ®(¢,7) is continuous on [0, k] x [0, h]. Then it follows that

||®4(2,0) — @(¢,0)]
. . t
< K?h sup ||Aa(t)]] + K sup ||Aa(t)]] / ||®a(7,0) — &(,0)|[dr (4.10)
t€[0,h) t€f0,h] 0

Since Lpcpl0, k] consists only of piecewise continuous functions, |[Aa(-)|| = sup,eigp [ Aa(?)]]
is well-defined regardless of the choice of L, [0, h] and A,(t). Furthermore, by the assumption,
||Aa(+)]| can be made arbitrarily small by a suitable choice of A,(t). Noting also that ®(t,0)
and ®,(t,0) are continuous, it follows from Lemma 4.1 that

OID (4.11)

which says that as ||Aa(-)|| = 0, ®4(¢,0) — ®(¢,0) uniformly with respect to ¢ € [0, .
To show the second relation of (4.9), we define the set

1@4(t,0) — @(t,0)|| < K>h||Aa(-)]| exp(K
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As = {Aa(t) € La[0, h] : sup 4@l < 6} (4.12)

with § being a constant. Now we further denote the closure of As by As, which is well-
defined by Exercise 3.1.4(c,e) of [22, p. 107] since L,[0, h] is dense in Lpcp[0, h]. Clearly, As
is bounded and closed for any fixed . From (4.11), we observe that

adm  @u(h,0) = &(h,0) (4.13)
which implies that the eigenvalues of ®,(h,0) tend to those of ®(h,0) as ||Aa(-)|| — 0. Since
®,(h,0) and ®(h,0) are nonsingular, it can be asserted that as [JAA(-)|| — 0, each of the
eigenvalues of ®,(h,0) can be situated in an arbitrarily small e-neighborhood, which does
not contain the origin of the complex plane, of the corresponding one of those of ®(h,0).
This, together with the fact that ®,(h,0) and ®(h,0) have only finitely many eigenvalues,
shows that it is always possible to find a real number R > 1 and a real number 4 € [0, 27)
together with sufficiently small § > 0 such that all the eigenvalues of ®,(h,0) and ®(h,0)
lie in the simply connected region Dgg on the complex plane for all A,(t) € As. Here Dgy
denotes the region in the complex plane between the circle |z| = R and |z| = 1/ R, excluding
the ray segment {z = re’® : 1/R < r < R}. Let T denote the boundary of Dp, traversed in
the positive sense, and for each A,(t) € As, define

Log ®,(h,0) := 71r9 f (log 2)(2I — ® (h 0))'dz (4.14)

where the principal branch of the scalar logarithm is used. Then, by Theorem 6.4.20 of [40],
we obtain that exp(Log ®,(h,0)) = ®,(h,0) and Log (-) is continuous over the set of ®,(h, 0)
corresponding to A,(t) € As. Hence, it follows by (4.13) and Theorem 3.7.1 of [55] that

1
= — lim Log®,(h,0) -

lim e
AA()—0 h JAa()[|—0
1
= =Lo lim &,(h,0 —L ®(h,0 4.15
h gHAA%)H_*O o(h,0) = 7 Log &(h,0) = ( )

which says that the condition 2) is satisfied.

Now considering two LTT state space differential equations 1 = Q,u and © = Qu and
repeating the arguments around (4.10) and (4.11) on these two equations and applying
Lemma 4.1, we obtain that for any t € [0, A

169+ — ¢%| < &?h|Qu — Qll exp(KH|Qa — Q) (4.16)

where K is equal to that in (3.5) since the system G is assumed to be stable. The equalities
(4.15) and the inequality (4.16) complete the proof of the second relation of (4.9).
Step 2. Tt is shown that for any ¢ € [0, A}

_1 t 0 @ﬁ]' t,O = 0’ llm e'_Qa.t . e—Qt — 0 41,7
IEYNE )II—*OH (t,0) - (&, 0l |]AA(.)H_+0H | (4.17)
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where the convergence is uniform with respect to ¢. The second relation of (4.17) can be
verified by considering two state space differential equations 1 = —Q.u and ¥ = —Qu as we
did for the second relation in (4.9).

To show the first relation of (4.17) is equal te verifying that for any ¢ € [0, A]

lim ||®4(0,t) — @~ 1(£,0)]| =0
Jm [120(0,0) - @72, 0)]

By Theorem 6.3.2 of [51], it is true that
%(I)a(o,t) = —3,(0,t)Au(t)
which can be equivalently rearranged as

d
72:(0,8) = — A7 (1)27(0,1) = —AT(t)27(0,1) + AR ()97 (0,1)
To apply the variation-of-constants formula, we denote the transition matrix of the state-

space differential equation ¢ = —AT(¢)g by ®_(¢,7). Then, we have
®7(0,t) — ®_(t,0)
= /Ot ®_(t, )AL (r)®T (0, 7)dr
= | “o_(t, )AL (D)[T(0, 7) — B_(7,0)]dr + / “&_(t, )AL (r)D_(r, 0)dr
which, together with Lemma 4.1, yields
197(0,1) — ®_(2,0)|| < K*A||Aa ()| exp(KR||Aa()]]) (4.18)

where K := SUD; repo,n || @-(2, )| is well-defined.
On the other hand, by the definition of ®_(¢,0), it follows that

d T
—0-(1,0) = —AT()2_(,0)

or equivalently

d
725(6,0) = —21(1,004()

Again by Theorem 6.3.2 of [51] and the uniqueness of the transition matrix, it follows that
®7(t,0) = ®(0,t) = 7(,0)

Using this in (4.18), the desired result follows.

Step 3. Recall the sets As and Aj introduced in Step 1. Since the first inequality in
(3.5) is strict, it follows from (4.15) that there exists a small enough § > 0 such that for
some > «, every Aq(t) € As will be S-stable in the sense that every eigenvalue of @,
corresponding to A,(t) has the real part less than —f. In the sequel, we take one such small
enough é. Then, for each A,(t) € As there exists a finite number K,(Q,) > 0 such that
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19| < Ko(Qa)e™ (¥t > 0) (4.19)

Now we are in a position to show that sup,e(o p [|P; ' (t,0)|| and sup,epo » || Pa(t, 0)]| have
uniform upper bounds over the set As. To see this, note that

sup ||Pu(t,0)|| = sup ||®a(t,0)e™%|| < sup ||@4(t,0)]| sup [le”* (4.20)
t€[0,h] t€(0,h] t€[0,h]

te[0,h]

Here, by the definition of A; and the second relation of (4.17), there exists M > 0 such that

sup ||e” | < M+ sup [le”¥|| (VA.(t) € As) (4.21)
t€[0,h] t€[0,h]

Similarly, from the first relation of (4.9), there exists N > 0 such that

sup ||®4(t,0)|| < N + sup [|®(2,0)]] (VAl(t) € As) (4.22)
t€[0,h] tef0,h]

Hence, we are led to the uniform boundedness of ||P,(t,0)||. The above arguments can be
repeated on supyep || P; ' (,0)]] by using the second relation of (4.9) and the first relation
of (4.17). _
Step 4. Tt is shown that the condition 3) holds. To this end, observe
po= sup ||P7(t, 0)Aa(t)Pu(t, O)]
te[0,h]
< sup {[P7(5,0)]] sup [[Aa(t)]] sup ||Pu(t, 0)|] (4.23)

te[0,h] t€[0,h] t€[0,h]
Therefore, by the uniform boundedness of the first and third factors in the right-hand side
of the inequality (4.23) and the fact that L,[0,h] is dense in Lpcp[0,h] in the Lo [0,h]-
norm sense, 4 can be made arbitrarily small by taking appropriate A4(t) € As C L,[0, h].
Therefore, the proof becomes complete if we show that the first requirement in the condition
3) can be satisfied for all A,(t) € As with a fixed K, > 0 and a fixed o > 0 independent
of Ay(t) € As. In the following, we show this is indeed the case. More specifically, we show
that there exists K, > 0 such that

||€@e!|| < K e™®  (Vt > 0,VAL(t) € As) (4.24)

where « is given in (3.5). This can be completed by showing that
lleQ|] < Koe™® (Vt > 0,VAL(t) € As) (4.25)

since Ajs is a subset of Ajs.

To show (4.25), we first fix an A, (t) € As with the associated Q,; satisfying (4.19)
with K,(Qqa1). Then, for another A,s(t) € As with the associated Qq2, we denote AQ, =
Qa — Qq1 and consider the matrix differential equation

X(t) = QuX(@) + AQ.X (1) (4.26)
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It is clear that the solution is just X (t) = e(@u+4Qa)t = ¢@u2t On the other hand, by using
the variation-of-constants formula in (4.26), in a similar way to Step 1, we have

i
X(t) = @t 4 /0 eQu-IAQ, X (r)dr
which leads to

t
IX@®I < HeQ“”|+/0 19 =] [|AQ| - 11X () ldr

< KulQu)e '+ [ Ka(@u)e ™ =I|AQul - X (7)l[dr

or equivalently,

. pt
X0 < Kal@u) + | KulQulIAQul]- 1X(7)ejdr
Hence, by Gronwall’s Lemma (Lemma, 4.1), we obtain
X (1) < Ka(Qal)e(R'a(Qal)HAQall—ﬂ)t (Vt > 0)

which, together with the fact that X(t) = e(Qa1+2Qa) clearly says that for each Q,1, there
exists a neighborhood N (Qq1) of Q.1 and a constant number M; > 0 dependent only on the
matrix (g1 such that

||| < Mye™™ (V¢ > 0,YQ, € N(Qa1)) (4.27)

The above arguments indicate that if we show that the set of all Q, associated with A,(t) €
As, which is denoted by Qs, is also bounded and closed, then the inequality (4.27) and the
Heine-Borel finite-covering theorem [60, p. 36] will lead to the existence of K, > 0 such that
(4.25) holds. Here the fact that a closed and bounded set of finite-dimensional matrices is
compact is used. The existence of such a K, > 0 in turn gives (4.24) as claimed.

Therefore, to complete the proof, it suffices to show that Qs is bounded and closed. To
this end, we further denote the set of all ®,(h,0) associated with A,(t) € As by ®5. This
proof is nontrivial if we note that the mappings 77 : A.(t) — ®,(h,0) : A; — &; and
Ty : ®,(h,0) — Qq : &5 — Qs are nonlinear by Definition 4.3.1 of [55, p. 163].

It is clear by (4.11) that the mapping T; : A.(t) — ®,(h,0) : A; — P; is continuous. It
is also evident from Lemma 4.2 that for any fixed 6 > 0

12u(m0ll < explh sup ll4.(O]]] = exp[h sup [|4(t) - Aa(0)]

< exp B sup [|A()]| +6)] < o0
t€[0,h]

which clearly says that T is bounded on As. Hence, by taking the continuity of T} into
account, it follows that ®5 is bounded and closed.

On the other hand, it is well-known that log z is continuous with respect to z if the
principal branch is considered. Obviously, the matrix (2I — ®,(h,0))~! is continuous with
regard to z and ®,(h,0). Hence the maximum of |log z| - ||(2 — ®,(h,0))7!|| over the closed
sets I' and ®; is attainable and can be denoted by
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. _ -1 —
max max  {|logz|-||(zI — ®a(h, 0))7]]} =: M

Then by the complex-integral inequality [66, p. 47], the equation (4.14) tells us that
1
= 1 I—-9, -1
1Qull = llgzpz 08 2) (=1 = @a(h,0)) ]
1
< — & |logz| - ||(zI — ®4(h,0))7Y|| -
< 5§ llog 2| - I|(1 — @a(h,0)) 7] - |d

1
< — .
< 5=MsLr < oo | (4.28)

where Lr is the length of the integral contour I" given by

Lr ::}§|dz| = 2r(R+1/R) +2(R - 1/R)

by the definition that I' is the boundary of the simply connected region Dg 4. The inequality
(4.28) implies that the mapping T : ®,(h,0) — Q, : @5 — Qs is bounded on ®;. This,
together with the continuity of 75 as claimed in (4.14), shows that Qs is bounded and closed.
This completes the necessity proof. Q.E.D.

Most methods that use approximate models to analyze stability of FDLCP systems have
a common point, i.e., the transition matrix of the approximate model approaches that of the
original FDLCP system. This is also the case in Theorem 4.1 and can have an eigenvalue
approaching explanation by (4.15). In other words, A, — A as ||AA(:)]] — 0 in the ele-
mentwise sense, where A, is the set of the eigenvalues of the approximate model G, defined
similarly to A (the definition of A is given in Section 2.4).

Theorem 4.1 shows that computing merely the eigenvalues of the corresponding mon-
odromy matrix of an approximate model is not sufficient, theoretically speaking, to check
whether or not an FDLCP system is stable however high the approximation accuracy may
be since there exist modeling errors in the approximation treatments. Bearing this in mind,
it can be inferred that any direct but approximate computation of the monodromy matrix
®(t9+ h, to) is equally insufficient for testing stability of a general FDLCP system unless the
modeling error bounds are taken into account. The importance of Theorem 4.1 lies in the
fact that it can ensure stability provided that the approximate model is stable enough in the
sense that the condition 3) is satisfied.

In spite of a large freedom in choosing A,(t), however, trial-and-error is needed in choosing
A,(t) to show stability of an FDLCP system with Theorem 4.1. In such a case, it is sensible
to consider the dense subset L,[0,h] from which A,(¢) is taken, and a reasonable candidate
for L,[0,h] is the set of all piecewise constant functions, which is denoted by Ly.[0,h]. It
is well-known [25],[71] that for any A,(t) € L,.[0,A], the transition matrix ®,(¢,0) can be
computed explicitly, so that the condition 3) of Theorem 4.1 is easy to check. The necessity
of Theorem 4.1 ensures that it is always possible to find an approximate model in L,[0, A} to
satisfy the conditions by letting ||Aa(+)|| — 0 when the system is stable. However, due to the
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finite-word-length problem in the numerical monodromy matrix computations, to construct
approximate models from L,[0,h] may not work well. This is because if we let the size
of the subintervals tend to zero to get better approximation, then the exponential function
computed over each subinterval will tend to the identity matrix. This implies that the
monodromy matrix computation of a piecewise-constant approximate matrix A,(t), which
is theoretically quite simple, may actually become ill-conditioned.

Also it should be pointed out that the sufficiency part can be verified by using the
variation-of-constants formula and Gronwall’s Lemma after some modifications on the condi-
tion 3). Indeed, this is just what Theorem 4.2 claims as given later, which is also a conclusion
about stability analysis of FDLCP systems via approximate modeling. However, the proof
through the harmonic Lyapunov equation is a new direction, which explains the asymptotic
stability of a class of general FDLCP systems from an operator-theoretic viewpoint instead
of asymptotic analysis of differential equation solutions.

Observations about the condition 3) of Theorem 4.1 indicate that, generally speaking,
it is not easy to check whether or not this condition is satisfied since the interval [0, h] is
involved. There are two problems. Firstly, K, and « can only be estimated in a sufficient
fashion; secondly, the second inequality of the condition 3) of Theorem 4.1 can only be
checked ‘discretely’ on [0,h] and thus approximately, if a numerical procedure is utilized.
To get around the second problem, however, we can use upper bounds about the norms
of P,(t,0) and P (¢,0). Indeed, from Lemma 4.2, Theorem 4.1 can be reduced to some
simpler form, which will be summarized in the following corollary. Before we state and prove
this corollary, we stress that in the following discussions only the case that approximate
models are constructed by piecewise constant approximation on A(t), i.e., A,(t) € L,[0,h] =
L,c[0,h], is considered, though the idea applies to more general cases about L,[0,h]. To
our purpose, let [t;,%;+1] be the i-th sub-interval on [0, h] defined according to the piecewise
constant approximation of A(t). Noting that if A(t) € Lpcp|0, ], then by the definition of
piecewise continuous functions, A,(t) will be well-defined provided that A,(t) is given by

A(ty) Vt € [ti,tiy1) (if A() is continuous at ¢;)
Ag(t) = t _l}ﬂ . A(t) VYt € [ti,tiy1) (if A(-) is discontinuous at ¢;) (429)

where lim,_,,o denotes the right limit. Clearly, Vt € [0,A],||Aa(t)]| < sup,efon [|A(®)]] in
such an approximation treatment, and it makes sense to define

K := sup ||A®)]| > sup ||A.(t)]] (4.30)
t€[0,h] t€[0,h)

Here it is evident that K is independent of A,(t).

Corollary 4.1 Suppose that A(t) € Lpcpl0, h] and L,[0,h] = L,c[0, h]. Let A,(t) be defined
as in (4.29) and K > 0 be given in (4.30). Then, the system (2.1) is asymptotically stable if
and only if there exists an approzimate FDLCP model G, as defined in (4.2) such that
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1). Aq(t) € L,[0,A];

2). the constant portion of the transition matriz of A.(t) is Q. and all the eigenvalues of
Q. have negative real parts;

3). for Aa(t) = A(t) — A.(t), there exist numbers K, > 0 and a > 0 satisfying

& ~QEHIQalA
K3

a

le9"]] < Kqe™ (V£ 20), sup [|[4a(t)]| <
t€[0,h]

Proof (Sufficiency) Noting in the approximate model (4.2) that P,(t,0) = ®,(¢,0)e9, it
holds for any ¢ € [0, h] that

|| Pa(t,0)|| < ||@4(t,0)]|] - ||e—Qat < efo 14a(0)]|dt ol|Qallt < e E+1QalDh (4.31)

where Lemma 4.2 and (4.30) have been used. Similarly, we have
1P, 0)1] < 11@4(0, D] - [[e1]] < e lA«Oldt g gmet < fe, R
Then it follows readily from the above two inequalities that

sup || P2 (t, 0)Aa(t)Pa(t, 0)|] < Koe®HI0" sup [|44(1)|]

t€[0,h] te[0,h]
which says that if the condition 3) here is satisfied, so is the condition 3) of Theorem 4.1.

(Necessity) Now assume that the FDLCP system (2.1) is asymptotically stable. To show

the assertion, we recall the claim in the necessity proof of Theorem 4.1 that under the
stability assumption, for sufficiently small é > 0, all A/(¢t) € A; are stable, and there are
uniform upper bounds of K? and ||Q’]| for all A/(t) € As, which are denoted by K (> K7)
and K5 (> ||Q.]]), respectively. Noting also that L,[0,h] = Ly,.[0,R] is dense in Lpcp[0, Al
it follows that there is always an approximate model A,(t) in L,[0, h] N A such that
a iy
sup ||Aa(d)]| < = e~ E+Es)R
Sup IEWNOI %3
since the right-hand side depends only on A(t) and 6. Recalling that K; > K, and K; >
||Q.]| with K, and Q, associated with A,(t), this yields the desired result. Q.E.D.

Comparing Theorem 4.1 and Corollary 4.1, it is clear the stability condition 3) of Corol-
lary 4.1 does not involve the periodic portion of the Floquet factorization of the transition
matrix of the corresponding approximate model G,. This means that Corollary 4.1 applies
whenever the constant portion (), of the transition matrix of G, can be computed explicitly.
Thus, we have much more freedom in choosing approximate models and at the same time
the computation loads are reduced. Because of these simplifications in the condition 3) of
Corollary 4.1, it becomes possible to test stability of an FDLCP system in a sufficient fash-
ion by only using upper bounds of the modeling error, sup,¢(o  ||Aa(t)||, and this may give
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stability assertions that completely get rid of the difficulty in the supremum computation in
the condition 3) of Theorem 4.1 or that of Corollary 4.1.

It might sound strange if we talk about the conservativeness of the stability conditions in
this section, since these results here give necessary and sufficient conditions for asymptotic
stability. However, since we will develop yet another necessary and sufficient condition for
FDLCP systems and do comparisons among the necessary and sufficiency conditions derived,
it would be convenient to talk about conservativeness. For instance, to see what we mean by
conservativeness here, recall that the sufficiency part of Corollary 4.1 is guaranteed by the
existence of some approximate model satisfying certain conditions. Thus, Corollary 4.1 can
conclude stability of the original system only when such an approximate model A,(t) can
indeed be found. However, if the original system is asymptotically stable, it would be quite
often the case that almost all approximate models in A; are actually asymptotically stable
with é much larger than the modeling error corresponding to a specific approximate model
that is found. We mean this fact by the conservativeness of the condition 3) of Corollary 4.1
when we regard it only as a sufficient condition.

Now return to Corollary 4.1. It is clear from the proof of Corollary 4.1 that the estimation
giving the number % exp(—(2K +|@,||)R) is conservative in the sense that the approximate
model should be of c;uite high accuracy to satisfy the the second inequality of the condition
3) of Corollary 4.1 (i.e., A,(t) should be taken from As with fairly small §). This in turn
may result in unacceptable computation time. Simple observations will reveal that the
conservativeness is caused mainly by the exponential function exp(—(2K + ||Q.||)t) if K and
||Q.|| are numerically too large and ¢ is taken to be t = h.

Corollary 4.1 is derived from Theorem 4.1, whose sufficiency is established via the har-
monic analysis. Therefore, it is meaningful to say that Corollary 4.1 also follows from the
harmonic analysis. Now we take a short break from our main framework of the harmonic
analysis to show that another necessary and sufficient stability condition for FDLCP systems
can also be established through the well-known asymptotic analysis approach. Nevertheless,
before stating the criterion, it should be pointed out that the stability condition 3) in The-
orem 4.1 must be modified to accommodate this variation of technique in the proof.

Theorem 4.2 Suppose in the FDLCP system (2.1) that A(t) € Lpcpl0,h] and L,[0,h] =
Lpe[0,h]. Let Al(t) be defined as in (4.29) and K > 0 be given in (4.30). Then, the system
(2.1) is asymptotically stable if and only if there exists an approzimate FDLCP model G, as
defined in (4.2) such that

1). Au(t) € Lo[0,h];

2). the constant portion of the transition matriz of A.(t) is Q. and all the eigenvalues of
Q. have negative real parts;

3). for Aa(t) :== A(t) — A.(t), there exist numbers K, > 0 and o > 0 satisfying
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e

| <K (¥620),  sup ||Aa(t)]| < o-e EHIQulDr
te[0,h] K,

Proof The sufficiency proof is given by slightly modifying the arguments of Theorem 1.11
of [38]. Rearrange the equation ®(t,0) = A(t)®(¢,0) as

B(£,0) = A (t)®(t,0) + Aa(t)®(t,0)
Then the variation-of-constants formula yields
8(t,0) = ®u(t,0) + [ @a(t,7)Aa(7)8(r, 0)dr
which leads to the inequality
182, 01| < 1126, 011 - el + [ 1Pt P11 ([ Aa () 127, O)ldr ~ (4.32)

Since P,(t,7) is h-periodic for both ¢ and 7, the arguments around (4.31) can be applied to
P,(t,7) similarly. To be more specific, it is actually true for all ¢,7 € [0, 00) that

HPa(t, T)H S e(f\','l'”QaH)h ::<Ry

Hence, by substituting the above inequality and the first inequality of the condition 3) of
Theorem 4.2 into the inequality (4.32), it follows that

- . t
||®(t,0)|| < K,Ke™®* + KaK/o e~ An(1)|| || ®(T, 0)||dT (4.33)

Note that ||Aa(t)|| is not continuous in general due to some assumptions about L,[0, h] that
are required in the approximation. Hence, Gronwall’s Lemma can not be applied directly to
(4.33). To surmount this difficulty, the inequality (4.33) is changed to the following inequality
since Aa(t) is h-periodic.

. . 4
2(t,0)e"]| < KoK + oK [ sup [[4a ()]l [|2(r, 0)e>]|dr
t€[0,h]
This, together with Gronwall’s Lemma, implies that
. . t
@2, 0)e|| < K,K exp [I&GI&/ sup HAA(t)HdT]
0 t€(0,h]
Or, equivalently, we obtain
19(t,0)|| < K Kexp | — ot + K.Kt sup ||Aa(t)]]]
t€[0,h]

In particular, when ¢t = nh (n being a positive integer)

||®(nh,0)|| < K.K exp [ — anh + K, Knh sup HAA(t)H]
t€[0,h]
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Simple deductions tell us immediately that if

anh 1 q
— 4+ ——=1In .
K,K K, K KK

nh sup ||AA(t)]| < (g<1) (4.34)
te€[0,h]
then it holds that ||®(nh, 0)|| < ¢ < 1. This says that the eigenvalues of the matrix ®(nh,0).
are located in the open unit disc under the condition (4.34) .
To complete the sufficiency proof, we reduce the inequality (4.34) to
e} 1 q

sup ||[AA(D)]] < -~ + —In -
te[ng]“ Al K,K nhK,K KK

(g<1)

It follows that if sup,epo |[Aa(®l < 2% = f.:e‘(m”‘?“”)h, then ||®(nh,0)]] < g < 1 will be
assured for sufficiently large n. Finally, noting that A(t) is also nh-periodic, one can assert
that ®(nh,0) is nothing but the monodromy matrix of such an nh-periodic matrix A(t).
Then, the asymptotic stability follows immediately from the Floquet theorem.

For the necessity proof, we notice that sup,cpy IAa(t)|| is well-defined since L,[0, A]
is dense in Lpcp|0,A] in the Ly [0, h]-norm sense. Hence, sup;ejo 4 [|Aa(t)|| can be made as
small as desired by properly choosing A,(¢). Then arguments similar to those in the necessity

proof of Corollary 4.1 will lead to the desired assertion. Q.E.D.

Before closing this subsection, we indicate that as a by-product of the arguments in
the necessity proof for Theorem 4.1, the continuity property of eigenvalues of an FDLCP
system is actually derived. The result is summarized in the following proposition, which is
proved by the arguments around (4.15). The continuity characteristic is extremely important
in ensuring convergence of algorithms for Hy and H, norm computations established on
approximate modeling, which are the major topics of Sections 4.3.

Proposition 4.1 Suppose in the system (2.1) that A(t) belongs to Lpcpl0,h]. Then the
eigenvalues of the operator A — E(j0) are continuous with respect to the elements of A(t).

4.1.2 Numerical Examples

To illustrate the stability criteria developed in Subsection 4.1.1, we again consider to
test stability of the lossy Mathieu differential equation of Example 3.1 by numerically im-
plementing Theorem 4.1 and Theorem 4.2, respectively.

Example 4.1 The (closed-loop) state matriz is given by

0 1 .
Alt) = K(1 — 20 coswnt) —2¢ |’ wp=2 (le,h=mn)

where k, 3 and £ are parameters. Here we first consider to test the asymptotic stability of
A(t) by Theorem 4.1 numerically.
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Here the piecewise constant approximation given in (4.29) is adopted. To construct an
approximate model for each set of parameters, we divide the period A into N, = 120 subin-
tervals of the same length of h/N,, during each of which A(t) is approximated by a constant
matrix as in (4.29). Then, we can easily compute the monodromy matrix ®,(h,0) by matrix
exponentiations, as well as ¢J, by taking a matrix logarithm. To this constant matrix Q,,
two numbers K, > 0 and o > 0 can be found by working on the Jordan canonical form
of Q, := T,J,T;! and the transition matrix e9* = T,e’*!T"! such that the first inequality
of the condition 3) of Theorem 4.1 is satisfied. We further take N, = 30 points equitably
distributed on each subinterval, and compute the periodic portion P,(¢,0) on each of these
N, N, points, which is again carried out by matrix exponentiations since A,(t) is piecewise
constant and @, is already known. Then the second inequality of the condition 3) is tested
point-by-point on all the N,N, points. Figure 4.1 is the computation results for different
£'s (ie., £ =0,0.1, 0.2, 0.3, 0.4, and 0.5), in which the blank areas correspond to the pa-
rameters for k and 3 where the approximate model is stable and satisfies the condition 3) of
Theorem 4.1, the asterisks (x’s) indicate the parameters area corresponding to an unstable
approximate model, while in the areas marked by crosses (+’s) the approximate model is
stable but the condition 3) of Theorem 4.1 is not satisfied for the above K, and a. O

Example 4.2 For the same state matriz A(t) of Example 4.1, we can also consider to test
asymptotic stability of A(t) by means of Theorem 4.2.

The computation results are given in Figure 4.2. Here, the matrix @, is computed under
the piecewise constant approximation on A(t) as in the application of Theorem 4.1, but with
N, = 25000, and to check the second inequality in the condition 3) of Theorem 4.2, we took
N: = 10. The symbols in Figure 4.2 have the same meaning as what we have described
for Figure 4.1. Note that in this second approach, the knowledge on the periodic portion
of the transition matrices of the corresponding approximate models is not required. Also
in this latter case, the approximation parameter N, is fairly large, compared with the case
of Theorem 4.1. This is caused by the unfortunate fact that in applying Theorem 4.2, the
number {a/K,)e~EH1Q:IDh g relatively small, so that we need to construct approximate
models with high accuracy and this in turn forces us to choose large N,. O

Theoretically speaking, Corollary 4.1 can also be used in stability testing for the above
FDLCP system. Unfortunately, the condition 3) of Corollary 4.1 is overly conservative in
this example (compared with that of Theorem 4.2) so that we will be forced to construct
approximate models with extremely high accuracy. Therefore, the computation loads for the
given numerical examples are far beyond the capacity of the computers at hand, and thus
the application of Corollary 4.1 is abandoned here.

One might suggest to repeat the stability testing of the given FDLCP system by applying
Theorem 4.1 again but with N, = 25000 and N, = 10 so that we can compare the results
of Figures 4.1 and 4.2 under the same approximation treatments. Unfortunately, however,
this suggestion also results in unacceptable computation-time consumption if the computers
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Figure 4.2: Stable coefficients areas of the lossy Mathieu equation via Theorem 4.2 (blank:
G stable; asterisk: G, unstable; cross: G, stable but stability of G unknown)
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at hand are used. In view of these problems, we are obliged to alert the readers to the fact
that the results given in Figures 4.1 and 4.2 are not comparable directly, although they are
given for the same FDLCP system. What could be suggested by the comparison of these
two figures would be that Theorem 4.2 gives much more conservative sufficient conditions,
given that NV, is taken much larger in Figure 4.2 than in Figure 4.1, while the areas marked
with crosses (+’s) are much larger in Figure 4.2.

Ag side notes about the above numerical example, it should be pointed out that there
are two problems remaining unclear from direct observations. The first problem is that
if an approximate model can be found (not only exists), in a finite number of steps, to
determine whether or not the original system is stable. It is easy to see that this testing
process needs at least another instability criterion to figure out instability cases based on
approximate modeling. Unfortunately, however, this kind of criteria still remain as open
problems. The second problem is some numerical computation errors associated when the
stability conditions therein are implemented /investigated through certain numerical analysis
tools. Apparently, this kind of numerical errors are essentially different from the modeling
errors that we have discussed in Theorem 4.1, Corollary 4.1 and Theorem 4.2 and should
be treated as a separate problem. The problem of numerical computation errors will not be
considered in this thesis.

4.2 H, and H,, Norm Computations via Truncations

As for the Hs and H,, norm computations of FDLCP systems by the frequency response
operator defined through the input/output steady-state analysis, the square truncation tech-
niques were proposed in [2], [69], [70]. However, the convergence of such algorithms has not
been verified, which is nontrivial especially when the operator involved is non-compact.
There have been no discussions to clarify the relations between the original FDLCP fre-
quency response operator and the square truncated one, either. The possible reasons may
be attributed to the fact that this truncation neglects the ‘symmetrical’ structure of the fre-
quency response operator, which makes such discussions hard. To surmount these difficulties,
the skew and staircase truncations are proposed for the Hy and H,, norm computations in
this thesis with rigorous proofs for convergence. The implication of the work is twofold: on
one hand, these truncations do give ways to compute the Hs and H,, norms, by extending
the trace formula and the Hamiltonian test to FDLCP systems in an LTI continuous-time
fashion (as opposed to an LSI discrete-time fashion via the lifting approach); on the other
hand, these truncation treatments bridge a gap between the theory and practice on the
harmonic analysis of FDLCP systems. In theory, harmonic analysis leads to the notion
of the (infinite-dimensional) harmonic Lyapunov equation for FDLCP systems, from whose
solution an ‘exact’ trace formula was obtained for the Hy norm of FDLCP systems in Sub-
section 3.4.3. It should be remarked that the limit of the ‘asymptotic’ trace formula provided
in this section as the truncation parameter tends to infinity coincides with this ‘exact’ trace
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formula as shown in Section 4.3. This coincidence reveals the effectiveness of the skew
truncation methods for dealing with the infinite-dimensionality of the frequency response
operators of FDLCP systems. The skew truncation is first introduced in [88] as a basic
tool for the frequency response gains computation in FDLCP systems, but in this section
we further elaborate on it to derive a Lyapunov-equation-based method for the Hs norm
computation. The staircase truncation is introduced to compute the H,, norm as well as
to extend the Hamiltonian test into FDLCP systems, and is also useful for the frequency
response gain computation of FDLCP systems, as an alternative to the skew-rectangular
truncation proposed in [88].

4.2.1 Skew Truncation on the Frequency Response Operator:
Asymptotic Trace Formula

To overcome the infinite-dimensionality of the frequency response operator, the skew
truncation is suggested in this subsection, from which an asymptotic trace formula with
desired convergence is developed via the solution of a finite-dimensional Lyapunov equation.
It is shown that the truncation errors can be assessed in most practical FDLCP systems.

Now let us describe the skew truncation on the frequency response operator G(jg) of the
system (2.1) when it is strictly proper. Let us take N > 1 and approximate G(jy) by

G (jv) = Ci(E(je) — Q) 'Biy (4.35)

where B[ n] is formed by skew truncating B as follows:

By -+ By --- B_x
By = By --- By --- B_y )
By -+ By --- B_y

It is clear that _B_[N] = T{BN(t)}, where By(t) :IAEQ{:—N Bpei™#t with {B,,} being the
Fourier coefficients sequence of B(t). The operator C[y; is constructed similarly in terms of
C, that is, Civy = T{Cyn(t)} with Cy(t) := TN__, Cne?™**. The expression of (4.35) is also
called the skew truncation of G(j¢). This truncation of G(jy) can provide mathematical
convenience in trace computation. Hence it will be used in the H, norm computation.

The reason to introduce the skew truncation is that otherwise there is no way to do the
trace computation in the H, norm (Definition 3.3) due to the infinite-dimensionality of the
operator involved. Now we consider the quantity

1 3 s .
1G] = o /_ ., trace(Giw (o) G (7)) dp (4.36)
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which can be seen as the H, norm of the strictly proper FDLCP system (Q, By(t), Cx(t))
given below that is associated with the above skew truncation of size N.

7=Q%+ By(t)u
{ y=Cn(t)E ' (4:37)

Obviously, Gin)(j@) is the frequency response operator of the FDLCP system (4.37). It is
easy to see that G|n)(jp) has a skew-strip structure, and it will be shown that this structure
of Giy|(jp) makes it possible to do the trace computation as required in (4.36), though
Giny(jo) is still infinite-dimensional. However, before we attack the actual computation
problem, we have to face such a convergence problem: does ||Gy||2 tend to ||G]]2 as N — o0?

Now we are in a position to claim the convergence for the skew truncation in the asymp-
totic Hy norm computation through (4.36).

Lemma 4.3 Suppose in the system of (2.1) that the system is asymptotically stable and
strictly proper and that A(t) € Lpcpl0,h], B(t),C(t) € Lcacl0,h]. Then for any € > 0,
there exists an integer Ny such that ]||g||2 — HgNHQl <e (VN2> Ny).

Proof Since ||G||2 and ||Gn||» are defined through integrations on a finite interval, it suffices
to show that for any € > 0, there exists an integer Ny such that for any ¢ € Zy and VN > N,

1trace(Q(j99)*Q(j99)) — trace(Q[N](jw)*Q[N](N))’ <e | (4.38)

o0
n=--oo

|trace (G(j)"G(5¢) ) — trace(Gim (j¢)"Gin (79))|

= | T (1800l +11Cm G0)allu) (1GGRTl, ~ G (G0l

By (3.52), for the orthonormal basis {u, } of I defined in Lemma 3.2, we have

< ¥ (16Ul +IGm0mll) (1(E09) ~ Gim(ie))lu)
<[5 (166l + GG nl) '] 3 1600 - GG uli]*
< Vatrace(Glip)Cliv)) + trace(G(ie) G (i)

[ 116t - GmoDul]} (4.39)

In (4.39), we used (3.52) and the fact that G(jy) and Gyy(J) are uniformly bounded on I,
over o € Iy. Following a similar procedure as in (3.53) yields

trace(G(79) Gw(i9)) < SKZICwllEn 2o 11Bamll
Im|<N
< 51{2||—CA—[N1H122/12 > HBm|I2:I{a<OO (4.40)

m=—0C
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for some K, > 0, which can be taken independent of N and ¢ by the fact that ||é iy <
YimI<N |Cmll < &F2_ |Gl < 00 since C(t) € Leac0, k] (by the assumption tha,t Ct) e
Lcac[0, h] and Proposition 2.1). This, in particular, implies that (4.36) is well-defined. Also
by (4.39), to show (4.38), it is enough to show that for any ¢ > 0, there exists an integer
Ny > 0 such that for any ¢ € Zp and N > Ny

Z (G (G9) = G (G9))unll, < € ’ - (441)

n=—oo

Here, we have

~

II(Q Cl(E(je) - Q7' B+ Cim(E(9) — Q7' [B — B uall3

||IM8 ”MS

< i (1€ = Gl (BG9) - @) B2
+||Q_[N] (EGp) - Q7B - Biylual2) (4.42)

Also, by a similar derivation to the proof of Lemma 3.2, it can be shown that

> E - Eml(BG9) - @Bt < SKHEIE, X I1Call® (4.43)
n=—oo |m|>N

Z ICm(EGe) - Q7B - Bivlualll, <3K*[Cwllhy, 2 11Bmll? (4.44)
n=-—o0 |m|>N

Hence, applying Proposition 2.2 to (4.43) and the uniform boundedness of ||Q[N]||12 /1, OVer
N to (4.44) (as in (4.40)), we obtain (4.41) from (4.42) and hence (4.38) holds.  Q.E.D.

Remark 4.1 It should be noted that the assumption of B(t), C(t) € Lcacl0, h] guarantees
that Giny(J @) is uniformly bound on ly over ¢ € Iy and for all integers N; otherwise, the
trace computation as in (3.52) may not be applicable in (4.39), though (4.40), (4.43) and
(4.44) only involve the uniform convergence of the Fourier series expansion of C(t).

Lemma 4.3 implies that the Hy norm ||G||» can be approximated to any degree of accuracy
by ||Gn||2- Based on this observation, we define the following LTI continuous-time system
with complex state-space matrices given by

G (s) = [ s ] (4.45)
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where

By := [BYy,---,BY,, BT, BT ... BI|T
- C’_N O .
Co C_n
Cy = C’N C’O é—N
Cy Co
0 Cn |
On := diag[Q + jiNwpl, -+, Q + jwrl,Q,Q — jwrl,---,Q — jNwy]]
Qn — Eno(j0) (4.46)
with QN = dlag[QaQ,aQ] and ENO(.](IQ) = dia‘g{j@NIa"'7j991I,j990[aj97—11a"'7j(19—NI]‘
e e’

2N +1
The matrix Eyo(j@) will also be used in the staircase truncation in the next subsection.

Since in (4.35), (E(jp)— @)™ is block-diagonal and B[N] and Q[N] have 2N sub-diagonal
strips along the main diagonal, the m-th entry of Gix(j©)*Gm (@) on the main diagonal is

By (Eno(jo) + jmwply — Q) *CyCn(Eno(j) + jmwpIy — Qn) By

where Iy is defined similarly to Qx but in term of the identity matrix I. By the definition,
it is clear that Eno(j¢) = Eno(j0) + jeln. Hence

1 _lL +oo
Gnllz = / > trace(BN(]((p +mwy) Iy — Qn) " Cy

2’/T m=—co

Cy(j (0 + mwn)Iy — Q)" By ) dyp
1 I 2
= 5 Z /w trace(GN(]cpm) GN(]tﬂm))dtp

m=—0o0

where ||Gy||2 is the Hy norm of the LTI continuous-time system Gy(s) of (4.45). In the
derivation of (4.47), the infinite summation and the integral are interchanged. The va-
lidity of this order interchange is guaranteed by the Levy theorem [55] and the fact that

ko ctrace(Gn(jom)* Gn(jom)) is absolutely convergent over k (this fact is shown in the
proof of Proposition 3.1). Finally we obtain the following theorem.

Theorem 4.3 Suppose that the system (2.1) is asymptotically stable and strictly proper and
that A( ) € LPCD[O h] B ) C(t) € LCAC[O h] Then

85



Jim trace(B}‘VVNBN> = lim trace(CNWNC;r> =613

Here Vy and Wy are respectively the observability and controllability Gramians that can be
obtained by solving the finite-dimensional Lyapunov equations

Q*NVN+VNQN+CR,CN =0, QNWN+WNQ}+BNBR— =0

Proof By the stability assumption, all the eigenvalues of ) have negative real parts, and
so do all the eigenvalues of Qy by the definition. Therefore the system of (4.45) is stable.
Then, following the proof of Lemma 4.4 in [91], it still follows in the situation of complex
state-space matrices that

|Gxl|3 = trace (BTVVNBN) = trace(CNWNC]*V)
This, together with (4.47) and Lemma 4.3, completes the proof. Q.E.D.

4.2.2 Staircase Truncation on the Frequency Response Opera-
tor: Asymptotic Hamiltonian Test

To compute the H,, norm of an FDLCP system, only the skew truncation is not enough
to convert the problem to the maximum singular value computation of a finite-dimensional
matrix. Now we introduce what we call the staircase truncation to give a solution for the
H_, norm computation problem. The staircase truncation can be viewed as a modified skew
truncation. For the purposes of this subsection, it is assumed that the feedthrough matrix
D(t) is constant. The staircase truncation on G(jy) is defined as

Givn(59) = Covan(E(Gv) — Q) ' By + D (4.48)

Here, letting {B,,} and {C,,} be the Fourier coefficients sequences of B(t) and C(t), respec-
tively, the infinite-dimensional matrices B[ ~,u and C[N M) are given by

E[N,M] .= diag[- - -, Byw, Byw, Bywr, -+, Q[N,M] = diag[- - -, Cnar, Cwar, Cvar, - -]

with the finite-dimensional matrices

[ Bo B_N 0 1 I é() é_N 0 ]
BNM = BN B_N ’ éNM = ON é—N (449)
L O BN BO 4 L O CN éo J
(2M+l)jblOCkS (2M+1)jb10CkS
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where we assume M > N + 1. No truncation is done on D since it already has the skew
truncated form. Furthermore, to conform to the block-diagonal form of B[ ~,u and Q[M M)»
the infinite-dimensional but block-diagonal operators E(j), @ and D are also partitioned
into diagonal blocks accordingly so that (4.48) can be rewritten as

Gvan(§9) = Cowvon(Exe(G) — QM)_IB—[N,M] + Dy (4.50)
where
Dy = disgl--, Dy, Dus, Das,- (= D)
En(jp) = diag[--, Eu~1009), Emo(j9), Emi(i9), - -|(= E(jp))
with Qu = diag|Q,Q,--,Q] and
Lox X

(2M+1)

QM = diag[; S Qu, Oy Qs '](I 9_)

Eum(jp) = diaglj(p+(m2M +1) = Myw)I, -+, 5(¢+m(2M + w1,
w5 (0 + (MM + 1) + M)ws)1]

for m € Z. The block-diagonal matrix D), is defined similar to Qs but in terms of D. Our
task in this subsection is to establish a computation formula for the H, norm through the
staircase truncation treatment. To state the final result, we need to establish some conver-
gence lemmas associated with the staircase truncation on the frequency response operator
G(j¢). The following two lemmas ensure such convergence.

Lemma 4.4 Assume that the system (2.1) is asymptotically stable and A(t) € Lpcpl0, A],
B(t),C(t) € Lcac[0,h] and D(t) is a constant matriz. Then for any € > 0, there exists an
integer No > 0 such that ||G(j¢) — GGl <€ (VN > No, Vo € Iy).

Proof By the assumptions, together with Proposition 2.1 and Lemma 2.6, B(t),((t) €
Lcac|0, h]. By the structure of B — B[N], clearly ||B —B[N]||12/,2 S TN ||Bpm||. Similarly
for ||C — Q[N]||12 /1, Therefore, for any p > 0, there exists an integer No > 0 such that

H-B-_B[N]Hb/b < s HQA_—CA—[N]le/lz <y (VN 2 NO) (4.51)

Furthermore, there exist K¢ > 0 independent of N such that ||Ciy|l/, < Ke, since it
holds that ||Ciwlli/ < Tinj<n [|Call < 322 ||Crl|- On the other hand, we have

1G(©) = GGl < NIC = Comlliasl (EG9) = Q)7 Bllisis
+ NCw e/ EGY) — Q) iy lB — Bl (4.52)

Hence, by taking u to be

p = 5[max{max |(EGe) = Q' Bllu . Ko max || (E(iy) - Q)]
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the result follows by (4.51) and (4.52). Q.E.D.

By Lemma 44, to show that Gy »n(j) converges to G(jy) uniformly over ¢ € Zy in
the l-induced norm sense as N, M — oo, it suffices to show that Gy rq(jp) converges to
Gy (jo)as M — 00 In the same sense. This is established by the following lemma.

Lemma 4.5 Assume that the system (2.1) is asymptotically stable and A(t) € Lpcp(0, 1,
B(t), C(t) € Loac[0, h] and D(t) is a constant matriz. Then, for each fited N and for any € >
0, there exists on integer Mo(N, €) > 0 such that G o) — Givan (Gl < € (VM >
My(N,€),Vp € To).

Proof To prove this lemma, we focus on the inequality
1G(i0) - Covan (3N < |Cimwan(EG0) = @)l s\l By |l o
+ 1€l I(EGe) — Q)7 Bl (4.53)
where B[N’M] = B[N] —B[N’ - More explicitly, it is given by the infinite-dimensional matrix
Bt 0 B

By = Bymi 0 Byuu ]
Bvin 0 Byua

0 S

with the entry matrices given by

[0 - 0 By -+ B ] ) 07
. . . BN - 0
By = , , Bymu=|
.. 0 B—N
0 0 | _3—1 .- By 0 - 0 |
(2M+1) (2M+1)

The matrix Cjy yy 15 defined similarly but in terms of {C\n}2__y.
Here, noticing the block-diagonal structure of B,[ ~,um)» it i8 not hard to show that

B anlloge = 1Bl (4.54)

Now, since By is contained in B{N] as a sub—ma:crix, it readily follows that ||E[N]||l2 [y 2
|[BNM||. Obviously, there is an upper bound for || B N]|| 1o/, independent of N, which follows
readily from B(t) € Lcac[0, h] and the arguments in the proof of Lemma 4.4 about the fact
that there is an upper bf)und for ||Q[N]||l2 Jl; independent of N. In other words, it follows
that H_BZIN,M]H,Q 1, and [|Cwylliy 1, are uniformly bounded with respect to N and M.
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We are now in a position to prove the main result of Lemma 4.5. It is clear that

I(EG®) = @' Biv,allis
< “(E(](P) Q) BI[NM ”lg/lz + ||( (]99) Q) 1BH[NM le/lz . (4'55)

where BI[N M and B, are the lower and upper triangle portions of E[N, M]> respectively.

Zuin,Mj g
Hence, by noting the structure of Ey(jp) and @, and the skew structure of B (v, 88 well

as the fact that the entries of By are zero except its right-upper blocks, we have

||(E(.]99) - Q)—lé[N,M]le/lQ
= H(_E_M(](P) - _QM)*I_Bi[N,M]“lz/lQ
= Z%I%{H(EMm(j@) — Qu) ™' Buall}

sup{ 10w ((Brm(79) = Qu) ™)1} - | Braal (4.56)

IA

where Oy (-) means taking out the first NV block columns from a matrix. Moreover, by a similar
argument to the above, it readily follows that ||Byas|| has an upper bound independent of
M and N (note that By is essentially a sub-matrix of By M)-

Furthermore, by the stability assumption, the inequality (2.19) is true. That is, there is
K > 0 such that ||(jomI — Q)™Y| < K f(m), where f is defined in Appendix A.1. Then, it
is easy to see that (under our standing assumption M > N +1)

sup{lIaN( (Evm(J9) — Qu)” )H}

mezZ
(Jomemsn-merd — Q)™ 1“}

,ieg{ke{o 1,2, ,N—l} l

< K mez f(ke{o 1.2, nN_l} Im(2M +1) = M +k|)
e i 0 (4.57)

Combining (4.56) and (4.57), one can conclude that for each fixed N and for any e > 0,
there exists an integer M{(N,e) > 0 such that

€ ’
HC N]”lz/lzu( (]99) Q) 1BI[NM ng/lz Z (VM > lMO(N’ 6),V§9 € IO) (4'58)

because f(n) is monotonically decreasing to 0 for n > 1 (see Appendix A.1). The above
arguments can be repeated on the second term of the right-hand side of (4.55). Hence, for
the same € > 0 and Mj(N,e¢), it is easy to see that

P . 1= €
“—C—[N]||12/I2H<—E—(]99) —Q) lﬂ[N,M]le/lz < Z (VM = M(S(Nv 6),V(,9 € IO) (4‘59>

where we used the fact that ||Byag|| and HE’NMUH have the same upper bound. From (4.58)
and (4.59), it follows that
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N . - €
NCimll i I(EG9) — @) Bl < > (VM > My(N,€),Yp € Ip) (4.60)

In a similar way, one can conclude that for each fixed N and any ¢ > 0, there exists an
integer M{/(INV,¢€) > 0 such that

~ . . _ €
”E[N,M]Hl/%H—C—[N,M](E(](p> - 9_) 1”12/12 < 5 (VM > M(;I(N7 6)’V9’9 € IO) (461)

Then, the desired convergence assertion follows from (4.53), (4.60)-and (4.61) by taking

My(N,€) = max{M}(N,¢), M§(N,¢)}. Q.E.D.
Now, let us further define the LTI continuous-time system
Qum | Bym
- 4.62
Gru(s) [ Co Dy } (4.62)

where By = BNM, Cniyr = Cnar and Dy := Dy, while Qy is given by (4.46). The
following theorem is helpful in establishing a Hamiltonian test for the H,, norm computation.

Theorem 4.4 Assume that the system (2.1) is asymptotically stable and A(t) € Lpcp[0, h],
B(t),C(t) € Lcac|0,h] and D(t) is a constant matriz. Then

1G]l = ]\;1_{20 A/}i_inoo”GNMHOO,IM
where ||Gyulcozm = su%HGNM(jw)H with I being the union of the intervals TM™ =
[—wh/2 + m(2M + 1)w;:i)h/2 +m(2M + Dwy), m € Z; ie., IM =Ut>_ IM™,
Proof Noting that Gy a(j) is block-diagonal, it is clear from (4.50) that

G GOyt = sup |Cvae(Brm(§9) — Que) ™ Byar + Dul| (4.63)

By the stability assumption, (s has no eigenvalues on the imaginary axis. Then Qs has
no eigenvalues on the imaginary axis since Qp = Qu — Eno(j0) by the definition. Hence,

max || Gy, (79l oo
= max sup ||Chu ({0 + m(2M + V)wp)I — Qur) ' By + D]
$€Z0 mez
= ||Gnulloom | (4.64)
On the other hand, by Lemma 4.4 and Lemma 4.5, we obtain
I\}i—{noo Zl/}linoo HQ[N,M](j(P)le/h = I|Q(j99)||l2/lz (V(p € IO) (4'65)
Therefore, combining this with (4.64) yields
19lle = max |G = max lim  m {|Giy (79l a
=y 1wl
Note that the order interchanges involved are valid since the convergence of Lemma 4.4 and

Lemma 4.5 is uniform with respect to ¢ € Zy. This completes the proof. Q.E.D.
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Remark 4.2 The relation (4.64) suggests an (asymptotic) Hy, norm computation method
by searching over the frequency grid of TM . It is straightforward to see that the usual Hy
norm of the LTI system Gy is an upper bound of ||Gna|oozm since IM C (—o0,+00).

Theorem 4.4 shows if N and M are big enough, we can get tight estimations of ||G||. by
computing ||Gyar||eozv. Theorem 4.5 gives a basis by which ||Guas||ee z# can be determined
for any fixed N and M through a modified bisection algorithm we will describe shortly.

Theorem 4.5 Assume that the system (2.1) is asymptotically stable and A(t) € Lpcpl0, 4],
B(t),C(t) € Lcacl0,h] and D(t) is a constant matriz. Then, for any fized N and M
satisfying M > N + 1, ||Gyum||oozv < v only if 5(D) < v and the Hamiltonian matriz

Hya = Oum + BNMRJ_\/IID;/[CNM BNMRJT/II *NM
_CRIM(I + ’DMR]T/IIDX/[)CNM —(Qu + BNM’R';/[lDX/[CNM)*

has no eigenvalues on the jIM portion of the imaginary azis, where Ry := v2I — DDy
Proof It is clear that
Jim |[Cyar(j( +m(2M + 1)1 — Qu)™'Byur + Dul| = ||Dul|

Hence, ||Gnu||eozm < 7 implies that ||Dy|| < 7 (and thus Ry} is well-defined). This is
equivalent to saying that ||D|| < 7 by the form of Dy,. To complete the proof, it remains
to show that ||Gyul|ezm < 7 only if the eigenvalue condition is satisfied. However, this
can be completed by following the necessity proof of Lemma 3.7.2 of [32] with A(s) :=
2T — G (8)Gnur(s) where

Gru(s) = Bya (=8I + Q)7 'Civar + Diy
which is a state realization with complex coefficient matrices. Q.E.D.

It should be noted that Theorem 4.5 gives only a necessary condition. This is because
the range of jZ™ is not connected and hence we cannot employ a continuity argument (in
the usual Hamiltonian test, the whole imaginary axis, rather than its jZ™ portion, plays
a key role, and an implicit use is made of a continuity argument, based on the fact that
the whole imaginary axis is a connected region). Thus, for some ~, the knowledge on the
eigenvalues of the Hamiltonian matrix Hys corresponding to v alone fails to provide an
answer as to whether v is an upper bound or a lower bound of ||Gyr||eezm. To cope with
such situations, we propose the following modified bisection algorithm for the computation
of ||Gnul|sozm for fixed large enough N and M. To facilitate the notation, we introduce

_’Z—,—Mm = [%_l_(m_1)(2M+1)wh,—%l-+m(2M+].)th), mezZ

and ZM = > __ IM™. It is easy to see that Z and Z™ are disjoint and that the whole
imaginary axis is the union of jZ and jZ™.

Modified Bisection Algorithm for Computing ||Gyas||cozm
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Step 1. Select an upper bound +, and a lower bound ~y; such that v; < ||Gyumlleozm < Tu
and ||D|| < ;. We may simply take 3, = ||D|| and v, = ||Gryu||oo;

Step 2. If (vu — )/ < specified error tolerance level, then stop, and let ||Gyu||cozy =
(7u + m)/2; otherwise, set v = (7, + 7)/2 and go to the next step;

Step 3. Compute Hyps with given v, and determine the eigenvalues of Hyys. If there exists
any eigenvalue of Hy on jZM, it is concluded by Theorem 4.5 that [|Gyar|eezm > 7.
This leads to the operation ; = <y and go back to Step 2; if there are no eigenvalues
of Hyu on jZM, go to Step 4;

Step 4. There are two cases. ¢) if there are no eigenvalues of Hyjs on the whole imaginary
axis, it follows by the usual Hamiltonian test and Remark 4.2 that v > ||Gyuml|eo >
||Gnat||oozm- This leads to the operation -y, = ~ and go back to Step 2. ii) if there are
eigenvalues of Hyys on the imaginary axis (i.e., on jZ™), it remains unknown whether
7 is an upper bound or a lower bound of ||Gx||ezm. To resolve such uncertainty, go

to the next step;

Step 5. Let jZM™ ... jIM™» be the intervals containing the eigenvalues of Hyys on jZM.
Fori=1,2,---,p, check if ||Gyu(jw;)|| < v and ||Gym(jwi)|| < v, where
w = infIM™ = % + (i = 1)(2M + L)wy
wt = supZM™i = —%}i +i(2M + 1)ws,

If one of these tests fails, then v is a lower bound of ||Gy||e zr. Hence, set v = v
and go back to Step 2; otherwise, we can conclude that ||Gyy(jw)|| <7 (Vw € M)
by the continuity argument. Hence, set v, = v and go back to Step 2.

Recall that the feedthrough matrix of the system (2.1) is assumed to be constant in
the above discussions. It is straightforward to show that even if the feedthrough D(t) is
time-varying h-periodic, Lemma 4.4 with Gyy;(jy) redefined suitably by applying the skew
truncation even to D holds, provided that D(t) belongs to Lcac|0, h]. Furthermore, if we also
redefine Gy, ar(j) suitably by applying the staircase truncation to Dyyj, it is straightforward
to show that Lemma 4.5 holds with a deteriorated norm bound, where the deterioration is
bounded by the norm of D(t). Combining these results, an upper bound for the H,, norm
of the FDLCP system with a time-varying h-periodic feedthrough matrix can be obtained.

4.2.3 Skew (Staircase) Truncation Size Assessments

It is apparent from Lemma 4.3 (Lemmas 4.4 and 4.5) that the Hs (H,) norm computation
accuracy depends on the truncation parameter N in the skew truncation (/V and M in the
staircase truncation). These parameters determine also the orders of the asymptotically
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equivalent LTI systems. In this subsection, it is shown that we can assess the computation
errors caused by truncations. To facilitate our statement, we define the following numbers
about periodic functions By () := ¥jn<n Bre™#* and By (t) := B(t) — By(t).

S BIP = [ UBvPd = sy S 1B = [ 1Bw(0) P =

In|<N |n|>N
Sup 1By (1)l = ||B[N]||lz/12 =: (BN tzl[é%]HBN(t)H = 1B = Biwllsie = Lo

sup ||Bw(t) — Bo|| =: Ben
te[0,h]

Similarly, kcn,Ren,Con,Cen and Sey can be defined in terms of the Fourier coefficients
of C(t). The following theorem gives upper bounds of errors in the H, and H, norm
computation formulas established via the skew and staircase truncations.

Theorem 4.6 Suppose in the system (2.1) that A(t) € Lpcp|0,h), B(t), C(t) € Leac(0, Al
Then for the Hy norm computation with the skew truncation parameter N, we have

10K

ngHz - “GNHQ‘ \/(C%NR%N + R%’N(%oo) (C%OOKQBOO + C%NK%N)

For the Hy, norm computatzon with the staircase truncation parameters pair (N, M) satis-
fying M > N + 1, it holds

2(BenCBN + CCNB#N)]

M-N+1 (4.66)

'HgHoo - HGNMH‘XHIM‘ < K’[ECNCBOO + ConCay +
where K is given in (2.19).

Proof By the definitions of mBOO and (¢, together with Appendix A.1, it follows from
(3.53) and the facts that £ || Bull? = K% and ||C||i/1, = Cooo that

trace{G(j)*G(§9)} < 5ok Ko
Similarly, we obtain
trace{Giw(j©)"Gm(79)} < 3G NK KEy
The above two inequalities imply that
k- e .yl
[trace{G(j)"G(j )} + trace{Gim(J )" G (79)}]2
< VB GBoal + oo (467)
It also follows from (4.43) and (4.44) that

Z ||C[N] (Jo) = )I[B B ]anz <5K2(CN”BN
n=—co (4.68)

> € - Cn(EGiv) = Q) Biwzalll, < 5K°REx Chos
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Substituting (4.67) and (4.68) into (4.39) and recalling (4.42), some simple computations

lead to the result.
Next we consider the H,, norm computation error. Under the given assumptions, it is

straightforward to show that

{ ”C C[N]”lz/lzn( (.799) Q)_lﬁnlz/lz < K’ECNCBOO
HC N]Hh/h“( (]99) Q)-llllz/bHB - B[N]le/lz < K’CCNCBN
which implies by (4.52) that

1G(¢) — Gin(io)lliasie < KlConCaoo + ConCan] (4.69)

where K is given in (3.54). Furthermore, as shown in the proof of Lemma 4.5,
1By, an ey = 1Byl < ||B[N]||lz/lz = (BN

Repeating similar arguments leads to
|Bwwall < 1By = T{BoHliajta = Bon

Therefore, it follows from (4.55) through (4.57) that

. 2K Gpn
H(E(](P) - Q) B NM]le/lz “M-N+1 (4-70)
Similarly, we can show that
3 . _ 9K By
||Q[N,M](E(]99) -Q) i < M—N+1 (4.71)
Combining (4.70) and (4.71) with (4.53), it follows that
2K

1Gm(9) = Givan (GO < m[ﬂCNCBN + ConBan)]

Recalling (4.64), together with (4.69), gives the desired result. Q.E.D.

4.2.4 Frequency Response Gain Computations

In Subsection 4.2.2, the H,, norm computation via the staircase truncétion on the fre-
quency response operator is considered. The convergence for such a truncation is guaranteed
by Lemmas 4.4 and 4.5. In other words, under the assumptions of Theorem 4.4, we have

hm lim |lG[N,M}(j99).|lz/l2 = |G(7o)ia 2 (4.72)

M-—oco N—

uniformly over ¢ € Zg, as we already asserted in (4.65). Now focusing the attention on the
block-diagonal structure of the truncated operator Gy uq(j¢), it is not hard to see that
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NG w21 (GOt j1n = sup |Gym(§ (e +m(2M + 1)ws))|] (4.73)

which says, together with (4.72), that under the assumptions of Theorem 4.4, the supremum
of the frequency response gains, ||Gya(j(@ + m(2M + 1)wy))||, of the LTI continuous-time
system (4.62) for a fixed ¢ € Z, and over m € Z can approach that of the frequency response
operator of the FDLCP system (2.1) as closely as desired. Or equivalently, the staircase
truncation on the frequency response operator G(jy) also provides a way to compute the
frequency response gains of FDLCP systems. It is worth mentioning that such a formula for
the frequency response gains is uniform over the frequency interval Zy, and that the error in
such a method is bounded by the right-hand of (4.66) uniformly over ¢ € Z,.

4.2.5 Numerical Examples

In this subsection, several numerical examples are given to show the efficacy of the sug-
gested computation methods for the Hs norm, the H,, norm and the frequency response
gains of the frequency response operator of a given FDLCP system.

Example 4.3 First we consider the Hy norm computation for the following w-periodic sys-
tem by means of the asymptotic trace formula developed in Subsection 4.2.1 when the input
weighting parameter 3 varies from 0 to 0.5.

. [ —1—sin%(2t) 2-— lsin(4t) 0
x’[-afgam#)—ljwﬁﬂﬂ] [1—WW@]U
y=[1 1lx

Here, the function p is given by

_{sin2t) (0<t<3)
M”‘{o (z<t<m)

The transition matriz of the above FDLCP system has a Floguet factorization of the form

ro=[ 2 =2 o[ 5]

It is evident that the system matrices (A(t), B(t), C(t)) satisfy the required assumptions in
applying the asymptotic trace formula and the asymptotic Hamiltonian test. Noting that
the transition matrix is available, the Floquet transformed form of the frequency response
operator G(jy) can be written explicitly and thus all the above results apply.

Since the transition matrix of the original FDLCP system is available and the Fourier
series expansion of P(¢,0) and P~1(¢,0) only consist of finitely many terms up to the first
harmonic element, and since C(t) is constant, it follows that the Fourier series expansion of
C(t) only involves up to the first harmonic. Then, Corollary 3.2 can be applied directly to
get the ezact value of the Hy norm of the above system. This is because it suffices to solve
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(3.66) for the 6 x 6 (or 3 x 3 in the blockwise sense) central sub-matrix of the solution W and
apply the trace formula ||G]|2 = trace(¢W &*). Noting that Q — E(j0) is block-diagonal, this
sub-matrix of W can be obtained by solving only a 6 x 6 Lyapunov equation. The results
are given in Table 4.1.

Table 4.1: H, Norm Computation: Applying trace(¢W &) of ?Corolla,ry 3.2

B 0 0.1 0.2 0.3 0.4 0.5
H, 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5783 | 0.5611

To verify the efficacy of the asymptotic trace formula of Theorem 4.3, the Hy norm of
the system is computed asymptotically once again. The Hy norm computation results are
listed in Table 4.2 when the skew truncation parameter N varies from 1 to 43. We can assess
the errors of the H, norm computations by Theorem 4.6 discussed in Subsection 4.2.3. For
example, in the case of § = 0.5, the error of the squared H, norm between the exact and
its estimated ones is bounded by 0.0262 when N = 30. In the last row of Table 4.2, the
computation results with NV = 43 are shown, for which the error of the squared Hs norm
between the exact and estimated ones is bounded by 0.0155 in the case of 3 = 0.5. O

Example 4.4 Now we introduce a feedthrough term D(t) = 1 into the FDLCP system in
Ezxample 4.3 and compute the Hy,, norm of the corresponding system (which is not strictly
proper) by the modified bisection algorithm presented in Subsection 4.2.2. Here the input
weighting parameter 3 also varies from 0 to 0.5.

Table 4.3 shows the computation results, where the initial upper and lower bounds for the
H,, norm are vy, = 4.62 and ; = 1(= || D||) while the tolerance error is 0.0001. This upper
bound «, of ||Gw || zn 18 chosen by working on ||G ||« directly, which is taken such that
Y. is a upper bound of |Gy« over all g € {0,0.1,0.2,0.3,0.4,0.5} and N =1,2,---,43,
M =6,7,---,52 for simplicity. Such an upper bound of ||Gyu||e is computed numerically
via the usual bisection algorithm of LTI continuous-time systems. The Fourier coefficients
involved are computed by a numerical quadrature. In addition, we can also assess the
computation errors of the H,, norm by Theorem 4.6 of Subsection 4.2.3. For instance, the
error of the H,, norm between the exact and estimated ones is bounded by 0.2641 when
N =43 and M = 52 in the case of § = 0.5. _ O

Example 4.5 Finally we consider to compute, based on (4.73) of Subsection 4.2.4, the
frequency response gains of the FDLCP system given in Example 4.3 when the feedthrough
term D(t) =1 (that is, the same T-periodic system of Example 4.4 is considered here).

Here three pairs of the skew truncation parameter N and staircase truncation parameter M
are considered. In the first case, we choose N = 2, M = 5, and in the second and third cases

96



Table 4.2: Hy Norm Computation: Skew-Truncating G(j¢) to Gin)(j¢p)

8=0 |01 0.2 0.3 0.4 0.5
N =10.7323 | 0.6825 | 0.6352 | 0.5907 | 0.5500 | 0.5137
2 0.7323 | 0.6839 | 0.6409 | 0.6046 | 0.5761 | 0.5566
3 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5781 | 0.5608
4 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5781 | 0.5608
b} 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5782 | 0.5610
6 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5782 | 0.5610
7 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
8 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
9 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
10 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
11 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
12 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
13 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
14 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
15 0.7323 | 0.6836 | 0.6408 | 0.6053 { 0.5783 | 0.5611
16 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
17 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
18 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
19 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
20 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
21 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
22 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
23 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
24 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
25 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
26 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
27 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
28 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
29 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
30 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
43 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
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Table 4.3: H,, Norm Computation: Staircase-Truncating G(j¢) to Gy, m)( Jj®)

=0

0.1

0.2

0.3

0.4

0.5

1.5024

1.4574

1.4158

1.3778

1.3460

1.3230

1.5024

1.4582

1.4202

1.3893

1.3654

1.3478

1.5024

1.4518

1.4264

1.3981

1.3761
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Figure 4.3: Frequency response gains, i.e., ||G(§¢)||1. /1, over (0,wp /2] = (0, 1] asymptotically
computed via Gy (j) (solid curves for (N = 12, M = 18); dashed curves for (N = 3, M =
7); dash-dotted curves for (N =2, M = 5))
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N =3,M =7 and N = 12, M = 18, respectively. In each case, the truncation parame-
ters N and M are kept unchanged for all the input weighting coeflicient § varying among
{0,0.1,0.2,0.3,0.4,0.5} for simplicity. The computation results are given in Figure 4.3. The
solid curves stand for the frequency response gains when the truncation parameters N and
M are the third case, i.e., (N = 12, M = 18), and the dashed curves stand for the frequency
response gains of the second case, i.e., (N = 3, M = 7), while the dash-dotted curves stand
for those of the first case, i.e., (N =2,M = 5). ) ‘ o

In summary, the computation results in Tables 4.2 and 4.3 clearly show the convergence
of the H, and H,, norm computation algorithms suggested in Subsection 4.2.1 and Subsec-
tion 4.2.2. The frequency response gains curves of Figure 4.3 indicate, in particular, that
the numerical difference between the second and third cases is quite small so that the sug-
gested computation method of the frequency response gains is of fairly high accuracy even
with relatively small truncation parameters. This observation manifests that the staircase
truncation is also a useful tool in the frequency response gains computation besides the
skew-rectangular truncation technique of [88].

4.3 H; and H,, Norm Computations via Approximate
Modeling

In the preceding section, the H, and H,, norms computations are dealt with via trun-
cations on the ezact frequency response operator. Careful observations will reveal that
these algorithms heavily rely on the knowledge of the transition matrix of the corresponding
FDLCP system. Unfortunately, however, it is generally difficult to find the transition matrix
exactly. Therefore, to apply the algorithms effectively to practical FDLCP systems, one has
to resort to an approximate modeling technique as we have considered in Section 4.1 for the
stability analysis. The general idea is that, if we first construct an approximate model for a
given FDLCP system and if the transition matrix of this approximate model (possibly also
FDLCP) can be determined explicitly, then all the operations needed in the norm computa-
tions become possible for the approximate model. It is expected that the numerical results
for the approximate model will approach those of the original FDLCP system if the model-
ing error is small enough. The main task in this section is to show under what conditions
convergence can be guaranteed for the norm computations via such approximate modeling.

To avoid the use of the hard-to-find transition matrix of an FDLCP system in the sug-
gested H, and H,, norm computation methods, we construct an FDLCP approximate model
for the original FDLCP system (2.1) described by

[ = At)F + B(t)u
Ga { y = C(t)i + D(t)u | (474)

It is assumed that the state matrix A(¢) of (2.1) belongs to Lpcpl0, k], while B(t) and
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C(t) belong to Lcac[0,h], and D(t) belongs to Lpcc[0,h]. Here A,(t) is taken such that
A,(t) € Lpcpl0,h], and we define the error matrix Aa(t) := A(t) — Aq(t). The constraints
on A,(t) guarantee that the frequency response operator of the approximate model G, is
well-defined. It should be pointed out that no approximate treatments are imposed on
B(t), C(t) and D(t). We also suppose that A,(t) is taken such that (4.74) has the explicit
transition matrix ®,(¢,t0) = Pu(t,t0)e“=("%). It is well-known [71] that if the approximate
state matrix A,(t) is given by piecewise constant functions, the transition matrix ®,(t, %)
can be explicitly determined.

Now, since A,(t) € Lpcp[0,h], B(t),C(t) € Lcac(0,h] and D(t) € Lpcc|0, A, the fre-
quency response operator G,(j¢) of the system (4.74) is well-defined by Theorem 3.3 if the
approximate model (4.74) is asymptotically stable (this can be checked by the eigenvalues of
Q.), and. given by G,(jp) := C(E(jp) — A,)'B + D with A, := T{A.(t)}. It is also clear
that AA(t) € LPCD[O,h] and A = Aa +AA with _1_4_ = T{A(t)} and A.A = T{AA(t)} By
the Fourier series expansion operator from Ls[0, k] to I, which is an isometric isomorphism,
it follows from Lemma 2.8 that

144l = [1Aa (Ol zato /22104 = Sup 1Aa@® =: | Aa ()l (4.75)

4.3.1 Convergence Lemmas via Approximate Modeling

In the following arguments, it is assumed that the approximate FDLCP system (4.74) is
strictly proper, i.e., D(t) = 0,Vt € [0, h], whenever the Hy norm is concerned. The following
lemma shows that the H, norm of the approximate FDLCP system (4.74), denoted by
||Gal|2, can approach that of the original FDLCP system, i.e., ||G||2, as close as desired
by making the error [|Aa(:)|| small enough. The convergence property of the H,, norm of
(4.74), denoted by ||Gu||co, to that of the original FDLCP system, i.e., |G|, Will be given
in another forthcoming lemma, Lemma 4.7.

Lemma 4.6 Assume in the system (2.1) that A(t) € Lpcpl0,h], B(t),C(t) € Lcac|0,h],
and that the system is asymptotically stable. Then if ||Aa(-)|| is small enough, the approxi-
mate model (4.74) is also asymptotically stable and ||Gl|2 = lim) 4, (/=0 ||Gal|2-

Proof By Theorem 2.5, Proposition 4.1 and the stability assumption of the original system
(2.1), asymptotic stability of the approximate system (4.74) follows readily as ||Aa(-)]| — O.
Also in the necessity proof of Theorem 4.1, we have shown that sup,cpp ||Pa(t,0)|| and
SUP;cio.n || Pa ' (t,0)|| are uniformly bounded over As for sufficiently small 6 > 0. Now we
show that there exists K > 0 independent of A,(t) € As and v € Ty such that

1GemI — Qo) < Ksf(m) (Ym€ 2,0 € Iy) (4.76)

where the function f is defined in Appendix A.1.
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To show (4.76), it suffices to show that (4.76) holds for any A,(t) € As and ¢ € Z, since
As C Ajs by the definition given in the necessity proof of Theorem 4.1. To this end, we first
fix an Ay (t) € As, which has the associated matrix Q,1, satisfying

|G omI = Qa1) 7'l < K(Qa1)f(m) (Ym € Z,¢ € Ty)
for some K(Q.) > 0 and f defined in Appendix A.1. It is well-known that the inverse
of a finite-dimensional matrix is continuous with respect to its elements. Therefore, if the
associated matrix @, with an approximate model A,(t) € A; is located in a neighborhood
N(Qa1) of Qa1, there exists a number K(Qq1) > 0 dependent only on Qg1 such that

[(jomI = Qo)1 < K(Qa)f(m) (Vm € 2,0 € Ty)
for all Q, € N(Qa1). On the other hand, from the necessity proof of Theorem 4.1, it is already
known that the set of all @, associated with A,(t) € As is bounded and closed. Therefore,
from the Heine-Borel finite-covering theorem [60, p. 36], the result of (4.76) follows.

Next by the assumptions on A(t), B(t) and C(t), stability of G, implies the frequency
response operator of the system (4.74) is well-defined, which we denote by G,(j¢). Hence
it makes sense to define the Hy norm of the approximate FDLCP system G,. Now we are
ready to show the main assertion. Since ||G||2 and ||G,||2 are defined through a finite integral
interval, it suffices to show

aim trace(G,(j¢) G (jp)) = trace(G(jp)"G(j¢)) (4.77)

uniformly over ¢ € Z;. Repeating the arguments in (4.39) yields
|trace(G(j¢)"G(jp)) — trace(Ga(j9)"Ga(i9))|
1
< \/—[trace( (1) G(J)) + trace(G,(jo)” Qa(]'ﬂﬂ))] ’

[z GG9) - Gl 2]?

which implies that to complete the proof, we must show that trace(G,(j)*G,{j¢)) is uni-
formly bounded over A,(t) € As and ¢ € T, and that
G, Uy, =0 4.78
alm On;w (G(i9) — Galio))ualll, = (4.78)
uniformly over ¢ € Z;. To see the uniform boundedness of trace(G,(j¢)*G,(jy)) over
Aq(t) € As and ¢ € I, we note from the proof of Lemma 3.2 that

trace( VI NERGII)
- z IC P(E(j9) ~ Q)P Bu, |2

n=—oco

+oo
< €l mllBallt, Yo I(EGY) — Q) P, Bu, le
2 2 XX . 1ip-1 2
= H-Qng/lz“Bang/lz Z Z [(GomI = Qa) ™" [P7 B m—nl| (4.79)

n=—od MmM=—00
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where P, := T{P.(t,0)}, @, = T{Q.}, and [P, B]; denotes the i-th Fourier coefficient of
P71(t,0)B(t). On the other hand, by Theorem 2.2 it follows readily that 7{P(¢,0)B(t)} =
P.'B. Therefore, by using (4.76) in (4.79), it follows that

trace(G,(j9) G (w))
< €l | Balli, i, Z N(GomI — Qu) M| Z [P Blmnl

m=—oo n=—co

1
< QR IBE s Y KEAmPE [ 1B, 0)B(0) Pt

m=—o0

< 5K}

Clli Sup || Pa(t, 0)]* Sup. 1IP0I Z [1Ba|? < o0

by using the Parseval theorem and Appendix A.1. Also some arguments similar to (4.75)

are introduced to P, and P,". Recalling that sup,c s ||Pa(t, 0)|| and SUPseqo.p || Pa ' (¢, 0)]]

are uniformly bounded over A,(t) € As, the above inequality clearly implies the assertion

that trace(G,(j)*G,(jp)) is uniformly bounded over A,(t) € As and ¢ € T as claimed.
Now we turn to show that (4.78) is true. It is clear that

+o00
> GG®) - Galio) uallr
+co
= Y |ICEG®) — A) (A - A)(E(9) — A Bu,ll}
< HQHi/zzHf_a|1122/12|](ﬁ(j99)—Qa)_lni/lz||£Zl||122/12”AAH122/12
+00
Z II(E( —A)_I_Bunﬂi
< €Iz Sl[lp || Pa(2, 0)H2 SUP 1271 (@, 0PI AACIPKG
: Z I(EGe) — A Bulli, (4.80)

where we used the fact from (4.76) that ||(E(jo) — Q)7 |n/n < Ks for all A,(t) € As and
over ¢ € Zy. Since the last factor is uniformly bounded over ¢ € Zy, the assertion (4.78)

follows immediately. Q.E.D.

Next we show the convergence of the H,, norm computation via approximate modeling.

Lemma 4.7 Suppose that the system (2.1) is stable and that A(t) € Lpcp|0, b}, B(t),C(t) €
Lcac[0,h] and D(t) € Lpcc|0,h]. Then if the error ||Aa(-)|| is small enough, the approxi-
mate FDLCP model (4.74) is asymptotically stable and limy 4, (.yj1—o ||Galloc = ||G]]co-

Proof From the former part of the proof of Lemma 4.6, the stability of the approxi-
mate model follows. Moreover, sup,cpon ||Pa(t,0)|| and sup,c(o 4 || P, (¢,0)|| are uniformly
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bounded over Ajs if § is small enough. Or equivalently, P, := T{P,(¢,0)} and P;* are
uniformly bounded on I over 4; by arguments similar to (4.75). Based on these facts and
(4.76), we observe that

IG(G9) = Ga(59)lia i,
ICUE(i9) — Aa) ™A = A)(E(50) — A) ) Bl
< IC(EG9) = Aa) HlipllA = Adllii 1(E(9) = A7 Bt
< M€l | Pallian IEG @) = @) i o1 B2 it
A = Al I(EG9) — A7 Bl
SIIC 1o 12 1Pl |1 1 | 5 o i | (E(G0) = A) 7' Blliy i, || Aa (]
which, together with the facts that (E(jp) — A)~'B is bounded on I, uniformly over ¢ € Zy

and P, and P.' are bounded on /o uniformly over A,(t) € As, implies the convergence
assertion immediately. Q.E.D.

IA

4.3.2 Numerical Examples

Lemmas 4.6 and 4.7 tell us that one can get quite tight H, and H,, norm estimations of
the FDLCP system (2.1) by those of an approximate (possibly FDLCP) model constructed
in the form of (4.74), if the transition matrix of (4.74) can be explicitly determined and the
modeling error ||Aa(-)|] is sufficiently small. Unfortunately, however, Lemmas 4.6 and 4.7
only provide the convergence needed in the Hy and H,, norm computations through ap-
proximate modeling. In other words, the authentic computations can only be carried out
by resorting again to the algorithms as discussed in Section 4.2 with skew or staircase trun-
cations being suitably introduced on the frequency response operator of the corresponding
approximate model, which is called the approzimate frequency response operator for brevity.

Example 4.6 Here we consider again the Hy norm computations of the FDLCP system
given in Example 4.3 by introducing the skew truncation on the frequency response operator
of an approzimate model with A,(t) being piecewise constant approximation of the state
matriz A(t) of the original FDLCP system.

To be more precise, the period 7 is divided into N, segments with the same length of h/N,,
during each of which A(t) is treated as a constant matrix, as defined in (4.29). For this kind
of approximate FDLCP models, the transition matrices can be computed explicitly [71], and
thus the corresponding approzimate frequency response operator can be explicitly expressed
(in the sense that its finitely many entries needed in computations can be exactly deter-
mined). Hence, the skew truncation and thus the asymptotic trace formula apply to this
approzimate frequency response operator.

The computation results are given in Table 4.4, in which we consider only three cases
of approximation on A(t), i.e., N, = 50,100,180, respectively, while the skew truncation
parameter N running from 1 to 43 partially. |
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Table 4.4: Ho Norm Computation: Approximately-Modeling G by G, and Skew-Truncating
G.(j¥) to Gum (i)

N,=350 | =0 |01 0.2 0.3 0.4 0.5
N=1 0.7323 | 0.6826 | 0.6352 | 0.5909 | 0.5501 | 0.5139
2 0.7323 | 0.6839 | 0.6410 | 0.6047 | 0.5762 | 0.5568
3 0.7323 | 0.6836 | 0.6409 | 0.6053 | 0.5783 | 0.5611
4
)

0.7323 | 0.6836 | 0.6409 | 0.6053 | 0.5783 | 0.5611
0.7323 | 0.6836 | 0.6409 | 0.6054 | 0.5784 | 0.5613

10 0.7323 | 0.6836 | 0.6409 | 0.6054 | 0.5785 | 0.5613
20 0.7323 | 0.6836 | 0.6409 | 0.6054 | 0.5785 | 0.5614
30 0.7323 | 0.6836 | 0.6409 | 0.6054 | 0.5785 | 0.5614
43 0.7323 | 0.6836 | 0.6409 | 0.6054 | 0.5785 | 0.5614
N, =100 '

N=1 0.7323 | 0.6825 | 0.6352 | 0.5908 | 0.5500 | 0.5138
2 0.7323 | 0.6839 | 0.6409 | 0.6046 | 0.5761 | 0.5567
3 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5782 | 0.5609
4
3

0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5782 | 0.5609
0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611

10 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
20 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
30 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
43 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
N, =180

N=1 0.7323 | 0.6825 | 0.6352 | 0.5907 | 0.5500 | 0.5137
2 0.7323 | 0.6839 | 0.6409 | 0.6046 | 0.5761 | 0.5566
3 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5781 | 0.5608
4
5)

0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5781 | 0.5608
0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5782 | 0.5610

10 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
20 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
30 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
43 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
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Example 4.7 Now we consider again the Hy, norm computations of the FDLCP system
given in Example 4.4 by introducing the staircase truncation on the frequency response op-
erator of an approzimate model constructed from the original FDLCP system by piecewise
constant approzimation of A(t).

The approximate models needed are constructed in the same way as we explained in Exam-
ple 4.6. The H,, norm computations that are acquired through the medified bisection algo-
rithm are given in Table 4.5, where the staircase truncations are applied for the approzimate
frequency response operator (that is, the frequency response operator of the corresponding
approximate FDLCP model). In Table 4.5, three cases of approximate modeling treatments
are considered, i.e., N, = 50,100,180, respectively. Recall that Table 4.3 gives the H
norm computation results when the staircase truncations are applied directly on the ezact
frequency response operator of the given FDLCP system.

In the computations, the initial values of upper and lower bounds for the H,, norm
estimations are v, = 2.8747 and v, = 1(= ||D||) while the tolerance error is 0.0001. This
upper bound v, is given by an upper bound estimation formula in Remark 3.7, which is
taken invariably over § € {0,0.1,0.2,0.3,0.4,0.5} and N = 1,2,---,43 for simplicity. The
staircase truncation parameter M is taken from 6 to 52 so as to satisfy the truncation
parameter constraint of M > N + 1 for each skew truncation parameter NV in the table. The
Fourier coefficients needed in computations are obtained by a numerical quadrature. O

In summary, the results in Table 4.4 reflect the fact that convergence in the Hs norm
computation is guaranteed first by Lemma 4.6 when A(¢) is approximated as described, and
then by Lemma 4.3 when the approzimate frequency response operator is skew truncated.
From Table 4.5, we can also see convergence of the suggested computation methods in the
H,, norm computation. In particular, the approximate modeling approach does not rely
on the transition matrix knowledge of the original FDLCP system. From the observations
about Table 4.4 and Table 4.5, the above Hy and H,, norm computation algorithms based
on truncations on the approzimate frequency response operator are implementable in most
practical FDLCP systems.

4.4 Truncating the Trace Formula Based on the Har-
monic Lyapunov Equation

In Section 3.4, the exacttrace formula for the A5 norm is established based on the solution
of the harmonic Lyapunov equation, i.e., Theorem 3.7. However, it is apparent that there
exist two obstacles for one to apply the trace formula. The first is that one has to determine
the solution of the harmonic Lyapunov equation (i.e., (3.58) or (3.59)), which is represented
in terms of infinite-dimensional matrices. Strictly speaking, this task cannot be completed
even though Theorem 3.1 really gives the closed-form solution in the form of (3.14), since it
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Table 4.5: H, Norm Computation: Approximately-Modeling G by G, and Staircase-
Truncating G,(j¢) t0 Gopn,u(J¢)

N, = 50 =001 02 J03 |04 |05
(N=1,M =6) | 1.5021 | 1.4572 | 1.4160 | 1.3794 | 1.3492 | 1.3282
2, 6) 1.5021 | 1.4581 | 1.4206 | 1.3904 | 1.3666 | 1.3501
(3, 6) 1.5021 | 1.4618 | 1.4270 | 1.3996 | 1.3785 | 1.3629
(4, 6) 1.5021 | 1.4618 | 1.4270 | 1.3996 | 1.3785 | 1.3629
(5, 6) 1.5021 | 1.4618 | 1.4270 | 1.3996 | 1.3785 | 1.3629
(10, 12) 1.5021 | 1.4618 | 1.4270 | 1.3996 | 1.3785 | 1.3629
(20, 22) 1.5021 | 1.4618 | 1.4270. | 1.3996 | 1.3785 | 1.3629
(30, 32) 1.5021 | 1.4618 | 1.4270 | 1.3996 | 1.3785 | 1.3629
(43, 52) 1.5021 | 1.4618 | 1.4270 | 1.3996 | 1.3785 | 1.3629
"N, = 100

(N=1,M =6) | 1.5021 | 1.4572 | 1.4160 | 1.3785 | 1.3474 | 1.3254
(2, 6) 1.5021 | 1.4581 | 1.4206 | 1.3895 | 1.3657 | 1.3492
(3, 6) 1.5021 | 1.4618 | 1.4270 | 1.3986 | 1.3776 | 1.3620
(4, 6) 1.5021 | 1.4618 | 1.4270 | 1.3986 | 1.3776 | 1.3620
(5, 6) 1.5021 | 1.4618 | 1.4270 | 1.3996 | 1.3776 | 1.3620
(10, 12) 1.5021 | 1.4618 | 1.4270 | 1.3996 | 1.3776 | 1.3620
(20, 22) 1.5021 | 1.4618 | 1.4270 | 1.3996 | 1.3776 | 1.3620
(30, 32) 1.5021 | 1.4618 | 1.4270 | 1.3996 | 1.3776 | 1.3620
(43, 52) 1.5021 | 1.4618 | 1.4270 | 1.3996 | 1.3776 | 1.3620
N, = 180

(N=1,M =6) | 1.5030 | 1.4572 | 1.4160 | 1.3785 | 1.3474 | 1.3245
(2, 6) 1.5030 | 1.4581 | 1.4206 | 1.3895 | 1.3657 | 1.3483
(3, 6) 1.5030 | 1.4618 | 1.4270 | 1.3986 | 1.3767 | 1.3611
(4, 6) 1.5030 | 1.4618 | 1.4270 | 1.3986 | 1.3767 | 1.3611
(5, 6) 1.5030 | 1.4618 | 1.4270 | 1.3986 | 1.3776 | 1.3611
(10, 12) 1.5030 | 1.4618 | 1.4270 | 1.3986 | 1.3776 | 1.3611
(20, 22) 1.5030 | 1.4618 | 1.4270 | 1.3986 | 1.3776 | 1.3611
(30, 32) 1.5030 | 1.4618 | 1.4270 | 1.3986 | 1.3776 | 1.3611
(43, 52) 1.5030 | 1.4618 | 1.4270 | 1.3986 | 1.3776 | 1.3611

107



unfortunately relies on the transition matrix expression of the FDLCP system in concern,
which is hard to find. The second is that, even if we know the solution of the related
harmonic Lyapunov equation, we still face the multiplication of infinite-dimensional matrices
in the trace formula itself. To overcome these problems, in this section we discuss trace
formulas developed via truncation on this trace formula, which can be used for asymptotic
computations of the Hy norm of the original FDLCP system. To overcome the difficulty
in solving the harmonic Lyapunov equation, the trace formula stated via the harmonic
Lyapunov equation of an approximate FDLCP model is established in Subsection 4.4.2,
which in turn produces applicable trace formulas when truncation technique is used further.

To finish our understanding about the trace formula for the Hs norm of FDLCP systems,
connections between the ezract trace formula of Corollary 3.2 (or Theorem 3.7) and finite-
dimensional trace formulas proposed in Theorem 4.3 of Subsection 4.2.1 will be clarified in
the light of truncation on the ezact trace formula.

4.4.1 'Trace Formula Derived via Direct Truncation

In this subsection, we consider to reduce the trace formula of Theorem 3.7 to finite
computations. To this end, we truncate the matrix vector b into by which is given by

by :=[--,0,BTy,--- BT ... B%0,--]T (4.81)
Now we replace b in (3.57) with by, which gives the following relation!

||Gw 13 = trace(byV by) (4.82)

Note that by the structure of by, only finitely many block matrix entries at the center of
V are actually involved in the computation of ||Gy||o. Therefore, by truncating b, we get
two benefits: on one hand, we do not need to know all the components of ¥V (thereupon,
only finitely many variables of the harmonic Lyapunov equation need to be determined); on
the other hand, the trace formula computation itself is reduced to some finite operations.
However, before we take any advantage of these truncation merits, the convergence problem
should be scrutinized first: does ||Gy|]2 converge to {|G||2 as N — o0? The following lemma
gives the answer to this convergence question.

Lemma 4.8 Suppose in the system (2.1) that A(t) belongs to Lpcp[0,h], B(t) and C(t)
belong to Leacl0, h], and that the system is asymptotically stable and strictly proper. Then,
it holds that ||G||2 = imy— ||Gn]]2-

Proof Let By(t) := ¥\ <y Ba€’™*t, where {B,} _ is the Fourier coefficients sequence
|n|< n=—o0

of B(t). Then it is evident that for any N, By(t) € Lcacl0,h] C Lpcc[0, h]. Hence, the
frequency response operator of the truncated system (A(t), By(t),C(t)) is well-defined and

INote that ||Gx ||z in (4.82) is defined differently from that in (4.36), simply to avoid a clumsy notation.
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can be written as Gy(jp) := C(E(jp) — A)"'Byy) with By := T{By(t)} 2. Accordingly,
the Hy norm of Gy (j¢) is also well-defined for each N. To see the convergence, we introduce
an orthonormal basis {u, }+> _ on Iy with u, = [---,07,4%,07,...]7. Then by (3.52),

trace(GUip)Glip) = trace(GUAGUR) = S 11G(@) w2 (4.83)

n=—oc

By (4.83) and following similar arguments to (4.39), it follows readily that
[trace(G(jp)"G(jp)) — trace(Gy (9) G ()|
< V2[trace(G(j @) G(jp)) + trace(Gy(i0) G (iv))]*

1
| Z 1B = Biwllu/wll(EG0) — A7 Cru,|2]?

n=—oo

ey

o=

< ﬁ[trace( (jc,o)*G(jcp))+trace(GN(j<P)*QN(j99))]2

[T 1B [Z 1(EGo) - A)7*Cuall?]

In>N n=—o0

DO

(4.84)

Again, note that trace(G(jp)*G(jy)) and trace(Gy(je)*Gn(jp)) are bounded uniformly
over ¢ € Zy. This can be easily proved by following the proof of Lemma 3.2, and, in fact,
the latter can be shown to be bounded uniformly over N as well as ¢ € Z,. Treating
T2 o I(E(p) = A)™*C w3 as the trace of the system (A(t),I,C(t)), then the uniform
boundedness of £  ||(E(j@) — A)~*C u,||2, over ¢ € I follows easily. Summarizing the

above discussions, it follows from (4.84) that

|trace(G(j¢)"G(jp)) — trace(Gn (@) Gy (jp))| — 0

uniformly over ¢ € 7y as N — oo since B(t) € Lcac[0, ). Finally noting that the Hy norm
is defined via a finite interval integral, the result follows readily. Q.E.D.

Equipped with Lemma 4.8, one might optimistically feel that all the difficulties to nu-
merically implement the trace formula of Theorem 3.7 have been removed by truncating
b. However, some careful observations indicate that it is hopeless, strictly speaking, to try
to find some finitely many matrix entries of V by working only on some finite-dimensional
portion of the harmonic Lyapunov equation (3.58). This is because there are multiplications
of infinite-dimensional matrices in the harmonic Lyapunov equation (3.58).

To overcome this difficulty, Corollary 3.2 provides us with a solution but under the
prerequisite that the transition matrix of the given FDLCP system is explicitly known. If
this is the case, by truncating b to by as we truncate b to by in (4.81) and following the
arguments of Lemma 4.8 on the trace formula of Corollary 3.2, it is not hard to see that

* A A

Jim trace(bNV bN) = ||G|)3 ’ (4.85)

?Note that Gy (j¢) is different from Gyn(j¢) defined in (4.35).
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where V is the unique solution of (3.66) of Corollary 3.2. Noting further that in (3.66),
(Q — E(j0))* and @ — E(j0) are block-diagonal, it follows that one can solve the (2N + 1) x
(2N +1) sub-equation at the center of (3.66) exactly to get the (2N +1) x (2N +1) submatrix
at the center of V, denoted by (_IZ)[N, ~7» which is actually used in the trace formula of (4.85).
Now we extract that (2N +1) x (2N + 1) sub-equation out of (3.66) as follows

(Q = EGO) v i) w.v) + W),y (Q — E(50))v,m = —(C" ). (4.86)
and define by =[BTy, - -, BT, BT, BT, ..., BL]”. Hence, (4.85) can be written as
Jim_trace(By (Ww.mbw) = 116115 | (4.87)

which clearly says that one can get the asymptotic computation of the H> norm only through
finite-dimensional matrices and the solution of a finite-dimensional Lyapunov equation.

4.4.2 Trace Formula Derived via Approximate Modeling

As we have seen in the preceding subsection, to reduce the solution of the harmonic
Lyapunov equation to that of a finite-dimensional algebraic Lyapunov equation, we need
to rewrite the harmonic Lyapunov equation (3.58) in terms of the block-diagonal matrix
Q — E(j0) instead of A — E(j0) as in Corollary 3.2. However, this requires us to have the
knowledge about the transition matrix of the original FDLCP system. To avoid this inherent
difficulty, we resort to the approximate modeling approach.

It is clear from Corollary 3.2 that the Hy norm of the approximate FDLCP model (4.74)
(when (4.74) is assumed to be stable and strictly proper) can be expressed as

1Gal 3 = trace(b,V b, ) (4.88)

, BT | BT BT ...]T with {B,,}}= . being the Fourier coefficients sequence

[
of f?a(t) Pr (t 0)B(t), and V, is the solution of the harmonic Lyapunov equation
-FE

n——oo

(JO)' V., + Vo(Q, — E(j0)) = —C.,C, (4.89)

with C, := T{P,(t,0)C(t)} =: T{C.(t)}. From (4.88), let us further truncate b, to b,y
as we truncate b to by in (4.81). The discussions in Lemma 4.6 have already revealed that
if the modeling error ||Aa(-)|| is sufficiently small, it makes sense to define the Hy norm
of the truncated approximate FDLCP system (Q,, B,y (t), C(t)), which can be written as
|1G.n |2 := trace(b, xVabay). The following result shows that ||Gen||2 can be an asymptotic
computation of the Hy norm of the original FDLCP system (2.1).

Theorem 4.7 Assume in the system (2.1) that A(t) € Lpcp[0, ], B(t), C(t) € Lcac[0, R,
and that the system is asymptotically stable and strictly proper. Let ||gw1|2 denote the Ha
norm of the stable truncated approzimate FDLCP model (Qq, Bun(t), Ca(t)). Then
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4 ol = 4.90
||AA()II—>0N ” w2 = 1G]]z (490)
Furthermore, ||Gan |13 = trace(b!yVonban) with bay := [BT_y,---, BT, BL,BY, ..., BT,|T
and Von being the unique solution of the finite-dimensional algebmzc Lyapunov equation

(Q, = E(GO) Ve + Ven (@, = B0 = ~(CiCa)v (4.91)

In the above, (-)v,n) denotes the (2N +1) x (2N +1) sub-matriz at the center of the infinite-
dimensional matriz (-).

Proof By Corollary 3.2, ||Gax]|3 = trace(b,xV,b,y) = trace(b%y (Va)iv,mbay). Hence, the
convergence of (4.90) follows readily from Lemmas 4.6 and 4.8. On the other hand, since for
each fixed N, only the (2N +1)x (2N +1) sub-matrix at the center of the infinite-dimensional
matrix V, is actually used in the computation of ||G,x||2, it is enough to determine only
that sub-matrix from (4.89), which is denoted by (Za)[N,N] =: V.n. Noting that @ — E(j0)

is block-diagonal, the reduced-order Lyapunov equation (4.91) follows. Q.E.D.

Remark 4.3 In the finite-dimensional algebraic Lyapunov equation (4.91), there is still an-
other obstacle that should be overcome: i.e., the infinite-dimensional matrices multiplication
Q:_Qa Fortunately, in the discussions of Section 2.2, it is shown that under the assumptions
that Au(t) € Leco[0,h] and C(t) € Leacl0, ], T{Cu(t)*Ca(t)} = T{C.(t)}T{Calt)} =
C'*C’ This tmplies that (C C )[N,N] can be constructed dzrectly by computing only finitely
many Fourier coefficients of the h-periodic matriz function C,(t)*Cq(t).

4.4.3 Relationships among Various Trace Formulas

From the discussions in Subsection 3.4.3, Subsection 4.2.1 and Subsection 4.4.1, it can
be seen that different trace formulas have been established for the H, norm computations
of FDLCP systems exactly or asymptotically. Recall that the ezact trace formula of the H,
norm is represented via the solution of the harmonic Lyapunov equation (Subsection 3.4.3),
while the asymptotic trace formulas are derived via the skew truncation on the frequency
response operator (Subsection 4.2.1), or derived via truncation on the ezact trace formula
(Subsection 4.4.1). It would be interesting to study their relations. In this subsection, we
indicate that the asymptotic trace formula of Theorem 4.3 given in Subsection 4.2.1 can also
be viewed as the truncated version of the exact trace formula, but applied to the truncated
FDLCP system (Q,B(t),éN(t)) (where C’N(t) =N & C’mejm“ht). This fact tells us that
as the truncation parameter N tends to oo, the limit of the asymptotic trace formula given
in Theorem 4.3 goes to that of Corollary 3.2 (or Theorem 3.7), in the light of Lemma 4.8 in
Subsection 4.4.1.

In the sequel, we sketch a proof for this limit assertion. From the definitions of the system
matrices of the LTI continuous-time system G y(s) in (4.45) and the definitions of by, Q[N]
and @ — E(j0), it is evident that
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By = @N)[N], Cy = (Q{N])[QN,N]a On = (Q — E(j0))in,3 (4.92)

where (-);n) denotes the (2N + 1) sub-vector at the center of an infinite-dimensional matrix
vector (-) and (-)gn,n) denotes the (4N + 1) x (2N + 1) submatrix at the center of an
infinite-dimensional matrix (-). To describe the connection result mentioned in the above,
we consider the following Lyapunov equations:

~ K

(Q — E(j0))"V(N) + V(N)(Q — E(j0)) = —CnCiw) ’ (4.93)
ONVy + VnQn = —CxCy : (4.94)

The algebraic Lyapunov equation (4.94) is used for the asymptotic trace formula as stated in
Theorem 4.3 and the harmonic Lyapunov equation (4.93) is used for the ezact trace formula
of the FDLCP system (Q, B(t), Cx(t)), in which C(t) is truncated to Cy(t). Note here that
K(N ) is the unique solution of (4.93), which is dependent on N since Q[N] is related to
the truncation parameter N. Carefully observing (4.92), (4.93) and (4.94) and noting the
block-diagonal structure of @ — E(j0), it is clear that the algebraic Lyapunov equation (4.94)
is nothing but the (2N + 1) X (2N + 1) submatrix portion at the center of the harmonic
Lyapunov equation (4.93). From this, it follows readily that

trace{ ByVnBy} = trace{by V(N )by} (4.95)

which in turn implies from Corollary 3.2 that trace{ByVnBy} is just the Hy norm of the
FDLCP system (Q, Bn(t),Cn(t)) that is formed by further truncating the Fourier series
expansions of B(t) in the FDLCP system (Q, B(t), Cx(t)).

On the other hand, it is straightforward to show that

Jim_trace{bn (V)b = (1911 (4.96)

by first applying Lemma 4.8 to the truncated FDLCP system (Q, B(t),Cy(t)) and then
applying similar convergence arguments to the proof of Lemma 4.8 to the original FDLCP
system (Q, B(t), C(t)).

Finally, using (4.96) in (4.95), it follows immediately that

A}im trace{ByVxBn} = ||G||3

which is nothing but the limit relation of Theorem 4.3. The above arguments show that the
results of Theorem 4.3 that are developed via the skew truncation on the frequency response
operator can also be verified via truncation on the ezact trace formula based on the harmonic
Lyapunov equation. In particular, Theorem 3.1 guarantees that under the assumptions of
Theorem 4.3, the limits of the finite-dimensional Lyapunov equations of Theorem 4.3 do
exist, and the limits are just the harmonic Lyapunov equations of Corollary 3.2.
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4.4.4 Numerical Examples

In this subsection, we consider to compute the Hy norm of the n-periodic system of Ex-
ample 4.3. First, a direct truncation on the ezact trace formula is considered as suggested
in (4.87). Then we apply truncation to the trace formula stated on an approximate model
constructed from the given FDLCP system, by adopting Theorem 4.7. These treatments will
reduce the trace formulas involved to finite-dimensional computations if the harmonic Lya-
punov equations can be solved in a local fashion, as we have already seen in Subsection 4.4.1
and Subsection 4.4.2.

Example 4.8 First we consider the Hy norm computations of the FDLCP system given
in Ezample 4.3 by directly truncating the exact trace formula, tra,ce(ﬁ*i/_ ﬁ), stated via the
solution of the harmonic Lyapunov equation, to trace(éjvﬁ EN), stated via the solution of a
corresponding finite-dimensional Lyapunov equation as indicated in Subsection 4.4.1.

Obviously, we could develop arguments similar to those in Subsection 4.4.1, in which ¢ is
truncated to ¢y defined accordingly. These dual truncation arguments lead to another but
similar method for the Hs norm computation. However, such a method, when applied to
the specific example here, leads to identical computation results to those in Table 4.1 for
any truncation parameter N > 1. This is because the Fourier coefficients of C(t) have only
up to the first harmonic as discussed in Example 4.3, and thus ¢y = ¢ for N > 1. Now in
this example, we turn to reduce the trace formula, trace(ﬁ*i/_ b), to some finite-dimensional
computation by truncating b to by.

Since the transition matrix of the given FDLCP system is available, the truncation on
the trace formula can be equivalently converted into truncation on the input matrix B(t) as
in (4.85). Note also that the harmonic Lyapunov equation (£(j0) — @) V.+V(E(j0)—-Q) =
—C*C is always solvable in the sense that the (2N + 1) x (2N + 1) portion of the solution
V can be computed (see (4.86)). Hence, the truncated trace formula, i.e., trace(éjvﬁ ﬁN),
reduces to finite-dimensional matrices computation. The computation results are given in
Table 4.6. O

Example 4.9 Now we consider the Hy norm computations of the FDLCP system of Ez-
ample 4.3 by truncating the trace formula trace@:f/_aﬁa) of the approzimate model G, (that
is constructed through piecewise constant approzimation of A(t) as described in (4.29)) to
trace(l;:N_f/_aﬁa ~), as described in Theorem 4.7.

The purpose of this example is to show the effectiveness and convergence of the Hy norm
computation method suggested by Theorem 4.7. Recall that we exploited an explicit form
of the Floquet factorization of the transition matrix in the preceding example. However, it
is hard to determine the transition matrix of a general FDLCP system. To get around this
difficulty in more general cases, one has to resort to approximate modeling so that one can
apply Theorem 4.7.
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Table 4.6: Hy Norm Computation: Truncating trace(ﬁ*Y_ b) to trace(ﬁ}f/_' by)

=001 |02 |03 |04 |05
N =1]0.7323 | 0.6879 | 0.6486 | 0.6154 | 0.5893 | 05713
2 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5612
3 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5612
4 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5782 | 0.5610
5 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5782 | 0.5610
6 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5783 | 0.5611
7 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5783 | 0.5611
8 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
9 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
10 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
11 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
12 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
13 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
14 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
15 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
16 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
17 0.7323 | 0.6336 | 0.6408 | 0.6053 | 0.5783 | 0.5611
18 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
19 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
20 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
21 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
29 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
23 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
24 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
25 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
2% 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
27 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
28 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
29 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
30 0.7323 | 0.6336 | 0.6408 | 0.6053 | 0.5783 | 0.5611
43 0.7323 | 0.6836 | 0.6408 | 0.6053 | 0.5783 | 0.5611
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Table 4.7: H, Norm Computation: Approxiﬁlate-Modeling G by G, and Truncating

trace@:lzaéa) to trace(b,nVoban)

Ne=530 | =0 |01 0.2 0.3 0.4 0.5
N=1 0.7321 | 0.6824 | 0.6351 | 0.5908 | 0.5500 | 0.5139
2 0.7321 | 0.6838 | 0.6409 | 0.6046 | 0.5762 | 0.5568
3 0.7321 | 0.6835 | 0.6407 | 0.6052 | 0.5782 | 0.5610
4 0.7321 | 0.6835 | 0.6407 | 0.6052 | 0.5782 | 0.5610
) 0.7321 | 0.6835 | 0.6408 | 0.6053 | 0.5783 | 0.5612
10 0.7321 | 0.6835 | 0.6408 | 0.6053 | 0.5784 | 0.5613
20
30
43

0.7321 | 0.6835 | 0.6408 | 0.6053 | 0.5784 | 0.5613
0.7321 | 0.6835 | 0.6408 | 0.6053 | 0.5784 | 0.5613
0.7321 | 0.6835 | 0.6408 | 0.6053 | 0.5784 | 0.5613

N, =100

N=1 0.7323 | 0.6825 | 0.6351 | 0.5907 | 0.5499 | 0.5137
2 0.7323 | 0.6839 | 0.6409 | 0.6046 | 0.5761 | 0.9567
3 0.7323 | 0.6835 | 0.6407 | 0.6052 | 0.5781 | 0.5608
4 0.7323 | 0.6835 | 0.6407 | 0.6052 | 0.5781 | 0.5608
b} 0.7323 | 0.6835 | 0.6408 | 0.6052 | 0.5782 | 0.5610
10 0.7323 | 0.6835 | 0.6408 | 0.6052 | 0.5783 | 0.5611
20 0.7323 | 0.6835 | 0.6408 | 0.6052 | 0.5783 | 0.5611
30 0.7323 | 0.6835 | 0.6408 | 0.6052 | 0.5783 | 0.5611
43 0.7323 | 0.6835 | 0.6408 | 0.6052 | 0.5783 | 0.5611
N, =180

N=1 0.7323 | 0.6825 | 0.6351 | 0.5907 | 0.5499 | 0.5137
2 0.7323 | 0.6839 | 0.6409 | 0.6046 | 0.5761 | 0.5566
3 0.7323 | 0.6835 | 0.6407 | 0.6052 | 0.5781 | 0.5608
4
)

0.7323 | 0.6835 | 0.6407 | 0.6052 | 0.5781 | 0.5608
0.7323 | 0.6835 | 0.6408 | 0.6052 | 0.5782 | 0.5610

10 0.7323 | 0.6835 | 0.6408 | 0.6052 | 0.5783 | 0.5611
20 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5783 | 0.5611
30 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5783 | 0.5611
43 0.7323 | 0.6836 | 0.6408 | 0.6052 | 0.5783 | 0.5611
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To be more precise, for the given FDLCP system the period 7 is divided into N, segments
with the same length of h/N,, on each of which A(t) is treated as a constant matrix. For this
kind of approximate FDLCP systems, the trace formula of Theorem 4.7 applies since the
transition matrix of the approximate model can be computed. The computation results are
listed in Table 4.7, where three cases of the approximation parameter N, are considered, i.e.,
N, = 50,100, 180, respectively. The Fourier coefficients needed in the norm computations
are computed by a numerical quadrature. ’ O

In summary, the computation results in Tables 4.6 and 4.7 verify the desired convergence
of the truncations on the eract trace formula of the given FDLCP system and that of the
truncations on the trace formula of the approximate FDLCP models in the Hy norm sense,
respectively. Apparently, the results of Tables 4.6 and 4.7 highly coincide with those in
Table 4.1, Table 4.2 and Table 4.4 in the numerical sense.
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Chapter 5

Conclusions

The Fourier analysis about periodic functions has been a powerful tool in FDLCP systems
analysis and synthesis and produced fruitful results, both technically and historically. Un-
fortunately, however, the Fourier analysis technique has occasionally been applied to some
extent to a much wider group of FDLCP systems than it could be in the mathematically
rigorous sense, and there are also ambiguous interpretations due to various convergence prob-
lems associated with the Fourier analysis and the specific structure of unbounded operators
related to derivative operations. It turns out to be nontrivial for us to extend most well-
known properties or characteristics of LTI continuous-time systems to FDLCP systems when
these convergence and unboundedness problems are taken into account in theoretical discus-
sions. Bearing these problems in mind, this classical means is utilized once again in this
thesis to tackle various analysis problems in FDLCP systems but from an operator-theoretic
viewpoint by introducing the Toeplitz transformation. In this thesis, the concentration is
focused on the rigorous definitions, derivations and interpretations of basic properties of
FDLCP systems, such as stability. In this chapter, the main contributions of this thesis are
reviewed briefly, and some possible directions for future research are suggested.

5.1 Summary and Conclusions

In this thesis, a class of finite-dimensional linear continuous-time periodic (FDLCP) sys-
tems are attacked via the harmonic analysis, where the Fourier analysis is the main tool but
utilized from an operator-theoretic viewpoint. The contributions include the following.

First, the transition matrix properties in terms of Toeplitz operator representations are
scrutinized, which lead to the so-called (Floquet) similarity transformation relations stated
on the linear spaces [; and ls, i.e., Theorem 2.2 and Theorem 2.4. By means of the similarity
transformation relations, asymptotic stability of a class of general FDLCP systems is con-
nected to what we call the harmonic Lyapunov equation, i.e., Theorem 3.1. The similarity
transformation relations also reveal the basic characteristics about the eigenvalues of FDLCP
systems, i.e., Theorem 2.5, which improves our eigenvalues knowledge about FDLCP sys-
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tems in a geometric way and this in turn inspires us to the extension of the Gerschgorin
theorem to operators defined on [y, that is, Theorem 3.2. The harmonic Lyapunov equation
is stated for FDLCP systems, but in an LTI fashion, with an infinite-dimensional matrix
expression. This harmonic Lyapunov equation should be interpreted as an operator-valued
Lyapunov equation densely defined on the linear space l. This work manifests that FDLCP
systems are essentially LTI when their stability is considered. Though we also derived a
closed form solution to such a Lyapunov equation, the solution depends, unfortunately, on
the transition matrix knowledge and its positive definiteness test remains to be an open
problem; these problems constrain the value of the harmonic Lyapunov equation to theoret-
ical analysis. However, as we have shown in Chapter 4, it does help to derive necessary and
sufficient stability criteria for FDLCP systems via approximate models. The latter criteria
are highly applicable if the transition matrices of such approximate models can be explic-
itly computed. These stability criteria are summarized in Theorem 4.1, Corollary 4.1 and
Theorem 4.2. These results guarantee, in particular, that we may use piecewise-constant-
functions treatments in approximating A(t), and as in Section 4.1, the set of such functions
forms a practically applicable basis to check stability of FDLCP systems.

Second, the existence conditions of frequency response operators defined through the
input/output steady-state analysis are completely clarified and their basic properties are
investigated, in particular, in connection with the Hs and H, norms. This study indicates
that because of various convergence problems related to the Fourier analysis and the Toeplitz
transformation involved in the definition of the frequency response operator [70], this opera-
tor is guaranteed to be densely defined on I, i.e., Theorem 3.3, but that it can be extended
to have the Hilbert space I, as its domain so that we still can define and compute the H,
and H, norms of FDLCP systems based on this frequency response operator, as argued in
Remark 3.3. It is also proved that under standard conditions, the time-domain H, norm (re-
spectively, the Lo-induced norm) is equal to the frequency-domain Hs norm (respectively, the
H,, norm) of the frequency response operator, i.e., Theorem 3.5 (respectively, Theorem 3.6).
Thus the well-known equivalence relations in LTI continuous-time systems are recovered in a,
class of FDLCP systems for the frequency response operator defined through a way different
from the lifting [4], [5],[72]. What has been clarified further is that the frequency response
operator defined via the steady-state analysis is well-defined in most practical FDLCP sys-
tems and its mathematical expression is similar to that of LTI continuous-time systems. In
addition, it is worth mentioning that the frequency response operator thus defined may con-
tain more structural information of FDLCP systems than we had understood in the usual
ways prior to this study. For example, it is verified that the frequency response operator
defined by the steady-state input-output analysis can also be established as a mapping on [4
under some strengthened assumptions on the system matrices { A(t), B(t), C(t), D(t)}, i.e.,
Theorem 3.4. We believe that through the input/output steady-state analysis to [,-EMP sig-
nals, 2 < p < 00, the frequency response operators can be introduced as a mapping (densely
defined) on [, under possibly weaker assumptions than those in the I case.
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Finally, numerical implementations of the theoretical results form another group of
achievements of this work. Through the skew and staircase truncations, the Hs and H,
norm computations in FDLCP systems are converted to those of asymptotically equivalent
LTI continuous-time systems. Hence, the results-for the Hs and H,, norm computations in
LTI systems are extended to FDLCP systems. More precisely, on one hand, an asymptotic
trace formula is established for the Hy norm computation based on a finite-dimensional alge-
braic Lyapunov equation, i.e., Theorem 4.3; on the other hand, an asymptotic Hamiltonian
test for the H,, norm computation is derived, which is stated based on a finite-dimensional
LTT continuous-time model, i.e., Theorem 4.5. This Hamiltonian test is useful in developing
a modified bisection algorithm for H., norm computation, as discussed in Section 4.2. The
implication is that the skew analysis is a useful tool in converting an FDLCP system to an
asymptotically equivalent LTT system so that techniques developed for LTT systems can be
applied to FDLCP ones asymptotically. In other words, the skew analysis can provide an al-
ternative tool to get insight into the behavior of general FDLCP systems because it converts
them into equivalent LTI continuous-time systems in an asymptotic sense, while the lifting
technique converts them into equivalent LSI discrete-time systems. Indeed, the skew analysis
on the frequency response operator inspires us strongly to prove the ezact trace formula for
the Hy norm of FDLCP systems based on the harmonic Lyapunov equation. This study is
summarized in Theorem 3.7. In addition, we believe the skew analysis can also convert the
H, problem into that of an asymptotically equivalent discrete-time system by the well-known
impulse modulation formula and the factorization technique [34], although this idea is not
pursued in this thesis. It is also worth mentioning that the staircase truncation employed
for the H,, norm computation in particular gives an alternative method for the frequency
response gain computation of FDLCP systems [88], as discussed in Subsection 4.2.4.

In the proposed Hs and H,, norm computation methods, the Floquet transformation is
introduced to avoid the invertibility problem of infinite-dimensional operators and provide
help in the convergence arguments. Therefore, it becomes necessary to have the transition
matrix knowledge before applying the results. Fortunately, the discussion of Section 4.2
establishes in particular that it is enough to have the numerical description of the transition
matrix when using the results here in the sense that convergence in the proposed methods is
guaranteed theoretically without any analytical assumptions on the transition matrix. The
size of asyrhptotically equivalent LTI systems can be assessed easily in most practical systems
according to the accuracy requirement, as discussed in Subsection 4.2.3. Again, approximate
models provide help in the Hy and H,, norm computations as discussed in Section 4.3.

5.2 About Future Research

Apparently there are still many problems both theoretical and practical remaining un-
solved in the FDLCP world, although numerous efforts have been devoted to them. In the
following, we intend to take some space to describe several problems or topics that are worth
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further probing into. Roughly speaking, what we are going to talk is just what we failed to
surmount in our own study, and rough guesses of possible conclusions are given.

Solution of the Harmonic Lyapunov Equation. Since the harmonic Lyapunov
equation has an infinite-dimensional matrix expression, its solution is nontrivial in general.
Its solution is significant in two aspects: first, it might give a direct way to answer asymptotic
stability of FDLCP systems without invoking the solution of periodically time-varying Lya-
punov differential equations; second, the Hs norm can be determined via the trace formula
and this, in turn, might give ways to do the H» design in the FDLCP setting. The problem
is that such a solution must resort to some truncation on the harmonic Lyapunov equation
and, therefore, a convergence problem inevitably appears.

Pole/Zero Structure of FDLCP Systems. Since in FDLCP systems the similarity
transformation relations and the frequency response operator have similar algebraic expres-
sions to what we have in LTI continuous-time systems, it is natural to extend the pole/zero
concepts to FDLCP systems in a similar sense. In fact, there are already works in this
effort [56],[70], but the results there are neither unified nor easy to understand in the usual
LTI continuous-time sense.

Extended Nyquist Criterion in FDLCP Systems. The Floquet theorem is stated
. for open-loop FDLCP systems. When feedback is installed, it is hard to check the closed-
loop stability by the Floquet theorem. This is also true for the stability criteria developed
in this thesis based on approximate modeling. A possible solution is to extend the Nyquist
criterion to FDLCP systems based on the frequency response operator. This idea came orig-
inally from [39], [69], [70], but the mathematical interpretation of such an extended Nyquist
criterion is insufficient or even wrong in some sense. The primary difficulties in this idea
is: first, in what class of FDLCP systems it makes sense to establish the Nyquist crite-
rion on the frequency response operator that is infinite-dimensional; second, the numerical
implementation of this Nyquist criterion needs truncation, which results in a convergence
problem.

Harmonic Riccati Equations in FDLCP Systems. Only by matrix analysis, the
harmonic Lyapunov equation is derived. Hence it is reasonable to establish a harmonic
Riccati equation similarly from a periodically time-varying Riccati differential equation as
in the work of [70]. However, to some extent, the arguments there are not so persuasive and
lack rigorous interpretation. Possible obstacles in establishing the so-called harmonic Riccati
equation may include: first, there is no closed-form formula for the solution of periodically
time-varying Riccati differential equations, and second, the frequency response operator
definition needs to be extended to unstable FDLCP systems.

Harmonic Linear Matrix Inequalities in FDLCP Systems. The algebraic Lya-
punov and Riccati equations in LTI systems are the basis of the commencement of the linear
matrix inequality (LMI) technique. Therefore, the establishment of the harmonic Lyapunov
and Riccati equations may pave the way for some harmonic LMI interpretations of properties
of FDLCP systems, which in turn may usher in a harmonic LMI approach for analysis and
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synthesis of FDLCP systems.

Although systematic procedures are adopted and stretched in this thesis for analysis of
FDLCP systems, their applications in control engineering remain untouched. Therefore, at
this point, it is yet an unanswered question to measure how well the methods developed
in this thesis will work for control problems of practical FDLCP systems. Nevertheless, it
would be fair to say that the major results completed in this thesis as a whole have succeeded
to a considerable degree in establishing a working platform for the further research about

FDLCP systems through the harmonic analysis approach.
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Appendix A

A.1 Lemma A

The function f(n) [2] of an integer n is defined by

1 n=20
f(n):{ |n'—1 n#0

Then we have 2,1 f(R)2 <% (N> 1) and £ f(n)? < 5.

A.2 Proof of Lemma 3.1

The discussions just before Lemma 3.1 indicate that the adjoint operator £(j0)* of E(;j0)
is well-defined on its domain D(E(;j0)*). Here we only need to determine the structure of
the domain D(E(;70)*) and the matrix expression of E(j0)".

By the block diagonal structure of E(j0), it is obvious that E(j0) can be viewed as a
weighted sum of projections on lo. That is, E(j0)z = X+>__ jmws P,z with z € D{E(j0)}
and {P,,}+t>__ being orthogonal projection operators satisfying P;P, = 0 (i # k) and

m=—c

+o Pm = L. Denote the range of P,, by R(P,,). Then the closed linear space R(Z2,,)

m=—00 =M

are mutually orthogonal and satisfy
lo=-+R(P_)+R(By) +R(P) +---

Without loss of generality, we assume that R(P,,),Vm € Z is one-dimensional. Therefore,
if e, is a unit vector in R(P,,), then {e,, }2__. is an orthonormal basis of l3. The Fourier
series theorem (Theorem 1.6.3 of [22]) tells us that for any &,y € l5, it holds

e oo
z= (Z,€m)em: (T = D, (Z,en){ym)

m=-—o0 m=—0o0

On the other hand, by the definition of the domain D{E(j0)}, one can say that z € D{E(50)}
if and only if
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+00 v +o0

Yo Pzl = Y Az en) <o

where \,, := jmw,. Noting that P,,z = (Z, €, )€m, simple computations give
+o0 +o0
EGOz= 3 AnPmZ= D, AnlZ&m)em

Thus, if z € D{E(j0)} and y € I, we obtain

(E(j0)z, y) = Z/\ m){Ys Em)

m=-—-cQ

Furthermore, if there is a z € l5 such that

(E(j0)z, _y_> =(z,2) = +Z°o (T, em )2, €m)

m=—co

for all z € D{E(j0)}, then it follows by the above two equalities that (z,€,) = A (Y, €m)-
Therefore, if we define E(j0)" by z = E(j0)*y, then (E(50)*y, €m) = Am (Y, €m), Which implies
that

+o0 too *
E(joyy = 2 (Y emdem = Y AmPry=( L AnPn)y

since P, = P,, by Theorem 5.16.2 and Theorem 5.23.9 of [55]. This gives us the second
assertion.

To see the structure of D{E(j0)*}, let us show that D{E(j0)*} = D{E(j0)}. To this
end, suppose that £,y € lg = D{E(j0)}. Simple computations according to the definition
of inner product on l5 show that

(E(j0)z,y) = (z,—E(j0)y) = (2, 2)

where z = —E(j0)y € lo. The above equations clearly say that for z,y € D{E(50)}, there
exists z € lp such that (E(jO)z,y) = (a,2), which implies that y € D{E(j0)*} by the
definition of D{E(j0)*}. Therefore, we get D{E(j0)} C D{E(j0)*}. Hence to complete the
proof, it remains to show that D{E(j0)*} C D{E(j0)}. Now assume y € D{E(j0)*}. Then
by definition, there is a z € I such that for all x € D{E(j0)} we have

0= (E(j0)z,y) — (z,2) = Z (@, em)PAm{Ys €m) — (2, €m)]

m=—0o0

Since ¢,, € D{E(j0)} for all m € Z, it follows readily from the above equation that
Ay, €m) = (2, €,) for all m € Z so that

Z An{Y, €m)em = E(j0)"y

Finally, by the second assertion we just proved, we can rewrite the above relation as —z =
E(j0)y. This, together with the fact that —z € Iy, indicates that y € D{E(j0)}. Q.E.D.
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A.3 Auxiliary Arguments of Theorem 3.7

The purpose of this appendix is to give rigorous arguments to validate the order inter-
changes in (3.62) and (3.63). It is easy to see that if there are p inputs to the system (2.1),
then b consists of p infinite-dimensional vectors. Then, by (3.60), the squared Hs norm can
be given by the summation of all the squared Hy norms of p single-input subsystems. In
other words, it will lose no generality if we assume the system (2.1) has only one input. This
will bring convenience in the inner product operations.

First we show the validity of the order interchange of the infinite integral and the limit
in the equation (3.62). By the Cauchy-Schwarz inequality

[ b by (BGw) - @€ CE(w) - @b
< [TICEG) - @76 - BllulICEGY) - @) blludo
< [T neww) - @ b - i) [ 16w GY) - @b )’
< N[ NEGw) - er@-m)nidw]%
17 &G - @b a0 (A1)

Furthermore, by the block-diagonal structure of (E(jp) — @)~!, we have A
oo . 17 2
| EGw) - 7@ - byl dw
oo IR 1 2
< [ 3 N6+ kol = @ PR~ bulellas

[e.o] b=—

= 3 bl [ G+ k) - Q)

k=—00

= BP0 = 3 (BR[| Par (42)

|k|>N |kl>N

by the Parseval theorem, where [-]z denotes the k-th block-vector entry of an infinite- |
dimensional vector (-). Repeating the above arguments on the last factor of (A.1), together
with (A.2), the inequality (A.1) gives

[~ b () - @ C CUEG) - @b

. . 1. +oo ,\ 1 rto0 i, B}
€I L] 5 IBAPTL X NBIP)® [T e Pdr = K (4.3)
|k|>N k=—00 0
Now we note by Proposition 2.1 that B(t) = P~'(¢,0)B(t) and C(t) = C(t)P(t,0) belong
to Lcac|0, k). Based on these facts and the stability assumption of the system (2.1) (i.e., all
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the eigenvalues of @ have negative real parts), one can conclude that Ky — 0 as N — o©
since the last two factors in (A.3) are finite and € is bounded on I, by Lemma 2.8, while
S ji>n || Bxl[? tends to zero as N — oco. This shows that the order exchange is validated.

We must point out that in the deduction of (A.2), there is still another order interchange
between the infinite integral (/7°) and the infinite series (372° ). However, this is validated
by the Levi theorem [55, p. 577] under the same assumptions.

Next we show the validity of the order interchange in (3.63). Obviously, the validity
of such order interchange can be shown elementwise along the infinite-dimensional vector
(Q — E(jw))™C C(Q — E(jw))~'h. To this purpose, we observe

S [Tl - QC CEGw) - @ on Billds
k=—o0
+o0 Ak
< ¥ [l i) = IIE Col
NG + kn) = Q)7 - || Bel
< z HE" Gl Bl ([ 10 + i) - Q) Pd)’

k=—o0

'(/_:oH(J'(W+kwh)[_Q)—1H2dw)%
= k; HE Ll - 1Bl (f ||eQ*te—jiwh‘t||zdt)%
([ e

< SE el S 1Bl [ e \Pdt = Mi (i€ 2)

k=-—00 k=—~00

by the Cauchy-Schwarz inequality and the Parseval theorem. Here, note that under the
given assumptions, C(£)7C(t) € Leac|0, &), and thus S |[[C Climll,i € 2 is finite and
independent of ¢. Hence, M; is independent of ¢. This implies by the Levi Theorem [55, p. 577]
that the order interchange mentioned above is valid for each ¢ € Z. Q.E.D.

A.4 Proof of Gronwall’s Lemma

Gronwall’s Lemma is well-known in the literature about asymptotic analysis of solutions
of differential equations. It seems highly unnecessary to include a proof for this inequality.
However, when we reviewed this lemma from references [25],[38],[61], to our surprise, there
are subtle (but important) differences in the assumptions about the functions u, f and the
constant number K. This observation alerts us to the strict interpretation of this lemma.
Then, we believe that a complete proof for this lemma is important in understanding it
properly, at least in this thesis.
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The proof given below is quoted from [61, p.41]. Let us define

r(t)= K+ /ttf(T)u(T)dT
Differentiating this equation gives
P(t) = f(Hu(t) < fE)r(t) (A.4)

since f(t) is nonnegative. Multiplying both sides of (A.4) by the positive function e Jut (T)dr,

we obtain that

d — ! f(ryar

5 [r(t)e I 5 } <0 (Vtelt, b))
Integrating both sides from ¢; to any ¢ € [t1, o] gives

r(t)e o T K <0 (V€ [t 1))

and this completes the proof. Q.E.D.
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