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Abstract 

 

The demand for higher reliability tends to make system design increasingly complex. 

The configurations of such complex design are hierarchical containing multiple layers of 

subsystems immediately below the system level and component at the lowest levels. 

Reliability optimization of hierarchical systems can be achieved by allocating appropriate 

redundancy to unreliable units at all levels; system, subsystems, and component. However, 

allocating redundancy is subject to economic and physical limitations. The problems of 

optimal reliability design using redundancy allocation falls into the category of nonlinear 

integer programming problems which are quite difficult to solve because they are NP-hard 

and involves discrete design variables.  

A comprehensive examination of literature reveals that multilevel redundancy 

allocation optimization problems are seldom addressed in terms of the detailed modeling or 

appropriate optimization technique that such problems acquire. Additionally, currently, 

attention paid, however, to redundancy allocation is mainly confined to a single level, 

principally due to the notion that redundancy at the component level is more effective than 

at system level. However, this is not true for redundancy scenarios having non-identical 

spare parts and large-scale structures. Therefore, to increase the efficiency, reliability and 

maintainability of sophisticated products, the design engineer has to make a transition from 

a traditional focus on single level redundancy, and deal more effectively with multilevel 

redundancy.  

This research is a paradigm shift in approach to bridge the gap existing between the 

current techniques and required techniques of optimal reliability design of multilevel 

systems. First, this work introduced the scope of hierarchical and modular concepts in 

optimal reliability design and proposed a general formulation for Multilevel Redundancy 

Allocation Optimization Problems (MRAOPs) for reliability optimization of hierarchical 



 

 

system.  

Second, this research proposed a new hierarchical genetic algorithm for solving 

multilevel redundancy allocation optimization problems more efficiently. Because the 

design variables of MRAOPs are hierarchically structured, this work created a novel 

hierarchical genotype coding scheme with two types of genes; nodal and terminal. With this 

new hierarchical genotype coding scheme, hierarchical genetic algorithm is applied to solve 

several multilevel redundancy allocation optimization problem and found superior in 

performance to that using conventional genetic algorithms.  

Third, this work introduced the concept of modularity in optimal reliability design and 

solved multilevel redundancy allocation optimization problems with series and 

series-parallel configuration. The results showed that modular redundancy allocation not 

only provide better reliability but also make a system more fault tolerant. 

Finally, this work proposed a multiobjective formulation and optimization of multilevel 

redundancy allocation optimization problems. A general framework of Multiobjective 

Hierarchical Genetic Algorithm (MOHGA) has been proposed to solve multiobjective 

optimization of MRAOPs. The Non-dominated Sorting Genetic Algorithm (NSGA-II) and 

the Strength Pareto Evolutionary Algorithm (SPEA2) have been implemented in selection 

operator of the proposed MOHGA. The result demonstrated that selection operator with 

non-dominated sorting genetic algorithm performed better than the other methods in 

solving multiobjective optimization of MRAOPs. 

Building on the research carried out here, the future research should focus on designing 

efficient optimization techniques and on creating better selection strategies for 

multiobjective genetic algorithms when solving multilevel problems. In sum, this work has 

opened up a new avenue of future research in the area of optimal reliability design of 

multilevel systems. 
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Chapter 1 

Introduction  

With the heightened quality consciousness faced by industry, modern engineering is 

now more intended on developing tools and techniques to enhance product and process 

reliability in the design stage
[1]

. To remain competitive, the guarantee of high system 

reliability at a competitive cost is essential. Recent shifts in the focus of sophisticated space 

and defense operations have opened up many new frontiers of technological challenges and 

created demands for more reliable and maintainable products. Additionally, unprecedented 

developments in nanotechnology and miniaturization have led to many complex reliability 

structures, and increased the complexity of product designs. These developments give rise 

to a problem of how high reliability can be built into the complex design within the limit of 

economical and physical constraints. Thus a design optimization discipline which deals 

with the problems of maximizing reliability in a product design within the available 

resources is termed optimal reliability design. Engineers largely accomplish the optimal 

reliability design through the use of better computational optimization models, 

continuously growing in both complexity and fidelity. In general, achieving optimal 

reliability design is quite difficult because reliability design optimization problems are 

NP-hard
[2]

 and involves discrete design variables. 

1.1 Optimal reliability design 

The availability of powerful computational tools and techniques has shortened the 

development time and provided engineers with an opportunity to obtain improved designs. 

Increasingly the engineers are employing optimization as a design tool for finding optimal 

designs characterized by lower cost while satisfying performance requirements. A typical 

optimization example includes maximizing reliability while satisfying design cost 
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constraints. The basic paradigm in design optimization is to find a set of design variables 

that optimizes an objective function while satisfying the resource constraints. The process 

of obtaining optimal reliability in a product design is known as optimal reliability design.  

Optimal reliability design can be achieved in several ways such as by enhancing 

component reliability, providing redundant components in parallel, by ensuring the 

combination of both previous options, and reassignment of interchangeable components
[1]

. 

However, design-reliability experts have focused a great deal of their efforts on allocation 

of reliability and redundancy of components for maximizing system reliability. 

Development of efficient solution methods for maximizing system reliability by allocation 

still remains a challenging task in design for reliability. 

1.1.1 Overview of reliability design optimization 

The research interest in quantitative aspects of optimal reliability design began in the 

1960s. Since then many credible approaches for optimal reliability design have been 

proposed. The review papers
[3][4][5][6]

 of the earlier work indicate that the diversity of 

system structures, resource constraints, and options has led to the creation of several 

optimization models. The research works in the area of reliability design optimization can 

be classified
[6]

 using three criteria: system configuration, problem type, and optimization 

methodologies. Out of these three criteria of research classification, system configuration 

and optimization methodologies are still evolving areas of research in optimal reliability 

design of sophisticated systems.  

System configuration, also called reliability block diagrams (RBD), depicts the logical 

relationship between the functioning of the system and the functioning of its components. 

RBD of a system actually represents the real world system structures and quite often 

influences the optimization approach used in optimal reliability design. All the research 

works in this area can be grouped into these major system structures: series
[7-15]

, 
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parallel
[11,12,14,16-21]

, parallel-series
[22-63]

, general network
[64-77]

, k-out-of-n: G(F) 

systems
[78-87]

, and other unspecified configurations
 [88-93]

. However, reliability optimization 

of hierarchical RBDs has hardly been a research focus in optimal reliability design. It is 

well known that almost all of the complex engineering systems are hierarchically 

configured in which the system level is at the top, subsystem levels in the middle, and 

component level at the lowest level. The optimization problems of hierarchical RBD is a 

class of multilevel allocation optimization problems and very hard to solve these problems 

particularly using available optimization techniques. 

Based on the review works by Tillman et al.
[4]

, Misra
[5]

, and Kuo and Prasad
[6]

, the 

major focus of the research in optimization methods for system-reliability optimization can 

be classified into different categories such as heuristic algorithms, metaheuristic algorithms, 

exact methods, heuristics for reliability-redundancy allocation, and multiple objective 

reliability optimization. Almost all of the heuristics developed before 1980, obtained 

solutions from the solution of a previous iteration by increasing one of the variables by 1. 

Selection of the variable for the increment is based on a sensitivity factor. Nakagawa and 

Miyazaki
[46]

 numerically compared the heuristic methods of Nakagawa and Nakashima
[47]

, 

Kuo et al.
[71]

, Gopal et al.
[34]

, and Sharma and Venkateswaran
[56]

 for a redundancy 

allocation problem with nonlinear constraints.  

However, the heuristic developed after 1980 are based on distinct approaches. Dinghua 

Shi
[94]

 developed a heuristic method for optimum redundancy allocation with separable, 

monotonic nondecreasing constraint functions following the approach of adjusting unit 

increment with time. For the similar problem, Kohda and Inoue
[70] 

developed a heuristic 

method in which the solutions of two successive iterations may differ on one or two 

variables. Kim and Yum
[68]

 developed a heuristic algorithm with separable, monotonic 

nondecreasing constraint functions. Kuo at al.
[41] 

presented a heuristic method based on a 
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branch-and-bound strategy and Langrange multiplier method. Recently, Jianping
[38]

 

recently developed the bounded heuristic method for optimal redundancy allocation in 

which the method moves from one bound point to another through an increase of 1 in a 

selected variable and changes in some variables.  

Because exact methods provide exact optimal solution to a problem and involve more 

computational efforts, researchers in general have directed very little attention toward exact 

solution methodologies for such problems. Such methods are particularly advantageous 

when the problem is not large. Tillman et al. 
[3]

 documented many exact methods developed 

before 1980. Nakagawa and Miyazaki
[47]

 adopted the surrogate constraints method to solve 

optimum redundancy allocation optimization problem when there are two constraints, and 

objective as well as the constraint functions are separable. Misra
[95]

 adopted proposed an 

exact algorithm for optimal redundancy allocation based on a search near the boundary of 

the feasible region. This method was later implemented by Misra and Sharma
[43]

, Sharma et 

al.
[77]

, and Misra and Misra
[96]

 for solving various problems. Prasad and Kuo
[93] 

recently 

developed a partial enumeration method based on a lexigraphic search with an upper bound 

on system reliability. For large systems with a good modular structure, Li and Haimes
[73]

 

proposed a three-level decomposition method for reliability optimization subject to 

resource constraints. Mohan and Shankar
[74]

 adopted a random search technique for finding 

a global optimal solution to the problem of maximizing system reliability through the 

selection of only component reliabilities subject to cost constraints. Bai et al.
[78]

 considered 

a k-out-of-n: G system with common cause failures.  

Providing redundancy and enhancing component reliability at the same time often lead 

to increase in system cost. Such problems are termed reliability-redundancy allocation 

problem and belong to a class of nonlinear mixed integer programming problems. Tillman 

et al.
[59]

 were among the first to solve the problem using a heuristic and search technique. 
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Gopal et al.
[35]

 developed a heuristic method that starts with 0.5 as the component 

reliability at each stage of the system, and increases component reliability at one of the 

stages by a specified value h in every iteration. Xu et al.
[61]

 offered an iterative heuristic 

method for such problems with separable constraints. Hikita et al.
[67]

 developed a surrogate 

constraints method to solve reliability-redundancy allocation optimization problems with 

separable constraints. Reliability-redundancy allocation optimization problems arise in 

software also. Chi and Kuo
[90]

 formulated mixed integer programming problems for such 

allocation in software systems and systems involving software and hardware.  

Multiobjective optimization problems are adopted when there are several conflicting 

objectives are present and optimizing all these objectives simultaneously. The approach 

usually involves determination of all Pareto optimal solutions. Sakawa
[55]

 adopts a 

large-scale multiple objective optimization method to deal with the problem of determining 

optimal levels of component reliabilities and redundancies. In this approach, he derives 

Pareto optimal solutions by optimizing composite objective functions, which are obtained 

as linear combinations of the four objective functions. Later, Sakawa
[97]

 provides a 

theoretical framework for the sequential proxy optimization technique (SPOT); which is an 

interactive, multiple objective decision-making technique for selection among a set of 

Pareto optimal solutions. Misra and Sharma
[44]

 adopt an approach which involves the Misra 

integer programming algorithm and a multi-criteria optimization method based on the 

min-max concept for obtaining Pareto optimal solutions. Misra and Sharma
[45]

 also 

presented a similar approach to solve multiple objective reliability-redundancy allocation 

optimization problems. Dhingra
[30]

 adopts another multiple objective approach to maximize 

system reliability and minimize consumption of resources: cost, weight, and volume.  

Most of the system-reliability optimization problems fall into the category of nonlinear 

integer programming problems. Because the solutions of these problems must be integers, 



 
 

6 

 

they are more difficult to solve than general nonlinear programming problems. Though 

there are several optimization techniques have been applied in solving reliability 

optimization problems, not a single method is able to solve all reliability optimization 

problems. For example, dynamic programming
[98-101]

 has dimensionality difficulties which 

increase with increasing number of state variables, and it is hard to solve problems with 

more than three constraints. Although integer programming
[99, 102-107]

 methods yields 

integer solutions, transforming nonlinear objective functions and constraints into linear 

forms is a difficult task and they do not guarantee that optimal solutions can be obtained in 

a reasonable time. Exact algorithms
[108-114]

 such as branch-and-bound and other implicit 

enumeration methods require much computational effort to determine an exact solution.  

Although many algorithms have been proposed for nonlinear programming problems, 

only a few, such as sequential unconstrained minimization technique(SUMT)
[115-117]

, the 

modified sequential simplex pattern search
[16]

, and the generalized Langrangian function 

method
[118-120]

, have been proved to be effective when applied to large-scale reliability 

optimization problems. The maximum principle has difficulty in solving problems with 

more than three constraints. Likewise geometric programming is restricted to problems that 

can be formulated by polynomial functions. Unlike all these optimization techniques, 

meta-heuristic approaches, such as GA
[121, 122]

, simulated annealing methods
[123]

, tabu 

search methods
[124]

, particle swarm optimization method
[128]

 have been found to be very 

flexible and versatile in solving reliability optimization problems. They are based more on 

artificial reasoning than classical mathematics-based optimization. They require fewer 

assumptions on the objective as well as the constraint functions.  

In reliability design optimization, metaheuristic algorithms have been successfully 

applied to solve varieties of problems.  A good description of the GA concept and its 

application in reliability optimization is described in later chapter. The simulated annealing 
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algorithm is a general method used to solve combinatorial optimization problems. It 

involves probabilistic transitions among the solutions to the problem. Cardoso et al.
[126]

 

introduced the non-equilibrium simulated annealing algorithm (NESA) by modifying the 

algorithms of Metropolis et al.
[127]

. Ravi et al.
[76]

 have recently improved NESA by 

incorporating a simplex-like heuristic in the method and applied it to solve reliability 

optimization methods. Another metaheuristic algorithm Tabu search is very useful for 

solving large-scale complex optimization problems. The salient feature of this method is 

the utilization of memory to guide the search beyond local optimality. However, Tabu 

search is the difficulty involved in defining effective memory structures and memory-based 

strategies which are problem-dependent. Despite a few drawbacks, GA is more popular 

among rest of the metaheuristic algorithms and this research develops new GA to solve a 

proposed hierarchical optimization problems. 

1.1.2 Reliability Design Optimization using GA 

Optimization of system reliability is in general a highly complex problem in which the 

objective functions as well as the constraints are nonlinear and the decision variables are 

integers. Such problems are difficult to solve and computationally time consuming. The 

major research issue in this area is to develop simple heuristics which can give 

near-optimal solutions with less computational effort. However, heuristic methods usually 

require a mathematical formulation of the problem and do not provide much tradeoff 

between quality of solution and computational effort. In contrast to heuristic methods, a GA 

can be designed for a problem without explicit mathematical formulation, and the values of 

its parameters can be appropriately chosen to balance both quality of the solution and the 

computational work.  

A conventional genetic algorithm solves a problem by imitating the natural evolution 

process in which populations undergo continuous upgrade through four process, namely 
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evaluation, selection, crossover, and mutation. Fist, the design variables are encoded by 

genotypes and evaluated during evaluation process to calculate fitness. The selection 

process deletes the individuals with low fitness and retains the individuals having high 

fitness. Then, selected individuals go through the crossover operation in which genes are 

exchanged between these individuals and thus the new individuals are generated. Finally, 

the mutation operator randomly changes the values of genes and generates new individuals. 

This sequence is iterated till a stopping criterion is met. Keeping the imitation of natural 

evolution as the foundation, genetic algorithms can be appropriately designed and modified 

to exploit special features of the problem to be solved.  

Recently, several genetic algorithms have been developed and applied to solve a 

variety of reliability optimization problems
[122-127]

. A good description of genetic algorithms 

used for solving reliability optimization problems can be found in literature
[1,6,128]

. 

Moreover, a brief survey on GA-based approach
[129]

 for various reliability optimization 

indicates increased focus on designing hybrid GA
[130-134]

 by combining GA with neural 

network, fuzzy logic, and other conventional search technique. The successful application 

of GA-based approaches in solving reliability optimization problems demonstrated the 

following advantages offered by them. First, genetic algorithms are non-gradient methods, 

which rely on objective function values and do not require sensitivity analysis. Second, 

genetic algorithms show high performance in solving multi-peak problems. A group of 

individuals can be used in a single optimization process, where crossover and mutation 

operators work to sustain a variety of individuals distributed across the searching space, 

and convergence to false local optima is avoided. Third, genetic algorithms work with a 

coding of solution set. This feature of GA is a powerful which let one to develop innovative 

genotype representation of design variables. This work proposes a new encoding method 

by exploiting this feature of genetic algorithms. 
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Almost all of the GA-based approaches were applied to solve reliability optimization 

problems confined to single or double levels of series, parallel, parallel-series, general 

network, k-out-of-n:G(F), and the other configurations. However, the reliability 

optimization of hierarchical system with more than two levels has hardly been extensively 

dealt with in optimal reliability design. Reliability optimization of hierarchical structures 

falls into the class of hierarchical optimization problems having hierarchical design 

variables and the optimization problems are termed as multilevel redundancy allocation 

optimization problems. Recently, the growing research interest in multilevel reliability 

modeling and optimization using GA, which will be discussed in later chapters of this work, 

is reflected in the literature, due to the practical importance of these techniques. However, 

almost all of these GA-based approaches applied artificial transformation of multilevel 

design variables into vector representations, because conventional GA uses 

one-dimensional representations of design variables. Unfortunately, the additional 

constraints imposed when transforming hierarchical design variables into vector design 

variables artificially constrict the feasible design region, often leading to suboptimal 

solutions. 

1.2 Research objectives  

This dissertation investigates and develops formulations and methodologies for 

multilevel redundancy allocation optimization problems (MRAOPs) used in optimal 

reliability design of complex systems. The main focus is to propose a generic formulation 

of MRAOP and develop methodologies that yield near global solutions and superior to 

those solution obtained using conventional genetic algorithms. Efforts are focused on 

developing new genetic algorithms for better optimal solutions by proposing innovative 

hierarchical genotype representation scheme for hierarchical design variables of MRAOPs. 

A generalized multilevel formulation in which redundancy can be allocated to any units at 
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all levels without imposing any artificial restrictions, is developed. In addition to the 

multilevel formulation and hierarchical genetic algorithms, a novel framework of 

multiobjective hierarchical genetic algorithms for multiobjective optimization of MRAOPs 

is developed to address the concerns of artificial transformation of hierarchical design 

variables into vector and existing genetic operator‟s inability to handle elitism with 

hierarchical genotype codes. In these investigations two popular multiobjective genetic 

algorithms (MOGAs) - the strength Pareto evolutionary genetic algorithm (SPEA2) and the 

nondominated sorting genetic algorithm (NSGA-II) have been implemented in the selection 

operators of the newly developed general framework of multiobjective hierarchical genetic 

algorithms. 

1.2.1 Hierarchy and modularity in optimal reliability design 

This work presents hierarchical and modular concepts and their application in 

optimal reliability design, and proposed a hierarchical formulation of reliability design 

structures. In this formulation, there are multiple levels of hierarchy in system design and 

redundancy can be allocated to any unit and at any level when maximizing system 

reliability. Modular concept for better design is well established and modular reliability 

designs not only enhance the system reliability but also make more fault tolerant. Therefore, 

to increase the efficiency, reliability and maintainability of a multilevel reliability system, 

the design engineer has to shift away from the conventional focus on component 

redundancy, and deal more effectively with issues pertaining to modular redundancy. This 

work proposed a formulation of modular optimization scheme for multilevel redundancy 

allocation optimization problems. This chapter proposed a generalized formulation for 

multilevel redundancy allocation problems that can handle redundancies for each unit in a 

hierarchical reliability system, with structure containing multiple layers of subsystems and 

components. Multilevel redundancy allocation is an especially powerful approach for 
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improving the system reliability of such hierarchical configurations, and system 

optimization problems that take advantage of this approach are termed multilevel 

redundancy allocation optimization problems (MRAOP). 

1.2.2 Hierarchical genetic algorithms for multilevel redundancy allocation 

optimization 

This research designed and developed a hierarchical genetic algorithm (HGA) that 

uses special genetic operators to handle the hierarchical genotype representation of 

hierarchical design variables. Because the design variables in MRAOP are hierarchically 

structured, this work proposes a new variable coding method in which these hierarchical 

design variables are represented by two types of hierarchical genotype, termed ordinal node, 

and terminal node. These genotypes preserve the logical linkage among the hierarchical 

variables, and allow every possible combination of redundancy during the optimization 

process. For comparison, the customized HGA, and a conventional genetic algorithm (GA) 

in which design variables are coded in vector forms, are applied to solve MRAOP for series 

systems having two different configurations. The solutions obtained when using HGA are 

shown to be superior to the conventional GA solutions, indicating that the HGA here is 

especially suitable for solving MRAOP for series systems. 

1.2.3 Optimal modular redundancy allocation in series and series-parallel systems 

To achieve truly optimal system reliability, the design of a complex system must 

address multilevel reliability configuration concerns at the earliest possible design stage, to 

ensure that appropriate degrees of reliability are allocated to every unit at all levels. 

However, the current practice of allocating reliability at a single level leads to inferior 

optimal solutions, particularly in the class of multilevel redundancy allocation problems. 

Multilevel redundancy allocation optimization problems frequently occur when optimizing 

the system reliability of multilevel systems. It has been found that a modular scheme of 
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redundancy allocation in multilevel systems not only enhances system reliability but also 

provides fault tolerance for the optimum design. This research proposes a method for 

optimizing modular redundancy allocation in two types of multilevel reliability 

configurations, series and series-parallel. A modular design variable is defined to handle 

modular redundancy in these two types of multilevel redundancy allocation problem. A 

customized genetic algorithm, namely, a Hierarchical Genetic Algorithm (HGA), is applied 

to solve the modular redundancy allocation optimization problems, in which the design 

variables are coded as hierarchical genotypes. The numerical examples solved in this 

chapter demonstrate the efficacy of a customized HGA for multilevel system reliability 

optimization. Additionally, the results obtained in this chapter indicate that achieving 

modular redundancy in series and series-parallel systems provides significant advantages 

when compared with component redundancy. The demonstrated methodology also 

indicates that future research may yield significantly better solutions to the technological 

challenges of designing more fault-tolerant systems that provide improved reliability and 

lower lifecycle cost. 

1.2.4 Multiobjective hierarchical genetic algorithms for optimal reliability design 

This research work proposes a multiobjective formulation of MRAOPs and a 

methodology for solving such problems. In this methodology, a hierarchical GA framework 

for multiobjective optimization is proposed by introducing hierarchical genotype encoding 

for design variables. In addition, we implement the proposed approach by integrating the 

hierarchical genotype encoding scheme with two popular multiobjective genetic algorithms 

(MOGAs) - the strength pareto evolutionary genetic algorithm (SPEA2) and the 

nondominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, 

the proposed multiobjective hierarchical approach is applied to solve two hierarchical 

MRAOPs, a 4-level problem and a 3-level problem. The proposed method is compared 
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with a single objective optimization method that uses a hierarchical genetic algorithm, also 

applied to solve the 3- and 4-level problems. The results show that a multiobjective 

hierarchical GA that includes elitism and mechanism for diversity preserving performed 

better than a single objective GA that only uses elitism, when solving large-scale MRAOPs. 

Additionally, the experimental results show that the proposed method with NSGA-II 

outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution 

sets. 

1.3 Overview of the dissertation 

This dissertation is organized as follows. In chapter 2, the concepts of hierarchy and 

modularity in optimal reliability design are described. Mathematical formulations of 

multilevel reliability configurations are proposed. Modular scheme of redundancy 

allocation optimization is proposed and discussed. Numerical examples and their results are 

discussed. 

Chapter 3 presents an overview of the multilevel redundancy allocation optimization 

using genetic algorithms. The details of MRAOPs for series system with cost function are 

described. A new hierarchical genetic algorithm is proposed with innovative encoding 

methods for hierarchical genetic algorithms. Numerical examples and their solutions are 

summarized and discussed. 

Chapter 4 presents a multilevel reliability design optimization formulation in series and 

series-parallel systems. Some background works in this area by other researchers along 

with some issues related to reliability design optimization using genetic algorithms is 

detailed.  

In chapter 5, a new multiobjective hierarchical genetic algorithm is developed. The 

multiobjective optimization problems of multilevel redundancy allocation are formulated 

and solved using the proposed algorithms. While solving MRAOPs, this research 
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implemented two popular multiobjective genetic algorithms (MOGAs) - the strength pareto 

evolutionary genetic algorithm (SPEA2) and the nondominated sorting genetic algorithm 

(NSGA-II). The numerical results demonstrated the improvement in optimal solutions 

using the proposed algorithms.  

In chapter 6, the advantages and limitations of the formulation of multilevel reliability 

design optimization and GA-based methodologies developed in this investigation are 

presented. Important conclusions are drawn and some future work in this area is 

recommended. 
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Chapter 2 

Hierarchy and modularity in optimal reliability design 

2.1 Introduction 

System configuration, also termed reliability block diagram (RBD), is an important 

attribute that affects optimal reliability designs considerably. To meet the demand of highly 

reliable systems, designs are becoming increasingly complex and the number of 

components has increased manifold. Unprecedented development in miniaturization 

technology, also, has led to more complex designs with new configurations altogether. All 

these evolving trends in technological development created the necessity of developing 

more effective and generic configurations to represent complex reliability designs and 

optimizing such effective configurations. One of such effective structures is hierarchical 

structure that can not only address the issue of scalability in large scale designs but also 

offer precision in representing all the components in a complex design. Though hierarchical 

configuration of reliability structure is already in practice, the theory of hierarchical RBD is 

yet to be dealt with in optimal reliability design. This work presents the hierarchical and 

modular concepts and its importance in optimal reliability design, and proposes a general 

formulation of hierarchical RBD for multilevel redundancy allocation.  

2.2 Hierarchical systems 

Hierarchical systems are composed of subsystems each of which is a hierarchical by 

itself until the bottom level
[135]

. Hierarchical systems contain multiple levels and at each 

level, the interactions within each subsystem are of much higher magnitude than the 

interactions between the subsystems. This property of hierarchical systems is called near 

decomposability
[135]

 that can help to design complex system easily. Hierarchical systems 

are omnipresent around us. An excellent example includes in biological systems, organisms 
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are composed of organs, organs are composed of tissues, tissues are composed of cells, and 

so on.  

 

 

 

 

  

 

 

Fig.2.1 Hierarchical design of an aircraft. 

The concept of hierarchical system helped also helped in solving complex problems of 

science and engineering
[136]

. In software engineering, for instance, complex software 

systems are built on multiple levels. At each level, components (functions, libraries, objects, 

etc.) from lower levels are used as basic building blocks to construct new components, and 

those components are, in turn, used at even higher levels. Starting from assembly language 

to the sequential query language of database systems, hierarchical design allow us to 

develop complex systems that could not be approached at a single level. 

This work intends to describe the hierarchical approach of an aircraft design and applies 

this approach to solving difficult reliability optimization problems of practical systems. As 

shown in Fig. 2.1, an aircraft is composed of power subsystem, structure, airframe, and so 

forth. Each of these subsystems can be further decomposed. For example, the power 

subsystems contain an engine or engines, cooling plants, and so on, and the individual 

engine can be further decomposed. The design is hierarchical in its nature, and each 

component of the car can be further decomposed into a number of subsystems. All the 

subsystems work in combination with the purpose of flying. 

Aircraft 

Power subsystem Structure Airframe 

Engine(s) Cooling 
plants 

Stability Passenger 
& cargo 

Engine1 Engine2 
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A system is composed of hardware and software to perform certain function. In a large 

system, numerous components make a design more complex. However, a proper 

decomposition significantly simplifies the design. For example, instead of designing “an 

aircraft that flies,” we design subsystems capable of producing rotational movement 

(engine), providing lift(airframe), stability (structure), slowing down the movement 

(braking system), and so on. This simplification can go down a number of levels and makes 

the task of building an aircraft much easier than if viewed on a single level. This leads to 

the consideration of hierarchical decomposition of large scale reliability design and 

simplification of the optimization process by allocating optimum redundancy to subsystems 

at each hierarchical level. 

2.3 Hierarchical reliability block diagram 

This section intends to describe the subtleties of hierarchical structure of RBD and 

shows how hierarchical arrangement enables a design engineer to represent the reliability 

design of large scale systems in a simpler way and analyze it more accurately. To deal with 

the issue of simplifying the reliability design of complex system, hierarchical reliability 

block diagram is an indispensable tool, which is a graphical representation of the system 

reliability structure composed of system at the top level, subsystems at the middle levels, 

and components at the lowest levels. As defined in the introduction section, a RBD defines 

the logical interaction of failures within a system. Individual blocks may represent single 

component failures, sub-system failures and other events that may contribute towards 

system failures. The reliability behavior of an individual sub-system block may be 

represented by a RBD at a lower hierarchical level. The logical flow of a RBD originates 

from an input node at lower side of the unit to an output node at the upper side of the unit. 

Blocks are arranged in series and parallel arrangements between the system input and 

output nodes. 
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Fig. 2.2. Building blocks of hierarchical RBD. 

Fig. 2.2 shows the series and parallel relationship between engine1 and engine2 that 

forms a system. These two arrangements are also termed building blocks in a hierarchical 

RBD. A series system works if and only if every component works. Such a system is failed 

whenever any component is failed. The structure function of a series system is given by 

 𝑅𝑠 =   𝑅𝑖
𝑛
𝑖=1  (2.1) 

where, 𝑅𝑠, 𝑅𝑖 , and 𝑛 are system reliability, reliability i-th block, total number of blocks 

in series connection. 

In a parallel system, not all components are necessary for the system to work properly. 

It works as long as at least one component works. The structure function of a parallel 

system is given by 

 𝑅𝑠 =  1 − (1 − 𝑅𝑖)
𝑛
𝑖=1  (2.1) 

 

Engine1 Engine2 

System 

Engine1 

Engine2 

System 

System 

Engine1 Engine2 

System 

Engine1 Engine2 

(a) block diagram (b) Fault tree diagram 

 (a) Series configuration: Engine1 and Engine2 both have to work for the system 

function 

(b) block diagram (b) Fault tree diagram 

(b) Parallel configuration: Either Engine1 or Engine2 has to work for the system 

function 
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where, 𝑅𝑠, 𝑅𝑖 , and 𝑛 are system reliability, reliability i-th block, total number of blocks 

in series connection. In a parallel system, only one component needs to work properly to 

make the system work properly. Therefore, 𝑛 − 1 components in the parallel system of 𝑛 

components are called redundant components. They are included to increase the probability 

that there is at least one working component. Redundancy is a technique widely used to 

enhance system reliability. 

This research proposes bi-level series and bi-level parallel subsystems as building 

blocks that make up a hierarchical RBD. These series and parallel building blocks are 

shown in Fig.2.2. With the combination of these two building blocks, almost all 

hierarchical RBD can be constructed. Fig.2.3 shows the examples of various hierarchical 

structure of RBD. Each block in the RBD represent system, subsystems, and components 

and we call them unit. From now onward, a unit denotes either a system or a subsystem or 

a component. In a hierarchical system, the input of a unit is fed from the output of its 

immediate lower unit or its children unit. The reliability values and the logical relationships 

of its child units are used to calculate the reliability of a parent unit. Therefore, the system 

reliability depends on the reliability values of subunits and components of the system. 

 In a hierarchical series system, as shown in Fig.2.3(a), all units must work together at 

all levels for functioning of the system. In a hierarchical parallel system, all units must 

work together in a connecting line from lowest level to top level for functioning of the 

system. In Fig.2.3(b), for instance, 𝑈11 , 𝑈111 , and 𝑈1111  in a connecting line or 𝑈11 , 

𝑈111 , and 𝑈1112  in a connecting line have to work together for functioning of system level 

unit 𝑈1. Fig.2.3(c) shows a complex hierarchical structure of RBD, which is a combination 

of series and parallel building blocks. Thus, hierarchical structure of RBD presented here 

can simplify the reliability design of complex system with more accuracy. This is true 

particularly in optimal reliability design of large scale systems.  
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(a) Hierarchical series   (b) Hierarchical parallel  

 

 

 

 

 

 

 

 

 

(c) Hierarchical series-parallel  

Fig. 2.3. Different types of hierarchical structures of RBD. 

2.4 Modular design concepts 

Modularity is a proved technique for organizing and simplifying a complex system 

which can contain thousands of different components that function interdependently, while 

certain components are used only for a specific set of subtasks within the system. Such 

components of an independent function set can be accommodated within a simple 
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subsystem, or sub-unit. Here, such a subsystem is called a module. Systems that have 

modular subsystems usually have superior fault tolerance, ease of maintenance, and are 

easier to recover at the end of their useful life. Furthermore, a modular system is often 

simpler than a complex system built from only components. 

 

 

 

 

 

 

Fig. 2.4. Modules in a hierarchical RBD. 

In engineering terminology, a module is a cluster of components that is treated as a 

single entity in a piece of equipment, as shown in Fig.2.4. In system reliability theory, a 

module indicates a group of components that has a single input from, and a single output to, 

the rest of the system. The contribution of all components in a module to the performance 

of the whole system can be represented by the state of the module. Once the state of the 

module is known, one does not need to know the states of the components within the 

module to determine the states of the system. Traditionally, redundancy is added either to a 

component level or to a subsystem level, when optimizing system reliability. Fig. 2.5 

illustrates these two redundancy schemes.  

A redundant module is a module added parallel to the existing module to increase its 

reliability without altering its internal structure. In other words, we preserve a module‟s 

internal structure, such as the arrangement of its sub-modules and components, while 

providing modular redundancy. Thus, to know the status of the system, we need not know 

the status of its components. Modular redundancy therefore simplifies the complexity of 
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the system and makes it easier to isolate faults in case of failure. 

 

 

 

 

(a) Redundancy at the component level   (b) Redundancy at module level 

Fig. 2.5 Redundancy allocation at component and module level. 

Under certain assumptions, it is a well-established fact that redundancy at the 

component level is more effective than redundancy at the system level, but this is not 

always the case[x5]. Modular or subsystem level redundancy allocation in a large scale 

system yield superior results particularly for a repairable system.  In addition, modular 

redundancy can help a system become truly fault tolerant. For example, a modular system 

can shift operation from failed modules to healthy ones, while repairs are carried out. The 

design transition from component to modular redundancy actually reduces costs and 

enhances efficiency, flexibility, and reliability.  

This is clear from the case study of disk drive presented in a white paper 
[137]

 for 

designing a data storage system more fault tolerant. In 1988, Berkeley researchers 

presented a landmark paper, “A case for redundant arrays of inexpensive disks(RAID),” 

proposing several data-writing schemes (“RAID levels”) that such arrays could use to store, 

retrieve, and recover data. In 1990, the personal computer industry introduced 5.25-inch 

disks, which had evolved to the point where they had the capacity, performance, and 

reliability to be used in the first RAID arrays. These new modular storage devices offered a 

choice of tradeoffs between redundancy and read/write speed, and occupied a fraction of 

the floor space of the mainframe storage devices they replaced. Thus the modular 

advantages of RAID arrays are ability to scale up, simpler process of duplication, 
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specialization of the function of modules, rapid adaptation to the environment, and fault 

tolerant. Thus modularity in optimal reliability design will have an additional advantage of 

making the system more tolerant apart from maximizing the system reliability. This is a 

subtle advantage of modular optimization that this research will achieve. 

2.5 General formulation of multilevel redundancy allocation problems 

From above description of the concepts of hierarchy and modularity in optimal 

reliability design, this is clear that large scale and complex system can be dealt with 

effectively by utilizing these design concepts when solving reliability optimization 

problems. To maximize the system reliability, there are two ways; one is to enhance the 

inherent reliability of each component and the other is to provide redundancy to the unit 

which has poor reliability. The first method has technological limitation and costly beyond 

a certain point. On the other hand, redundancy allocation is widely practiced in industry for 

optimal reliability design. Numerous techniques for several structure have been proposed 

but hierarchical structure is a not thoroughly addressed in terms of mathematical 

formulation and optimization methodology. This work presents a generalized formulation 

of a hierarchical redundancy allocation. Since a hierarchical structure of a large scale 

system contain multiple levels and redundant units are allocated to multiple levels, we term 

the problems of redundancy allocation in hierarchical systems as multilevel redundancy 

allocation problems. 

The generalized multilevel redundancy allocation formulation proposed here can 

handle redundancy at every hierarchical levels of a complex system. In this general 

formulation, a hierarchical structure of RBD of a complex system requires all modules or 

components at different hierarchical levels to be connected logically either in series or in 

parallel. For instance, in a basic structure of such a hierarchical series system, all the 

modules and components at different hierarchical levels are also in series. The basic 
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structure of a hierarchical RBD means a structure which does not have a redundant unit at 

any levels. As described before, this basic structure is actually made up of the building 

block of bi-level hierarchical series and parallel system. 

The proposed redundancy model contains multiple hierarchical levels. The system 

level is the topmost level, and the component level is the lowest. Subsystem or module 

levels are located between the top, and second lowest levels. Each system, module, and 

component is here termed a unit. Every unit except components can have any number of 

subordinate elements, such as modules that make up a system, or components that make up 

a module. These subordinate elements are called sub-units, whereas the next highest 

hierarchical unit of a sub-unit is called a parent unit.  

 

 

 

 

 

 

Fig. 2.6. A general multilevel redundancy allocation configuration. 

The proposed redundancy allocation model can provide redundancy for all units of a 

multilevel reliability system. Fig.2.6 represents the schematic diagram of a generalized 

hierarchical redundancy allocation model. The connecting lines in the diagram imply the 

logical relationships among the units at different levels, relationships that may be in series, 

in parallel, or combinations of these two. Redundancy at all levels is assumed to be active, 

and failures are s-independent. Fig.2.7 explains the redundancy allocation scheme in a 

bi-level series system, and the distinction between sub-units and redundant units. In 

Fig.2.7(a), 1U  is a unit at the system level that has two sub-units 11U  & 12U  at the next 
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lowest level in the basic configuration. Fig.2.7(b) illustrates the redundancy allocation in 

1U , which has two redundant units at system level 1

1U  & 2

1U . Similarly, sub-units 11U , 

and 
12U  have 3, and 1 redundant units, respectively, in parent unit 1

1U , and so on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7. An example of redundancy allocation in bi-level series configuration. 

Thus, in a multilevel redundancy allocation model, each unit 
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U  can have 
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redundant units, and 
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n  sub-units, so there are 
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xn  sub-units in the level below a parent 

unit. The sub-units in  are different for each parent unit in the model described here. For 
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sub-units as modules or components at its next lowest level, represented as 
111

U  to 
1111n

U , 

which is actually the second level of the system hierarchy. This structure is replicated until 

the lowest level of the system hierarchy is reached. Thus, the reliability 
i

R  of modular 

unit 
i

U  for multilevel series configurations can be calculated using  
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and for multilevel parallel system, the reliability 
i

R  of modular unit 
i

U  can be calculated 

using 
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where j

mi
R

,
are reliability values for sub-units j

mi
U

,
, a unit in the j-th redundant unit of the 

m-th sub-unit of 
i

U . Each j

mi
R

,
 value is calculated using (3) at the level immediately 

below the unit, and these calculations are recursively iterated to the level just above the 

very lowest hierarchical level. At the very lowest level, where there are no sub-units 

belonging to unit 
i

U , the reliability of component can be obtained as  

 



ix

j

j

ii RR
1

)1(1  (2.5) 

The multilevel reliability allocation model presented here allows redundancy for any 

unit at any level, and it is thus possible to achieve redundancy schemes that function at both 

the component, and modular levels. Using (2.3) and (2.5), we can express the mathematical 

formulation of hierarchical series configuration of hierarchical RBD. Similarly, the 

combination of (2.4) and (2.5) yield the mathematical expression of hierarchical parallel 

configuration. To represent hierarchical series-parallel configuration we will need to use all 

of the three equations.  
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2.6 Special features of multilevel redundancy allocation formulation 

Proposed formulation is a simple way to represent multilevel redundancy allocation 

scheme in a large scale system. The formulation can exploit the concept of hierarchy and 

modularity in optimal reliability design of a large hierarchical system. In the proposed 

redundancy allocation model, redundancy can be allowed to any unit at every level without 

any constraint. Hierarchical arrangement leads to the simplification of design and provides 

scalability. Multiple levels between the system and component levels allow modular 

redundancy which can not only yield superior reliability but also make a system more 

fault-tolerant.  

 

 

 

 

(a) Basic structure hierarchical RBD of unit U1 

 

 

 

 

 

 

 

Fig. 2.8 Hierarchical series redundancy allocation in a 3-levels system. 

For instance, a hierarchical series system shown in Fig. 2.8 is a particular example of 

the generalized multilevel redundancy allocation model described in Section 2. There are 

three levels in this HSR system, namely, system, module, and component level. 1U  is a 
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unit at the system level, ( 11U , 12U , 13U ) are units at the module level, and ( 111U , 112U , 113U , 

121U , 122U , 131U , 132U ) are units at the component level. We can calculate the system 

reliability using Equation (2.3) and (2.5). When a system has redundancy of two or two 1U

modules in parallel, the reliability of 1U  modules is obtained using the following 

formulation. 
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1

1,1R  is the reliability of 1

11U ,which is the first redundant unit of the 11U module. When the 

redundancy of module 
1

1,1U  is three, 
1

1,1R  can be calculated as the following equation  
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Similarly, we calculate the reliability of other modules 12U  and 13U  in terms of its 

subunits or components. 

As it evident from the Fig.2.8 that proposed multilevel redundancy allocation allows 

redundancy simultaneously not only at module level but also at component level in the 

three level hierarchical series system. This is also true for all other hierarchical structures. 

The proposed hierarchical series systems allow redundancy at any unit, at any level. For 

instance, Fig. 9 illustrates three types of redundancy in 11U  modules containing modules 

or components at its lower levels. Modular redundancy, as shown in Fig.2.9 (a), allows 

only module-level redundancy during the optimization process. Fig.2.9 (b) shows an 

example of component redundancy. However, Fig.2.9 (c) illustrates a mixed redundancy 

in module 11U , in which redundancy is possible not only between modules, but also 

simultaneously among components. Therefore, the mixed redundancy scheme allows the 

units to have redundancy not only at the same level, but also simultaneously for sub-units 

at lower levels. 
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(a) Modular redundancy   (b) Component redundancy  

 

 

 

  

 

 

 

(c) Mixed redundancy  

Fig. 2.9. Three types of redundancy allocation in a unit 11U  

The proposed formulation has distinct advantage of representing and maintaining actual 

configuration that is not available with any other formulation when solving redundancy 

allocation optimization. Fig.2.10 explains clearly that the hierarchical RBD representation 

of large scale system is more accurate in optimizing the actual multilevel level redundancy 

allocation problems than the artificially reduced multilevel configuration into traditional 

bi-level configuration before optimization. 
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Fig. 2.10. Artificial reduction of hierarchical levels applied in traditional approach. 

The conventional optimization approach more or less confined to component level. 

Therefore, multilevel redundancy allocation configuration has to be reduced to component 

level or bi-level configuration before applying traditional approach of optimization. This 

artificial shrinkage of configuration will yield suboptimal solutions which are undesirable. 

This research focuses on developing new metaheuristic methodology to represent and 

maintain original structure when solving MRAOPs which is not an easy task. In the next 

chapter, the proposed methodology, superior to existing approach, is presented and the 

effectiveness of this approach is demonstrated by solving numerical examples. 

2.7 Summary 

This chapter presented the concepts of hierarchy and modularity in system design. The 

hierarchy helps to simplify the design of large scale systems and provide decomposability 

(b) Artificial reduction to 3-level 
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that helps to address the issue of managing the system more effectively throughout the life 

cycle. The structure of RBD plays a very important role in optimizing the reliability design 

of a system. The hierarchical concept of RBD is proposed in this chapter. This will help to 

simplify the design of complex system and represent exactly all the logical relationship 

between its subsystems and components.  

The superiority of modular design is hard to challenge. This chapter described the 

modular redundancy concepts in optimal reliability design. The practical significance of the 

modular redundancy allocation in making a system more fault tolerant when so optimizing 

hierarchical RBD is explained. Finally this chapter proposed a general formulation of 

multilevel redundancy allocation optimization problems. The proposed formulation has 

several novelties. This formulation allows redundancy allocation to all units at every level. 

Bi-level series and parallel modules is proposed as building blocks to represent all possible 

hierarchical RBD. Modular redundancy allocation can easily be applied when optimizing 

such hierarchical RBD. Moreover, the proposed formulation achieves not only modular or 

component allocation but also mixed redundancy allocation that allows redundancy 

allocation at more than two levels simultaneously. This scheme is a paradigm shift in RBD 

representation for optimal reliability design of large scale systems and has a potential to 

provide solutions very close to global optimal solutions.  
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Chapter 3 

Multilevel Redundancy Allocation Optimization using Hierarchical 

Genetic Algorithms 

3.1 Introduction 

Almost all of the large scale system exhibit hierarchical configurations multiple level 

of hierarchy within these configurations. Typical systems contain multiple levels, with the 

entire system at the top level, subsystems at lower levels inside the system, and down to the 

components at the lowest levels inside the various subsystems. Hierarchical systems such 

as these are termed multilevel systems, and their reliability depends on the reliability values 

of lower subsystems. For example, if the lower subsystems of a bi-level system are 

connected serially, the system reliability is the product of the reliability values of the lower 

subsystems. Fig.3.1 illustrates a schematic diagram of the multilevel configuration of a 

hierarchical reliability block diagram in a hierarchical product design. 

 

  

 

 

 

 

 

Fig. 3.1. A multilevel RBD. 

The system reliability of a multilevel design configuration is usually optimized by 

allocating appropriate redundancy to less reliable subsystems or components at different 

levels, subject to certain constraints. This optimization technique is called multilevel 
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redundancy allocation optimization (MRAO), and subsequently formulated problems are 

called multilevel redundancy allocation optimization problems (MRAOP).  

MRAOP are particularly attractive because real world systems and products are 

increasingly complex, and the system reliability of the multilevel configurations of these 

complex designs can be significantly improved by using multilevel redundancy allocation 

techniques. Multilevel redundant designs are increasingly prevalent in many practical 

systems, such as communication systems, computing systems, control systems, and critical 

power systems
[138]

. Techniques for implementing redundancy span a wide spectrum in the 

design space, and can create high reliability systems. Moreover, recent progress in 

miniaturization has made it easier to provide redundancy at all levels, ranging from the 

system level down to component levels. This approach can boost system reliability 

remarkably because redundancy can be distributed to any component at any level without 

structural constraints. 

The optimization of system reliability using multilevel redundancy allocation is widely 

practiced in industry. Most integrated memory circuits, and VLSI chips that include internal 

memory blocks, currently use a hierarchical redundancy allocation scheme to enhance 

reliability, and chip yields. Also, a significant advantage of multilevel or hierarchical 

allocation is that it permits a modular scheme of redundancy allocation. Koren et al.
[139]

 

described how such modular schemes are particularly applicable when designing 

fault-tolerant or self-repairing semiconductor devices. Multilevel architectures that provide 

physical protection are now commonly implemented to increase the survivability of real 

systems in adverse conditions
[140]

. For protecting archived data, multilevel redundant 

designs in redundant arrays of inexpensive disks (RAID) that provide fault tolerance 

against disk failures outperform other RAID designs
[141]

. Several examples of multilevel 

RBD structures can be found in the literature, such as hierarchical series, hierarchical series 
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parallel, and others
[142][1]

.  

Almost all previous research in redundancy allocation optimization problems has 

focused on system configurations such as series-parallel , parallel-series , general networks, 

k-out-of-n: G(F), and other unspecified configurations, classified by Tillman, Hwang, & 

Kuo
[3]

. Kuo & Zuo provided good details concerning optimal reliability modeling
[143]

, and 

the review paper by Kuo & Prasad
[6]

 presents an overview of system reliability 

optimization. However, a comprehensive examination of this literature reveals that 

multilevel redundancy allocation problems are seldom addressed in terms of the detailed 

modeling or appropriate optimization techniques that such problems actually require. Also, 

attention paid to redundancy allocation is mainly confined to a single level, principally due 

to the notion that single-level redundancy yields better system reliability. We feel that this 

is not always the case. Boland & EL-Neweihi
[144]

 demonstrated that this result does not 

hold in cases of redundancy configurations using non-identical parts.  

According to Chern, redundancy allocation optimization problems are nonlinear 

integer programming problems, and NP-hard
[2]

. Besides being NP-hard, MRAOP qualify as 

hierarchical optimization problems
[145]

. The optimization of such hierarchical optimization 

problems beyond two levels, however, is more difficult using heuristics or exact algorithms. 

This is because multilevel allocation optimization problems generate a very large search 

space, and searching for optimal solutions using exact methods or heuristics will 

necessarily be extremely time consuming. Therefore, metaheuristic algorithms, particularly 

genetic algorithm (GA), are suitable for solving the multilevel redundancy allocation 

optimization. The seminal work by Goldberg
[122]

 demonstrated that GA are very useful for 

solving complex discrete optimization problems, and the multiple solutions that GA 

provide allow considerable, valuable flexibility when choosing the best solution. This is 

one reason that GA is popularly applied to a variety of reliability optimization 
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problems
[146-151][20]

. However, none of the above-cited research specifically aims to 

optimize system reliability beyond two-level systems, and their subsystems.  

Recently, the growing research interest in multilevel reliability modeling, and 

multilevel optimization using GA is reflected in the literature, due to the practical 

importance of these techniques. Levitin
[140]

 proposed an algorithm for solving multilevel 

protection cost minimization problems subject to survivability constraints. This algorithm 

is based on a universal generating function technique used for system survivability 

evaluation, and on a genetic algorithm used as an optimization engine. Later, Yun & 

Kim
[152]

 proposed a restricted multilevel redundancy allocation model, and optimized a 

three-level series redundancy allocation problem using a customized GA. However, this 

model allows redundancy allocation to  only one unit at a given level in a direct line, 

which is defined as a set of units in which every unit except the system has a parent unit, 

and no other cousin units, the other units at the same level, are present in that set. Direct 

line concepts are explained by an example in a later section of this chapter. The purpose of 

using direct lines is to transform the multilevel design variables into vector representations, 

because conventional GA use one-dimensional representations of design variables. 

Unfortunately, the additional constraints imposed when transforming hierarchical design 

variables into vector design variables artificially constrict the feasible design region, often 

leading to suboptimal solutions. 

Several genetic algorithms use a hierarchical approach to solve classes of hierarchical 

optimization problems. The hierarchical features offer the potential to address large 

problems efficiently
[135]

. De Jong et al
[153]

 delineated classes of hierarchical problems, and 

described a framework for Hierarchical Genetic Algorithms (HGA), genetic algorithms that 

can exploit the structure present in hierarchical problems to achieve improvements in 

efficiency. These HGA exploit hierarchical features in different ways depending on the 
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problem, such as the use of a fitness-based hierarchy of populations
[154]

, problem-specific 

subdivision of an algorithm into multiple levels
[155]

, and the use of hierarchical 

representation by using control genes that regulate other genes
[156]

. Sefrioui & Periaux
[157]

 

developed HGA in which they used a hierarchical topology for the layout of 

sub-populations, achieving higher efficiency than conventional GA. Further, Yoshimura & 

Izui
[158]

 proposed a genetic algorithm in which hierarchical genotype coding representation 

is used to exactly express the internal structure, and related hierarchical details. New 

crossover and mutation operators have been developed to handle these hierarchical 

genotypes during optimization processes.  

The genotype coding representation used in the genetic algorithms proposed by 

Yoshimura & Izui
[158]

 aims to represent the hierarchical design variables in design 

optimization problems for mechanical structures. However, the MROAP require a problem 

specific coding method for handling the logical linkages among the hierarchical design 

variables, and thus the coding scheme proposed by them cannot be applicable directly to 

solving MRAOP. Therefore, this research proposes a new variable coding method for the 

HGA first proposed by Yoshimura & Izui
[158]

. In this coding method, the phenotypes of 

hierarchical design variables are coded using two newly designed hierarchical nodal 

genotypes: the ordinal, and the terminal. These two nodal genotypes can be used as 

building blocks to codify most of the MRAOP hierarchical configurations. Thus, there is no 

need to transform the hierarchical design variables because these nodal genotypes preserve 

the exact hierarchical relationships within each design variable. The novelty of these 

hierarchical nodal genotypes is that they can express every possible combination of 

multilevel redundancy allocation, so that the optimization has a high probability of yielding 

nearly global optimal solutions. 

The rest of the chapter is organized as follows. Section 3.2 describes the multilevel 
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series redundancy allocation optimization model. In Section 3.3, the HGA concepts are 

explained, and a HGA coding method for HS problems is proposed. In Section 3.4, we 

solve two series problems, a three-level problem, and a four-level problem. The optimal 

solutions obtained when using a conventional GA are compared with those obtained with 

the custom-coded HGA, and the resulting configurations are presented. Finally, the results 

are discussed in Section 3.5, while Section 3.6 concludes this chapter. 

3.2 Multilevel redundancy allocation optimization problems 

In a multilevel redundancy allocation model, each unit 
i

U  can have 
i

x  redundant 

units, and 
i

n  sub-units, so there are 
ii

xn  sub-units in the level below a parent unit. The 

sub-units in  are different for each parent unit in the model described in chapter 2. Thus, 

the reliability 
i

R  of unit 
i

U  for multilevel series configurations can be calculated using 

(2.3) and (2.4). The multilevel reliability allocation model presented here allows 

redundancy for any unit at any level, and it is thus possible to achieve redundancy schemes 

that function at both the component, and modular levels. This mixed redundancy scheme 

allows the units to have redundancy not only at the same level, but also simultaneously for 

sub-units at lower levels. 

The cost constraint of a multilevel redundancy allocation model also reveals 

hierarchical relationships among the multilevel units. The system cost is essentially the sum 

of the cost of subsystems and modules, and the cost of a module is the sum of all modules 

or component costs therein, when there are parallel units at the immediate lower level. In 

practical systems, it is assumed that multilevel redundancy incurs additional cost due to the 

adding or duplication of redundant units to modules, and the increased number of 

components. In general, the redundancy cost of iR
 
can be expressed mathematically as  
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Note that there are definite advantages to using modular redundancy in multilevel 

redundancy allocation, because the cost of adding, duplicating, or repairing a module is 

lower than carrying out a similar action upon a component. This result holds because the 

lower the level in a system, the more costly the repair job.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. An example of redundancy allocation in a unit U1 

The redundancy allocation optimization problem in a reliability system consisting of a 

set of design variables is expressed as 

 Maximize 
s

R f (x) (3.2) 

 Subject toC (x) 0C  (3.3) 

In a set of design variables x, each design variable has a minimum, and maximum 

redundancy value. 
0

C  is a given, fixed positive value for the cost constraint. For example, 

the problem of optimizing a 2-level series redundancy allocation, as shown in Fig.3.2, can 

be stated mathematically as  
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The cost function used in this chapter for the cost constraint is described by (3.1).  

3.3 Hierarchical genetic algorithms 

A HGA
[158]

 is an advanced genetic algorithm that can represent hierarchical and 

constraint relationships among design variables using hierarchical genotypes, and can 

optimize hierarchical problems in a single optimization process. This HGA is further 

customized with a new variable coding method, and subsequently applied to solve the 

MRAOP in this research. Fig.3.3 illustrates that conventional GA
[122]

 use vector genotype 

structures, in contrast to HGA that use hierarchical genotype structures. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Representation schemes of design variables in GA, and HGA. 

The hierarchical redundancy allocation optimization problems here involve 

hierarchical relationships among design variables. Such hierarchical relationships can be 

handled well using hierarchical genotype representation. Because the HGA has special 

(a) Conventional GA 

Encoding 

Hierarchical design 

optimization problem 

Hierarchical genotype 

(b) HGA 

Encoding 

Hierarchical design 

optimization problem 

Vector genotype 



 
 

40 

 

types of genotype structures, new crossover, and mutation operators have to be applied. 

The HGA allows lower branches of the hierarchical structure to be exchanged, in addition 

to the exchange of genes. Using such genetic operations, new individuals are produced, and 

optimal structures can then be obtained. 

3.3.1 Solution Encoding 

A hierarchical genotype is represented using two types of nodes, ordinal, and terminal 

nodes, as shown in Table 3.1. Ordinal node 
i

N  corresponds to redundancy unit 
i

U , and 

is characterized by several parameters, and design variables. Parameters ik , and in  stand 

for the redundancy of unit 
i

U , and the number of sub-units, respectively. Here, ik  is 

given by a design variable at an upper node, while the parameter in  is a fixed value that 

depends on the optimization problems to be solved. 
j

mix ,  is a design variable denoting the 

redundancy for the m-th sub-unit of the j-th redundancy unit, where j  varies from 1 to k . 

Therefore, there are iikn  design variables in unit 
i

U . A terminal node 
it

N  corresponds 

to one of the lowest units, and incorporates design variable ik , unit reliability 
i

r , and unit 

cost ic . Because there are no sub-units, this terminal node does not contain parameter 
i

n , 

or design variable 
j

mix , . Using these two genotypes, all possible optimal solutions for 

series reliability allocation problems can be represented.  

Furthermore, the ordinal, and the terminal genotypes each have two functions, namely, 

reliability, and cost. When the reliability function in the ordinal genotype is called, a 

calculation is conducted using (2.3). The particular equation selected depends on whether 

the unit is in series, or in parallel. When calculating either of these two equations, the 

reliability values of the lower units, 
j

miR , , are required; and these are obtained by calling 

the reliability function of the lower units. Finally, the reliability function of the terminal 

genotype returns its unit reliability 
i

r . Thus, the reliability functions are recursively called, 
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and the system reliability can be obtained. Similarly, the system cost can be obtained by 

calling the cost function embedded in each genotype.  

TABLE 3.1 

HIERARCHICAL GENOTYPE REPRESENTATION FOR SERIES SYSTEM 

 
Ordinal genotype node iN  Terminal genotype node 

it
N  

Design 

variable 

j

mix , : the number of sub-unit for the 

m-th unit 

 

Parameter 
ik : the redundancy for unit iU  

in : the number of sub-unit 

ik : the redundancy for unit iU  

ir : unit reliability 

ic : unit cost 

 

Fig.3.4 illustrates an example of the genotype encoding for a three-level series 

redundancy configuration. Fig.3.4(a) shows an optimal redundancy configuration for a 

system 
1

U  consisting three modules, 
11

U , 
12

U , and 
13

U , at the second level. The ordinal, 

and terminal nodes are assigned to represent modules, and component units at each level. 

Note that unit features, such as the redundancy and configuration, series or parallel, are 

expressed in the corresponding upper node. 

 

 

 

 

 

 

 

(a) An example of a multilevel reliability system U1. 
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(b) Design variable values at each ordinal, and terminal node. 

Fig. 3.4. Hierarchical genotype representation in system U1. 

The HGA example shown in Fig.3.4(b) illustrates that genotypes using fixed arrays, 

which are frequently used in various optimization problems, are not applicable to this 

problem because the number of design variables varies according to the number of 

redundant units. In other words, the number of genes varies dynamically based on the 

proposed solution configuration. In this case, the two design variables, 1

111x , and 2

111x , 

represent the redundancy of 111U , because there are two redundant units for 11U , which is 

the unit above 111U  in the hierarchy. If the number of redundant units for 11U  increases, 

the number of design variables for 111U  will also increase. The solution encoding scheme 

proposed in this research can successfully represent different numbers of design variables 

at every hierarchical level. 
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3.3.2 Objective function 

A penalty function method has been applied to transform the constrained problem into an 

unconstrained problem, by penalizing infeasible solutions via a penalty term added to the 

objective function for any violation of the constraints. In this research, we used Gen & 

Cheng‟s method
[159]

, which applies a severe penalty to infeasible solutions. The fitness 

function, eval(x), is calculated using  

eval(x)=f(x)p(x) (3.5) 

where, f(x), p(x), and x are the system reliability, penalty function, and a set of design 

variables, respectively. We calculate the value of p(x) using Gen & Cheng‟s penalty 

function for each individual; and for highly constrained optimization problems, the 

infeasible solutions occupy relatively large portions of the population at each generation. 

The penalty approach here adjusts the ratio of penalties adaptively at each generation to 

achieve a balance between the preservation of information, the selective pressure for 

infeasibility, and the avoidance of excessive penalization. 

3.3.3 Crossover 

Crossover operations between individuals are conducted among each corresponding set 

of genes, using a two-step procedure. For the initial step, any other individual is first 

selected as the crossover partner, and crossover operators then exchange the 

corresponding genes of the two individuals. Here, when a gene of an alternative for a 

substructure is exchanged with the corresponding gene of another alternative, all 

corresponding lower substructures are also exchanged, to preserve consistency in the 

selection of alternatives. If this operation were not conducted in this way, meaningless 

lower structures might be generated in the lower positions of the exchanged substructures. 

The algorithmic procedures are as follows. 

Step 1  Select two individuals for crossover operations, then find the set of genes at the 
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highest level of the multilevel structural system for each of the two individuals, 

and start the crossover operation with probability 
1c

p . 

Step 2.1 If the gene j

mi
x

,
 of individual 1, and that of individual 2, are different, then 

conduct a crossover operation for j

mi
x

,
 with probability 

2c
p . This operation is 

the same as a uniform crossover of simple genetic algorithms with 
2c

p  set to 

0.5. Then, proceed to Step 2.3. If crossover operations are not conducted, 

proceed to Step 2.4. If the genes of both individuals are the same, proceed to 

Step 2.2. 

Step 2.2 If  j

mi
x

,
 contains a subordinate set of genes, it will be examined for possible 

crossover operations in Step 2.1. Otherwise, proceed to Step 2.4. 

Step 2.3 When j

mi
x

,
 genes are exchanged between individuals 1 and 2, the lower 

substructures of each individual are also exchanged. 

Step 2.4 Increment m  by 1. When nm  , set m =1, and increment j  by 1. When 

ikj  , end the crossover operations because the set of genes has been 

exhausted, and return to the crossover operations for the parent set of genes.  

3.3.4 Mutation 

In mutation operations, mutation operators are first applied to the set of genes at the 

highest level of the multilevel structural system, and mutation operators are recursively 

applied to their child sets of genes in the same way as for crossover operators. The 

algorithmic procedures are as follows. 

Step 1 Examine the substructure at the highest level. 

Step 2.1 Determine whether or not a mutation operation should be conducted, with 

mutation probability 
m

p  for the gene j

mi
x

,
. If the mutation is conducted, 
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proceed to Step 2.3.  Otherwise, proceed to Step 2.2.  

Step 2.2 If j

mi
x

,  
contains a child set of genes, proceed to Step 2.1, and examine 

the child set of genes. If not, proceed to Step 2.5. 

Step 2.3 Randomly generate j

mi
x

,
. 

Step 2.4 Randomly reconstruct the genes of all sub-units for the selected 

alternative. 

Step 2.5 Increment m  by 1. When nm  , set m =1, and increment j  by 1. 

When ikj  , end the crossover operations because the set of genes has 

been exhausted, and return to the crossover operations for the parent set 

of genes. 

3.4 Conventional genetic algorithm 

We applied the GA, proposed by Yum & Kim
[152]

 to solve MRAOP to compare the 

obtained solutions with those obtained by the HGA. We call this GA a conventional GA 

because it uses vector coding of the design variables, and applies a special crossover & 

mutation operator to handle such coding. The genotypes for the conventional GA
[152]

 are 

encoded as an ordered couple of a design variable, mix , , and an indicator variable, miy , ; 

iv =( mix , , miy , ), where the subscript i is the index of the chromosome to which the gene 

belongs, and subscript m denotes units. A chromosome is represented as 

    ),)...(,)(,( 2211 ininiiiii yxyxyxv   

The value of the indicator variables for a unit is 1 when that unit is subject to redundancy, 

and 0 when that unit is not allowed to have redundancy. Only one unit among the set of 

units in a direct line is selected to have redundancy so that the sum of the indicator 

variables of units along a direct line is 1. On the other hand, we used hierarchical genotype 

encoding when applying the HGA to solve the MRAOP.  
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(a) Redundancy allocation in unit 1U . 

 

 

 

 

 

 

(b) Conventional GA encoding of unit 1U . (c) HGA encoding of unit 1U .  

Fig. 3.5. Coding schemes in conventional GA, and HGA for a series system 
1U . 

Coding schemes for conventional GA, and HGA can be understood more clearly by 

examining an example of redundancy allocation in a bi-level series unit 1U  having two 

sub-units, 11U , and 12U , as shown in Fig.3.5. The redundancy values for sub-units 11U , and 

12U  are 2, and 1, respectively. Note that there are two direct lines, ( 1U - 11U ), and ( 1U - 12U ) 

in Fig.3.5(b). Because only a unit at a level is selected to have redundancy among the set of 

units in a direct line, unit 1U
 cannot have redundancy if units 11U  and 12U  are subject to 

redundancy. Thus, the GA coding scheme does not allow redundancy at two levels 

simultaneously. In contrast, the HGA allows redundancy at two levels simultaneously. 
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Fig.3.5(c) shows the reliability for both the system, and the sub-units. Both a conventional 

GA, and a HGA were applied when optimizing multilevel series redundancy allocation 

problems with different configurations, to evaluate their applicability for solving multilevel 

allocation problems. The cost function xcxxC )(  is used as a constraint. The symbols 

x , cx , and   respectively represent the number of parallel units, the unit cost, and the 

additional cost.  

3.5 Numerical Examples 

The HGA was applied to optimize multilevel series redundancy allocation problems 

having two different configurations. The first configuration is called problem-A, and is 

similar to the problem described in Yum & Kim
[152]

, while the second configuration is 

called problem-B. Fig.3.6, and Fig.3.7 respectively represent problem-A, and problem-B. 

Problem-A contains three levels, and problem-B contains four levels. All units of these 

configurations are in series. 

 

 

 

 

 

 

 

 

 

Fig. 3.6. Problem-A (a three level MS system). 
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Fig. 3.7. Problem-B (a four level MS system).  

3.5.1 Input data 

Suitable parameters for optimizing the two allocation problems were selected based on 

several experimental runs using a conventional GA, and the HGA we created. We observed 

the convergence of fitness functions, and selected suitable GA operator values for 

subsequent use in the optimization process. Table 3.2 provides a summary of the average, 

and best fitness values for different HGA parameters obtained during 20 runs with 500 

generations in each run. The best crossover, and mutation rate values for solving these 

problems when using a conventional GA were 0.8, and 0.1, respectively. Similarly, when 

using the HGA, these best values were respectively 0.8, and 0.05. An initial population of 

100 individuals was generated randomly when using both the GA, and HGA. This 

population size was selected based on the performance evaluation of the algorithms with 

different population sizes. 
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TABLE 3.2 

HGA PARAMETERS 

Cases Parameters Average Fitness  

(20-runs) 

Best Fitness 

(20-runs) Crossover  Mutation 

1 0.7 0.05 0.96047 0.97628 

2 0.9 0.05 0.96155 0.97628 

3 0.8 0.05 0.9621 0.97639 

4 1.0 0.05 0.96117 0.97628 

5 0.8 0.01 0.92826 0.97254 

6 0.8 0.10 0.94484 0.96422 

7 0.8 0.20 0.93190 0.95082 

TABLE 3.3 

INPUT DATA 

Problem-A
[152] 

 Problem-B 

Unit Reliabilit

y 

Cos

t 

   Unit Reliabilit

y 

Cost   

U1 0.4003 72 2 

 

U1 0.2198 102 2 

U11 0.7267 26 2 U11 0.5130 48 2 

U12 0.7650 19 3 U12 0.4284 50 2 

U13 0.7200 21 2 U111 0.7200 21 3 

U111 0.9000 5 3 U112 0.7125 21 3 

U112 0.9500 6 4 U121 0.6300 23 3 

U113 0.8500 5 3 U122 0.6800 21 3 

U121 0.9000 6 4 U1111 0.9000 7 4 

U122 0.8500 7 4 U1112 0.8000 6 4 

U131 0.9000 8 3 U1121 0.7500 8 4 

U132 0.8000 7 4 U1122 0.9500 5 4 

    U1211 0.7000 9 4 

    U1212 0.9000 6 4 

    U1221 0.8500 5 4 

    U1222 0.8000 8 4 

Twenty two design variables were used with the conventional GA, which is the sum of 

the redundancy numbers plus the constraints for direct lines. In contrast, the number of 

design variables used with the HGA was 11. The number of generations was 500 in each 



 
 

50 

 

case, and a maximum redundancy number of five was imposed for both the modular, and 

component redundancy schemes. The unit reliability, and the unit cost at the very lowest 

level in the multilevel redundancy allocation problems were used when calculating the unit 

reliability, and the unit cost of upper level units, up to the system level. Table 3.3 

summarizes the unit reliability, and unit cost of the components at the very lowest level in 

both problems. Note that we used the same data for problem-A that Yum & Kim
[152]

 used, 

to enable a comparison of the optimal solutions obtained by the HGA with those provided 

by a conventional GA.  

3.5.2 Computational results 

We separately applied the HGA, and GA when solving the problem-A, and problem-B 

allocation optimization problems. First, we checked the convergence of the optimal 

solutions when using the GA, and HGA; and Fig.3.8, and Fig. 3.9 show the results when 

using the two different types of algorithm. The x-axis represents the number of generations, 

and the y-axis represents the system reliability. The cost constraints for these two graphs 

were 240 for problem-A, and 500 for problem-B. 

 

Fig. 3.8. Convergence of GA, and HGA in problem-A. 
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Fig. 3.9. Convergence of GA and HGA in problem-B 

 

Fig. 3.10. Optimal solutions for problem-A obtained using GA, and HGA. 
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To assess the influence of cost constraints upon the optimal solutions, 20 cases for a 

3-level problem, and 15 cases for a 4-level problem, were examined. Ten 500-generation 

trials were performed using each algorithm type, and the best solution of the ten-trial set 

was chosen as the optimal solution in each of these cases. Fig.3.10, and Fig.3.11 show the 

trends of optimal solutions obtained using the GA, and HGA. The x-axis represents the cost 

constraint, and the y-axis represents the optimal system reliability.  

Fig. 3.11. Optimal solutions for problem-B obtained using GA, and HGA. 
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TABLE 3.4 

OPTIMAL HIERARCHICAL CONFIGURATIONS (PROBLEM-A) 

 

 Problem-A 

Cases GA  HGA 

Reliabilit

y 
Cost 

Optimal Allocation 

[x1x11x12x13x111x112x

113x121x122x131x132] 

[y1y11y12y13y111y112y

113y121y122y131y132] 

 Reliability 
Cos

t 

Optimal Allocation 

[(x1)(x11x12x13)(x111x112x1

13)(x121x122)(x131x132)] 

1 0.9276 289 [14333242224] 

[01110000000] 

 0.9742 290 [(1)(222) 

(211322)(2121)(1122)] 

2 0.7822 278 [24241232212] 

[01010001100] 

 0.8537 289 [(1)(221) 

(222212)(1122)(32)] 

3 0.9557 275 [54333343552] 

[01110000000] 

 0.9622 297 [(1)(122) 

(223)(2211)(2122)] 

4 0.7989 278 [34542212225] 

[01010001100] 

 0.8734 292 [(1)(212) 

(122122)(22)(2222)] 

5 0.8447 291 [45333232231] 

[01010001100] 

 0.9029 290 [(1)(221) 

(221221)(2122)(32)] 

6 0.8506 292 [25321433131] 

[01110000000] 

 0.9102 286 [(1)(221) 

(322212)(2211)(22)] 

7 0.8986 275 [34335144225] 

[01110000000] 

 0.9187 300 [(1)(212) 

(212212)(32)(1122)] 

8 0.9272 298 [43243533234] 

[01010001100] 

 0.9579 294 [(1)(122) 

(322)(2222)(1212)] 

9 0.9262 270 [53341311213] 

[01110000000] 

 0.9433 300 [(1)(132) 

(322)(121111)(2132)] 

10 0.9185 278 [34544552214] 

[01010001100] 

 0.9467 297 [(1)(212) 

(221222)(22)(2222)] 
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TABLE 3.5 

OPTIMAL HIERARCHICAL CONFIGURATIONS (PROBLEM-B) 

 

Cases 
Problem-B 

GA  HGA 

 

Reliability Cost 

Optimal Allocation 

[x1x11x12x111x112x121x12

2x1111x1112x1121x1122 

x1211x1212x1221x1222] 

[y1y11y12y111y112y121y12

2y1111y1112y1121y1122 

y1211y1212y1221y1222] 

 Reliability Cost 

Optimal Allocation 

[(x1)(x11x12)(x111x112)(x121x122) 

(x1111x1112)(x1121x1122) 

(x1211x1212)(x1221x1222)] 

1 0.9568 484 [155132223244513] 

[001010011000000] 

 0.9775 499 [(1)(22)(11)(21) 

(1222)(2222)(32) (33)] 

2 0.7810 

 

485 [143143432441532] 

[000011011000011] 

 0.8677 496 [(1)(11)(21)(12) 

(2212)(33)(23) (2222)] 

3 0.9568 484 [155132223244513] 

[001010011000000] 

 0.9777 486 [(1)(11)(22)(12) 

(2212)(2122)(33) (2222)] 

4 0.8202 

 

486 [224335554332233] 

[000100000111111] 

 0.8870 460 [(1)(11)(12)(12) 

(32)(2223)(22) (2222)] 

5 0.8586 

 

485 [213431342143232] 

[000110000001111] 

 0.9368 454 [(1)(11)(12)(12) 

(32)(2223)(22) (2222)] 

6 0.8767 

 

462 [135443341233234] 

[000101100110000] 

 0.9508 491 [(1)(11)(32)(21) 

(112222)(2123)(2211) (32)] 

7 0.9124 481 [253452354243211] 

[010000100001100] 

 0.9538 467 [(1)(11)(12)(22) 

(23)(1212)(2132)(2222)] 

8 0.9515 

 

486 [111324452224143] 

[000101100110000] 

 0.9741 491 [(1)(11)(12)(22) 

(23)(2122)(2232) (32212)] 

9 0.9122 462 [153433255123132] 

[000111000000011] 

 0.95021 467 [(1)(11)(22)(21) 

(2222)(2222)(2222) (32)] 

10 0.8941 

 

441 [134433314313215] 

[000111100000000] 

 0.9645 494 [(1)(11)(23)(22)(2122)(1121

12)(2222) (2132)] 

 

Next, we examined ten cases in which the unit reliability values were varied while the 

cost constraint was held to a value of 300 for problem-A, and 500 for problem-B. In the 

same manner as before, ten 500-generation trials for each of these ten cases were carried 
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out, and the best solution was chosen as the optimal solution for each case. Note that the 

number of function calls in each case considered here was the same for both GA, and HGA. 

Table 3.4, and Table 3.5 summarize the optimal solutions obtained when using the GA, and 

HGA for problem-A, and problem-B, respectively.  

An interpretation of the optimal solution data summarized in these two tables is 

provided in Fig.3.12, which shows the arrangement of the units in problem-A, and 

problem-B. It is a graphic representation of the optimal solutions for the fourth case listed 

in Table 3.4.  

 

 

 

 

 

 

 

(a) Optimal configuration obtained using GA. 

 

 

 

 

 

 

(b) Optimal configuration obtained using HGA. 

Fig. 3.12. Optimal solutions for the fourth case listed in Table 3.4. 
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system obtained when using the GA, and Fig.3.12(b) illustrates the optimal arrangement 

obtained when using the HGA. 

3.6 Discussion 

The numerical examples solved in the previous section demonstrate that hierarchical 

genotype representations of hierarchical design variables provide superior solutions in 

comparison to vector representation. The most suitable GA, and HGA parameters were 

selected from the results of a number of preliminary runs; and Table 3.2 shows that the 

most useful HGA crossover, and mutation rates are 0.8, and 0.05, respectively, determined 

by twenty 500-generation runs. We observe in Fig.3.8, and Fig.3.9 that the HGA offers 

superior convergence, and that this advantage is achieved more smoothly by searching a 

larger feasible design space than when a conventional GA is used.  

Moreover, Fig.3.10, and Fig.3.11 indicate that the optimal solution obtained using the 

HGA is superior to its conventional GA counterpart. After examining the solution data, we 

find that there is an approximately 4% maximum improvement in the 3-level series 

allocation problem, and a 5% improvement in the 4-level series allocation problem. 

Similarly, in Table 3.4, and Table 3.5, we see that the HGA yielded average improvements 

of 4.7%, and 5.82% over the conventional GA. Moreover, the maximum improvement in 

the optimal solutions when using the HGA was found to be 9.23% in the 3-level problem, 

and 11% in the 4-level problem. The improved reliability obtained using the HGA is 

achieved without incurring additional material or parts costs. This is an important milestone 

because, in high reliability applications, even very small improvements in reliability are 

often difficult to obtain. Thus, it appears incontrovertible that the hierarchical genotype 

scheme typical of HGA is better suited for optimizing multilevel allocation problems than 

the one-dimensional vector schemes of conventional GA. 

The reason why the GA yielded inferior solutions in comparison to the HGA is that the 
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GA requires vector transformation of the hierarchical design variables. The vector 

transformation of hierarchical design variables into one dimensional array representations 

actually reduces the feasible design space, and the GA may consequently fail to find 

superior solutions that exist just beyond its feasible design space. Because HGA do not 

require vector transformation, the feasible design space remains unaffected, and this leads 

to better optimal solutions during the searching process. Additionally, the hierarchical 

coding method proposed in this research can express the exact internal structure with series 

linkage. 

Furthermore, the simultaneous allocation of redundancy at two or more levels also 

leads to better solutions than those provided by conventional GA. Allocated resources can 

be appropriately shared at all levels, and one such optimal arrangement of redundant units 

is graphically illustrated in Fig.3.12. We see that the optimal HGA solution contains two 

parallel modules for unit 
11

U ; and sub-units 
111

U , 
112

U , and 
113

U  have single, double, 

and double redundancy, respectively. On the other hand, the optimal solution obtained 

using the conventional GA contains four parallel 
11

U  modules, and all the sub-units have 

only single redundancy. A similar pattern can be seen concerning the other two 
1

U  

modular units. Hence, an additional significant advantage that the use of HGA provides is 

that redundancy at both the unit, and the sub-unit level can be achieved simultaneously. 

The performance of the HGA in solving the two examples here indicates that 

hierarchical genotype representation is not only capable of solving multilevel reliability 

optimization problems of any size, but also that it allows significant flexibility so that every 

possible redundancy combination can be evaluated. This flexibility in redundancy 

optimization seems impossible to achieve when using conventional GA. Another useful 

feature of hierarchical genotype representation is that optimal redundancies are given 

hierarchically for each module, and component. This is highly desirable in a complex 
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system, when the goal of ensuring optimum reliability depends on determining exactly how 

many redundancies are required for a particular module at a particular level in the 

hierarchical system. 

3.7 Summary 

Multilevel redundancy allocation optimization problems are frequently encountered in 

complex system designs. This chapter proposed a general formulation for multilevel 

redundancy allocation optimization problems that aim to maximize system reliability. 

These multilevel optimization problems have hierarchical design variables, so we proposed 

a new coding method for use in a HGA, in which hierarchical design variables of MRAOP 

are represented using two types of hierarchical genotype: nodal, and terminal. We applied 

the newly developed HGA, and a conventional GA separately, to solve two multilevel 

series redundancy allocation optimization problems having three, and four levels. The 

optimal solutions for these two problems demonstrated that the proposed HGA provides 

optimal system reliability that is superior to the conventional GA results, because it does 

not depend on the use of vector coding to represent the hierarchical variables, and can 

preserve the original design space. HGA using the new variable coding method presented 

here can be applied in other hierarchical optimization problems, but the efficiency of such 

algorithms must be investigated. We hope to extend our approach for optimizing the 

system reliability of other multilevel structures such as hierarchical series-parallel, 

multilevel network, and other multilevel configurations in future work. 
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Chapter 4 

Optimal modular redundancy allocation in series and series-parallel 

systems 

4.1 Introduction 

Modularity in product design is a crucial topic when developing highly reliable product 

architectures. It is a key strategy for achieving better serviceability and reliability, 

particularly when designing products whose lifetime operational costs exceed the initial 

acquisition cost, such as for airplanes, locomotives, power generating plants, and major 

manufacturing equipment
[160]

. Most complex engineering systems of this kind contain 

thousands of different components that function interdependently, while certain 

components are used only for a specific set of subtasks within the system. Such sets of 

components having independent functions can be accommodated within a simple 

subsystem, or sub-unit. Here, such a subsystem is called a module. In system reliability 

theory, a module indicates a group of components that has a single input from, and a single 

output to, the rest of the system
[143]

. The contribution of all components in a module to the 

performance of the whole system can be represented by the state of the module. Once the 

state of the module is known, one does not need to know the states of the components 

within the module to determine the states of the system. 

Systems that have modular subsystems usually have superior fault tolerance, ease of 

maintenance, and allow modules to be recovered for possible further use when the system 

as a whole has reached the end of its useful life
[137]

. Furthermore, a modular system is often 

simpler than a complex system built from single components. In essence, the modular 

architecture of a high-reliability design reduces the number of parts in an optimal 

configuration by providing a modular redundancy. Despite the subtle and profound benefits 
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of modular redundancy, which enhances fault tolerance and reduces lifecycle costs, 

optimizing modular-level allocation under resource constraints is a challenging task for 

design engineers. 

Conventionally, redundancy is added either to a component level or to a subsystem 

level, when optimizing system reliability. The redundancy added at the component level is 

termed component redundancy, and redundancy added at the modular level is termed 

modular redundancy. Specifically, a redundant module is a similar module added in parallel 

to the existing module to increase its reliability without altering its internal structure. Fig. 

4.1 illustrates these two redundancy schemes in a series system containing three 

components. 

 

 

(a) Basic reliability block diagram 

 

 

 

 

 (b) Component level allocation  (c) Modular level allocation 

Fig. 4.1. Redundancy allocation in a series system containing three components 

In other words, we preserve a module‟s internal structure, such as the arrangement of 

its sub-modules and components, while providing modular redundancy. Thus, we need not 

know the status of its components in order to know the status of the system. Modular 

redundancy therefore simplifies the complexity of the system and makes it easier to isolate 

faults in case of failure. 
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configurations, such as series, parallel, series-parallel, network, and k-out-of-n systems, and 

others. To maximize the system reliability of these models, a large number of techniques 

have been proposed for optimal redundancy allocation problems. Most techniques for 

redundancy optimization, however, have been limited to single levels
[6]

. Boland and 

EL-Neweihi
[144]

 demonstrated that redundancy at the component level is not always more 

effective than redundancy at the system level for redundancy cases using non-identical 

parts. In addition, applying modular redundancy can make a system truly fault tolerant. For 

example, a modular system can shift operation from failed modules to healthy ones, 

allowing repairs to be carried out without downtime
[137]

. The design transition from 

component to modular redundancy actually reduces costs and enhances efficiency, 

flexibility, and reliability. Despite the various benefits that modularity offers, multilevel 

modular redundancy allocation optimization has seldom been discussed in detail, nor has 

an appropriate methodology been provided. To leverage the merits of modular redundancy 

allocation, this research presents a methodology for optimizing the system reliability of a 

multilevel class of problems using a modular redundancy allocation scheme. 

In a similar direction, Yun and Kim
[152]

 proposed a multilevel series redundancy 

allocation optimization model in which they considered that each unit of a three level series 

system is subjected to redundancy, and they optimized system reliability by using 

conventional genetic algorithms (GAs). Their method can solve certain problems based on 

the assumption where only one unit is allowed to have redundancy in a direct line. This 

assumption reduces the feasible design space and fails to yield a globally optimal solution, 

because conventional GAs require a one-dimensional vector representation of the design 

variables. Later, Yun et al
[161]

 presented a formulation of multiple multi-level redundancy 

allocation problems for series systems and applied a GA with a sequential recording method, 

without reflecting the solution positions.  However, the design variables in a multilevel 
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system have hierarchical relationships, and the artificial transformation into vector coding 

leads to a reduced feasible design space and suboptimal solutions.  

Therefore, this research work proposes a modular redundancy allocation optimization 

methodology in which hierarchical design variables are represented by hierarchical 

genotypes in the optimization. This customized methodology is based on a type of genetic 

algorithm proposed by Yoshimura and Izu
[158]

, in which the hierarchical genotype coding 

representation is used to exactly express the internal structure and related hierarchical 

details, a technique using so-called Hierarchical Genetic Algorithms (HGAs). In order to 

handle general multilevel redundancy allocation problems such as series and series-parallel 

problems, this research redefines a mathematical expression of system reliability for series 

and series-parallel and proposes a design-variable coding method using hierarchical 

genotypes. This research demonstrates that a HGA can handle both modular and 

component schemes of redundancy allocation easily, by using two newly defined genotypes, 

nodal and terminal.  

This chapter is organized as follows. Section 4.2 describes the detailed mathematical 

formulation for the multilevel redundancy allocation optimization problems. In Section 4.3, 

HGA concepts are explained and a HGA coding method for modular redundancy allocation 

optimization problems is proposed. In section 4.4, we solve two multilevel redundancy 

optimization problems, one series and one series-parallel, each having four hierarchical 

levels. In this section, the input data used and the results are summarized. The results 

obtained in Section 4.4 are explained and discussed in Section 4.5. Finally, Section 4.6 

concludes the chapter. 

4.2 Modular redundancy allocation in series and series-parallel system 

A multilevel redundancy allocation optimization problem is structurally hierarchical, 

with the system level topmost and the component level at the very bottom. The 
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subsystems in between the top and the lowest levels are the so-called modules. Each of 

these modules and their components are termed a unit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2. Series and parallel redundancy allocation in unit 
1

U .  

Fig. 2.6 is a schematic diagram of a general multilevel redundancy allocation 

configuration. In this figure, 
1

U is a system unit containing 
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modules at its next lower hierarchical level. Similarly, the 
11
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replicated until the lowest level of system hierarchy is reached. The connecting lines in the 

diagram imply the logical relationships among the units at different levels, relationships 

that may be in series, in parallel, or combinations of these two. Redundancy at all levels is 

assumed to be active and failures are statistically independent. 

The reliability 
i

R  of unit 
i

U  for multilevel series and parallel configurations can be 

calculated using (2.3), (2.4), and (2.5) given in chapter 2. Fig. 4.2 shows an example of 

redundancy allocation in unit 
1

U . Fig. 4.2(a) and Fig. 4.2(b) illustrates the redundancy 

allocation in a series and parallel system, respectively. The cost constraint of a multilevel 

redundancy allocation model also reveals hierarchical relationships among the multilevel 

units. The system cost is essentially the sum of the component and module costs. The 

assembly costs represent the sum of the costs of adding, duplicating or repairing the 

module or component. Note that there are definite advantages to using modular 

redundancy, because the cost of adding, duplicating, or repairing a module is lower than 

carrying out a similar action upon a component. This is because the lower the level in a 

system, the more costly the repair job. The expressed cost function will differ depending 

upon the arrangement of different structures.  

 

 

 

 

 

 

 

Fig. 4.3. An example of series redundancy allocation in a unit 
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set of design variables is expressed as: 

 Maximize  
s

R f (x) (4.1) 

 Subject to  C (x)
0

C  (4.2) 

where 
s

R , f(x), C(x), and x are the system reliability, reliability function, cost function, 

and a set of design variables, respectively. 
0

C  is a given fixed positive value for the cost 

constraint. For example, the problem of optimizing a 2-level series redundancy allocation, 

as shown in Fig.4.3, can be stated mathematically as follows: 

 s
R = ]}))1(1{})1(1{1(1[ 11211

1211

xxx RR   (4.3) 

where, 
1

x ,
11

x , and 
12

x  are the number of redundancy of units 
1

U ,
11

U , and 
12

U , 

respectively. The values of the design variables, 
11

x , and 
12

x  depend on the value of 
1

x , 

the design variable of the parent unit. If the number of redundancies represented by 
1

x  is 

two, then the redundancies of 
11

x , and 
12

x  should be at least two, however the values of 

design variables 
11

x , and 
12

x  are independent of each other.  

 In this chapter, the following cost functions have been applied to calculate the 

costs for modules and components: 

 

 


i in

m

x

j

i

j

mii xCC
1 1

,  (4.4) 

 ix

iiii xcC   (4.5) 

where 
j

miC ,  are the modular costs of sub-units 
j

miU , . The symbols 
i

x , ic , and 
i  

respectively represent the redundancy number, the unit cost, and the assembly cost for the 

i-th unit. Each 
j

miC ,  value is calculated using Eq (4.4) at the level immediately below the 

unit, and these calculations are recursively iterated to the level just above the very lowest 

hierarchical level. At the very lowest level, where there are no sub-units belonging to unit 

i
U , the cost is calculated using Eq (4.5). Eq (4.5) first appears in the paper of Yun and 
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Kim
[152]

. Thus, the total cost for a multilevel structure is calculated by using Eq(4.4) and 

Eq(4.5). 

4.3 Hierarchical Genetic Algorithm for series and series-parallel problems 

Hierarchical Genetic Algorithms
[158]

 are customized and applied to solve the multilevel 

redundancy allocation optimization problems here. HGAs are advanced genetic algorithms 

that can represent hierarchical relationships among design variables using hierarchical 

genotypes, and can optimize hierarchical problems in a single optimization process. While 

conventional genetic algorithms
[122]

 use vector genotype structures, HGAs employ 

hierarchical genotype structures. 

 

 

 

 

 

 

 

 

 

Fig. 4.4. Crossover and mutation operators for hierarchical genotype. 

The multilevel redundancy allocation optimization problems here involve hierarchical 

relationships among design variables, which represent redundant modules or component 

selections and hierarchical genotype representation is particularly suited to handling such 

hierarchical relationships. Since HGAs have special types of genotype structures, new 

crossover and mutation operators have to be applied. The HGAs allow branches of the 

hierarchical structure to be exchanged, in addition to the exchange of genes. Fig.4.4 
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illustrates the crossover and mutation operators for hierarchical genotypes. Using such 

genetic operations, new individuals are produced and optimal hierarchical structures can 

then be obtained. 

4.3.1 Solution encoding 

A hierarchical genotype is represented here using two types of node, ordinal and 

terminal, as shown in Table 4.1. Ordinal node 
i

N  corresponds to redundancy unit 
i

U , 

and is characterized by several parameters and design variables. Parameter T }P,S{  

represents the type of unit where S means that the sub-units have a series reliability 

relationship, while P means a parallel configuration. When T=S, this node is called a series 

node, and when T=P, the node is called a parallel node. Parameters k and n stand for the 

redundancy number of unit 
i

U  and the number of sub-units, respectively. Here, k is given 

by a design variable at an upper node, while the parameter n is a fixed value that depends 

on the optimization problem to be solved. j

mi
x

,
 is a design variable denoting the 

redundancy number for the m-th sub-unit of the j-th redundancy unit, where j varies from 1 

to k. Therefore, there are kn
i

 design variables in unit 
i

U . A terminal node 
it

N  

corresponds to one of the lowest units, and incorporates design variable k, unit reliability 
i

r , 

and the unit cost 
i

c . Since there are no sub-units at the terminal node, it does not contain 

parameter n or design variable j

mi
x

,
. Using these two genotypes, all possible redundancy 

allocation solutions for both the series and series-parallel reliability allocation problems can 

be represented.  
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TABLE 4.1 

HIERARCHICAL GENOTYPE REPRESENTATION FOR SERIES AND SERIES-PARALLEL SYSTEM 

 Ordinal genotype node iN  Terminal genotype node 
it

N  

Design  

variable 

j

mi
x

,
: the number of subordinate 

modules for the m-th module 

 

Parameter 

T: unit type 

n: the number of sub-modules  

k: the redundancy for unit iU  

k: the redundancy for component iU  

ir : unit reliability 

ic : unit cost 

Fig. 4.5 illustrates an example of the genotype encoding. Fig. 4.5(a) shows a 

redundancy configuration for a system 
1U  consisting two modules, 

11U  and 
12U , at the 

second level. This redundancy structure can be represented using hierarchical genotype 

nodes as shown in Fig. 4.5(b). The ordinal and terminal nodes are assigned to represent 

module and component units at each level. Note that unit features, such as the number of 

redundant units and series or parallel configuration, are expressed in the corresponding 

upper unit node. This redundancy allocation solution has two redundant units for U11, and 

this feature is characterized using 21

1,1


U
x  in the U1 node. Furthermore, the parallel 

relationship between U121 and U122 is described as T = P in node U12. Thus, a single system 

node exists in this representation scheme in order to denote that 
1

U  has only a single 

redundancy unit. Note that the units that have series and parallel relationships cannot share 

the same upper unit. 
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(a) An example of a multilevel reliability system U1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Design variables and parameters at each ordinal and terminal node 

Fig. 4.5. Hierarchical genotype representation in system U1. 
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shown in Fig. 4.6, U1, U2, U3, and U4 cannot be directly encoded into the hierarchical 

genotype. In this case, a new unit, U, which represents the grouping of U2 and U3, is 

introduced and the reliability system is encoded using a series node, i.e., T = S, to represent 

that its sub-units are U1, U & U4, and U2 & U3 are then encoded as sub-units of U. 

 

 

 

 

Fig. 4.6. Interpretation of mixed series and parallel configurations. 

The HGA example shown in Fig. 4.5(b) illustrates that genotypes using fixed arrays, 

frequently used in various optimization problems, are not applicable to this problem since 

the number of design variables varies according to the number of redundant units. Here, the 

two design variables, 1

1,11Ux  and 2

1,11Ux , represent the redundancy of U111, since there are 

two redundant units for U11, which is the unit above U111 in the hierarchy. If the number of 

redundant units for U11 increases, the number of design variables for U111 will also increase. 

The solution encoding scheme proposed in this research can successfully represent 

different numbers of design variables at every hierarchical level. 

The ordinal and the terminal genotypes each have two functions, namely, reliability 

and cost, and the difference between series and parallel nodes only pertains to reliability 

calculations. When the reliability function in the series node is called, the unit reliability is 

calculated using Eq. (2.3), while Eq. (2.4) is used for the parallel node. When calculating 

either of these equations, the reliability values of the lower units, k

mi
R

,
, are required, and 

these are obtained by calling the reliability function of the lower units. Finally, the 

reliability function of the terminal node returns its unit reliability, 
i

r . Thus, the reliability 

functions are recursively called and the total system reliability can be effectively obtained. 
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Similarly, the system cost can be obtained by calling the cost function embedded in each 

node. 

4.4 Numerical Examples 

4.4.1 Four level series and series-parallel problems 

In this section, we solve two multilevel redundancy allocation optimization problems. 

Fig.4.7 and Fig.4.8 show the two 4-level multilevel systems that have series and 

series-parallel configurations. We applied the HGA to optimize the system reliability of 

these two problems. For example, 
1

U  is a unit at the system level, (
11

U , 
12

U ) and (
111

U ,

112
U  

121
U ,

122
U ) are units at module levels, and (

1111
U & 

1112
U ,

1121
U & 

1122
U , 

1211
U &

1212
U ,

1221
U &

1222
U ) are units at the component level.  

 

 

 

 

 

 

 

 

  Fig. 4.7. Four-level hierarchical series configuration of 
1

U .  

Fig.4.7 shows a series system in which all the units are arranged in series at every level, 

while Fig.4.8 shows a series-parallel system in which 
121

U  & 
122

U  and 
1121

U  & 
1122

U  

are in parallel and the rest of units are in series either at the same level or at different 

levels. We see in Fig.4.8 that 
12

U  & 
112

U  consists of parallel units, 
121

U  & 
122

U  and 

1121
U  & 

1122
U at their immediate lower levels. 
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Fig. 4.8. Four-level hierarchical series-parallel configuration of 
1

U .  

4.4.2 Input data 

Suitable parameters for optimizing the two allocation problems were selected based on 

several experimental runs using the proposed HGA. The crossover rates, 
1c

p and
2c

p
,
 when 

solving these problems, were respectively set to 0.8 & 0.5 and the mutation rate 
m

p was set 

to 0.05. An initial population of 100 individuals was generated, and 500 generations were 

processed in each case. Table 4.2 summarizes the basic reliability and corresponding cost 

for each unit in both problems. The unit reliability and the unit cost at the very lowest level 

in the multilevel redundancy allocation problems were used when calculating the unit 

reliability and the unit cost of upper level units, up to the system level. In each of these 

tables, x ‟s represent the integer value of the optimal redundancy to be obtained during the 

optimization process. 
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TABLE 4.2 

INPUT DATA 

Level Unit 
Parent 

unit 
Redundancy 

Basic Reliability 
Cost   

Series system Series-parallel 

1 U1  1x  0.2198 0.6268 102 2 

2 U11 U1 2
x  0.5130 0.7110 48 2 

 U12 U1 3x  0.4284 0.8816 50 2 

3 U111 U11 4x  0.7200 0.7200 21 3 

 U112 U11 5x  0.7125 0.9875 21 3 

 U121 U12 6x  0.6300 0.6300 23 3 

 U122 U12 7x  0.6800 0.6800 21 3 

4 U1111 U111 8x  0.9000 0.9000 7 4 

 U1112 U111 9
x  0.8000 0.8000 6 4 

 U1121 U112 10x  0.7500 0.7500 8 4 

 U1122 U112 11
x  0.9500 0.9500 5 4 

 U1211 U121 12
x  0.7000 0.7000 9 4 

 U1212 U121 13
x  0.9000 0.9000 6 4 

 U1221 U122 14
x  0.8500 0.8500 5 4 

 U1222 U122 15
x  0.8000 0.8000 8 4 

4.4.3 Computational results 

The HGA was applied to solve the series and series-parallel problems using separate 

modular and component redundancy schemes, under the same HGA parameters. In the 

modular redundancy scheme, we allowed potential redundancy for units at all levels, 

whereas in the component scheme, we only allowed redundancy at the component level. 

We applied these two schemes to explore what the differences in the optimal solutions 

would be under the same cost constraint. Ten cases that used varying unit reliability values 

in basic configurations were considered when solving the two problems, and ten 

500-generation trials were performed in each case.  
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Figure 4.9. Convergence of fitness value in hierarchical series configuration. 

Figure 4.10. Convergence of fitness value in hierarchical series-parallel configuration. 
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TABLE 4.3 

OPTIMAL REDUNDANCY ALLOCATION IN SERIES SYSTEM 

Basic 

Reliability 
Modular Redundancy  Component Redundancy 

 

Optimal Configuration 

1x -
32 xx -

54 xx -
98

xx -

1110xx -
76

xx -
1312

xx -
1514xx  

Optimal 

Reliability 
 

Optimal Configuration 

1x -
32 xx -

54 xx -
98

xx -

1110xx -
76

xx -
1312

xx -
1514xx  

Optimal 

Reliability 

0.3202 
1-22-11-1222- 

2222-21-32-33 
0.9775 

 

1-11-11-23- 

32-11-32-23 
0.9460 

0.1050 
1-11-21-2212- 

33-12-23-2222 
0.8677 

1-11-11-33- 

23-11-22-32 
0.7658 

0.3202 
1-11-22-2212- 

2122-12-33-2222 
0.9777 

1-11-11-32- 

23-11-23-32 
0.9460 

0.1201 
1-11-12-32- 

2223-12-22-2222 
0.8870 

1-11-11-22- 

33-11-22-33 
0.7857 

0.1587 
1-11-12-32- 

2223-12-22-2222 
0.9368 

1-11-11-33- 

32-11-32-22 
0.8427 

0.1805 
1-11-32-112222- 

2123-21-2211-32 
0.9508 

1-11-11-23- 

23-11-23-32 
0.8578 

0.2318 
1-11-12-23- 

1212-22-2132-2222 
0.9538 

1-11-11-23- 

22-11-32-23 
0.9094 

0.2938 
1-11-12-23- 

2122-22-2232-32212 
0.9742 

1-11-11-32- 

32-11-23-32 
0.9376 

0.2179 
1-11-22-2222- 

2222-21-2222-32 
0.9502 

1-11-11-32- 

32-11-23-32 
0.8945 

0.2085 
1-11-23-2122- 

112112-22-2222-2132 
0.9645 

1-11-11-33- 

32-11-22-32 
0.8928 

Fig.4.9 and Fig.4.10 show the convergence of objective function values in ten 

500-generation for both the problems. The cost constraint was always kept constant at a 

value of 500. Finally, the best solution among the 10 trials is summarized for the two 

problems in Table 4.3 and Table 4.4. Optimal redundancy allocations and solutions are 
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given in both tables. Table 4.3 provides the best solutions for the series redundancy 

allocation problems and Table 4.4 the best solutions for the series-parallel problem, and the 

reliability settings are the same in each row of the tables. Here, reliability settings refer to 

the number of units, the hierarchical levels, and the reliability of the units.  

TABLE 4.4 

OPTIMAL REDUNDANCY ALLOCATION IN SERIES-PARALLEL SYSTEM 

Basic 

Reliability 

Modular Redundancy  Component Redundancy 

Optimal Configuration 

1x -
32 xx -

54 xx -
98

xx -

1110xx -
76

xx -
1312

xx -
1514xx  

Optimal 

Reliability 

 

Optimal Configuration 

1x -
32 xx -

54 xx -
98

xx -

1110xx -
76

xx -
1312

xx -
1514xx  

Optimal 

Reliability 

0.3202 
1-11-21-2323- 

22-11-32-22 
0.9991 

1-11-11-23- 

32-11-32-23 
0.9422 

0.1050 
1-11-31-221223- 

22-31-222221-22 
0.9956 

1-11-11-33- 

23-11-22-32 
0.7658 

0.3202 
1-11-22-2332- 

2211-21-2222-22 
0.9993 

1-11-11-32- 

23-11-23-32 
0.9460 

0.1020 
1-11-22-3232- 

2211-21-2122-22 
0.9986 

1-11-11-31- 

33-11-22-33 
0.7857 

0.1587 
1-11-31-222322- 

22-21-1122-23 
0.9967 

1-11-11-33- 

22-11-32-22 
0.8427 

0.1805 
1-11-41-22232212- 

23-11-22-22 
0.9975 

1-11-11-23- 

23-11-23-32 
0.8578 

0.2318 
1-11-31-222221- 

32-12-21-2322 
0.9995 

1-11-11-23- 

23-11-32-23 
0.9094 

0.2938 
1-11-31-221322- 

21-31-112223-12 
0.9995 

1-11-11-23- 

22-11-33-23 
0.9377 

0.2179 
1-11-21-3232- 

22-21-2312-22 
0.9980 

1-11-11-32- 

32-11-23-32 
0.8945 

0.2085 
1-11-31-222222- 

13-11-33-22 
0.9986 

1-11-11-33- 

32-11-22-32 
0.8928 
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Table 4.3 and Table 4.4 indicate that the optimal component redundancy allocation is 

the same in each case, implying that the achieved values represent optimal system 

reliability. However, the optimal modular redundancy allocation and the corresponding 

system reliability for the series and series-parallel systems are different. For example, in the 

tenth case of Table 4.4, the optimal modular redundancy configuration for 
1

U  at the 

system level, [U1], is [1], at the second level, [U11U12], is [11], at the third level, 

[U111U112-U121U122], is [31-11], and at the lowest level, 

[U1111U1112-U1211U1212-U1211U1212-U1221U1222], is [222222-13-33-22]. Fig.4.11 shows an 

optimal redundancy arrangement in the modular schemes. 

For the same case in Table 4.4, the optimal component redundancy configuration for 

1
U  at the system level, [U1], is [1], at the second level, [U11U12], is [11], at the third level, 

[U111U112-U121U122], is [11-11], and at the lowest level, 

[U1111U1112-U1211U1212-U1211U1212-U1221U1222], is [33-32-22-32]. Fig. 4.12 shows an optimal 

redundancy arrangement for the component scheme. All the optimal solutions summarized 

in Table 4.3 and Table 4.4 can be illustrated by pictorial representations in a similar way. 

Next, we solved the two allocation optimization problems by varying the cost 

constraints. Ten cases using various cost constraints while maintaining constant values of 

unit reliability were considered when solving the series and series-parallel problems, 10 

500-generation trials were performed in each case. Finally, the best solution among the 10 

trials was selected as the optimal solution. Fig. 4.13 and Fig. 4.14 graphically show the 

trends of the optimal solutions when plotted against the cost constraints for both systems. 

In both problems, the cost constraint was varied in increments of 50, from 200 to 650. 
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Fig. 4.11. Optimal modular allocation in 4-level series-parallel system. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12.Optimal component allocation in 4-level series-parallel system. 
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Fig. 4.13. Modular and component redundancy allocations in series system. 

 

 

Fig. 4.14. Modular and component redundancy allocations in series-parallel system. 
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In both figures, we compare the optimal solutions obtained using a modular 

redundancy scheme with those obtained using the component redundancy scheme. The x- 

and y-axes respectively represent the system cost constraints and the optimal system 

reliability. 

4.5 Discussion 

The numerical examples for the multilevel series and series-parallel redundancy 

allocation problems clearly demonstrate that the modular scheme of redundancy allocation 

has certain distinct advantages over the component scheme of redundancy allocation. The 

obtained results shown in Table 4.3 and Table 4.4 clearly support the claim that a modular 

redundancy approach yields superior system reliability compared with the component 

redundancy scheme. We see in Table 4.4 that the average improvement in optimal solutions 

using a modular redundancy scheme for a multilevel series system is 7.6%, and the 

maximum improvement is 13.3% better than the best result obtained with the component 

scheme of redundancy allocation. Similarly, for the series-parallel system, the modular 

redundancy approach yielded an average improvement of 13.8% and a maximum 

improvement of 30.0% compared with the component scheme of redundancy allocation. 

Although the percentage improvement can vary according to the parameters used, we infer 

that modular redundancy yields better optimal solutions than component redundancy 

scheme in multilevel redundancy allocation optimization problems. 

The average computation time in single run for modular allocation optimization 

problems varies between 149.0 to 153.1 seconds. On the other hand, the average 

calculation time in component allocation problems lie between 19.6 and 20.2. Thus, the 

computational effort in solving modular redundancy allocation optimization problems is 

more because of larger search space size than component allocation problems. Furthermore, 

Fig.4.12 and Fig.4.13 indicate that the optimal reliability achieved for each of the ten cost 
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constraint cases again demonstrates the superiority of the modular redundancy scheme over 

the component scheme. Although, the difference in the optimal solutions between the two 

schemes is not very significant at a system cost of 200, higher system cost values 

increasingly show the superiority of a modular allocation approach.  

Thus, it appears advantageous to allocate redundancy without affecting the internal 

hierarchical relationships of a multilevel reliability system. It is recognized that using 

conventional GAs to represent design variables having hierarchical relationships is 

problematic, and we overcame this difficulty by applying HGAs in which the modular 

design variables are encoded using an innovative hierarchical genotype representation. We 

observe that the hierarchical genotype representation of modular design variables is highly 

appropriate for solving hierarchical reliability optimization problems, since such 

representation allows sufficient flexibility for every possible redundancy combination to be 

addressed. 

As described in the introduction, the particular benefit of using a modular approach to 

redundancy allocation in a multilevel system, and hierarchical genotypes, is that both fault 

tolerance and system reliability are improved. Modularity reduces the number of parts and 

thus simplifies the system design. The fewer parts and subsystems there are, the more 

reliable a system will be in service. Thus, well-implemented modular redundancy offers a 

kind of synergistic benefit in terms of reducing complexity while increasing the fault 

tolerance of a system design, and the computational results presented confirm that modular 

redundancy allocation optimizations lead to improved optimal system reliability. This is 

because a hierarchical genotype representation not only preserves the hierarchical 

relationship of the modular design variables but also allows simultaneous redundancy 

allocation at more than one level during the optimization process. 
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4.6 Summary 

This chapter discussed the importance of modular redundancy allocation applied to 

multilevel system reliability problems. We proposed a methodology to solve series and 

series-parallel redundancy allocation problems considering the hierarchical relationships 

among design variables. Modular design variables were encoded using hierarchical 

genotypes in hierarchical genetic algorithms, and the multilevel redundancy allocation 

optimization problems were efficiently solved. The optimization of numerical examples in 

this chapter indicates that the modular scheme of redundancy allocation yields superior 

system reliability for multilevel configurations, in contrast to the conventional notion that 

component level redundancy allocation yields better optimal solutions. The application of a 

HGA proved to be flexible and efficient when solving large-scale multilevel redundancy 

allocation optimization problems. 
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Chapter 5 

Multiobjective hierarchical genetic algorithms for optimal reliability 

design 

5.1 Introduction 

Most complex engineering systems exhibit hierarchical design structures and the 

reliability of such systems during the design stage can be optimized either by enhancing 

component reliability or by allocating appropriate redundancy at the component level. The 

latter technique is widely practiced in industry when designing systems that must be highly 

reliable. Problems whose solutions aim to provide optimum redundancy to the units located 

at multiple levels of a complex system, subject to certain resource constraints, are generally 

termed multilevel redundancy allocation optimization problems (MRAOPs).  

Apart from being NP hard
[2]

, MRAOPs involve hierarchical design variables that 

require certain basic structural relationships to be maintained throughout the optimization 

process. MRAOPs therefore require a suitable algorithm that allows appropriate 

representation of hierarchical design variables during the optimization process. Moreover, 

the size of the search space when optimizing MRAOPs tends to be very large, so that using 

exact methods to solve such problems may too computationally costly. Techniques using 

GAs
[122]

 are therefore attractive when solving difficult optimization problems and an 

additional reason for their popularity is that they can be customized to solve a particular 

problem by introducing user-defined encoding schemes, selection strategies, crossover 

operators, and mutation operators. Being stochastic, GAs do not guarantee true globally 

optimal solutions, but solutions that approach globally optimum solutions can be easily 

found. 

Recently, the growing research interest in multilevel reliability modeling and 
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optimization using GAs is reflected in the literature due to the practical importance of these 

techniques. Yun and Kim
[152]

 have solved MRAOPs in series systems having three 

hierarchical levels using a customized GA. Later, Yun et al.
[161]

 presented a formulation for 

multiple multi-level redundancy allocation problems for series systems and applied a GA 

with a sequential recording method, without reflecting the solution positions. Levitin
[140]

 

proposed an algorithm for solving multilevel protection cost minimization problems subject 

to survivability constraints. This algorithm is based on a universal generating function 

technique used for system survivability evaluation and on a genetic algorithm used as an 

optimization engine. However, almost all of the research has been limited to single 

objective (SO) optimization problems for maximizing system reliability subject to a cost 

constraint.  

When solving MRAOPs using GA techniques, two important issues need to be 

addressed: how best to represent hierarchical design variables, and how to search for the 

best solution most efficiently despite a very large solution space, particularly for problems 

having more than three hierarchical levels. The first issue can be resolved by using a HGA, 

such as proposed by Kumar et al.
[162]

, that uses a hierarchical genotype encoding scheme 

for the MRAOP design variables. However, the second issue, that of searching efficiency 

for MRAOPs, has yet to be addressed for single objective HGAs because they use an 

elite-preservation strategy which fails to preserve adequate population diversity, so the best 

solutions are often overlooked
[163]

. Therefore, the need to apply a diversity preservation 

mechanism in selection operators to enhance the yield of optimal solutions during 

optimization process is clear, and one way of preserving such diversity is to introduce a 

multiobjective (MO) scheme for solving MRAOPs. 

In a practical sense, MO optimization is preferable because it provides a 

decision-maker with several trade-off solutions to choose from. Furthermore, practical 



 
 

85 

 

engineering reliability problems actually do have multiple conflicting objectives such as 

maximization of reliability and performance while minimizing cost and weight, and so on. 

Multiple objective formulations are practically required for concurrent optimization that 

yields optimal solutions that balance the conflicting relationships among the objectives. 

MO optimization yields a set of Pareto-optimal solutions, which is a set of solutions that 

are mutually nondominated
[164]

. The concept of nondominated solutions is required when 

comparing solutions in a multidimensional feasible design space formed by multiple 

objectives. When two conflicting objectives are present, such as when seeking to maximize 

reliability while minimizing cost, there will always be a certain amount of sacrifice in one 

objective to achieve a certain amount of gain in the other when moving from one Pareto 

solution to another. But decision-makers often prefer to use a Pareto optimal solution set 

rather than being provided with a single solution, because the set helps them effectively 

understand the trade-off relationships among conflicting objectives and make informed 

selections of the best solutions to practical engineering problems.  

It is important to note that MO optimization of MRAOPs is more difficult than SO 

optimization because the former handles two goals, progressing towards the Pareto-optimal 

front and maintaining a diverse set of solutions in the nondominated front, while the latter 

has only a single goal of searching for an optimal solution. Moreover, exact methods are 

very time consuming in MO optimization since the objective function space in MO is 

multidimensional unlike the single objective function space in SO optimization problems. 

MO optimization difficulties can be alleviated by avoiding multiple simulation runs, doing 

without artificial aids such as weighted sum approaches, using efficient population-based 

evolutionary algorithms, and the concept of dominance
[163]

. In addition, the use of 

multiobjective genetic algorithms (MOGAs) provides a decision-maker with the practical 

means to handle MO optimization problems. 
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Given the above concerns, this chapter aims to address two particular issues when 

solving MRAOPs: the suitable representation of hierarchical design variables and the 

preservation of population diversity in the selection strategy. To achieve these goals, we 

propose a MO formulation for multilevel series redundancy allocation problems and a 

methodology to solve them. In this methodology, a general framework of multiobjective 

hierarchical genetic algorithms is developed by integrating two different approaches, 

namely, a hierarchical genotype representation for the design variables, and a user defined 

selection operator with diversity preservation mechanism. In this chapter, we implemented 

the non-dominated sorting genetic algorithm (NSGA-II)
[164]

 and the strength Pareto 

evolutionary algorithm (SPEA2)
[165]

 in the selection operators, both of which include an 

excellent mechanism for preserving population diversity. Additionally, the hierarchical 

genotype coding scheme is modified to accommodate MRAOPs design variables that have 

serial linkages and a modular structure. The proposed approach is applied in solving two 

hierarchical series system MRAOPs, one with three levels and the other with four. We also 

conduct a SO optimization using a HGA so that the best solution obtained using this 

method can be compared with those of nearest best solutions on the Pareto-optimal fronts 

obtained using the NSGA-II and SPEA2. 

The rest of the chapter is organized as follows. Section 2 describes a multilevel 

redundancy allocation problem and its MO optimization formulation. Section 3 provides 

the details of the MOGAs and the proposed framework of the multiobjective HGA 

approach. In Section 4, the two numerical examples are solved and computational results 

are presented. Discussion of the obtained results is presented in Section 5 and Section 6 

presents our conclusions. 

5.2 Multiobjective formulation of multilevel redundancy allocation optimization 

problems 
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The hierarchical structure of a reliability system is shown in Fig.5.1 in which the 

system level is the topmost level and the component level is the lowest. Subsystem or 

module levels are located between the top level and the bottom level. Each system, module 

and component is here termed a unit. System and module units can have any number of 

subordinate units, such as modules that make up the system or components that make up a 

module. These subordinate units are called sub-units, and the next highest hierarchical unit 

of a sub-unit is called a parent unit. The proposed redundancy allocation model can handle 

redundancy for all units of a multilevel reliability system. The multilevel reliability 

allocation formulation presented here allows the units to have redundancy not only at the 

same level, but also simultaneously for sub-units at lower levels. 

 

 

 

 

 

Fig.5.1. Multilevel configuration of system reliability. 

As described in chapter 2, the reliability of a unit with multilevel series configurations 

can be calculated using the following equations: 
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The system cost is usually calculated as the sum of the cost of subsystems and modules, 

and the cost of a module is the sum of all modules or component costs therein, when there 

are parallel units in the level immediate below. In practical systems, it is assumed that 
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multilevel redundancy incurs additional costs, due to the adding or duplication of redundant 

units to modules, and the increased number of components. In general, the redundancy cost 

of   can be expressed mathematically as follows. 
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5.2.1 Single objective redundancy allocation optimization formulation 

The single objective redundancy allocation optimization problem in a reliability 

system consisting of a set of design variables is expressed as: 

  Maximize  
s

R f (x) (5.4) 

 Subject to  C ( x)
0

C  (5.5) 

where 
s

R , f(x), C(x), and x are the system reliability, reliability function, cost function, 

and a set of design variables, respectively. Each design variable has a minimum and 

maximum redundancy value. 
0

C  is a given, fixed positive value for the cost constraint.  

5.2.2 Multiobjective redundancy allocation optimization formulation 

The multiobjective redundancy allocation optimization problem is expressed as a 

vector of functions: 

 Minimize/maximize z  (f 1(x), f 2(x),…, f l(x)) (5.6) 

where z , l, fl(x), and x are the multiobjective vector function, the number of objective 

functions, the l-th objective function, and a set of design variables, respectively. In terms of 

minimization of all objectives, a feasible solution x1 is said to dominate another feasible 

solution x2 )( 21 xx   if and only if )()( 21 xfxf ll   for Ll ,...,1  and )()( 21 xfxf ll   for 

at least one objective function l [166]
. A solution is said to be Pareto optimal if it is not 

dominated by any other solution in the solution space. The set of all such feasible 

non-dominated solutions in a solution space is termed the Pareto optimal solution set. For a 

given Pareto optimal solution set, the curve made in the objective space is called the Pareto 
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front. Since the number of Pareto optimal solutions is large and unknown for redundancy 

allocation problems, identifying the best known Pareto set by using a suitable MO 

optimization algorithm is a major challenge. 

A two-objective redundancy allocation optimization problem to maximize reliability 

and minimize cost can be expressed mathematically as follows. 

 Maximize  f 1(x) = f (x) (5.7) 

 Minimize  f 2(x) = C (x) (5.8) 

With such MO optimization problems, it is impossible to find a single optimum solution 

that optimizes both objective functions simultaneously in a MRAOP. Therefore, unlike the 

aim of finding the best solution to a SO optimization problem, the aim of optimizing two 

conflicting objectives simultaneously is to find a set of feasible solutions, each of which is 

not dominated by any other solutions. 

5.3 Multiobjective hierarchical genetic algorithms 

5.3.1 Hierarchical genetic algorithm 

A Hierarchical Genetic Algorithm proposed by Yoshimura and Izui
[158]

 is an advanced 

genetic algorithm that can represent hierarchical relationships among design variables 

using hierarchical genotypes, and can optimize hierarchical problems in a single 

optimization process. The term hierarchical genetic algorithm (HGA) comes from the use 

of a hierarchical approach when adapting a conventional GA
[167]

. While conventional 

genetic algorithms
[122]

 use vector genotype structures, the HGA employs hierarchical 

genotype structures. The HGA is based on the fact that the conventional coding schemes 

for one dimensional arrays or even multi-dimensional arrays are not suitable for expressing 

design problems having hierarchical design structures. Moreover, vector coding scheme 

actually reduces the feasible design region as it uses artificial transformation of hierarchical 

design variables into vector form.  
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Note that, with hierarchical coding schemes, lower level genotype design variables 

depend upon upper level genotype design variables. When the value of an upper level 

genotype design variable changes, one or more lower level genotype design variables must 

also change, and the length of the genes may change. Since conventional genetic operators 

such as crossover and mutation operators cannot be applied to design variables expressed in 

hierarchical representations, new operators have been newly defined to handle hierarchical 

genotype encoding.  

5.3.2 Multiobjective genetic algorithms 

Single-objective genetic algorithms (GAs) that can be modified to solve MO 

optimization problems and find Pareto optimal sets in a single run are usually called 

multiobjective genetic algorithms (MOGAs)
[168]

. MOGAs are well suited to solving MO 

optimization problems because population-based approaches are applied and MOGAs can 

simultaneously search different parts of feasible design regions. Furthermore, difficult MO 

optimization problems that have discontinuous, non-convex, or multimodal solution spaces 

can be effectively solved by using customized MOGAs. Most of these MOGAs do not 

require artificial adjustments such as priority, scaling, or weighting coefficients for the 

objective functions
[163]

. An additional advantage is that the crossover and mutation 

operators may be modified to exploit the structural features of preferable solutions.  

Over the years, a number of MOGAs have been developed and these can be broadly 

classified into two categories: elite MOGAs and non-elite MOGAs
[163]

. Non-elite MOGAs, 

as the name suggests, do not utilize elitism when selecting individuals for the next 

generation from the current population
[169]

. The first multi-objective GA, termed a vector 

evaluated GA (VEGA) proposed by Schaffer
[170]

, was a non-elite MOGA. Other examples of 

important non-elite MOGAs are the Niched Pareto Genetic Algorithm (NPGA)
[171]

, 

Weight-based Genetic Algorithms (WBGA)
[172]

, Random Weighted Genetic Algorithms 
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(RWGA)
[173]

, Non-dominated Sorting Genetic Algorithms (NSGA)
[174]

, and Fonseca and 

Fleming‟s Multi-objective Genetic Algorithms (MOGA)
[175]

. 

In contrast, elite MOGAs employ an elite preservation operator in which an external set 

is created to store the best solutions of each generation. With this approach, the best 

individuals in each generation are preserved, and generated Pareto-fronts are close to the true 

Pareto front. Popular elite MOGAs include the Strength Pareto Evolutionary Algorithm 

(SPEA)
[166]

, the improved SPEA (SPEA2)
[165]

, the Pareto-Archived Evolution Strategy 

(PAES)
[176]

, the Pareto Envelope-based Selection Algorithm (PESA)
[177]

, Region-based 

Selection in Evolutionary Multiobjective Optimization (PESA-II)
[178]

, the Fast 

Nondominated Sorting Genetic Algorithm (NSGA-II)
[164]

, the Multi-objective Evolutionary 

Algorithm (MEA)
[179]

, the Micro-GA
[180]

, the Rank-Density Based Genetic Algorithm 

(RDGA)
[181]

, and the Dynamic Multi-objective Evolutionary Algorithm (DMOEA)
[182]

. 

However, none of these MOGAs has been applied to the solving of MRAOPs that 

include hierarchical design variables. Though Yoshimura et al.
[183]

 proposed a MO 

optimization method based on hierarchical arrangement of the design characteristics, its 

applicability is limited to machine product design. Additionally, the coding scheme 

proposed by Yoshimura and Izui
[158]

 is not directly applicable to MRAOPs. The reason is 

that these problems contain hierarchical design variables with logical linkage, such as serial 

or parallel connections. Later, Kumar et al.
[162]

 proposed a new coding scheme to encode 

the hierarchical design variables of MRAOPs and applied SO optimization using a HGA. 

Therefore, this paper formulates a new methodology for multiobjective optimization 

MRAOPs. In this methodology, a general framework for a multiobjective GA based on 

hierarchical genotype representation encoding for the design variables is proposed. As the 

proposed multiobjective genetic algorithm uses hierarchical approach in solution encoding, 

this is termed multiobjective hierarchical genetic algorithm (MOHGA). The following 
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section describes the common framework for MOHGAs. 

5.3.3 Multiobjective hierarchical genetic algorithm 

For handling hierarchical design variables and solving multiobjective MRAOPs, this 

paper proposes a general framework for multiobjective hierarchical genetic algorithm as 

follows: 

Algorithm 1: Common framework for MOHGAs 

Step 1: Initialize the population P in which each design variable is encoded by a 

hierarchical genotype 

Step 2: Conduct a selection operation to select elite individuals from P and store their data 

in external set E (optional and not for non-elitist MOGAs) 

Step 3: Create a mating pool using either P or E, or both 

Step 5: Apply hierarchical crossover and hierarchical mutation operators 

Step 6: Evaluate individuals 

Step 7: Conduct reproduction based on the pool to create the next generation of P 

Step 8: Combine P and E 

Step 9: If termination criteria are not satisfied, return to Step 2. 

In this general framework, selection of elite individuals can be conducted according to 

the user‟s designed algorithms while preserving the hierarchical genotype coding scheme. 

This paper implemented NSGA-II and SPEA2 for the selection operator in the above 

MOHGA. The rationale for implementing these two algorithms is that both of them include 

effective mechanisms for preserving diversity and can yield better Pareto optimal solution 

sets. Additionally, this paper applies SO using HGA and compares the optimal solutions 

with those obtained by MO using MOHGA with NSGA-II and SPEA2 at a certain fixed 

cost. This will aid in understanding the MRAOP search patterns to design more efficient 

algorithms. In the following subsections, solution encodings, selection algorithms, and 
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modified operators are described. 

5.3.3.1 Solution encoding 

The design variables in MRAOPs are encoded using hierarchical genotypes so that the 

hierarchical structure of these variables will be preserved intact. The hierarchical genotypes 

used here are represented using two types of nodes, termed ordinal and terminal nodes. 

Ordinal node 
i

N  corresponds to redundancy unit 
i

U , and is characterized by several 

parameters and design variables. Parameters ik  and in  stand for the redundancy of unit 

i
U , and the number of sub-units, respectively. Here, ik  is given by a design variable at an 

upper node, while the parameter in is a fixed value that depends on the optimization 

problems to be solved. 
j

mix ,  is a design variable denoting the redundancy for the m-th 

sub-unit of the j-th redundancy unit, where j  varies from 1 to k . Therefore, there are 

iikn  design variables in unit 
i

U . A terminal node 
it

N  corresponds to one of the lowest 

units, and incorporates design variable ik , unit reliability
i

r , and unit cost ic . Since there 

are no sub-units, this terminal node does not contain parameter 
i

n  or design variable 
j

mix , . 

Using these two genotype nodes, all possible optimal solutions for series reliability 

allocation problems can be represented.  

Furthermore, the ordinal and terminal genotypes each have two evaluation functions, 

namely, reliability and cost. When the reliability function in the ordinal genotype is called, 

a calculation is conducted using Eq. (1). When calculating this equation, the reliability 

values of the lower units, 
j

miR , , are required, and these are obtained by calling the 

reliability function of the lower units. Finally, the reliability function of the terminal 

genotype returns its unit reliability
i

r . Thus, the reliability functions are recursively called, 

and the total system reliability can be obtained. Similarly, the system cost can be obtained 

by calling the cost function embedded in each genotype.  
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The coding schemes used in the HGA can be understood more clearly by examining a 

redundancy allocation example for a two-level series unit 
1U  having two sub-units, 

11U  

and 
12U , as shown in Fig.5.2.   

 

 

 

 

 

 

 

(a) Redundancy allocation     (b) Design variables at each node 

Fig. 5.2. Hierarchical genotype representation in a bi-level series system U1. 

The redundancy values for sub-units 
11U  and 

12U  are 2 and 1, respectively. The HGA 

allows redundancy at two levels simultaneously. Fig.5.2(a) shows the redundancy 

allocation at both the system level and the level of the sub-units. Note that genotypes which 

use fixed arrays, frequently used in various optimization problems, are not applicable to 

MRAOPs since the number of design variables varies according to the number of 

redundant units. Here, the number of genes varies dynamically based on the proposed 

solution configuration, and the applied coding scheme is capable of handling dynamic 

variations in the values of design variables during the optimization process. 

5.3.3.2 Hierarchical crossover 

Crossover operations between individuals are conducted among each corresponding set 

of genes, using a two-step procedure. For the initial step, any other individual is first 

selected as the crossover partner and crossover operators then exchange the corresponding 

genes of the two individuals. Here, when a gene of an alternative for a substructure is 
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exchanged with the corresponding gene of another alternative, all corresponding lower 

substructures are also exchanged, to preserve consistency in the selection of alternatives. If 

this operation were not conducted in this way, meaningless lower structures might be 

generated in the lower positions of the exchanged substructures. The algorithmic 

procedures are follows: 

Algorithm 4: Crossover for handling hierarchical genotype 

Step 1: Select two individuals for crossover operations, then find the set of genes at the 

highest level of the multilevel structural system for each of the two individuals, and 

start the crossover operation with probability
1c

p . 

Step 2.1: If the gene 
j

mix ,  of individual 1 and that of individual 2 are different; conduct a 

crossover operation for 
j

mix ,  with probability
2cp . This operation is the same as a 

uniform crossover of simple genetic algorithms with 
2cp  set to 0.5. Then, proceed 

to Step 2.3. If crossover operations are not conducted, proceed to Step 2.4. If the 

genes of both individuals are the same, proceed to Step 2.2. 

Step 2.2: If 
j

mix ,  contains a subordinate set of genes; it will be examined for possible 

crossover operations in Step 2.1. Otherwise, proceed to Step 2.4. 

Step 2.3: When 
j

mix ,  genes are exchanged between individuals 1 and 2, the lower 

substructures of each individual are also exchanged. 

Step 2.4: Increment m  by 1. When nm  , m =1, increment j by 1. When kj  , end 

the crossover operations since the set of genes has been exhausted, and return to the 

crossover operations for the parent set of genes.  

Fig.5.3 shows an example of the crossover operation between unit U12 of the first 

individual and U12 of the second individual. With exchange of parent unit U12, the subunits 
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of U12 are also exchanged. Note that the design variables of U12 of both the parents are 

unequal in the given example. However, if the design variables of U12 in both the parents 

are equal, the subunits of U12 are subject to crossover operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.3. An example of hierarchical crossover operation in a 3-level series system U1  

5.3.3.3 Hierarchical mutation 

In mutation operations, mutation operators are first applied to the set of genes at the 

highest level of the multilevel structural system, and mutation operators are recursively 

applied to the sets at sub-unit levels in the same way as for crossover operators. The 

algorithmic procedures are as follows: 

Algorithm 5: Mutation for handling hierarchical genotype 

Step 1: Examine the substructure at the highest level. 
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Step 2.1: Determine whether or not a mutation operation should be conducted, with 

mutation probability mp  for the gene 
j

mix , . If the mutation is conducted, 

proceed to Step 2.3 otherwise proceed to Step 2.2.  

Step 2.2: If 
j

mix , contains set of genes at sub-unit levels, proceed to Step 2.1 and examine 

sub-unit set of genes. If not, proceed to Step 2.5. 

Step 2.3: Randomly generate 
j

mix , . 

Step 2.4: Randomly reconstruct the genes of all sub-unit‟s node for the selected alternative. 

Step 2.5: Increment m  by 1. When nm  , m =1, increment j by 1. When kj  , end 

the crossover operations since the set of genes has been exhausted, and return to 

the crossover operations for the parent set of genes. 

Fig.5.4 shows an example of the mutation operation in a unit U12 of an individual U1. A 

new structure of unit U12 along with its subunits is randomly generated and replaces the 

older configuration of U12. The design variables of lower units of U12 are also randomly 

generated. 

 

 

 

 

 

 

 

Fig. 5.4. An example of hierarchical mutation operation in a 3-level series system U1 

5.3.3.4 Selection operator 

The selection method used in this paper implements NSGA-II and SPEA2 algorithms. 
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Though based on different principles, they both have excellent mechanism for the 

preservation of diversity.  

 

 

 

 

 

 

Fig. 5.5. Ranking and crowding distance concepts used in NSGA-II 

 

 

 

 

 

 

 

 

Fig. 5.6. Truncation Operator used in SPEA2 

Fig.5.5 and Fig.5.6 illustrate the different concepts, the ranking and crowding distance 

used in NSGA-II, and the truncation operator used in SPEA2. These algorithms can be 

integrated within the general framework of hierarchical genetic algorithms, for which 

details are given in the following subsections. 

5.3.3.4.1 NSGA-II 

NSGA-II is a fast, elite MOGA proposed by Deb et al.
[164]

. The complete procedure 

that NSGA-II uses within the proposed hierarchical framework is given below. 

(a) Two nearest solutions on Pareto front 

and distance „a‟ and „b‟ are compared 

(b) Since „b‟ is less than „a‟, 

solution „1‟ is removed  
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Algorithm 2: NSGA-II  

Step 1: Create a random population 
0P  of size PN  in which each design variable is 

encoded by a hierarchical genotype. Set 0t  

Step 2: Apply hierarchical crossover and mutation operators to 
0P  to create an offspring 

population 
0Q  of size QN =

PN  

Step 3: If the stop criterion is satisfied, stop and return 
tP  as output. 

Step 4: Set 
ttt QPS  , apply a non-dominated sorting algorithm and identify different 

fronts 
1F , 

2F ,…,
kF .  

Step 6: Set new population 
1tP =0. Set counter i = 1. Until NFP it  |||| 1

 set 

itt FPP   11
 and i = i +1.  

Step 7: Perform the crowding-sort procedure and include the most widely spread 

( || 1 tPN ) solutions found using the crowding distance values in sorted 
iF  in 

1tP . 

Step 8: Apply the crowded tournament selection, hierarchical crossover and mutation 

operators to 
1tP  to create offspring population

1tQ . 

Step 8: Set 1 tt , then return to Step 3. 

Note that when the combined parent and offspring population includes more than PN  

non-dominated solutions, NSGA-II acts as a pure elitist GA where only nondominated 

solutions participate in crossover and selection.  

5.3.3.4.2 SPEA2 

SPEA
[166]

 and SPEA2
[167]

 are both very effective algorithms that use an external list to 

store non-dominated solutions discovered in the course of searching. They are also excellent 

examples for the use of external populations. The procedure for using SPEA2 within the 

proposed hierarchical framework is as follows: 
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Algorithm 3: SPEA2 

Step 1: Create a random population 
0P  of size PN  in which each design variable is 

encoded by a hierarchical genotype. Set 0t  and an empty external archive 
0E  

of size 
EN  

Step 2: Calculate the fitness of each solution x in 
tt EP   

as follows: 

Step 2.1:  Calculate the raw fitness as   ),(),( , tyStxR xyUEPy tt 
 where ),( tyS  is the 

number of solutions in 
tt EP   dominated by solution y. 

Step 2.2:  Calculate the density as 1)2(),(  k

xtxD   where k

x  is the distance between 

solution x and its k-th nearest neighbor, where 
EP NNk         

Step 2.3: Assign a fitness value as ),(),(),( txDtxRtxF  . 

Step 3: Copy all non-dominated solutions in 
tt EP   to 

1tE . Now, two cases may arise. 

Case 1:  If 
Et NE  || 1
, then truncate 

Et NE  || 1
 solutions by iteratively removing 

solutions that have maximum k  distances. Break any tie by examining l  for l 

=k-1,…, 1 sequentially. Case 2:  If 
Et NE  || 1

, copy the best || 1 tE EN  

dominated solutions according to their fitness values from 
tt EP   to 

1tE . 

Step 4: If the stopping criterion is satisfied, stop and copy non-dominated solutions in 

1tE . 

Step 5: Select parent from 
1tE  using binary tournament selection with replacement.  

Step 6: Apply hierarchical crossover and mutation operator to the parents to create N  

offspring solutions. Copy offspring to 
1tP , 1 tt , then return to Step 2. 

5.4 Numerical examples 

In this section, two MRAOPs with different multilevel structures are solved by 

applying MO optimization using proposed MOHGA and SO optimization using a HGA, 

respectively. In the latter problem, the objective function is to maximize the system 
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reliability subject to a cost constraint. On the other hand, in the MO optimization, the 

objective functions are the maximization of system reliability and minimization of system 

cost. Further, since the feasible design space is very large in MRAOPs, the efficiency of 

both genotype selection and the search for optimal solutions is analyzed for both problems, 

to pinpoint the most viable approach for multilevel redundancy allocation optimization 

problems. 

5.4.1 Problems 

Fig.5.7 and Fig.5.8 show the two multilevel structures. The reliability of these 

systems can be maximized by allocating appropriate redundancy to their units located at 

different levels. In the first problem, Problem-A, there are three hierarchical levels, whereas 

in the second problem, Problem-B, has four levels. All units at all levels of both the 

problems are serially connected. It can be seen that Problem-A structures are not 

symmetrical.  

 

 

 

 

 

 

Fig. 5.7. Problem-A (a three level multilevel series system). 

The reliability of both problems is calculated using (5.1) and (5.2). The reliability for 

Problem-A is expressed as: 
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reliability expression can be obtained for Problem-B.  

 

 

 

 

 

 

 

 

 

Fig. 5.8. Problem-B (a four level multilevel series system). 

5.4.2 Input data 

The HGA parameters are based on several experimental runs conducted for both 

problems. Table 5.1 and Table 5.2 summarize the best parameters and corresponding results 

obtained in 10 trials of 1000 generations using 100 individuals. The best values for 

crossover and mutation probabilities are 0.8 and 0.05, respectively. Similarly, to find the 

best genetic parameter values for MOHGA with NSGA-II and SPEA2, several Pareto 

fronts were obtained in 10 trials of 1000 generations using 100 individuals. The results 

indicate that the best crossover and mutation probabilities are 0.9 and 0.01, respectively.  

NSGA-II and SPEA2 were both assigned a population size of 100 individuals based 

on several trial and error evaluations. The HGA for the SO problem were also assigned the 

same population size. Note that the archive size in MOHGA with SPEA2 was set to 100 

after evaluating the performance with different archive sizes in experimental runs. Both the 

archive in MOHGA with SPEA2 and the offspring size used in MOHGA with NSGA-II 

have a value of 100, increasing the utility of comparisons between these two algorithms. 
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The number of generations for HGA, MOHGA with SPEA2, and MOHGA with NSGA-II 

were set to 1000, a figure obtained through trial-and-error analysis.  

TABLE 5.1 

 HGA PARAMETERS 

Cases Parameters Average Fitness  

(20-runs) 

Best Fitness 

(20-runs) Crossover  Mutation 

1 0.7 0.05 0.96047 0.97628 

2 0.9 0.05 0.96155 0.97628 

3 0.8 0.05 0.9621 0.97639 

4 1.0 0.05 0.96117 0.97628 

5 0.8 0.01 0.92826 0.97254 

6 0.8 0.1 0.94484 0.96422 

7 0.8 0.2 0.931904 0.950827 

 

TABLE 5.2  

MOGA PARAMETERS 

MOGA Crossover  Mutation Population 

NSGA-II 0.9 0.01 100 

SPEA2 0.9 0.01 100 

 

The number of units and the corresponding fixed reliability values for Problem-A and 

Problem-B are 8 and 15, respectively. A maximum redundancy number of five was imposed 

for both the problems. Table 5.3 summarizes the unit reliability and unit cost of the 

components at the very lowest level in both problems. The unit reliability and the unit cost 

at the very lowest level in the multilevel redundancy allocation problems were used when 

calculating the unit reliability and the unit cost of upper level units, up to the system level. 
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TABLE 5.3 

INPUT DATA 

Problem-A  Problem-B 

Unit Reliability Cost    Unit Reliability Cost   

U1 0.3591 51 2 

 

U1 0.2085 102 2 

U11 0.5700 29 2 U11 0.4275 48 2 

U12 0.6300 18 2 U12 0.4877 50 2 

U111 0.8000 5 3 U111 0.6000 21 3 

U112 0.7500 9 3 U112 0.7125 21 3 

U113 0.9500 6 3 U121 0.7650 23 3 

U121 0.7000 5 3 U122 0.6375 21 3 

U122 0.9000 7 3 U1111 0.7500 7 4 

    U1112 0.8000 6 4 

    U1121 0.7500 8 4 

    U1122 0.9500 5 4 

    U1211 0.9000 9 4 

    U1212 0.8500 6 4 

    U1221 0.7500 5 4 

    U1222 0.8500 8 4 

5.4.3 Computational results 

In solving Problem-A and Problem-B, 10 trials of 1000 generations were conducted 

for all the cases. For the SO problem, the best solution among the 10 trials was chosen as 

the final optimum solution. Similarly, the best Pareto front among the 10 trials of 1000 

generations was selected as the final solution for the two-objective problem. Fig. 5.9, 

Fig. 5.10, Fig. 5.11, and Fig. 5.12 show plots of Pareto optimal solution sets obtained by 

the MO optimization using MOHGA with NSGA-II and MOHGA with SPEA2 when 

solving Problem-A and Problem-B. The optimal solutions by for the SO optimization using 

the HGA subject to a cost constraint of 500 are also obtained for the two problems. 

 In Fig.5.9, the Pareto front obtained using MOHGA with SPEA2 is dominated by 
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the MOHGA with NSGA-II solutions. The best solution of the SO optimization using the 

HGA is also plotted in Fig.5.9 and this solution to a 3-level series problem dominates all 

Pareto optimal solutions obtained by the MO optimization using MOHGA with NSGA-II 

and MOHGA with SPEA2. For the 4-level problem shown in Fig.5.11, the optimal Pareto 

front obtained using MOHGA with NSGA-II is superior to that using MOHGA with 

SPEA2 and the optimal solutions obtained by the SO optimization using the HGA 

dominate all the optimal solutions of the Pareto front obtained using MOHGA with SPEA2, 

but are inferior to those using NSGA-II. 

 

Fig. 5.9. Redundancy allocation in Problem-A using NSGA-II, SPEA2, and HGA 

Fig. 5.10 and Fig.5.12 show enlarged plots of the optimal solutions obtained in the MO 

optimizations using MOHGA with NSGA-II and MOHGA with SPEA2 and the SO 

optimization using the HGA for both the problems. As shown in these figures, the 

performance of MOHGA with SPEA2 in 4-level problems deteriorated compared to the 

results for the 3-level problem. In other words, the size of the search space affected the 

convergence of optimal solutions when using MOHGA with SPEA2. 
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Fig. 5.10. Enlarged view of the Pareto front in Problem-A  

 

Fig. 5.11. Redundancy allocation in Problem-B using NSGA-II, SPEA2, and HGA 

0

500

1000

1500

2000

2500

0.9 1

C
o

st

Reliability

MO using NSGA-II

MO using SPEA2

So using HGA

HGA solution

Dominated space

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
o

st

Reliability

MO using NSGA-II

MO using SPEA2

SO using HGA

Dominated space

HGA solution



 
 

107 

 

 

Fig. 5.12. Enlarged view of the Pareto front in Problem-B  

The inferior performance of MOHGA with SPEA2 in both problems is analyzed 

further in terms of Pareto front movement as a function of the number of generations 

during optimization. Fig. 5.13 and Fig. 5.14 show the movements of the Pareto fronts in the 

4-level problem. The figures show three Pareto fronts after 50 generations of the first 

1000-generation trial, after 1000 generations of the first 1000-generation trial, and after 

10000 generations, at the end of the tenth 1000-generation trial. The search direction in 

both the algorithms is clearly visible. With SPEA2, the search direction is from high cost to 

low cost regions, while maintaining several extreme solutions on each generation‟s Pareto 

front. In contrast, the NSGA-II Pareto front moves towards the low cost region without 

preserving each generation‟s extreme solutions. Instead, the entire Pareto front shifts as 

new solution sets are obtained. In other words, MOHGA with SPEA2 yields Pareto fronts 

with wider spans or diversity, while MOHGA with NSGA-II distributes solutions on Pareto 

fronts in a more focused manner. 
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Fig. 5.13. Pareto front movement in MO of Problem-B using SPEA2  

 

Fig. 5.14. Pareto front movement in MO of Problem-B using NSGA-II 
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with SPEA2 and MOHGA with NSGA-II during optimization after 50 generations of the 

first 1000-generation trial, after 1000 generations of the first 1000-generation trial, and 

after 10000 generations, at the end of the tenth 1000-generation trial 

 

Fig. 5.15. Population distribution in MO of Problem-B using SPEA2 

 

Fig. 5.16. Population distribution in MO of Problem-B using NSGA-II 
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(a) The best solution is 
sR = 0.96134 

 

(b) The second best solution is 
sR = 0.93355 

Fig. 5.17. Optimal structures obtained in SO using HGA  

To compare the three optimization strategies, a single solution is chosen from 

solution sets where the cost constraint is 500. Fig. 5.17 shows the optimal structures 

obtained using single objective optimization using HGA and Fig.5.18 shows those obtained 

using MOHGA with NSGA-II, and MOHGA with SPEA2 when solving the 4-level 

problem. Fig. 5.17 (a) shows the best optimal structure with optimal reliability of 0.9613 

and Fig.5.17(b) the second best solution with reliability 0.93335 obtained using the HGA. 

Similarly, the optimal structures obtained using MOHGA with NSGA-II and MOHGA 

with SPEA2 are shown in Fig. 5.18 (a) and (b). The optimal reliabilities obtained using 

MOHGA with NSGA-II and MOHGA with SPEA2 are 0.9748 and 0.5690, respectively. If 
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we look at these figures we find that the MOHGA with NSGA-II algorithm yielded 

superior Pareto solution sets compared to MOHGA with SPEA2. 

 

(a)
 sR = 0.97483 with NSGA-II  

 

(b)
 sR = 0.56903 with SPEA2 

Fig. 5.18. Optimal structures obtained in MO using MOHGA  

5.5 Discussion 

In multilevel redundancy allocation optimization, the basic structure of the problems is 

kept intact when encoding the design variables. During the optimization process, the values 

of design variables expressing redundancy are interdependent, since they are hierarchical, 

i.e., the reliability of an upper level unit depends on the reliability of its lower level units. 

The results obtained here show that optimizations using hierarchical genotype encoding 
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have advantages in finding optimal structures when compared with conventional 

vector-type encoding schemes. The performance of a given optimization method may be 

greatly affected by the number of levels and the distribution of units in the basic structure 

of the MRAOP. This paper examined the performances of a SO method using a HGA and a 

MO method using MOHGA with NSGA-II and SPEA2. 

The results of the numerical examples demonstrate that MO optimizations are better at 

solving multilevel redundancy allocation problems than SO techniques. MO optimizations 

provide Pareto optimal solution sets in a single run, and offer decision-makers a wider 

range of choices from which to choose the best solution for the specific problem at hand. 

Moreover, MO methods using MOHGA with NSGA-II and MOHGA with SPEA2 include 

schemes for preserving good population diversity when solving MRAOPs and, for 

large-scale problems, can provide better solutions than SO optimizations, as the results of 

the provided numerical examples also demonstrate. 

We observe that in MRAOPs, the performance of the MOHGA with NSGA-II in 

obtaining a set of Pareto front is superior to that of MOHGA with SPEA2, however the SO 

optimization using a HGA for the 3-level problem yielded a better solution than either 

MOHGA with NSGA-II or MOHGA with SPEA2 applied in a MO optimization with a 

system cost constraint of 500. For the 4-level problem, MOHGA with NSGA-II provided a 

better solution than MOHGA with SPEA2 or the HGA under similar settings. These results 

show that the size of the search space can drastically affect the performance of different 

algorithms, hence choosing the most suitable algorithm when attempting to solve a 

particular MRAOP is extremely important. 

As shown in Fig.5.17 and Fig.5.18, the optimal structures for the Problem-B, at the 

cost of 500, obtained in SO using the HGA and in MO using the MOHGA with NSGA-II 

and SPEA2 all have different arrangements of units. The best among all optimal structures 
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is obtained by MOHGA with NSGA-II. Examining the structures, we find that the number 

of redundant units in the second and the third levels most significantly affects the reliability 

of this solution. In other words, the solution obtained with MOHGA with NSGA-II has the 

highest ratio of the third level‟s units to the second level‟s units among all solutions 

provided by either MO using MOHGA with SPEA2 or SO using HGA. Additionally, the 

ratio of third level‟s units to second level‟s units provided by the MOHGA with SPEA2 is 

the smallest among all methods used here.  

The observed difference in the performance of the SO optimization using a HGA and a 

MO optimization using MOHGA with NSGA-II or SPEA2 can be attributed to the diversity 

preservation mechanism that is not available in the SO using HGA. In SO using HGA, 

redundancy allocation at module levels often violates the cost constraint and thus the HGA 

fails to preserve the solutions with more number of redundancies at middle levels. 

Concerning the observed poor performance of MOHGA with SPEA2 in comparison to 

MOHGA with NSGA-II when solving the MRAOPs here, this is due to the difference 

selection strategies used. In MOHGA with NSGA-II, dominance ranking is used when 

forming the fronts of individuals and these fronts are first used to populate the external set, 

based on ranking, a strategy that allows a set of close-neighbor individuals in the same 

front to be included in the next generation. In contrast, the MOHGA with SPEA2 selects 

individuals according to assigned fitness values based on Euclidean density information, so 

close-neighbor individuals are likely to be excluded in the next generation. The MOHGA 

with SPEA2 therefore yields Pareto fronts showing wider distributions of non-dominated 

solutions, whereas the MOHGA with NSGA-II is more focused when exploring the search 

space and generating Pareto solution sets. The reason for this behavior is that MOHGA 

with SPEA2 uses a truncation operator based on a nearest-neighbor strategy, but MOHGA 

with NSGA-II uses crowding distance when the size of non-dominated solutions exceed the 
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archive size. Fig.5.13 and Fig.5.14 show that MOHGA with NSGA-II discards 

non-dominated solutions in the high cost region since the crowding distance there tends to 

have lower values. On the other hand, low cost non-dominated solutions easily survive to 

the next generation, because the crowding distance of such solutions is high. 

5.6 Summary 

This chapter proposed the multiobjective formulation of multilevel redundancy 

allocation problems and multiobjective hierarchical genetic algorithms (MOHGAs) to solve 

them. For the numerical examples, two multilevel redundancy allocation problems having 3 

and 4 hierarchical levels were solved to maximize reliability while minimizing cost. The 

proposed MOHGAs were applied to solve the MRAOPs. The selection operators of 

MOHGAs used NSGA-II and SPEA2. Also, for comparison with MO using MOHGA with 

NSGA-II and SPEA2 results, a SO optimization using a HGA was also applied to solve the 

MRAOPs. 

The results show that, for large multilevel problems, MO optimizations using MOHGA 

with NSGA-II are preferable to a SO optimization using a HGA because they provide 

superior solutions, as well as a Pareto set of optimal solutions that can be used during 

subsequent decision making. Additionally, the results show that the MOHGA with 

NSGA-II is superior to the MOHGA with SPEA2 for solving MRAOPs. Building on the 

research carried out for this work, the authors hope to design improved selection strategies 

for multiobjective HGAs which can effectively preserve the structural diversity of 

individuals when searching for optimal solutions to large-scale MRAOPs. 
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Chapter 6 

Conclusions and future works 

This chapter presents an overview and general conclusions related to the work 

developed in this dissertation. The general topic of research is developing novel 

methodologies for optimal reliability design of hierarchical systems. In chapters 2, 

hierarchical and modular concepts in redundancy allocation is presented and a general 

formulation of multilevel redundancy allocation problems is proposed. Chapter 3 

developed an innovative hierarchical genetic algorithm for solving reliability optimization 

problems for hierarchical systems. Multilevel redundancy allocation optimization problems 

involve hierarchical design variables. Conventional genetic algorithm uses vector 

representation for encoding design variables and yield suboptimal solutions. Therefore, the 

main objectives of chapter 3 were to represent the exact structure of hierarchical design 

variables without artificial transformation into vector form and to develop a new 

hierarchical genetic algorithm for solving multilevel redundancy allocation optimization 

problems. The proposed methodology was tested on multilevel reliability problems of 

reasonable size and scope. In chapter 4, a modular concept in redundancy allocation was 

applied when solving reliability optimization problems in series and series-parallel systems. 

The modular redundancy scheme yields superior system reliability than traditional scheme 

of single level redundancy allocation with the same available resources. A second focus in 

this dissertation was to develop a methodology for multiobjective optimization of 

multilevel redundancy allocation problems. Multiobjective optimization is very useful 

when a designer faces a task to optimize several conflicting objectives and there are several 

conflicting objectives exist in optimal reliability design. A multiobjective formulation of 

multilevel redundancy allocation was proposed in chapter 5. A general framework of 

multiobjective hierarchical genetic algorithms was developed and applied to solve 
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multilevel redundancy allocation optimization problems.  

6.1 Summary and conclusions 

6.1.1 Hierarchy and modularity in optimal reliability design 

In chapter 2, the concepts of hierarchy and modularity in system reliability design have 

been described and potential application of these well-proven techniques in reliability 

optimization is presented. The hierarchy helps to simplify the design of large scale systems 

and provide decomposability that helps to address the issue of managing the system more 

effectively throughout the life cycle. Since the structure of RBD affects the reliability 

optimization, the hierarchical concept of RBD is proposed in this chapter to simplify the 

design of complex system and represent exactly all the logical relationship between its 

subsystems and components. Similarly, the superiority of modular design is hard to 

challenge. The practical significance of the modular redundancy allocation in making a 

system more fault tolerant when so optimizing hierarchical RBD is explained. 

 Finally this chapter proposed a general formulation of multilevel redundancy allocation 

optimization problems. The proposed formulation has several novelties. This formulation 

allows redundancy allocation to all units at every level. Bi-level series and parallel modules 

is proposed as building blocks to represent all possible hierarchical RBD. Modular 

redundancy allocation can easily be applied when optimizing such hierarchical RBD.  

6.1.2 Hierarchical genetic algorithms for MRAOP 

In chapter 3, a general formulation for multilevel redundancy allocation optimization 

problems that aim to maximize system reliability is proposed. These multilevel 

optimization problems have hierarchical design variables, so we proposed a new coding 

method for use in a HGA, in which hierarchical design variables of MRAOP are 

represented using two types of hierarchical genotype: nodal, and terminal. We applied the 
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newly developed HGA, and a conventional GA separately, to solve two multilevel series 

redundancy allocation optimization problems having three, and four levels. The optimal 

solutions for these two problems demonstrated that the proposed HGA provides optimal 

system reliability that is superior to the conventional GA results, because it does not 

depend on the use of vector coding to represent the hierarchical variables, and can preserve 

the original design space.  

6.1.3 Modular redundancy allocation optimization in series and series parallel 

system 

In chapter 4, the importance of modular redundancy allocation applied to multilevel system 

reliability problems is discussed. We proposed a methodology to solve series and 

series-parallel redundancy allocation problems considering the hierarchical relationships 

among design variables. Modular design variables were encoded using hierarchical 

genotypes in hierarchical genetic algorithms, and the multilevel redundancy allocation 

optimization problems were efficiently solved. The optimization of numerical examples in 

this chapter indicates that the modular scheme of redundancy allocation yields superior 

system reliability for multilevel configurations, in contrast to the conventional notion that 

component level redundancy allocation yields better optimal solutions. The application of a 

HGA proved to be flexible and efficient when solving large-scale multilevel redundancy 

allocation optimization problems.  

6.1.4 Multiobjective hierarchical genetic algorithms for MRAOP 

In chapter 5, the multiobjective formulation of multilevel redundancy allocation problems 

and a general framework for multiobjective hierarchical genetic algorithms (MOHGAs) to 

solve them is proposed. Two multilevel redundancy allocation problems having 3 and 4 

hierarchical levels were solved to maximize reliability while minimizing cost. The 

proposed MOHGAs with selection operators, NSGA-II and SPEA2, were applied to solve 
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the MRAOPs. For comparison with MO using MOHGA with NSGA-II and SPEA2 results, 

a SO optimization using a HGA was also applied to solve the MRAOPs. The results show 

that, for large multilevel problems, MO optimizations using MOHGA with NSGA-II are 

preferable to a SO optimization using a HGA because they provide superior solutions, as 

well as a Pareto set of optimal solutions that can be used during subsequent decision 

making. Additionally, the results show that the MOHGA with NSGA-II is superior to the 

MOHGA with SPEA2 for solving MRAOPs.  

6.2 Recommendations for future works 

6.2.1 Efficient optimization technique for solving MRAOPs 

The numerical examples solved in chapter 3 and chapter 4 indicates that the size of search 

space in multilevel redundancy allocation optimization is very large and requires huge 

computational resources even in the case of the multilevel redundancy allocation problems 

with only four levels hierarchy. In practice, the hierarchy levels may go beyond four levels 

and search space size may be even larger. Therefore, we need to develop more efficient 

optimization techniques for solving multilevel redundancy allocation problems. This can be 

achieved by hybridization or parallelization of hierarchical genetic algorithms. 

6.2.2 Selection operator in multiobjective hierarchical genetic algorithms 

In chapter 5, the selection operator of multiobjective hierarchical genetic algorithm with 

NSGA-II provided superior solution than those with SPEA2. However, NSGA-II 

performance is not very encouraging in the case of multiobjective optimization with more 

than three objective functions. Also, practical problems involve more complex structures 

that are difficult to handle when optimizing multilevel redundancy allocation optimization. 

Building on the research carried out for this paper, the future research should focus on 

designing better selection strategies for multiobjective GAs which can effectively preserve 
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the structural diversity of large populations of individuals when searching for optimal 

solutions to large scale MRAOPs. 

6.2.3 Reliability optimization of hierarchical network systems 

Network problems arise frequently in communication systems and fault-tolerant 

designs are highly desirable for smooth data transfer. The hierarchical network optimization 

problem is the problem of finding the least cost network, with nodes divided into groups, 

edges connecting nodes in each groups and groups ordered in a hierarchy. The idea of 

hierarchical networks comes from telecommunication networks where hierarchies exist. 

Hierarchical networks can be designed and the corresponding mathematical models can be 

proposed. The problem is to maximize the reliability of whole network in such a way that 

which edges should connect nodes, and how demand is routed in the network. Such 

problem can be solved by decomposing hierarchical network problems into simple 

two-level substructure and applying the proposed hierarchical genetic algorithms.  

6.2.4 Optimal design of k-out-of-n structure in a hierarchical system 

Optimal design of a k-out-of-n system structure is an important issue to make 

fault-tolerant systems. This structure is defined as an n-component system that works if and 

only if at least k-out-of-n components work. It finds wide applications in both industrial 

and aerospace systems such as multi-display system in a cockpit, the multi-engine system 

in a airplane, and the multi-pump system in a hydraulic control system. However, for a 

large industrial system with thousand of subsystems and component, optimal design of 

k-out-of-n system is truly a technological challenge. The application of hierarchical and 

modular approach in optimal design of a k-out-of-n system for a large structure can 

simplify the design and ease the optimization process.  

6.2.5 Optimal reliability design of time dependent hierarchical systems 
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This research used a constant reliability values for every module and component. 

However, this is impractical approach for the real world systems which are subject to 

several types of time-dependent stresses. Thus, every modules and component has different 

types of time-dependent failure patterns. In this dissertation, however, the life distributions 

of the components were not incorporated in the process of calculating the system reliability. 

In future research, time-dependency in the reliability function should be introduced. The 

models necessary to observe the reliability over the life of the system should be develop, 

instead of at just one point in time. In addition, performance measures, such as failure rate, 

MTTF and warranty time, should be estimated for the entire system. In other words, instead 

of dealing with 𝑅𝑖  future research should use 𝑅𝑖(𝑡) in optimal reliability design of a large 

scale systems.  
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