

 Optimal Reliability Design of Multilevel Systems

Using Hierarchical Genetic Algorithms

Ranjan Kumar

Optimum System Design Engineering Laboratory

Department of Aeronautics and Astronautics

Kyoto University

JAPAN

Abstract

The demand for higher reliability tends to make system design increasingly complex.

The configurations of such complex design are hierarchical containing multiple layers of

subsystems immediately below the system level and component at the lowest levels.

Reliability optimization of hierarchical systems can be achieved by allocating appropriate

redundancy to unreliable units at all levels; system, subsystems, and component. However,

allocating redundancy is subject to economic and physical limitations. The problems of

optimal reliability design using redundancy allocation falls into the category of nonlinear

integer programming problems which are quite difficult to solve because they are NP-hard

and involves discrete design variables.

A comprehensive examination of literature reveals that multilevel redundancy

allocation optimization problems are seldom addressed in terms of the detailed modeling or

appropriate optimization technique that such problems acquire. Additionally, currently,

attention paid, however, to redundancy allocation is mainly confined to a single level,

principally due to the notion that redundancy at the component level is more effective than

at system level. However, this is not true for redundancy scenarios having non-identical

spare parts and large-scale structures. Therefore, to increase the efficiency, reliability and

maintainability of sophisticated products, the design engineer has to make a transition from

a traditional focus on single level redundancy, and deal more effectively with multilevel

redundancy.

This research is a paradigm shift in approach to bridge the gap existing between the

current techniques and required techniques of optimal reliability design of multilevel

systems. First, this work introduced the scope of hierarchical and modular concepts in

optimal reliability design and proposed a general formulation for Multilevel Redundancy

Allocation Optimization Problems (MRAOPs) for reliability optimization of hierarchical

system.

Second, this research proposed a new hierarchical genetic algorithm for solving

multilevel redundancy allocation optimization problems more efficiently. Because the

design variables of MRAOPs are hierarchically structured, this work created a novel

hierarchical genotype coding scheme with two types of genes; nodal and terminal. With this

new hierarchical genotype coding scheme, hierarchical genetic algorithm is applied to solve

several multilevel redundancy allocation optimization problem and found superior in

performance to that using conventional genetic algorithms.

Third, this work introduced the concept of modularity in optimal reliability design and

solved multilevel redundancy allocation optimization problems with series and

series-parallel configuration. The results showed that modular redundancy allocation not

only provide better reliability but also make a system more fault tolerant.

Finally, this work proposed a multiobjective formulation and optimization of multilevel

redundancy allocation optimization problems. A general framework of Multiobjective

Hierarchical Genetic Algorithm (MOHGA) has been proposed to solve multiobjective

optimization of MRAOPs. The Non-dominated Sorting Genetic Algorithm (NSGA-II) and

the Strength Pareto Evolutionary Algorithm (SPEA2) have been implemented in selection

operator of the proposed MOHGA. The result demonstrated that selection operator with

non-dominated sorting genetic algorithm performed better than the other methods in

solving multiobjective optimization of MRAOPs.

Building on the research carried out here, the future research should focus on designing

efficient optimization techniques and on creating better selection strategies for

multiobjective genetic algorithms when solving multilevel problems. In sum, this work has

opened up a new avenue of future research in the area of optimal reliability design of

multilevel systems.

i

Contents

Figures ……………………..…………………………..……………………………….......v

Tables ……………………………………………………………………………………..viii

Chapter 1: Introduction……………………………………………………………….1

1.1 Optimal reliability design…………………………………………………...….…...1

1.1.1 Overview of the reliability design optimization…………………………...…...2

1.1.2 Reliability design optimization using genetic algorithms………………………7

1.2 Research objectives………………………………………………………….….....9

1.2.1 Hierarchy and modularity in optimal reliability design………………….........10

1.2.2 Hierarchical genetic algorithms for multilevel redundancy allocation………..11

1.2.3 Optimal modular redundancy allocation in series and series-parallel system...11

1.2.4 Multiobjective hierarchical genetic algorithms for optimal reliability design...12

1.3 Overview of the dissertation…………………………………………….……......13

Chapter 2: Hierarchy and modularity in optimal reliability design……......15

2.1 Introduction………………………………………………………………………...15

2.2 Hierarchical systems……………………………………………………..…….......15

2.3 Hierarchical reliability block diagram………………………………………..……17

2.4 Modular design concepts…………………………………………………………...20

2.5 General formulation of multilevel redundancy allocation optimization problems...23

2.6 Special features of multilevel redundancy allocation formulation………………...27

2.7 Summary………………………………………………………………………...…30

Chapter 3: Hierarchical genetic algorithms for multilevel redundancy

ii

allocation………………………………………………………………………………….32

3.1 Introduction………………………………………………………………………32

3.2 Multilevel redundancy allocation optimization problems………………………..37

3.3 Hierarchical genetic algorithms…………………………………………………..39

3.3.1 Solution Encoding………………………………………….………………..40

3.3.2 Objective function…………………………………………………………...43

3.3.3 Crossover…………………………………………………………………….43

3.3.4 Mutation…………………………………………………………….………..44

3.4 Conventional genetic algorithm………………………………………………......45

3.5 Numerical Examples………………………………………………………….......47

3.6 Discussion………………………………………………………………………...56

3.7 Summary………………………………………………………………………….58

Chapter 4: Optimal modular redundancy allocation in series and

series-parallel

systems..59

4.1 Introduction……………………………………………………………….……...59

4.2 Modular redundancy allocation in series and series-parallel system……………..62

4.3 Hierarchical genetic algorithms for series and series-parallel problems…………66

4.3.1 Solution encoding…………………………………………………………67

4.4 Numerical Examples……………………………………………………………...71

4.4.1 Four level series and series-parallel problems……………………………71

4.4.2 Input data…………………………………………………………………72

4.4.3 Computational results…………………………………………………......73

4.5 Discussion………………………………………………………………………...80

4.6 Summary………………………………………………………………………….82

iii

Chapter 5: Multiobjective hierarchical genetic algorithms for optimal

reliability design…………………………………………………………………………83

5.1 Introduction………………………………………………………………………83

5.2 Multiobjective formulation of multilevel redundancy allocation optimization…..86

5.2.1 Single-objective formulation……………………………………………...88

5.2.2 Multi-objective formulation………………………..…….……………….88

5.3 Multiobjective hierarchical genetic algorithms…………………………………..89

5.3.1 Hierarchical genetic algorithms…………………………………...……...89

5.3.2 Multiobjective genetic algorithms………………………………………..90

5.3.3 Multiobjective hierarchical genetic algorithm……………………………92

5.3.3.1 Solution encoding……………………………………………………....93

5.3.3.2 Hierarchical crossover……………………………………………..........94

5.3.3.3 Hierarchical mutation……………………………………………….......96

5.3.3.4 Selection operator…………………………………………………….....98

5.4 Numerical examples…………………………………………………………….100

5.4.1 Problems………………………………………………………………....101

5.4.2 Input data………………………………………………………………...102

5.4.3 Computational results…………………………………………………....104

5.5 Discussion……………………………………………………………………….111

5.6 Summary………………………………………………………………………...114

Chapter 6: Conclusions and future works……………………………………....115

6.1 Summary and conclusions…………………………………………………........116

6.1.1 Hierarchy and modularity in optimal reliability design……………………116

6.1.2 Hierarchical genetic algorithms for MRAOP………………………………116

6.1.3 Modular redundancy allocation in series and series parallel system……….117

iv

6.1.4 Multiobjective hierarchical genetic algorithms for MRAOP………………117

6.2 Recommendations for future works……………………………………….….....118

6.2.1 Efficient optimization technique for MRAOPs……………………….......118

6.2.2 Selection operator in multiobjective hierarchical genetic algorithms…….118

6.2.3 Reliability optimization of hierarchical network systems………………...119

6.2.4 Optimal design of k-out-of-n structure in a hierarchical system……….....119

6.2.5 Optimal reliability design of time dependent hierarchical systems………119

References…………………………………………………………………………….....121

Acknowledgement

Related Works

v

Figures

2.1 Hierarchical design of an aircraft…………………………………………16

2.2 Building blocks of hierarchical RBD……………………………………..…….18

2.3 Different types of hierarchical structures of RBD………………………..20

2.4 Modules in a hierarchical RBD……………………………….…………..21

2.5 Redundancy at component and module level……………………………..22

2.6 A general multilevel redundancy allocation configuration………………….24

2.7 An example of redundancy allocation in bi-level series configuration…...25

2.8 Hierarchical series redundancy allocation in a 3-levels system 1U ….…27

2.9 Three types of redundancy allocation at unit 11U ………………………29

2.10 Artificial reduction of hierarchical levels in traditional approach………30

3.1 A multilevel RBD………………………………………………………………….32

3.2 An example of redundancy allocation in a unit U1……………………….38

3.3 Representation schemes of design variables in GA, and HGA…………...39

3.4 Hierarchical genotype representation in system U1………………………42

3.5 Coding schemes in conventional GA, and HGA for a bi-level series

configuration………………………………………..…………………….46

3.6 Problem-A (a three level multilevel series system)……………………….47

3.7 Problem-B (a four level multilevel series system)………………………..48

vi

3.8 Convergence of GA and HGA in problem-A……………………………..50

3.9 Convergence of GA and HGA in problem-B……………………………..51

3.10 Optimal solutions for problem-A obtained using GA, and HGA…………51

3.11 Optimal solutions for problem-B obtained using GA, and HGA…………52

3.12 Optimal solutions for the fourth case listed in Table 3.4………………….55

4.1 Redundancy allocation in a series system containing three components…60

4.2 Series and parallel redundancy allocation in a unit
1

U …………………63

4.3 An example of series redundancy allocation in a unit
1

U ……………...64

4.4 Crossover and mutation operators for hierarchical genotypes……………66

4.5 Hierarchical genotype representation in system U1 ……………………...69

4.6 Interpretation of mixed series and parallel configurations………………..70

4.7 Four-level hierarchical series configuration of
1

U ……………………...71

4.8 Four-level hierarchical series-parallel configuration of
1

U …………….72

4.9 Convergence of fitness value in a hierarchical series system…………….74

4.10 Convergence of fitness value in a hierarchical series-parallel system……74

4.11 Optimal modular allocation in 4-level series-parallel system…………….78

4.12 Optimal component allocation in 4-level series-parallel system…………78

4.13 Modular and component redundancy allocations in series system……….79

4.14 Modular and component redundancy allocations in series-parallel………79

vii

5.1 Multilevel configuration of system reliability………………………….....87

5.2 Hierarchical genotype representation in a bi-level series system U1 ….....94

5.3 An example of hierarchical crossover operation in a three level unit….....96

5.4 An example of hierarchical mutation operation in a three level unit ……..97

5.5 Ranking and crowding distance concepts used in NSGA-II……………..98

5.6 Truncation Operator used in SPEA2…………………………….………..98

5.7 Problem-A (a three level multilevel series system)……………………...101

5.8 Problem-B (a four level multilevel series system)………………………102

5.9 Redundancy allocation in Problem-A ……………………………..........105

5.10 Enlarged view of the Pareto front in Problem-A………………………...106

5.11 Redundancy allocation in Problem-B…………………………………...106

5.12 Enlarged view of the Pareto front in Problem-B ………………………..107

5.13 Pareto front movement in MO of Problem-B using SPEA2…………….108

5.14 Pareto front movement in MO of Problem-B using NSGA-II…………..108

5.15 Population distribution in MO of Problem-B using SPEA2…………….109

5.16 Population distribution in MO of Problem-B using NSGA-II…………..109

5.17 Optimal structures obtained in SO using HGA………………………….110

5.18 Optimal structures obtained in MO using MOHGA………………….....111

viii

Tables

3.1 Hierarchical Genotype Representation for series system…………………40

3.2 HGA Parameters………………………………………………………….49

3.3 Input Data…………………………………………………………………49

3.4 Optimal hierarchical configurations (problem-A)…………………...……53

3.5 Optimal hierarchical configurations (problem-B)……………………...…54

4.1 Hierarchical Genotype Representation for series and series-parallel

system…………………………………………………………………….68

4.2 Input Data…………………………………………………………………73

4.3 Optimal redundancy allocation in series system………………………….75

4.4 Optimal redundancy allocation in series-parallel system…………………76

5.1 HGA Parameters………………………………………………………...103

5.2 MOGAs Parameters……………………………………………………..103

5.3 Input Data………………………………………………………………..104

1

Chapter 1

Introduction

With the heightened quality consciousness faced by industry, modern engineering is

now more intended on developing tools and techniques to enhance product and process

reliability in the design stage
[1]

. To remain competitive, the guarantee of high system

reliability at a competitive cost is essential. Recent shifts in the focus of sophisticated space

and defense operations have opened up many new frontiers of technological challenges and

created demands for more reliable and maintainable products. Additionally, unprecedented

developments in nanotechnology and miniaturization have led to many complex reliability

structures, and increased the complexity of product designs. These developments give rise

to a problem of how high reliability can be built into the complex design within the limit of

economical and physical constraints. Thus a design optimization discipline which deals

with the problems of maximizing reliability in a product design within the available

resources is termed optimal reliability design. Engineers largely accomplish the optimal

reliability design through the use of better computational optimization models,

continuously growing in both complexity and fidelity. In general, achieving optimal

reliability design is quite difficult because reliability design optimization problems are

NP-hard
[2]

 and involves discrete design variables.

1.1 Optimal reliability design

The availability of powerful computational tools and techniques has shortened the

development time and provided engineers with an opportunity to obtain improved designs.

Increasingly the engineers are employing optimization as a design tool for finding optimal

designs characterized by lower cost while satisfying performance requirements. A typical

optimization example includes maximizing reliability while satisfying design cost

2

constraints. The basic paradigm in design optimization is to find a set of design variables

that optimizes an objective function while satisfying the resource constraints. The process

of obtaining optimal reliability in a product design is known as optimal reliability design.

Optimal reliability design can be achieved in several ways such as by enhancing

component reliability, providing redundant components in parallel, by ensuring the

combination of both previous options, and reassignment of interchangeable components
[1]

.

However, design-reliability experts have focused a great deal of their efforts on allocation

of reliability and redundancy of components for maximizing system reliability.

Development of efficient solution methods for maximizing system reliability by allocation

still remains a challenging task in design for reliability.

1.1.1 Overview of reliability design optimization

The research interest in quantitative aspects of optimal reliability design began in the

1960s. Since then many credible approaches for optimal reliability design have been

proposed. The review papers
[3][4][5][6]

 of the earlier work indicate that the diversity of

system structures, resource constraints, and options has led to the creation of several

optimization models. The research works in the area of reliability design optimization can

be classified
[6]

 using three criteria: system configuration, problem type, and optimization

methodologies. Out of these three criteria of research classification, system configuration

and optimization methodologies are still evolving areas of research in optimal reliability

design of sophisticated systems.

System configuration, also called reliability block diagrams (RBD), depicts the logical

relationship between the functioning of the system and the functioning of its components.

RBD of a system actually represents the real world system structures and quite often

influences the optimization approach used in optimal reliability design. All the research

works in this area can be grouped into these major system structures: series
[7-15]

,

3

parallel
[11,12,14,16-21]

, parallel-series
[22-63]

, general network
[64-77]

, k-out-of-n: G(F)

systems
[78-87]

, and other unspecified configurations
 [88-93]

. However, reliability optimization

of hierarchical RBDs has hardly been a research focus in optimal reliability design. It is

well known that almost all of the complex engineering systems are hierarchically

configured in which the system level is at the top, subsystem levels in the middle, and

component level at the lowest level. The optimization problems of hierarchical RBD is a

class of multilevel allocation optimization problems and very hard to solve these problems

particularly using available optimization techniques.

Based on the review works by Tillman et al.
[4]

, Misra
[5]

, and Kuo and Prasad
[6]

, the

major focus of the research in optimization methods for system-reliability optimization can

be classified into different categories such as heuristic algorithms, metaheuristic algorithms,

exact methods, heuristics for reliability-redundancy allocation, and multiple objective

reliability optimization. Almost all of the heuristics developed before 1980, obtained

solutions from the solution of a previous iteration by increasing one of the variables by 1.

Selection of the variable for the increment is based on a sensitivity factor. Nakagawa and

Miyazaki
[46]

 numerically compared the heuristic methods of Nakagawa and Nakashima
[47]

,

Kuo et al.
[71]

, Gopal et al.
[34]

, and Sharma and Venkateswaran
[56]

 for a redundancy

allocation problem with nonlinear constraints.

However, the heuristic developed after 1980 are based on distinct approaches. Dinghua

Shi
[94]

 developed a heuristic method for optimum redundancy allocation with separable,

monotonic nondecreasing constraint functions following the approach of adjusting unit

increment with time. For the similar problem, Kohda and Inoue
[70]

developed a heuristic

method in which the solutions of two successive iterations may differ on one or two

variables. Kim and Yum
[68]

 developed a heuristic algorithm with separable, monotonic

nondecreasing constraint functions. Kuo at al.
[41]

presented a heuristic method based on a

4

branch-and-bound strategy and Langrange multiplier method. Recently, Jianping
[38]

recently developed the bounded heuristic method for optimal redundancy allocation in

which the method moves from one bound point to another through an increase of 1 in a

selected variable and changes in some variables.

Because exact methods provide exact optimal solution to a problem and involve more

computational efforts, researchers in general have directed very little attention toward exact

solution methodologies for such problems. Such methods are particularly advantageous

when the problem is not large. Tillman et al.
[3]

 documented many exact methods developed

before 1980. Nakagawa and Miyazaki
[47]

 adopted the surrogate constraints method to solve

optimum redundancy allocation optimization problem when there are two constraints, and

objective as well as the constraint functions are separable. Misra
[95]

 adopted proposed an

exact algorithm for optimal redundancy allocation based on a search near the boundary of

the feasible region. This method was later implemented by Misra and Sharma
[43]

, Sharma et

al.
[77]

, and Misra and Misra
[96]

 for solving various problems. Prasad and Kuo
[93]

recently

developed a partial enumeration method based on a lexigraphic search with an upper bound

on system reliability. For large systems with a good modular structure, Li and Haimes
[73]

proposed a three-level decomposition method for reliability optimization subject to

resource constraints. Mohan and Shankar
[74]

 adopted a random search technique for finding

a global optimal solution to the problem of maximizing system reliability through the

selection of only component reliabilities subject to cost constraints. Bai et al.
[78]

 considered

a k-out-of-n: G system with common cause failures.

Providing redundancy and enhancing component reliability at the same time often lead

to increase in system cost. Such problems are termed reliability-redundancy allocation

problem and belong to a class of nonlinear mixed integer programming problems. Tillman

et al.
[59]

 were among the first to solve the problem using a heuristic and search technique.

5

Gopal et al.
[35]

 developed a heuristic method that starts with 0.5 as the component

reliability at each stage of the system, and increases component reliability at one of the

stages by a specified value h in every iteration. Xu et al.
[61]

 offered an iterative heuristic

method for such problems with separable constraints. Hikita et al.
[67]

 developed a surrogate

constraints method to solve reliability-redundancy allocation optimization problems with

separable constraints. Reliability-redundancy allocation optimization problems arise in

software also. Chi and Kuo
[90]

 formulated mixed integer programming problems for such

allocation in software systems and systems involving software and hardware.

Multiobjective optimization problems are adopted when there are several conflicting

objectives are present and optimizing all these objectives simultaneously. The approach

usually involves determination of all Pareto optimal solutions. Sakawa
[55]

 adopts a

large-scale multiple objective optimization method to deal with the problem of determining

optimal levels of component reliabilities and redundancies. In this approach, he derives

Pareto optimal solutions by optimizing composite objective functions, which are obtained

as linear combinations of the four objective functions. Later, Sakawa
[97]

 provides a

theoretical framework for the sequential proxy optimization technique (SPOT); which is an

interactive, multiple objective decision-making technique for selection among a set of

Pareto optimal solutions. Misra and Sharma
[44]

 adopt an approach which involves the Misra

integer programming algorithm and a multi-criteria optimization method based on the

min-max concept for obtaining Pareto optimal solutions. Misra and Sharma
[45]

 also

presented a similar approach to solve multiple objective reliability-redundancy allocation

optimization problems. Dhingra
[30]

 adopts another multiple objective approach to maximize

system reliability and minimize consumption of resources: cost, weight, and volume.

Most of the system-reliability optimization problems fall into the category of nonlinear

integer programming problems. Because the solutions of these problems must be integers,

6

they are more difficult to solve than general nonlinear programming problems. Though

there are several optimization techniques have been applied in solving reliability

optimization problems, not a single method is able to solve all reliability optimization

problems. For example, dynamic programming
[98-101]

 has dimensionality difficulties which

increase with increasing number of state variables, and it is hard to solve problems with

more than three constraints. Although integer programming
[99, 102-107]

 methods yields

integer solutions, transforming nonlinear objective functions and constraints into linear

forms is a difficult task and they do not guarantee that optimal solutions can be obtained in

a reasonable time. Exact algorithms
[108-114]

 such as branch-and-bound and other implicit

enumeration methods require much computational effort to determine an exact solution.

Although many algorithms have been proposed for nonlinear programming problems,

only a few, such as sequential unconstrained minimization technique(SUMT)
[115-117]

, the

modified sequential simplex pattern search
[16]

, and the generalized Langrangian function

method
[118-120]

, have been proved to be effective when applied to large-scale reliability

optimization problems. The maximum principle has difficulty in solving problems with

more than three constraints. Likewise geometric programming is restricted to problems that

can be formulated by polynomial functions. Unlike all these optimization techniques,

meta-heuristic approaches, such as GA
[121, 122]

, simulated annealing methods
[123]

, tabu

search methods
[124]

, particle swarm optimization method
[128]

 have been found to be very

flexible and versatile in solving reliability optimization problems. They are based more on

artificial reasoning than classical mathematics-based optimization. They require fewer

assumptions on the objective as well as the constraint functions.

In reliability design optimization, metaheuristic algorithms have been successfully

applied to solve varieties of problems. A good description of the GA concept and its

application in reliability optimization is described in later chapter. The simulated annealing

7

algorithm is a general method used to solve combinatorial optimization problems. It

involves probabilistic transitions among the solutions to the problem. Cardoso et al.
[126]

introduced the non-equilibrium simulated annealing algorithm (NESA) by modifying the

algorithms of Metropolis et al.
[127]

. Ravi et al.
[76]

 have recently improved NESA by

incorporating a simplex-like heuristic in the method and applied it to solve reliability

optimization methods. Another metaheuristic algorithm Tabu search is very useful for

solving large-scale complex optimization problems. The salient feature of this method is

the utilization of memory to guide the search beyond local optimality. However, Tabu

search is the difficulty involved in defining effective memory structures and memory-based

strategies which are problem-dependent. Despite a few drawbacks, GA is more popular

among rest of the metaheuristic algorithms and this research develops new GA to solve a

proposed hierarchical optimization problems.

1.1.2 Reliability Design Optimization using GA

Optimization of system reliability is in general a highly complex problem in which the

objective functions as well as the constraints are nonlinear and the decision variables are

integers. Such problems are difficult to solve and computationally time consuming. The

major research issue in this area is to develop simple heuristics which can give

near-optimal solutions with less computational effort. However, heuristic methods usually

require a mathematical formulation of the problem and do not provide much tradeoff

between quality of solution and computational effort. In contrast to heuristic methods, a GA

can be designed for a problem without explicit mathematical formulation, and the values of

its parameters can be appropriately chosen to balance both quality of the solution and the

computational work.

A conventional genetic algorithm solves a problem by imitating the natural evolution

process in which populations undergo continuous upgrade through four process, namely

8

evaluation, selection, crossover, and mutation. Fist, the design variables are encoded by

genotypes and evaluated during evaluation process to calculate fitness. The selection

process deletes the individuals with low fitness and retains the individuals having high

fitness. Then, selected individuals go through the crossover operation in which genes are

exchanged between these individuals and thus the new individuals are generated. Finally,

the mutation operator randomly changes the values of genes and generates new individuals.

This sequence is iterated till a stopping criterion is met. Keeping the imitation of natural

evolution as the foundation, genetic algorithms can be appropriately designed and modified

to exploit special features of the problem to be solved.

Recently, several genetic algorithms have been developed and applied to solve a

variety of reliability optimization problems
[122-127]

. A good description of genetic algorithms

used for solving reliability optimization problems can be found in literature
[1,6,128]

.

Moreover, a brief survey on GA-based approach
[129]

 for various reliability optimization

indicates increased focus on designing hybrid GA
[130-134]

 by combining GA with neural

network, fuzzy logic, and other conventional search technique. The successful application

of GA-based approaches in solving reliability optimization problems demonstrated the

following advantages offered by them. First, genetic algorithms are non-gradient methods,

which rely on objective function values and do not require sensitivity analysis. Second,

genetic algorithms show high performance in solving multi-peak problems. A group of

individuals can be used in a single optimization process, where crossover and mutation

operators work to sustain a variety of individuals distributed across the searching space,

and convergence to false local optima is avoided. Third, genetic algorithms work with a

coding of solution set. This feature of GA is a powerful which let one to develop innovative

genotype representation of design variables. This work proposes a new encoding method

by exploiting this feature of genetic algorithms.

9

Almost all of the GA-based approaches were applied to solve reliability optimization

problems confined to single or double levels of series, parallel, parallel-series, general

network, k-out-of-n:G(F), and the other configurations. However, the reliability

optimization of hierarchical system with more than two levels has hardly been extensively

dealt with in optimal reliability design. Reliability optimization of hierarchical structures

falls into the class of hierarchical optimization problems having hierarchical design

variables and the optimization problems are termed as multilevel redundancy allocation

optimization problems. Recently, the growing research interest in multilevel reliability

modeling and optimization using GA, which will be discussed in later chapters of this work,

is reflected in the literature, due to the practical importance of these techniques. However,

almost all of these GA-based approaches applied artificial transformation of multilevel

design variables into vector representations, because conventional GA uses

one-dimensional representations of design variables. Unfortunately, the additional

constraints imposed when transforming hierarchical design variables into vector design

variables artificially constrict the feasible design region, often leading to suboptimal

solutions.

1.2 Research objectives

This dissertation investigates and develops formulations and methodologies for

multilevel redundancy allocation optimization problems (MRAOPs) used in optimal

reliability design of complex systems. The main focus is to propose a generic formulation

of MRAOP and develop methodologies that yield near global solutions and superior to

those solution obtained using conventional genetic algorithms. Efforts are focused on

developing new genetic algorithms for better optimal solutions by proposing innovative

hierarchical genotype representation scheme for hierarchical design variables of MRAOPs.

A generalized multilevel formulation in which redundancy can be allocated to any units at

10

all levels without imposing any artificial restrictions, is developed. In addition to the

multilevel formulation and hierarchical genetic algorithms, a novel framework of

multiobjective hierarchical genetic algorithms for multiobjective optimization of MRAOPs

is developed to address the concerns of artificial transformation of hierarchical design

variables into vector and existing genetic operator‟s inability to handle elitism with

hierarchical genotype codes. In these investigations two popular multiobjective genetic

algorithms (MOGAs) - the strength Pareto evolutionary genetic algorithm (SPEA2) and the

nondominated sorting genetic algorithm (NSGA-II) have been implemented in the selection

operators of the newly developed general framework of multiobjective hierarchical genetic

algorithms.

1.2.1 Hierarchy and modularity in optimal reliability design

This work presents hierarchical and modular concepts and their application in

optimal reliability design, and proposed a hierarchical formulation of reliability design

structures. In this formulation, there are multiple levels of hierarchy in system design and

redundancy can be allocated to any unit and at any level when maximizing system

reliability. Modular concept for better design is well established and modular reliability

designs not only enhance the system reliability but also make more fault tolerant. Therefore,

to increase the efficiency, reliability and maintainability of a multilevel reliability system,

the design engineer has to shift away from the conventional focus on component

redundancy, and deal more effectively with issues pertaining to modular redundancy. This

work proposed a formulation of modular optimization scheme for multilevel redundancy

allocation optimization problems. This chapter proposed a generalized formulation for

multilevel redundancy allocation problems that can handle redundancies for each unit in a

hierarchical reliability system, with structure containing multiple layers of subsystems and

components. Multilevel redundancy allocation is an especially powerful approach for

11

improving the system reliability of such hierarchical configurations, and system

optimization problems that take advantage of this approach are termed multilevel

redundancy allocation optimization problems (MRAOP).

1.2.2 Hierarchical genetic algorithms for multilevel redundancy allocation

optimization

This research designed and developed a hierarchical genetic algorithm (HGA) that

uses special genetic operators to handle the hierarchical genotype representation of

hierarchical design variables. Because the design variables in MRAOP are hierarchically

structured, this work proposes a new variable coding method in which these hierarchical

design variables are represented by two types of hierarchical genotype, termed ordinal node,

and terminal node. These genotypes preserve the logical linkage among the hierarchical

variables, and allow every possible combination of redundancy during the optimization

process. For comparison, the customized HGA, and a conventional genetic algorithm (GA)

in which design variables are coded in vector forms, are applied to solve MRAOP for series

systems having two different configurations. The solutions obtained when using HGA are

shown to be superior to the conventional GA solutions, indicating that the HGA here is

especially suitable for solving MRAOP for series systems.

1.2.3 Optimal modular redundancy allocation in series and series-parallel systems

To achieve truly optimal system reliability, the design of a complex system must

address multilevel reliability configuration concerns at the earliest possible design stage, to

ensure that appropriate degrees of reliability are allocated to every unit at all levels.

However, the current practice of allocating reliability at a single level leads to inferior

optimal solutions, particularly in the class of multilevel redundancy allocation problems.

Multilevel redundancy allocation optimization problems frequently occur when optimizing

the system reliability of multilevel systems. It has been found that a modular scheme of

12

redundancy allocation in multilevel systems not only enhances system reliability but also

provides fault tolerance for the optimum design. This research proposes a method for

optimizing modular redundancy allocation in two types of multilevel reliability

configurations, series and series-parallel. A modular design variable is defined to handle

modular redundancy in these two types of multilevel redundancy allocation problem. A

customized genetic algorithm, namely, a Hierarchical Genetic Algorithm (HGA), is applied

to solve the modular redundancy allocation optimization problems, in which the design

variables are coded as hierarchical genotypes. The numerical examples solved in this

chapter demonstrate the efficacy of a customized HGA for multilevel system reliability

optimization. Additionally, the results obtained in this chapter indicate that achieving

modular redundancy in series and series-parallel systems provides significant advantages

when compared with component redundancy. The demonstrated methodology also

indicates that future research may yield significantly better solutions to the technological

challenges of designing more fault-tolerant systems that provide improved reliability and

lower lifecycle cost.

1.2.4 Multiobjective hierarchical genetic algorithms for optimal reliability design

This research work proposes a multiobjective formulation of MRAOPs and a

methodology for solving such problems. In this methodology, a hierarchical GA framework

for multiobjective optimization is proposed by introducing hierarchical genotype encoding

for design variables. In addition, we implement the proposed approach by integrating the

hierarchical genotype encoding scheme with two popular multiobjective genetic algorithms

(MOGAs) - the strength pareto evolutionary genetic algorithm (SPEA2) and the

nondominated sorting genetic algorithm (NSGA-II). In the provided numerical examples,

the proposed multiobjective hierarchical approach is applied to solve two hierarchical

MRAOPs, a 4-level problem and a 3-level problem. The proposed method is compared

13

with a single objective optimization method that uses a hierarchical genetic algorithm, also

applied to solve the 3- and 4-level problems. The results show that a multiobjective

hierarchical GA that includes elitism and mechanism for diversity preserving performed

better than a single objective GA that only uses elitism, when solving large-scale MRAOPs.

Additionally, the experimental results show that the proposed method with NSGA-II

outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution

sets.

1.3 Overview of the dissertation

This dissertation is organized as follows. In chapter 2, the concepts of hierarchy and

modularity in optimal reliability design are described. Mathematical formulations of

multilevel reliability configurations are proposed. Modular scheme of redundancy

allocation optimization is proposed and discussed. Numerical examples and their results are

discussed.

Chapter 3 presents an overview of the multilevel redundancy allocation optimization

using genetic algorithms. The details of MRAOPs for series system with cost function are

described. A new hierarchical genetic algorithm is proposed with innovative encoding

methods for hierarchical genetic algorithms. Numerical examples and their solutions are

summarized and discussed.

Chapter 4 presents a multilevel reliability design optimization formulation in series and

series-parallel systems. Some background works in this area by other researchers along

with some issues related to reliability design optimization using genetic algorithms is

detailed.

In chapter 5, a new multiobjective hierarchical genetic algorithm is developed. The

multiobjective optimization problems of multilevel redundancy allocation are formulated

and solved using the proposed algorithms. While solving MRAOPs, this research

14

implemented two popular multiobjective genetic algorithms (MOGAs) - the strength pareto

evolutionary genetic algorithm (SPEA2) and the nondominated sorting genetic algorithm

(NSGA-II). The numerical results demonstrated the improvement in optimal solutions

using the proposed algorithms.

In chapter 6, the advantages and limitations of the formulation of multilevel reliability

design optimization and GA-based methodologies developed in this investigation are

presented. Important conclusions are drawn and some future work in this area is

recommended.

15

Chapter 2

Hierarchy and modularity in optimal reliability design

2.1 Introduction

System configuration, also termed reliability block diagram (RBD), is an important

attribute that affects optimal reliability designs considerably. To meet the demand of highly

reliable systems, designs are becoming increasingly complex and the number of

components has increased manifold. Unprecedented development in miniaturization

technology, also, has led to more complex designs with new configurations altogether. All

these evolving trends in technological development created the necessity of developing

more effective and generic configurations to represent complex reliability designs and

optimizing such effective configurations. One of such effective structures is hierarchical

structure that can not only address the issue of scalability in large scale designs but also

offer precision in representing all the components in a complex design. Though hierarchical

configuration of reliability structure is already in practice, the theory of hierarchical RBD is

yet to be dealt with in optimal reliability design. This work presents the hierarchical and

modular concepts and its importance in optimal reliability design, and proposes a general

formulation of hierarchical RBD for multilevel redundancy allocation.

2.2 Hierarchical systems

Hierarchical systems are composed of subsystems each of which is a hierarchical by

itself until the bottom level
[135]

. Hierarchical systems contain multiple levels and at each

level, the interactions within each subsystem are of much higher magnitude than the

interactions between the subsystems. This property of hierarchical systems is called near

decomposability
[135]

 that can help to design complex system easily. Hierarchical systems

are omnipresent around us. An excellent example includes in biological systems, organisms

16

are composed of organs, organs are composed of tissues, tissues are composed of cells, and

so on.

Fig.2.1 Hierarchical design of an aircraft.

The concept of hierarchical system helped also helped in solving complex problems of

science and engineering
[136]

. In software engineering, for instance, complex software

systems are built on multiple levels. At each level, components (functions, libraries, objects,

etc.) from lower levels are used as basic building blocks to construct new components, and

those components are, in turn, used at even higher levels. Starting from assembly language

to the sequential query language of database systems, hierarchical design allow us to

develop complex systems that could not be approached at a single level.

This work intends to describe the hierarchical approach of an aircraft design and applies

this approach to solving difficult reliability optimization problems of practical systems. As

shown in Fig. 2.1, an aircraft is composed of power subsystem, structure, airframe, and so

forth. Each of these subsystems can be further decomposed. For example, the power

subsystems contain an engine or engines, cooling plants, and so on, and the individual

engine can be further decomposed. The design is hierarchical in its nature, and each

component of the car can be further decomposed into a number of subsystems. All the

subsystems work in combination with the purpose of flying.

Aircraft

Power subsystem Structure Airframe

Engine(s) Cooling
plants

Stability Passenger
& cargo

Engine1 Engine2

17

A system is composed of hardware and software to perform certain function. In a large

system, numerous components make a design more complex. However, a proper

decomposition significantly simplifies the design. For example, instead of designing “an

aircraft that flies,” we design subsystems capable of producing rotational movement

(engine), providing lift(airframe), stability (structure), slowing down the movement

(braking system), and so on. This simplification can go down a number of levels and makes

the task of building an aircraft much easier than if viewed on a single level. This leads to

the consideration of hierarchical decomposition of large scale reliability design and

simplification of the optimization process by allocating optimum redundancy to subsystems

at each hierarchical level.

2.3 Hierarchical reliability block diagram

This section intends to describe the subtleties of hierarchical structure of RBD and

shows how hierarchical arrangement enables a design engineer to represent the reliability

design of large scale systems in a simpler way and analyze it more accurately. To deal with

the issue of simplifying the reliability design of complex system, hierarchical reliability

block diagram is an indispensable tool, which is a graphical representation of the system

reliability structure composed of system at the top level, subsystems at the middle levels,

and components at the lowest levels. As defined in the introduction section, a RBD defines

the logical interaction of failures within a system. Individual blocks may represent single

component failures, sub-system failures and other events that may contribute towards

system failures. The reliability behavior of an individual sub-system block may be

represented by a RBD at a lower hierarchical level. The logical flow of a RBD originates

from an input node at lower side of the unit to an output node at the upper side of the unit.

Blocks are arranged in series and parallel arrangements between the system input and

output nodes.

18

Fig. 2.2. Building blocks of hierarchical RBD.

Fig. 2.2 shows the series and parallel relationship between engine1 and engine2 that

forms a system. These two arrangements are also termed building blocks in a hierarchical

RBD. A series system works if and only if every component works. Such a system is failed

whenever any component is failed. The structure function of a series system is given by

 𝑅𝑠 = 𝑅𝑖
𝑛
𝑖=1 (2.1)

where, 𝑅𝑠, 𝑅𝑖 , and 𝑛 are system reliability, reliability i-th block, total number of blocks

in series connection.

In a parallel system, not all components are necessary for the system to work properly.

It works as long as at least one component works. The structure function of a parallel

system is given by

 𝑅𝑠 = 1 − (1 − 𝑅𝑖)
𝑛
𝑖=1 (2.1)

Engine1 Engine2

System

Engine1

Engine2

System

System

Engine1 Engine2

System

Engine1 Engine2

(a) block diagram (b) Fault tree diagram

 (a) Series configuration: Engine1 and Engine2 both have to work for the system

function

(b) block diagram (b) Fault tree diagram

(b) Parallel configuration: Either Engine1 or Engine2 has to work for the system

function

19

where, 𝑅𝑠, 𝑅𝑖 , and 𝑛 are system reliability, reliability i-th block, total number of blocks

in series connection. In a parallel system, only one component needs to work properly to

make the system work properly. Therefore, 𝑛 − 1 components in the parallel system of 𝑛

components are called redundant components. They are included to increase the probability

that there is at least one working component. Redundancy is a technique widely used to

enhance system reliability.

This research proposes bi-level series and bi-level parallel subsystems as building

blocks that make up a hierarchical RBD. These series and parallel building blocks are

shown in Fig.2.2. With the combination of these two building blocks, almost all

hierarchical RBD can be constructed. Fig.2.3 shows the examples of various hierarchical

structure of RBD. Each block in the RBD represent system, subsystems, and components

and we call them unit. From now onward, a unit denotes either a system or a subsystem or

a component. In a hierarchical system, the input of a unit is fed from the output of its

immediate lower unit or its children unit. The reliability values and the logical relationships

of its child units are used to calculate the reliability of a parent unit. Therefore, the system

reliability depends on the reliability values of subunits and components of the system.

 In a hierarchical series system, as shown in Fig.2.3(a), all units must work together at

all levels for functioning of the system. In a hierarchical parallel system, all units must

work together in a connecting line from lowest level to top level for functioning of the

system. In Fig.2.3(b), for instance, 𝑈11 , 𝑈111 , and 𝑈1111 in a connecting line or 𝑈11 ,

𝑈111 , and 𝑈1112 in a connecting line have to work together for functioning of system level

unit 𝑈1. Fig.2.3(c) shows a complex hierarchical structure of RBD, which is a combination

of series and parallel building blocks. Thus, hierarchical structure of RBD presented here

can simplify the reliability design of complex system with more accuracy. This is true

particularly in optimal reliability design of large scale systems.

20

(a) Hierarchical series (b) Hierarchical parallel

(c) Hierarchical series-parallel

Fig. 2.3. Different types of hierarchical structures of RBD.

2.4 Modular design concepts

Modularity is a proved technique for organizing and simplifying a complex system

which can contain thousands of different components that function interdependently, while

certain components are used only for a specific set of subtasks within the system. Such

components of an independent function set can be accommodated within a simple

U1

112U

U11

1112
U

U111

1221
U

U12

1222
U

1211
U

U122 U121

1111
U

1212
U

U1

1121
U

U11

1122
U

1112
U

U112 U111

U12

123U121U

1111
U

122U

U1

U11 U12

1121
U 1122

U
1112

U

U111

1221
U 1222

U
1211

U
1111

U
1212

U

U112 U121 U122

21

subsystem, or sub-unit. Here, such a subsystem is called a module. Systems that have

modular subsystems usually have superior fault tolerance, ease of maintenance, and are

easier to recover at the end of their useful life. Furthermore, a modular system is often

simpler than a complex system built from only components.

Fig. 2.4. Modules in a hierarchical RBD.

In engineering terminology, a module is a cluster of components that is treated as a

single entity in a piece of equipment, as shown in Fig.2.4. In system reliability theory, a

module indicates a group of components that has a single input from, and a single output to,

the rest of the system. The contribution of all components in a module to the performance

of the whole system can be represented by the state of the module. Once the state of the

module is known, one does not need to know the states of the components within the

module to determine the states of the system. Traditionally, redundancy is added either to a

component level or to a subsystem level, when optimizing system reliability. Fig. 2.5

illustrates these two redundancy schemes.

A redundant module is a module added parallel to the existing module to increase its

reliability without altering its internal structure. In other words, we preserve a module‟s

internal structure, such as the arrangement of its sub-modules and components, while

providing modular redundancy. Thus, to know the status of the system, we need not know

the status of its components. Modular redundancy therefore simplifies the complexity of

Product

Module 1

Module 2

Module 3

System Modules Components

22

the system and makes it easier to isolate faults in case of failure.

(a) Redundancy at the component level (b) Redundancy at module level

Fig. 2.5 Redundancy allocation at component and module level.

Under certain assumptions, it is a well-established fact that redundancy at the

component level is more effective than redundancy at the system level, but this is not

always the case[x5]. Modular or subsystem level redundancy allocation in a large scale

system yield superior results particularly for a repairable system. In addition, modular

redundancy can help a system become truly fault tolerant. For example, a modular system

can shift operation from failed modules to healthy ones, while repairs are carried out. The

design transition from component to modular redundancy actually reduces costs and

enhances efficiency, flexibility, and reliability.

This is clear from the case study of disk drive presented in a white paper
[137]

 for

designing a data storage system more fault tolerant. In 1988, Berkeley researchers

presented a landmark paper, “A case for redundant arrays of inexpensive disks(RAID),”

proposing several data-writing schemes (“RAID levels”) that such arrays could use to store,

retrieve, and recover data. In 1990, the personal computer industry introduced 5.25-inch

disks, which had evolved to the point where they had the capacity, performance, and

reliability to be used in the first RAID arrays. These new modular storage devices offered a

choice of tradeoffs between redundancy and read/write speed, and occupied a fraction of

the floor space of the mainframe storage devices they replaced. Thus the modular

advantages of RAID arrays are ability to scale up, simpler process of duplication,

11 21 31

32 22 12

11 21 31

32 22 12

23

specialization of the function of modules, rapid adaptation to the environment, and fault

tolerant. Thus modularity in optimal reliability design will have an additional advantage of

making the system more tolerant apart from maximizing the system reliability. This is a

subtle advantage of modular optimization that this research will achieve.

2.5 General formulation of multilevel redundancy allocation problems

From above description of the concepts of hierarchy and modularity in optimal

reliability design, this is clear that large scale and complex system can be dealt with

effectively by utilizing these design concepts when solving reliability optimization

problems. To maximize the system reliability, there are two ways; one is to enhance the

inherent reliability of each component and the other is to provide redundancy to the unit

which has poor reliability. The first method has technological limitation and costly beyond

a certain point. On the other hand, redundancy allocation is widely practiced in industry for

optimal reliability design. Numerous techniques for several structure have been proposed

but hierarchical structure is a not thoroughly addressed in terms of mathematical

formulation and optimization methodology. This work presents a generalized formulation

of a hierarchical redundancy allocation. Since a hierarchical structure of a large scale

system contain multiple levels and redundant units are allocated to multiple levels, we term

the problems of redundancy allocation in hierarchical systems as multilevel redundancy

allocation problems.

The generalized multilevel redundancy allocation formulation proposed here can

handle redundancy at every hierarchical levels of a complex system. In this general

formulation, a hierarchical structure of RBD of a complex system requires all modules or

components at different hierarchical levels to be connected logically either in series or in

parallel. For instance, in a basic structure of such a hierarchical series system, all the

modules and components at different hierarchical levels are also in series. The basic

24

structure of a hierarchical RBD means a structure which does not have a redundant unit at

any levels. As described before, this basic structure is actually made up of the building

block of bi-level hierarchical series and parallel system.

The proposed redundancy model contains multiple hierarchical levels. The system

level is the topmost level, and the component level is the lowest. Subsystem or module

levels are located between the top, and second lowest levels. Each system, module, and

component is here termed a unit. Every unit except components can have any number of

subordinate elements, such as modules that make up a system, or components that make up

a module. These subordinate elements are called sub-units, whereas the next highest

hierarchical unit of a sub-unit is called a parent unit.

Fig. 2.6. A general multilevel redundancy allocation configuration.

The proposed redundancy allocation model can provide redundancy for all units of a

multilevel reliability system. Fig.2.6 represents the schematic diagram of a generalized

hierarchical redundancy allocation model. The connecting lines in the diagram imply the

logical relationships among the units at different levels, relationships that may be in series,

in parallel, or combinations of these two. Redundancy at all levels is assumed to be active,

and failures are s-independent. Fig.2.7 explains the redundancy allocation scheme in a

bi-level series system, and the distinction between sub-units and redundant units. In

Fig.2.7(a), 1U is a unit at the system level that has two sub-units 11U & 12U at the next

1U

11nU

11U

111U

112U

1111nU

12U

121U

122U

1212nU

11 1nU

1111 nnn
U

25

lowest level in the basic configuration. Fig.2.7(b) illustrates the redundancy allocation in

1U , which has two redundant units at system level 1

1U & 2

1U . Similarly, sub-units 11U ,

and
12U have 3, and 1 redundant units, respectively, in parent unit 1

1U , and so on.

Fig. 2.7. An example of redundancy allocation in bi-level series configuration.

Thus, in a multilevel redundancy allocation model, each unit
i

U can have
i

x

redundant units, and
i

n sub-units, so there are
ii

xn sub-units in the level below a parent

unit. The sub-units in are different for each parent unit in the model described here. For

example, as shown in Fig. 2.6,
1

U is a system unit containing
11

U to
11nU units as

modules at its next lowest hierarchical level. Similarly, the
11

U module contains
11

n

Sub-units in series at 2
nd

 level

Redundant-units of subunit
11

U

Redundancy at parent-unit
1U

Parent-unit
1

U at system level

System

reliability

Redundant-units of subunit
12U

11
U

12
U

1
U

sysU

1U

1

11U

2

1U

2

11U

2

12U

1U

1

11U

1

1U

2

11U

1

12U

11U
12U

12U

11U

1

12U
3

11U

26

sub-units as modules or components at its next lowest level, represented as
111

U to
1111n

U ,

which is actually the second level of the system hierarchy. This structure is replicated until

the lowest level of the system hierarchy is reached. Thus, the reliability
i

R of modular

unit
i

U for multilevel series configurations can be calculated using

])1(1[
1 1

, 
 


i in

m

x

j

j

mii RR (2.3)

and for multilevel parallel system, the reliability
i

R of modular unit
i

U can be calculated

using

 
 


i in

m

x

j

j

mii RR
1 1

,)1(1

 (2.4)

where j

mi
R

,
are reliability values for sub-units j

mi
U

,
, a unit in the j-th redundant unit of the

m-th sub-unit of
i

U . Each j

mi
R

,
 value is calculated using (3) at the level immediately

below the unit, and these calculations are recursively iterated to the level just above the

very lowest hierarchical level. At the very lowest level, where there are no sub-units

belonging to unit
i

U , the reliability of component can be obtained as

 



ix

j

j

ii RR
1

)1(1 (2.5)

The multilevel reliability allocation model presented here allows redundancy for any

unit at any level, and it is thus possible to achieve redundancy schemes that function at both

the component, and modular levels. Using (2.3) and (2.5), we can express the mathematical

formulation of hierarchical series configuration of hierarchical RBD. Similarly, the

combination of (2.4) and (2.5) yield the mathematical expression of hierarchical parallel

configuration. To represent hierarchical series-parallel configuration we will need to use all

of the three equations.

27

2.6 Special features of multilevel redundancy allocation formulation

Proposed formulation is a simple way to represent multilevel redundancy allocation

scheme in a large scale system. The formulation can exploit the concept of hierarchy and

modularity in optimal reliability design of a large hierarchical system. In the proposed

redundancy allocation model, redundancy can be allowed to any unit at every level without

any constraint. Hierarchical arrangement leads to the simplification of design and provides

scalability. Multiple levels between the system and component levels allow modular

redundancy which can not only yield superior reliability but also make a system more

fault-tolerant.

(a) Basic structure hierarchical RBD of unit U1

Fig. 2.8 Hierarchical series redundancy allocation in a 3-levels system.

For instance, a hierarchical series system shown in Fig. 2.8 is a particular example of

the generalized multilevel redundancy allocation model described in Section 2. There are

three levels in this HSR system, namely, system, module, and component level. 1U is a

(b) Modular redundancy at U11

(c) Component redundancy at U113

1

113U

2

113U

3

113U

U113

Components

System

Modules U11 U1

2

U1

3

U1

1

11U 2

11U

1

111U

1

112U

1

113U

2

111U

2

112U

2

113U

U11 U11

U11

28

unit at the system level, (11U , 12U , 13U) are units at the module level, and (111U , 112U , 113U ,

121U , 122U , 131U , 132U) are units at the component level. We can calculate the system

reliability using Equation (2.3) and (2.5). When a system has redundancy of two or two 1U

modules in parallel, the reliability of 1U modules is obtained using the following

formulation.

)1)(1(1 2

3,1

2

2,1

2

1,1

1

3,1

1

2,1

1

1,11 RRRRRRR 
 (2.6)

1

1,1R is the reliability of 1

11U ,which is the first redundant unit of the 11U module. When the

redundancy of module
1

1,1U is three,
1

1,1R can be calculated as the following equation

)1()1{(1 2

3,1,1

2

2,1,1

2

1,1,1

1

3,1,1

1

2,1,1

1

1,1,1

1

1,1 RRRRRRR )}1(3

3,1,1

3

2,1,1

3

1,1,1 RRR
 (2.7)

Similarly, we calculate the reliability of other modules 12U and 13U in terms of its

subunits or components.

As it evident from the Fig.2.8 that proposed multilevel redundancy allocation allows

redundancy simultaneously not only at module level but also at component level in the

three level hierarchical series system. This is also true for all other hierarchical structures.

The proposed hierarchical series systems allow redundancy at any unit, at any level. For

instance, Fig. 9 illustrates three types of redundancy in 11U modules containing modules

or components at its lower levels. Modular redundancy, as shown in Fig.2.9 (a), allows

only module-level redundancy during the optimization process. Fig.2.9 (b) shows an

example of component redundancy. However, Fig.2.9 (c) illustrates a mixed redundancy

in module 11U , in which redundancy is possible not only between modules, but also

simultaneously among components. Therefore, the mixed redundancy scheme allows the

units to have redundancy not only at the same level, but also simultaneously for sub-units

at lower levels.

29

(a) Modular redundancy (b) Component redundancy

(c) Mixed redundancy

Fig. 2.9. Three types of redundancy allocation in a unit 11U

The proposed formulation has distinct advantage of representing and maintaining actual

configuration that is not available with any other formulation when solving redundancy

allocation optimization. Fig.2.10 explains clearly that the hierarchical RBD representation

of large scale system is more accurate in optimizing the actual multilevel level redundancy

allocation problems than the artificially reduced multilevel configuration into traditional

bi-level configuration before optimization.

11U

1

111U

2

111U

1

111U

ix
U111

1

111U

1

112U

1

111U

 2

112U

1

111U

ix
U112

1

111U

2

,11 inU

1

111U

i

i

x

nU ,11

1

111U

1

,11 inU

1

111U

1

11U

2

11U

1

111U

2

111U

1

111U

1

111U

2

111U

1

111U

1

112U

1

111U

2

112U

1

111U

1

112U

1

111U

2

112U

1

111U

2

113U

1

111U

1

113U

1

111U

2

113U

1

111U

1

113U

1

111U

1
11U

ix
U11

2
11U

1

111U

1

112U

1

111U

1

,11 inU

1

111U

2

111U

1

111U

2

112U

1

111U

2

,11 inU

1

111U

ix
U111

1

111U

ix
U112

1

111U

i

i

x

nU ,11

1

111U

30

Fig. 2.10. Artificial reduction of hierarchical levels applied in traditional approach.

The conventional optimization approach more or less confined to component level.

Therefore, multilevel redundancy allocation configuration has to be reduced to component

level or bi-level configuration before applying traditional approach of optimization. This

artificial shrinkage of configuration will yield suboptimal solutions which are undesirable.

This research focuses on developing new metaheuristic methodology to represent and

maintain original structure when solving MRAOPs which is not an easy task. In the next

chapter, the proposed methodology, superior to existing approach, is presented and the

effectiveness of this approach is demonstrated by solving numerical examples.

2.7 Summary

This chapter presented the concepts of hierarchy and modularity in system design. The

hierarchy helps to simplify the design of large scale systems and provide decomposability

(b) Artificial reduction to 3-level

(a) Original structure of a unit U1 (c) Artificial reduction to bi-level

U1

112U

U11

1112
U

U111

1221
U

U12

1222
U

1211
U

U122 U121

1111
U

1212
U

U1

U11 U12

U111 U122 U121

U1

U11 U12

112U

31

that helps to address the issue of managing the system more effectively throughout the life

cycle. The structure of RBD plays a very important role in optimizing the reliability design

of a system. The hierarchical concept of RBD is proposed in this chapter. This will help to

simplify the design of complex system and represent exactly all the logical relationship

between its subsystems and components.

The superiority of modular design is hard to challenge. This chapter described the

modular redundancy concepts in optimal reliability design. The practical significance of the

modular redundancy allocation in making a system more fault tolerant when so optimizing

hierarchical RBD is explained. Finally this chapter proposed a general formulation of

multilevel redundancy allocation optimization problems. The proposed formulation has

several novelties. This formulation allows redundancy allocation to all units at every level.

Bi-level series and parallel modules is proposed as building blocks to represent all possible

hierarchical RBD. Modular redundancy allocation can easily be applied when optimizing

such hierarchical RBD. Moreover, the proposed formulation achieves not only modular or

component allocation but also mixed redundancy allocation that allows redundancy

allocation at more than two levels simultaneously. This scheme is a paradigm shift in RBD

representation for optimal reliability design of large scale systems and has a potential to

provide solutions very close to global optimal solutions.

32

Chapter 3

Multilevel Redundancy Allocation Optimization using Hierarchical

Genetic Algorithms

3.1 Introduction

Almost all of the large scale system exhibit hierarchical configurations multiple level

of hierarchy within these configurations. Typical systems contain multiple levels, with the

entire system at the top level, subsystems at lower levels inside the system, and down to the

components at the lowest levels inside the various subsystems. Hierarchical systems such

as these are termed multilevel systems, and their reliability depends on the reliability values

of lower subsystems. For example, if the lower subsystems of a bi-level system are

connected serially, the system reliability is the product of the reliability values of the lower

subsystems. Fig.3.1 illustrates a schematic diagram of the multilevel configuration of a

hierarchical reliability block diagram in a hierarchical product design.

Fig. 3.1. A multilevel RBD.

The system reliability of a multilevel design configuration is usually optimized by

allocating appropriate redundancy to less reliable subsystems or components at different

levels, subject to certain constraints. This optimization technique is called multilevel

System level Subsystem levels Component level

U1

Product U2

U3

U12

U13

U11

33

redundancy allocation optimization (MRAO), and subsequently formulated problems are

called multilevel redundancy allocation optimization problems (MRAOP).

MRAOP are particularly attractive because real world systems and products are

increasingly complex, and the system reliability of the multilevel configurations of these

complex designs can be significantly improved by using multilevel redundancy allocation

techniques. Multilevel redundant designs are increasingly prevalent in many practical

systems, such as communication systems, computing systems, control systems, and critical

power systems
[138]

. Techniques for implementing redundancy span a wide spectrum in the

design space, and can create high reliability systems. Moreover, recent progress in

miniaturization has made it easier to provide redundancy at all levels, ranging from the

system level down to component levels. This approach can boost system reliability

remarkably because redundancy can be distributed to any component at any level without

structural constraints.

The optimization of system reliability using multilevel redundancy allocation is widely

practiced in industry. Most integrated memory circuits, and VLSI chips that include internal

memory blocks, currently use a hierarchical redundancy allocation scheme to enhance

reliability, and chip yields. Also, a significant advantage of multilevel or hierarchical

allocation is that it permits a modular scheme of redundancy allocation. Koren et al.
[139]

described how such modular schemes are particularly applicable when designing

fault-tolerant or self-repairing semiconductor devices. Multilevel architectures that provide

physical protection are now commonly implemented to increase the survivability of real

systems in adverse conditions
[140]

. For protecting archived data, multilevel redundant

designs in redundant arrays of inexpensive disks (RAID) that provide fault tolerance

against disk failures outperform other RAID designs
[141]

. Several examples of multilevel

RBD structures can be found in the literature, such as hierarchical series, hierarchical series

34

parallel, and others
[142][1]

.

Almost all previous research in redundancy allocation optimization problems has

focused on system configurations such as series-parallel , parallel-series , general networks,

k-out-of-n: G(F), and other unspecified configurations, classified by Tillman, Hwang, &

Kuo
[3]

. Kuo & Zuo provided good details concerning optimal reliability modeling
[143]

, and

the review paper by Kuo & Prasad
[6]

 presents an overview of system reliability

optimization. However, a comprehensive examination of this literature reveals that

multilevel redundancy allocation problems are seldom addressed in terms of the detailed

modeling or appropriate optimization techniques that such problems actually require. Also,

attention paid to redundancy allocation is mainly confined to a single level, principally due

to the notion that single-level redundancy yields better system reliability. We feel that this

is not always the case. Boland & EL-Neweihi
[144]

 demonstrated that this result does not

hold in cases of redundancy configurations using non-identical parts.

According to Chern, redundancy allocation optimization problems are nonlinear

integer programming problems, and NP-hard
[2]

. Besides being NP-hard, MRAOP qualify as

hierarchical optimization problems
[145]

. The optimization of such hierarchical optimization

problems beyond two levels, however, is more difficult using heuristics or exact algorithms.

This is because multilevel allocation optimization problems generate a very large search

space, and searching for optimal solutions using exact methods or heuristics will

necessarily be extremely time consuming. Therefore, metaheuristic algorithms, particularly

genetic algorithm (GA), are suitable for solving the multilevel redundancy allocation

optimization. The seminal work by Goldberg
[122]

 demonstrated that GA are very useful for

solving complex discrete optimization problems, and the multiple solutions that GA

provide allow considerable, valuable flexibility when choosing the best solution. This is

one reason that GA is popularly applied to a variety of reliability optimization

35

problems
[146-151][20]

. However, none of the above-cited research specifically aims to

optimize system reliability beyond two-level systems, and their subsystems.

Recently, the growing research interest in multilevel reliability modeling, and

multilevel optimization using GA is reflected in the literature, due to the practical

importance of these techniques. Levitin
[140]

 proposed an algorithm for solving multilevel

protection cost minimization problems subject to survivability constraints. This algorithm

is based on a universal generating function technique used for system survivability

evaluation, and on a genetic algorithm used as an optimization engine. Later, Yun &

Kim
[152]

 proposed a restricted multilevel redundancy allocation model, and optimized a

three-level series redundancy allocation problem using a customized GA. However, this

model allows redundancy allocation to only one unit at a given level in a direct line,

which is defined as a set of units in which every unit except the system has a parent unit,

and no other cousin units, the other units at the same level, are present in that set. Direct

line concepts are explained by an example in a later section of this chapter. The purpose of

using direct lines is to transform the multilevel design variables into vector representations,

because conventional GA use one-dimensional representations of design variables.

Unfortunately, the additional constraints imposed when transforming hierarchical design

variables into vector design variables artificially constrict the feasible design region, often

leading to suboptimal solutions.

Several genetic algorithms use a hierarchical approach to solve classes of hierarchical

optimization problems. The hierarchical features offer the potential to address large

problems efficiently
[135]

. De Jong et al
[153]

 delineated classes of hierarchical problems, and

described a framework for Hierarchical Genetic Algorithms (HGA), genetic algorithms that

can exploit the structure present in hierarchical problems to achieve improvements in

efficiency. These HGA exploit hierarchical features in different ways depending on the

36

problem, such as the use of a fitness-based hierarchy of populations
[154]

, problem-specific

subdivision of an algorithm into multiple levels
[155]

, and the use of hierarchical

representation by using control genes that regulate other genes
[156]

. Sefrioui & Periaux
[157]

developed HGA in which they used a hierarchical topology for the layout of

sub-populations, achieving higher efficiency than conventional GA. Further, Yoshimura &

Izui
[158]

 proposed a genetic algorithm in which hierarchical genotype coding representation

is used to exactly express the internal structure, and related hierarchical details. New

crossover and mutation operators have been developed to handle these hierarchical

genotypes during optimization processes.

The genotype coding representation used in the genetic algorithms proposed by

Yoshimura & Izui
[158]

 aims to represent the hierarchical design variables in design

optimization problems for mechanical structures. However, the MROAP require a problem

specific coding method for handling the logical linkages among the hierarchical design

variables, and thus the coding scheme proposed by them cannot be applicable directly to

solving MRAOP. Therefore, this research proposes a new variable coding method for the

HGA first proposed by Yoshimura & Izui
[158]

. In this coding method, the phenotypes of

hierarchical design variables are coded using two newly designed hierarchical nodal

genotypes: the ordinal, and the terminal. These two nodal genotypes can be used as

building blocks to codify most of the MRAOP hierarchical configurations. Thus, there is no

need to transform the hierarchical design variables because these nodal genotypes preserve

the exact hierarchical relationships within each design variable. The novelty of these

hierarchical nodal genotypes is that they can express every possible combination of

multilevel redundancy allocation, so that the optimization has a high probability of yielding

nearly global optimal solutions.

The rest of the chapter is organized as follows. Section 3.2 describes the multilevel

37

series redundancy allocation optimization model. In Section 3.3, the HGA concepts are

explained, and a HGA coding method for HS problems is proposed. In Section 3.4, we

solve two series problems, a three-level problem, and a four-level problem. The optimal

solutions obtained when using a conventional GA are compared with those obtained with

the custom-coded HGA, and the resulting configurations are presented. Finally, the results

are discussed in Section 3.5, while Section 3.6 concludes this chapter.

3.2 Multilevel redundancy allocation optimization problems

In a multilevel redundancy allocation model, each unit
i

U can have
i

x redundant

units, and
i

n sub-units, so there are
ii

xn sub-units in the level below a parent unit. The

sub-units in are different for each parent unit in the model described in chapter 2. Thus,

the reliability
i

R of unit
i

U for multilevel series configurations can be calculated using

(2.3) and (2.4). The multilevel reliability allocation model presented here allows

redundancy for any unit at any level, and it is thus possible to achieve redundancy schemes

that function at both the component, and modular levels. This mixed redundancy scheme

allows the units to have redundancy not only at the same level, but also simultaneously for

sub-units at lower levels.

The cost constraint of a multilevel redundancy allocation model also reveals

hierarchical relationships among the multilevel units. The system cost is essentially the sum

of the cost of subsystems and modules, and the cost of a module is the sum of all modules

or component costs therein, when there are parallel units at the immediate lower level. In

practical systems, it is assumed that multilevel redundancy incurs additional cost due to the

adding or duplication of redundant units to modules, and the increased number of

components. In general, the redundancy cost of iR

can be expressed mathematically as

38


 


i in

m

x

j

i

j

mii xCC
1 1

, additional costs (3.1)

Note that there are definite advantages to using modular redundancy in multilevel

redundancy allocation, because the cost of adding, duplicating, or repairing a module is

lower than carrying out a similar action upon a component. This result holds because the

lower the level in a system, the more costly the repair job.

Fig. 3.2. An example of redundancy allocation in a unit U1

The redundancy allocation optimization problem in a reliability system consisting of a

set of design variables is expressed as

 Maximize 
s

R f (x) (3.2)

 Subject toC (x) 0C (3.3)

In a set of design variables x, each design variable has a minimum, and maximum

redundancy value.
0

C is a given, fixed positive value for the cost constraint. For example,

the problem of optimizing a 2-level series redundancy allocation, as shown in Fig.3.2, can

be stated mathematically as

System reliability

sysU

1U

1

11U

2

1U

2

11U

2

12U

1U

1

11U

1

1U

2

11U

1

12U

11U
12U

12U

11U

1

12U
3

11U

39









 



)}))1(1)()1(1{(1)})()()1(1{(1(1
2

1

12

3

1

11

1

12

3

1

11

j

j

j

j

j

j

sys RRRRR

 (3.4)

The cost function used in this chapter for the cost constraint is described by (3.1).

3.3 Hierarchical genetic algorithms

A HGA
[158]

 is an advanced genetic algorithm that can represent hierarchical and

constraint relationships among design variables using hierarchical genotypes, and can

optimize hierarchical problems in a single optimization process. This HGA is further

customized with a new variable coding method, and subsequently applied to solve the

MRAOP in this research. Fig.3.3 illustrates that conventional GA
[122]

 use vector genotype

structures, in contrast to HGA that use hierarchical genotype structures.

Fig. 3.3. Representation schemes of design variables in GA, and HGA.

The hierarchical redundancy allocation optimization problems here involve

hierarchical relationships among design variables. Such hierarchical relationships can be

handled well using hierarchical genotype representation. Because the HGA has special

(a) Conventional GA

Encoding

Hierarchical design

optimization problem

Hierarchical genotype

(b) HGA

Encoding

Hierarchical design

optimization problem

Vector genotype

40

types of genotype structures, new crossover, and mutation operators have to be applied.

The HGA allows lower branches of the hierarchical structure to be exchanged, in addition

to the exchange of genes. Using such genetic operations, new individuals are produced, and

optimal structures can then be obtained.

3.3.1 Solution Encoding

A hierarchical genotype is represented using two types of nodes, ordinal, and terminal

nodes, as shown in Table 3.1. Ordinal node
i

N corresponds to redundancy unit
i

U , and

is characterized by several parameters, and design variables. Parameters ik , and in stand

for the redundancy of unit
i

U , and the number of sub-units, respectively. Here, ik is

given by a design variable at an upper node, while the parameter in is a fixed value that

depends on the optimization problems to be solved.
j

mix , is a design variable denoting the

redundancy for the m-th sub-unit of the j-th redundancy unit, where j varies from 1 to k .

Therefore, there are iikn design variables in unit
i

U . A terminal node
it

N corresponds

to one of the lowest units, and incorporates design variable ik , unit reliability
i

r , and unit

cost ic . Because there are no sub-units, this terminal node does not contain parameter
i

n ,

or design variable
j

mix , . Using these two genotypes, all possible optimal solutions for

series reliability allocation problems can be represented.

Furthermore, the ordinal, and the terminal genotypes each have two functions, namely,

reliability, and cost. When the reliability function in the ordinal genotype is called, a

calculation is conducted using (2.3). The particular equation selected depends on whether

the unit is in series, or in parallel. When calculating either of these two equations, the

reliability values of the lower units,
j

miR , , are required; and these are obtained by calling

the reliability function of the lower units. Finally, the reliability function of the terminal

genotype returns its unit reliability
i

r . Thus, the reliability functions are recursively called,

41

and the system reliability can be obtained. Similarly, the system cost can be obtained by

calling the cost function embedded in each genotype.

TABLE 3.1

HIERARCHICAL GENOTYPE REPRESENTATION FOR SERIES SYSTEM

Ordinal genotype node iN Terminal genotype node

it
N

Design

variable

j

mix , : the number of sub-unit for the

m-th unit

Parameter
ik : the redundancy for unit iU

in : the number of sub-unit

ik : the redundancy for unit iU

ir : unit reliability

ic : unit cost

Fig.3.4 illustrates an example of the genotype encoding for a three-level series

redundancy configuration. Fig.3.4(a) shows an optimal redundancy configuration for a

system
1

U consisting three modules,
11

U ,
12

U , and
13

U , at the second level. The ordinal,

and terminal nodes are assigned to represent modules, and component units at each level.

Note that unit features, such as the redundancy and configuration, series or parallel, are

expressed in the corresponding upper node.

(a) An example of a multilevel reliability system U1.

U
111

U
111

U
111

U
112

U
112

U
131

U
132

U
121

U
122

U
122

U
131

U
132

U
131

U
132

U
11

U
12

U
13

U
1

U
111

U
111

U
111

U
112

U 112

U 131

U 132

(1) U 121

U
122

U
122

U 131

U
132

U
131

U 132

U
11 U

12
U

13

U
1

U

42

(b) Design variable values at each ordinal, and terminal node.

Fig. 3.4. Hierarchical genotype representation in system U1.

The HGA example shown in Fig.3.4(b) illustrates that genotypes using fixed arrays,

which are frequently used in various optimization problems, are not applicable to this

problem because the number of design variables varies according to the number of

redundant units. In other words, the number of genes varies dynamically based on the

proposed solution configuration. In this case, the two design variables, 1

111x , and 2

111x ,

represent the redundancy of 111U , because there are two redundant units for 11U , which is

the unit above 111U in the hierarchy. If the number of redundant units for 11U increases,

the number of design variables for 111U will also increase. The solution encoding scheme

proposed in this research can successfully represent different numbers of design variables

at every hierarchical level.

System

11

111 x

11

112 x

U11

22

111 x

12

112 x

11

121 x

21

122 x

U12

21

131 x

11

132 x

U13

22

131 x

12

132 x

U1

11 sysx
n = 1

k = 1

n = 3

k = 1

n = 2

k = 2

n = 2

k = 2

n = 2

k = 2

U111

k= 1 k = 1

U112 U111

k = 2 k = 1

U112 U121

k = 1 k = 2

U122 U131

k = 2 k = 1

U132 U131

k = 1 k = 2

U132

21

11 x

11

12 x

21

13 x

43

3.3.2 Objective function

A penalty function method has been applied to transform the constrained problem into an

unconstrained problem, by penalizing infeasible solutions via a penalty term added to the

objective function for any violation of the constraints. In this research, we used Gen &

Cheng‟s method
[159]

, which applies a severe penalty to infeasible solutions. The fitness

function, eval(x), is calculated using

eval(x)=f(x)p(x) (3.5)

where, f(x), p(x), and x are the system reliability, penalty function, and a set of design

variables, respectively. We calculate the value of p(x) using Gen & Cheng‟s penalty

function for each individual; and for highly constrained optimization problems, the

infeasible solutions occupy relatively large portions of the population at each generation.

The penalty approach here adjusts the ratio of penalties adaptively at each generation to

achieve a balance between the preservation of information, the selective pressure for

infeasibility, and the avoidance of excessive penalization.

3.3.3 Crossover

Crossover operations between individuals are conducted among each corresponding set

of genes, using a two-step procedure. For the initial step, any other individual is first

selected as the crossover partner, and crossover operators then exchange the

corresponding genes of the two individuals. Here, when a gene of an alternative for a

substructure is exchanged with the corresponding gene of another alternative, all

corresponding lower substructures are also exchanged, to preserve consistency in the

selection of alternatives. If this operation were not conducted in this way, meaningless

lower structures might be generated in the lower positions of the exchanged substructures.

The algorithmic procedures are as follows.

Step 1 Select two individuals for crossover operations, then find the set of genes at the

44

highest level of the multilevel structural system for each of the two individuals,

and start the crossover operation with probability
1c

p .

Step 2.1 If the gene j

mi
x

,
 of individual 1, and that of individual 2, are different, then

conduct a crossover operation for j

mi
x

,
 with probability

2c
p . This operation is

the same as a uniform crossover of simple genetic algorithms with
2c

p set to

0.5. Then, proceed to Step 2.3. If crossover operations are not conducted,

proceed to Step 2.4. If the genes of both individuals are the same, proceed to

Step 2.2.

Step 2.2 If j

mi
x

,
 contains a subordinate set of genes, it will be examined for possible

crossover operations in Step 2.1. Otherwise, proceed to Step 2.4.

Step 2.3 When j

mi
x

,
 genes are exchanged between individuals 1 and 2, the lower

substructures of each individual are also exchanged.

Step 2.4 Increment m by 1. When nm  , set m =1, and increment j by 1. When

ikj  , end the crossover operations because the set of genes has been

exhausted, and return to the crossover operations for the parent set of genes.

3.3.4 Mutation

In mutation operations, mutation operators are first applied to the set of genes at the

highest level of the multilevel structural system, and mutation operators are recursively

applied to their child sets of genes in the same way as for crossover operators. The

algorithmic procedures are as follows.

Step 1 Examine the substructure at the highest level.

Step 2.1 Determine whether or not a mutation operation should be conducted, with

mutation probability
m

p for the gene j

mi
x

,
. If the mutation is conducted,

45

proceed to Step 2.3. Otherwise, proceed to Step 2.2.

Step 2.2 If j

mi
x

,
contains a child set of genes, proceed to Step 2.1, and examine

the child set of genes. If not, proceed to Step 2.5.

Step 2.3 Randomly generate j

mi
x

,
.

Step 2.4 Randomly reconstruct the genes of all sub-units for the selected

alternative.

Step 2.5 Increment m by 1. When nm  , set m =1, and increment j by 1.

When ikj  , end the crossover operations because the set of genes has

been exhausted, and return to the crossover operations for the parent set

of genes.

3.4 Conventional genetic algorithm

We applied the GA, proposed by Yum & Kim
[152]

 to solve MRAOP to compare the

obtained solutions with those obtained by the HGA. We call this GA a conventional GA

because it uses vector coding of the design variables, and applies a special crossover &

mutation operator to handle such coding. The genotypes for the conventional GA
[152]

 are

encoded as an ordered couple of a design variable, mix , , and an indicator variable, miy , ;

iv =(mix , , miy ,), where the subscript i is the index of the chromosome to which the gene

belongs, and subscript m denotes units. A chromosome is represented as

  ),)...(,)(,(2211 ininiiiii yxyxyxv 

The value of the indicator variables for a unit is 1 when that unit is subject to redundancy,

and 0 when that unit is not allowed to have redundancy. Only one unit among the set of

units in a direct line is selected to have redundancy so that the sum of the indicator

variables of units along a direct line is 1. On the other hand, we used hierarchical genotype

encoding when applying the HGA to solve the MRAOP.

46

(a) Redundancy allocation in unit 1U .

(b) Conventional GA encoding of unit 1U . (c) HGA encoding of unit 1U .

Fig. 3.5. Coding schemes in conventional GA, and HGA for a series system
1U .

Coding schemes for conventional GA, and HGA can be understood more clearly by

examining an example of redundancy allocation in a bi-level series unit 1U having two

sub-units, 11U , and 12U , as shown in Fig.3.5. The redundancy values for sub-units 11U , and

12U are 2, and 1, respectively. Note that there are two direct lines, (1U - 11U), and (1U - 12U)

in Fig.3.5(b). Because only a unit at a level is selected to have redundancy among the set of

units in a direct line, unit 1U
 cannot have redundancy if units 11U and 12U are subject to

redundancy. Thus, the GA coding scheme does not allow redundancy at two levels

simultaneously. In contrast, the HGA allows redundancy at two levels simultaneously.

1x = 1

1y = 0

11x = 2

11y = 1

11U

12x = 1

12y = 1

12U

1U

System

1

11x = 2
1

12x = 1

1U

k = 2

11U

 k = 1

12U

n = 2
k = 1

1

sysx = 1 n = 1
k = 1

1

1U

System

1U

1

11U 2

11U

12U

11U

1

12U

47

Fig.3.5(c) shows the reliability for both the system, and the sub-units. Both a conventional

GA, and a HGA were applied when optimizing multilevel series redundancy allocation

problems with different configurations, to evaluate their applicability for solving multilevel

allocation problems. The cost function xcxxC )(is used as a constraint. The symbols

x , cx , and  respectively represent the number of parallel units, the unit cost, and the

additional cost.

3.5 Numerical Examples

The HGA was applied to optimize multilevel series redundancy allocation problems

having two different configurations. The first configuration is called problem-A, and is

similar to the problem described in Yum & Kim
[152]

, while the second configuration is

called problem-B. Fig.3.6, and Fig.3.7 respectively represent problem-A, and problem-B.

Problem-A contains three levels, and problem-B contains four levels. All units of these

configurations are in series.

Fig. 3.6. Problem-A (a three level MS system).

U1

121U
112U 131U

U12 U11 U13

113U111U 122U 132U

48

Fig. 3.7. Problem-B (a four level MS system).

3.5.1 Input data

Suitable parameters for optimizing the two allocation problems were selected based on

several experimental runs using a conventional GA, and the HGA we created. We observed

the convergence of fitness functions, and selected suitable GA operator values for

subsequent use in the optimization process. Table 3.2 provides a summary of the average,

and best fitness values for different HGA parameters obtained during 20 runs with 500

generations in each run. The best crossover, and mutation rate values for solving these

problems when using a conventional GA were 0.8, and 0.1, respectively. Similarly, when

using the HGA, these best values were respectively 0.8, and 0.05. An initial population of

100 individuals was generated randomly when using both the GA, and HGA. This

population size was selected based on the performance evaluation of the algorithms with

different population sizes.

U1

1121
U

U11

1122
U

1112
U

U112 U111

1221
U

U12

1222
U

1211
U

U122 U121

1111
U

1212
U

49

TABLE 3.2

HGA PARAMETERS

Cases Parameters Average Fitness

(20-runs)

Best Fitness

(20-runs) Crossover Mutation

1 0.7 0.05 0.96047 0.97628

2 0.9 0.05 0.96155 0.97628

3 0.8 0.05 0.9621 0.97639

4 1.0 0.05 0.96117 0.97628

5 0.8 0.01 0.92826 0.97254

6 0.8 0.10 0.94484 0.96422

7 0.8 0.20 0.93190 0.95082

TABLE 3.3

INPUT DATA

Problem-A
[152]

 Problem-B

Unit Reliabilit

y

Cos

t

 Unit Reliabilit

y

Cost 

U1 0.4003 72 2

U1 0.2198 102 2

U11 0.7267 26 2 U11 0.5130 48 2

U12 0.7650 19 3 U12 0.4284 50 2

U13 0.7200 21 2 U111 0.7200 21 3

U111 0.9000 5 3 U112 0.7125 21 3

U112 0.9500 6 4 U121 0.6300 23 3

U113 0.8500 5 3 U122 0.6800 21 3

U121 0.9000 6 4 U1111 0.9000 7 4

U122 0.8500 7 4 U1112 0.8000 6 4

U131 0.9000 8 3 U1121 0.7500 8 4

U132 0.8000 7 4 U1122 0.9500 5 4

 U1211 0.7000 9 4

 U1212 0.9000 6 4

 U1221 0.8500 5 4

 U1222 0.8000 8 4

Twenty two design variables were used with the conventional GA, which is the sum of

the redundancy numbers plus the constraints for direct lines. In contrast, the number of

design variables used with the HGA was 11. The number of generations was 500 in each

50

case, and a maximum redundancy number of five was imposed for both the modular, and

component redundancy schemes. The unit reliability, and the unit cost at the very lowest

level in the multilevel redundancy allocation problems were used when calculating the unit

reliability, and the unit cost of upper level units, up to the system level. Table 3.3

summarizes the unit reliability, and unit cost of the components at the very lowest level in

both problems. Note that we used the same data for problem-A that Yum & Kim
[152]

 used,

to enable a comparison of the optimal solutions obtained by the HGA with those provided

by a conventional GA.

3.5.2 Computational results

We separately applied the HGA, and GA when solving the problem-A, and problem-B

allocation optimization problems. First, we checked the convergence of the optimal

solutions when using the GA, and HGA; and Fig.3.8, and Fig. 3.9 show the results when

using the two different types of algorithm. The x-axis represents the number of generations,

and the y-axis represents the system reliability. The cost constraints for these two graphs

were 240 for problem-A, and 500 for problem-B.

Fig. 3.8. Convergence of GA, and HGA in problem-A.

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

S
y
st

em
 r

e
li

a
b

il
it

y

Number of generation

HGA GA

51

Fig. 3.9. Convergence of GA and HGA in problem-B

Fig. 3.10. Optimal solutions for problem-A obtained using GA, and HGA.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

S
y

st
em

 r
el

ia
b

il
it

y

Number of generation

HGA GA

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

1.01

150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340

S
y
st

e
m

 r
e
li

a
b

il
it

y

System cost

GA HGA

52

To assess the influence of cost constraints upon the optimal solutions, 20 cases for a

3-level problem, and 15 cases for a 4-level problem, were examined. Ten 500-generation

trials were performed using each algorithm type, and the best solution of the ten-trial set

was chosen as the optimal solution in each of these cases. Fig.3.10, and Fig.3.11 show the

trends of optimal solutions obtained using the GA, and HGA. The x-axis represents the cost

constraint, and the y-axis represents the optimal system reliability.

Fig. 3.11. Optimal solutions for problem-B obtained using GA, and HGA.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

S
y

st
e
m

 r
e
li

a
b

il
it

y

System cost

GA HGA

53

TABLE 3.4

OPTIMAL HIERARCHICAL CONFIGURATIONS (PROBLEM-A)

 Problem-A

Cases GA HGA

Reliabilit

y
Cost

Optimal Allocation

[x1x11x12x13x111x112x

113x121x122x131x132]

[y1y11y12y13y111y112y

113y121y122y131y132]

 Reliability
Cos

t

Optimal Allocation

[(x1)(x11x12x13)(x111x112x1

13)(x121x122)(x131x132)]

1 0.9276 289 [14333242224]

[01110000000]

 0.9742 290 [(1)(222)

(211322)(2121)(1122)]

2 0.7822 278 [24241232212]

[01010001100]

 0.8537 289 [(1)(221)

(222212)(1122)(32)]

3 0.9557 275 [54333343552]

[01110000000]

 0.9622 297 [(1)(122)

(223)(2211)(2122)]

4 0.7989 278 [34542212225]

[01010001100]

 0.8734 292 [(1)(212)

(122122)(22)(2222)]

5 0.8447 291 [45333232231]

[01010001100]

 0.9029 290 [(1)(221)

(221221)(2122)(32)]

6 0.8506 292 [25321433131]

[01110000000]

 0.9102 286 [(1)(221)

(322212)(2211)(22)]

7 0.8986 275 [34335144225]

[01110000000]

 0.9187 300 [(1)(212)

(212212)(32)(1122)]

8 0.9272 298 [43243533234]

[01010001100]

 0.9579 294 [(1)(122)

(322)(2222)(1212)]

9 0.9262 270 [53341311213]

[01110000000]

 0.9433 300 [(1)(132)

(322)(121111)(2132)]

10 0.9185 278 [34544552214]

[01010001100]

 0.9467 297 [(1)(212)

(221222)(22)(2222)]

54

TABLE 3.5

OPTIMAL HIERARCHICAL CONFIGURATIONS (PROBLEM-B)

Cases
Problem-B

GA HGA

Reliability Cost

Optimal Allocation

[x1x11x12x111x112x121x12

2x1111x1112x1121x1122

x1211x1212x1221x1222]

[y1y11y12y111y112y121y12

2y1111y1112y1121y1122

y1211y1212y1221y1222]

 Reliability Cost

Optimal Allocation

[(x1)(x11x12)(x111x112)(x121x122)

(x1111x1112)(x1121x1122)

(x1211x1212)(x1221x1222)]

1 0.9568 484 [155132223244513]

[001010011000000]

 0.9775 499 [(1)(22)(11)(21)

(1222)(2222)(32) (33)]

2 0.7810

485 [143143432441532]

[000011011000011]

 0.8677 496 [(1)(11)(21)(12)

(2212)(33)(23) (2222)]

3 0.9568 484 [155132223244513]

[001010011000000]

 0.9777 486 [(1)(11)(22)(12)

(2212)(2122)(33) (2222)]

4 0.8202

486 [224335554332233]

[000100000111111]

 0.8870 460 [(1)(11)(12)(12)

(32)(2223)(22) (2222)]

5 0.8586

485 [213431342143232]

[000110000001111]

 0.9368 454 [(1)(11)(12)(12)

(32)(2223)(22) (2222)]

6 0.8767

462 [135443341233234]

[000101100110000]

 0.9508 491 [(1)(11)(32)(21)

(112222)(2123)(2211) (32)]

7 0.9124 481 [253452354243211]

[010000100001100]

 0.9538 467 [(1)(11)(12)(22)

(23)(1212)(2132)(2222)]

8 0.9515

486 [111324452224143]

[000101100110000]

 0.9741 491 [(1)(11)(12)(22)

(23)(2122)(2232) (32212)]

9 0.9122 462 [153433255123132]

[000111000000011]

 0.95021 467 [(1)(11)(22)(21)

(2222)(2222)(2222) (32)]

10 0.8941

441 [134433314313215]

[000111100000000]

 0.9645 494 [(1)(11)(23)(22)(2122)(1121

12)(2222) (2132)]

Next, we examined ten cases in which the unit reliability values were varied while the

cost constraint was held to a value of 300 for problem-A, and 500 for problem-B. In the

same manner as before, ten 500-generation trials for each of these ten cases were carried

55

out, and the best solution was chosen as the optimal solution for each case. Note that the

number of function calls in each case considered here was the same for both GA, and HGA.

Table 3.4, and Table 3.5 summarize the optimal solutions obtained when using the GA, and

HGA for problem-A, and problem-B, respectively.

An interpretation of the optimal solution data summarized in these two tables is

provided in Fig.3.12, which shows the arrangement of the units in problem-A, and

problem-B. It is a graphic representation of the optimal solutions for the fourth case listed

in Table 3.4.

(a) Optimal configuration obtained using GA.

(b) Optimal configuration obtained using HGA.

Fig. 3.12. Optimal solutions for the fourth case listed in Table 3.4.

Fig.3.12(a) illustrates the optimal arrangement of the modules and components in the

U
111

U
111

U
122

U
122

U
1

1

U
1

2

U
1

U 113

U
113

U 122

U
122

U
1

1
U 1

2

U
111

U

U 112

U 112

U U 111

U
111

U

U 113

U
113

U
111

U

U 112

U 112

U U 111

U
122

U

U 121

U
121

U
111

U
111

U
1

1

U 132

U
132

U
1

3

U
111

U

U 131

U 131

U
111

U

U 132

U
132

U
111

U

U 131

U 131

U
11

1 U

U
1

3

U U
132 U U

131

U U
132 U U

131

U U
132 U U

131

U U
132 U U

131 U
122

U
122

U

U 122

U
122

1

2

U
122

U

U 121

U
121

U U
113 U U

112 U U 111

U U
113 U U

112 U U 111

U U
113 U U

112 U U 111

U U
113 U U

112 U U 111

56

system obtained when using the GA, and Fig.3.12(b) illustrates the optimal arrangement

obtained when using the HGA.

3.6 Discussion

The numerical examples solved in the previous section demonstrate that hierarchical

genotype representations of hierarchical design variables provide superior solutions in

comparison to vector representation. The most suitable GA, and HGA parameters were

selected from the results of a number of preliminary runs; and Table 3.2 shows that the

most useful HGA crossover, and mutation rates are 0.8, and 0.05, respectively, determined

by twenty 500-generation runs. We observe in Fig.3.8, and Fig.3.9 that the HGA offers

superior convergence, and that this advantage is achieved more smoothly by searching a

larger feasible design space than when a conventional GA is used.

Moreover, Fig.3.10, and Fig.3.11 indicate that the optimal solution obtained using the

HGA is superior to its conventional GA counterpart. After examining the solution data, we

find that there is an approximately 4% maximum improvement in the 3-level series

allocation problem, and a 5% improvement in the 4-level series allocation problem.

Similarly, in Table 3.4, and Table 3.5, we see that the HGA yielded average improvements

of 4.7%, and 5.82% over the conventional GA. Moreover, the maximum improvement in

the optimal solutions when using the HGA was found to be 9.23% in the 3-level problem,

and 11% in the 4-level problem. The improved reliability obtained using the HGA is

achieved without incurring additional material or parts costs. This is an important milestone

because, in high reliability applications, even very small improvements in reliability are

often difficult to obtain. Thus, it appears incontrovertible that the hierarchical genotype

scheme typical of HGA is better suited for optimizing multilevel allocation problems than

the one-dimensional vector schemes of conventional GA.

The reason why the GA yielded inferior solutions in comparison to the HGA is that the

57

GA requires vector transformation of the hierarchical design variables. The vector

transformation of hierarchical design variables into one dimensional array representations

actually reduces the feasible design space, and the GA may consequently fail to find

superior solutions that exist just beyond its feasible design space. Because HGA do not

require vector transformation, the feasible design space remains unaffected, and this leads

to better optimal solutions during the searching process. Additionally, the hierarchical

coding method proposed in this research can express the exact internal structure with series

linkage.

Furthermore, the simultaneous allocation of redundancy at two or more levels also

leads to better solutions than those provided by conventional GA. Allocated resources can

be appropriately shared at all levels, and one such optimal arrangement of redundant units

is graphically illustrated in Fig.3.12. We see that the optimal HGA solution contains two

parallel modules for unit
11

U ; and sub-units
111

U ,
112

U , and
113

U have single, double,

and double redundancy, respectively. On the other hand, the optimal solution obtained

using the conventional GA contains four parallel
11

U modules, and all the sub-units have

only single redundancy. A similar pattern can be seen concerning the other two
1

U

modular units. Hence, an additional significant advantage that the use of HGA provides is

that redundancy at both the unit, and the sub-unit level can be achieved simultaneously.

The performance of the HGA in solving the two examples here indicates that

hierarchical genotype representation is not only capable of solving multilevel reliability

optimization problems of any size, but also that it allows significant flexibility so that every

possible redundancy combination can be evaluated. This flexibility in redundancy

optimization seems impossible to achieve when using conventional GA. Another useful

feature of hierarchical genotype representation is that optimal redundancies are given

hierarchically for each module, and component. This is highly desirable in a complex

58

system, when the goal of ensuring optimum reliability depends on determining exactly how

many redundancies are required for a particular module at a particular level in the

hierarchical system.

3.7 Summary

Multilevel redundancy allocation optimization problems are frequently encountered in

complex system designs. This chapter proposed a general formulation for multilevel

redundancy allocation optimization problems that aim to maximize system reliability.

These multilevel optimization problems have hierarchical design variables, so we proposed

a new coding method for use in a HGA, in which hierarchical design variables of MRAOP

are represented using two types of hierarchical genotype: nodal, and terminal. We applied

the newly developed HGA, and a conventional GA separately, to solve two multilevel

series redundancy allocation optimization problems having three, and four levels. The

optimal solutions for these two problems demonstrated that the proposed HGA provides

optimal system reliability that is superior to the conventional GA results, because it does

not depend on the use of vector coding to represent the hierarchical variables, and can

preserve the original design space. HGA using the new variable coding method presented

here can be applied in other hierarchical optimization problems, but the efficiency of such

algorithms must be investigated. We hope to extend our approach for optimizing the

system reliability of other multilevel structures such as hierarchical series-parallel,

multilevel network, and other multilevel configurations in future work.

59

Chapter 4

Optimal modular redundancy allocation in series and series-parallel

systems

4.1 Introduction

Modularity in product design is a crucial topic when developing highly reliable product

architectures. It is a key strategy for achieving better serviceability and reliability,

particularly when designing products whose lifetime operational costs exceed the initial

acquisition cost, such as for airplanes, locomotives, power generating plants, and major

manufacturing equipment
[160]

. Most complex engineering systems of this kind contain

thousands of different components that function interdependently, while certain

components are used only for a specific set of subtasks within the system. Such sets of

components having independent functions can be accommodated within a simple

subsystem, or sub-unit. Here, such a subsystem is called a module. In system reliability

theory, a module indicates a group of components that has a single input from, and a single

output to, the rest of the system
[143]

. The contribution of all components in a module to the

performance of the whole system can be represented by the state of the module. Once the

state of the module is known, one does not need to know the states of the components

within the module to determine the states of the system.

Systems that have modular subsystems usually have superior fault tolerance, ease of

maintenance, and allow modules to be recovered for possible further use when the system

as a whole has reached the end of its useful life
[137]

. Furthermore, a modular system is often

simpler than a complex system built from single components. In essence, the modular

architecture of a high-reliability design reduces the number of parts in an optimal

configuration by providing a modular redundancy. Despite the subtle and profound benefits

60

of modular redundancy, which enhances fault tolerance and reduces lifecycle costs,

optimizing modular-level allocation under resource constraints is a challenging task for

design engineers.

Conventionally, redundancy is added either to a component level or to a subsystem

level, when optimizing system reliability. The redundancy added at the component level is

termed component redundancy, and redundancy added at the modular level is termed

modular redundancy. Specifically, a redundant module is a similar module added in parallel

to the existing module to increase its reliability without altering its internal structure. Fig.

4.1 illustrates these two redundancy schemes in a series system containing three

components.

(a) Basic reliability block diagram

 (b) Component level allocation (c) Modular level allocation

Fig. 4.1. Redundancy allocation in a series system containing three components

In other words, we preserve a module‟s internal structure, such as the arrangement of

its sub-modules and components, while providing modular redundancy. Thus, we need not

know the status of its components in order to know the status of the system. Modular

redundancy therefore simplifies the complexity of the system and makes it easier to isolate

faults in case of failure.

In the literature, we find proposals for various models that deal with several system

1 2 3

11

12

22

22

31

32

11 21 31

12 22 32

61

configurations, such as series, parallel, series-parallel, network, and k-out-of-n systems, and

others. To maximize the system reliability of these models, a large number of techniques

have been proposed for optimal redundancy allocation problems. Most techniques for

redundancy optimization, however, have been limited to single levels
[6]

. Boland and

EL-Neweihi
[144]

 demonstrated that redundancy at the component level is not always more

effective than redundancy at the system level for redundancy cases using non-identical

parts. In addition, applying modular redundancy can make a system truly fault tolerant. For

example, a modular system can shift operation from failed modules to healthy ones,

allowing repairs to be carried out without downtime
[137]

. The design transition from

component to modular redundancy actually reduces costs and enhances efficiency,

flexibility, and reliability. Despite the various benefits that modularity offers, multilevel

modular redundancy allocation optimization has seldom been discussed in detail, nor has

an appropriate methodology been provided. To leverage the merits of modular redundancy

allocation, this research presents a methodology for optimizing the system reliability of a

multilevel class of problems using a modular redundancy allocation scheme.

In a similar direction, Yun and Kim
[152]

 proposed a multilevel series redundancy

allocation optimization model in which they considered that each unit of a three level series

system is subjected to redundancy, and they optimized system reliability by using

conventional genetic algorithms (GAs). Their method can solve certain problems based on

the assumption where only one unit is allowed to have redundancy in a direct line. This

assumption reduces the feasible design space and fails to yield a globally optimal solution,

because conventional GAs require a one-dimensional vector representation of the design

variables. Later, Yun et al
[161]

 presented a formulation of multiple multi-level redundancy

allocation problems for series systems and applied a GA with a sequential recording method,

without reflecting the solution positions. However, the design variables in a multilevel

62

system have hierarchical relationships, and the artificial transformation into vector coding

leads to a reduced feasible design space and suboptimal solutions.

Therefore, this research work proposes a modular redundancy allocation optimization

methodology in which hierarchical design variables are represented by hierarchical

genotypes in the optimization. This customized methodology is based on a type of genetic

algorithm proposed by Yoshimura and Izu
[158]

, in which the hierarchical genotype coding

representation is used to exactly express the internal structure and related hierarchical

details, a technique using so-called Hierarchical Genetic Algorithms (HGAs). In order to

handle general multilevel redundancy allocation problems such as series and series-parallel

problems, this research redefines a mathematical expression of system reliability for series

and series-parallel and proposes a design-variable coding method using hierarchical

genotypes. This research demonstrates that a HGA can handle both modular and

component schemes of redundancy allocation easily, by using two newly defined genotypes,

nodal and terminal.

This chapter is organized as follows. Section 4.2 describes the detailed mathematical

formulation for the multilevel redundancy allocation optimization problems. In Section 4.3,

HGA concepts are explained and a HGA coding method for modular redundancy allocation

optimization problems is proposed. In section 4.4, we solve two multilevel redundancy

optimization problems, one series and one series-parallel, each having four hierarchical

levels. In this section, the input data used and the results are summarized. The results

obtained in Section 4.4 are explained and discussed in Section 4.5. Finally, Section 4.6

concludes the chapter.

4.2 Modular redundancy allocation in series and series-parallel system

A multilevel redundancy allocation optimization problem is structurally hierarchical,

with the system level topmost and the component level at the very bottom. The

63

subsystems in between the top and the lowest levels are the so-called modules. Each of

these modules and their components are termed a unit.

Fig. 4.2. Series and parallel redundancy allocation in unit
1

U .

Fig. 2.6 is a schematic diagram of a general multilevel redundancy allocation

configuration. In this figure,
1

U is a system unit containing
11

U to
1,1 n

U units as

modules at its next lower hierarchical level. Similarly, the
11

U unit, which is actually the

second level of the system hierarchy module, contains
11

n sub-units as modules or

components at its next lower level, represented as
111

U to
1111n

U . This structure is

1

11
U

1
U

11

11

x
U

1

12U

12

12

x
U

11
U

12
U

1
U

(a) Series configuration

Redundancy allocation in

series configuration

(b) Parallel configuration

Redundancy allocation in

series configuration

Using Eq. (1), system reliability is])1(1[])1(1[1211

12111

xx RRR 

Using Eq. (2), system reliability is])1()1(1[1211

12111

xx RRR 

11U
12U

1

11
U

1
U

11

11

x
U

1

12
U 12

12

xU

11U 12U

11
U

12
U

1
U

64

replicated until the lowest level of system hierarchy is reached. The connecting lines in the

diagram imply the logical relationships among the units at different levels, relationships

that may be in series, in parallel, or combinations of these two. Redundancy at all levels is

assumed to be active and failures are statistically independent.

The reliability
i

R of unit
i

U for multilevel series and parallel configurations can be

calculated using (2.3), (2.4), and (2.5) given in chapter 2. Fig. 4.2 shows an example of

redundancy allocation in unit
1

U . Fig. 4.2(a) and Fig. 4.2(b) illustrates the redundancy

allocation in a series and parallel system, respectively. The cost constraint of a multilevel

redundancy allocation model also reveals hierarchical relationships among the multilevel

units. The system cost is essentially the sum of the component and module costs. The

assembly costs represent the sum of the costs of adding, duplicating or repairing the

module or component. Note that there are definite advantages to using modular

redundancy, because the cost of adding, duplicating, or repairing a module is lower than

carrying out a similar action upon a component. This is because the lower the level in a

system, the more costly the repair job. The expressed cost function will differ depending

upon the arrangement of different structures.

Fig. 4.3. An example of series redundancy allocation in a unit
1

U

The redundancy allocation optimization problem in a reliability system consisting of a

1

11
U

1

1
U

11

11

x
U

1

12
U

12

12

x
U

1

11
U

1

1

x

U

11

11

x
U 1

12
U

12

12

x
U

System

65

set of design variables is expressed as:

 Maximize 
s

R f (x) (4.1)

 Subject to C (x)
0

C (4.2)

where
s

R , f(x), C(x), and x are the system reliability, reliability function, cost function,

and a set of design variables, respectively.
0

C is a given fixed positive value for the cost

constraint. For example, the problem of optimizing a 2-level series redundancy allocation,

as shown in Fig.4.3, can be stated mathematically as follows:

 s
R =]}))1(1{})1(1{1(1[11211

1211

xxx RR  (4.3)

where,
1

x ,
11

x , and
12

x are the number of redundancy of units
1

U ,
11

U , and
12

U ,

respectively. The values of the design variables,
11

x , and
12

x depend on the value of
1

x ,

the design variable of the parent unit. If the number of redundancies represented by
1

x is

two, then the redundancies of
11

x , and
12

x should be at least two, however the values of

design variables
11

x , and
12

x are independent of each other.

 In this chapter, the following cost functions have been applied to calculate the

costs for modules and components:


 


i in

m

x

j

i

j

mii xCC
1 1

, (4.4)

 ix

iiii xcC  (4.5)

where
j

miC , are the modular costs of sub-units
j

miU , . The symbols
i

x , ic , and
i

respectively represent the redundancy number, the unit cost, and the assembly cost for the

i-th unit. Each
j

miC , value is calculated using Eq (4.4) at the level immediately below the

unit, and these calculations are recursively iterated to the level just above the very lowest

hierarchical level. At the very lowest level, where there are no sub-units belonging to unit

i
U , the cost is calculated using Eq (4.5). Eq (4.5) first appears in the paper of Yun and

66

Kim
[152]

. Thus, the total cost for a multilevel structure is calculated by using Eq(4.4) and

Eq(4.5).

4.3 Hierarchical Genetic Algorithm for series and series-parallel problems

Hierarchical Genetic Algorithms
[158]

 are customized and applied to solve the multilevel

redundancy allocation optimization problems here. HGAs are advanced genetic algorithms

that can represent hierarchical relationships among design variables using hierarchical

genotypes, and can optimize hierarchical problems in a single optimization process. While

conventional genetic algorithms
[122]

 use vector genotype structures, HGAs employ

hierarchical genotype structures.

Fig. 4.4. Crossover and mutation operators for hierarchical genotype.

The multilevel redundancy allocation optimization problems here involve hierarchical

relationships among design variables, which represent redundant modules or component

selections and hierarchical genotype representation is particularly suited to handling such

hierarchical relationships. Since HGAs have special types of genotype structures, new

crossover and mutation operators have to be applied. The HGAs allow branches of the

hierarchical structure to be exchanged, in addition to the exchange of genes. Fig.4.4

Original Structure

Mutated offspring

1 3 1 2

4 3 1 2

Parent 1 Parent 2

Offspring 1 Offspring 2

2 1 3 1 2

1 1 4 3

1 4 3

2 3 1 2

(b) Mutation operation (a) Crossover operation

67

illustrates the crossover and mutation operators for hierarchical genotypes. Using such

genetic operations, new individuals are produced and optimal hierarchical structures can

then be obtained.

4.3.1 Solution encoding

A hierarchical genotype is represented here using two types of node, ordinal and

terminal, as shown in Table 4.1. Ordinal node
i

N corresponds to redundancy unit
i

U ,

and is characterized by several parameters and design variables. Parameter T }P,S{

represents the type of unit where S means that the sub-units have a series reliability

relationship, while P means a parallel configuration. When T=S, this node is called a series

node, and when T=P, the node is called a parallel node. Parameters k and n stand for the

redundancy number of unit
i

U and the number of sub-units, respectively. Here, k is given

by a design variable at an upper node, while the parameter n is a fixed value that depends

on the optimization problem to be solved. j

mi
x

,
 is a design variable denoting the

redundancy number for the m-th sub-unit of the j-th redundancy unit, where j varies from 1

to k. Therefore, there are kn
i

 design variables in unit
i

U . A terminal node
it

N

corresponds to one of the lowest units, and incorporates design variable k, unit reliability
i

r ,

and the unit cost
i

c . Since there are no sub-units at the terminal node, it does not contain

parameter n or design variable j

mi
x

,
. Using these two genotypes, all possible redundancy

allocation solutions for both the series and series-parallel reliability allocation problems can

be represented.

68

TABLE 4.1

HIERARCHICAL GENOTYPE REPRESENTATION FOR SERIES AND SERIES-PARALLEL SYSTEM

 Ordinal genotype node iN Terminal genotype node
it

N

Design

variable

j

mi
x

,
: the number of subordinate

modules for the m-th module

Parameter

T: unit type

n: the number of sub-modules

k: the redundancy for unit iU

k: the redundancy for component iU

ir : unit reliability

ic : unit cost

Fig. 4.5 illustrates an example of the genotype encoding. Fig. 4.5(a) shows a

redundancy configuration for a system
1U consisting two modules,

11U and
12U , at the

second level. This redundancy structure can be represented using hierarchical genotype

nodes as shown in Fig. 4.5(b). The ordinal and terminal nodes are assigned to represent

module and component units at each level. Note that unit features, such as the number of

redundant units and series or parallel configuration, are expressed in the corresponding

upper unit node. This redundancy allocation solution has two redundant units for U11, and

this feature is characterized using 21

1,1


U
x in the U1 node. Furthermore, the parallel

relationship between U121 and U122 is described as T = P in node U12. Thus, a single system

node exists in this representation scheme in order to denote that
1

U has only a single

redundancy unit. Note that the units that have series and parallel relationships cannot share

the same upper unit.

69

(a) An example of a multilevel reliability system U1

(b) Design variables and parameters at each ordinal and terminal node

Fig. 4.5. Hierarchical genotype representation in system U1.

When there is a mixture of series and parallel configurations at the same level, as

11

1,11
Ux

21

2,11
Ux

U11

22

1,11
Ux

12

2,11
Ux

11

1,12
Ux

21

2,12
Ux

U12

21

1,1
Ux

11

2,1
Ux

U1

System

11

1, sysx
n = 1

k = 1

n = 2

k = 1

n = 2

k = 2

n = 2

k = 1

k = 1 k = 2

U112 U111

k = 2 k = 1

U112

U1211

k = 1 k = 2

U1212

T = S

T = S T = P

11

1,121
Ux

21

2,121
Ux

U121

n = 2

k = 1

T = S
11

1,122
Ux

11

2,122
Ux

U122

12

1,122
Ux

22

2,122
Ux

n = 2

k = 2

T = S

U1221

k = 1 k = 1

U1222 U1221

k = 1 k = 2

U1222

U11

U1

2

U

1

U121

1

U121

2

U121

U111
U11

2 U11

2

U11

U111

U111

U11

2

U121

2 U122

U122

1
U122

U122

1

U122

2
U122

2 U122

2

70

shown in Fig. 4.6, U1, U2, U3, and U4 cannot be directly encoded into the hierarchical

genotype. In this case, a new unit, U, which represents the grouping of U2 and U3, is

introduced and the reliability system is encoded using a series node, i.e., T = S, to represent

that its sub-units are U1, U & U4, and U2 & U3 are then encoded as sub-units of U.

Fig. 4.6. Interpretation of mixed series and parallel configurations.

The HGA example shown in Fig. 4.5(b) illustrates that genotypes using fixed arrays,

frequently used in various optimization problems, are not applicable to this problem since

the number of design variables varies according to the number of redundant units. Here, the

two design variables, 1

1,11Ux and 2

1,11Ux , represent the redundancy of U111, since there are

two redundant units for U11, which is the unit above U111 in the hierarchy. If the number of

redundant units for U11 increases, the number of design variables for U111 will also increase.

The solution encoding scheme proposed in this research can successfully represent

different numbers of design variables at every hierarchical level.

The ordinal and the terminal genotypes each have two functions, namely, reliability

and cost, and the difference between series and parallel nodes only pertains to reliability

calculations. When the reliability function in the series node is called, the unit reliability is

calculated using Eq. (2.3), while Eq. (2.4) is used for the parallel node. When calculating

either of these equations, the reliability values of the lower units, k

mi
R

,
, are required, and

these are obtained by calling the reliability function of the lower units. Finally, the

reliability function of the terminal node returns its unit reliability,
i

r . Thus, the reliability

functions are recursively called and the total system reliability can be effectively obtained.

U
1

U
4 U

3

U
2

U 1 U 4
U 3

U 2
U 

71

Similarly, the system cost can be obtained by calling the cost function embedded in each

node.

4.4 Numerical Examples

4.4.1 Four level series and series-parallel problems

In this section, we solve two multilevel redundancy allocation optimization problems.

Fig.4.7 and Fig.4.8 show the two 4-level multilevel systems that have series and

series-parallel configurations. We applied the HGA to optimize the system reliability of

these two problems. For example,
1

U is a unit at the system level, (
11

U ,
12

U) and (
111

U ,

112
U

121
U ,

122
U) are units at module levels, and (

1111
U &

1112
U ,

1121
U &

1122
U ,

1211
U &

1212
U ,

1221
U &

1222
U) are units at the component level.

 Fig. 4.7. Four-level hierarchical series configuration of
1

U .

Fig.4.7 shows a series system in which all the units are arranged in series at every level,

while Fig.4.8 shows a series-parallel system in which
121

U &
122

U and
1121

U &
1122

U

are in parallel and the rest of units are in series either at the same level or at different

levels. We see in Fig.4.8 that
12

U &
112

U consists of parallel units,
121

U &
122

U and

1121
U &

1122
U at their immediate lower levels.

1121
U

U11

1122
U

1112
U

U112 U111

1221
U

U12

1222
U

1211
U

U122 U121

1111
U

1212
U

U1

72

Fig. 4.8. Four-level hierarchical series-parallel configuration of
1

U .

4.4.2 Input data

Suitable parameters for optimizing the two allocation problems were selected based on

several experimental runs using the proposed HGA. The crossover rates,
1c

p and
2c

p
,
 when

solving these problems, were respectively set to 0.8 & 0.5 and the mutation rate
m

p was set

to 0.05. An initial population of 100 individuals was generated, and 500 generations were

processed in each case. Table 4.2 summarizes the basic reliability and corresponding cost

for each unit in both problems. The unit reliability and the unit cost at the very lowest level

in the multilevel redundancy allocation problems were used when calculating the unit

reliability and the unit cost of upper level units, up to the system level. In each of these

tables, x ‟s represent the integer value of the optimal redundancy to be obtained during the

optimization process.

U1

U11 U12

1121
U 1122

U
1112

U

U111

1221
U 1222

U
1211

U
1111

U
1212

U

U112 U121 U122

73

TABLE 4.2

INPUT DATA

Level Unit
Parent

unit
Redundancy

Basic Reliability
Cost 

Series system Series-parallel

1 U1 1x 0.2198 0.6268 102 2

2 U11 U1 2
x 0.5130 0.7110 48 2

 U12 U1 3x 0.4284 0.8816 50 2

3 U111 U11 4x 0.7200 0.7200 21 3

 U112 U11 5x 0.7125 0.9875 21 3

 U121 U12 6x 0.6300 0.6300 23 3

 U122 U12 7x 0.6800 0.6800 21 3

4 U1111 U111 8x 0.9000 0.9000 7 4

 U1112 U111 9
x 0.8000 0.8000 6 4

 U1121 U112 10x 0.7500 0.7500 8 4

 U1122 U112 11
x 0.9500 0.9500 5 4

 U1211 U121 12
x 0.7000 0.7000 9 4

 U1212 U121 13
x 0.9000 0.9000 6 4

 U1221 U122 14
x 0.8500 0.8500 5 4

 U1222 U122 15
x 0.8000 0.8000 8 4

4.4.3 Computational results

The HGA was applied to solve the series and series-parallel problems using separate

modular and component redundancy schemes, under the same HGA parameters. In the

modular redundancy scheme, we allowed potential redundancy for units at all levels,

whereas in the component scheme, we only allowed redundancy at the component level.

We applied these two schemes to explore what the differences in the optimal solutions

would be under the same cost constraint. Ten cases that used varying unit reliability values

in basic configurations were considered when solving the two problems, and ten

500-generation trials were performed in each case.

74

Figure 4.9. Convergence of fitness value in hierarchical series configuration.

Figure 4.10. Convergence of fitness value in hierarchical series-parallel configuration.

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 100 200 300 400 500

F
it

n
es

s

Generation

Worst

Best

Average

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

F
it

n
es

s

Generation

Best

Worst

Average

75

TABLE 4.3

OPTIMAL REDUNDANCY ALLOCATION IN SERIES SYSTEM

Basic

Reliability
Modular Redundancy Component Redundancy

Optimal Configuration

1x -
32 xx -

54 xx -
98

xx -

1110xx -
76

xx -
1312

xx -
1514xx

Optimal

Reliability

Optimal Configuration

1x -
32 xx -

54 xx -
98

xx -

1110xx -
76

xx -
1312

xx -
1514xx

Optimal

Reliability

0.3202
1-22-11-1222-

2222-21-32-33
0.9775

1-11-11-23-

32-11-32-23
0.9460

0.1050
1-11-21-2212-

33-12-23-2222
0.8677

1-11-11-33-

23-11-22-32
0.7658

0.3202
1-11-22-2212-

2122-12-33-2222
0.9777

1-11-11-32-

23-11-23-32
0.9460

0.1201
1-11-12-32-

2223-12-22-2222
0.8870

1-11-11-22-

33-11-22-33
0.7857

0.1587
1-11-12-32-

2223-12-22-2222
0.9368

1-11-11-33-

32-11-32-22
0.8427

0.1805
1-11-32-112222-

2123-21-2211-32
0.9508

1-11-11-23-

23-11-23-32
0.8578

0.2318
1-11-12-23-

1212-22-2132-2222
0.9538

1-11-11-23-

22-11-32-23
0.9094

0.2938
1-11-12-23-

2122-22-2232-32212
0.9742

1-11-11-32-

32-11-23-32
0.9376

0.2179
1-11-22-2222-

2222-21-2222-32
0.9502

1-11-11-32-

32-11-23-32
0.8945

0.2085
1-11-23-2122-

112112-22-2222-2132
0.9645

1-11-11-33-

32-11-22-32
0.8928

Fig.4.9 and Fig.4.10 show the convergence of objective function values in ten

500-generation for both the problems. The cost constraint was always kept constant at a

value of 500. Finally, the best solution among the 10 trials is summarized for the two

problems in Table 4.3 and Table 4.4. Optimal redundancy allocations and solutions are

76

given in both tables. Table 4.3 provides the best solutions for the series redundancy

allocation problems and Table 4.4 the best solutions for the series-parallel problem, and the

reliability settings are the same in each row of the tables. Here, reliability settings refer to

the number of units, the hierarchical levels, and the reliability of the units.

TABLE 4.4

OPTIMAL REDUNDANCY ALLOCATION IN SERIES-PARALLEL SYSTEM

Basic

Reliability

Modular Redundancy Component Redundancy

Optimal Configuration

1x -
32 xx -

54 xx -
98

xx -

1110xx -
76

xx -
1312

xx -
1514xx

Optimal

Reliability

Optimal Configuration

1x -
32 xx -

54 xx -
98

xx -

1110xx -
76

xx -
1312

xx -
1514xx

Optimal

Reliability

0.3202
1-11-21-2323-

22-11-32-22
0.9991

1-11-11-23-

32-11-32-23
0.9422

0.1050
1-11-31-221223-

22-31-222221-22
0.9956

1-11-11-33-

23-11-22-32
0.7658

0.3202
1-11-22-2332-

2211-21-2222-22
0.9993

1-11-11-32-

23-11-23-32
0.9460

0.1020
1-11-22-3232-

2211-21-2122-22
0.9986

1-11-11-31-

33-11-22-33
0.7857

0.1587
1-11-31-222322-

22-21-1122-23
0.9967

1-11-11-33-

22-11-32-22
0.8427

0.1805
1-11-41-22232212-

23-11-22-22
0.9975

1-11-11-23-

23-11-23-32
0.8578

0.2318
1-11-31-222221-

32-12-21-2322
0.9995

1-11-11-23-

23-11-32-23
0.9094

0.2938
1-11-31-221322-

21-31-112223-12
0.9995

1-11-11-23-

22-11-33-23
0.9377

0.2179
1-11-21-3232-

22-21-2312-22
0.9980

1-11-11-32-

32-11-23-32
0.8945

0.2085
1-11-31-222222-

13-11-33-22
0.9986

1-11-11-33-

32-11-22-32
0.8928

77

Table 4.3 and Table 4.4 indicate that the optimal component redundancy allocation is

the same in each case, implying that the achieved values represent optimal system

reliability. However, the optimal modular redundancy allocation and the corresponding

system reliability for the series and series-parallel systems are different. For example, in the

tenth case of Table 4.4, the optimal modular redundancy configuration for
1

U at the

system level, [U1], is [1], at the second level, [U11U12], is [11], at the third level,

[U111U112-U121U122], is [31-11], and at the lowest level,

[U1111U1112-U1211U1212-U1211U1212-U1221U1222], is [222222-13-33-22]. Fig.4.11 shows an

optimal redundancy arrangement in the modular schemes.

For the same case in Table 4.4, the optimal component redundancy configuration for

1
U at the system level, [U1], is [1], at the second level, [U11U12], is [11], at the third level,

[U111U112-U121U122], is [11-11], and at the lowest level,

[U1111U1112-U1211U1212-U1211U1212-U1221U1222], is [33-32-22-32]. Fig. 4.12 shows an optimal

redundancy arrangement for the component scheme. All the optimal solutions summarized

in Table 4.3 and Table 4.4 can be illustrated by pictorial representations in a similar way.

Next, we solved the two allocation optimization problems by varying the cost

constraints. Ten cases using various cost constraints while maintaining constant values of

unit reliability were considered when solving the series and series-parallel problems, 10

500-generation trials were performed in each case. Finally, the best solution among the 10

trials was selected as the optimal solution. Fig. 4.13 and Fig. 4.14 graphically show the

trends of the optimal solutions when plotted against the cost constraints for both systems.

In both problems, the cost constraint was varied in increments of 50, from 200 to 650.

78

Fig. 4.11. Optimal modular allocation in 4-level series-parallel system.

Fig. 4.12.Optimal component allocation in 4-level series-parallel system.

U11

21

U12

11

U12

12

U12

1

U11

U1
U12

U11

22

U11

22

U11

22

U11

2

U12

11

U12

11

U12

12

U12

12

U12

21
U12

22

U12

21
U12

22

U12

2

U11

11
U11

12

U11

1 U11

11
U11

12

U11

11
U11

12

U11

1 U11

11
U11

12

U11

11
U11

12

U11

1
U11

11
U11

12

U112

1

U121

1

U121

U11
U12

U1

U111

1
U111

2

U111

U111

1
U111

2

U112

2

U112

2

U112

U121

1

U121

2

U122

1 U122

2
U122

1 U122

2

U122

U111

1
U111

2

U112

1

U112

1

U122

1

U121

2

79

Fig. 4.13. Modular and component redundancy allocations in series system.

Fig. 4.14. Modular and component redundancy allocations in series-parallel system.

0.3500

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

0.9000

0.9500

1.0000

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

O
p

ti
m

a
l

re
li

a
b

il
it

y

Cost

Component Modular

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

200 250 300 350 400 450 500 550 600 650

O
p

ti
m

a
l

re
li

a
b

il
it

y

Cost

Component Modular

80

In both figures, we compare the optimal solutions obtained using a modular

redundancy scheme with those obtained using the component redundancy scheme. The x-

and y-axes respectively represent the system cost constraints and the optimal system

reliability.

4.5 Discussion

The numerical examples for the multilevel series and series-parallel redundancy

allocation problems clearly demonstrate that the modular scheme of redundancy allocation

has certain distinct advantages over the component scheme of redundancy allocation. The

obtained results shown in Table 4.3 and Table 4.4 clearly support the claim that a modular

redundancy approach yields superior system reliability compared with the component

redundancy scheme. We see in Table 4.4 that the average improvement in optimal solutions

using a modular redundancy scheme for a multilevel series system is 7.6%, and the

maximum improvement is 13.3% better than the best result obtained with the component

scheme of redundancy allocation. Similarly, for the series-parallel system, the modular

redundancy approach yielded an average improvement of 13.8% and a maximum

improvement of 30.0% compared with the component scheme of redundancy allocation.

Although the percentage improvement can vary according to the parameters used, we infer

that modular redundancy yields better optimal solutions than component redundancy

scheme in multilevel redundancy allocation optimization problems.

The average computation time in single run for modular allocation optimization

problems varies between 149.0 to 153.1 seconds. On the other hand, the average

calculation time in component allocation problems lie between 19.6 and 20.2. Thus, the

computational effort in solving modular redundancy allocation optimization problems is

more because of larger search space size than component allocation problems. Furthermore,

Fig.4.12 and Fig.4.13 indicate that the optimal reliability achieved for each of the ten cost

81

constraint cases again demonstrates the superiority of the modular redundancy scheme over

the component scheme. Although, the difference in the optimal solutions between the two

schemes is not very significant at a system cost of 200, higher system cost values

increasingly show the superiority of a modular allocation approach.

Thus, it appears advantageous to allocate redundancy without affecting the internal

hierarchical relationships of a multilevel reliability system. It is recognized that using

conventional GAs to represent design variables having hierarchical relationships is

problematic, and we overcame this difficulty by applying HGAs in which the modular

design variables are encoded using an innovative hierarchical genotype representation. We

observe that the hierarchical genotype representation of modular design variables is highly

appropriate for solving hierarchical reliability optimization problems, since such

representation allows sufficient flexibility for every possible redundancy combination to be

addressed.

As described in the introduction, the particular benefit of using a modular approach to

redundancy allocation in a multilevel system, and hierarchical genotypes, is that both fault

tolerance and system reliability are improved. Modularity reduces the number of parts and

thus simplifies the system design. The fewer parts and subsystems there are, the more

reliable a system will be in service. Thus, well-implemented modular redundancy offers a

kind of synergistic benefit in terms of reducing complexity while increasing the fault

tolerance of a system design, and the computational results presented confirm that modular

redundancy allocation optimizations lead to improved optimal system reliability. This is

because a hierarchical genotype representation not only preserves the hierarchical

relationship of the modular design variables but also allows simultaneous redundancy

allocation at more than one level during the optimization process.

82

4.6 Summary

This chapter discussed the importance of modular redundancy allocation applied to

multilevel system reliability problems. We proposed a methodology to solve series and

series-parallel redundancy allocation problems considering the hierarchical relationships

among design variables. Modular design variables were encoded using hierarchical

genotypes in hierarchical genetic algorithms, and the multilevel redundancy allocation

optimization problems were efficiently solved. The optimization of numerical examples in

this chapter indicates that the modular scheme of redundancy allocation yields superior

system reliability for multilevel configurations, in contrast to the conventional notion that

component level redundancy allocation yields better optimal solutions. The application of a

HGA proved to be flexible and efficient when solving large-scale multilevel redundancy

allocation optimization problems.

83

Chapter 5

Multiobjective hierarchical genetic algorithms for optimal reliability

design

5.1 Introduction

Most complex engineering systems exhibit hierarchical design structures and the

reliability of such systems during the design stage can be optimized either by enhancing

component reliability or by allocating appropriate redundancy at the component level. The

latter technique is widely practiced in industry when designing systems that must be highly

reliable. Problems whose solutions aim to provide optimum redundancy to the units located

at multiple levels of a complex system, subject to certain resource constraints, are generally

termed multilevel redundancy allocation optimization problems (MRAOPs).

Apart from being NP hard
[2]

, MRAOPs involve hierarchical design variables that

require certain basic structural relationships to be maintained throughout the optimization

process. MRAOPs therefore require a suitable algorithm that allows appropriate

representation of hierarchical design variables during the optimization process. Moreover,

the size of the search space when optimizing MRAOPs tends to be very large, so that using

exact methods to solve such problems may too computationally costly. Techniques using

GAs
[122]

 are therefore attractive when solving difficult optimization problems and an

additional reason for their popularity is that they can be customized to solve a particular

problem by introducing user-defined encoding schemes, selection strategies, crossover

operators, and mutation operators. Being stochastic, GAs do not guarantee true globally

optimal solutions, but solutions that approach globally optimum solutions can be easily

found.

Recently, the growing research interest in multilevel reliability modeling and

84

optimization using GAs is reflected in the literature due to the practical importance of these

techniques. Yun and Kim
[152]

 have solved MRAOPs in series systems having three

hierarchical levels using a customized GA. Later, Yun et al.
[161]

 presented a formulation for

multiple multi-level redundancy allocation problems for series systems and applied a GA

with a sequential recording method, without reflecting the solution positions. Levitin
[140]

proposed an algorithm for solving multilevel protection cost minimization problems subject

to survivability constraints. This algorithm is based on a universal generating function

technique used for system survivability evaluation and on a genetic algorithm used as an

optimization engine. However, almost all of the research has been limited to single

objective (SO) optimization problems for maximizing system reliability subject to a cost

constraint.

When solving MRAOPs using GA techniques, two important issues need to be

addressed: how best to represent hierarchical design variables, and how to search for the

best solution most efficiently despite a very large solution space, particularly for problems

having more than three hierarchical levels. The first issue can be resolved by using a HGA,

such as proposed by Kumar et al.
[162]

, that uses a hierarchical genotype encoding scheme

for the MRAOP design variables. However, the second issue, that of searching efficiency

for MRAOPs, has yet to be addressed for single objective HGAs because they use an

elite-preservation strategy which fails to preserve adequate population diversity, so the best

solutions are often overlooked
[163]

. Therefore, the need to apply a diversity preservation

mechanism in selection operators to enhance the yield of optimal solutions during

optimization process is clear, and one way of preserving such diversity is to introduce a

multiobjective (MO) scheme for solving MRAOPs.

In a practical sense, MO optimization is preferable because it provides a

decision-maker with several trade-off solutions to choose from. Furthermore, practical

85

engineering reliability problems actually do have multiple conflicting objectives such as

maximization of reliability and performance while minimizing cost and weight, and so on.

Multiple objective formulations are practically required for concurrent optimization that

yields optimal solutions that balance the conflicting relationships among the objectives.

MO optimization yields a set of Pareto-optimal solutions, which is a set of solutions that

are mutually nondominated
[164]

. The concept of nondominated solutions is required when

comparing solutions in a multidimensional feasible design space formed by multiple

objectives. When two conflicting objectives are present, such as when seeking to maximize

reliability while minimizing cost, there will always be a certain amount of sacrifice in one

objective to achieve a certain amount of gain in the other when moving from one Pareto

solution to another. But decision-makers often prefer to use a Pareto optimal solution set

rather than being provided with a single solution, because the set helps them effectively

understand the trade-off relationships among conflicting objectives and make informed

selections of the best solutions to practical engineering problems.

It is important to note that MO optimization of MRAOPs is more difficult than SO

optimization because the former handles two goals, progressing towards the Pareto-optimal

front and maintaining a diverse set of solutions in the nondominated front, while the latter

has only a single goal of searching for an optimal solution. Moreover, exact methods are

very time consuming in MO optimization since the objective function space in MO is

multidimensional unlike the single objective function space in SO optimization problems.

MO optimization difficulties can be alleviated by avoiding multiple simulation runs, doing

without artificial aids such as weighted sum approaches, using efficient population-based

evolutionary algorithms, and the concept of dominance
[163]

. In addition, the use of

multiobjective genetic algorithms (MOGAs) provides a decision-maker with the practical

means to handle MO optimization problems.

86

Given the above concerns, this chapter aims to address two particular issues when

solving MRAOPs: the suitable representation of hierarchical design variables and the

preservation of population diversity in the selection strategy. To achieve these goals, we

propose a MO formulation for multilevel series redundancy allocation problems and a

methodology to solve them. In this methodology, a general framework of multiobjective

hierarchical genetic algorithms is developed by integrating two different approaches,

namely, a hierarchical genotype representation for the design variables, and a user defined

selection operator with diversity preservation mechanism. In this chapter, we implemented

the non-dominated sorting genetic algorithm (NSGA-II)
[164]

 and the strength Pareto

evolutionary algorithm (SPEA2)
[165]

 in the selection operators, both of which include an

excellent mechanism for preserving population diversity. Additionally, the hierarchical

genotype coding scheme is modified to accommodate MRAOPs design variables that have

serial linkages and a modular structure. The proposed approach is applied in solving two

hierarchical series system MRAOPs, one with three levels and the other with four. We also

conduct a SO optimization using a HGA so that the best solution obtained using this

method can be compared with those of nearest best solutions on the Pareto-optimal fronts

obtained using the NSGA-II and SPEA2.

The rest of the chapter is organized as follows. Section 2 describes a multilevel

redundancy allocation problem and its MO optimization formulation. Section 3 provides

the details of the MOGAs and the proposed framework of the multiobjective HGA

approach. In Section 4, the two numerical examples are solved and computational results

are presented. Discussion of the obtained results is presented in Section 5 and Section 6

presents our conclusions.

5.2 Multiobjective formulation of multilevel redundancy allocation optimization

problems

87

The hierarchical structure of a reliability system is shown in Fig.5.1 in which the

system level is the topmost level and the component level is the lowest. Subsystem or

module levels are located between the top level and the bottom level. Each system, module

and component is here termed a unit. System and module units can have any number of

subordinate units, such as modules that make up the system or components that make up a

module. These subordinate units are called sub-units, and the next highest hierarchical unit

of a sub-unit is called a parent unit. The proposed redundancy allocation model can handle

redundancy for all units of a multilevel reliability system. The multilevel reliability

allocation formulation presented here allows the units to have redundancy not only at the

same level, but also simultaneously for sub-units at lower levels.

Fig.5.1. Multilevel configuration of system reliability.

As described in chapter 2, the reliability of a unit with multilevel series configurations

can be calculated using the following equations:

])1(1[
1

, 



i in

m

x

j

j

mii RR (5.1)





ix

j

j

ii RR
1

)1(1

 (5.2)

The system cost is usually calculated as the sum of the cost of subsystems and modules,

and the cost of a module is the sum of all modules or component costs therein, when there

are parallel units in the level immediate below. In practical systems, it is assumed that

U1

U11

U12

System Modules

Components

U1n

U111

U112

U11n

88

multilevel redundancy incurs additional costs, due to the adding or duplication of redundant

units to modules, and the increased number of components. In general, the redundancy cost

of can be expressed mathematically as follows.


 


i in

m

i

j

mi

x

j

i xCC
1

,

1

additional costs (5.3)

5.2.1 Single objective redundancy allocation optimization formulation

The single objective redundancy allocation optimization problem in a reliability

system consisting of a set of design variables is expressed as:

 Maximize 
s

R f (x) (5.4)

 Subject to C (x)
0

C (5.5)

where
s

R , f(x), C(x), and x are the system reliability, reliability function, cost function,

and a set of design variables, respectively. Each design variable has a minimum and

maximum redundancy value.
0

C is a given, fixed positive value for the cost constraint.

5.2.2 Multiobjective redundancy allocation optimization formulation

The multiobjective redundancy allocation optimization problem is expressed as a

vector of functions:

 Minimize/maximize z (f 1(x), f 2(x),…, f l(x)) (5.6)

where z , l, fl(x), and x are the multiobjective vector function, the number of objective

functions, the l-th objective function, and a set of design variables, respectively. In terms of

minimization of all objectives, a feasible solution x1 is said to dominate another feasible

solution x2)(21 xx  if and only if)()(21 xfxf ll  for Ll ,...,1 and)()(21 xfxf ll  for

at least one objective function l [166]
. A solution is said to be Pareto optimal if it is not

dominated by any other solution in the solution space. The set of all such feasible

non-dominated solutions in a solution space is termed the Pareto optimal solution set. For a

given Pareto optimal solution set, the curve made in the objective space is called the Pareto

89

front. Since the number of Pareto optimal solutions is large and unknown for redundancy

allocation problems, identifying the best known Pareto set by using a suitable MO

optimization algorithm is a major challenge.

A two-objective redundancy allocation optimization problem to maximize reliability

and minimize cost can be expressed mathematically as follows.

 Maximize f 1(x) = f (x) (5.7)

 Minimize f 2(x) = C (x) (5.8)

With such MO optimization problems, it is impossible to find a single optimum solution

that optimizes both objective functions simultaneously in a MRAOP. Therefore, unlike the

aim of finding the best solution to a SO optimization problem, the aim of optimizing two

conflicting objectives simultaneously is to find a set of feasible solutions, each of which is

not dominated by any other solutions.

5.3 Multiobjective hierarchical genetic algorithms

5.3.1 Hierarchical genetic algorithm

A Hierarchical Genetic Algorithm proposed by Yoshimura and Izui
[158]

 is an advanced

genetic algorithm that can represent hierarchical relationships among design variables

using hierarchical genotypes, and can optimize hierarchical problems in a single

optimization process. The term hierarchical genetic algorithm (HGA) comes from the use

of a hierarchical approach when adapting a conventional GA
[167]

. While conventional

genetic algorithms
[122]

 use vector genotype structures, the HGA employs hierarchical

genotype structures. The HGA is based on the fact that the conventional coding schemes

for one dimensional arrays or even multi-dimensional arrays are not suitable for expressing

design problems having hierarchical design structures. Moreover, vector coding scheme

actually reduces the feasible design region as it uses artificial transformation of hierarchical

design variables into vector form.

90

Note that, with hierarchical coding schemes, lower level genotype design variables

depend upon upper level genotype design variables. When the value of an upper level

genotype design variable changes, one or more lower level genotype design variables must

also change, and the length of the genes may change. Since conventional genetic operators

such as crossover and mutation operators cannot be applied to design variables expressed in

hierarchical representations, new operators have been newly defined to handle hierarchical

genotype encoding.

5.3.2 Multiobjective genetic algorithms

Single-objective genetic algorithms (GAs) that can be modified to solve MO

optimization problems and find Pareto optimal sets in a single run are usually called

multiobjective genetic algorithms (MOGAs)
[168]

. MOGAs are well suited to solving MO

optimization problems because population-based approaches are applied and MOGAs can

simultaneously search different parts of feasible design regions. Furthermore, difficult MO

optimization problems that have discontinuous, non-convex, or multimodal solution spaces

can be effectively solved by using customized MOGAs. Most of these MOGAs do not

require artificial adjustments such as priority, scaling, or weighting coefficients for the

objective functions
[163]

. An additional advantage is that the crossover and mutation

operators may be modified to exploit the structural features of preferable solutions.

Over the years, a number of MOGAs have been developed and these can be broadly

classified into two categories: elite MOGAs and non-elite MOGAs
[163]

. Non-elite MOGAs,

as the name suggests, do not utilize elitism when selecting individuals for the next

generation from the current population
[169]

. The first multi-objective GA, termed a vector

evaluated GA (VEGA) proposed by Schaffer
[170]

, was a non-elite MOGA. Other examples of

important non-elite MOGAs are the Niched Pareto Genetic Algorithm (NPGA)
[171]

,

Weight-based Genetic Algorithms (WBGA)
[172]

, Random Weighted Genetic Algorithms

91

(RWGA)
[173]

, Non-dominated Sorting Genetic Algorithms (NSGA)
[174]

, and Fonseca and

Fleming‟s Multi-objective Genetic Algorithms (MOGA)
[175]

.

In contrast, elite MOGAs employ an elite preservation operator in which an external set

is created to store the best solutions of each generation. With this approach, the best

individuals in each generation are preserved, and generated Pareto-fronts are close to the true

Pareto front. Popular elite MOGAs include the Strength Pareto Evolutionary Algorithm

(SPEA)
[166]

, the improved SPEA (SPEA2)
[165]

, the Pareto-Archived Evolution Strategy

(PAES)
[176]

, the Pareto Envelope-based Selection Algorithm (PESA)
[177]

, Region-based

Selection in Evolutionary Multiobjective Optimization (PESA-II)
[178]

, the Fast

Nondominated Sorting Genetic Algorithm (NSGA-II)
[164]

, the Multi-objective Evolutionary

Algorithm (MEA)
[179]

, the Micro-GA
[180]

, the Rank-Density Based Genetic Algorithm

(RDGA)
[181]

, and the Dynamic Multi-objective Evolutionary Algorithm (DMOEA)
[182]

.

However, none of these MOGAs has been applied to the solving of MRAOPs that

include hierarchical design variables. Though Yoshimura et al.
[183]

 proposed a MO

optimization method based on hierarchical arrangement of the design characteristics, its

applicability is limited to machine product design. Additionally, the coding scheme

proposed by Yoshimura and Izui
[158]

 is not directly applicable to MRAOPs. The reason is

that these problems contain hierarchical design variables with logical linkage, such as serial

or parallel connections. Later, Kumar et al.
[162]

 proposed a new coding scheme to encode

the hierarchical design variables of MRAOPs and applied SO optimization using a HGA.

Therefore, this paper formulates a new methodology for multiobjective optimization

MRAOPs. In this methodology, a general framework for a multiobjective GA based on

hierarchical genotype representation encoding for the design variables is proposed. As the

proposed multiobjective genetic algorithm uses hierarchical approach in solution encoding,

this is termed multiobjective hierarchical genetic algorithm (MOHGA). The following

92

section describes the common framework for MOHGAs.

5.3.3 Multiobjective hierarchical genetic algorithm

For handling hierarchical design variables and solving multiobjective MRAOPs, this

paper proposes a general framework for multiobjective hierarchical genetic algorithm as

follows:

Algorithm 1: Common framework for MOHGAs

Step 1: Initialize the population P in which each design variable is encoded by a

hierarchical genotype

Step 2: Conduct a selection operation to select elite individuals from P and store their data

in external set E (optional and not for non-elitist MOGAs)

Step 3: Create a mating pool using either P or E, or both

Step 5: Apply hierarchical crossover and hierarchical mutation operators

Step 6: Evaluate individuals

Step 7: Conduct reproduction based on the pool to create the next generation of P

Step 8: Combine P and E

Step 9: If termination criteria are not satisfied, return to Step 2.

In this general framework, selection of elite individuals can be conducted according to

the user‟s designed algorithms while preserving the hierarchical genotype coding scheme.

This paper implemented NSGA-II and SPEA2 for the selection operator in the above

MOHGA. The rationale for implementing these two algorithms is that both of them include

effective mechanisms for preserving diversity and can yield better Pareto optimal solution

sets. Additionally, this paper applies SO using HGA and compares the optimal solutions

with those obtained by MO using MOHGA with NSGA-II and SPEA2 at a certain fixed

cost. This will aid in understanding the MRAOP search patterns to design more efficient

algorithms. In the following subsections, solution encodings, selection algorithms, and

93

modified operators are described.

5.3.3.1 Solution encoding

The design variables in MRAOPs are encoded using hierarchical genotypes so that the

hierarchical structure of these variables will be preserved intact. The hierarchical genotypes

used here are represented using two types of nodes, termed ordinal and terminal nodes.

Ordinal node
i

N corresponds to redundancy unit
i

U , and is characterized by several

parameters and design variables. Parameters ik and in stand for the redundancy of unit

i
U , and the number of sub-units, respectively. Here, ik is given by a design variable at an

upper node, while the parameter in is a fixed value that depends on the optimization

problems to be solved.
j

mix , is a design variable denoting the redundancy for the m-th

sub-unit of the j-th redundancy unit, where j varies from 1 to k . Therefore, there are

iikn design variables in unit
i

U . A terminal node
it

N corresponds to one of the lowest

units, and incorporates design variable ik , unit reliability
i

r , and unit cost ic . Since there

are no sub-units, this terminal node does not contain parameter
i

n or design variable
j

mix , .

Using these two genotype nodes, all possible optimal solutions for series reliability

allocation problems can be represented.

Furthermore, the ordinal and terminal genotypes each have two evaluation functions,

namely, reliability and cost. When the reliability function in the ordinal genotype is called,

a calculation is conducted using Eq. (1). When calculating this equation, the reliability

values of the lower units,
j

miR , , are required, and these are obtained by calling the

reliability function of the lower units. Finally, the reliability function of the terminal

genotype returns its unit reliability
i

r . Thus, the reliability functions are recursively called,

and the total system reliability can be obtained. Similarly, the system cost can be obtained

by calling the cost function embedded in each genotype.

94

The coding schemes used in the HGA can be understood more clearly by examining a

redundancy allocation example for a two-level series unit
1U having two sub-units,

11U

and
12U , as shown in Fig.5.2.

(a) Redundancy allocation (b) Design variables at each node

Fig. 5.2. Hierarchical genotype representation in a bi-level series system U1.

The redundancy values for sub-units
11U and

12U are 2 and 1, respectively. The HGA

allows redundancy at two levels simultaneously. Fig.5.2(a) shows the redundancy

allocation at both the system level and the level of the sub-units. Note that genotypes which

use fixed arrays, frequently used in various optimization problems, are not applicable to

MRAOPs since the number of design variables varies according to the number of

redundant units. Here, the number of genes varies dynamically based on the proposed

solution configuration, and the applied coding scheme is capable of handling dynamic

variations in the values of design variables during the optimization process.

5.3.3.2 Hierarchical crossover

Crossover operations between individuals are conducted among each corresponding set

of genes, using a two-step procedure. For the initial step, any other individual is first

selected as the crossover partner and crossover operators then exchange the corresponding

genes of the two individuals. Here, when a gene of an alternative for a substructure is

1U

1

11U

1

1U

2

11U

12U 11U

1

12U

System
System

1

11x = 2
1

12x = 1

1U

k = 2

11U

 k = 1

12U

n = 2
k = 1

1

sysx = 1 n = 1
k = 1

95

exchanged with the corresponding gene of another alternative, all corresponding lower

substructures are also exchanged, to preserve consistency in the selection of alternatives. If

this operation were not conducted in this way, meaningless lower structures might be

generated in the lower positions of the exchanged substructures. The algorithmic

procedures are follows:

Algorithm 4: Crossover for handling hierarchical genotype

Step 1: Select two individuals for crossover operations, then find the set of genes at the

highest level of the multilevel structural system for each of the two individuals, and

start the crossover operation with probability
1c

p .

Step 2.1: If the gene
j

mix , of individual 1 and that of individual 2 are different; conduct a

crossover operation for
j

mix , with probability
2cp . This operation is the same as a

uniform crossover of simple genetic algorithms with
2cp set to 0.5. Then, proceed

to Step 2.3. If crossover operations are not conducted, proceed to Step 2.4. If the

genes of both individuals are the same, proceed to Step 2.2.

Step 2.2: If
j

mix , contains a subordinate set of genes; it will be examined for possible

crossover operations in Step 2.1. Otherwise, proceed to Step 2.4.

Step 2.3: When
j

mix , genes are exchanged between individuals 1 and 2, the lower

substructures of each individual are also exchanged.

Step 2.4: Increment m by 1. When nm  , m =1, increment j by 1. When kj  , end

the crossover operations since the set of genes has been exhausted, and return to the

crossover operations for the parent set of genes.

Fig.5.3 shows an example of the crossover operation between unit U12 of the first

individual and U12 of the second individual. With exchange of parent unit U12, the subunits

96

of U12 are also exchanged. Note that the design variables of U12 of both the parents are

unequal in the given example. However, if the design variables of U12 in both the parents

are equal, the subunits of U12 are subject to crossover operation.

Fig.5.3. An example of hierarchical crossover operation in a 3-level series system U1

5.3.3.3 Hierarchical mutation

In mutation operations, mutation operators are first applied to the set of genes at the

highest level of the multilevel structural system, and mutation operators are recursively

applied to the sets at sub-unit levels in the same way as for crossover operators. The

algorithmic procedures are as follows:

Algorithm 5: Mutation for handling hierarchical genotype

Step 1: Examine the substructure at the highest level.

Offspring1 Offspring2

R1=0.53

x1=1

R11=0.70

x11=1

R111=0.90

x111=2

R112=0.70

x112=1

R121=0.80

x121=1

R122=0.95

x122=1

R12=0.76

x12=1

R1=0.69

x1=1

R11=0.70

x11=1

R111=0.90

x111=2

R112=0.70

x112=1

R121=0.80

x121=2

R122=0.95

x122=1

R12=0.91

x12=2

R121=0.80

x121=2

R122=0.95

x122=1

Parent1 Parent2

Exchange

R1=0.53

x1=1

R11=0.70

x11=1

R111=0.90

x111=2

R112=0.70

x112=1

R121=0.80

x121=1

R122=0.95

x122=1

R12=0.76

x12=1

R1=0.69

x1=1

R11=0.70

x11=1

R111=0.90

x111=2

R112=0.70

x112=1

R121=0.80

x121=2

R122=0.95

x122=1

R12=0.91

x12=2

R121=0.80

x121=2

R122=0.95

x122=1

97

Step 2.1: Determine whether or not a mutation operation should be conducted, with

mutation probability mp for the gene
j

mix , . If the mutation is conducted,

proceed to Step 2.3 otherwise proceed to Step 2.2.

Step 2.2: If
j

mix , contains set of genes at sub-unit levels, proceed to Step 2.1 and examine

sub-unit set of genes. If not, proceed to Step 2.5.

Step 2.3: Randomly generate
j

mix , .

Step 2.4: Randomly reconstruct the genes of all sub-unit‟s node for the selected alternative.

Step 2.5: Increment m by 1. When nm  , m =1, increment j by 1. When kj  , end

the crossover operations since the set of genes has been exhausted, and return to

the crossover operations for the parent set of genes.

Fig.5.4 shows an example of the mutation operation in a unit U12 of an individual U1. A

new structure of unit U12 along with its subunits is randomly generated and replaces the

older configuration of U12. The design variables of lower units of U12 are also randomly

generated.

Fig. 5.4. An example of hierarchical mutation operation in a 3-level series system U1

5.3.3.4 Selection operator

The selection method used in this paper implements NSGA-II and SPEA2 algorithms.

Parent Mutated Offspring

R1=0.64

x1=1

R11=0.70

x11=1

R111=0.90

x111=2

R112=0.70

x112=1

R121=0.80

x121=2

R122=0.95

x122=1

R12=0.91

x12=1

R1=0.69

x1=1

R11=0.70

x11=1

R111=0.90

x111=2

R112=0.70

x112=1

R121=0.80

x121=3

R122=0.95

x122=2

R121=0.80

x121=3

R122=0.95

x122=2

R12=0.98

x12=2

98

Though based on different principles, they both have excellent mechanism for the

preservation of diversity.

Fig. 5.5. Ranking and crowding distance concepts used in NSGA-II

Fig. 5.6. Truncation Operator used in SPEA2

Fig.5.5 and Fig.5.6 illustrate the different concepts, the ranking and crowding distance

used in NSGA-II, and the truncation operator used in SPEA2. These algorithms can be

integrated within the general framework of hierarchical genetic algorithms, for which

details are given in the following subsections.

5.3.3.4.1 NSGA-II

NSGA-II is a fast, elite MOGA proposed by Deb et al.
[164]

. The complete procedure

that NSGA-II uses within the proposed hierarchical framework is given below.

(a) Two nearest solutions on Pareto front

and distance „a‟ and „b‟ are compared

(b) Since „b‟ is less than „a‟,

solution „1‟ is removed

2

1
a

b

f1

f2

Two nearest solutions

Distance

f1

2

1

a

b

f2

(If b<a, remove 1)

(a) Non-dominated ranking (b) The crowding distance calculation

Rank 1

Rank 2

Rank 3

f1

f2

i

i-1

i+1

f1

f2

Cuboid

99

Algorithm 2: NSGA-II

Step 1: Create a random population
0P of size PN in which each design variable is

encoded by a hierarchical genotype. Set 0t

Step 2: Apply hierarchical crossover and mutation operators to
0P to create an offspring

population
0Q of size QN =

PN

Step 3: If the stop criterion is satisfied, stop and return
tP as output.

Step 4: Set
ttt QPS  , apply a non-dominated sorting algorithm and identify different

fronts
1F ,

2F ,…,
kF .

Step 6: Set new population
1tP =0. Set counter i = 1. Until NFP it  |||| 1

 set

itt FPP   11
 and i = i +1.

Step 7: Perform the crowding-sort procedure and include the most widely spread

(|| 1 tPN) solutions found using the crowding distance values in sorted
iF in

1tP .

Step 8: Apply the crowded tournament selection, hierarchical crossover and mutation

operators to
1tP to create offspring population

1tQ .

Step 8: Set 1 tt , then return to Step 3.

Note that when the combined parent and offspring population includes more than PN

non-dominated solutions, NSGA-II acts as a pure elitist GA where only nondominated

solutions participate in crossover and selection.

5.3.3.4.2 SPEA2

SPEA
[166]

 and SPEA2
[167]

 are both very effective algorithms that use an external list to

store non-dominated solutions discovered in the course of searching. They are also excellent

examples for the use of external populations. The procedure for using SPEA2 within the

proposed hierarchical framework is as follows:

100

Algorithm 3: SPEA2

Step 1: Create a random population
0P of size PN in which each design variable is

encoded by a hierarchical genotype. Set 0t and an empty external archive
0E

of size
EN

Step 2: Calculate the fitness of each solution x in
tt EP 

as follows:

Step 2.1: Calculate the raw fitness as  ),(),(, tyStxR xyUEPy tt 
 where),(tyS is the

number of solutions in
tt EP  dominated by solution y.

Step 2.2: Calculate the density as 1)2(),( k

xtxD  where k

x is the distance between

solution x and its k-th nearest neighbor, where
EP NNk 

Step 2.3: Assign a fitness value as),(),(),(txDtxRtxF  .

Step 3: Copy all non-dominated solutions in
tt EP  to

1tE . Now, two cases may arise.

Case 1: If
Et NE  || 1
, then truncate

Et NE  || 1
 solutions by iteratively removing

solutions that have maximum k distances. Break any tie by examining l for l

=k-1,…, 1 sequentially. Case 2: If
Et NE  || 1

, copy the best || 1 tE EN

dominated solutions according to their fitness values from
tt EP  to

1tE .

Step 4: If the stopping criterion is satisfied, stop and copy non-dominated solutions in

1tE .

Step 5: Select parent from
1tE using binary tournament selection with replacement.

Step 6: Apply hierarchical crossover and mutation operator to the parents to create N

offspring solutions. Copy offspring to
1tP , 1 tt , then return to Step 2.

5.4 Numerical examples

In this section, two MRAOPs with different multilevel structures are solved by

applying MO optimization using proposed MOHGA and SO optimization using a HGA,

respectively. In the latter problem, the objective function is to maximize the system

101

reliability subject to a cost constraint. On the other hand, in the MO optimization, the

objective functions are the maximization of system reliability and minimization of system

cost. Further, since the feasible design space is very large in MRAOPs, the efficiency of

both genotype selection and the search for optimal solutions is analyzed for both problems,

to pinpoint the most viable approach for multilevel redundancy allocation optimization

problems.

5.4.1 Problems

Fig.5.7 and Fig.5.8 show the two multilevel structures. The reliability of these

systems can be maximized by allocating appropriate redundancy to their units located at

different levels. In the first problem, Problem-A, there are three hierarchical levels, whereas

in the second problem, Problem-B, has four levels. All units at all levels of both the

problems are serially connected. It can be seen that Problem-A structures are not

symmetrical.

Fig. 5.7. Problem-A (a three level multilevel series system).

The reliability of both problems is calculated using (5.1) and (5.2). The reliability for

Problem-A is expressed as:

  
  


2

1

2

1

3

1

111
111111]))])1(1[1(1[1(1]))1(1[1(1)1(1

i i

xx

j

x

ij

xx

i

x

s
iiji RRRR

(5.9)

The design variables ix also have given maximum and minimum values. A similar

U1

121U
112U

U12 U11

113U111U 122U

102

reliability expression can be obtained for Problem-B.

Fig. 5.8. Problem-B (a four level multilevel series system).

5.4.2 Input data

The HGA parameters are based on several experimental runs conducted for both

problems. Table 5.1 and Table 5.2 summarize the best parameters and corresponding results

obtained in 10 trials of 1000 generations using 100 individuals. The best values for

crossover and mutation probabilities are 0.8 and 0.05, respectively. Similarly, to find the

best genetic parameter values for MOHGA with NSGA-II and SPEA2, several Pareto

fronts were obtained in 10 trials of 1000 generations using 100 individuals. The results

indicate that the best crossover and mutation probabilities are 0.9 and 0.01, respectively.

NSGA-II and SPEA2 were both assigned a population size of 100 individuals based

on several trial and error evaluations. The HGA for the SO problem were also assigned the

same population size. Note that the archive size in MOHGA with SPEA2 was set to 100

after evaluating the performance with different archive sizes in experimental runs. Both the

archive in MOHGA with SPEA2 and the offspring size used in MOHGA with NSGA-II

have a value of 100, increasing the utility of comparisons between these two algorithms.

U1

1121
U

U11

1122
U

1112
U

U112 U111

1221
U

U12

1222
U

1211
U

U122 U121

1111
U

1212
U

103

The number of generations for HGA, MOHGA with SPEA2, and MOHGA with NSGA-II

were set to 1000, a figure obtained through trial-and-error analysis.

TABLE 5.1

 HGA PARAMETERS

Cases Parameters Average Fitness

(20-runs)

Best Fitness

(20-runs) Crossover Mutation

1 0.7 0.05 0.96047 0.97628

2 0.9 0.05 0.96155 0.97628

3 0.8 0.05 0.9621 0.97639

4 1.0 0.05 0.96117 0.97628

5 0.8 0.01 0.92826 0.97254

6 0.8 0.1 0.94484 0.96422

7 0.8 0.2 0.931904 0.950827

TABLE 5.2

MOGA PARAMETERS

MOGA Crossover Mutation Population

NSGA-II 0.9 0.01 100

SPEA2 0.9 0.01 100

The number of units and the corresponding fixed reliability values for Problem-A and

Problem-B are 8 and 15, respectively. A maximum redundancy number of five was imposed

for both the problems. Table 5.3 summarizes the unit reliability and unit cost of the

components at the very lowest level in both problems. The unit reliability and the unit cost

at the very lowest level in the multilevel redundancy allocation problems were used when

calculating the unit reliability and the unit cost of upper level units, up to the system level.

104

TABLE 5.3

INPUT DATA

Problem-A Problem-B

Unit Reliability Cost  Unit Reliability Cost 

U1 0.3591 51 2

U1 0.2085 102 2

U11 0.5700 29 2 U11 0.4275 48 2

U12 0.6300 18 2 U12 0.4877 50 2

U111 0.8000 5 3 U111 0.6000 21 3

U112 0.7500 9 3 U112 0.7125 21 3

U113 0.9500 6 3 U121 0.7650 23 3

U121 0.7000 5 3 U122 0.6375 21 3

U122 0.9000 7 3 U1111 0.7500 7 4

 U1112 0.8000 6 4

 U1121 0.7500 8 4

 U1122 0.9500 5 4

 U1211 0.9000 9 4

 U1212 0.8500 6 4

 U1221 0.7500 5 4

 U1222 0.8500 8 4

5.4.3 Computational results

In solving Problem-A and Problem-B, 10 trials of 1000 generations were conducted

for all the cases. For the SO problem, the best solution among the 10 trials was chosen as

the final optimum solution. Similarly, the best Pareto front among the 10 trials of 1000

generations was selected as the final solution for the two-objective problem. Fig. 5.9,

Fig. 5.10, Fig. 5.11, and Fig. 5.12 show plots of Pareto optimal solution sets obtained by

the MO optimization using MOHGA with NSGA-II and MOHGA with SPEA2 when

solving Problem-A and Problem-B. The optimal solutions by for the SO optimization using

the HGA subject to a cost constraint of 500 are also obtained for the two problems.

 In Fig.5.9, the Pareto front obtained using MOHGA with SPEA2 is dominated by

105

the MOHGA with NSGA-II solutions. The best solution of the SO optimization using the

HGA is also plotted in Fig.5.9 and this solution to a 3-level series problem dominates all

Pareto optimal solutions obtained by the MO optimization using MOHGA with NSGA-II

and MOHGA with SPEA2. For the 4-level problem shown in Fig.5.11, the optimal Pareto

front obtained using MOHGA with NSGA-II is superior to that using MOHGA with

SPEA2 and the optimal solutions obtained by the SO optimization using the HGA

dominate all the optimal solutions of the Pareto front obtained using MOHGA with SPEA2,

but are inferior to those using NSGA-II.

Fig. 5.9. Redundancy allocation in Problem-A using NSGA-II, SPEA2, and HGA

Fig. 5.10 and Fig.5.12 show enlarged plots of the optimal solutions obtained in the MO

optimizations using MOHGA with NSGA-II and MOHGA with SPEA2 and the SO

optimization using the HGA for both the problems. As shown in these figures, the

performance of MOHGA with SPEA2 in 4-level problems deteriorated compared to the

results for the 3-level problem. In other words, the size of the search space affected the

convergence of optimal solutions when using MOHGA with SPEA2.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
o

st

Reliability

MO using NSGA-II

MO using SPEA2

SO using HGA

HGA solution

Dominated space

106

Fig. 5.10. Enlarged view of the Pareto front in Problem-A

Fig. 5.11. Redundancy allocation in Problem-B using NSGA-II, SPEA2, and HGA

0

500

1000

1500

2000

2500

0.9 1

C
o

st

Reliability

MO using NSGA-II

MO using SPEA2

So using HGA

HGA solution

Dominated space

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
o

st

Reliability

MO using NSGA-II

MO using SPEA2

SO using HGA

Dominated space

HGA solution

107

Fig. 5.12. Enlarged view of the Pareto front in Problem-B

The inferior performance of MOHGA with SPEA2 in both problems is analyzed

further in terms of Pareto front movement as a function of the number of generations

during optimization. Fig. 5.13 and Fig. 5.14 show the movements of the Pareto fronts in the

4-level problem. The figures show three Pareto fronts after 50 generations of the first

1000-generation trial, after 1000 generations of the first 1000-generation trial, and after

10000 generations, at the end of the tenth 1000-generation trial. The search direction in

both the algorithms is clearly visible. With SPEA2, the search direction is from high cost to

low cost regions, while maintaining several extreme solutions on each generation‟s Pareto

front. In contrast, the NSGA-II Pareto front moves towards the low cost region without

preserving each generation‟s extreme solutions. Instead, the entire Pareto front shifts as

new solution sets are obtained. In other words, MOHGA with SPEA2 yields Pareto fronts

with wider spans or diversity, while MOHGA with NSGA-II distributes solutions on Pareto

fronts in a more focused manner.

0

500

1000

1500

2000

2500

0.9 1

C
o

st

Reliability

MO using NSGA-II

MO using SPEA2

SO using HGA

Dominated space

HGA solution

108

Fig. 5.13. Pareto front movement in MO of Problem-B using SPEA2

Fig. 5.14. Pareto front movement in MO of Problem-B using NSGA-II

Similarly, Fig. 5.15 and Fig. 5.16 show population distributions when using MOHGA

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
o

st

Reliability

PF1(Gen = 50)

PF2(Gen = 1000)

PF2(Gen = 10000)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0.2 0.4 0.6 0.8 1

C
o

st

Reliability

PF1(Gen = 50)

PF2(Gen = 1000)

PF3(Gen = 10000)

109

with SPEA2 and MOHGA with NSGA-II during optimization after 50 generations of the

first 1000-generation trial, after 1000 generations of the first 1000-generation trial, and

after 10000 generations, at the end of the tenth 1000-generation trial

Fig. 5.15. Population distribution in MO of Problem-B using SPEA2

Fig. 5.16. Population distribution in MO of Problem-B using NSGA-II

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
o

st

Reliability

Pop1(Gen = 50)

Pop2(Gen = 1000)

Pop3(Gen = 10000)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

C
o

st

Reliability

Pop1(Gen = 50)

Pop2(Gen = 1000)

Pop3(Gen = 10000)

110

(a) The best solution is
sR = 0.96134

(b) The second best solution is
sR = 0.93355

Fig. 5.17. Optimal structures obtained in SO using HGA

To compare the three optimization strategies, a single solution is chosen from

solution sets where the cost constraint is 500. Fig. 5.17 shows the optimal structures

obtained using single objective optimization using HGA and Fig.5.18 shows those obtained

using MOHGA with NSGA-II, and MOHGA with SPEA2 when solving the 4-level

problem. Fig. 5.17 (a) shows the best optimal structure with optimal reliability of 0.9613

and Fig.5.17(b) the second best solution with reliability 0.93335 obtained using the HGA.

Similarly, the optimal structures obtained using MOHGA with NSGA-II and MOHGA

with SPEA2 are shown in Fig. 5.18 (a) and (b). The optimal reliabilities obtained using

MOHGA with NSGA-II and MOHGA with SPEA2 are 0.9748 and 0.5690, respectively. If

111

we look at these figures we find that the MOHGA with NSGA-II algorithm yielded

superior Pareto solution sets compared to MOHGA with SPEA2.

(a)
 sR = 0.97483 with NSGA-II

(b)
 sR = 0.56903 with SPEA2

Fig. 5.18. Optimal structures obtained in MO using MOHGA

5.5 Discussion

In multilevel redundancy allocation optimization, the basic structure of the problems is

kept intact when encoding the design variables. During the optimization process, the values

of design variables expressing redundancy are interdependent, since they are hierarchical,

i.e., the reliability of an upper level unit depends on the reliability of its lower level units.

The results obtained here show that optimizations using hierarchical genotype encoding

112

have advantages in finding optimal structures when compared with conventional

vector-type encoding schemes. The performance of a given optimization method may be

greatly affected by the number of levels and the distribution of units in the basic structure

of the MRAOP. This paper examined the performances of a SO method using a HGA and a

MO method using MOHGA with NSGA-II and SPEA2.

The results of the numerical examples demonstrate that MO optimizations are better at

solving multilevel redundancy allocation problems than SO techniques. MO optimizations

provide Pareto optimal solution sets in a single run, and offer decision-makers a wider

range of choices from which to choose the best solution for the specific problem at hand.

Moreover, MO methods using MOHGA with NSGA-II and MOHGA with SPEA2 include

schemes for preserving good population diversity when solving MRAOPs and, for

large-scale problems, can provide better solutions than SO optimizations, as the results of

the provided numerical examples also demonstrate.

We observe that in MRAOPs, the performance of the MOHGA with NSGA-II in

obtaining a set of Pareto front is superior to that of MOHGA with SPEA2, however the SO

optimization using a HGA for the 3-level problem yielded a better solution than either

MOHGA with NSGA-II or MOHGA with SPEA2 applied in a MO optimization with a

system cost constraint of 500. For the 4-level problem, MOHGA with NSGA-II provided a

better solution than MOHGA with SPEA2 or the HGA under similar settings. These results

show that the size of the search space can drastically affect the performance of different

algorithms, hence choosing the most suitable algorithm when attempting to solve a

particular MRAOP is extremely important.

As shown in Fig.5.17 and Fig.5.18, the optimal structures for the Problem-B, at the

cost of 500, obtained in SO using the HGA and in MO using the MOHGA with NSGA-II

and SPEA2 all have different arrangements of units. The best among all optimal structures

113

is obtained by MOHGA with NSGA-II. Examining the structures, we find that the number

of redundant units in the second and the third levels most significantly affects the reliability

of this solution. In other words, the solution obtained with MOHGA with NSGA-II has the

highest ratio of the third level‟s units to the second level‟s units among all solutions

provided by either MO using MOHGA with SPEA2 or SO using HGA. Additionally, the

ratio of third level‟s units to second level‟s units provided by the MOHGA with SPEA2 is

the smallest among all methods used here.

The observed difference in the performance of the SO optimization using a HGA and a

MO optimization using MOHGA with NSGA-II or SPEA2 can be attributed to the diversity

preservation mechanism that is not available in the SO using HGA. In SO using HGA,

redundancy allocation at module levels often violates the cost constraint and thus the HGA

fails to preserve the solutions with more number of redundancies at middle levels.

Concerning the observed poor performance of MOHGA with SPEA2 in comparison to

MOHGA with NSGA-II when solving the MRAOPs here, this is due to the difference

selection strategies used. In MOHGA with NSGA-II, dominance ranking is used when

forming the fronts of individuals and these fronts are first used to populate the external set,

based on ranking, a strategy that allows a set of close-neighbor individuals in the same

front to be included in the next generation. In contrast, the MOHGA with SPEA2 selects

individuals according to assigned fitness values based on Euclidean density information, so

close-neighbor individuals are likely to be excluded in the next generation. The MOHGA

with SPEA2 therefore yields Pareto fronts showing wider distributions of non-dominated

solutions, whereas the MOHGA with NSGA-II is more focused when exploring the search

space and generating Pareto solution sets. The reason for this behavior is that MOHGA

with SPEA2 uses a truncation operator based on a nearest-neighbor strategy, but MOHGA

with NSGA-II uses crowding distance when the size of non-dominated solutions exceed the

114

archive size. Fig.5.13 and Fig.5.14 show that MOHGA with NSGA-II discards

non-dominated solutions in the high cost region since the crowding distance there tends to

have lower values. On the other hand, low cost non-dominated solutions easily survive to

the next generation, because the crowding distance of such solutions is high.

5.6 Summary

This chapter proposed the multiobjective formulation of multilevel redundancy

allocation problems and multiobjective hierarchical genetic algorithms (MOHGAs) to solve

them. For the numerical examples, two multilevel redundancy allocation problems having 3

and 4 hierarchical levels were solved to maximize reliability while minimizing cost. The

proposed MOHGAs were applied to solve the MRAOPs. The selection operators of

MOHGAs used NSGA-II and SPEA2. Also, for comparison with MO using MOHGA with

NSGA-II and SPEA2 results, a SO optimization using a HGA was also applied to solve the

MRAOPs.

The results show that, for large multilevel problems, MO optimizations using MOHGA

with NSGA-II are preferable to a SO optimization using a HGA because they provide

superior solutions, as well as a Pareto set of optimal solutions that can be used during

subsequent decision making. Additionally, the results show that the MOHGA with

NSGA-II is superior to the MOHGA with SPEA2 for solving MRAOPs. Building on the

research carried out for this work, the authors hope to design improved selection strategies

for multiobjective HGAs which can effectively preserve the structural diversity of

individuals when searching for optimal solutions to large-scale MRAOPs.

115

Chapter 6

Conclusions and future works

This chapter presents an overview and general conclusions related to the work

developed in this dissertation. The general topic of research is developing novel

methodologies for optimal reliability design of hierarchical systems. In chapters 2,

hierarchical and modular concepts in redundancy allocation is presented and a general

formulation of multilevel redundancy allocation problems is proposed. Chapter 3

developed an innovative hierarchical genetic algorithm for solving reliability optimization

problems for hierarchical systems. Multilevel redundancy allocation optimization problems

involve hierarchical design variables. Conventional genetic algorithm uses vector

representation for encoding design variables and yield suboptimal solutions. Therefore, the

main objectives of chapter 3 were to represent the exact structure of hierarchical design

variables without artificial transformation into vector form and to develop a new

hierarchical genetic algorithm for solving multilevel redundancy allocation optimization

problems. The proposed methodology was tested on multilevel reliability problems of

reasonable size and scope. In chapter 4, a modular concept in redundancy allocation was

applied when solving reliability optimization problems in series and series-parallel systems.

The modular redundancy scheme yields superior system reliability than traditional scheme

of single level redundancy allocation with the same available resources. A second focus in

this dissertation was to develop a methodology for multiobjective optimization of

multilevel redundancy allocation problems. Multiobjective optimization is very useful

when a designer faces a task to optimize several conflicting objectives and there are several

conflicting objectives exist in optimal reliability design. A multiobjective formulation of

multilevel redundancy allocation was proposed in chapter 5. A general framework of

multiobjective hierarchical genetic algorithms was developed and applied to solve

116

multilevel redundancy allocation optimization problems.

6.1 Summary and conclusions

6.1.1 Hierarchy and modularity in optimal reliability design

In chapter 2, the concepts of hierarchy and modularity in system reliability design have

been described and potential application of these well-proven techniques in reliability

optimization is presented. The hierarchy helps to simplify the design of large scale systems

and provide decomposability that helps to address the issue of managing the system more

effectively throughout the life cycle. Since the structure of RBD affects the reliability

optimization, the hierarchical concept of RBD is proposed in this chapter to simplify the

design of complex system and represent exactly all the logical relationship between its

subsystems and components. Similarly, the superiority of modular design is hard to

challenge. The practical significance of the modular redundancy allocation in making a

system more fault tolerant when so optimizing hierarchical RBD is explained.

 Finally this chapter proposed a general formulation of multilevel redundancy allocation

optimization problems. The proposed formulation has several novelties. This formulation

allows redundancy allocation to all units at every level. Bi-level series and parallel modules

is proposed as building blocks to represent all possible hierarchical RBD. Modular

redundancy allocation can easily be applied when optimizing such hierarchical RBD.

6.1.2 Hierarchical genetic algorithms for MRAOP

In chapter 3, a general formulation for multilevel redundancy allocation optimization

problems that aim to maximize system reliability is proposed. These multilevel

optimization problems have hierarchical design variables, so we proposed a new coding

method for use in a HGA, in which hierarchical design variables of MRAOP are

represented using two types of hierarchical genotype: nodal, and terminal. We applied the

117

newly developed HGA, and a conventional GA separately, to solve two multilevel series

redundancy allocation optimization problems having three, and four levels. The optimal

solutions for these two problems demonstrated that the proposed HGA provides optimal

system reliability that is superior to the conventional GA results, because it does not

depend on the use of vector coding to represent the hierarchical variables, and can preserve

the original design space.

6.1.3 Modular redundancy allocation optimization in series and series parallel

system

In chapter 4, the importance of modular redundancy allocation applied to multilevel system

reliability problems is discussed. We proposed a methodology to solve series and

series-parallel redundancy allocation problems considering the hierarchical relationships

among design variables. Modular design variables were encoded using hierarchical

genotypes in hierarchical genetic algorithms, and the multilevel redundancy allocation

optimization problems were efficiently solved. The optimization of numerical examples in

this chapter indicates that the modular scheme of redundancy allocation yields superior

system reliability for multilevel configurations, in contrast to the conventional notion that

component level redundancy allocation yields better optimal solutions. The application of a

HGA proved to be flexible and efficient when solving large-scale multilevel redundancy

allocation optimization problems.

6.1.4 Multiobjective hierarchical genetic algorithms for MRAOP

In chapter 5, the multiobjective formulation of multilevel redundancy allocation problems

and a general framework for multiobjective hierarchical genetic algorithms (MOHGAs) to

solve them is proposed. Two multilevel redundancy allocation problems having 3 and 4

hierarchical levels were solved to maximize reliability while minimizing cost. The

proposed MOHGAs with selection operators, NSGA-II and SPEA2, were applied to solve

118

the MRAOPs. For comparison with MO using MOHGA with NSGA-II and SPEA2 results,

a SO optimization using a HGA was also applied to solve the MRAOPs. The results show

that, for large multilevel problems, MO optimizations using MOHGA with NSGA-II are

preferable to a SO optimization using a HGA because they provide superior solutions, as

well as a Pareto set of optimal solutions that can be used during subsequent decision

making. Additionally, the results show that the MOHGA with NSGA-II is superior to the

MOHGA with SPEA2 for solving MRAOPs.

6.2 Recommendations for future works

6.2.1 Efficient optimization technique for solving MRAOPs

The numerical examples solved in chapter 3 and chapter 4 indicates that the size of search

space in multilevel redundancy allocation optimization is very large and requires huge

computational resources even in the case of the multilevel redundancy allocation problems

with only four levels hierarchy. In practice, the hierarchy levels may go beyond four levels

and search space size may be even larger. Therefore, we need to develop more efficient

optimization techniques for solving multilevel redundancy allocation problems. This can be

achieved by hybridization or parallelization of hierarchical genetic algorithms.

6.2.2 Selection operator in multiobjective hierarchical genetic algorithms

In chapter 5, the selection operator of multiobjective hierarchical genetic algorithm with

NSGA-II provided superior solution than those with SPEA2. However, NSGA-II

performance is not very encouraging in the case of multiobjective optimization with more

than three objective functions. Also, practical problems involve more complex structures

that are difficult to handle when optimizing multilevel redundancy allocation optimization.

Building on the research carried out for this paper, the future research should focus on

designing better selection strategies for multiobjective GAs which can effectively preserve

119

the structural diversity of large populations of individuals when searching for optimal

solutions to large scale MRAOPs.

6.2.3 Reliability optimization of hierarchical network systems

Network problems arise frequently in communication systems and fault-tolerant

designs are highly desirable for smooth data transfer. The hierarchical network optimization

problem is the problem of finding the least cost network, with nodes divided into groups,

edges connecting nodes in each groups and groups ordered in a hierarchy. The idea of

hierarchical networks comes from telecommunication networks where hierarchies exist.

Hierarchical networks can be designed and the corresponding mathematical models can be

proposed. The problem is to maximize the reliability of whole network in such a way that

which edges should connect nodes, and how demand is routed in the network. Such

problem can be solved by decomposing hierarchical network problems into simple

two-level substructure and applying the proposed hierarchical genetic algorithms.

6.2.4 Optimal design of k-out-of-n structure in a hierarchical system

Optimal design of a k-out-of-n system structure is an important issue to make

fault-tolerant systems. This structure is defined as an n-component system that works if and

only if at least k-out-of-n components work. It finds wide applications in both industrial

and aerospace systems such as multi-display system in a cockpit, the multi-engine system

in a airplane, and the multi-pump system in a hydraulic control system. However, for a

large industrial system with thousand of subsystems and component, optimal design of

k-out-of-n system is truly a technological challenge. The application of hierarchical and

modular approach in optimal design of a k-out-of-n system for a large structure can

simplify the design and ease the optimization process.

6.2.5 Optimal reliability design of time dependent hierarchical systems

120

This research used a constant reliability values for every module and component.

However, this is impractical approach for the real world systems which are subject to

several types of time-dependent stresses. Thus, every modules and component has different

types of time-dependent failure patterns. In this dissertation, however, the life distributions

of the components were not incorporated in the process of calculating the system reliability.

In future research, time-dependency in the reliability function should be introduced. The

models necessary to observe the reliability over the life of the system should be develop,

instead of at just one point in time. In addition, performance measures, such as failure rate,

MTTF and warranty time, should be estimated for the entire system. In other words, instead

of dealing with 𝑅𝑖 future research should use 𝑅𝑖(𝑡) in optimal reliability design of a large

scale systems.

121

References

[1]. W. Kuo, V.R. Prasad, F.A. Tillman, C. Hwang. Optimal reliability design-fundamentals

and applications. Cambridge University Press, 2001.

[2]. M. S. Chern. On computational complexity of reliability redundancy allocation in a

series system. Opreation research letters, 11(5):309-315, 1992.

[3]. F. A. Tillman, C.L. Hwang, and W. Kuo. Optimization techniques for system reliability

with redundancy – a review. IEEE Transactions on Reliability, R-26(26):148-155,

1977.

[4]. F. A. Tillman, C.L. Hwang, and W. Kuo. Optimization of system reliability. Marcel

Dekker, New York, 1980.

[5]. K. B. Misra. On optimal reliability design: a review. System Science, 12(4): 5-30,

1986.

[6]. W. Kuo, V.R. Prasad. An annotated overview of system reliability optimization. IEEE

Transactions on Reliability, R-49(2): 176-191, 2000.

[7]. K. K. Agrawal, K.B. Misra, and J.S.Gupta. A new heuristic criterion for solving a

redundancy optimization problem. IEEE transaction on Reliability, R-24(24): 86-87,

1975.

[8]. S. K. Banarjee and K. Rajamani. Optimization of system reliability using a parametric

approach. IEEE Transactions on Reliability, R-22(22): 35-39, 1973.

[9]. L. D. Bodin. Optimization procedure for the analysis of coherent structures. IEEE

Transactions on Reliability, R-18(18): 118-126, 1969.

[10]. P.J. Boland, F. Proschan, and Y.L. Tong. Optimal arrangement of components via

pair wise rearrangements. Naval Research Logistics Quarterly, 36(6): 807-814, 1989.

[11]. Y. Nakagawa, K. Nakashima, Y. Hittori. Optimal reliability allocation by branch and

bound techniques. IEEE Transaction on Reliability, R-27(27): 31-38, 1978.

122

[12]. M. Sasaki. A simplified method of obtaining highest system reliability. In M.P. Smith

editor, Proceeding of the Eighth National Symposium on Reliability and Quality

Control, pp.489-502, Washington, D.C., 9-11 January, 1962.

[13]. P. M. Ghare and R.E. Taylor. Optimal redundancy for reliability in series system.

Operation Research, 17(5):838-847, 1969.

[14]. Ir. R.N. von Hees and Ir. H. W. von den Meerendonk. Optimal reliability of parallel

multi-coherent systems. Operation Research Quarterly, 12(1): 16-26, 1961.

[15]. G. E. Neuner and R.N. Miller. Resource allocation for maximum reliability. In L.S.

Gephart, editor, Proceeding of 1966 Annual Symposium on Reliability, pp.332-346,

San Francisco, CA, 25-27 January 1966.

[16]. K. K. Agrawal, K.B. Misra, and J.S. Gupta. Reliability evaluation-a comparative

study of different techniques. Microelectronics and Reliability, 14(1):49-56, 1975.

[17]. R. Gordon. Optimum component redundancy for maximum system reliability.

Operation Research, 5(2): 229-243, 1957.

[18]. K. Ida, M. Gen, and T. Yokota. System reliability optimization with several failure

modes by genetic algorithm. 16th International Conference on Computers and

Industrial Engineering, pp. 349–352, 1994.

[19]. S. G. Kneale. Reliability of parallel systems with repair and switching. In W.T.

Sumerlin, editor, Proceeding of the Seventh National Symposium on Reliability and

Quality Control, pp. 129-133, Philadelphia, PA, 9-11 January 1961.

[20]. F. A. Tillman. Optimization by integer programming of constrained reliability

problems with several modes of failure. IEEE transactions on Reliability, R-18(18):

47-53, 1969.

[21]. J. M. Littschwager. Dynamic programming in the solution of a multistage reliability

problem. Journal of Industrial Engineering , 15: 168-175, 1964.

123

[22]. L. A. Baxter and F. Harche. On the optimal assembly of series-parallel systems.

Operations Research Letters, 11(3):153–157, 1992.

[23]. M. S. Chern, On the computational complexity of reliability redundancy allocation in

a series system. Operations Research Letters, 11(5):309–315, 1992.

[24]. M. S. Chern and R. H. Jan. Parametric programming applied to reliability

optimization problems,” IEEE Transaction on Reliability, R-34(2):165–170, 1985.

[25]. M. S. Chern. Reliability optimization problems with multiple constraints. IEEE

Transaction on Reliability, R-35(4): 431–436, 1986.

[26]. M. S. Chern, R. H. Jan, and R. J. Chern. Parametric nonlinear integer programming:

The right-hand side case. European J. Operational Research, 54(2): 237–255, 1991.

[27]. D. W. Coit and A. Smith. Reliability optimization of series-parallel systems using a

genetic algorithm. IEEE Transaction on Reliability, 45(2): 254–260, June 1996.

[28]. D. W. Coit and A. Smith. Solving the redundancy allocation problem using a

combined neural network / genetic algorithm approach. Computers and Operations

Research, 23(6): 515–526, June 1996.

[29]. D. W. Coit and A. Smith. Considering risk profiles in design optimization for

series-parallel systems. In Proc. Annual Reliability and Maintainability Symposium,

pp. 271–277, 1997.

[30]. A. K. Dhingra. Optimal apportionment of reliability & redundancy in series systems

under multiple objectives. IEEE Transaction on Reliability, 41(4):576–582, 1992.

[31]. E. El-Neweihi, F. Proschan, and J. Sethuraman. Optimal allocation of components in

parallel-series and series-parallel systems. Journal of Applied Probability, 23(3):

770–777, 1986.

[32]. E. El-Neweihi, F. Proschan, and J. Sethuraman. Optimal assembly of systems using

Schur functions and majorization. Naval Research Logistics, 34: 705–712, 1987.

124

[33]. M. Gen, K. Ida, M. Sasaki, and J. U. Lee. Algorithm for solving large-scale 0-1 goal

programming and its application to reliability optimization problem. Computers &

Industrial Engineering, 17(1): 525–530, 1989.

[34]. K. Gopal, K. K. Aggarwal, and J. S. Gupta. An improved algorithm for reliability

optimization. IEEE Transaction on Reliability, R-27(5): 325–328, 1978.

[35]. K. Gopal, K. K. Aggarwal, and J. S. Gupta. A new method for solving reliability

optimization problem. IEEE Transaction on Reliability, R-29: 36–38, 1980.

[36]. K. K. Govil and R. A. Agarwala. Lagrange multiplier method for optimal reliability.

Reliability Engineering, 6(3): 181–190, 1983.

[37]. F. K. Hwang and U. G. Rothblum. Optimality of monotone assemblies for coherent

systems composed of series modules. Operations Research, 42(4): 709–720, 1994.

[38]. L. Jianping. A bound heuristic algorithm for solving reliability redundancy

optimization. Microelectronics and Reliability, 3(5): 335–339, 1996.

[39]. W. Kuo. Reliability enhancement through optimal burn-in decision. IEEE Transaction

on Reliability, R-33(2): 145–156, 1984.

[40]. W. Kuo, C. L. Hwang, and F. A. Tillman. A note on heuristic methods in optimal

system reliability. IEEE Transaction on Reliability, R-27(5): 320–324, 1978.

[41]. W. Kuo, H. Lin, Z. Xu, and W. Zhang. Reliability optimization with the Lagrange

multiplier and branch-and-bound technique. IEEE Transaction on Reliability,

R-36(5): 624–630, 1987.

[42]. K. B. Misra. An algorithm to solve integer programming problems: An efficient tool

for reliability design. Microelectronics and Reliability, 31(2/3): 285–294, 1991.

[43]. K. B. Misra and U. Sharma. An efficient algorithm to solve integer programming

problems arising in system reliability design. IEEE Transaction on Reliability, 40(1):

81–91, 1991.

125

[44]. K. B. Misra and U. Sharma. An efficient approach for multiple criteria redundancy

optimization problems. Microelectronics and Reliability, 31(2/3): 303–321, 1991.

[45]. K. B. Misra and U. Sharma. Multicriteria optimization for combined reliability and

redundancy allocation in systems employing mixed redundancies. Microelectronics

and Reliability, 31(2/3): 323–335, 1991.

[46]. Y. Nakagawa and S. Miyazaki. Surrogate constraints algorithm for reliability

optimization problem with two constraints. IEEE Transaction on Reliability, R-30(2):

175–180, 1981.

[47]. Y. Nakagawa and S. Miyazaki. An experimental comparison of the heuristic methods

for solving reliability optimization problems. IEEE Transaction on Reliability,

R-30(2): 181–184, 1981.

[48]. Y. Nakagawa and K. Nakashima. A heuristic method for determining optimal

reliability allocation. IEEE Transaction on Reliability, R-26(3): 156–161, 1977.

[49]. L. Painton and J. Campbell. Genetic algorithms in optimization of system reliability.

IEEE Transaction on Reliability, vol. 44, pp. 172–178, 1995.

[50]. D. Petrovic. Decision support for improving systems reliability by redundancy.

European Journal of Operational Research, 55(3): 357–367, 1991.

[51]. V. R. Prasad, Y. P. Aneja, and K. P. K. Nair. A heuristic approach to optimal

assignment of components to a parallel-series network. IEEE Transaction on

Reliability, 40(5): 555–558, 1991.

[52]. V. R. Prasad,W. Kuo, and K. M. O. Kim. Optimal allocation of s-identical

multi-functional spares in a series system. IEEE Transaction on Reliability, 48(2):

118–126, 1999.

[53]. V. R. Prasad, K. P. K. Nair, and Y. P. Aneja. Optimal assignment of components to

parallel-series and series-parallel systems. Operations Research, 39(3): 407–414,

126

1991.

[54]. V. R. Prasad and M. Raghavachari. Optimal allocation of interchangeable

components to series-parallel reliability system. IEEE Trans. Reliability, 47(3):

255–260, 1998.

[55]. M. Sakawa. Optimal reliability-design of a series-parallel system by a large-scale

multiobjective optimization method. IEEE Trans. Reliability, R-30(2): 173–174,

1981.

[56]. J. Sharma and K. V. Venkateswaran. A direct method for maximizing the system

reliability. IEEE Transaction on Reliability, R-20(1): 256–259, 1971.

[57]. U. Sharma and K. B. Misra. An efficient algorithm to solve integer programming

problems in reliability optimization. International Journal of Quality & Reliability

Management, 7(5): 44–56, 1990.

[58]. F. A. Tillman. Optimization by integer programming of constrained reliability

problems with several modes of failure. IEEE Transaction on Reliability, R-18(2):

47–53, 1969.

[59]. F. A. Tillman, C. L. Hwang, and W. Kuo. Determining component reliability and

redundancy for optimum system reliability. IEEE Transaction on Reliability, R-26(3):

162–165, 1977.

[60]. F. A. Tillman, C. L. Hwang, and W. Kuo. Reliability optimization by generalized

Lagrangian function and reduced gradient methods. IEEE Transaction on Reliability,

R-28(4): 316–320, 1979.

[61]. Z. Xu, W. Kuo, and H. Lin. Optimization limits in improving system reliability. IEEE

Transaction on Reliability, 39(1): 51–60, 1990.

[62]. T. Yokota, M. Gen, and K. Ida. System reliability of optimization problems with

several failure modes by genetic algorithm. Japanese Journal of Fuzzy Theory and

127

Systems, 7(1): 117–135, 1995.

[63]. T. Yokota, M. Gen, and Y. X. Li. Genetic algorithm for nonlinear mixed integer

programming problems and its applications. Computers & Industrial Engineering,

30(4): 905–917, 1996.

[64]. D. H. Chi and W. Kuo. Burn-in optimization subject to reliability and capacity

constraints. IEEE Transaction on Reliability, 38(3): 193–198, 1989.

[65]. D. L. Deeter and A. E. Smith. Economic design of reliable network. IIE Transactions,

30(12): 1161–1174, 1998.

[66]. S. Dinghua. A new heuristic algorithm for constrained redundancy-optimization in

complex systems. IEEE Transaction on Reliability, R-36(5): 621–623, 1987.

[67]. M. Hikita, Y. Nakagawa, K. Nakashima, and H. Narihisa. Reliability optimization of

systems by a surrogate-constraints algorithm. IEEE Transaction on Reliability, 41(3):

473–480, 1992.

[68]. J. H. Kim and B. J. Yum. A heuristic method for solving redundancy optimization

problems in complex systems. IEEE Transaction on Reliability, 42(4): 572–578,

1993.

[69]. J. Y. Kim and L. C. Frair. Optimal reliability design for complex systems IEEE

Transaction on Reliability, R-30(2): 300–302, 1981.

[70]. T. Kohda and K. Inoue. A reliability optimization method for complex systems with

the criterion of local optimality. IEEE Transaction on Reliability, R-31(1): 109–111,

1982.

[71]. W. Kuo, C. L. Hwang, and F. A. Tillman. A note on heuristic methods in optimal

system reliability. IEEE Transaction on Reliability, R-27(5): 320–324, 1978.

[72]. D. Li. Interactive parametric dynamic programming and its application in reliability

optimization. Journal of Mathematical Analysis and Applications, 191(5): 589–607,

128

1995.

[73]. D. Li and Y. Y. Haimes. A decomposition method for optimization of large system

reliability. IEEE Transaction on Reliability, 41(2): 183–188, 1992.

[74]. C. Mohan and K. Shanker. Reliability optimization of complex systems using random

search technique. Microelectronics and Reliability, 28(4): 513–518, 1988.

[75]. C. A. Ntuen, E. H. Park, and W. Byrd. A heuristic program for reliability and

maintainability allocation in complex hierarchical systems. Computers and Industrial

Engineering, 25(1-4): 345–348, 1993.

[76]. V. Ravi, B. Murty, and P. Reddy. Nonequilibrium simulated-annealing algorithm

applied reliability optimization of complex systems. IEEE Transaction on Reliability,

46(2): 233–239, 1997.

[77]. U. Sharma, K. B. Misra, and A. K. Bhattacharjee. Application of an efficient search

technique for optimal design of computer communication network. Microelectronics

and Reliability, 31(2/3): 337–341, 1991.

[78]. D. S. Bai, W. Y. Yun, and S. W. Cheng. Redundancy optimization of k-out-of-n:G

systems with common-cause failures. IEEE Transaction on Reliability, 40(2): 56–59,

1991.

[79]. C. Derman, G. J. Lieberman, and S. M. Ross. On the consecutive k-out-of-n:F system.

IEEE Transaction on Reliability, R-31(1): 57–63, 1982.

[80]. D. Z. Du and F. K. Hwang. Optimal consecutive 2-out-of-n systems. Mathematics of

Operations Research, 11(1) 187–191, 1986.

[81]. D. Z. Du and F. K. Hwang. Optimal assembly of an s-stage k-out-of-n system. SIAM

Journal of Discrete Mathematics, 3(3): 349–354, 1990.

[82]. E. El-Neweihi, F. Proschan, and J. Sethuraman. Optimal assembly of systems using

Schur functions and majorization. Naval Research Logistics, 34:705–712, 1987.

129

[83]. F. K. Hwang. Optimal assignment of components to a two-stage k-out-of-n system.

Mathematics of Operations Research, 14(2): 376–382, 1989.

[84]. F. K. Hwang and S. Dinghua. Redundant consecutive-k systems. Operations Research

Letters, 6(6): 293–296, 1987.

[85]. D. M. Malon. Optimal consecutive 2-out-of-n: F component sequencing. IEEE

Transaction on Reliability, R-33(5): 414–418, 1984.

[86]. V. K. Wei, F. K. Hwang, and V. T. Sos. Optimal sequencing of items in a consecutive

2-out-of-n system. IEEE Transaction on Reliability, R-32(1): 30–34, 1983.

[87]. M. J. Zuo andW. Kuo. Design and performance analysis of consecutive k-out-of-n

structure. Naval Research Logistics Quarterly, 37(2): 203–230, 1990.

[88]. F. Belli and P. Jedrzejowicz. An approach to the reliability optimization of software

with redundancy. IEEE Transaction on Software Engineering, 17(3): 310–312, 1991.

[89]. O. Berman and N. Ashrafi. Optimization models for reliability of modular software

systems IEEE Transaction on Software Engineering, 19(11): 1119–1123, 1993.

[90]. D. H. Chi and W. Kuo. Optimal design for software reliability and development cost.

IEEE Journal of Selected Areas in Communications, 8(2): 276–281, 1990.

[91]. C. J. Dale and A. Winterbottom. Optimal allocation of effort to improve system

reliability. IEEE Transaction on Reliability, R-35(2): 188–191, 1986.

[92]. H. Pham. On the optimal design of n-version software systems subject to constraints.

Journal of Systems & Software, 27(1): 55–61, 1994.

[93]. V. R. Prasad and W.Kuo. Reliability optimization of coherent systems. IEEE Trans.

Reliability, R-49(3): 2000.

[94]. D.H. Shi. A new heuristic algorithm for constrained redundancy-optimization in

complex systems. IEEE Transactions on Reliability, R-36(36): 621-623, 1987.

[95]. K.B. Misra. A simple approach for constrained redundancy optimization problems.

130

IEEE Transactions on Reliability, R-21(21): 30-34, 1972.

[96]. K. Misra and V. Misra. A procedure for solving general integer programming

problems. Microelectronics and Reliability, 34(1): 157-163, 1994.

[97]. M. Sakawa. Interactive multiobjective optimization by sequential proxy optimization

technique. IEEE Transactions on Reliability, R-31(31):461-464, 1982.

[98]. R.E. Bellman and S.E. Dreyfus. Dynamic Programming and Reliability of

Multi-component devices. Operation Research, 6:200-206, 1958.

[99]. R.M. Burton and G.T. Howard. Optimal system reliability for a mixed series and

parallel structure. Journal of Mathematical Analysis and Applications, 28(2): 370-382,

1969.

[100]. D.K. Kulshreshtha and M.C. Gupta. Use of dynamic programming for reliability

engineers. IEEE Transactions on Reliability, R-22(22): 240-241, 1973.

[101]. B.K. Lambert, A.G. Walvekar, and J.P. Hirmas. Optimal redundancy and availability

allocation in multistage systems. IEEE Transactions on Reliability, R-20(20):

182-185, 1971.

[102]. M. Gen, H. Okuno, and S. Shinofuji. An optimizing method in system reliability

with failure modes by implicit enumeration algorithm. Journal of Operation

Research, Japan, 19(2): 99-116, 1976.

[103]. C. L. Hwang, L. T. Fan, F. A. Tillman, and S. Kumar. Optimization of life support

system reliability by an integer programming method. AIIE Transactions, 3(3):

229-238, 1971.

[104]. K. N. Hyun. Reliability optimization by 0-1 programming for a system with several

failure modes. IEEE Transactions on Reliability, R-24(24): 206-210, 1975.

[105]. P. J. Kolesar. Linear programming and the reliability of multi-component systems.

Naval Research Logistics Quarterly, 14(3):317-327, 1967.

131

[106]. E.L. Lawler and M.D. Bell. A method for solving discrete programming problems.

Operations Research, 14 (6):1089–1112, 1966.

[107]. R. Luus. Optimization of system reliability by a new nonlinear integer programming

procedure. IEEE Transactions on Reliability, R-24(24): 14-16, 1975.

[108]. U. Sharma and K. B. Misra. An efficient algorithm to solve integer-programming

problems in reliability optimization. International Journal of Quality and Reliability

Management 7(5): 44-56, 1996.

[109]. Filus Jerzy. A problem in reliability optimization. Journal of the operation research

society. 37(4): 407-412, 1986.

[110]. Y. Nakagawa and S. Miyazaki. Surrogate constraints algorithm for reliability

optimization problem with two constraints. IEEE Transactions on Reliability,

R-30(30): 175-180, 1981.

[111]. K. K. Govil and R. A. Agarwala. Langrange multiplier method for optimal

reliability allocation in a series system. Reliability Engineering, 6(3): 181-190,

1983.

[112]. M. S. Chern, and R. H. Jan. Parametric programming applied to reliability

optimization problems. IEEE Transactions on Reliability, R-34(34): 165-170, 1985.

[113]. M. S. Chern, and R. H. Jan. Parametric nonlinear integer programming: the

right-hand-side case. European Journal of Operation Research, 54(2): 237-255,

1991.

[114]. L. A. Baxter and F. Harche. On optimal assembly of series-parallel systems.

Operation Research Letters, 11(3): 153-157, 1992.

[115]. D. Chi and Way Kuo. Burn-in optimization under reliability and capacity

restrictions. IEEE Transactions on Reliability, R-38(2): 193-198, 1989.

[116]. C. L. Hwang, K. C. Lai, F. A. Tillman, and L. T. Fan. Optimization of system

132

reliability using sequential unconstrained minimization technique. IEEE Transaction

on Reliability, R-24(24):133-135, 1975.

[117]. H. V. K. Shetty and D. P. Sengupta. Reliability optimization using SUMT. IEEE

Transaction on Reliability, R-24(24):80-82, 1975.

[118]. H. Everett III. Generalized Langrange multiplier method for solving problems of

optimal allocation of resources. Operation Research , 11(3): 399-417, 1963.

[119]. K.B. Misra. Reliability Optimization of a series-parallel system. PartI: Langrange

multiplier approach; Part II: maximum principle approach. IEEE Transaction on

Reliability, R-21(21):230-238, 1972.

[120]. D. S. Necsulescu and M. Krieger. Reliability optimization-a case study. IEEE

Transactions on Reliability, R-31(31): 101-104, 1982.

[121]. G. H. Holland. Adaption in natural and artificial systems. University of Michigan

Press, 1975.

[122]. D.E. Goldberg. Genetic Algorithms in search, optimization & Machine Learning.

Addition-Wisley, New York, 1989.

[123]. S. Kirkpatrick, C.D. Gelat, and M.P. Vecchi. Optimization by Simulated Annealing.

Science, 220(4598): 671-680, 1983.

[124]. F. Glover. Future Paths for Integer Programming and Links to Artificial Intelligence.

Computers and Operation Research, 13(5): 533-549, 1986.

[125]. J. Kennedy and R.C. Eberhart. Particle Swarm Optimization. Proceedings of the

1995 IEEE International Conference on Neural Networks, 4:1942-1948, 1995.

[126]. M. F. Cardoso, R. L. Salcedo, and S.F. de Azevedo. Nonequilibrium simulated

annealing: a faster approach to combinatorial minimization. Industrial and

Engineering Chemistry Research, 33(8): 1908-1918, 1994.

[127]. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. Teller, and E. Teller.

133

Equation of state calculations by fast computing machines. Journal of Chemical

Physics, 21: 1087-1092, 1953.

[128]. M. Gen and R. Cheng, Genetic Algorithms and Engineering Design. Wiley, New

York, 1997.

[129]. M. Gen, and Y. S. Yun. Soft computing approach for reliability optimization:

state-of-the-art survey. Reliability Engineering & System Safety, 91(9): 1008-1026,

2006.

[130]. M.Gen, J.R. Kim. Bicriteria reliability design using hybrid genetic algorithm. In:

Proceedings of the sixth European congress on intelligent techniques and soft

computing; pp.407-12, 1998.

[131]. C.Y. Lee, M. Gen and W. Kuo. Reliability optimization design using a hybridized

genetic algorithm with a neural-network technique. IEICE Transaction on

Fundamentals, E84-A (2):627–635, 2001.

[132]. C.Y. Lee, M. Gen and Y. Tsujimura. Reliability optimization design using hybrid

NN-GA with fuzzy logic controller. IEICE Transaction on Fund E85-A (2):432–446,

2002.

[133]. Y.S. Yun, M. Gen and S.L. Seo. Various hybrid methods based on genetic algorithm

with fuzzy logic controller. Journal of Intelligent Manufacturing, 14 (3–4): 401–419,

2003.

[134]. C.Y. Lee, Y.S. Yun and M. Gen. Reliability optimization design for complex

systems by hybrid GA with fuzzy logic control and local search. IEICE Transaction

of Fundamentals, E85-A (4):880–891, 2002.

[135]. H. Simon. The Sciences of the Artificial. MIT press: Cambridge, 1968.

[136]. M. Pelika and D.E. Goldberg. A Hierarchy Machine: Learning to optimize from

Nature and Humans. Complexity, 8(5):36-45, 2003.

134

[137]. N. Rasmussen and S. Niles. Modular systems: the evolution of reliability. White

paper, 76. American Power Corporation, 2005.

[138]. W. Wang, N.J. Loman, and P. Vassiliou. Reliability importance of components in a

complex system. Proceedings of the annual Reliability and Maintainability

Symposium, pp.6-11, LA, 2004.

[139]. I. Koren and Z.Koren. Defect tolerance in VLSI circuits: techniques and yield

analysis. Proceedings of the IEEE, 86(9):1819-1837, 1998.

[140]. G. Levitin. Optimal multilevel protection in series–parallel systems. Reliability

Engineering & System Safety, 81 (1):93–102, 2003.

[141]. S. H. Baek, B. W. Kim, E. J. Joung, and C. W. Park. Reliability and performance of

hierarchical RAID with multiple controllers. Proceedings of the twentieth annual

ACM symposium on Principles of distributed computing, pp.246 – 254, Newport,

Rhode Island, 2001

[142]. C. Ha and W. Kuo. Reliability redundancy allocation: An improved realization for

nonconvex nonlinear programming problems. European Journal of Operational

Research, 171(1):24-38, 2006.

[143]. W. Kuo and M.J. Zuo. Optimal Reliability Modeling: Principles and Applications.

Wiley, New York, 2003.

[144]. P. Boland and E. EL-Neweihi. Component redundancy vs. system redundancy in the

hazard rate ordering. IEEE Transactions on Reliability, 44(4): 614–619, 1995.

[145]. G. Anandlingam and T.L. Friesz. Hierarchical Optimization: An Introduction.

Annals of Operations Research, 34(1-4):1-11, 1992

[146]. L. Painton and J. Campbell. Genetic Algorithms in optimization of system

reliability. IEEE Transaction on Reliability, R-44 (2):172-178, 1995.

[147]. T. Yokata, M. Gen, and K. Ida. System reliability of optimization problems with

135

several failure modes by genetic algorithm. Japanese Journal of Fuzzy Theory and

Systems, 7 (1):117-135, 1995.

[148]. K. Ida, M. Gen, and T. Yokata. System reliability optimization with several failure

modes by genetic algorithm. Proceedings of the 16th International Conference on

Computers and Industrial Engineering, pp. 349-352, Ashikaga, Japan, 1994.

[149]. D.W. Coit and A.E. Smith. Reliability optimization of series-parallel systems using

a genetic algorithm. IEEE Transactions on Reliability, R-45 (2):254-260, 1996.

[150]. D.W. Coit and A.E. Smith. Considering risk profiles in design optimization for

series-parallel systems. Proceedings of the Annual Reliability and Maintainability

Symposium, pp.271-277, Philadelphia, PA, 1997.

[151]. Y.C. Hsieh, T.C. Chen, and D.L. Bricker. Genetic algorithms for reliability design

problems. Technical Report, Department of Industrial Engineering, University of

Iowa, 1997.

[152]. W.Y. Yun and J.W. Kim. Multi-Level redundancy optimization in series systems.

Computers & Industrial Engineering, 46(2): 337–346. 2004

[153]. E.D. DeJong, D. Thierens, and R.A. Watson. Hierarchical Genetic Algorithms.

Parallel Problem Solving From Nature-PPSNVIII, pp. 232-241, 2004.

[154]. J. Hu and E. D. Goodman. The hierarchical fair competition (HFC) model for

parallel evolutionary algorithms. Proceedings of the Congress on Evolutionary

Computation pp 49–54, 2002.

[155]. M. Gulsen, and A. E. Smith. A hierarchical genetic algorithm for system

identification and curve fitting with a supercomputer implementation. Evolutionary

Algorithms. Springer, pp.111–137, New York, 1999

[156]. K. Tang, K. Man and R. Istepanian. Teleoperation controller design using hierarchal

genetic algorithms. Proceedings of the IEEE International conference on Industrial

136

Technology, pp.707–711, 2000.

[157]. M. Sefrioui and J. Périaux. A hierarchical genetic algorithm using multiple models

for optimization. Proceedings of the 6th International Conference on Parallel

Problem Solving from Nature, pp.879 – 888, 2000.

[158]. M. Yoshimura, K. Izui. Smart optimization of machine systems using hierarchical

genotype representations. ASME Journal of Mechanical Design, 124(3): 375-384,

2002.

[159]. M. Gen and R. Cheng. A survey of penalty technique in genetic algorithms.

Proceedings of the International Conference on Evolutionary Computation,

pp.804-809, Nagoya University, Japan, 1996.

[160]. A. Molina, A. Kusiak, and J. Sanchez. Handbook of life cycle engineering: concepts,

models and technologies. Kluwer Academic Publishers, Boston, 1999.

[161]. W. Y. Yun, Y. M. Song, and H. G. Kim. Multiple multi-level redundancy allocation

in series systems. Reliability Engineering and Systems Safety, 92(3): 308-313,

2007.

[162]. R. Kumar, K. Izui, M. Yoshimura, and S. Nishiwaki. Multilevel redundancy

allocation optimization using a hierarchical genetic algorithm. IEEE Transaction on

Reliability (in press), 2008.

[163]. K. Deb. Multiobjective optimization using evolutionary algorithms. Chichester, UK:

John wiley and sons; 2001.

[164]. K., Deb, A. Pratap, S. Agrawal, T. Meyarivan. A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation,

6(2):182-197, 2002.

[165]. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto

evolutionary algorithm. TIK Report No. 103, Swiss Federal Institute of Technology;

137

2001.

[166]. E. Zizler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case

study and the strength Pareto approach. IEEE Transaction on Evolutionary

Computation, 3(4): 257-271, 1999.

[167]. E. D. DeJong, D. Thierens, and R. A. Watson. Hierarchical genetic algorithms. In:

Proceedings of eighth international conference on parallel problem solving from

Nature, September 18–22, Burmingham, UK: Springer; 2004.

[168]. A. Konak, D. W. Coit, and A. E. Smith. Multi-objective optimization using genetic

algorithms: A tutorial. Reliability Engineering and System Safety,

91(9):992-10072006.

[169]. E Zizler, K Deb, and L Thiele. Comparision of multiobjective evolutionary

algorithms: Empirical results. Evolutionary Computation, 8(1):173-195, 2000.

[170]. J.D. Schaffer. Multiple objective optimization with vector evaluated genetic

algorithms. In: Proceedings of the first international conference on genetic

algorithm and their applications. July 24-26, 1985. Pittsburgh, Pa, USA: Lawrence

Erlbaum Associates; 1985.

[171]. J. Horn, N. Nafpliotis, D. E. Goldberg. A niched Pareto genetic algorithm for

multiobjective optimization. In: Proceedings of the first IEEE conference on

evolutionary computation. IEEE world congress on computational intelligence. June

27–29, 1994. Orlando, FL, USA: IEEE; 1994.

[172]. P. Hajela, C. Y. Lin. Genetic search strategies in multicriterion optimal design.

Structural Optimization, 4(2):99-107, 1992.

[173]. T. Murata and H. Ishibuchi. MOGA: multi-objective genetic algorithms. In:

Proceedings of the IEEE international conference on evolutionary computation,

November 29- December 1, 1995. Perth, WA, Australia: IEEE; 1995.

138

[174]. N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting in

genetic algorithms. Journal of Evolutionary Computation, 2(3):221–248, 1994.

[175]. C. M. Fonseca and P. J. Fleming. Multiobjective genetic algorithms. In: IEEE

colloquium on „Genetic Algorithms for Control Systems Engineering‟ May 28, 1993.

London, UK: IEE; 1993.

[176]. J. D. Knowles and D. W. Corne. Approximating the nondominated front using the

Pareto archived evolution strategy. Evolutionary Computation, 8(2):149–172, 2000..

[177]. D. W. Corne, J. D. Knowles, and M. J. Oates. The Pareto envelope-based selection

algorithm for multiobjective optimization. In: Proceedings of sixth international

conference on parallel problem solving from Nature, September 18–20, 2000. Paris,

France: Springer; 2000.

[178]. D. Corne, N. R. Jerram, J. Knowles, J. Oates. PESA-II: region-based selection in

evolutionary multiobjective optimization. In: Proceedings of the genetic and

evolutionary computation conference, July 7-11, 2001. San Francisco, CA, USA:

2001.

[179]. R. Sarker, K. H. Liang, and C. Newton. A new multiobjective evolutionary

algorithm. European Journal of Operation Research, 140(1):12-23, 2002.

[180]. C. A. C. Coello and G. T. Pulido. A micro-genetic algorithm for multiobjective

optimization. In: First international conference on „Evolutionary multi-criterion

optimization (EMO 2001). March 7-9, 2001. Zurich, Switzerland: Springer; 2001.

[181]. H. Lu and G. G. Yen. Rank-density-based multiobjective genetic algorithm and

benchmark test function study. IEEE Transaction on Evolutionary Computation,

7(4):325-343, 2003.

[182]. G. G. Yen and H. Lu. Dynamic multiobjective evolutionary algorithm: adaptive

cell-based rank and density estimation. IEEE Transaction on Evolutionary

139

Computation, 7(3):253-274, 2003.

[183]. M. Yoshimura, M. Taniguchi, K. Izui, and S. Nishiwaki. Hierarchical arrangement

of characteristics in product design optimization. ASME Journal of Mechanical

Design, 128 (4):701-709, 2006.

140

141

Acknowledgement

First, I would like to express my sincere gratitude to my supervisor, Professor Masataka

Yoshimura, for his support, encouragement, and guidance during my stay at Kyoto

University. He gave a lot of freedom in my course and research work, and has been

extremely supportive and understanding at all times. Second, I would especially like to

thank Professor Kazuhiro Izui, who has supported all of my research activities. He has been

a constant source of help and inspiration to me. His guidance shaped my research activities

and helped me to complete this research and write the dissertation. Also, I am extending my

thanks and appreciation to Professor Shinji Nishiwaki for providing all the crucial guidance

and supports since the commencement of my research.

I appreciate the administrative help provided by the laboratory administrative assistant

Ms. Hiromi Ishizuka. I would like to extend my thanks to my tutor Mr. Haruki Karia for

helping me settle in Kyoto University and learn basic language skill. I would like to thank

all the lab members, Mr. Kiyoshi Yokota, Mr. Shin Kikuchi, Mr. Naotaka Uchida, Mr.

Keiichi Noda of Yoshimura laboratory for providing highly conducive research

environment in the laboratory. Also, I would like to thank Mr. Kenji Doi for his insightful

discussion and constant encouragement to complete my research.

Last but not the least, I thank my parent and the other members of my family whose

support and understanding is a continuous source of encouragement. I thank housemother,

Mrs. Maekawa Kayoko, office staffs, and all co-residents of the Kyoto International

Student House for providing a homely environment throughout my staying period.

142

143

Related Works

[1] R. Kumar, K. Izui, M. Yoshimura, and S. Nishiwaki. Multilevel redundancy allocation

optimization using a hierarchical genetic algorithm. IEEE Transaction on Reliability,

57(4):650-661, 2008.

[2] R. Kumar, K. Izui, M. Yoshimura, and S. Nishiwaki. Optimal multilevel redundancy

allocation in series and series-parallel systems. Computers and Industrial Engineering,

(in press).

[3] R. Kumar, K. Izui, M. Yoshimura, and S. Nishiwaki. Multiobjective hierarchical

genetic algorithms for multilevel redundancy allocation optimization. Reliability

Engineering and System Safety, (in press).

[4] R. Kumar, K. Izui, M. Yoshimura, and S. Nishiwaki. Hierarchical Genetic Algorithm

for System Reliability Optimization. The 7th International Conference on

Optimization: Techniques and Applications (ICOTA7) December 12 - 15, 2007, Kobe

International Conference Center, Kobe, Japan.

[5] R. Kumar, K. Izui, M. Yoshimura, and S. Nishiwaki. Optimal Analysis of Hierarchical

Redundancy Allocation Using Competent Genetic Algorithms. 7th World Congress on

Structural and Multidisciplinary Optimization, 2007, Seoul, South Korea.

[6] R. Kumar, K. Izui, M. Yoshimura, and S. Nishiwaki. Modular Redundancy

Optimization Using Hierarchical Genetic Algorithms. Annual Reliability and

Maintainability Symposium, 2007 Orlando, Florida USA.

[7] R. Kumar, K. Izui, M. Yoshimura, and S. Nishiwaki. Robustness of Redundancy

Optimization using Hierarchical Genetic Algorithms. The Japanese Society of

Mechanical Engineering, D&S 2006 Symposium, Nagoya, Japan.

[8] R. Kumar, K. Izui, M. Yoshimura, and S. Nishiwaki. Hierarchical Reliability

Optimization using Competent Genetic Algorithms. The Fourth China-Japan-Korea

144

Joint Symposium on Optimization of Structural and Mechanical Systems Nov. 6-9,

2006, Kunming, China.

	Abstract.pdf
	Contents
	HMO

