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Abstract

An electric antenna commonly occupies an essential part in plasma wave instruments

onboard scientific spacecraft. Though principles of electric antenna measurements are

fundamental, antenna behavior modified under the influence of surrounding plasmas is

often problematic, because it could disturb reliable measurements of an electric field

component of plasma waves. Then, strong demands arise regarding a better understanding

of antenna characteristics in space plasma environment. However, the antenna behavior

in plasmas is often too formidable to evaluate quantitatively by means of theoretical

approaches because of complex antenna–plasma interactions. Therefore, we must establish

a numerical approach for the self-consistent analysis of antenna characteristics in space

plasmas. This thesis is devoted to the development of a numerical method based on the

Particle-In-Cell technique and the investigation of antenna characteristics in space plasma

environment that is highly disturbed by the presence of an antenna and a spacecraft.

For the self-consistent analysis of antenna–plasma interactions, we construct a numer-

ical simulation code based on an electromagnetic Particle-In-Cell description of the plas-

mas. The code can include inner boundaries corresponding to perfect conducing surfaces

of an antenna and a spacecraft. At the boundaries, as well as perfect conducting conditions

required for electromagnetic fields, we also introduce numerical treatments for the charge

and current densities computed from plasma particles interacting with the boundaries.

These treatments are necessary for accurate descriptions of the charge accumulation ex-

actly on conducing surfaces and its redistribution to realize a floating equi-potential over

the surfaces. By using the constructed code, we perform two basic tests regarding plasma

environment around a conducting body. One is the plasma sheath formation as a result

of the spacecraft charging. The other is the dispersion relation of a sheath wave, which is

a peculiar electromagnetic-wave mode propagating only in an electron-sparse sheath. For

both tests, the reproduced environments show a good agreement with results obtained by

previous well-proven theories.

Using the code, we begin the antenna analysis in plasmas with a simple situation.

First, we apply the code to the impedance calculation in a homogeneous plasma en-

vironment and compare the result with the conventional kinetic theory. We correctly

confirmed characteristic impedance changes such as an impedance resonance and a finite

resistance below the plasma frequency by the computer experiment. Next, we examined

the impedance of an antenna surrounded by an ion sheath that is created simultaneously

with the antenna charging. We found that the sheath mainly influences reactance values

below the electron plasma frequency, which is consistent with empirical knowledge that

the ion sheath functions as a capacitance in the low-frequency range. Meanwhile, when

we expand the sheath thickness artificially by biasing the antenna potential negatively,
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it is found that the sheath capacitance less contributes to the total antenna impedance.

The trend indicates that the antenna reactance recovers its free-space value in the limit

of large sheath dimensions, which corresponds to dilute and hot plasma environment as

in the outer magnetosphere of the Earth.

As more realistic situations in space plasmas, we focus on effects of the photoelec-

tron emission from sunlit surfaces of an antenna and a spacecraft. To illustrate the

photoelectron effects, we perform computer experiments of the electron emission from

inner boundaries corresponding to sunlit conducting surfaces. The emitted electrons have

higher density but lower temperature than the plasma electrons. We confirmed the posi-

tive charging of the antenna and spacecraft bodies, and the formation of an electron-rich

region in the vicinity of the sunlit surfaces. It is revealed from impedance calculation

that the dense photoelectrons enhance the real part, and decrease the absolute value of

the imaginary part, of antenna impedance at low frequencies. The antenna impedance in

the photoelectron environment is represented by a parallel equivalent circuit consisting

of a capacitance and a resistance. We also show that the above resistance can be well

estimated semi-analytically using the numerical results of the electron currents flowing

into and out of the antenna. This suggests that the impedance change is caused by the

conduction current induced by the actual motion of photoelectrons contacting with the

antenna surfaces. The results also imply that the impedance varies with the spin of the

spacecraft, which causes the variation of the photoelectron density around the antenna.

Finally, we introduce a numerical technique for the direct analysis of receiving an-

tenna behavior and also develop a new model of modern electric antennas toward future

satellite missions. In the new analysis technique, we set up wave fields propagating in

a computational space and simulate the process of wave reception by the antenna. By

using the technique, we examined the effective length of a probe-like antenna, which has

a configuration such that sensing wire elements are attached at both ends of a center

boom conductor. For this type of the antenna, the effective length becomes shorter than

the physical separation between the centers of two sensing elements. It is found that

this effect is caused by the distortion of equi-potential surfaces due to the presence of

the center boom conductor. We next introduce numerical models of guard electrode and

current biasing, which are planned to be installed on future electric field instruments.

We performed computer experiments by using the standard setting of electrode poten-

tials, the values of which are not optimized but determined empirically. We found that

the guard electrode decreases the photoelectron-current coupling of the sensor conductor

with the boom and spacecraft bodies. The effect suggests that the electrode can reduce

the influence of large amount of photoelectrons emitted by the spacecraft body on elec-

tric field measurements. On the other hand, the bias current draws the sensor potential
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close to the background plasma potential. The electrode and the current biasing have a

small effect on antenna behavior for oscillating fields created by external plasma waves,

compared with their significant impacts on the static plasma environment. This result

is understood from the voltage–current characteristic curve of the sensor, the gradient

of which indicates the inverse of the dynamic resistance of the sensor for the oscillating

fields. Meanwhile, the observed voltage–current curve is considerably deformed by the

effect of the photoelectron current coupling even though it is decreased by the operation

of the guard electrode. The result emphasizes the significance of more optimal electrode

potentials in order to effectively mitigate the influence of the photoelectron coupling.
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Chapter 1

General Introduction

1.1 Introduction

The electric antenna is the most fundamental device for radiating or receiving radio waves.

It has been an essential component for humankind’s radio communication on the Earth,

and even in space. In space, however, the antenna has the second important application

as the sensor of naturally occurring plasma waves. Space is filled with ionized gases called

plasmas, and plentiful modes of waves naturally exist in plasmas [Stix, 1992]. Plasma

waves contain much information about the dynamic nature of space plasmas, because the

collective behavior of plasma particles are highly coupled with the wave electromagnetic

fields through their self-consistent motion. In this sense, measurements of plasma waves

provide the diagnosis of the plasmas themselves. Moreover, since the mean free path

length of most space plasmas is far larger than a geophysical scale, only plasma waves can

become mediators of energy exchange in the plasmas. This emphasizes the significance of

plasma wave measurements.

The earliest study of plasma waves in geospace — the region of outer space near the

Earth — goes back to ground-based observations of very-low-frequency (VLF) waves in

late 1800s [Preece, 1894]. Since then, although extensive ground-based studies were con-

ducted for VLF waves such as whistlers [Preece, 1894], dawn chorus [Allcock, 1957], and

auroral hiss [Burton and Boardman, 1933]. Among them, Storey [1953] gave the first ex-

planation for the whistlers that they are produced by lightning and their dispersion occurs

during propagation along the Earth’s magnetic field as a plasma wave mode. However,

the exact emission mechanism for the other signals and the precise picture of the geospace

environment remained largely unknown.

Rapid progress in the understanding of the geospace environment was brought by

the space age, which started with the launch of the first satellites in late 1950s. Many

scientific satellites and rockets revealed the exact structure of the Earth’s magnetosphere,

which is formed as a result of interactions between the Earth’s geomagnetic field and the
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2 CHAPTER 1. GENERAL INTRODUCTION

solar wind. In such exploration, in-situ observations of plasma waves played a crucial

role. The magnetosphere is divided by several characteristic regions and boundary layers,

each of which contains plasmas with very different parameters from the other ones [Lui,

1987]. Since plasma waves are very sensitive to changes of the plasma parameters, each

characteristic region has its own signature of plasma waves. Therefore, one can identify

the distinct regions in the magnetosphere by satellite observations of plasma waves.

Further, the existence of localized plasma waves emphasizes the importance of in-

situ observations. The first class of such waves is the electromagnetic ones such as the

Auroral Kilometric Radiation [Gurnett, 1974] and the continuum radiation [e.g., Gurnett

and Shaw, 1973], which are confined in specific regions in the Earth’s magnetosphere and

cannot reach the ground due to the presence of a dense ionospheric plasma. The second

class is the electrostatic wave modes, which have only an electric component as a wave

field [Stix, 1992]. The latter class of waves, in most cases, has much slower group velocity

than that of electromagnetic waves and cannot propagate long distances. The wave modes

can be found only by in-situ observations. The observations of such waves are important

not only for the specification of characteristic regions but also for the study of the local

wave–particle interactions occurring at the observation points.

One of breakthrough achievements of such plasma wave observations was brought by

waveform measurements conducted by the GEOTAIL spacecraft, which was launched in

1992. In various regions of the Earth’s magnetosphere, there commonly exists a strong

wave emission called broadband electrostatic noise (BEN) extending over a broad fre-

quency range, an example of whose dynamic spectra is shown in Figure 1.1(a). Although

it had been believed that the BEN emission is a superposition of waves over a broad-

frequency range, exhaustive theoretical studies in terms of linear analyses cannot provide

a sufficient explanation for its broadband noise spectra. The GEOTAIL observations using

a Wave Form Capture (WFC) [Matsumoto et al., 1994a] revealed that the real nature of

BEN is a series of solitary pulses as shown in Figure 1.1(b), which was named electrostatic

solitary waves (ESW) [Matsumoto et al., 1994b]. The successful observations of the ESW

waveforms suggest that the nonlinear evolution of an electron beam instability is ubiq-

uitously present in the magnetospheric environments. Stimulated by this achievement,

many researchers have recognized the significance of direct measurements of waveforms in

space plasmas, and such measurements have been actually carried out by many scientific

spacecraft after GEOTAIL. Their concern now moves on how precisely and quantitatively

the instruments can capture the real forms of the plasma waves.

For above in-situ plasma wave observations, an electric antenna has been commonly

used for measurements of the electric component of the wave field. Particularly for elec-

trostatic modes, an electric antenna is a unique instrument for the direct detection of the

waves. Here, an essential issue arises regarding the use of an electric antenna, that is,
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(a)

(b)

BEN
observed

Figure 1.1: Example of (a) the dynamic spectra of BEN in the Plasma Sheet Boundary
Layer and (b) its waveforms in the time domain captured by the GEOTAIL spacecraft
[after Matsumoto et al., 1994b].

whether or not the electric antenna immersed in space plasmas can behave equally with

that on the ground. The answer is “no”, because the performance of an electric antenna

evidently depends on electric properties, i.e., the permittivity, of surrounding medium.

However, the precise characteristics of practical electric antennas in space plasmas have

not been sufficiently understood quantitatively so far due to interactions among antennas,

plasma particles, and plasma waves. The major difficulty lies in the complex plasma en-

vironment much modified due to spacecraft–plasma interactions. Previously, there exist

extensive theories for the antenna characteristics in plasmas [Balmain, 1964; Schiff, 1970].

Most of the theories, however, have introduced certain simplification in plasma modeling,

and thus the result cannot be directly applied to realistic plasma environments, which are

highly disturbed by the presence of the antenna itself and the spacecraft body. Moreover,

the theories commonly treat only a very simple dipole antenna, but practical antennas

which are actually onboard scientific spacecraft do not necessarily have such simple ge-

ometries.

The main objectives of the present work are the establishment of a numerical method

for the quantitative analysis of electric antennas immersed in plasmas, and the investiga-

tion of antenna characteristics influenced by antenna–plasma (and spacecraft–plasma) in-
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teractions. To illustrate the dynamics of plasma particles and the evolution of an antenna

near field simultaneously, we performed computer experiments using the Particle-In-Cell

and electromagnetic descriptions for plasmas and fields, respectively [Birdsall and Lang-

don, 1985]. This approach can provide rigorous and precise insight into antenna behavior

in space plasmas. We believe that the present numerical study will contribute to more

sophisticated design and calibration of electric field sensors onboard scientific satellites.

In the following sections, we present some basic principles of electric field measurements

in space plasmas, the advantages of the numerical approach, and the contribution of the

present work.

1.2 Electric Antennas in Space Plasmas

As an introduction to electric antennas in space plasmas, we begin with a brief review of

basic principles of plasma wave measurements with electric antennas. From the princi-

ples, we clarify two important antenna characteristics — the impedance and the effective

length — in plasma wave measurements. Previously developed knowledge of these char-

acteristics in plasmas is then reviewed briefly. Some limitations of previous theoretical

and observational studies lead to the significance of computer experiments, which will be

described in Section 1.3.

1.2.1 Basic Principles of Plasma Wave Measurement

Since early history of plasma wave measurements in space, dipole antennas have been

commonly used on scientific spacecraft [Barrington and Belrose, 1963]. The term “dipole”

in this context indicates a pair of conductive sensing elements extended from a center

spacecraft. There are several types of actual geometries for the sensing elements. They

are classified roughly into two groups: (a) cylindrical wire antennas and (b) spherical

double probes. Figure 1.2 illustrates their geometries. For a cylindrical antenna, sensing

elements are two cylinders extended from a spacecraft in opposite directions. Typical

dimensions are 100 m in tip-to-tip length and 0.1–1 mm in radius. For a spherical double

probe, sensing elements are two conducting spheres, which are located at the ends of

booms extended from a spacecraft. Typical radius of the spheres is 1–10 cm. For both

above, a differential amplifier finally provides an output signal as the voltage Vout, which

is proportional to the voltage difference between the two sensing elements. In addition, for

a spherical probe, pre-amplifiers are often mounted inside the spheres in order to provide

low impedance signals to the differential amplifiers.

Practically, electric antennas actually onboard scientific spacecraft often have struc-

tures intermediate between the wire antenna and the spherical probe. Figure 1.3 shows

the outline drawings of two kinds of actual electric antennas: (a) WANT and (b) PANT
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E

Vout

Vout

(1) Cylindrical wire antenna

(2) Spherical double probe

Figure 1.2: Schematic illustrations of a cylindrical wire antenna and a spherical double
probe.

(a) WANT

(b) PANT

Figure 1.3: Schematic drawings of the (a) WANT and (b) PANT elements onboard
the GEOTAIL spacecraft [after Matsumoto et al., 1994a].

onboard GEOTAIL spacecraft, which are deployed orthogonal to each other. Although

WANT and PANT are apparently similar to the wire antenna and the spherical probe,

there are some differences from the antennas shown in Figure 1.2. First, for PANT,

pre-amplifiers are not mounted inside the spherical probes, which indicates that the sup-
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Vin

Vout
Za

ZL

Figure 1.4: An equivalent circuit for electric field measurements using an electric
antenna. Vin is the voltage induced by the applied electric field, Za is the antenna
impedance and ZL is the load impedance at the base of the antenna.

porting wires can also function as a part of sensing elements. Second, for both antennas,

a portion of wires is covered with dielectric material. The dielectric coating is regarded

as a capacitance separating the wires from ambient conducting plasmas. For DC electric

field measurements, the coating completely insulates the wire from the ambient plasmas,

and only an exposed portion can function as sensing elements. Thus as well as PANT,

even WANT is considered to have probe-like behavior. Meanwhile, for higher frequencies,

the capacitance appears almost short circuit. In the case, all the wire parts can function

as sensing elements, and thus both WANT and PANT behave as wire antennas [Imachi

et al., 2002, 2007]. Thanks to this frequency-dependent behavior, both antennas can

maintain an optimal sensitivity over a wide frequency range.

What we should next consider is how external electric field is related to the final output

voltage Vout. This is characterized by two antenna characteristics, i.e., the effective length

(or the “effective separation” in the case of a spherical probe) Leff and the impedance Za.

The effective length is defined as

Leff =
Vin

E
, (1.1)

where E is the electric field component along the antenna axis, and Vin is the open circuit

voltage between the two sensing elements. This Leff is generally different from the physical

tip-to-tip length La of the antenna. The final output voltage Vout is then obtained by an

equivalent measurement circuit shown in Figure 1.4. In the circuit, Vin is represented by a

voltage source, and Za and ZL represent the antenna impedance and the load impedance,

respectively. In summary, the relation between Vout and E is written as

Vout =
ZL

Za + ZL

LeffE. (1.2)

From the above, it is obvious that precise knowledge of antenna effective length and

impedance is essential to determine the quantitative relation between E and Vout.

Although the above basic principles are almost common with those for ground-based

receiving antennas, there are also several differences from practical antennas on ground
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such as the half-wave dipole. First, a space-based antenna is in most cases designed and

actually operates as an “electrically short antenna”, by which we indicate that its physical

length is much shorter than, at least, the wavelength of free-space electromagnetic waves.

For such a short antenna, the electric field is approximately uniform within a spatial scale

of the antenna physical length, and thus the field is well described by a scalar electric

potential [Balmain, 1964]. Note that electrostatic plasma waves can sometimes have very

short wavelengths, which are comparable or shorter even compared with such a short

antenna. In the situation, the antenna response to the field troublingly deviates from

the long wavelength limit, which will be briefly mentioned later. The second difference

from the ground-based antennas is that the space-based antenna typically operates by

connecting very large ZL rather than trying to achieve impedance matching. This comes

from a difficulty of such matching for the space-based antennas and a design concept that

gives priority to maximize the output voltage Vout delivered to pre-amplifiers rather than

to the effective use of available power from received plasma waves.

The above differences are important key points in the design of electric antennas for

plasma wave measurements. By taking the differences into consideration, we can regard

the space-based dipole antenna rather as a voltmeter than as a radio antenna. Then, we

can consider ideal voltmeter conditions as follows: (1) the electric field to be measured can

be completely represented by a scalar potential; (2) two conducting elements, electrically

insulated with each other, are floating in terms of the electric potential and have the

same potentials as the local background potentials at their centers; (3) the potential

difference between the two elements is directly obtained as the output voltage Vout. Also

in practice, many electric field sensors, particularly spherical probes, are designed to meet

the ideal voltmeter conditions as near as possible. However, the conditions are often

violated unfortunately. The first reason is that an electrically short antenna has a large

capacitance compared with a half-wave dipole. This indicates that it is usually difficult

to achieve a condition ZL À Za, which inhibits to meet the conditions (2) and (3). The

change of the antenna characteristics in plasma environment also influences the conditions.

In the following sections, we briefly review previous knowledge of antenna characteristics

in plasmas.

1.2.2 Antenna Impedance

There are extensive theoretical and experimental studies regarding the antenna impedance

in plasmas. Stimulated by a pioneering work by Balmain [1964], many researchers have

attempted theoretical formulation based on the induced Electro-Motive-Force (EMF)

method. In the method, the plasma contribution is entirely included in the plasma di-

electric tensor as a function of frequency and wavenumber [Stix, 1992]. Various plasma

models have been developed such as a cold plasma description [Balmain, 1964; Oya, 1965;
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Aso, 1973], a hydrodynamic description with finite temperature [Balmain, 1965; Meyer

and Vernet, 1974], and a kinetic (Vlasov) description [Kuehl, 1966; Schiff, 1970; Nakatani

and Kuehl, 1976; Meyer-Vernet and Perche, 1989]. These models were applied to the

impedance analysis mostly for an electrically short dipole antenna.

The most notable product obtained in the above studies is the prediction of impedance

resonances occurring at plasma characteristic frequencies. This can be easily demon-

strated for the simplest case of a cold, isotropic, collisionless plasma with an assumption

of immobile ions. In free space, a short dipole antenna is purely capacitive; we can write

its impedance as Z = 1/jωC0, where j, ω, and C0 denotes the imaginary unit, the angular

frequency, and the free-space capacitance, respectively. In a plasma to be considered, on

the other hand, the free-space capacitance should change to εrC0, where εr = 1−ω2
pe/ω

2 is

the relative permittivity including the plasma contribution, and ωpe is the electron plasma

frequency. The resultant impedance is then given as

Z =
1

jωC0 + 1
jωLe

, (1.3)

where Le = 1/ω2
peC0 has a dimension of inductance. Equation (1.3) clearly indicates that

the impedance shows the LeC0 parallel resonance at the frequency ω = 1/
√

LeC0 = ωpe.

The signature of the resonance is modified for different plasma conditions and models;

e.g., for anisotropic plasmas, the impedance resonance takes place at the upper hybrid

frequency ωUHR instead of the electron plasma frequency. The knowledge about the

impedance resonance has contributed to diagnostic techniques of space plasmas such as the

impedance probe [Oya, 1966], which is widely used for electron density measurements in

the ionosphere. In addition to the impedance resonance, the kinetic analysis predicted the

finite resistance caused by dissipation of field energy due to its conversion to plasma kinetic

energy [Meyer-Vernet and Perche, 1989]. This result was also applied to a diagnostic

technique for plasma temperature measurements, which is called the quasi-thermal noise

spectroscopy [Meyer-Vernet et al., 1998].

In parallel with the theoretical studies, in-space measurements of antenna impedance

have also been performed by several scientific spacecraft [Hashimoto et al., 1991; Tsutsui et

al., 1997] and rockets [e.g., Wakabayashi and Ono, 2006]. As for the impedance resonance

mentioned above, many sounding rockets obtained the frequency characteristic of the

impedance in a frequency range near ωUHR in the ionosphere. They observed not only the

resonance at ωUHR but also a sheath resonance, which is considered as a series resonance

caused by the plasma inductance and the sheath capacitance [Oya and Obayashi, 1966].

Such resonances have been observed in various plasma environments such that the antenna

length is sufficiently longer than the local Debye length.

On the other hand, in large part of the Earth’s outer magnetosphere, the plasma is

so dilute that the Debye length is often comparable to or even larger than the antenna
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Resistance

Capacitance

Figure 1.5: A quantitative relation between the resistance and capacitance values
represented by a parallel circuit shown in the left panel, which is derived from WANT
impedance measured by the 65 experiments conducted by the GEOTAIL spacecraft in
the Earth’s magnetosphere. The height and width between the facing sides of rectangle
indicate fluctuation ranges of the resistance and capacitance values, respectively. The
capacitance C0, which is shown by the vertical dashed line, is the theoretical value for a
linear dipole antenna with half-length of 50 m in free space [after Tsutsui et al., 1997].

length. In such regions, the impedance resonance was hardly observed around the electron

plasma frequency. Instead, the different characteristic signature was observed in lower fre-

quency ranges [Tsutsui et al., 1997], which was found to form an equivalent electric circuit

consisting of a resistance and a capacitance connected in parallel. They calculated the

resistance and capacitance values in various regions of the magnetosphere, the result of

which is shown in Figure 1.5. As shown in the figure, they showed that especially the

resistance value is strongly dependent on the change in the ambient plasma density. The

GEOTAIL impedance measurements also obtained some data which implied that photo-

electrons, emitted from sunlit conducting surfaces of the antenna and the spacecraft body,

also influence the resistance value. Empirical knowledge about the antenna impedance

in the dilute plasma environments significantly contributes to practical scenes of obser-

vation data processing; e.g., the calibration of the waveforms observed by the antenna

is sometimes performed by using the representative values of the antenna impedance for

each region of the outer magnetosphere [Kojima, 1998].

Although the extensive studies have been performed on the antenna impedance in

plasmas by the theoretical and experimental approaches, some problems have remained



10 CHAPTER 1. GENERAL INTRODUCTION

unresolved. For the analytical approach using the EMF method, main problems come from

the need to (1) assume the current distribution on the antenna surface, and (2) describe

the plasma contribution in the form of a dielectric function. Of them, the determination

of the current distribution is a boundary value problem, and the problem becomes too

complex to solve analytically for antennas with arbitrary lengths. This difficulty limits

the analysis only to an electrically short antenna. There are a few studies which did not

limit the analysis object to a short one in a case of cold plasma [Adachi et al., 1977].

Also, several attempts have been conducted recently to directly derive a real form of the

current distribution [e.g., Bell, 2006]. However, there have been still few approaches that

can be applied to general plasma environments including kinetic effects.

The necessity to describe the plasma contribution as the dielectric function of fre-

quency and wavenumber makes difficult to treat the inhomogeneous plasma environment

around the antenna, because the ability to write in this form stems essentially from an

assumption that the plasma is homogeneous in space [Stix, 1992]. In practical situations,

however, the inhomogeneity of plasma environment is always important when consider-

ing the antenna characteristics. Even in absence of any active particle emission from an

antenna surface such as the photoemission, an electron-sparse region called an ion sheath

is created as a result of the antenna charging. In an aspect of the ion sheath effect on

the antenna impedance, several theoretical analyses of the sheath impedance have been

carried out for much simplified sheath configuration such as planar [Oya, 1965; Balmain

and Oksiutik, 1969] and cylindrical [Aso, 1973] structures with a cold plasma description.

However, in reality, the sheath configuration should be determined as a result of antenna–

plasma interactions governed by the plasma kinetics, which is essentially inconsistent with

the assumption of a cold plasma. Further, in the outer magnetosphere, photoelectrons

emitted by the exposure of the antenna surface to the sunlight radiation form the domi-

nant population of electrons around the antenna. The plasma inhomogeneity caused by

photoelectrons is much more complex than that of the ion sheath because of their asym-

metric emission and their attraction/repelling by the charged antenna body. Therefore,

there are few studies that include effects of photoelectrons in the analysis of the antenna

impedance in a self-consistent manner.

On the other hand, in-space measurements provide quite practical information about

the impedance. The obtained data automatically contain effects that are difficult to treat

theoretically. A difficulty of the in-space measurements lies in their high cost and inability

to investigate every region and situation possibly encountered in space.

1.2.3 Effective Length

In comparison with the antenna impedance, a smaller number of studies have been per-

formed regarding the effective length in plasma environments. Therefore, knowledge for
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the effective length in free space is still used also for space-based antennas.

In free space, the effective length of a receiving antenna is usually analyzed by using

the reciprocity theorem [Jordan, 1950], i.e., the receiving properties can be obtained by

inversely analyzing its radiation properties. For a cylindrical dipole antenna that is an

electrically short, it is widely known that the current distribution along the antenna is

well approximated to a triangular form in a free-space case. This triangular current

distribution is easily transformed to a uniform charge distribution by using the continuity

equation for charge (and an initial condition that no charge is distributed before the

antenna excitation). Since the centers of the charge distributions along the two antenna

elements are located just at the centers of the elements, it is obvious that the equivalent

dipole moment is realized by separating the charges by a distance of La/2. As a result,

the effective length of the cylindrical wire dipole is La/2. The same logic can be applied

to a spherical double probe. For the probe, charges on its sensing elements are obviously

concentrated at the probe positions, which are separated by the distance La. This follows

that the effective length of the spherical double probe is La.

Although the above idea well meets the ideal voltmeter condition (2), there are several

works which reconsidered the effective length in space. Imachi [2007] focused on an

effect of a dielectric coating of the GEOTAIL antennas by performing the rheometry

experiments. He reported that Leff of the wire antenna becomes frequency-dependent due

to the separation of the antenna bodies from the conducting plasma medium; Leff = La/2

for high frequencies and Leff = La for DC and low frequencies. The result comes from

that the equivalent capacitance of the coating appears an open circuit for high frequencies,

while a short circuit for DC and low frequencies, as described in Section 1.2.2.

Fuselier and Gurnett [1984] reported a peculiar effect on Leff for short-wavelength

electrostatic waves. In cases of comparable or shorter wavelength compared with an-

tenna length, the electric field around the antenna is no longer uniform, and then Leff

deviates considerably from the free-space values. They reported that, in such a short-

wavelength regime, Leff shows a drastic dependence on the wavelengths [see also Gurnett,

1998, Figure 9]. This implies the difficulty in use of electric antennas for measurements

of such short-wavelength waves. Although actual wavelengths are unknown in usual sit-

uations, space-based antennas are basically designed assuming that observed waves have

sufficiently longer wavelength than the antenna length.

As another effect in plasma environment, it has been reported that Leff becomes much

larger than even its physical length for plasma waves propagating near the resonance

cone [Sonwalkar and Inan, 1986; James, 2000; Chugunov, 2006]. However, to our best

knowledge, there are few methods that can be generally applicable to the analysis of such

irregular behavior of the effective length.
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1.3 Significance of Computer Experiments

1.3.1 Role of Computer Experiments

Although the past theoretical and experimental studies significantly contributed to the

understanding of basic antenna behavior in plasmas, certain difficulties remained in the

directly application of the studies to practical electric field instruments onboard scientific

spacecraft. Below, we again summarize limitations included in the theories.

1. In the impedance calculation using the EMF method, an assumption of a triangular

current distribution on the dipole antenna surface has been commonly used to avoid

the complexity of deriving the real form of the distribution.

2. Effects of plasma inhomogeneity caused by the sheath formation and the photo-

electron emission around the antenna have been often neglected, or introduced in a

limited way assuming a highly simplified plasma distribution.

3. The analyses have been limited only to a simple dipole antenna. Also, effects of a

spacecraft body and other complex structures have been hardly introduced in the

analyses.

In order to overcome these difficulties, we should explore possibilities of the utilization of

numerical approaches.

Recent progress of computer facilities has enabled us to analyze antenna behavior

in plasmas by means of a “computer experiment” (or a “computer simulation”). The

basic idea of computer experiments is to simulate the physical behavior of antennas in

complex plasma environments by discretizing the problem so that the complicated natural

systems can be solved with an appropriate set of fundamental mathematical equations.

The computer experiments can treat effects of inhomogeneity, lack of symmetry, and non-

linearity, and complement the limitations of the theories mentioned above. They also have

advantages against space experiments such as low-cost, detailed diagnosis, and feasibility

of many trials. Meanwhile, it should be noted that the limitations of theories and space

experiments are traded for the resolution limitations of the numerical models.

1.3.2 Classes of Numerical Modeling

There are many different numerical approaches that could be applied to antenna prob-

lems in plasmas, each of which has its own advantages and disadvantages. The Method of

Moments (MOM) is the most popular method for the antenna analysis in free space [Har-

rington, 1968], which solves integral equations for the conducting antennas combined with

Galerkin’s method. The method can accurately determine the antenna current distribu-

tion, which improves impedance results compared with the aforementioned EMF method.
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When applying the method to plasma environments, however, one must use similar ap-

proximations to those used in theoretical methods, which makes difficult to significantly

improve the results. Moreover, the method is basically the analysis in the frequency

domain, and thus is difficult to treat the non-linearity contained in plasma dynamics.

Another approach is the Finite Differencing (FD) techniques used to spatially and tem-

porally discretize the antenna/plasma environment according to the differential form of

underlying equations. Particularly, the Finite Difference Time Domain (FDTD) method

[Taflove, 1995] is easier to combine with various numerical plasma models, which have

been developed exhaustively in the field of plasma simulations [Matsumoto and Omura,

1993]. In the aspect of the antenna analysis, the following approaches can be used in

order to incorporate the FDTD method with plasma models, which are listed in the order

of ascending rigidness.

Recursive convolution approach

One approach to include plasma effects in the FDTD method is to treat the plasma as

a dielectric media. The contribution of plasmas is included by the multiplication of the

plasma dielectric function ε(ω) and the electric field in the frequency domain in Ampères

equation. This multiplication, when converted to the time domain, becomes a convolution

of the electric field and the time domain representation of the dielectric function. When

the function has certain forms such as that for a cold, unmagnetized, collisional plasma,

it has been verified that the integration equation of the convolution can be computed

recursively, which is more tractable than storing the historical data of the electric field

to calculate the convolution [Luebbers et al., 1991; Cummer, 1997]. The method is called

the Recursive Convolution (RC) scheme.

By using with Maxwell’s equations, the RC scheme can perform a full-wave analysis.

This also allows the model to yield a self-consistent solution for the current distribution

along the antenna. Also, there are a few works that extended the technique to magnetized

plasma [e.g., Hunsberger et al., 1992]. However, this technique is basically dependent on

the capability to calculate the temporal dependent dielectric representation for the plasma

environment. It is generally difficult to expect that the task is easily performed, e.g., for

multi-species and warm plasmas. Therefore, the applicability of the scheme is very limited,

which is the same disadvantage as was described for the theoretical approaches.

Fluid equation approach

The plasma fluid equations provide a complete description of Maxwellian plasma en-

vironments, when combined with Maxwell’s equations and closed by additional plasma

modeling such as an equation of state. The resulting system can illustrate effects of field

energy emanated by antennas on the plasma environments in a self-consistent manner. In
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the field of plasma simulations, the single-fluid, Magneto-Hydro-Dynamic (MHD) model

has been extensively used for the study of macroscopic physical processes. For the an-

tenna analysis, however, the two-fluid (or multi-fluid) plasma model is generally used to

retain an electron inertial effect and a dispersive property of the plasmas [Ward et al.,

2005].

Since any kinetic effects are missing, the method cannot be applied to hot and dilute

plasma environments typically seen in the outer magnetospheric regions, where plasma

waves with wavelengths comparable to the antenna length are susceptible to Landau

damping since the Debye length is often larger than the antenna length. Moreover, the

effects of an ion sheath and photoelectrons are intractable in the method. The method

is rather suitable for relatively colder and denser plasma environments such that the

Debye length is sufficiently smaller than the antenna length. Recently, the fluid model

is successfully applied to the interpretation of data obtained by the impedance probe in

collisional, ionospheric plasmas [Spencer et al., 2008].

Particle-In-Cell approach

The Particle-In-Cell (PIC) is one of the most rigorous approaches to simulate plasma

dynamics coupled with associated electromagnetic fields. In the method, we modeled

plasmas as a large number of macro-particles generally called “superparticles”, each of

which represents many real plasma particles contained within a finite volume. The in-

dividual particles in the Lagrangian frame are tracked in continuous space, while their

moments such as the charge and current densities, and electromagnetic field components

defined as Eulerian variables are computed simultaneously on computational mesh points

[Dawson, 1983; Birdsall and Langdon, 1985]. The plasma simulations using the PIC ap-

proach is categorized into two groups: a full-particle scheme in which all the species in

plasmas are treated as particles, and a hybrid scheme in which electrons and ions are

generally treated as fluid and particles, respectively.

Because the equations of motion for individual superparticles are solved, the PIC

method enables us to simulate the plasma dynamics including plasma kinetic effects in

a self-consistent manner. Also, especially the full-particle scheme is relatively intuitive

and straightforward to implement. Thanks to these features, the PIC method has been

successfully applied to the analysis of various non-linear processes in collisionless space

plasmas such as beam instabilities, shocks, and magnetic reconnection, as well as laser-

plasma interactions in laboratory plasmas. On the other hand, it has been recognized

that the method is susceptible to non-physical heating, which is caused by much smaller

number of superparticles in the Debye sphere than that in real plasmas [Ueda et al., 1994].

The above advantage is important also for the antenna analysis in plasmas, because the

kinetics of photoelectrons as well as background plasmas under the influence of charged



1.4. CONTRIBUTION OF THE PRESENT WORK 15

antenna and spacecraft bodies is considered as an essential factor for the resulting plasma

inhomogeneity. However, the application of the PIC method to the analysis of practi-

cal space-based antennas has been highly limited so far, which is primarily due to its

too high computational cost. Recently, remarkable progress in supercomputer and high-

performance computing gradually makes the computer experiments using the PIC scheme

practical in terms of cost and time. In this sense, the establishment of the more complete

methodology for the antenna analysis using the PIC scheme is worth the effort.

In the present thesis, based on the PIC technique, we primarily utilize a full-particle

treatment for antenna analysis in plasmas including photoelectric effects. Particularly,

we have developed a new numerical tool for the antenna analysis based on the three-

dimensional Kyoto University Electromagnetic Particle COde (KEMPO). In the new nu-

merical tool, we have adopted numerical treatments for interfaces between a plasma space

and conducting bodies of the antenna, which were originally developed for the use in elec-

trostatic particle simulations [Hockney and Eastwood, 1981; Usui, 1993]. The developed

tool is applied to quantitative analysis of the characteristics of practical antennas actually

aboard scientific spacecraft, which is the ultimate purpose of the present work.

1.4 Contribution of the Present Work

The present thesis describes the development of the PIC method optimized for the an-

tenna analysis in space plasma environment, and discusses the results of computer ex-

periments on the characteristics of electric antennas onboard scientific spacecraft. We

particularly focus on effects of the plasma inhomogeneity due to antenna–plasma and

spacecraft–plasma interactions. Figure 1.6 schematically illustrates the contribution of

the present work. The upper panel shows the main subject treated in each chapter. The

lower panel shows numerical techniques developed or introduced in the present work. It

should be noted that the techniques are in part indebted to intellectual knowledge accu-

mulated over the years in the space research group in Research Institute for Sustainable

Humanosphere: RISH (former Radio Science Center for Space and Atmosphere: RASC)

at Kyoto University.

In Chapter 2, we present detailed descriptions about a new numerical tool named Elec-

tromagnetic Spacecraft Environment Simulator (EMSES), which is originally developed

for the self-consistent analysis of the spacecraft–plasma interactions on the full electro-

magnetic (EM) basis. For the analysis of electric antenna characteristics in space plasma,

we must introduce a numerical model of conducting surfaces of antenna bodies. Further,

the inclusion of EM effects is mandatory to treat space-based electric antennas which

radiate or receive EM waves. In EMSES, we carefully coded boundary treatments for

both longitudinal and transverse electric fields on perfect conducting surfaces. The im-
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portant point to notice is that the longitudinal electric field component should always

satisfy Gauss’s law with the charge distribution in that moment. This is not necessarily

obvious in the EM-PIC simulation, because Gauss’s law is not explicitly solved. This

requires some additional boundary treatments also for the charge and current densities in

the vicinity of the conducting bodies. The details are described in this chapter. We also

validate EMSES, in which we perform test simulations for the spacecraft charging and

the properties of peculiar EM wave modes in a plasma sheath.

Chapter 3 describes results obtained by computer experiments for the impedance of

an electrically short dipole antenna covered with an electron-sparse region. Its major

motivation is to demonstrate the application of EMSES to the antenna analysis. We

particularly simulate the behavior of a transmitting antenna with low power. The obtained

impedance is fundamental and useful for the validation of the present method. For the

validation, we consider a very fundamental situation in which a set of dipole antenna is

immersed in a Maxwellian, unmagnetized, and collisionless plasma. The plasma is so dense

and low-temperature that the Debye length becomes smaller than the antenna length,

which is expected to yield an impedance resonance at the electron plasma frequency.

First, we validate the antenna modeling used in EMSES by examining the impedance

excluding any effects of an ion sheath and comparing obtained results to the conventional

kinetic theories. After that, we analyze the impedance characteristics of antennas covered

with an ion sheath, which is created under the condition that an antenna has a negative

floating potential. One of focal points is the structure of the sheath, which is created as a

result of self-consistent computation of the antenna-plasma interactions. We also discuss

the dependence of the antenna impedance on the sheath thickness.

Chapter 4 is devoted to the discussion of photoelectron effects on the impedance of

electric antennas. In the outer magnetosphere of the Earth, the Debye length is often

comparable to or larger than the antenna length. In this environment, photoelectrons

predominantly have high density compared to the background plasma electrons and are

expected to influence the antenna impedance. We first survey a plasma environment cre-

ated around the spacecraft as a result of the photoelectron emission obtained by computer

experiments. We then examine photoelectron effects on the antenna impedance. The nu-

merical result shows that the dense photoelectrons influence the antenna impedance over

a wide-frequency range below a certain frequency. For interpretation of the photoelec-

tron effect, we introduce an equivalent electric circuit model for the photoelectron effect

and derive an analytical estimation for the impedance modification due to the photo-

electron emission. Finally, we briefly discuss the contribution of the present results to

the interpretation of in-flight impedance measurement data obtained by the GEOTAIL

spacecraft.

In Chapter 5, we introduce a new technique for the antenna analysis, which directly
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simulates the plasma-wave reception by the antenna. In Chapters 3 and 4, we investi-

gate antenna characteristics by simulating transmitting behavior of the antenna. In the

presence of the reciprocity relation between transmitting and receiving antennas, the ob-

tained results can be directly applied also to the receiving antennas. However, in plasma

environment, the reciprocity has been strictly proved only in limited simple situations

in previous works [Ishizone et al., 1976]. In order to extend the analysis to receiving

antennas in environment of unknown reciprocity, we have developed a plug-in routine,

with which we set up wave fields propagating in the simulation region and directly simu-

late the process of receiving the wave fields by the antenna. We also develop a numerical

model for a modern electric field instrument designed based on a “hockey puck” principle.

The notable feature of the instrument is the equipment of the guard electrode that can

minimize photoelectron effects which are formidable particularly for measurements of DC

electric field. We need to investigate whether or not the new equipment optimized for

DC measurements is suitable also for wave measurements. We first describe the plasma

environment in the vicinity of the instrument as a steady-state and effects of the guard

electrode and the current biasing on the environment. Next, Section 5.4.3 describes re-

sults for the effective length and the impedance of the instrument in receiving external

plasma waves.

In Chapter 6, we will summarize the present study and give conclusions obtained in

the present computer experiments. We also present suggestions for future works.



Chapter 2

Numerical Techniques for Antenna
Analysis in Space Plasmas

2.1 Electromagnetic Spacecraft Environment

Simulator: EMSES

In this chapter, we describe numerical techniques for computer experiments of electric

antennas in space plasma environment. Because the code can be applied not only to the

antenna analysis but also to more general problems regarding spacecraft–plasma inter-

actions, we begin this chapter with reviewing previous numerical studies of spacecraft–

plasma interactions.

Spacecraft–plasma interactions have become an issue of great importance with the

rapid increase of human activities in space [Hastings and Garrett, 1996; Martin 1994] and

the modeling and examination of spacecraft–plasma interactions have progressed signif-

icantly in recent years. To date, most concerns have focused on the quasi-electrostatic

phenomena. For example, spacecraft charging is recognized as a significant problem, influ-

encing the performance of spacecraft systems and the accuracy of plasma wave and particle

sensors [Garrett, 1981; Garrett and Whittlesey, 2000; Whipple, 1981]. For the spacecraft

charging problem, the National Aeronautics and Space Administration (NASA), the Euro-

pean Space Agency, and the Japan Aerospace Exploration Agency developed the NASA

Charging Analyzer Program (NASCAP) [Mandell, 2006], the Spacecraft Plasma Inter-

action System (SPIS) [Roussel et al., 2008], and the Multi-Utility Spacecraft Charging

Analysis Tool (MUSCAT) [Muranaka et al., 2008], respectively. Although the latest ver-

sions of the above tools partly utilize the PIC technique [Birdsall and Langdon, 1985],

they have so far been mainly used to obtain the steady-state solution of the spacecraft

charging problem. There have been exhaustive studies of the PIC technique for analyz-

ing spacecraft–plasma interactions, but most use the ES-PIC basis [Roussel et al., 2008;

Forest et al., 2006; Kafafy and Wang, 2006].

When analyzing the properties of transmitting antennas in space, we need to examine

19
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the transient process of the interactions between the emitted RF power and surrounding

plasmas even at the scale of electron dynamics. To examine such transient processes,

we require a full EM-PIC simulation which can include solid spacecraft surfaces [Usui

et al., 2006]. In the full EM model, however, the numerical treatments of superparticles

and electric fields at inner boundaries corresponding to spacecraft surfaces should be

modified and new treatments should be added. Presently, there exists little literature

that explicitly describes full EM treatments for the inclusion of solid bodies of spacecraft

in PIC simulations.

In consideration of the above demands, we have developed a new simulation code,

the Electromagnetic Spacecraft Environment Simulator (EMSES), for the self-consistent

analysis of spacecraft–plasma interactions using the full EM-PIC basis [Miyake and Usui,

2008d]. In EMSES, spacecraft surfaces are represented by inner boundaries constructed

of perfect conductors. Both EM and ES fields satisfy the appropriate conditions for per-

fect conducting surfaces. We also implement interface treatments for the current density

induced by plasma particles impinging on or emitted from the spacecraft surfaces. Al-

though some of the methods in the approach have been used individually in conventional

simulations, the combination and the implementation of the methods to EM-PIC simula-

tion for spacecraft environment analysis are new concepts and described for the first time

in the present paper.

We describe details of EMSES in Sections 2.2 and 2.3. Then, we present test simu-

lations for the validation of EMSES in Section 2.4. We particularly focus on two basic

problems, the spacecraft charging problem and the properties of EM wave modes which

propagate along spacecraft conducting surfaces.

2.2 Overview of EMSES

The plasma description used in EMSES is based on an existing EM particle code called

KEMPO (see Matsumoto and Omura [1993] for details). In the code, the equations of

motion for charged “superparticles” (introduced in Section 1.3.2) and Maxwell’s equations

for the EM fields are simultaneously solved in a self-consistent manner. Considering no

relativistic effect, the equations of motion for each particle are given by

dr

dt
= v, (2.1)

dv

dt
=

q

m
(E + v × B), (2.2)

where r, v, q, m, E, and B represent the particle position, velocity, charge, mass, and the

electric and magnetic fields, respectively. Then, the following sets of Maxwell’s equations
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are solved as basic equations:

∇× B = µ0J +
1

c2

∂E

∂t
, (2.3)

∇× E = −∂B

∂t
, (2.4)

where J , ρ, µ0, and c represent the current and charge densities, the magnetic permeabil-

ity, and the speed of light, respectively.

For updating of the particle velocities, we use the Buneman–Boris scheme, which

conserves the kinetic energy in the calculation of cyclotron motion [Birdsall and Langdon,

1985]. In the three-dimensional system, the values of the EM field components are defined

at grid points, which are assigned based on the Yee algorithm [Yee, 1966]. The left panel of

Figure 2.1 shows the field assignment. The EM fields are advanced by using the standard

Finite-Difference Time-Domain (FDTD) method [Taflove, 1995].

Superparticles move continuously in the computational space, while the field compo-

nents are defined only at grid points. Thus, in order to obtain the field terms in Eq. (2.2)

for each particle, we linearly interpolate the field components defined at the adjacent eight

grid points around the particle. Similarly, to obtain the source term, i.e., the current den-

sity J , in Eq. (2.3), we distribute the charge flux ρv calculated at the particle positions
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to adjacent grid points, where ρ represents the charge density. For the calculation of J ,

we employ a Charge Conservation (CC) method developed by Umeda et al. [2003], which

assures the continuity equation for charge. By using the above schemes, the variation of

the EM field values and the dynamics of superparticles are updated self-consistently.

Solid spacecraft bodies, represented as inner boundaries of conducting surfaces, are

immersed in a three-dimensional simulation space. In EMSES, the geometry of the space-

craft is described by a Cartesian coordinate grid. In the right panel of Figure 2.1, we

show a two-dimensional view of the grid and an example of the assignment of a spacecraft

surface. Since the Yee grid has a staggered arrangement of field components, the space-

craft surfaces must be carefully assigned on the grid. When treating a perfect electric

conductor, conductor surface treatments are required for the tangential components of

the electric field and the charge density. Therefore, the conductor surface should be set

along a grid line on which electric field components are defined, as shown in the right

panel of Figure 2.1. We can see that the charge density values are also located on the

spacecraft surface, which is convenient for evaluating the amount of surface charge on the

spacecraft, as will be described in Section 2.3.

The impingement of plasma particles on spacecraft bodies and the emission of photo-

electrons from spacecraft surfaces are primary factors in spacecraft charging. In EMSES,

we consider particle impingement to occur when particles move inside the spacecraft-body

region during ∆t, where ∆t represents the time step width. After that time, we regard

them as being absorbed in the body. At this stage, we no longer solve the equations of

motion for the absorbed particles. Instead the charge of the absorbed particles is accu-

mulated on the spacecraft surface and contributes to the longitudinal component of the

electric field.

For particle emission from the surface, we use the conventional particle-loading scheme

[Birdsall and Langdon, 1985; Cartwright et al., 2000]. We first determine the initial

positions and velocities of emitted particles. We then start to solve their motion. In

this situation, charges of the same quantity and opposite sign of the emitted particles

remain at the spacecraft surfaces and contribute to the spacecraft charging. The detailed

treatments for the charge accumulation are presented in the next section. At present,

we simply determine the number of emitted particles per ∆t as an input parameter and

assume the Maxwellian for the velocity distribution. However, depending on what kinds

of particles (e.g., photo- and secondary electrons) we want to model, we require more

realistic modeling for the flux and the velocity distribution of the emitted particles, which

is left as future work and not discussed in the present thesis.

We incorporated the aforementioned main functions in the simulation code. Figure 2.2

shows a diagram of the procedures in one computational cycle. Processes (procs.) 1, 3,

6, and 10, shown by white boxes in Figure 2.2, are conventional and are also included
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Figure 2.2: Block diagram of main routines included in one computational cycle.

in the KEMPO code; the methods of their computations are detailed in the literature

[Matsumoto and Omura, 1993; Umeda et al., 2003]. The procedures shown by shaded

boxes are newly introduced in EMSES to treat conducting solid-body regions immersed

in plasma. We can categorize the procedures into treatments of superparticles (procs. 2

and 4) and those for field components (procs. 7, 8, and 9). In addition, proc. 5 is necessary

because charge density data are used in proc. 7. We also introduce a modification to the

CC scheme (proc. 3) in calculating the current density contributed by particles impinging

on or emitted from the spacecraft body.

In the next section, we present the details of the treatments for the EM field and charge

density at a conducting spacecraft surface. The corresponding procedures in Figure 2.2

are procs. 3, 5, 7, 8, and 9.
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2.3 Numerical Treatment of Conducting Spacecraft

Surface

2.3.1 Longitudinal Electric Field Associated with Surface Charge
Distribution

This section considers the electric field at the conducting surfaces of a spacecraft. Gener-

ally, electric fields obtained by Maxwell’s equations include ES as well as EM components.

For a uniform plasma, it has been theoretically confirmed that the electric fields can be

correctly updated if the current density at each grid point in the simulation model sat-

isfies the charge continuity equation. However, once conducting surfaces are introduced

as inner boundaries in the simulation system, electric fields, particularly the longitudinal

(ES) component, at the surfaces must be carefully solved in consideration of the interface

between the plasma and a conducting body. Since the ES component must satisfy Gauss’s

law in which the charge density is a variable, we must treat the charge distribution on

the surface such that the characteristics of the conducting materials are maintained at

the interface.

In Figure 2.3, we summarize the procedures which, directly or indirectly, modify the

surface charge and the ES field component associated with the charge. For discussions

hereafter, we define the following symbols for the electric field and charge density. The

total electric field E includes the transverse component ET and the longitudinal compo-

nent EL. The longitudinal component EL is composed of two components ELp and ELs,

which are related respectively to the charge densities ρp produced by plasma particles and

ρs produced by surface charge on the spacecraft.

As shown in Figure 2.3, there are two mechanisms by which ρs and ELs are modified.

First, ρs and ELs vary due to particles impinging on or emitted from spacecraft surfaces,

which occurs during ∆t. We define the variation of ρs and ELs by this mechanism as ∆ρs

and ∆ELs. In EMSES, ∆ρs and ∆ELs are taken into account by using the current density

J induced by the particle impingement and emission. In the following section, we present

the necessary treatments for J around a spacecraft surface to reproduce the accumulation

of ρs on each grid point of the surface correctly. Then, we describe in Section 2.3.3 how

∆ρs and ∆ELs are computed in procs. 5 and 6.

Next, ρs and ELs should be modified again to realize an equipotential on the conducting

spacecraft surface. This variation is represented as δρs and δELs in the figure. In the

code, the charge redistribution is explicitly reproduced in procs. 7 and 8. We present a

detailed description for the modification in Section 2.3.4.
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2.3.2 Current Density Treatment on Spacecraft Surface

Since J is responsible for ∆ρs and ∆ELs, as described in the previous section, we should

pay careful attention to a boundary treatment when computing J in the vicinity of the

conducting surface. As mentioned in Section 2.2, we adopt the CC method for the compu-

tation of J at each grid point. The basic concept of the CC method is that the charge flux

ρv of each particle is computed from the start and end points of the particle movement

during ∆t.

A spacecraft surface is defined along a grid line, and hence we consider the two cases

of a particle crossing a grid line and crossing the spacecraft surface. Figure 2.4(a) shows

a diagram of the CC method when calculating J for a particle trajectory crossing a grid

line. In this case, we compute the charge flux separately for each of the two trajectory

segments, i.e., fluxes 1 and 2, which correspond to before and after crossing the grid line,

respectively. Then, as shown in the figure, the contribution of the particle motion is

distributed to the current density components: Jx1, Jx3, Jy1, Jy2 for charge flux 1 and

Jx2, Jx4, Jy2, Jy3 for charge flux 2.

On the other hand, when the grid line corresponds to a spacecraft surface, Jx2, Jx4,
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and Jy3 must be zero. If Jx2, Jx4, and Jy3 have non-zero values, the values of ρ1 and ρ2,

which are defined inside the conducting body as shown in Figure 2.4(b), can change. This

means that the charge accumulates inside the body rather than on its surface, which is

unphysical in the present case of a body made of a perfect electric conductor. To prevent

this undesirable effect we employ a treatment that does not distribute the contribution of

charge flux 2 to adjacent grid points. Namely, we select only the contribution of the tra-

jectory before crossing the solid body surface and discard that after the crossing. Coding

of this treatment is straightforward because the trajectory has already been decomposed

in the CC method at the grid line corresponding to the conducting surface.

The boundary treatments proposed above can also be applied to particle emission

from a spacecraft surface. In proc. 2, we set a temporary position of an emitted particle

inside the solid body region, i.e., at a depth of Ru|vn|∆t, where vn and Ru represent the

normal velocity component of the particle and a uniform random number varying from 0

to 1, respectively. Note that the placed particle inevitably leaves the body region during

∆t in proc. 3. Although the charge flux computed by the particle motion has a trajectory

even inside the spacecraft body, we select only the contribution of the trajectory outside

the body in the same manner as for the particle impingement case.

The above treatment for emitted particles reproduces the fact that emission occurs

exactly on the spacecraft surface. Furthermore, by setting an initial depth as Ru|vn|∆t, we

can simulate that particle emission occurs at a time t = t0+Ru∆t, where t0 represents the

physical time at the beginning of the computational cycle. The use of the random number

Ru, which varies for each emitted particle, produces a temporally smooth emission.

2.3.3 Charge Accumulation on Spacecraft Surface

In proc. 5, we update a profile of the total charge density ρ = ρp +ρs by explicitly solving

the continuity equation for charge, the time-difference form of which is given as follows:

ρn+1 = ρn − ∆t(∇ · Jn+1/2), (2.5)

where the superscripts denote the time step level.

Although the impinging particles are regarded as being absorbed in proc. 4 and no

longer exist as superparticles in the simulation system, we compute Jn+1/2 in consideration

of the motion of the impinging particles in proc. 3. Of course, Jn+1/2 induced by particles

emitted from a spacecraft surface is also considered. Therefore, the charge accumulation

on the spacecraft surface, i.e., ∆ρs is automatically taken into consideration.

In proc. 6, the electric field is computed by solving the time difference form of Ampère’s

law, which is given as

En+1 = En + ∆t
{
c2∇× Bn+1/2 − 1

ε0

Jn+1/2
}

, (2.6)
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contribute to current density computation.
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where ε0 represents the permittivity in vacuum. Equation (2.6) clearly has an “update

form” for E.

In order to show the automatic inclusion of ∆ELs by Eq. (2.6) in proc. 6, we con-

sider ∆ρs due to Jn+1/2 induced by the particle impingement. From Eq. (2.5), ∆ρs and

Jn+1/2 are related as ∆ρs = −∆t(∇ · Jn+1/2). By taking the divergence of Eq. (2.6) and

substituting the above equation, we obtain

∇ · En+1 = ∇ · En +
∆ρs

ε0

(2.7)

= ∇ · (En + ∆ELs), (2.8)

where we use Gauss’s law ∇ · ∆ELs = (∆ρs)/ε0. The resulting equation clearly indicates

that proc. 6 can automatically include the contribution of ∆ELs in the computation of

Eq. (2.6). It should be noted that the actually solved equation in EMSES is not Eq. (2.8)

but Eq. (2.6).

2.3.4 Charge Redistribution on a Conducting Surface

After obtaining ρs and ELs immediately after the particle impingement and emission,

we next redistribute the charge on the conducting surface in proc. 7. To obtain a new

surface charge distribution that realizes an equipotential solution, we used the Capacity

Matrix method [Hockney and Eastwood, 1981], the basic concept of which is given in the

Appendix A. Here we briefly present the procedures conducted in EMSES for a case of

one conducting body immersed in a plasma with a certain floating potential.

As described in Appendix , the correction of the electrical potential δφs on a conducting

surface is related to the surface charge density δρs by a capacity matrix C as follows:

δρs,i =
NB∑

j=1

Cijδφs,j, (i = 1, . . . , NB), (2.9)

where i and j are indices of grid points on the conducting surface, and NB represents their

total number.

After proc. 6, the surface potential φs,j has not yet taken the same value for all j, and

hence the surface does not have an equipotential. When an equipotential value φc should

be formed, Eq. (2.9) can be rewritten as

δρs,i =
NB∑

j=1

Cij(φc − φs,j), (i = 1, . . . , NB). (2.10)

However, φc is unknown at this stage. To obtain φc, we use the condition that the total

charge accumulated on the body surface is conserved throughout the redistribution of the

surface charge, which is represented as

NB∑

i=1

δρs,i = 0. (2.11)
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This gives φc as

φc =

∑
i

∑
j Cijφs,j∑

i

∑
j Cij

. (2.12)

We then calculate a profile of δρs,i by solving Eq. (2.10) for all i with the obtained φc,

which produces the complete set of the surface charge correction δρs.

Finally, in proc. 8, we correct the profile of ELs using the obtained δρs. We first obtain

the correction of the longitudinal electric field δELs by solving Poisson’s equation. Then,

a modified profile E′
Ls is computed as E′

Ls = ELs + δELs.

2.3.5 Transverse Electric Field Component

We also require a conducting surface treatment for the transverse component ET. ET

defined inside the conducting body region is set to zero. As for a conducting body surface,

only the tangential component of the ET values should be eliminated. These treatments

are provided in proc. 9 after the treatments of the longitudinal electric field and the

surface charge.

The above treatments were originally developed for charge-free computations such

as FDTD simulations in free space, i.e., for situations where a divergence-free condition

is always assured with respect to an electric field component [Taflove, 1995]. However,

we can apply the treatments to the present non-charge-free simulation. By proc 9, the

tangential component of EL has become zero at the conducting surface, and the non-zero

electric field should consist of only ET. Therefore, we can eliminate the electric field value

without any influence on EL.

2.4 Test Simulations

2.4.1 Conducting Body Charging in a Maxwellian Plasma

In this section, we present a test simulation of the charging process of a conducting body

immersed in a Maxwellian plasma using EMSES. As described in the previous section,

EMSES can handle ES as well as EM phenomena. Therefore we here choose a simple case

of spacecraft charging governed by the ES field, to validate EMSES by comparing the

result with that obtained by previous theoretical studies [Mott-Smith and Langmuir, 1926;

Laframboise, 1966]. A validation for EM phenomena will be presented in Section 2.4.2.

Figure 2.5 shows the three-dimensional simulation model for the current test. A con-

ducting sphere is immersed in a Maxwellian plasma consisting of mobile electrons and

ions. Since EMSES only supports a Cartesian coordinate grid, the actual conductor con-

figuration is a roughly approximated sphere. In the current test, the radius a of the

approximated sphere is about 0.25λD, where λD represents the Debye length for the sur-

rounding plasma. In the condition, the sheath size, which is a few Debye lengths, is
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Figure 2.5: Three-dimensional simulation model for testing the charging of a spherical
conducting body.

supposed to become sufficiently greater than a, and thus we can use the Orbital-Motion-

Limited (OML) theory, which is the thick-sheath theory developed by Mott-Smith and

Langmuir [1926] as a counterpart of the comparison.

The number of superparticles is set at 64/cell for each of electrons and ions. We assume

the mass ratio mi/me = 100 for the electron mass me and the ion mass mi. Although the

ratio is smaller than the real electron–proton mass ratio and has an impact on a resulting

floating potential, we can test the basic behavior of the code in the comparison with the

theoretical result obtained using the same parameter. We also assume Te/Ti = 1, where

Te and Ti represent the electron and ion temperatures, respectively.

Using the model given above, we run a simulation with EMSES to obtain equilibrium

solutions of the floating potential and the sheath environment. The electric potential

profile at the steady state is displayed in Figure 2.6. We plot a potential curve along an

axis that penetrates the center of the conductor. From the potential curve, the equilibrium

floating potential of the conductor is found to be φf = −1.50kBTe/e assuming a reference

potential as an averaged potential in the background plasma region. Here, kB and e are

Boltzmann’s constant and the electric unit charge, respectively.

Theoretically, the equilibrium floating potential is obtained from the balance between

the electron current Ie and the ion current Ii flowing into the conductor. In the OML

theory, these currents are expressed as functions of the conductor potential φ. For the

small spherical conductor, the currents are given as

Ie(φ) = Sn0e

√
kBTe

2πme

exp

(
eφ

kBTe

)
(2.13)
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Figure 2.6: One-dimensional profile of the time-averaged electric potential along an
axis penetrating the center of a spherical conducting body.

Ii(φ) = Sn0e

√
kBTi

2πmi

(
1 − eφ

kBTi

)
, (2.14)

where S = 4πa2 represents the surface area of the sphere. From the condition of Ie(φf) =

Ii(φf), we obtain the equilibrium floating potential analytically as φf = −1.42kBTe/e. The

present test shows that for the small conducting sphere, even approximated by the limited

number of orthogonal grid points, EMSES can calculate the floating potential correctly

with an accuracy of 5–6 %.

Next, we focus on the sheath profile created around the conductor. There are a few

theoretical approaches for the evaluation of the density profile in the sheath, particularly

for ions. Laframboise [1966] derived a semi-analytical solution of the electron and ion

densities around a spherical conductor. According to the theory, the electron density

profile can be calculated by using the given potential profile in the sheath as follows:

ne = e−χ − e−χf

√
π

{√
χf − χ + G

(√
χf − χ

)}

+
√

1 − x2 · e−χf

√
π

{√
χf − κ + G

(√
χf − κ

)}
, (2.15)

κ =
χ − x2χf

1 − x2
, (2.16)

where χ and χf represent the normalized local and floating-body potentials eφ/kBTe and

eφf/kBTe, respectively, and x is the non-dimensional inverse radial position a/r. The
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Figure 2.7: Electron and ion density profiles as a function of the radial position r.
The profiles are obtained by EMSES and the semi-analytical approach developed by
Laframboise [1966].

function G(ξ) in Eq. (2.15) is defined using the error function erf(ξ) as

G(ξ) =

√
π

2
eξ2 {1 − erf(ξ)} . (2.17)

Meanwhile, the semi-analytical expression of the ion density is given as

ni =

√
1 − x2

π

{√
−κ + G

(√
−κ

)}

+
1√
π

{√
−χ + G

(√
−χ

)}
. (2.18)

We calculate the density profiles using Eqs. (2.15) and (2.18) with the potential profile

shown in Figure 2.6, and compare the semi-analytical profiles with the profiles numerically

obtained by EMSES. In Figure 2.7, we plot electron and ion density curves obtained by

EMSES and the semi-analytical approach. The profiles clearly show that the electron

density decreases as the conductor surface is approached, while the ion density increases.

Within ∼3λD from the surface, the ion density is greater than the electron density. This

region, in which the charge neutrality is broken, is a so-called ion sheath.

Figure 2.7 clearly shows that, except for the ion density at the closest grid points to the

conducting surface, the sheath profile obtained by EMSES agrees well with that obtained

by the semi-analytical approach. Near the conducting surface the semi-analytical ion

density shows drastic change, which seems difficult to illustrate precisely with the limited

number of grid points presently used in EMSES. To reproduce the finer ion density profile,
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Figure 2.8: Two-dimensional simulation model for testing the dispersion relation of
sheath waves. (a) Initially, we distribute plasma electrons uniformly except for on
the conducting body and run a preparatory simulation, in which the conducting body
potential is gradually biased negatively. (b) After the simulation, a stable profile of the
plasma sheath is obtained as the right panel. Using the stable sheath, the dispersion
relation of sheath waves is analyzed.

we require more grid points in the vicinity of the surface. However, the limitation of the

grid points hardly perturbs the density profiles apart from the surface, and the correct

sheath structure is overall obtained successfully by EMSES. Hence, the test outlined in

this section confirms that EMSES has the capability to examine ES plasma environments,

such as the sheath around a conductor.

2.4.2 Dispersion Relation of Sheath Waves

In order to validate EMSES for EM analysis, we focus on the EM environment in the

vicinity of the conducting surface. We particularly examine the dispersion relation of EM

wave modes called sheath waves, which propagate along the conducting body surface in

a plasma sheath. For simplicity, we consider a sheath created on a planar conducting

surface. The sheath consists of a thick electron-free region and a thin transition region.

In the transition region, the electron density continuously varies from 0 to the background

plasma density. It is known that the frequency range for the sheath waves is below the

electron plasma frequency [Laurin et al., 1989; Morin and Balmain, 1991; Lüuttgen and

Balmain, 1996]. For comparison, we refer to a theory for the sheath waves described by

Lüttgen and Balmain [1996]. They employed a cold plasma approximation and assumed

a spatial step function for the electron density at the sheath–plasma interface. In the

present test, we focus only on the isotropic case for simplicity.

Before examining the sheath wave properties, we performed a preparatory simulation

for the formation of a plasma sheath. The model of a plasma sheath in two-dimensional
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Figure 2.9: One-dimensional profile of the electron density of the stable plasma sheath
as a function of distance from the conducting surface.

simulation space is shown in Figure 2.8. We consider a situation wherein plasma electrons

impinge on a conducting surface in the −y direction. Initially, we distribute the back-

ground plasma electrons uniformly in the background plasma region as shown in the left

panel and start a simulation run. In the simulation, we apply a negative bias potential

to the conducting surface and increase the potential value gradually over time. By this

treatment, the sheath region is artificially expanded during the simulation run. The struc-

ture of the expanded sheath is saved at the end of the preparatory simulation and used

in a simulation for the analysis of sheath wave properties. Note that we only solve the

electron dynamics in the current analysis, because our interest is in the frequency range

governed by the electron dynamics. For the boundary in the +y direction, we employ a

free boundary condition.

Figure 2.9 shows the electron density profile of the created sheath. It is confirmed

that an electron-free region, the thickness of which is about 4.5 times the sheath–plasma

transition region, is formed when a bias potential is applied: φb ∼ −800kBTe/e. For

comparison with the theory, we introduce the effective sheath thickness s, which is defined

as the distance between the conducting surface and the center of the sheath–plasma

transition region. In the present simulation, s = 40λD is obtained.

Next, we run a simulation to analyze the dispersion relation for wave modes that exist

in the sheath region. In the simulation, we maintain a constant bias potential of the
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Table 2.1: Simulation parameters for the analysis of sheath waves. The values of ωpe

and c are given in the normalized unit system used in EMSES.

Parameter Value
Time step ∆t 0.025 ω−1

pe

Grid spacing ∆r 0.05 cω−1
pe

Number of grid points Nx × Ny 8192 × 64
Initial number of superparticles representing electrons 128NxNy

Debye length λD 0.05 cω−1
pe

Electron plasma frequency ωpe (reference) 1
Speed of light c (reference) 20

conducting surface so as not to vary the created sheath structure. The parameters used

in the present simulation are given in Table 2.1, in which we give the parameter values

by setting the electron plasma frequency at ωpe = 1 and the speed of light at c = 20 as

references.

According to Lüttgen and Balmain [1996], EM waves, which are allowed to propagate

in a sheath region, are transverse-magnetic (TM) mode. Therefore, we can obtain the

dispersion relation for the waves by taking the Fourier transformation of the Bz component

in the x direction and time. In performing the Fourier transformation, we use Bz data

obtained only in the electron-free region.

The obtained dispersion relation is plotted in Figure 2.10. The result clearly shows a

dispersion branch below ωpe, which would not exist if there was no sheath because waves

would be evanescent in the frequency range. It has been reported that the sheath wave

cutoff frequency is ωc = ωpe/
√

2 [Lüttgen and Balmain, 1996]. The resultant dispersion

curve shows an asymptotic characteristic for the cutoff frequency. Considering this agree-

ment, we conclude that the dispersion curve obtained with EMSES can represent a sheath

wave mode.

In the theory of sheath waves, the dispersion relation for the isotropic case is given as

tanh(αss) =
k1

K0αs

, (2.19)

where

α2
s = k2 − β2

0

k2
1 = k2 − β2

0K
′

K0 = K ′ = 1 − ω2
pe/ω

2

β0 = ωc, (2.20)

and ω and k represent wave frequency and a complex propagation constant, respectively

[Lüttgen and Balmain, 1996]. We set s = 40λD and solve Eq. (2.19) numerically for the
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(b) Theoretical dispersion curve of the sheath wave for an isotropic plasma.

real part of k, the wave number. The resultant dispersion relation is plotted as a solid

line in the right panel of Figure 2.10. The resultant dispersion curve agrees well with the

theoretical curve.

The good agreement between the simulation and the theory confirms the validity of

EMSES. Of course, we should consider the differences in the presuppositions between

the simulation and the theory. Unlike the simplified assumption of the sheath structure

introduced in the theory, the sheath examined in the simulation has a transition region

where the density gradually changes. Also, the theory does not include any effects of non-

linear responses of the electrons to the exiting EM field, unlike the simulation. However,

the present simulation condition of a much thinner transition region than the electron-free

region should minimize the influence of the transition region on the sheath wave properties.

Moreover, because we run the present simulation without any external wave source, which

is a very quiet condition, non-linear effects of the plasma electrons can be negligible. By

testing under these conditions, we conclude that EMSES successfully reproduces the EM

environment in the plasma region in the vicinity of a conducting surface.

In more practical situations in space, e.g., in a condition where a conductor has a

floating potential, the transition region can dominate the entire sheath structure, as shown

in the result described in Section 2.4.1. For such a case, the theoretical approach is

difficult to apply to sheath wave problems, because the step-function model for the sheath

structure cannot be employed. The property of sheath waves in such a case is a very

interesting subject for future research using EMSES.
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2.5 Summary

By combining boundary treatments for conducting spacecraft surfaces with the EMPIC

simulation technique, we have developed EMSES for self-consistent analysis of spacecraft–

plasma interactions on the EM basis.

The major additions introduced in EMSES relate to boundary conditions required

for the longitudinal and transverse components of the electric field. For the longitudinal

component, (1) we consider the contribution of charge accumulation at the conducting

surface caused by impinging or emitted particles and (2) we redistribute the charge so

that the perfect conducting surface has an equipotential. The former requirement (1) is

realized automatically in the updates of the charge density and the electric field using

the current density data. For this, we have adopted a special treatment for the current

density calculated around the spacecraft surface, such that the charge accumulation at

exact locations on the spacecraft surface is successfully realized. For item (2), we applied

the conventional Capacity Matrix method, which assures perfect-conductor conditions for

the longitudinal electric field component. With respect to the transverse electric field

component, we simply set the field values to zero for components inside and tangential to

the spacecraft surfaces. The above treatments are appropriately taken in a computational

cycle of the EM-PIC simulation of EMSES.

The methods presented here provide the basis for self-consistent reproduction of the

EM as well as ES environments in the presence of conducting spacecraft bodies. The

application of EMSES to more specific problems is possible by introducing an additional

numerical model, e.g., an electric field antenna on a scientific spacecraft. Future work

can be devoted to expanding the applicability of the code to various problems including

broad scale length ranges by introducing appropriate modifications, e.g., a locally-refined

mesh [Fujimoto and Machida, 2006] in the vicinity of the spacecraft or regions governed

by plasma dynamics of small scale, in order to conduct computations within a practical

time.





Chapter 3

Impedance of a Dipole Antenna
Surrounded by an Ion Sheath

3.1 Introduction

When a plasma contacts with solid surfaces of an antenna with a plasma potential, there

must be a flow of electrons and ions into the surfaces. In a usual situation of a plasma

consisting of equal numbers of electrons and positive ions, the electrons are far more

mobile than the ions. It follows that the antenna charged negatively with respect to

the plasma potential. Then, the negative potential at the surfaces recovers the plasma

potential through a positively charged region formed between the antenna surfaces and

the neutral plasma region. This non-neutral, positively charged region is called a sheath,

particularly an ion sheath, because the positive charging is usually realized by an ion-rich

condition. The potential difference created between the antenna surfaces and the neutral

plasma region allows the flow of electron and ions into the surfaces to be balanced. As a

result, the equilibrium potentials are formed for the antenna.

An ion-sheath effect on antenna impedance has received a great deal of attention for

its application to rocket exploration of the ionosphere using the impedance probe [Oya,

1966]. Since an ion sheath has much different electrical properties than a background

plasma, it can obviously modify the characteristics of an electric antenna surrounded by

the sheath. Actually, some rocket observations have indicated that the sheath has promi-

nent influences on the antenna impedance [Oya and Obayashi, 1966]. As briefly described

in Section 1.2.2, the presence of an ion sheath introduces an impedance resonance called

a sheath resonance. Furthermore, it is generally known that a low-frequency capacitance

of the probe equals to a capacitance of the ion sheath itself. Since some researchers have

tried to make use of such a sheath capacitance for the temperature diagnosis of ionospheric

electrons [Oya and Aso, 1969], precise knowledge of the ion-sheath effect has become an

increasingly important issue.

Since the presence of an ion sheath is an even more inevitable problem for bounded

39
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plasmas, there exists plentiful literature regarding sheath properties in the field of labora-

tory and processing plasmas [e.g., Lieberman and Lichtenberg, 1994]. Also, the dynamic

properties of the ion sheath have been studied in the field of active experiments [e.g.,

Calder et al., 1993]. Meanwhile, in an aspect of the ion sheath effects on the antenna

impedance of space-based antennas, it has been simply regarded as a vacuum layer in a

frequency range in which ions are assumed to be immobile. However, even if one uses the

immobile ion assumption, the inclusion of inhomogeneity caused by the ion sheath leads to

much complication in theoretical derivation of the antenna impedance. Therefore, most

previous theoretical analyses of the antenna impedance have been carried out only for

much simplified sheath configuration such as planar and cylindrical structures. Recently,

Béghin and Kolesnikova [1998] proposed a numerical approach using the Surface-Charge-

Distribution (SCD) method, which can consider all of the boundary surfaces involving

ion-sheath interfaces around antenna and satellite bodies with complex geometries. Even

in the SCD method, however, the ion-sheath interfaces should be given as parameters of

the numerical tool.

In comparison with the above approaches, the Particle-In-Cell method clearly has

large advantage for detailed investigations of ion-sheath properties; since the dynamics of

individual electrons and ions is solved simultaneously in the approach, we can obtain a self-

consistent solution for the structure of an ion sheath. The structure of an ion sheath has

already been investigated using an ES-PIC method in previous studies [Tu et al., 2008]. In

the present chapter, we focus on an ion-sheath effect on antenna characteristics rather than

the sheath structure itself by examining the impedance of an electric antenna surrounded

by an ion sheath using an EM-PIC approach (EMSES developed in the previous chapter).

Before the sheath analysis, this chapter has an important role to demonstrate the

application of EMSES to an antenna analysis. Therefore, we first examine the dipole

antenna impedance without considering any effects of an ion sheath and compare obtained

results to the conventional kinetic theories [e.g., Schiff, 1970; Meyer-Vernet and Perche,

1989]. We particularly focus on the impedance of a low-power transmitting antenna.

The impedance calculation is fundamental and useful for the validation. The transmitted

power is small enough not to disturb the boundary environment of the simulation box

so that numerical errors caused by the boundary effects are minimized. We consider

a very simple situation in which a set of dipole antenna is immersed in Maxwellian,

unmagnetized, and collisionless plasma. The plasma is so dense and low-temperature

that the Debye length becomes smaller than the antenna length. After the validation of

EMSES, we analyze the impedance characteristics of antennas covered with an ion sheath,

which is created under the condition that an antenna has a floating potential [Miyake et

al., 2008a]. We focus on the impedance change due to the inclusion of the ion sheath

effect. We also discuss the dependence of sheath capacitance on the sheath thickness by
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the simulations with different DC bias potentials.

3.2 Application of EMSES to the Antenna Analysis

3.2.1 Simulation Model

The simulation system is shown in Figure 3.1. We consider a three-dimensional simulation

box and place a dipole antenna at its center. The simulation box is uniformly filled with

mobile electrons and ions with finite thermal velocities at the initial state of a simulation

run. Since our interest in the present study is in antenna impedance in a frequency range

near the electron plasma frequency, the motion of ions has little effects on the antenna

impedance itself. However, ion dynamics cannot be neglected to achieve a steady-state

profile of the plasma environment around the antenna. We assumed that the ion species

is a proton and employed the real mass ratio of the protons to the electrons, i.e., 1836, in

the present analysis.

The boundary condition of the simulation box should be carefully selected in order to

realize an isolated system. In the present analyses, two types of boundary conditions are
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utilized: the boundary conditions for EM and ES components. For EM component, field

absorbing region for the outgoing wave is necessary to realize an isolated system. We set

the field absorbing region based on Masking method [Tajima and Lee, 1981] consisting of

8 grids from the edge of the box in order to prevent the field reflection at the boundary.

When we solve Poisson’s equation for ES component, the Neumann condition is used.

The particles which reach the edge of the simulation region are reflected back into the

region. In the current analysis, we set the edge of the simulation box sufficiently far from

the sheath region. This indicates that the perturbation of plasma density around the

antenna never reaches the outer boundaries of the simulation box. In this condition, since

the flux escaping from the simulation box is equal to the particle flux in the unperturbed

background plasma, the reflecting boundary condition for particles can be substituted

for a particle-loading scheme that is known as a rigorous open boundary condition for

escaping particles. By combining the above treatments, we realized the isolated system

of the simulation.

3.2.2 Antenna Treatment

In the present analysis, we assumed that the antenna bodies are made of perfect conduc-

tors for simplicity. Although the basic ideas for the introduction of perfect conductors in

the simulation system have been already described in the previous chapter, we also employ

a number of particular treatments optimized for the antenna analysis, which might con-

tain slight difference from those described in Chapter 2. For example, in order to model

the antenna conducting bodies, we set the values of electric field Ez = 0 defined along

only one column of grid points, except for the gap between the two antenna elements, as

shown in Figure 3.1. This treatment is to realize a very thin wire dipole antenna in the

EMSES code.

Another important issue that should be carefully considered is treatments for particles

which impinge into the antenna bodies. In the present chapter, we use two types of

the treatments. In the first treatment, the antenna surfaces are perfectly transparent

with respect to the plasma particles, which can pass through the antenna location. This

treatment corresponds to a mesh-like antenna model that was widely used in previous

related studies [e.g., Schiff and Fejer, 1970]. Note that, if this model is used in the

particle simulation, inhomogeneous plasma environment such as an ion sheath is not

naturally created. We, therefore, used the model for antenna analyses in uniform plasma.

In the second treatment, the physical existence of the antenna body is taken into

consideration by introducing the internal non-plasma boundaries in the simulation system.

The most important feature of this treatment is that a sheath is created as the result

of plasma-body interactions, and thus this treatment is more practical than the first

treatment. We, therefore, applied the second concept to cases of the ion-sheathed antenna.
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Practically, since the minimum spatial unit is one cubic cell with ∆r3 volume, the cross-

section of antenna is assumed to be one zone squared with ∆r2 area, where ∆r is a grid

spacing in the EMSES code. In the present simulation model, the antenna line is composed

of a series of the cubic cells, and particles whose centers move into the cell boundary are

absorbed in the antenna. The charge collected by the antenna is redistributed on the grid

line in the antenna body on which the z-components of the electric field Ez are defined

(see Figure 3.1), so that an equipotential solution on the antenna body is realized. For

this purpose, we use the Capacity Matrix method as explained in Section 2.3.4. After

we redistribute the surface charge, we correct the electrostatic field by solving Poisson’s

equation considering the modified surface charge. By this treatment, the contribution of

collected particles on the charging of the antenna body can be precisely evaluated. For the

outside of the antenna territory, the particle motion is advanced by linearly interpolating

the field values at the particle position from the adjacent grid points, which is the scheme

commonly used in PIC plasma simulations [e.g., Matsumoto and Omura, 1993].

One of the most significant functions added to EMSES for the antenna analysis is a

treatment of an antenna feeding point, which is located at the gap between two antenna

bodies. We analyzed the impedance characteristics of the transmitting antenna with a

small applied signal. To simulate the transmitting antenna, we used the delta-gap feeding

technique [e.g., Luebbers et al., 1992]. In this method, the dipole antenna is fed with an

input voltage Vin, which is realized by providing an electric field Ein,z at the gap between

two antenna elements as follows:

Ein,z = −Vin

∆r
. (3.1)

To obtain the input impedance of the antenna, we need to know the current Iin at the

antenna feeding point. Iin is obtained by the rotation of the magnetic field around the

feeding point. Numerically, Iin is computed with

Iin =
{
(Blower

x − Bupper
x ) + (Bright

y − Bleft
y )

}
∆r

µ0

, (3.2)

where µ0 represents the permeability in vacuum, and Blower
x , Bupper

x , Bright
y , and Bleft

y are

the magnetic fields which are defined at the adjacent grids to the feeding point, as shown

in the right panel of Figure 3.1. Vin and Iin are first obtained in the time domain and

are then transformed to the frequency domain by Discrete Fourier Transform (DFT). The

input impedance Z of the antenna is obtained from

Z(ω) =
Vin(ω)

Iin(ω)
, (3.3)

where Vin(ω) and Iin(ω) represent the voltage and current, respectively, at the feeding

point in the frequency domain.
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Table 3.1: Simulation parameters for the analysis of antenna impedance. The values
are given in a normalized unit system used in EMSES.

Parameter Symbol Value
System

Grid spacing ∆r 1
Time step ∆t 0.02
Speed of light c 25
System length Ls 64
Number of superparticles per cell 512

Dipole antenna
Frequency at which the antenna ωhalf ∼3.3
operates as the half-wave dipole
Antenna half length la 12
Antenna width in x and y directions 1
(See Figure 3.1 for an antenna configuration.)

Background plasma electrons
Plasma frequency ωpe 1
Inertial length c/ωpe 25
Thermal velocity (variable) v0 1–2
Debye length (variable) λD 1–2

In order to obtain the antenna characteristics over a large frequency range in a sin-

gle run of the simulation, we utilized a broad spectrum pulse given as Vin = Va(d/dt)

[(t/T )4 exp(−t/T )] where Va and T are parameters of the pulse, and t/T represents

the normalized time. The dominant spectral frequency ωd of the pulse is given as

ωd = 0.152 × 2π/T and was set close to the electron plasma frequency.

One should note that the antenna surface current is not artificially given but obtained

by calculating the rotation of the magnetic field around the antenna body. The profile of

the magnetic field around the antenna body is self-consistently solved so that the electric

field satisfies the appropriate boundary conditions in the antenna body as explained above.

As a result, we can evaluate the antenna impedance without any assumptions on the

current distribution on the antenna surface.

3.2.3 Common Parameters for the Antenna Analysis

Table 3.1 shows common parameters used in the present simulations. A grid spacing and

a time step are determined appropriately so that the Courant condition for the light-wave

mode is safely satisfied. In the present analysis, we have 64×64×64 cells and 512 particles

per cell; namely 64 × 64 × 64 × 512 = 134,217,728 particles in the entire system.

In the present paper, we set our goal to examine the impedance characteristics in

collisionless-isotropic plasma environment. The parameters listed in Table 3.1 are given
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in a renormalized unit system used in the simulation tool. In this case, the outputs are

obtained as the ratio of the antenna impedance to the characteristic impedance of free

space
√

µ0/ε0, where ε0 represents the permittivity in vacuum. The impedance values in

the real physical unit are calculated using the relation
√

µ0/ε0 = 120π Ω. Hence, all the

results for the impedance are given in the unit of Ω in the present paper.

One of the important parameters is the ratio of the antenna length to the free-space

wavelength in the frequency range of interest. In the present study, the frequency range of

our interest is near the electron plasma frequency and is located well below the frequency

at which the antenna operates as a well-known half-wave dipole. From this point of view,

we treat the “electrically short antenna” in comparison with the free-space wavelength.

In practice, the “electrically short antenna” regime is valid in most of solar-terrestrial

regions except in very dense plasmas (105–106 /cm3) in ionosphere, where the electron

plasma frequency is so large that the free-space wavelength at the frequency becomes in

the order of 10–100 m.

The ratio of the antenna length to the Debye length of the background plasma is also

important. The impedance resonance in plasma becomes remarkable when the antenna

length is significantly larger than the Debye length, as was predicted by the previous

theory [Meyer-Vernet and Perche, 1989]. We, therefore, chose the plasma parameters so

that the antenna has a length greater than the Debye length in the present study.

3.3 Antenna Impedance in Uniform Plasma

3.3.1 Comparison with the Conventional Theory

In order to validate the developed EM-PIC simulation tool, we examined the antenna

impedance by using the transparent-antenna modeling, with which an ion sheath is not

created around the antenna as described in Section 3.2.2. The results are compared with

the conventional kinetic theory which was developed by e.g., Schiff [1970]. In the theory

the impedance is formulated based on the induced Electro-Motive-Force (EMF) method

using Maxwell’s equations and the linearized Vlasov equation as basic equations in the

quasi-static limit. The formula for the antenna impedance Z in a plasma is then written

as

Z =
j

(2π)3ωε0|I0|2
∫ (k · J s)(k · J∗

s )

k · (εp · k)
dk, (3.4)

where J s, I0, ω, and k are the antenna current distribution, the antenna current evaluated

at the antenna feeding point, the frequency, and the wave number vector, respectively. The

asterisk denotes the complex conjugate. In order to adopting the normalized parameters
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listed in Table 3.1, we used the normalized form of Eq. (3.4) that is given as

Z

Z0

=
j

(2π)3

∫ (y · Jn)(y · J∗
n)

y · (εp · y)
dy,

Jn =
J s

|I0|
,

y =
c

ω
k, (3.5)

where Z0 =
√

µ0/ε0 and c represent the characteristic impedance of free space and the

speed of light, respectively. In Eqs. (3.4) and (3.5), εp is the plasma dielectric tensor and

can be decomposed to the longitudinal and transverse components εL and εT as scalar

values in an isotropic case [Stix, 1992]. Of them, the longitudinal component becomes

a dominant factor characterizing the impedance change in the plasma environment from

the free-space value [Schiff, 1970]. Hence, we consider only contribution of εL, which is

given in the kinetic theory as

εL = 1 −
ω2

pe

k2v2
0

Z ′
p

(
ω

kv0

)
, (3.6)

where v0, ωpe, and Zp represent the electron thermal velocity, the electron plasma fre-

quency, and the plasma dispersion function, respectively, as discussed by Fried and Conte

[1961]. Note that εLk2 = 0 gives the dispersion relation for plasma longitudinal waves.

For the theoretical comparisons with the simulation results, we adopted the assumption

of the triangular current distribution on the antenna surface in analytically evaluating

Eq. (3.4). In the parameters used in the present analysis, the antenna length is smaller

than the electron inertial length c/ωpe. Physically, c/ωpe means the skin depth of an

evanescent wave mode below ωpe. When c/ωpe is much larger than the antenna length,

the triangular current approximation is known to be appropriate in the computation of

the conventional theory for the antenna impedance [Bell et al., 2006]. In upper panels of

Figure 3.2, we plot the theoretical curves in solid lines. Panels I-(Re) and I-(Im) show

the resistance and reactance, which are the real and imaginary parts, respectively, of

the impedance. In Panel I-(Im), we also superimpose the theoretical value of free-space

antenna reactance, which is evaluated by the formula (−1/πωε0la)[ln(la/a) − 1] where la

and a represent the half length (not the tip-to-tip length La) and the radius of the dipole

antenna, respectively [Schelkunoff and Friis, 1952]. The impedance value is plotted as a

function of a normalized frequency ω/ωpe.

Meanwhile, we run EM-PIC simulations using the parameters listed in Table 3.1 and

computed the antenna impedance by the method presented in Section 3.2. Note that

the form of the current distribution was never assumed but evaluated self-consistently

in the simulations. We examined a case with the Debye length of background plasma:

λD = la/12. The obtained simulation results are shown in solid lines in Panels II-(Re)
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Figure 3.2: Comparison of the antenna impedance in uniform plasma obtained by
the conventional kinetic theory and the EMSES code. Upper panels (I-(Re) and I-(Im))
represent the theoretical result of antenna resistance and reactance, respectively, for the
case of λD = la/12. Lower panels (II-(Re) and II-(Im)) represent the EM-PIC results
of antenna resistance and reactance, respectively. The dotted lines in panels I-(Im)
and II-(Im) represent the free-space reactances, which are calculated theoretically and
numerically (with a free-space FDTD simulation), respectively.

and II-(Im) of Figure 3.2 in the same manner as the theoretical curves. Also in Panel

II-(Im), we superimpose the free-space value of antenna reactance that is obtained by the

simulation of the free-space case.

As clearly shown in comparison between the solid lines in the upper and lower panels,

the impedance profiles basically show agreement between the theoretical and simulation

results. The major points of the agreements are, (1) the resistance has a finite and constant

value below ω = ωpe, (2) the reactance value is larger than the free-space value below

ω = ωpe, (3) the drastic variation of the impedance values is observed near ω = ωpe, and

(4) the impedance tends to the free-space value well above ω = ωpe. The interpretations

of these effects will be described briefly in the preceding subsection. On the other hand,
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a discrepancy is clearly seen between the theoretical and EM-PIC results near ω = ωpe.

The intensity of the impedance resonance is greater in the theoretical results than those of

EM-PIC simulation, which is seen in both real and imaginary parts but more remarkable

for the imaginary part. The possible reason causing this discrepancy will be discussed

in Section 3.5. Although the above disagreement is found, we basically confirm that the

physical behavior of the antenna impedance in the plasma can be qualitatively evaluated

by the developed tool.

3.3.2 Dependence of Antenna Impedance on Debye Length

In order to examine the dependence of the antenna impedance on the Debye length of

the surrounding plasma, we performed an additional EM-PIC simulation for the case of

λD = la/6. The obtained result for λD = la/6 case is superimposed as dashed lines in

addition to λD = la/12 case in Figure 3.3. One should note that we did not change the

plasma density in these two cases. In this situation, doubling the Debye length indicates

quadrupling the temperature at the constant density.

As shown in Figure 3.3(a), the resistance has a finite and almost constant value for

each case in the frequency range lower than ωpe. In free space, the resistance should be

less than 5 Ω for ω < ωpe and the given antenna length [Stutzman and Thiele, 1997] since

there is few radiation of the electromagnetic wave from the electrically short antenna. In

kinetic plasma, however, the conversion of field energy excited by the antenna into the

kinetic energy of the plasma electrons causes the dissipation, which leads to the equivalent

resistance for ω < ωpe [Kuehl, 1967]. The result confirms that wave-plasma interactions

around the antenna are correctly evaluated in the present simulation. We can also see that

the resistance is larger in the case of λD = la/12 corresponding to the smaller Debye length

case. This dependence was also confirmed by the conventional kinetic theory although

not displayed.

Near ω = ωpe, the large peak of the resistance value is observed, which is particularly

remarkable in the case of λD = la/12. In the case of λD = la/6, the similar signature is

recognized, but the peak value is lower than the case of λD = la/12. This characteristic

variation of the impedance value has been referred as the impedance resonance. The

enhancement of the impedance value corresponds to the presence of the poles k·(εL ·k) = 0

in the analytic expression of Eq. (3.4), which also gives the dispersion relation of the

plasma wave mode. The impedance resonance, therefore, is considered to have much

relevance to the strong interactions between the antenna and the plasma wave mode. In

the present case the corresponding plasma wave is the Langmuir wave. The reduction of

the peak value due to a high temperature, which corresponds to the case of the larger

Debye length, was also confirmed by the theory. Another feature we can find near ω = ωpe

is that the peak frequency of the resonance is shifted to higher frequency for the case of
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Figure 3.3: Antenna resistances (left panel) and reactances (right panel) in a uniform
plasma in cases of the small and large Debye lengths. The dotted line in the right panel
represents the free-space reactance.

λD = la/6 in comparison with the case of λD = la/12. This resonance shift was not shown

in the conventional theory. There are several possible reasons for this frequency shift,

which will be discussed in Section 3.5.

As to the reactance shown Figure 3.3(b), the absolute value of the reactance below

ω = ωpe is smaller than its free-space value. This means that the antenna capacitance,

defined as C = −1/(ωX), where X is the reactance, becomes greater in the plasma than

in free space. The simulation results show that the antenna capacitance is larger for

λD = la/12 case than for λD = la/6 case. This feature can be explained by an analogy

with a capacitor separated by dielectric material with a large permittivity. In Eq. (3.6),

the real part of the derivative of the plasma dispersion function Zp takes a negative value

in a low-frequency limit [Fried and Conte, 1961]. Therefore, the value of the dielectric

function εL in the finite-temperature plasma is larger than unity at the low-frequency

range. If we apply to an analogy that an antenna consists of two elements separated by a

dielectric with a permittivity larger than ε0, it makes sense that the antenna capacitance

is larger in the plasma in the low-frequency range. When we consider large v0 which

implies a situation of high temperature of plasma, the corresponding εL approaches to

unity, and the capacitance tends to its free-space value.

Near ω = ωpe, the reactance also shows the signature of the impedance resonance,

at which the reactance is maximum. The remarkable feature found in the simulation

results is that the intensity of the impedance resonance is much weakened in the case of

λD = la/6. As mentioned in the interpretation of the resistance peak near ω = ωpe, the

impedance resonance is considered to be caused by the strong wave-antenna interactions.

The plasma wave component that has a wavelength smaller than the local Debye length
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is readily damped, and thus large λD/la leads to the reduction of wave components which

can interact with the antenna. Therefore, in the case of λD = la/6, the impedance

resonance becomes weaker than the λD = la/12 case. The same tendency was shown in

the theoretical calculations.

In the frequency range above ωpe, the antenna impedance should recover its free-space

value simply because the plasma dielectric function recovers its free-space value in the

frequency range well above ωpe. This signature is confirmed in the theoretical results

(see Panels I-(Re) and I-(Im)). Also in the EM-PIC results, it is confirmed that the

resistance and the reactance tend to approach their values in free space in both cases of

the Debye length. Therefore, the impedance behavior above ωpe is correctly evaluated by

the developed EM-PIC tool.

3.4 Analysis on an Ion-sheathed Antenna

In previous studies on antenna impedance [e.g., Oya, 1965], simplified models were com-

monly used for the plasma environments around antennas; e.g., an ion sheath created

around the antenna surface was assumed to have an abrupt jump in electron density at

the interface between the sheath and the uniform plasma. However, for higher accuracy

and applicability to complex plasma environments which will be encountered in real space

missions, it is important to establish a method of including the ion sheath of which the

structure is solved by self-consistent analysis in consideration of antenna-plasma interac-

tions. By taking advantages of the PIC simulation, we performed the impedance analysis

simultaneously solving the dynamics of an ion sheath created around the antenna body.

The analysis consists of two steps. First, we run a simulation without the delta-gap

feeding with sufficient time steps so that the static structure of an ion sheath is created.

In Section 3.4.1, we present the static structure of the created ion sheath obtained as a

steady state. After that, we proceed to impedance analysis using the delta-gap feeding

technique, maintaining the created sheath structure. The result of the impedance analysis

is described in Section 3.4.2.

3.4.1 Structure of an Ion Sheath

As a steady state, we obtained floating potential values φF = −3.4kBTe/e and −2.9kBTe/e

for the cases of λD = la/12 and la/6, respectively. Here, kB, Te, and e represent Boltz-

mann’s constant, the electron temperature, and the electric unit charge, respectively. In

an isothermal plasma, i.e., Te = Ti where Ti represents the ion temperature, Fahleson

[1967] theoretically evaluated the floating potential as φF = −(kBTe/e) ln
√

miTe/meTi ∼
−3.8kBTe/e in a condition that conductor dimensions are sufficiently larger than λD. Here,

me and mi = 1836me represent the mass of electrons and protons, respectively. In the
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Figure 3.4: Spatial profile of the normalized number density of electrons in the x-z
plane, which includes the center of the antenna in the case of λD = la/12. n0 represents
the background level of the electron number density.

present case, however, the antenna radius is small and comparable to λD. Therefore,

Fahleson’s theory may not be applicable. Although the floating potential of a cylindrical

conductor with a comparable radius to λD is generally difficult to formulate, its magnitude

becomes smaller than that obtained with Fahleson’s theory and should decrease with the

ratio of the conductor’s radius to λD [Mott-Smith and Langmuir, 1926]. These tendencies

basically agree with those obtained in the current simulations stated above.

Figure 3.4 shows the spatial profile of electron number density for the case of λD =

la/12 in the x-z plane, which includes the center of the antenna. We depict white lines

at the location of the dipole antenna in the figure. An electron sparse region, shown in

black, is clearly found around the dipole antenna. On the other hand, ion density was

confirmed to increase around the antenna due to the attraction by the negative charged

antenna but less perturbed than electron density. Since charge neutrality is broken and

ions become relatively rich in this region, we call it an ion sheath. In order to examine

the spatial variation of the electron density in the ion sheath region in detail, the one-

dimensional density distribution is shown in Figure 3.5. The density is measured along

the direction perpendicular to the antenna from its surface at the midpoint of the upper

antenna element. The solid and dashed lines correspond to the cases of λD = la/12

and la/6, respectively. Unlike the simplified models of the ion sheath commonly used in

previous studies, the electron density varies gradually in the sheath region between 0 and

1 of the normalized distance. Note that the Debye length affects the spatial gradient of the
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Figure 3.5: Profiles of the number density of electron measured along the direction per-
pendicular to the antenna from its surface (on the axis of z = la/2 shown in Figure 3.4).
The solid and dashed lines correspond to the cases of λD = la/12 and λD = la/6,
respectively.

electron density at the interface between the sheath and the uniform plasma. Comparing

the solid and dashed lines, we find that the spatial gradient is steeper for the case of the

smaller Debye length with the lower temperature.

3.4.2 Impedance of an Ion-Sheathed Antenna

The antenna impedance in the ion-sheath environment was computed by the developed

tool by adopting the method described in Section 3.2. During the antenna-impedance

analysis using the delta-gap feeding technique, we confirmed that the ion-sheath envi-

ronment was hardly perturbed since the applied signal at the antenna feeding point was

sufficiently small.

Figure 3.6 shows the sheath effects on the antenna impedance in the case of λD = la/12.

The solid, dashed, and dotted lines indicate the results for the ion-sheathed, uniform

plasma, and free-space cases, respectively. As in the uniform plasma case, the signature

of the impedance resonance is seen around ω = ωpe for the ion-sheathed antenna. There

are, however, some differences between the solid and dashed lines in the figure. As the

frequency increases from the resonance frequency, i.e., ω ∼ ωpe, the resistance value decays

to its free-space value, which is found in both the uniform plasma and the ion-sheathed

cases. However, as shown in Figure 3.6(a), the resistance decays faster in the ion-sheathed
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Figure 3.6: Antenna resistances (left panel) and reactances (right panel) including and
not including ion sheath effects for the case of λD = la/12. The dotted line in the right
panel represents the free-space reactance.

case than in the uniform plasma case.

Below ω = ωpe, as shown in Figure 3.6(b), the absolute value of reactance is large

for the ion-sheath environment in comparison with the uniform plasma case. In order

to interpret these results, we show the results in terms of the antenna capacitance C =

−1/(ωX) in Figure 3.7, in which the values are given as a product of C and ωpe, so that

they have the units of 1/Ω. As clearly shown in Figure 3.7, the capacitance C has almost

a constant value in the frequency range well below ω = ωpe in all cases. Particularly, the

value of C is smaller for the ion-sheath case than that of the uniform plasma case. This

reduction of C is caused by the presence of the ion sheath formed around the antenna

and is an important effect which has been reported in previous antenna studies [e.g., Oya,

1965]. Since mobile electrons are extremely scarce in the ion sheath compared to the

background plasma, the ion sheath behaves as a vacuum gap that separates the antenna

surface from the background plasma. Therefore, as a simple model, the ion sheath can

be considered as a capacitance between two coaxial conductors. In analogy, the inner

and outer conductors correspond to the antenna body and the background plasma. The

reactance caused by the sheath is added to the antenna impedance and clearly affects the

total capacitance value of the antenna. In other words, the capacitance of the coaxial

conductors is connected to the plasma capacitance in series so that the total capacitance

in the case of the ion sheath is smaller. A discussion of the relation between the sheath

structure and the antenna capacitance will be presented in the next section.

It has been considered that the ion-sheath effects described above become less sig-

nificant as the Debye length becomes larger in comparison with the antenna length, as

mentioned in the work of e.g., Béghin et al. [2005]. We also examined the ion-sheath
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Figure 3.7: Antenna capacitance in 1/Ω (see text). The solid, dashed, and dotted
lines represent the antenna capacitance in an ion sheath, a uniform plasma, and free
space, respectively.

effects on the antenna impedance for the case of larger Debye length λD = la/6 and con-

firmed that the ion-sheath effects were correctly weakened compared to λD = la/12 case.

However, the fact, that the impedance modification due to the ion-sheath effects can be

observed in λD = la/6 case, shows the importance of the precise modeling of an ion sheath

even in situations of the Debye length in the same order of the antenna length.

3.4.3 Dependence of Antenna Impedance on the Sheath Struc-
ture

Several previous studies [Balmain and Oksiutik, 1969; Aso, 1973] formulated the impedance

of ion-sheathed antennas by assuming that the total antenna impedance was represented

by the impedance of the sheath plus that of the plasma connected in series. In these

formulations, the impedance of the sheath region was obtained as a function of the sheath

thickness. In this section, we examine the effects of the sheath thickness on the antenna

impedance by performing additional simulations. For this purpose, we applied a DC

bias potential to the antenna. By changing the bias potential as a simulation parame-

ter, the sheath structure around the antenna changes, and thus we can examine various

sheath environments without any changes in the background plasma parameters. In the

present section, we examined two cases with different bias potentials: (a) φa = 4φF and

(b) φa = 16φF, where φF = −3.4kBTe/e is a floating potential obtained in the analysis
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perpendicular to the antenna from its surface for the cases of φa = 4φF (solid line) and
φa = 16φF (dashed line).

described in Section 3.4.1 for λD = la/12. In both cases, λD was fixed to la/12, and the

other parameters were set as listed in Table 3.1. Note that the condition of the current

balance between electrons and ions at the antenna surface is not necessary in the present

analysis. In this situation, the motion of ions has little effects on the analysis. We, there-

fore, uniformly distributed immobile ions as a background charge in order to reduce the

computational memory and time required for the analysis.

Figure 3.8 shows the electron density distribution measured along the direction per-

pendicular to the antenna. The solid and dashed lines correspond to the cases of (a)

φa = 4φF and (b) φa = 16φF, respectively. Ion sheaths are created for both cases, but

their sizes are different. The electron-free region expands in the case (b) compared to the

case (a) due to the electron evacuation by the antenna potential. Note that the spatial

gradient of density at the interface between the sheath and the uniform plasma is almost

the same in these two cases. In the previous section, we found that the spatial gradient

of the density is affected by λD. In the present analysis, λD is common between the two

cases. Therefore, it is reasonable that the thickness of the electron-free region increases

for the larger antenna potential without the change in the spatial gradient of the density.

The antenna capacitance C = −1/(ωX) is shown in Figure 3.9. The signature of

impedance resonance is observed in the capacitance value near ω = ωpe. One can find in

Figure 3.9 that the intensity of the resonance depends on the sheath thickness; it is larger

for the case (a) than for the case (b). As described in Section 3.3, the impedance resonance

is due to the interaction between the antenna and the plasma wave. Therefore, the
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Figure 3.9: Antenna capacitance in 1/Ω. The solid, dashed, and dotted lines represent
the capacitance in the cases of φa = 4φF, φa = 16φF, and free space, respectively.

observed dependence of the resonance intensity suggests that the thick sheath separates

the antenna from the plasma and then can weaken the interaction between the antenna

and the plasma wave. The sheath thickness also affects the impedance well below ωpe.

As shown in Figure 3.9, the capacitance curves have nearly-plateau parts. The plateau

value is larger for the thin sheath and tends to approach the free-space value as the sheath

expands. This can be explained by a simple analogy with the two coaxial conductors: the

larger the gap between the conductors, the smaller the capacitance.

The dependence of the low-frequency capacitance on the sheath thickness as described

above was reported in the previous studies [e.g., Balmain and Oksiutik, 1969; Aso, 1973].

They modeled the ion sheath which was divided into a vacuum region and a transi-

tion region in which the electron density increased linearly with respect to its ambient

plasma level. The total impedance was calculated as a summation of the local impedances

corresponding to each region. We confirmed that the theory basically agrees well with

the present simulation outputs for the case of the thin sheath. However, as the sheath

width becomes larger, the theoretical result doesn’t approach to the free-space antenna

impedance although the antenna capacitance should recover its free-space characteristic

in the limit of wide sheath. Therefore, the theory is not applicable to the large sheath

in comparison with the antenna dimensions. Furthermore, since the formulation of the

local impedances was performed using the cold plasma approximation, any effects of a

finite temperature on the sheath impedance cannot be treated in the theory. The present

numerical method, therefore, has advantages in obtaining the complex characteristics of

antenna impedance in inhomogeneous, kinetic plasma environments.
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Figure 3.10: The normalized amplitude of the antenna surface current observed in the
case of λD = la/12. The solid and dashed lines correspond to the observation frequencies
ω = 1.0ωpe and ω = 0.5ωpe, respectively.

3.5 Discussion

In Section 3.3, we presented the EM-PIC simulations of the antenna impedance in uniform

plasma and compared the results with those theoretically obtained. It was confirmed that

the EM-PIC simulation results overall agree with the conventional theory. However, we

found that the intensity of the impedance resonance, particularly for the imaginary part,

is greater in the theoretical results than those obtained in the EM-PIC simulations.

The difference found in the impedance resonance may be caused by the difference of

the modeling of the current distribution on the antenna surface. In the developed EM-PIC

tool, the form of the current distribution is not assumed unlike the theory but evaluated

as a result of the self-consistent computation of the antenna near-field as mentioned in

Section 3.2.2. Figure 3.10 shows the antenna surface current distributions observed in

the EM-PIC simulation results for the case of λD = la/12. The solid and dashed lines

correspond to the profiles at the observation frequencies of ω = 1.0ωpe and ω = 0.5ωpe,

respectively. The current distribution at ω = 1.0ωpe, at which the strong impedance reso-

nance was confirmed to occur, is clearly different from the triangular form. On the other

hand, in absence of the impedance resonance, i.e., at ω = 0.5ωpe, the triangular-like distri-

bution is recovered. This implies that the strong resonance between the antenna and the

surrounding plasma can affect the form of the current distribution. The non-triangular

current distribution can be a possible reason for the impedance difference between the

EM-PIC and theoretical results at the resonance frequency although the detailed mecha-
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nism of the formation of the non-triangular current distribution has not been sufficiently

resolved yet. The observed non-triangular form is very important issue since the current

distribution on the antenna surface affects not only the impedance but also other impor-

tant antenna characteristics such as the effective length. However, the behavior of the

resonance is quite complex, and further investigation of this issue is beyond scope of the

present paper. The detailed analysis on this issue will be described in another paper.

In the results of the EM-PIC simulations the resonance frequency observed for λD =

la/6 case is shifted to higher frequency in comparison with λD = la/12 case. This shift may

be caused by the limited size of simulation box even though we realized an isolated system.

We briefly discuss this issue here. The signature of the impedance resonance is resulted

from the antenna-wave interactions as described in Section 3.3. In the present plasma

environment, the longitudinal plasma wave mode that can exist in the simulation system

is only the Langmuir mode, of which the dispersion relation is given as ω2 = ω2
pe + 3k2v2

0.

Therefore, the resonance signature at very near ω = ωpe should reflect the contribution

of the interactions between the antenna and the Langmuir wave with large wavelength.

However, in the present analysis, the size of the physical region in the simulation box

is limited to 48λD due to the high computational cost of the EM-PIC simulation, and

the plasma wave components that have wavelength larger than the size of the physical

region cannot be supported in the simulation system. In addition, even for the wave

components that can be supported in the system, wave components of wavelength much

larger than the thickness of the absorbing layer are difficult to be completely absorbed by

the absorbing layer. In this case, there is possibility that some wave components near the

electron plasma frequency are reflected into the physical region from the simulation box

edge. These limitations may have an influence on the EM-PIC results at the resonance

frequency particularly for λD = la/6 case. The larger physical space in the simulation box

is desirable in the future analysis to obtain the impedance value in a greater accuracy at

frequencies close to the electron plasma frequency.

Another point we should pay careful attention to is that we utilized a broad spectrum

pulse emission from the antenna feeding point in order to compute the antenna impedance.

Feeding too large energy can cause destruction of the electron density distribution in

the sheath region in equilibrium. This effect is undesirable because we focus on the

antenna impedance under the steady state of the sheath environment in the present

study. We confirmed that the sheath structure obtained as the steady state of the plasma

environment was not corrupted by the pulse emission. This is because the electric energy

of the applied signal was set to 0.11 Esh, where Esh is calculated as an integral of the

electrostatic energy in the sheath region, and was sufficiently small. We also checked

several simulation results as a simple test by changing the amplitude of the applied signal

and confirmed that almost the same results of impedance value were obtained in all cases
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except near the impedance-resonance frequency. Even near the resonance frequency, the

difference of the impedance value was less than 3 % when we doubled the signal amplitude.

This implies the linear voltage-current characteristic is overall maintained in the wide

frequency range. For the detailed analyses at the resonance frequency, this effect should

be minimized by using a pulse with smaller amplitude in future studies.

In the present section, we presented several key points of the EM-PIC simulation tool

that should be carefully considered to improve the present state of the accuracy of the

impedance analysis. However, the limitations described in the present section can be

basically resolved by using larger computational resources. The larger memory enables us

to take a larger size of the simulation box. The amplitude of the emitted broad spectrum

signal can also be reduced by introducing a larger number of the superparticles. This is

because a numerical noise, which is originated from the smaller number of macro-particles

used in the simulation than that of real electrons, can be reduced, and thus a better signal-

noise ratio can be realized by increasing the number of the superparticles. We believe

that by performing large-scale computations, we can minimize the artificial effects on the

EM-PIC results and analyze the antenna characteristics in a greater accuracy.

3.6 Conclusion

In order to investigate the antenna characteristics including the plasma kinetic effects

in a self-consistent manner, we have applied the EMSES code to the antenna analysis.

In the present study, we focused on the impedance of a low-power transmitting antenna

because this basic property is useful for the validation of the EMSES application to the

analysis. EMSES was first validated by examining the wire-antenna characteristics in a

homogeneous kinetic plasma. The obtained antenna impedance showed good agreement

with the analytic results based on the conventional theory at frequencies below and above

the electron plasma frequency. Near the electron plasma frequency, the dependence of the

impedance-resonance intensity on the plasma temperature was qualitatively consistent

with that expected analytically, although the peak values of the impedance resonance

showed a discrepancy between the EM-PIC and theoretical results.

The present tool was next applied to the analyses of the ion sheath effects on the

antenna impedance. Since the sheath dynamics were simultaneously solved during the

analyses, the effects on the antenna impedance was included in a more self-consistent

manner than the previous works that assumed simplified structure of the ion sheath. As

was predicted by the previous theories, the low-frequency capacitance was confirmed to be

decreased by the presence of the ion sheath. The signature of the impedance resonance

is also modified by the ion sheath. Particularly, it was revealed that the resonance is

weakened when one applies a negative large bias potential, which leads to a thick ion
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sheath around the antenna. To understand the more detailed physical mechanism of

the present results, further analyses of the energy distribution of electrons and the wave

propagation properties in the sheath region are required. The PIC simulation method

is effective for such detailed diagnosis [Usui et al., 2004]. The larger scale analyses will

enable us to investigate the physical properties of the ion sheath in greater detail in the

future.

By examining the antenna impedance in the simple situations with and without the

ion-sheath effects, we successfully demonstrated the present state of the validity and the

effectiveness of EMSES. On the other hand, the present test revealed some limitations

of the developed tool, which showed several important factors that we should improve

in further development of the tool. Although the proposed approach is costly in the

respect that it requires large computational resources and time, we believe that realistic

and practical modeling is effective for obtaining the complex antenna characteristics in

plasmas as well as for evaluating the validity of other low-cost methods.



Chapter 4

Analysis of Photoelectron Effect on
the Antenna Impedance

4.1 Introduction

The photoelectron emission resulting from the sunlight illumination of conducting an-

tenna/spacecraft surfaces much influences the characteristics of a space-based antenna

immersed in a tenuous plasma. Since photoelectrons play a critical role also in deter-

mining spacecraft potential, their number and current densities have been extensively

investigated by laboratory measurements [Grard, 1973] and in-flight measurements with

various spacecraft such as GEOS-1, ISEE-1, GEOS-2, and GEOTAIL [Pedersen et al.,

1984; Schmidt and Pedersen, 1987; Nakagawa et al., 2000]. Their typical density is in the

order of 102 – 103 cc−1 and easily dominates over that of background plasma electrons at

almost all regions outside the plasmapause of the Earth. Thus, photoelectrons become a

problematic issue in various situations of electric field measurements.

Investigations of photoelectron effects have been carried out mostly for measurements

of quasi-static electric field [Pedersen et al., 1984]. The electric potential of an electric

antenna or a double probe is determined by a balance condition between currents carried

by escaping photoelectrons and impinging background electrons. Therefore, an asymmet-

ric condition of the photoemission between two antenna elements immediately leads to

generation of spurious or noise electric fields, which are serious sources of measurement

errors. Hence, a special attention has been paid to achieve the symmetric fashion of the

photoemission from an early history of the DC electric field instrument design [Pedersen

et al., 1998]. Meanwhile, photoelectrons also provide a favorable and necessary condition

for the probe measurements of the static electric field in tenuous magnetospheric plasmas.

In order to conduct reliable measurements minimizing effects of spurious currents (e.g.,

from probe supports), a probe and a surrounding plasma are well coupled with sufficiently

lower magnitude of impedance than that of an input impedance. This comfortable cou-

pling can be achieved only by the photoemission in the tenuous plasma environment [e.g.,

61
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Pedersen et al., 1984]. In this manner, because the photoelectron emission is an essential

factor as well as being a troubling factor, utmost care has been taken for the photoelectron

effects in the static electric field measurements.

In contrast with the presence of several helpful lessons for measurements of static elec-

tric field as mentioned above, photoelectron effects on the frequency response of electric

antenna characteristics, e.g., the impedance, have been poorly resolved in the current

status. As introduced in Chapter 1, the previous theories of the antenna impedance have

in most cases treated only homogeneous plasmas, or ion-sheathed plasma environment

with an assumption of its highly simplified structure. A cloud of photoelectrons often

have much more complex structure than that of an ion sheath. The complexity comes

from the fact that photoelectrons are emitted only from sunlit conducting surfaces, and

the photoelectron flux depends strongly on the incident angle of the sunlight. Also, the

orbits of the photoelectrons, which have relatively low energy (∼eV), are easily changed

due to antenna/spacecraft charging. The resulting complex distribution of photoelectrons

is too difficult to treat in the previous antenna theories.

Another limitation of the previous theories comes from the modeling of antenna sur-

faces. It is expected that a photoelectron current flowing out/into the antenna surfaces

affects not only static but also RF properties of antennas in some situations. To include

the contribution of such a current, the antenna surfaces should be treated as solid sur-

faces. However, in the previous works, the antenna is assumed to be a thin conductive

wire that is completely transparent to the fluid plasma medium, and the contribution of

the currents directly flowing out/into the surface cannot be considered self-consistently, as

introduced in Section 3.2.2. This limitation is serious particularly in the antenna analysis

in the photoelectron environment compared with an ion-sheathed environment, because

high-density electrons contact with antenna surfaces in the photoelectron environment

while much smaller amount of electrons contact in the ion-sheathed environment.

On the other hand, some of in-flight impedance measurement results have shown

clear signatures apparently influenced by the presence of photoelectrons. One of the

most prominent data was a spin-synchronized impedance change obtained for the WANT

element onboard the GEOTAIL spacecraft [Tsutsui et al., 1997]. Because a photoelectron

flux from the wire antenna strongly depends on the angle between the antenna and the

sunlight direction, it is expected that the amount of photoelectrons around the antenna is

also synchronized with the spacecraft spin. Therefore, the spin-synchronized impedance

change strongly suggests that the impedance depends on the photoelectron amount around

the antenna.

In order to prove such a photoelectron effect, we should perform computer experiments,

which reproduce complex photoelectron environment created around the spacecraft. In

this chapter, we concentrate on investigations of the frequency responses of space-based
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antenna impedance in the presence of photoelectrons [Miyake and Usui, 2008b]. We focus

on a tenuous and warm plasma environment typically observed in the outer magneto-

sphere of the Earth. The terms “tenuous and warm” indicate in this context that the

Debye length is comparable to or larger than the antenna length. We model the pho-

toelectron emission from the antenna surface and investigate its effects on the antenna

impedance. We also include the geometry of the spacecraft body in the simulation model.

In future missions currently being planned by the Japanese community of solar terrestrial

physics, spin-axial electric field antennas are planned to be implemented to realize three-

dimensional measurements of electric field. In order to retain attitude stability and low

weight, the spin-axial antennas must be sufficiently shorter than the conventional wire

antenna. The characteristics of such a short antenna must be investigated by considering

spacecraft body effects prior to its design.

In Section 4.2, we describe simulation model and parameters used in the present

analysis. We also explain the modeling of photoelectrons briefly. In Section 4.3, we present

simulation results obtained by the present antenna analysis. We first survey a plasma

environment around the spacecraft in the presence of the photoelectron emission. We

then focus on a photoelectron effect on the antenna impedance. Section 4.4 is devoted to

the interpretation of the obtained simulation results by introducing an equivalent electric

circuit model. Finally, in Section 4.5, we discuss the contribution of the present simulation

results to the interpretation of in-flight impedance measurement data obtained by the

GEOTAIL spacecraft.

4.2 Simulation Model

The model of the present antenna analysis is shown in Figure 4.1. The present analysis

focuses on the characteristics of antennas deployed along the spin axis of a spacecraft.

Although such an antenna has been rarely aboard previous scientific spacecraft due to

difficulties in attitude stability and deployment mechanics, it will become necessary for

three-dimensional measurements of electric fields in future magnetospheric exploration

projects such as the SCOPE (Scale COupling in the Plasma universE) mission [Schwartz

et al., 2008]. As shown in Figure 4.1, the spacecraft body has the shape of an octagonal

plate that is described within the regular Cartesian grid system. Two antenna branches

are deployed from opposite sides of the spacecraft surfaces. The antenna branches are

represented as thin wires, the cross-sections of which are ∆r × ∆r square, where ∆r

represents the grid spacing and is the minimum spatial unit length in the simulations.

Therefore, the surface area exposed to a surrounding plasma is given as S = 4la∆r+∆r2 =

49 for each antenna branch, where la represents the length of one antenna branch (different

from the tip-to-tip length La). For simplicity, all surfaces of the antenna branches and the
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Figure 4.1: Three-dimensional simulation model for the antenna analysis in a photo-
electron environment.

spacecraft are assumed to be constructed of perfect conductors. The perfect conducting

assumption does not describe a real situation precisely. Antennas are often coated with

thin dielectric materials. However, the effect of this coating on the antenna characteristics

can be neglected because only the conductive parts of the deployed branches should work

as an electrical antenna. The antennas are connected to the amplifier through very high

impedance in actual situations. Taking this into consideration, in the present model,

we assume the joints between the antennas and spacecraft to be completely insulated

electrically.

We place the spacecraft model in the center of a three-dimensional simulation box,

which is uniformly filled with background plasmas composed of electrons and protons with

finite thermal velocity. The box size is set to ∼11λD on each side, where λD represents

the Debye length. The boundary conditions for outer edges of the simulation box are

basically identical to those used in the previous chapter, which is selected so as to realize

an isolated system. As shown in Figure 4.1, we set an absorbing boundary layer consisting

of 20 grids from the edges of the box. We use the Neumann condition in solving Poisson’s

equation. Particles escaping from the outer boundaries are reflected.

The parameters for the background plasmas and the photoelectrons are listed in Ta-

ble 4.1, which is given in the normalized unit system used in the simulation code. In the

present analysis, we choose the parameters considering an electric field antenna that is

placed in the outer magnetosphere such as the magnetosheath. As shown in Table 4.1, we

use the real mass ratio mi/me = 1836, where mi and me represent the mass of electrons

and protons, respectively. The background plasma parameters are chosen such that they
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Table 4.1: Simulation parameters for the analysis of antenna impedance in a photo-
electron environment. The values are given in the normalized unit system used in the
EMSES code. e represents the electron unit charge.

Parameter Symbol Value
System

Grid spacing ∆r 1
Time step width ∆t 0.005
Speed of light c 100
System length Ls 128
Electron charge-to-mass ratio |e/me| 1
Number of superparticles (electron) 64/cell
Number of superparticles (ion) 32/cell

Background plasma
Electron plasma frequency ωpe 1
Ion plasma frequency ωpi 0.023
Mass ratio mi/me 1836
Electron thermal velocity vte 12
Ion thermal velocity vti 0.28
Debye length λD ∼12
Electron differential flux Γe eΓe∼4.8

Photoelectron
Current density eΓph ∼2.4 × 102 (case a)

∼6.0 × 101 (case b)
Thermal velocity vtp 6

S/C body and antennas
Length of one antenna branch la 12
Frequency at which the antenna
operates as the half-wave dipole ωhalf ∼13
Antenna surface area S 49
Photoemitting antenna surface area Sph 12
S/C dimensions (see Figure 4.1) hs 2

rs 2

yield a quasi-neutral plasma. We also assume that the background plasma is isothermal.

Also in the present chapter, our interest is on the characteristics of “an electrically short

antenna” near the electron plasma frequency ωpe. To realize the electrically short antenna,

we set ωhalf ∼ 13ωpe, where ωhalf represents the frequency at which the antenna operates

as a half-wavelength dipole. An important difference from the previous chapter is the

parameter setting for a ratio between la and λD. In the previous chapter, we examined a

dipole antenna with sufficiently larger antenna length than the Debye length. However,

actually in the outer magnetosphere, λD typically becomes comparable to or larger than

la. In the present analysis, we choose the background plasma parameters such that λD is

equal to la.
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On the other hand, we choose the photoelectron differential flux as Γph = 50Γe, where

Γe is the differential flux of background plasma electrons. The energy is set to be a quarter

of that of the background electrons. By choosing the above photoelectron parameters,

we expect that the local photoelectron density becomes of the order of 101–102n0, where

n0 represents the background electron density, and the Debye length obtained from the

photoelectron density becomes much shorter than la. This relation between the Debye

length for photoelectrons and la is the case in the outer magnetosphere of the Earth.

In the simulation, we select conductive surfaces illuminated by sunlight as inner bound-

aries from which photoelectrons are assumed to be emitted. Then, we inject electrons from

the inner boundaries corresponding to the sunlit surfaces, which simulates the photoelec-

tron emission. For the particle injection, we used a conventional scheme described in

e.g., Birdsall and Langdon [1985]. For simplicity, the velocity distribution for the photo-

electrons is modeled as a single Maxwellian. In the present study, we assume that the

sun illuminates the spacecraft body and the antennas from the direction perpendicular

to the antennas, i.e., from the +x direction in Figure 4.1. We also examine the plasma

environment in the absence of the photoelectron emission, for comparison.

In the analysis of the plasma environment around the antenna, we initially distribute

background plasmas uniformly throughout the simulation box. Then, we start a simula-

tion with electron emission from the sunlit surfaces of the antenna and the spacecraft. In

order to obtain the static environment, we run the simulation with sufficient time steps

prior to the antenna analysis, until the plasma density around the spacecraft as well as

the electric potential of the antenna and the spacecraft reaches a steady state.

After obtaining the steady state of the plasma environment, we switch to analysis of

the antenna impedance. We simulate a transmitting antenna with low power by adopting

the delta-gap feeding technique as was conducted in Chapter 3. Figure 4.2 shows the field

assignment in the vicinity of the gap between the upper antenna and the spacecraft body.

The method for the calculation of antenna impedance is basically the same as explained

in Section 3.2.2, i.e., Z(ω) = Vin(ω)/Iin(ω), where the assignment of voltage Vin and

current Iin is indicated in Figure 4.2. The present antenna model has two feeding points

between the spacecraft body and the upper/lower branches of the antenna. Therefore,

the voltages and currents defined at the two feeding points are independently obtained as

simulation outputs. Then, we independently analyze the impedance for each of the two

antenna branches. In the present analysis, since we only treat symmetric photoelectron

environment, the upper and lower antennas should have the same impedance. Hereinafter,

all results of antenna impedance are obtained for the upper antenna.
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4.3 Simulation Results

4.3.1 Spacecraft Environment with Photoelectron Emission

Figure 4.3 shows a time history of the current magnitude Ie and Iph for background

electrons and photoelectrons that impinge on and escape from the antenna surfaces, re-

spectively. At an initial state of the simulation, Iph is much greater than Ie, which leads

to positive charging of the antenna. Then, the positive potential of the antenna reduces

Iph. Because the background ion current Ii is negligibly small in comparison with that

of electrons, the steady state of the antenna floating potential is realized when Iph and

Ie balance. As shown in Figure 4.3, the magnitude of the currents at the steady state is

Iph = Ie ∼ 1.7Ie0. Here, Ie0 is the background electron current at an initial state when the

antenna potential is equal to that of the background plasma, and is given as SeΓe where

e is the electron unit charge. In a case of no photoelectrons, Ie and Ii should balance to

form a steady state. Although not displayed, it is confirmed that the current magnitude
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Figure 4.3: Time histories of photo- and background electron currents flowing out of
and into the antenna surfaces, respectively. The vertical axis is normalized to Ie0 =
SeΓe, which is the background electron current flowing into the surfaces when the
antenna potential is equal to that of the background plasma.

at the steady state is Ie = Ii ∼ 7.0 × 10−2Ie0.

Figure 4.4 shows the electric potential distribution at the steady state of the simula-

tions along an axis that penetrates the center of the spacecraft body and the antenna.

For the case of no photoelectrons, floating potentials −2.5kBTe/e and −3.5kBTe/e are

obtained for the spacecraft and the antenna bodies, respectively. Here, kB and Te are

the Boltzmann’s constant and the background electron temperature, respectively. The

resultant potential for the spacecraft agrees well with the theoretical value −2.5kBTe/e

for a spherical conductor whose dimension is significantly smaller than λD [Mott-Smith

and Langmuir, 1926; Fahleson, 1967].

For the case with photoelectrons, the floating potentials for the spacecraft and the

antenna bodies are 3.2kBTph/e and 6.4kBTph/e (i.e., 0.8kBTe/e and 1.6kBTe/e), respec-

tively, where Tph represents the photoelectron temperature. We successfully reproduced

the positive charging in the case with photoelectrons. Using the conventional theory

[Schmidt and Pedersen, 1987], we can analytically calculate the magnitude of the po-

tential as 2.0kBTph/e for the spacecraft body. Although in the theory we considered a

considerably simplified situation in which only a single conductor emits photoelectrons in

the plasma unlike the actual simulation model, the resultant potential of the spacecraft

is in the same order as that of the theoretical potential. Therefore, it is confirmed that

the present numerical results are basically consistent with the plasma theories.
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Figure 4.5 shows contour plots of the electron number density in cases with and without

photoelectron emission at the steady state. The electron density is measured in the x-z

plane, which slices the center of the antennas and the spacecraft. The electron density

level is plotted in accordance with the gray scale in these figures, with the highest value

in white and the lowest value in black. Note that the sunlight illuminates the right-hand

side of the antennas and the spacecraft in Figure 4.5(b).

In the non-photoelectron case, an electron-sparse region surrounds the spacecraft body

and the antennas, as shown in Figure 4.5(a). Recalling that the spacecraft and the

antennas have negative potential in the absence of photoelectrons, this electron-sparse

region is easily understood because the negatively charged surfaces repel the surrounding

electrons. In contrast, although not displayed, we confirmed that the ion density changes

only slightly from the background density level, except for a region very close to the

conducting surfaces. Thus, an ion-rich region, referred to as an ion sheath, is created

around the spacecraft and the antennas in the sunless condition. On the other hand,

in Figure 4.5(b), the plasma environment is changed drastically by the photoelectron

emission. In this case, a photoelectron cloud with high electron density is created in the

vicinity of the sunlit surfaces of the antennas and the spacecraft body. Although most

of the emitted photoelectrons are located in front of the sunlit side of the surfaces, some



70 CHAPTER 4. PHOTOELECTRON EFFECT ON ANTENNA IMPEDANCE

log
10

(n
e
 / n

0
)

−1

−0.5

0

0.5

1

−1

0

1

z-
ax

is
: 

z 
/ 
λ

D
−1 0 1

x-axis:  x / λ
D

log
10

(n
e
 / n

0
)

−1

0

1

z-
ax

is
: 

z 
/ 
λ

D

−1 0 1
x-axis:  x / λ

D

(a) Non-photoelectron case (b) Photoelectron case

S/C body S/C body

Sunlight

Antenna

Antenna

Antenna

Antenna

Figure 4.5: Contour map of the electron density around the spacecraft and the an-
tenna. The left and right panels represent the cases without and with the photoelectron
emission, respectively. In the right panel, we assumed the sunlight illuminates the
antennas and the spacecraft from the right direction.

of the emitted photoelectrons move to the shadowed side and create an electron-dense

region there.

In order to examine the plasma distribution at the conducting surfaces, we plot the

electron density along the antenna direction in Figure 4.6. The density is measured along

the z-axis, which lies on the antenna surfaces and penetrates the spacecraft body. We

confirmed that the electron density is reduced to 0.03–0.1 times the background density

n0 at the antenna in the non-photoelectron case. On the other hand, in the photoelectron

case, the photoelectron cloud is distributed uniformly on the antenna locations. Around

the sunlit antennas, the electron density is 17n0. Although the photoelectron cloud on

the spacecraft surfaces is not displayed in Figure 4.6, we confirmed the same order of the

electron density as for the antenna surfaces.

4.3.2 Photoelectron Effects on the Antenna Impedance

After the steady-state of the inhomogeneous plasma environments was created, we com-

puted the antenna impedance for each of the cases with and without the photoelectron

emission.

Prior to analysis of the numerical simulation results, we briefly describe a basic char-

acteristic of the antenna impedance in free space. As is widely known, the real part of the

impedance R represents dissipation, which is typically caused by radiation because the
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Figure 4.6: Electron density variation measured along the z-axis, which lies along the
antenna surface and penetrates the center of the spacecraft body. The solid and dashed
lines represent the photoelectron and non-photoelectron cases, respectively.

radiated power leaves the antenna and never returns. In the case of electrically short an-

tenna, R is approximately zero because the EM-wave radiation is negligible. On the other

hand, the imaginary part of the impedance X represents the reactive power stored in the

vicinity of the antenna. For an electrically short dipole antenna, X is known to be purely

capacitive, i.e., X = −1/ωC0, where C0 represents the free-space antenna capacitance.

Figure 4.7 shows the real part (left panel) and the imaginary part (right panel) of

antenna impedance obtained in the plasma environment with or without photoelectron

emission. The horizontal axis is normalized to the electron plasma frequency ωpe for the

background plasma. The local electron plasma frequency ωsf ∼ 4.1ωpe is also shown in the

figure, which is calculated from the local electron density at the antenna surface for the

case with photoelectrons. The solid and dashed lines in the figure represent the antenna

impedance for the cases with and without photoelectron emission, respectively. We also

plot the free-space reactance by a series of circles in the right panel of Figure 4.7, which

was calculated by independently performing a FDTD simulation for a free-space case.

In the case of no photoelectrons (dashed lines), the antenna resistance R is almost null

with a slight variation within the noise level caused by the limited number of particles

used in the simulations. The reactive power X is always negative, which indicates that

the antenna is capacitive. Furthermore, we confirmed that the observed curve of X is

identical to the free-space reactance X = −1/ωC0. The above fact implies that the

background plasma has little effect on the antenna impedance in the absence of the
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Figure 4.7: Antenna resistances R(ω) (left panel) and reactances X(ω) (right panel) as
functions of the frequency obtained by the EM-PIC simulations. The solid and dashed
lines represent the photoelectron and non-photoelectron cases, respectively. A series of
circles in the right panel shows the free-space reactance values.

photoelectron emission. The impedance resonance, which usually occurs near the electron

plasma frequency, is too weak to observe for small la/λD employed in the present analysis.

In the presence of photoelectrons, the impedance behavior is quite different from the

case without photoelectrons. In the low-frequency range well below ω = ωsf , R has a finite

value and becomes greater as the frequency decreases. The absolute value of X becomes

smaller in comparison with the non-photoelectron case at the low-frequency range. The

notable feature is that the difference from the non-photoelectron case becomes greater as

the frequency approaches zero. In contrast, the impedance shows little difference from

the non-photoelectron case in the frequency range above ω = ωsf . Note that the signature

of the impedance resonance is not seen near ω = ωpe or ω = ωsf ∼ 4.1ωpe.

In order to examine the dependence of impedance on the amount of photoelectrons,

we performed a simulation for the photoelectron flux Γph = 12.5Γe in addition to the case

Γph = 50Γe. In the case of Γph = 12.5Γe, the electron density at the sunlit surfaces was

confirmed to become 0.32 times the value in the previous case Γph = 50Γe. Figure 4.8

shows the antenna impedance for the cases (a) Γph = 50Γe and (b) Γph = 12.5Γe. The

solid and dashed lines correspond to cases (a) and (b), respectively. The modification of

the reactance X is moderated in case (b) in comparison with case (a). This moderation

is easily expected from the smaller amount of photoelectrons in case (b), as compared to

case (a). However, for the resistance R, more complex dependence on the photoelectron

density is observed. The resistance for case (b) is smaller than the value for case (a)

above ω ∼ 0.4ωpe. However, the resistance for case (b) exceeds that in case (a) below

ω ∼ 0.4ωpe.
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Figure 4.8: Antenna resistances R(ω) (left panel) and reactances X(ω) (right panel)
obtained by the EM-PIC simulations for the cases of Γph = 50Γe and Γph = 12.5Γe.

4.4 Equivalent Circuit Analysis of Antenna Impedance

4.4.1 RLC0 Parallel Circuit Model

In order to interpret the dependence on the amount of photoelectrons, we observe the

obtained numerical results in terms of the antenna admittance Y = 1/Z. Figure 4.9

shows the real part G and the imaginary part B of the admittance Y for cases (a) and

(b). G has an almost constant value for both cases (a) and (b), and the value is larger

for case (a) than for case (b). On the other hand, the value of B clearly increases linearly

with the frequency. One can find little difference in the B values between cases (a) and

(b). We confirmed that the gradient of the B curve is equal to C0. The simple dependence

of the antenna admittance on the frequency implies that the photoelectron effects on the

antenna impedance can be better represented by the parallel equivalent circuit rather

than the series equivalent circuit.

In order to construct the equivalent electric circuit, we defined RL = 1/G, where RL

has the dimension of a resistance. For the imaginary part B, we set B = ωC0 because B

increases linearly with the frequency. In this way, it is possible to construct an equivalent

circuit composed of RL and C0 connected in parallel for the antenna impedance in the

presence of photoelectrons, of which the diagram is shown in Figure 4.10. In middle and

right panels of Figure 4.10, we presented the function form of the equivalent circuit. Evi-

dently, behavior of both real and imaginary parts of the impedance is consistent with the

simulation results shown in Figure 4.8. On the other hand, in the absence of photoelec-

trons, the antenna impedance is almost the same as its free-space characteristics, which is

represented by the pure capacitance C0. This is obtained as the limit of RL → ∞ in the
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Figure 4.9: Antenna admittances for the cases of Γph = 50Γe and Γph = 12.5Γe, the
corresponding impedances of which are shown in Figure 4.8. The left and right panels
show the antenna conductances and susceptances, respectively.

RLC0 parallel circuit. The EM-PIC results also revealed that the dense photoelectrons

lead to a smaller value of RL = 1/G as shown in Figure 4.9. In summary of the present

EM-PIC simulation results, the photoelectrons have the effect of reducing the value of

RL, but have little effect on C0.

The antenna surfaces contact with the highly conductive medium composed of the pho-

toelectrons and the background plasma. In the aspect of electric circuit, this phenomenon

can be modeled by adding a new path to the circuit, where the plasma conduction current

flows, in parallel to C0. The value of RL controls the plasma conduction current flowing

on the circuit path. RL is occasionally referred to as “the Langmuir resistance”, the effect

of which is observed in the impedance profile in a low-frequency range [e.g., Béghin et al.,

2005]. Note that the resistance RL introduced here is not the conventional radiation resis-

tance associated with the radiation of EM waves because EM waves are evanescent below

the electron plasma frequency. Moreover, RL must not be confused with the resistance

caused by the dissipation of electrical energy due to the conversion of the field energy into

the kinetic energy of plasma electrons. The latter resistance should be connected in series

to C0 and should have a peak at the local electron plasma frequency [Kuehl, 1967].

In the limit of high frequency, the RLC0 parallel circuit becomes the pure capacitance

C0, and the presence of RL has no effect on the total impedance of the circuit because C0

behaves as a short circuit. As the frequency decreases, the influence of RL becomes appar-

ent. The real part RRC and the imaginary part XRC of the impedance of the RLC0 parallel

circuit are given as RRC = RL/(1 + (ωC0RL)2) and XRC = −ωC0R
2
L/(1 + (ωC0RL)2), re-

spectively. Evidently, RRC decreases with increasing frequency, and |XRC| becomes smaller
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Figure 4.10: RLC0 equivalent circuit diagram (left) and function forms of the real
(middle) and imaginary (right) parts of the impedance of the circuit. In the middle and
right panels, curves for (a) RL = (3.1 × 10−4)−1 Ω and (b) RL = (1.0 × 10−4)−1 Ω are
plotted by solid and dashed lines, respectively. The dash-dotted line in the right panel
shows the reactance curve corresponding to the pure capacitance C0.

than the free-space reactance |X0| = 1/ωC0 in a low-frequency range.

4.4.2 Analytical Calculation of Antenna Conductance

The antenna conductance can be estimated from G = dI/dV , where V and I are the

antenna potential and the net current flowing into or out of the antenna surfaces, respec-

tively. For simplicity in the analytical calculation, we assume that a small voltage signal

excited at the antenna feeding point affects only the floating potential of the antenna,

and not that of the spacecraft body. This assumption is valid when the capacitance of

the spacecraft body is much larger than of the antenna.

In order to calculate G, we use the classical formulation for I shown in the studies, e.g.,

by Mott-Smith and Langmuir [1926]. After the derivation presented in the Appendix B,

G can be given for the photoelectron and non-photoelectron cases as follows:

G =
1

2

e

kBTe + eVf

Ie(Vf) +
e

kBTph

Iph(Vf) (photoelectron case), (4.1)

G =
e

kBTe

Ie(Vf) +
1

2

e

kBTi − eVf

Ii(Vf) (non-photoelectron case), (4.2)

where Iph(Vf), Ie(Vf), and Ii(Vf) are the currents of photoelectrons, background electrons,

and ions, respectively, when the antenna has a floating potential Vf . Note that, in the

photoelectron case, we neglected an ion current because photoelectrons and background

electrons form the dominant current.

In order to calculate Eqs. (4.1) and (4.2), we use the values of Iph(Vf), Ie(Vf), and
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Ii(Vf) which were numerically obtained from the EM-PIC simulation results for the case

(a) Γph = 50Γe. As described in Section 4.3.1, Iph(Vf) and Ie(Vf) were equal to 1.7 Ie0

for the photoelectron case. In the photoelectron case, the photoelectron and background

electron currents are balanced with larger magnitude than Ie0. This is a result of the

positive floating potential Vf = 1.6 kBTe/e for the photoelectron case. By substituting

Iph(Vf), Ie(Vf), Vf , and other simulation parameters into Eq. (4.1) and transforming the

value into the physical unit of Ω−1, we obtain G = 3.1× 10−4 Ω−1, which agrees well with

the EM-PIC simulation results for the case (a) Γph = 50Γe shown in Figure 4.9.

In the non-photoelectron case, Ie(Vf) = Ii(Vf) ∼ 7.0 × 10−2 Ie0 was obtained as the

EM-PIC simulation result. The background electron and ion currents are balanced at

a much smaller magnitude than in the photoelectron case because the floating potential

obtained for the non-photoelectron case had a negative value, i.e., Vf = −3.5 kBTe/e. As

in the photoelectron case, G is calculated as G = 3.4×10−6 Ω−1 and is much smaller than

the photoelectron case. Using the obtained G (or RL) value, we can calculate the real and

imaginary parts of the impedance at ω = ωpe as RRC = 15 Ω and XRC = −2.1 × 103 Ω,

respectively. We confirmed that XRC is almost the same as the free-space reactance.

Therefore, for such a small G value, the effect of RL is not observed in the impedance

profile near the electron plasma frequency.

4.5 Discussion

4.5.1 Equivalent Circuit for Non-photoelectron Case

In Section 4.4, we showed that the antenna impedance in photoelectron environment is

well modeled by the parallel RLC0 circuit, which was derived from the result showing the

antenna conductance is almost constant with frequency. In this section, we discuss an

equivalent circuit for the non-photoelectron case. Figure 4.11 shows the numerical result

of the antenna admittance obtained for non-photoelectron case. In the panel (a), we also

indicate the conductance value G = 3.4 × 10−6 Ω−1 with the arrow, which was estimated

in the previous section. Unlike the photoelectron cases, the conductance observed in non-

photoelectron case clearly shows an increased trend with frequency, although the plot

is rather scattered. The scattering might be simply due to the small magnitude of the

conductance in comparison with the photoelectron case, which makes noise contribution

stand out in the plot. However, the increased tread in the conductance plot suggests that

the impedance characteristics in the non-photoelectron case cannot be well represented

by the simple RLC0 circuit.

In order to find out a suitable equivalent circuit for the non-photoelectron case, we tried

to fit several types of circuits to the resultant conductance curve. As a result, we found

that an additional small resistance ∼101 Ω connected to the conventional RLC0 circuit can
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Figure 4.11: Antenna admittance for the non-photoelectron case. The left and right
panels show the antenna conductance and susceptance, respectively. The arrow shown in
the left panel indicates the conductance value of G = 3.4×10−6 Ω−1, which is estimated
for the non-photoelectron case in Section 4.4.2.

well model the increased trend observed in the non-photoelectron case. Figure 4.12 shows

the diagram of the two types of newly proposed circuits and its frequency characteristics

for the real part. In the figure, the solid and dashed curves are calculated from the

circuits by using G = 3.4×10−6 Ω−1 and 3.1×10−4 Ω−1 respectively and common r = 15 Ω,

where the former and the latter correspond to non-photoelectron and photoelectron cases,

respectively. We confirmed that both types of circuits yield almost the same characteristics

of conductance for the above parameters. We also superimpose the simulation results for

both cases. The increased trend observed for the non-photoelectron case is well reproduced

by using the newly proposed circuits. On the other hand, when G is rather large as in

the photoelectron case, the resultant conductance is almost flat even for the proposed

circuits.

Some plausible factors can be considered responsible for the additional small resistance

r. One is the radiation resistance resulting from radiation of EM waves. However, since

the present antenna is electrically short, the radiation resistance is very small, and in

the order of 10−1 Ω for a frequency range of our interest even if the antenna is located

in free space. In the present unmagnetized plasma, the radiation resistance is at least

smaller than the free-space case, and should be zero for ω < ωpe because EM waves are

evanescent in the frequency range. Recalling that r was estimated at 15 Ω earlier, we must

consider contribution of other factors to r. Another possibility is resistance caused by field

energy conversion into the kinetic energy of plasma particles, which has been introduced

in Chapter 3. By applying the EMF method, which has been used in Section 3.3.1, to
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Figure 4.12: Diagrams of two types of equivalent circuits proposed for the antenna
impedance in the non-photoelectron case and the plot of frequency characteristics
of their conductance. We also superimpose the simulation results obtained for non-
photoelectron and photoelectron cases.

the present situation, we can evaluate the order of the resistance as ∼ 101 Ω within the

frequency range of the current interest, which is roughly consistent with the estimated

value of r. From the discussion, the resistance due to field energy dissipation as a result of

conversion into the kinetic energy of plasma particles can cause the increased trend of the

conductance observed in the non-photoelectron. In the current status, however, we cannot

conclude which type of the two circuit forms shown in Figure 4.12 is more appropriate

representation for the antenna impedance in the non-photoelectron case, because both

types of the circuit yield almost the same frequency characteristics of conductance for the

present r value. The specification of the equivalent circuit should be carried out based

on further numerical analyses adopting broad parameter ranges for photoelectrons and

background plasmas, which is left as a future work.

From Figure 4.12, we can see that the proposed circuits provide good representation

for conductance also in the photoelectron case. Because the contribution of the additional

resistance r is not prominent in the case, the simpler RLC0 circuit can become a satisfac-

tory model as shown in the previous section. However, in a condition that the antenna is

separated by an electron sparse region as in the non-photoelectron case, the impedance

characteristics cannot be sufficiently represented by the simple RLC0 circuit.
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Figure 4.13: Time variations of 1/G observed for the WANT antenna aboard the
GEOTAIL spacecraft [after Tsutsui et al., 1997, Figure 13].

4.5.2 Comparison with In-flight Impedance Measurements

The present EM-PIC simulation revealed that a photoelectron cloud surrounding antennas

behaves like a resistance RL (or a conductance G) connected in parallel with a capacitance

C0. The result is basically consistent with empirical knowledge about the low-frequency

impedance behavior in the presence of photoelectrons [e.g., Okada et al., 2000]. We also

note that the behavior is consistent with results of in-flight impedance measurements

of electric field antennas aboard the GEOTAIL spacecraft [Tsutsui et al., 1997]. In the

measurements, the analogy with the equivalent circuit was observed at low frequencies of

up to ∼100 Hz performed in the various regions of the Earth’s magnetosphere.

As briefly introduced in Section 4.1, the spin-synchronized impedance change was

observed in the GEOTAIL measurements. Figure 4.13 shows the time variations of 1/G of

the WANT antenna during the period of about 6 s, which corresponds to two spin rotations

of the GEOTAIL spacecraft [after Tsutsui et al., 1997, Figure 13]. The figure clearly shows

that the conductance G decreased (1/G increased) at the same time of every half-spin

period, which corresponds to the time when the antenna was directed toward the Sun.

Since photoelectron flux is decreased for the antenna directed sunward, this phenomenon

is explained by the spin modulation of photoelectron density around the antenna. It

is basically consistent with the dependence of G on the photoelectron density revealed

by the present simulations. Meanwhile, the large difference of appearance between the

first/third peaks and the second/forth peaks has not been sufficiently resolved yet. We

believe that further numerical analysis can contribute to more detailed interpretation of

the in-flight antenna impedance measurements by the GEOTAIL spacecraft.

In the GEOTAIL measurements, the analogy with the parallel equivalent circuit
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was observed at a sufficiently lower frequency range than the local electron plasma fre-

quency. In the present analysis, however, the modification is found even near the electron

plasma frequency, which is a much higher frequency range than the measurement results.

Moreover, the EM-PIC results of G ∼ 10−4 Ω−1 are large compared with the order of

G ∼ 10−7–10−9 Ω−1 observed in the GEOTAIL measurements. This discrepancy may be

due to the antenna modeling used in the present simulations. As described in Section 4.4.2,

G is given as a function of the currents due to photoelectrons and background plasmas,

which are emitted and collected by the antenna body, respectively. Evidently, the current

values are significantly affected by the total area and the photoelectron-emitting area of

the antenna surfaces. In the present simulation model, due to the limitation of the spatial

resolution of the simulation, the diameter of the antenna was set to ∼0.08 times la. This

radius and the resulting antenna surface area are unrealistically large considering actual

wire antennas aboard scientific spacecraft, e.g., in the case of GEOTAIL the antenna

diameter is ∼4.5 × 10−6 times la. Therefore, in the present simulation, the large area of

the antenna surface may amplify the effect on G.

4.6 Conclusion

This chapter describes the EM-PIC analysis on antenna impedance including plasma

inhomogeneity caused by the photoelectron emission from conducting surfaces of an an-

tenna and a spacecraft. In order to simulate the photoelectron emission, we performed

electron injection from inner boundaries corresponding to sunlit antenna and spacecraft

surfaces. We employed given photoelectron flux and energy as parameters and assume

the Maxwellian for its energy distribution function.

The antenna impedance was analyzed in the EM-PIC simulation run for inhomoge-

neous plasma environment with and without photoelectrons. In the absence of photoelec-

trons, the background plasma has considerably small effect on the antenna impedance

part, which has been predicted by conventional kinetic theories for a situation of com-

parable antenna length to the Debye length. In the presence of photoelectrons, however,

large modification of the antenna impedance was observed in a low-frequency range. The

real part increases with decreasing frequency, and the absolute value of the imaginary

part becomes smaller than the free-space antenna reactance, which is not explained by

the conventional theories.

Analysis using an equivalent electric circuit revealed that the impedance modifica-

tion can be explained by introducing a finite resistance connected in parallel with the

antenna capacitance. Theoretically, we formulated the resistance value by considering

the contribution of the electron conduction current flowing into or out of the conductive

antenna bodies when a small perturbation of the body potential is applied at an antenna
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gap. The order of the estimated resistance value shows good agreement with that of

EM-PIC simulation results, and we can confirm that the characteristic modification of

the antenna impedance is caused by the large conducting current carried by the emitted

photoelectrons.

In the present model, due to the unrealistically large antenna surface area, the simu-

lation results of the conductance associated with the plasma conduction current is much

larger than the value observed by the GEOTAIL spacecraft. In the future, in order to

improve the proposed numerical tool, the antenna geometry must be modeled realistically

and with better spatial resolution. Although a number of issues are left for future con-

sideration, we showed the effectiveness of EMSES in its application to antenna analysis

in complex situations that will be encountered when operating electric field antennas in

space plasma environment.





Chapter 5

Analysis on the Receiving
Characteristics of Electric Antennas
for Future Satellite Missions

5.1 Introduction

In Chapters 3 and 4, we have investigated the characteristics of a space-based antenna

for plasma wave measurements by simulating transmitting mode of the antenna. In the

presence of the reciprocity relation between transmitting and receiving antennas, the

delta-gap feeding method used in the previous chapters can be directly applied also to

the analysis of receiving antennas. However, in plasma environment, the reciprocity has

been strictly proved only in limited simple situations in past theories, e.g., for an isotropic

plasma environment with a highly simplified ion-sheath structure [Ishizone et al., 1976]. In

order to extend the analysis of receiving antennas to environment of unknown reciprocity,

we should develop a technique other than the delta-gap feeding method. As one of possible

solutions, we can set up wave fields propagating in the simulation region and directly

simulate the wave reception process by the antenna. For the application of EMSES to the

receiving antennas in general plasma environments, we have developed a plug-in routine

with this technique [Miyake et al., 2008c].

Another important issue we should consider is the adaptation of EMSES to the analysis

of modern electric field instruments, which are developed for future satellite missions and

based on rather complex mechanics and electronics in comparison with a classical dipole-

type antenna. Because it is too difficult to develop a theoretical model for such modern

instruments, the application of the present numerical approach to the instruments is of

primary importance.

In the present study, we focus on an electric field instrument designed based on a

“hockey puck” principle [Pedersen et al., 1998]. The notable feature of the instrument

is the equipment of a guard electrode that can minimize photoelectron effects which are

83
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Figure 5.1: Image of Mercury Magnetospheric Orbiter (MMO). The image is the
courtesy of RISH, Kyoto University.

formidable in electric field measurements particularly in DC and VLF ranges. Also, the

geometry of the instrument is optimized for the DC electric field measurements, the de-

tails of which are presented in Section 5.3.1. As a result, it has been reported in the

CLUSTER satellite mission that this type of the instrument has good performance in

DC and VLF ranges [Gustafsson et al., 2001]. However, there is a remaining problem

for the instrument. The problem comes from the fact that electric field antennas must

share plasma wave measurements as well as the DC electric field measurements. Basic

properties as the effective length and the impedance in plasmas, which are important par-

ticularly for plasma wave observations at high frequencies, are insufficiently known due to

its complex configuration. A strong demand for the better understanding of the charac-

teristics of the instrument arises because a hockey-puck antenna called Mercury Electric

Field In Situ TOol (MEFISTO) is planned to be onboard a future mission to Mercury:

BepiColombo/MMO [Blomberg, 2006], the image of which is shown in Figure 5.1.

In order to understand the characteristics of an instrument designed based on the

hockey puck principle, we performed the EM-PIC analysis on its characteristics in re-

ceiving external plasma waves. In Section 5.2, we present a newly introduced technique

for computer experiments of the plasma wave reception and demonstrate the analysis by

examining the effective length of relatively simple wire antennas. Section 5.3 is devoted

to the detailed description of numerical models which are specially introduced for close

analysis of MEFISTO. We particularly focus on the models for the puck-surface potential
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control and the current biasing, the former of which particularly functions as the guard

electrode. After that, we describe results of the computer experiments in Section 5.4.

First, we describe the plasma environment in the vicinity of MEFISTO as a steady-state

and the effects of the guard electrode and the current biasing on the environment. Finally,

Section 5.4.3 presents results for the effective length and the impedance of MEFISTO in

receiving external plasma waves.

5.2 Computer Experiments of Plasma Wave Recep-

tion with Wire Antennas

5.2.1 Numerical Technique and Model

In this section, we present a numerical technique introduced in EMSES for computer

experiments of plasma wave reception. The analysis using the technique is demonstrated

by examining the effective length of wire antennas which have relatively simple geome-

tries. The application of the technique to the analysis of MEFISTO will be presented in

Section 5.4.

Figure 5.2 shows the model of the current computer experiments. As shown in Fig-

ure 5.2(a), we make plasma waves propagate in the three-dimensional computational space

and receive them by a numerical model of an electric field antenna placed in the center of

the space. The numerical modeling of the antenna conducting bodies used in the present

experiments is basically the same as that described in previous chapters. Presently, a

gap point between the antenna conducting elements becomes an input point of the wave

energy received by the antenna, which is an only different treatment from the previous

chapters.

Setup of plasma waves

To examine the receiving antenna characteristics for both electrostatic and electromag-

netic wave modes, we focus on the Langmuir and whistler modes as high-frequency elec-

tron waves in the present analysis. For simplicity, we assume and setup monochromatic,

spatially uniform, plane waves for both modes at the initial states of the experiments.

For the setup of the Langmuir wave propagating along z-axis, we consider the wave

electric field Ez which is a function of the position z and the time t and has the following

form:

Ez = E0 cos(kz − ωt) = Re[E0 exp j(kz − ωt)], (5.1)

where E0, k, and ω represent the wave amplitude, the wavenumber, and the wave fre-

quency, respectively. By using Gauss’s law jkEz = ρ/ε0 and the continuity equation for

charge jkJz − jωρ = 0, the charge density ρ and the current density Jz can be obtained
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as follows:

ρ = −ε0kE0 sin(kz − ωt) = Re[jε0kE0 exp j(kz − ωt)] (5.2)

Jz = −ε0ωE0 sin(kz − ωt) = Re[jε0ωE0 exp j(kz − ωt)]. (5.3)

Here, k and ω satisfy the dispersion relation of the Langmuir wave, which is written as

ω2 = ω2
pe(1 + 3k2λ2

D), using the electron plasma frequency ωpe and the Debye length λD.

For the setup of an initial wave field in computer experiments, we spatially modulate

the density ne and the first-order (oscillating) velocity ve1,x for background electrons such

that ne and ve1,x yield the above ρ and Jz at t = 0. We assume that the ion density

and first-order velocity are hardly perturbed by the high-frequency wave of the current

interest, i.e., ni = n0 and vi1, x = 0. Then, ne is given as

ne|t=0 = n0 −
1

e
ρ = n0 +

ε0kE0

e
sin kz. (5.4)

In the present experiments, we treat waves with amplitude enough small to be in the

linear regime, i.e., the perturbation of the electron density is small as |ne − n0| ¿ n0.

Thus, ve1,x should be modulated as

ve1,x|t=0 = − 1

n0e
Jz =

ε0ωE0

n0e
sin kz. (5.5)

In summary, we setup the Langmuir wave field according to the following procedures.

1. Choose the wavelength λ (or the wavenumber k) which we want to examine.

2. Compute the wave frequency ω by performing the linear dispersion analysis.

3. Distribute electrons so that the electron density and the bulk velocity are modulated

as given by Eqs. (5.4) and (5.5).

4. Solve Poisson’s equation to obtain an initial profile of the wave electrostatic field.

Thanks to the procedure 4, we have no need to give wave electric field values explicitly

at the initialization.

For the setting of the whistler-mode wave propagating along x-axis, we introduce the

static magnetic field B0 along x-axis and explicitly set wave electromagnetic fields and

electron velocities which are modulated sinusoidally at the initialization of the computer

experiments. Since some helpful literature is present for the field setting for whistler-mode

waves [e.g., Omura, 1985], we don’t describe the details here.
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Figure 5.3: Wire antenna models examined in the computer experiments of the plasma
wave reception. (a) Simple dipole antenna. (b) Linear-probe antenna.

Model of receiving antennas

Unlike the delta-gap feeding technique used in the analysis of a transmitting antenna, we

do not give any electric field at a gap point pinched by antenna conducting elements in

the current analysis. By simply placing the antenna conducting bodies in the propagating

plasma waves, the antenna automatically starts to receive the waves, and received field

energy is observed as a voltage signal at the gap. This situation corresponds to an open-

circuit condition, i.e., an infinite load impedance is connected between the antenna sensing

elements.

For the calculation of the effective length, we observed the wave electric field Ewave

and the electric field Ein induced at the gap as shown in Figure 5.2(b). The input voltage

Vin is then calculated by Ein∆r. Finally, the effective length Leff is obtained as Vin/Ewave

by its definition.

In this section, we examine two antenna models shown in Figure 5.3. Figure 5.3(a)

is a simple dipole antenna that has a single antenna input. Meanwhile, the antenna

model shown in Figure 5.3(b) has an intermediate structure between a wire antenna

and a double probe. In principle, only conducting bodies placed at both ends compose

sensing elements and the center conductor corresponds merely to a supporting boom. In

this thesis, we call this antenna model a “linear-probe antenna” for convenience. For the

linear-probe antenna, we observed induced voltages at two antenna gaps Vin1 and Vin2

shown in Figure 5.3(b) and calculate the total antenna input voltage by Vin = Vin1 − Vin2.
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5.2.2 Analysis of Effective Length

For the validation of the introduced analysis technique, we examine the effective length

by using the antenna models introduced in Section 5.2.1, excluding any sheath and pho-

toelectron effects. For this aim, we utilize the “transparent” antenna treatment once

used in Section 3.3, in which plasma particles can pass through the antenna location. In

the current analysis, both antenna models are assumed to have the tip-to-tip length of

La = 24 measured in the simulation unit system. Meanwhile the wavelength of all plasma

waves used in the current analysis is set to λ ∼ 21.3La and is sufficiently larger than La.

The background plasma is composed of electrons and protons, and λD is set to 0.25La. By

employing the above settings, we perform computer experiments for the Langmuir and

whistler-mode waves. Figures 5.4 and 5.5 show simulation results for the Langmuir-wave

reception for dipole and linear-probe antennas, respectively. The left and right panels

show waveforms of Ewave and Vin, respectively.

As shown in the figures, sinusoidal waveforms are observed as the antenna input volt-

age, which confirms the successful wave reception using the present analysis technique.

As the ratio between amplitudes of Ewave and Vin, the effective lengths are obtained as

Leff = 0.495La and 0.780La for the dipole and linear-probe antennas, respectively. The

result for the dipole antenna, which approximately coincides with the half of the physical

tip-to-tip length, is consistent with conventional knowledge for an electrically short an-

tenna [Gurnett, 1998]. For the linear-probe antenna, though the sensing elements are only

fractional parts at both ends, the resultant Leff is larger than that of the dipole antenna.

Because an ES wave such as the Langmuir wave is well represented by the scalar

potential, we interpret the results of Leff based on a voltmeter principle, which is shown

schematically in Figure 5.6. In the absence of DC charging of the antenna as the present

analysis, the potentials φt1 and φt2 of two antenna terminals represent plasma potentials

at certain positions. Then, the potential difference φt1−φt2 is obtained as Vin. If we know

the separation L between the positions that have unperturbed plasma potentials φt1 and

φt2, we can obtain electric field intensity as E = Vin/L. By definition described in the

section of the simulation model, this distance L is evidently equivalent to the effective

length Leff . Therefore, the potential distribution in the vicinity of the antenna has much

information about the resultant value of Leff .

For a dipole antenna, it is well known that each antenna terminal has the plasma

potential at its own midpoint. Therefore, the effective length coincides with the separation

between the midpoints of two antenna terminals, i.e., the half of the tip-to-tip length. If

we apply the idea to the linear-probe antenna, the effective length should become the

separation between two midpoints of two sensing elements at both ends. For the present

model shown in Figure 5.3(b), the effective length is then predicted as 0.875La from the
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as an input voltage.
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idea. However, the actual numerical result Leff = 0.780La is clearly shorter than the

prediction.

To interpret the difference in detail, we plot a snap shot of the electric potential in

the vicinity of the linear-probe antenna in Figure 5.7. The left and right panels show the

one- and two-dimensional potential profiles. In the one-dimensional profile, the solid and

dashed lines represent the potential along the antenna axis and the background plasma

potential, respectively, the latter of which is unperturbed by the antenna. The dashed
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line has a gradient that is created by the Langmuir wave electric field. By comparison

between the solid and dashed lines, we find that two sensing elements represent the back-

ground plasma potentials at positions nearer boom than their own midpoints. This profile

immediately follows the shorter effective length than the physical separation between the

midpoints of the two sensing elements. The effect is caused by the center boom conduc-

tor, which tends to draw the sensor potentials close to its own potential. Although the

effect has been known empirically by the name of a short-circuit effect in previous liter-

ature [Pedersen et al., 1998], the quantitative evaluation of the effect requires numerical
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approaches as the present computer experiments.

We also examined the effective length for the whistler-mode wave. Although resultant

waveforms are not displayed here, almost the same values for Leff as the Langmuir-wave

case are obtained for both dipole and linear-probe antennas. Figure 5.8 shows the nor-

malized current magnitude distributed along the linear-probe antenna. It is clearly shown

that the current is distributed not only on the sensing elements but also on the boom

conductor. According to classical antenna theories [e.g., Stutzman and Thiele, 1997], the

effective length for EM waves is formulated in terms of the antenna surface current when

the antenna transmits waves. Because the current distribution does not satisfy the reci-

procity generally, it is difficult to formulate the effective length by means of the current

distribution when receiving plasma waves. However, the current distributed on the boom

conductor suggests that the boom conductor also senses the wave electric field, which

leads to the effective length much longer than only the length the sensing elements.

In summary, we successfully introduced an analysis technique which reproduces the

plasma wave reception by an electric antenna. The technique is useful and effective for

the quantitative analysis of the receiving antenna characteristics in more complex plasma

environment. In the following sections, we applied the technique to the studies of the

receiving characteristics of MEFISTO, which has complex functions such as the guard

electrode and the current biasing as well as complex geometries.
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Figure 5.9: Schematic illustration of the MEFISTO sensor [Blomberg et al., 2006].

5.3 Numerical Modeling of MEFISTO

5.3.1 MEFISTO Overview

In Sections 5.3 and 5.4, we investigate the receiving characteristics of MEFISTO in space

plasma environment. MEFISTO is a double-probe electric field instrument designed based

on the “hockey puck” principle as briefly introduced in Section 5.1. The double probe

technique is optimal particularly for electric field measurements in DC and VLF ranges,

in which pre-amplifiers should be as close as possible to the probe (ideally should be

mounted inside the probe). For MEFISTO, in order to support reliable measurements

also for a high-frequency (HF) range while satisfying the above requirement, a sensing

element consists of not only a spherical probe but also a thin conducting wire. The pre-

amplifier is mounted in a “puck” extended by a long boom from a spacecraft body, and

a sensing element is attached outside the puck with the thin wire, which is much shorter

than the boom. The separation of the sensor element from the pre-amplifier housing has

another merit: we can choose a probe surface material optimizing the electrical contact

with the surrounding environment at the same time as choosing a ”puck” surface material

providing an acceptable thermal environment for the pre-amplifier electronics. Although

MEFISTO is made suitable particularly for flight in Mercury orbit, the ”hockey puck”

antenna itself can be a promising instrument also for other future missions. Therefore,

precise and quantitative knowledge about its receiving characteristics is essential.

Figure 5.9 illustrates the MEFISTO sensor configuration for one side [Blomberg et al.,

2006]. In the figure, a spherical probe and a thin sensor wire have the same potential

and form one sensing element. The external surface of a puck consists of two parts

insulated electrically with each other. The potential values of the two surfaces can be set

individually, and a policy about operational determination of the potential values will be

described later. Finally, the conducting surface of the boom functions as a shield of signal
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lines between electronics inside the puck and the spacecraft. The boom surface is then

connected to the spacecraft ground. Since the same system as the figure is extended also

to an opposite side, the entire system has seven independent potentials: φs1 and φs2 for

two sets of the sensing elements, φo1, φo2, φi1, and φi2 for two sets of the outer and inner

puck surfaces, and φb for the bodies of the spacecraft (and the boom). The potential

difference φs1 − φs2 is measured as a final output voltage.

Although MEFISTO is reported to give optimal measurements at low frequencies

[Blomberg et al., 2006], the following problems about the receiving characteristics remain

unresolved for more reliable measurements over a wide-frequency range.

• Basic characteristics such as the impedance and the effective length have not been

sufficiently understood for MEFISTO. This is because MEFISTO has very different

and complex structure from classical electric field instruments such as WANT and

PANT onboard the GEOTAIL spacecraft.

• The quantitative evaluation of the MEFISTO performance in a HF range is insuf-

ficient, because MEFISTO is designed so that the optimal operation is primarily

achieved in low-frequency ranges.

• The behavior and distribution of photoelectrons in the vicinity of the sensor are

rather complex. The independent potential values on the surfaces of the sensor,

puck, and boom can much influence the orbits of the photoelectrons. For MEFISTO,

it is planned to minimize undesirable photoelectron effects by taking advantage of

the operational control of the puck-surface potential. To do this, however, we need

to investigate photoelectron behavior around the sensor in advance.

In order to work on the above issues, we newly introduced numerical models of

MEFISTO in the EMSES code. We particularly focus on the operational control of

the puck-surface potential and the bias current provided to the sensing elements. We

also introduced a numerical model of a finite load impedance, which is necessary for

the evaluation of antenna impedance during the computer experiments of plasma wave

reception.

5.3.2 Operational Control of Puck Surface Potential

The puck surface functions as a guard or an attractor for photoelectrons, the potential of

which should be determined such that undesirable photoelectron effects are minimized.

The inner (boom-side) surface of the puck is called a guard electrode, which is planned to

be kept ∼10 V negative with respect to the spacecraft body in the baseline specification of

MEFISTO. The objective of the guard electrode is to repel photoelectrons emitted from

the spacecraft body (and the boom). On the other hand, the outer (sensor-side) surface
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is called a stub and kept ∼ 5 V positive with respect to the sensing elements. The stub

will attract photoelectrons emitted from the probe and prevent them from escaping from

the sensor elements. Roughly, the magnitude of the above potentials is enough to change

the photoelectron orbits, the typical energy of which is a few eV. However, the optimal

values have not been known sufficiently yet and may change depending on a surrounding

plasma environment. Hence, the above values will be used only as a rough guide.

In EMSES, we simulate the above potential control by forcibly moving charge at every

time step between the puck surfaces and the spacecraft body. Practically, this can be

performed by the extension of the Capacity Matrix method. In the formulation described

hereinafter, all equations are simplified assuming that only one set of a sensor and a puck

exists in the simulation system. Though two sets are actually extended oppositely, the

extension of the following formulation for the actual situation is straightforward. The first

step we should do is to obtain the representations for the modification of the total charge

∆Qe possessed by a conducting element e ∈ {s, o, i, b} in terms of all conducting body

potentials: φs, φo, φi, and φb, where “s”, “o”, “i”, and “b” denote the sensor, the outer

and inner surfaces of the puck, and the spacecraft body, respectively. Here, ∆Qe is given

by
∑

i∈E δρi × ∆r3 using the charge density modification δρi on the grid i, where the set

E consists of all grid points composing the conducting element “e”. Because the relation

between the charge density and the potential on each grid is defined in the Capacity

Matrix method, we can derive ∆Qe (e ∈ {s, o, i, b}) by extending Eq. (2.10) described in

Section 2.3.4 as follows:

1

∆r3




∆Qs

∆Qo

∆Qi

∆Qb


 =




Css Cso Csi Csb

Cos Coo Coi Cob

Cis Cio Cii Cib

Cbs Cbo Cbi Cbb







φs

φo

φi

φb


 −




∑
i∈S

∑
j Cijφ0j∑

i∈O

∑
j Cijφ0j∑

i∈I

∑
j Cijφ0j∑

i∈B

∑
j Cijφ0j


 , (5.6)

where the sets S, O, I, and B for the sensor, the outer and inner surfaces of the puck, and

the spacecraft body, respectively are defined in the same manner as the set E described

above. The summation for the index j appeared in the last term should be performed for

all grid points defined on all conducting bodies. Then, φ0j represents a potential value

on the grid j before performing the surface charge redistribution. We can compute the

elements of the matrix appeared in the first term of the right-hand side of Eq. (5.6) from

the elements Cij of the capacity matrix described in Appendix A. For example, Cso is

given by

Cso =
∑

i∈S

∑

j∈O

Cij. (5.7)

Our goal is to obtain φs, φo, φi, and φb from Eq. (5.6). Because the potential differences

∆φos = φo−φs and ∆φib = φi−φb are given as input parameters of the guard electrode, the

number of unknown potential values reduce to only two. We therefore need two restraint
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conditions in order to solve the simultaneous equations. In the present situation, we use

the charge conservation condition given by

∆Qs = 0, (5.8)

∆Qo + ∆Qi + ∆Qb = 0. (5.9)

Here, the second condition is derived by considering that the charge should be moved

between the spacecraft and the puck (including both inner and outer surfaces). Then, the

final form of the simultaneous equations to be solved are given as follows:
(

D11 D12

D21 D22

) (
φs

φb

)
= −

(
E11 E12

E21 E22

) (
∆φos

∆φib

)
+

( ∑
i∈S

∑
j Cijφ0j∑

i∈O∪I∪B

∑
j Cijφ0j

)
, (5.10)

where

D11 = Css + Cso,

D12 = Csb + Csi,

D21 = Cos + Coo + Cis + Cio + Cbs + Cbo,

D22 = Cob + Coi + Cib + Cii + Cbb + Cbi,

E11 = Cso,

E12 = Csi,

E21 = Coo + Cio + Cbo,

E22 = Coi + Cii + Cbi. (5.11)

By solving Eq. (5.10) for φs and φb, we can obtain potential values for all conducting

elements, which satisfy the intended puck-surface potentials with regard to the probe and

the spacecraft body. Once we obtain the potential values, we can immediately modify the

associated electrostatic field component by the method described in Section 2.3.4.

5.3.3 Modeling of Sensor Current Biasing

A bias current generator of MEFISTO provides the sensing elements with a constant

current to keep the sensor potential close to a local plasma potential. An original purpose

of keeping the sensor potential at the plasma potential is that the spacecraft potential can

be monitored as the difference between an averaged potential of the two sensors and that

of the spacecraft body [Ishisaka, 2000], which is basically different operation from the

electric field measurement. Because the current biasing clearly affects the photoelectron

distribution around the sensor, we need to investigate its effects on antenna receiving

characteristics.

Generally, the necessary magnitude of the bias current in order to keep the sensor

potential at the plasma potential is difficult to know precisely in space, because it de-

pends on conditions of the photoelectron emission and the surrounding plasma. In actual
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Figure 5.10: Schematic diagram of the bias current generator [Åhlén and Ishisaka,
private communication].

missions, a comfortable value of the bias current is determined by once sweeping the cur-

rent magnitude monitoring the sensor–spacecraft voltage. From a principle of an emissive

probe which is a kind of the Langmuir probe, the slope of the voltage–current character-

istic curve would have a sharp change at the sensor potential close to the local plasma

potential [Hershkowitz, 1989]. By this trial, one can estimate the optimal magnitude for

the bias current.

For MEFISTO, the bias current is produced actually by a positive feedback circuit, a

simplified diagram of which is shown in Figure 5.10. In the circuit, the gain A is adjust as

close to 1 as possible, while assuring that A never exceeds 1 in order to avoid instabilities.

As a result, the current generator outputs the constant bias current Ibias = Ubias/Rbias,

where Ubias and Rbias are the voltage source and the resistance, respectively, used in the

bias current circuit. Another purpose of using the feedback circuit is to make the sensor

input impedance as large as possible, which will be mentioned later.

In order to model the bias current in EMSES, we constantly move the charge Ibias∆t

at every time step between the sensor and the spacecraft body, where Ibias is the intended

bias current value given as an input parameter. We can realize this treatment by slightly

modifying Eqs. (5.8) and (5.9) as follows:

∆Qs + Ibias∆t = 0 (5.12)

∆Qo + ∆Qi + ∆Qb − Ibias∆t = 0. (5.13)

The adjustment of the bias current value to keep the sensor at the background plasma

potential in computational experiments is much easier than in actual missions in space,

because the complete potential profile in the vicinity of the spacecraft is always available

in the computer experiments. However, in order to reproduce actual operations in space,

we also conducted computer experiments for various magnitude of the bias current. The

experiments will be described in Section 5.4.2.
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5.3.4 Modeling of Finite Load Impedance

The finite load impedance ZL is responsible for the attenuation and the phase shift of the

input voltage Vin in combination with the impedance of the sensor itself. For MEFISTO,

ZL can be effectively regarded as a resistance RL and a capacitance CL connected in

parallel. In the present baseline assumption, CL is about 4 pF, which is in the same order

as the free-space capacitance of the sensor itself [Åhlén, private communication; Olson,

2006]. The value of RL depends on a frequency range of interest. At low-frequencies, a

major factor determining RL is the feedback circuit shown in Figure 5.10. The feedback

circuit has an input impedance Rbias/(1−A). Because of the feedback circuit with A ∼ 1,

RL at low-frequencies becomes so large (∼100 GΩ [Åhlén, private communication]), which

assures almost an ideal, open-circuit measurement. For higher-frequencies, however, RL

decreases gradually with the increasing frequency and finally reduced to the order of MΩ

at ∼100 MHz.

In the present analysis, assuming that ZL is composed of RL and CL connected in

parallel, we introduced a numerical model which enables us to set arbitrary values for RL

and CL. Actually, the model is coded in the update of the electric field in EMSES. When

the input voltage Vin is applied to ZL, the following current IL should flow to the load.

IL =
Vin

ZL

=
Vin

RL

+ CL
dVin

dt
=

Ein∆r

RL

+ CL∆r
dEin

dt
, (5.14)

where we used Vin = Ein∆r. Considering that the current (density) should be defined at

the half-integer time step while the electric field at the integer time step, the above is

rewritten as

I
n+1/2
L =

∆r

RL

En+1
in + En

in

2
+

CL∆r

∆t
(En+1

in − En
in), (5.15)

where we took the average of En+1
in and En

in to obtain Ein at the half-integer time step. The

above current is added as the current density JL = IL/∆r2 to the equation for the update

of the electric field at the grid point between the sensor wire and the boom. After some

arrangement, we finally obtain a following form for the update equation of the electric

field:

En+1 =
1 − ∆t

2ε0RL∆r
+ CL

ε0∆r

1 + ∆t
2ε0RL∆r

+ CL

ε0∆r

En +
c2∆t

1 + ∆t
2ε0RL∆r

+ CL

ε0∆r

∇× Bn+ 1
2

− ∆t

ε0

(
1 + ∆t

2ε0RL∆r
+ CL

ε0∆r

)Jn+ 1
2 . (5.16)

By using the above instead of the normal update equation only at antenna input points,

we can include an effect of the finite load impedance in the computer experiments.
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Figure 5.11: Configuration and dimensions of the numerical model of MEFISTO used
in the present computer experiments. Note that the configuration and dimensions are
modified from the original ones for tractability in the computer experiments. A tip-to-
tip length La is set to 52∆r.

5.4 Results of Computer Experiments

5.4.1 Experimental Setup and Parameters

The setup of the computer experiments for the receiving characteristics of MEFISTO

is basically the same as that shown in Figure 5.2. As heretofore, we place the antenna

in the center of the computational space, which is filled with background plasmas con-

sisting of electrons and ions. The model of the antenna is replaced with the MEFISTO

model that includes the treatments of the guard electrode (puck-surface potential control)

and the current biasing newly introduced in the previous section. We also simulate the

photoemission by the same method as presented in Section 4.2.

The detailed structure of the MEFISTO model is shown in Figure 5.11. The model

includes spacecraft and two puck bodies. Since we have to describe the antenna geometry

with a limited number of rectangular grid elements, some parts of the actual fine structure

are difficult to model. Our baseline assumption is that the spacecraft body and the

pucks have a rectangular shape, which is not realistic particularly for the spacecraft.

The sensor wires and the boom cylinders are represented electrically by a single column

of the computational grid points. We set the electric field values defined between the

grid points to zero in order to simulate the perfect conducting behavior. A problem for

this fashion of the conducting wire modeling is ambiguity of the thickness of the wire.
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In previous studies, a wire modeled by the method is reported to have an equivalent

radius of exp(−2)∆r ∼ 0.14∆r [e.g., Uno, 1998]. In order to model the real radius

0.144 mm of the sensor wire according to the rule, we must set ∆r = 1 mm, which is too

small to realize within a presently available computational resource. We therefore set ∆r

comparable to the shielding length for photoelectrons, i.e., typically ∼ 102 mm, which is

the smallest scale of the dynamics of charged particles around the antenna. As a trade-

off, the effective thickness of the wire parts becomes unrealistically large in the present

experiments. Moreover, the real radius of a spherical probe, i.e., 40 mm is also smaller

than ∆r, and thus we cannot model the spherical structure of the probe in the present

model. We, therefore, will mainly discuss the effects of surrounding plasma environments

on the resultant sensor characteristics rather than their absolute values.

For the simulation of the photoelectron emission and particle absorption by conducting

bodies, we also need to define solid surfaces that are sensed by superparticles. For the

spacecraft and puck bodies, the solid surfaces accord with mesh surfaces on which perfect

conducting conditions for the field components are employed. For the sensor and boom

wires, however, we cannot setup solid surfaces in accordance with mesh surfaces, because

the wire is defined electrically by only a single column of the computational grid points.

Thus, we must determine fictitious solid surfaces independent of the conducting body

assignment on grid points. In Figure 5.11, the setup of the fictitious solid surfaces is also

illustrated. We presently used 0.1∆r for the thickness of the wire. At the end of the

sensor wire we attach a cubic body with the length ∆r on each side, which corresponds

to the spherical probe.

There are two important parameters newly introduced in the current analysis, i.e., the

puck-surface potential setting and the magnitude of the bias current. In the following

analysis, we basically compare three cases with and without the puck-surface potential

(PC) control and the bias current (BC): (a) PC: on, BC: on, (b) PC: off, BC: on, and (c)

PC: on, BC: off. We set an inner-puck-surface potential to −8kBTph/e and outer-puck-

surface potential to +2kBTph/e with respect to the boom (and spacecraft) potential and

the sensor potential, respectively. For BC, we perform several computer experiments using

different current magnitudes and finally choose a magnitude that gives an optimal sensor

potential close to the background plasma potential. In the present analysis, we treat a

symmetric photoelectron case to concentrate on the fundamental behavior of MEFISTO.

In the symmetric case, the sun-satellite direction (set to x-axis) is perpendicular to the

sensor direction. In the case, photoelectrons are expected to distribute in a symmetric

manner, which is considered a well-behaved situation for the sensor.

Except for the puck-surface potentials and the magnitude of the bias current, most

of parameters used in the present computer experiments are identical to those listed in

Table 4.1. We set the energy and flux ratios between photoelectrons and plasma electrons
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as φph/φe = 1/4 and Γph/Γe = 50, respectively. On the other hand, we extend the system

length along the z-axis to 512∆r in order to treat long wavelength for external plasma

waves.

5.4.2 Steady State of the Plasma Environment

We performed ES simulations by using the numerical models for MEFISTO introduced

in the previous section. In the present section, we first present results on plasma envi-

ronments obtained as a steady state in the presence of the photoelectron emission, and

also focus on the contribution of the puck-surface potential control and the current bias-

ing to the surrounding plasma distribution. In order to obtain the steady state for the

environment, we include no external plasma waves in the current computer experiments.

Electric potential

Figure 5.12 plots electric potentials of respective conducting elements of MEFISTO at

a steady state with the puck-surface potential control, which is measured as a one-

dimensional profile along the sensor axis. The positions of the conducting elements of

MEFISTO are indicated in the figure. We choose the background plasma potential as

a reference value. Here, we show three experimental results with different bias current

magnitudes. The solid line represents the profile for a case of Ibias = −0.83Iph0, where

Iph0 represents the photoemission current from one sensor element with the background

plasma potential. For the sensor and the outer puck surface, we also plot their potentials

in cases of Ibias = −0.41Iph0 and 0 by the dash-dotted and dashed lines, respectively.

The profile shows that respective conducting elements have correctly different poten-

tials, which is a particular feature of MEFISTO. The boom has positive potential of

several kBTph/e, which is also the potential of the spacecraft body although not displayed

in the figure. Because the boom and the spacecraft body are almost in a floating condi-

tion, the potential is a result of the balance between the dominant photoemission current

and the small incident plasma currents. The potential of the inner puck surface is exactly

8kBTph/e lower than the boom potential, which is intended in the computer experiments.

The potentials of the sensor and the outer puck surface are clearly much influenced by

the current bias magnitude. In the zero bias current case and still in the Ibias = −0.41Iph0

case, the sensor potential is positive for the same reason as for the spacecraft body. On

the other hand, for Ibias = −0.83Iph0, the sensor potential is 0.052kBTph/e. In the case,

the bias current successfully draws the sensor potential close to the background plasma

potential. The potential of the outer puck surface is 2kBTph/e higher than the sensor

potential for all cases as is intended.

Next, in order to exhibit an effect of the bias current, we plot the voltage–current
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Figure 5.12: One-dimensional profile of the electric potential along the sensor axis.
The horizontal axis represents the distance d from the interface between the inner and
outer puck surfaces, which is normalized to the Debye length λD for the background
plasma. The solid, dash-dotted, and dashed lines correspond to cases of (a) Ibias =
−0.83Iph0, (b) Ibias = −0.41Iph0, and (c) Ibias = 0, respectively.

characteristic curve in Figure 5.13, which is obtained in the computer experiment with

the puck-surface potential control. From the figure, it is confirmed that the optimum

magnitude for Ibias is ∼−0.83Iph0 as is also shown in Figure 5.13. In order to form an

equilibrium sensor potential at the background plasma potential, the sensor should satisfy

a current balance condition given as

Inet = Iph0 + Ibias − Ie0 + Ii0 = 0, (5.17)

where Ie0 and Ii0 represent the currents of background plasma electrons and ions, respec-

tively, when the sensor has the plasma potential. From Eq. (5.17), we calculated the

optimum bias current analytically as

Ibias = −Iph0 + Ie0 − Ii0

= Iph0

[
−1 +

SΓe

SphΓph

(
1 −

√
meTi

miTe

)]

∼ −0.81Iph0. (5.18)

In calculating the last term, we used the present parameters SΓe/SphΓph = 0.191 and√
(meTi/miTe) = 2.33× 10−2. In the present case, the order of the analytical value agrees
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Figure 5.13: The voltage–current characteristic curve obtained in the computer simu-
lations by changing the magnitude of the bias current. The zero potential corresponds
to the background plasma potential.

with that of the numerical result. The small difference between the numerical and an-

alytical results may be due to the presence of other conducting bodies near the sensor.

Generally, in the presence of multiple conducting bodies emitting photoelectrons, the sim-

ple analytical expression arises some error because the body coupling through the emitted

photoelectron currents is not taken into consideration in the theoretical estimation.

The voltage–current characteristic shown in Figure 5.13 can be understood in the

analogy with an emissive (electron-emitting) probe, which is a sort of the Langmuir probes

and used for a simple measurement of the plasma potential [Hershkowitz, 1989]. For a

laboratory emissive probe, the probe body is heated to extract electrons from its surface,

while the photoelectron emission plays an equivalent role in space. Another necessary

condition for the emissive probe is that the temperature of emitted electrons should be

much smaller than that of background electrons, which is also satisfied in the present

photoemitting case. Thus, the present situation well reproduces a situation of the emissive

probe. The emissive probe has advantage in precisely determining the plasma potential

in comparison with a normal (non-electron-emitting) Langmuir probe.

Neglecting a space-charge effect, the photoelectron current Iph can be written as

Iph(φs) =





Iph0 g(φs) exp

(
−eφs

2kBTph

)
for φs ≥ 0,

Iph0 for φs ≤ 0,
(5.19)

where the function g(φs) accounts for orbital momentum and depends on the dimensions

of the photoelectron sheath [Smith et al., 1979]. In the same manner, the collected
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background electron current is given as

Ie(φs) =





Ie0 g(φs) for φs ≥ 0,

Ie0 exp

(
eφs

kBTe

)
for φs ≤ 0.

(5.20)

Since the collected ion saturation current is much smaller than the photoelectron current,

the contribution of the ion current is usually neglected for the emissive probe unlike the

normal Langmuir probe.

By taking the present parameter settings into consideration, the above emitted and

collected currents form the total voltage–current relation shown in Figure 5.14(a), where

we assume that g(φs) ≈
√

1 + eφs/kBTph,e. The resultant Ibias curve indicates that the

characteristic curve of the photoelectron current mostly determines the behavior of Ibias

resulting from Iph0 À Ie0. Then, an inflection of the photoelectron current curve as

φs passes through the plasma potential is effectively used for the determination of the

plasma potential. It has been reported that the inflection in the total current is actually

observed within a sensor potential range 0 –φph [Lieberman and Lichtenberg, 1994], where

φph represents the kinetic energy of a photoelectron. This enables us to measure the

plasma potential to an accuracy of the order of φph.

Although the inflection of the curve is also seen in the numerical result shown in Fig-

ure 5.13, the present numerical result shows more moderate inflection than that shown in

Figure 5.14(a). Furthermore, the numerical and theoretical curves show much different

behavior in a range of the high sensor potential. This may be caused in part by the pho-

toelectron current coupling among the sensor, the puck, and the boom. To see this effect,

we consider the external current Iext, which is generated by photoelectrons emitted from

conducting bodies except the sensor and flowing into the sensor element. For simplicity,

we use the same formulation as the background plasma electrons for Iext, i.e., a formula

obtained by replacing the subscript “e” in Eq. (5.20) by “ext”. We here use φext = φph for

simplicity. On the other hand, Iext0 is practically difficult to estimate with an analytical

approach, because the complex configuration of conducting elements directly influences

it. As one example, we plot theoretical curves for Iext0 = (1/6)Iph0 in Figure 5.14(b). It

is seen that Iext can moderate the inflection near φs = 0 and the gradient for φs > 0 of

the curve, which is consistent with the tendency in the numerical result.

Even when we introduce the contribution of Iext, the floating potential (i.e., the po-

tential at which Ibias = 0) read from the theoretical curve is smaller than that of the

numerical result. This might be firstly caused by the erroneous assumption for the mag-

nitude of Iext0. Another plausible factor for the difference is the inappropriate formulation

for Iph given by Eq. (5.19). Eq. (5.19) indicates that Iph decreases exponentially with an

increasing sensor potential, which indicates most of emitted photoelectrons are trapped

by and cannot escape from the positively charged sensor. However, some fraction of emit-
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Figure 5.14: The voltage–current characteristic curves obtained theoretically. (a) We
only consider the contribution of the photoelectron current Iph and the background
electron current Ie. (b) We add the contribution of Iext, which is generated by photo-
electrons emitted from conducting bodies except the sensor and flowing into the sensor
element. We use φext = φph and Iext0 = (1/6)Iph0 for the plot.

ted photoelectrons should be constantly collected by the outer-puck surface, because the

outer-puck surface always has a higher potential than the sensor potential. Since pho-

toelectrons collected by the outer-puck surface are effectively counted as being emitted

from the sensor, Iph cannot become zero for a considerably high sensor potential. This

effect is not considered in Eq. (5.19). Analytical evaluation of the above factors is often

intractable for the situations of the complex sensor and spacecraft system. Therefore,
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the quantitative investigation including the complicating factors should be conducted by

using numerical methods as the present approach.

In this section, we focused on the steady state of the electric potential on the conduct-

ing elements of MEFISTO. Overall, it is confirmed through the analysis that the newly

introduced numerical models can change the potential distribution on MEFISTO as we

intended.

Photoelectron distribution

Our next interest is on the photoelectron distribution around the sensor and the space-

craft. Figure 5.15 shows contour maps of electron density (including photo- and back-

ground electrons) at the steady state in three cases (a) PC: on, BC: on, (b) PC: off, BC:

on, and (c) PC: on, BC: off. The figures represent density profiles focused on the upper

half of MEFISTO measured on the x–z plane that cuts the center of the spacecraft.

We confirmed that electron dense regions basically locate on the right side of each

conducting body, which is obvious because photoelectrons are emitted rightward (+x

direction) from the sunlit surfaces. The distribution of the photoelectron clouds, however,

is much different between the cases, particularly in the vicinity of the sensor and the puck

surfaces. In comparison between cases (a) and (b), we can see effects of the puck-surface

potential control on the electron densities around the outer and inner puck surfaces. In

case (a) the photoelectron cloud is created mainly on the outer puck surface, while in case

(b) the cloud shifts its position onto the inner puck surface. As a result, the cloud on the

puck coalesces with that surrounding the boom in case (b). Next, in comparison between

cases (a) and (c), an effect of the current biasing is also remarkable in the density profile

in the vicinity of the outer puck surface and the sensor. The electron density is clearly

reduced by the current biasing. The difference between the three cases is also seen in the

electron density around the boom. For cases (a) and (c), the electron density evidently

decreases being close to the puck. This is understood as an effect of the negatively biased

potential of the inner puck with respect to the boom. On the other hand, in case (b), the

electron density around the boom becomes higher as being close to the puck, which may

be due to photoelectrons coming from the inner puck surface.

Figure 5.16 shows the flow of photoelectrons around the upper half of MEFISTO and

the spacecraft body at the steady state of the environment. The vector plots show the

local photoelectron flux, i.e., Jph/(−e), where Jph is the photoelectron current density,

and the contour map shows the distribution of the electric potential. The profiles of

the photoelectron flow show much different signatures around the sensor and the puck

between the three cases, while no substantial difference near the spacecraft body.

Around the puck surface in case (a), the photoelectron flow clearly changes its direc-

tion from downward to upward at z/λD = 1.7 which approximately corresponds to the
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Figure 5.15: Two-dimensional profiles of the electron density on x–z plane that
includes the MEFISTO antenna and cuts the center of the spacecraft. The upper-right,
lower-left, and lower-right panels correspond to cases of (a) PC: on, BC: on, (b) PC:
off, BC: on, and (c) PC: on, BC: off, respectively.

z-coordinate of the interface between the inner and outer puck surfaces. From the back-

ground potential profile, it is seen that photoelectrons accelerated by an intense electric

field (potential difference) at the interface create the flow pointing upward even around

the sensor. Meanwhile, some portion of photoelectrons emitted from the inner puck is

attracted to the high potential region created by the boom conductor. As a result, the

photoelectron flow is separated above and below the interface between the outer and

inner puck surfaces. We can also see that photoelectron cloud observed in Figure 5.15
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Figure 5.16: Vector plots of the photoelectron flux on x–z plane that cuts the center
of the spacecraft. Background contour maps show the electric potential profiles. The
upper-right, lower-left, and lower-right panels correspond to cases (a) PC: on, BC: on,
(b) PC: off, BC: on, and (c) PC: on, BC: off, respectively.

corresponds to the positive potential region created around the surface of the outer puck.

For case (b), photoelectrons should be accelerated downward at the interface between

the inner and outer puck surfaces. Further, a part of the accelerated photoelectrons

appears to be attracted by the positively charged boom conductor. Thus, a substantial
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amount of photoelectrons emitted from the puck surface flows onto the boom conductor,

which leads to the coalesced photoelectron cloud observed in Figure 5.15.

Finally, the prominent feature seen in case (c) is a considerably high potential region

around the outer puck surface and the sensor. This region attracts photoelectrons emitted

from the inner puck surfaces as well as holding photoelectrons emitted from the sensor

and the outer puck themselves. It follows that a large photoelectron cloud is created

around the sensor in compared with cases (a) and (b), as seen in Figure 5.15.

In summary, the puck-surface potential control can inhibit the mixture of photoelec-

trons emitted from the sensor and the outer puck surface with photoelectrons emitted from

the inner puck surface, boom, and spacecraft body, particularly in a case of combined use

with the current biasing. Since the sensor and the outer puck can be thought as of one

sensing element, the result suggests that the sensor–spacecraft (or sensor–boom) electric

coupling through the photoelectron current can be reduced by the potential control. This

function will be more important in a situation that the sensor is directed sunward, be-

cause it is believed that an erroneous electric field measurement in the situation is mainly

caused by an asymmetric condition of the photoemission around the spacecraft surface

and the sensor–spacecraft electric coupling through the photoelectrons [Pedersen et al.,

1998].

5.4.3 Wave Receiving Characteristics of MEFISTO

Electric properties of antennas based on the hockey puck principle have been numerically

studied in a few previous works, e.g., Béghin et al. [2005] for CLUSTER’s electric antennas

and Olson, [2006] for MEFISTO. In the works, however, effects of photoelectrons and the

distinctive functions as the puck-surface potential control and the current biasing have

been completely neglected in the analyses. In the present section, we examine the effective

length and the antenna impedance as receiving characteristics of MEFISTO fully including

the above complicating factors.

Effective length

As was performed in Section 5.2, we setup the Langmuir waves propagating along z-axis

in the computational space and receive them numerically by MEFISTO. In the current

analysis, we set the wavelength λ = 512∆r ∼ 9.85La. In the present section, we employ

an open-circuit condition for the antenna input points in order to focus solely on the

effective length. We performed three computer experiments for the cases (a) PC: on, BC:

on, (b) PC: off, BC: on, and (c) PC: on, BC: off. For the current biasing, we use the

current magnitude, which has been found in the preceding section to realize an optimal

sensor potential close to the background plasma potential.
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Figure 5.17: (Upper-left) Raw electric field of the Langmuir wave, which is measured
at a certain locus in the background plasma and on the wavefront cutting the center
of the spacecraft. (Upper-right, lower-left, and lower-right) Waveforms observed by
MEFISTO as the input voltages in cases of (a) PC: on, BC: on, (b) PC: off, BC: on,
and (c) PC: on, BC: off, respectively.

Figure 5.17 shows waveforms of the wave electric field and the antenna input voltage

(the potential difference between the two sensor elements) observed in the Langmuir wave

reception. It should be noted that since the input voltage should be zero if any external

waves are not present, the plotted waveforms in the figure represent only oscillating com-

ponents purely caused by the incident plasma waves. The results clearly show that the

observed waveforms of the antenna input voltages are almost the same in all cases, which

indicates the effective length is hardly influenced by the puck surface potential control

and the current biasing. From the comparison of the amplitude of Vin with Ewave, we

obtain the effective length Leff ∼ 0.80La for all cases. The resultant value is smaller than
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Figure 5.18: Snap shots of one-dimensional profiles of electric potential measured
along the sensor axis (shown in the solid line), and in the background plasma (shown
in the dashed line). Note that the profiles include only potentials of the sensors at
both ends and the boom (and the spacecraft), and the puck surface potentials are not
displayed.

the separation between two midpoints of the sensor elements, i.e., 0.92La for the present

numerical model. This decrement may be caused by the short-circuit effect discussed in

Section 5.2.

Although the resulting effective lengths are almost the same in the three cases, the

potential profiles around MEFISTO are expected to be different among these cases. In

Figure 5.18, we show snap shots of one-dimensional potential profiles in the vicinity of

MEFISTO plotted in the same way as Figure 5.7. Note that the profiles include only

potentials of the sensors at both ends and the boom (and the spacecraft), and the puck

surface potentials are not displayed. In the figure, the cases (a) and (b) show the similar

signature. This immediately indicates that the puck surface potential control has small
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Figure 5.19: Static and oscillating components of electric potential structure measured
along the sensor axis (shown in the solid line), and in the background plasma (shown
in the dashed line).
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influence on the potential values of the sensor elements. On the other hand, since the

current biasing is disabled in the case (c), sensor potentials at both sides are positively

biased from their local plasma potentials due to the photoemission. What is interesting in

the profile is that the extent of the potential increments from their local plasma potentials

is different between the two sensor elements. As shown in the profile, the potential

increment is 2δφ larger for the left sensor element than for the right. Here δφ is the

potential difference between a local potential value for the dash-dotted line defined in the

figure and each sensor potential.

The snap shots shown in Figure 5.18 include both static and oscillating components

of the potential structure. Since the external electric field to be received by MEFISTO

is a wave (oscillating) field in the present situation, the results of Leff can be thought

as being associated with only the oscillating component of the potential structure. In

order to understand the potential profiles more clearly, we plot the static and oscillating

components of the potential structure independently in Figure 5.19. To extract the static

components from the total potential profile, we took temporal averages of the potential

profiles over one period of the Langmuir wave. The snap shots of the oscillating com-

ponents are then obtained by subtracting the static components from the total potential

profiles. Figure 5.19 indicates that the difference of the total potential profiles observed

in Figure 5.18 entirely comes from the static components, while the oscillating compo-

nents exhibit little difference between the three cases. For the oscillating components in

all cases, the sensor potentials represent the background plasma potential of positions

nearer the spacecraft than their own midpoints. This tendency is basically the same as

that seen for the linear-probe antenna described in Section 5.2. As a result, the resultant

effective lengths are identical for all cases. We can also understand in Figure 5.19(c) that

δφ observed in Figure 5.18(c) comes from the oscillating component, while ∆φ from the

static component. We finally note that the static potentials for the boom conductor are

different between the three cases and the highest for the case (a). This is caused by the

negative biasing of the inner puck surface potential and the sensor potential with respect

to the boom potential, both of which lead to the accumulation of the positive charge at

the boom. The different static potentials for the boom conductor, however, have little

influence on the resultant effective length of the sensor.

Antenna impedance

Next, we focus on the MEFISTO antenna impedance. For this aim, we performed com-

puter experiments including a finite load impedance, the modeling of which has been

introduced in Section 5.3.4. When the load impedance ZL is connected at the antenna

input, the relation between the output voltage Vout and Ewave is given by Eq. (1.2). On

the other hand, we have already obtained the open-circuit voltages in the preceding sec-
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Figure 5.20: Waveforms of observed voltage signals by MEFISTO with finite and
infinite load impedances in the case of (a) PC: on, BC: on. The solid, dashed, and dotted
lines correspond to cases of ZL = ZL1, ZL2, and open-circuit conditions, respectively
(also see text for the details of ZL1 and ZL2).

tion, which are given by Vin = LeffEwave. By combining it with Eq. (1.2), the antenna

impedance Za is given by

Za =

(
Ṽin

Ṽout

− 1

)
ZL =

(
|Vin|
|Vout|

e−jθs − 1

)
ZL, (5.21)

where Ṽin and Ṽout give the phasor representations of the signals Vin and Vout, and θs

represents the phase shift of Vout with respect to Vin. Namely, we can obtain Za by

comparing waveforms observed in cases of the open-circuit and finite load impedance

conditions.

As briefly introduced in Section 5.3.4, in actual missions ZL is effectively composed of

the resistance RL ∼ 101 MΩ and the capacitance CL ∼ 100 pF connected in parallel. In

the frequency range of ω = 101–102 kHz in which electron plasma waves are frequently

observed, the above setting gives |1/ωRLCL| ∼ 10−1–100. In the computer experiments,

on the other hand, the free-space capacitance Ca of the numerical antenna model is

much larger than the actual MEFISTO antenna due to some unrealistic settings of its

dimensions, and |1/ωpeCa| is about 104 Ω, where ωpe is the electron plasma frequency.

In the present analysis, as a first setting of parameters, we choose values of the load

impedance ZL1 composed of RL = 5 × 104 Ω and |1/ωpeCL| = 5 × 104 Ω connected in

parallel. In addition to the above setting, in order to exhibit the attenuation due to
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Table 5.1: Numerical results of the MEFISTO antenna impedance in cases of (a) PC:
on, BC: on, (b) PC: off, BC: on, and (c) PC: on, BC: off. Based on the lessons obtained
in Chapter 4, we assume a circuit form consisting of a resistance R and a capacitance
C connected in parallel, i.e., Za = R‖(1/jωLC). We then listed the calculated values
for R and 1/ωLC.

Case R (Ω) 1/ωLC (Ω)
(a) PC: on, BC: on 1.66 × 104 5.40 × 103

(b) PC: off, BC: on 1.56 × 104 5.44 × 103

(c) PC: on, BC: off 1.62 × 104 5.38 × 103

the finite load impedance more clearly, we also perform computer experiments using

ZL2 = RL = 5 × 103 Ω (pure resistance).

By using the above two settings of ZL, we performed the computer experiments of the

Langmuir wave reception for the cases (a), (b), and (c) which have been analyzed also in

the previous sections. We plot an observed waveform of the antenna input voltage for the

case (a) in Figure 5.20. The received waveforms with the finite load impedances (the solid

and dashed lines) clearly show the attenuation of the signal amplitude compared with that

in the open-circuit condition. Moreover, for the dashed line, we can also confirm the phase

shift of the received waveform. The numerical results for the cases (b) and (c) are almost

the same as the case (a), although their waveforms are not displayed. The result suggests

that the puck surface potential control and the current biasing have a small effect also on

the antenna impedance as well as the effective length.

From the resultant waveforms, we obtained the antenna impedance using Eq. (5.21)

at the Langmuir wave frequency ωL. In Table 5.1, we list the impedance results for the

cases (a)–(c) calculated by comparing the waveforms in the ZL = ZL2 and open-circuit

conditions.

The numerical results show only slight difference between the three cases, i.e., the

maximum difference is ∼ 6 % for R and ∼ 1 % for 1/ωLC. It should be noted that we

can calculate the impedance also using the waveforms in the ZL = ZL1 and open-circuit

conditions, and the calculated impedance value should coincide with the values listed in

Table 5.1. For example, in the case (a), the impedance value calculated using the waveform

in ZL = ZL1 instead of that in ZL = ZL2 is R‖(1/jωLC) = (1.9× 104 Ω)‖(−5.4× 103j Ω).

From the fact that a certain level (∼10 %) of the difference is seen particularly in the R

value compared with the value listed in Table 5.1, it is considered that the error level of

∼ 10 % might be included in the resultant values listed in Table 5.1. This indicates the

difficulty to conclude that the slight difference observed between the cases (a)–(c) is surely

caused by effects of the potential control for the puck surfaces or the current biasing. In

fact, the results suggest that both puck surface potential control and current biasing do

not have, at least, large influence on the antenna impedance.
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Recalling the electron density profile around the sensor element shown in Figure 5.15,

the puck surface potential control mainly influences the electron density in the vicinity of

the puck surface and a region that is slightly apart from the sensor position. On the other

hand, the antenna conductance (and the dynamic resistance RL as its inverse) strongly

depends on electrons directly contacting to the sensor surface as discussed in the preceding

chapter. Therefore, an effect of the puck surface potential control may be too small to

observe as the change of the antenna impedance for the present parameter setting of the

puck surface potential.

Meanwhile, the result that the current biasing also has little effect on the impedance

is more puzzling, which is inconsistent with a theoretical prediction as discussed below.

By considering only contribution of the dominant photoelectron current, the analytical

expression for the dynamic resistance RL is given as

RL =

[
Sphe

2Γph

kBTph

exp

(
− φs

φph

)]−1

, (5.22)

as discussed in Chapter 4. The expression indicates that the resistance has exponential de-

pendence with respect to the sensor potential, which implies that the antenna impedance

should be sensitive to the current biasing operation. A reason for the disagreement be-

tween the numerical result and the theoretical prediction can be explained by referring

the voltage–current characteristic curves shown in Figures 5.13 and 5.14. In principle, the

antenna conductance 1/RL corresponds to the local gradient of the voltage–current curve

at a given DC sensor potential. For the theoretical curve shown in Figure 5.14(a), the

curve evidently has higher gradient at φs = 0 than at the floating potential φs ∼ 9kBTph/e

corresponding to Ibias = 0. This trend of the dynamic resistance with respect to φs is

consistent with a result led by Eq. (5.22). However, in the actual voltage–current curve

shown in Figure 5.13, its inflection at φs = 0 is moderated in comparison with that shown

in Figure 5.14(a), which reduces the local gradient at φs = 0 to a value similar to the

gradient at the floating potential. It follows that the resultant resistance values are almost

the same for both cases of the sensor with the background plasma potential (BC: on) and

the floating potential (BC: off).

5.5 Summary

This chapter presents a new technique for the direct analysis of the plasma-wave reception

by the electric antenna and numerical modeling of a modern electric field instrument

designed based on the hockey puck principle. The simulation technique of the plasma-wave

reception enables us to reproduce more realistic situations of the plasma-wave observation

with scientific spacecraft. Once the method is developed, the analysis on various types of
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antennas becomes possible only by replacing the numerical model of the antenna placed

in the center of the computational space.

As one of the antenna models for specific satellite missions, we have focused on

MEFISTO, which is planned to be onboard BepiColombo/MMO to Mercury. Special

attention has been paid for the modeling of the operational control of the puck surface as

the photoelectron guard and the current biasing. Although these mechanisms are origi-

nally for optimal measurements of a DC electric field component, the close modeling of

them is essential also for the analysis of the wave receiving characteristics of MEFISTO.

The mechanisms are introduced as new treatments of the accumulated charge on the

MEFISTO surfaces and the electrostatic component associated with the surface charge.

We have derived necessary conditions for the surface charge by expanding the Capacity

Matrix method. We have also presented the treatment of the finite load impedance on the

assumption that the impedance is composed of a resistance and a capacitance connected

in parallel, which is a typical composition used for plasma wave instruments.

The introduced models are validated by examining the steady state of the potential

profile and the plasma environment. We confirm the achievement of the intended behavior

of the puck surface potential control and the current biasing. It is also revealed that these

mechanisms have a significant impact on the distribution of photoelectron clouds. The

negatively charged guard electrode tends to reduce the electric coupling between the

sensor and the boom through the photoelectron current. It is also found that the current

biasing reduces the amount of photoelectrons surrounding the sensor parts.

Next, we have analyzed the wave receiving characteristics of MEFISTO. The result

shows that the effective length of MEFISTO is hardly affected by the puck surface poten-

tial control and the current biasing. The analysis of the antenna impedance also shows

a considerably small effect of the puck surface potential control and the current biasing.

Particularly, almost the same antenna impedance obtained in the two cases of the sensor

with the background plasma potential (BC: on) and the floating potential (BC: off) is

not consistent with a theoretical prediction. For the inconsistency, a numerical result of

a voltage–current characteristic curve suggests that the moderated inflection of the curve

may reduce the gradient of the curve at the plasma potential, which also reduces the

antenna conductance to the same level as that observed at the floating potential.

The similar impedance values for the cases with and without the current biasing

are explained by the deformation of the voltage–current curve due to the photoelectron

current coupling. This implies the possibility that the coupling can influence the antenna

impedance, even though its effect is decreased by the function of the guard electrode. To

mitigate the influence of the photoelectron coupling more effectively, we should evaluate

more optimal puck surface potentials by further computer experiments in the future.

In actual operations in magnetospheric missions, the sensor is expected to operate at a
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slightly higher potential than the background plasma potential. Further, the moderation

of inflection of the voltage–current curve should be smaller than the present numerical

analysis, because the energy ratio of the photoelectrons to the background plasma elec-

trons is small in the present numerical analysis compared with realistic parameters. In

such a situation, the antenna impedance can have some dependence on the bias current

magnitude. For more detailed understanding of the effect, further numerical analyses are

necessary employing more realistic photoelectron parameters and various magnitude of

the bias current, which is left as a future work.



Chapter 6

Concluding Remarks

6.1 Summary and Conclusions

In this thesis, we have made numerical investigations on the electric antenna character-

istics in space plasma environment that is disturbed by interactions with the conduct-

ing bodies of an antenna and a spacecraft. For the numerical investigations, we have

constructed a simulation code based on an electromagnetic Particle-In-Cell (EM-PIC)

description as well as numerical models of the antenna and the spacecraft. After a confir-

matory impedance analysis in a homogeneous plasma environment, we have introduced

plasma-inhomogeneity effects such as the sheath formation and the photoelectron emis-

sion, which are inevitable factors when considering practical spacecraft environments.

Particularly, in the last half of the thesis, we have concentrated our analysis on the effects

of photoelectrons, the distribution of which is strongly influenced by the charging of the

antenna and spacecraft bodies. Below, we give summaries of the present thesis.

In Chapter 1, we have introduced basic principles of plasma wave measurements, espe-

cially an electric field measurement using space-based electric antennas onboard scientific

satellites. From the principles, we have clarified important antenna characteristics for

plasma wave measurements: the impedance and the effective length. From the aspects

of some limitations and difficulties inherent in theoretical and space-experimental ap-

proaches, we have discussed the significance of computer experiments for the antenna

analysis in space plasmas.

In Chapter 2, we have described numerical techniques for the study of antenna–plasma

interactions on a full EM basis. Previously, numerical treatments of perfect conducting

bodies were mostly studied only for electrostatic PIC simulations, and the methodologies

for including the conducting bodies in EM-PIC simulations were rarely discussed. For

the adaptation of the conducting body treatments also to the present EM model, we have

shown the importance of introducing inner-boundary treatments for the current density

in addition to those for the charge density. Then, the charge density is computed by in-

tegrating the charge continuity equation using the above-obtained current density. These

119
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treatments are necessary for accurate descriptions of the charge accumulation exactly on

conducing surfaces. By combining the above treatments with other necessary treatments

such as body-surface charge redistribution and modifications of longitudinal and trans-

verse electric field components, we have successfully constructed a simulation code for the

self-consistent analysis of antenna–plasma (and spacecraft–plasma) interactions including

EM phenomena.

Chapter 3 is devoted partly to the demonstration of the antenna analysis by applying

the constructed code to relatively simple plasma environments. As a basic impedance-

analysis technique, we have introduced a delta-gap feeding technique assuming a trans-

mitting antenna, which is used also in Chapter 4. We have firstly examined the dipole

antenna impedance in an unmagnetized plasma completely excluding effects of the sheath

formation and the photoelectron emission. The impedance resonance is correctly repro-

duced at the electron plasma frequency, which is a result of a strong antenna–plasma

interaction through emanated antenna-field energy. As a next step, we have included

contribution of an ion sheath created around the antenna in the impedance analysis. An

electron density profile in the ion sheath, which is created associated with the antenna

charging, has gradual variation in a spatial scale of a few Debye lengths. Although the

sheath edge is not well defined because of the gradual density change, the sheath mainly

contributes to the antenna reactance below the electron plasma frequency, the behavior

of which can be modeled as a capacitance as was done in previous studies. Also, several

differences from previous knowledge are found in the present numerical results. One is

a non-triangular current distribution along the antenna observed at the impedance res-

onance frequency, which is one of plausible reasons for a disagreement of the resonance

intensities observed between the numerical and theoretical results. The other is the ca-

pacitance of a thick sheath which is forcibly expanded by the DC potential biasing of the

antenna. It is revealed that the capacitance cannot have a lower value than the free-space

capacitance of the antenna itself.

In Chapter 4, we have investigated photoelectron effects on the antenna impedance.

Assuming that the sun illuminates an antenna and a spacecraft body from the direction

perpendicular to the antenna, we have injected electrons from the sunlit surfaces into

a computational space, which simulated the photoelectron emission. As a result of the

photoemission, a positive floating potential with the magnitude corresponding to a few

times the photoelectron energy is obtained for the antenna, which is due to a sufficiently

larger photoelectron flux than that of plasma electrons. As for the plasma environment,

the formation of an electron-dense region is confirmed around the sunlit surfaces of the

antenna and the spacecraft. Under the photoelectron environment, the antenna admit-

tance (i.e., the inverse of antenna impedance) has an almost constant real part and a

linearly increased imaginary part with the frequency, which suggests that the impedance
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under the photoelectron environment is well modeled by an equivalent electric circuit con-

sisting of a resistance and a capacitance connected in parallel. Further, it is found that

the above resistance highly depends on the photoelectron flux, while the capacitance is

almost independent of the flux. Analytical derivation of the dynamic resistance based on

the Orbital-Motion-Limited theory shows a good agreement with the present numerical

result for the antenna resistance. From this attempt, it is revealed that the impedance

change under the photoelectron environment is caused by the conduction current induced

by the actual motion of photoelectrons contacting with the antenna surfaces. On the

other hand, the impedance resonance, which was observed in the analysis described in

the previous chapter, is not observed for the present situation and plasma parameters.

This is because the antenna dimensions are sufficiently smaller than the Debye length for

the background plasma.

In Chapter 5, the receiving characteristics of an electric antenna are studied more

directly using a newly introduced analysis technique. In the technique, we have set up

wave fields propagating in a computational space and simulated a process of the wave

reception by the antenna. By using the technique, we have examined the effective lengths

of a dipole antenna and a probe-like antenna. For the probe-like antenna sensing wire

elements are attached at both ends of a center boom conductor. The analysis correctly

reproduces the reception of the Langmuir wave with much larger wavelength than the

tip-to-tip antenna length, which is confirmed by the result that the obtained effective

length coincides with the half of the physical antenna length for the dipole antenna.

Meanwhile, for the probe-like antenna, the effective length becomes shorter than the

physical separation between the centers of the two sensing elements. This effect comes

from the distortion of equi-potential surfaces caused by the presence of the center boom

conductor and the attraction of the sensor potential to the boom conductor potential.

Next, we have introduced numerical models of guard electrode and current biasing,

which are planned to be installed in modern electric field instruments for future missions.

By examining a static plasma environment using the introduced models, we have found

that the guard electrode decreases the coupling of the sensor conductor with the boom or

spacecraft bodies through the photoelectron conduction current. We have also confirmed

that the bias current draws the sensor potential close to the background plasma potential.

In comparison with their significant impacts on the static plasma environment, we have

observed a relatively small effect of the guard electrode and the current biasing on sensor

behavior for oscillating fields created by external plasma waves. This result is understood

from the voltage–current characteristic curve of the sensor, the gradient of which indicates

the inverse of the dynamic resistance of the sensor for the oscillating fields. Meanwhile, the

observed voltage–current curve is considerably deformed by the effect of the photoelectron

current coupling even though it is decreased by the operation of the guard electrode.
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The result suggests the possibility that more optimal electrode potentials can minimize

the photoelectron effect and modify the sensor characteristics even for the wave fields.

This emphasizes the significance of further investigations of sensor characteristics when

operating the guard electrode and the current biasing more optimally.

In conclusion, we have observed two classes of impedance change in plasma environ-

ment through the present computer experiments. The first class of the impedance change

comes from an antenna–plasma interaction through field energy in the form of plasma

waves (or oscillations). Then the impedance change is strongly associated with the prop-

erties of plasma waves and oscillations. The most noticeable example is the impedance

resonance observed exactly at the frequency, at which the electron plasma (Langmuir)

wave is allowed to propagate. The important feature of the impedance change is that it

can be observed only when the antenna length is sufficiently longer than plasma char-

acteristic lengths such as the Debye length as examined in the computer experiments in

Chapter 3.

The second class of the impedance change is a result of the antenna near field acting

more directly on plasma particles in the vicinity of the antenna. The motion of affected

plasma particles forms the conduction current flowing into or out of the antenna con-

ducting surface. In the aspect of an equivalent circuit for the antenna impedance, the

effect of the conduction current can be modeled as a circuit path with a finite resistance

connected in parallel to the antenna capacitance. This class of the impedance change is

particularly prominent in the presence of photoelectrons contacting with the antenna sur-

face as examined in Chapters 4 and 5, because the current created by the photoelectron

motion can directly flow into and out of the surface. Meanwhile, the impedance change

is not observed in an ion-sheathed situation as analyzed in Chapter 3. This is because

the electron sparse region separates the antenna surface from the conducting background

plasma.

As described above, we can evaluate the contribution of multiple mechanisms for

impedance change simultaneously by performing the computer experiments. The present

numerical approach also has feasibility of including complex antenna and spacecraft ge-

ometries. The advantage has been actually shown in the analysis of the effective length,

in which it is revealed that the effective length is influenced by the presence of a support-

ing boom conductor. Thanks to these advantages, we believe that the present numerical

method will become a standard approach for the quantitative evaluation of practical elec-

tric antenna characteristics in future satellite missions.
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6.2 Suggestions for Future Works

For the further development of the present numerical tool, some issues should be consid-

ered in future works. One is the precise inclusion of the fine structures of an antenna and

a spacecraft in the computer experiments. Since the spatial scale of the fine structure is

too small to treat simultaneously with surrounding plasma environments in the present

uniform grid system, the introduction of a locally refined mesh will be required for more

quantitative evaluation of the antenna characteristics. The other is the introduction of

non-conducting bodies such as dielectric materials. For an electric antenna, the dielec-

tric material is used as an insulator of the antenna conductor from surrounding plasmas,

which particularly influences DC and low-frequency behavior of the antenna.

Also for antenna characteristics in space plasma environment, there are some problems

which should be considered in the future. In the present work, we have examined the

receiving antenna characteristics only for plasma waves with sufficiently larger wavelength

than the antenna length. However, electrostatic waves sometimes have considerably short

wavelength, and it is reported that the antenna behavior for such waves deviates from

that in the long-wavelength case. We should perform computer experiments for more

reliable plasma wave measurements also in such short-wavelength situations. It is also

necessary to study interactions between a high-voltage antenna and surrounding plasmas,

because it is planned that such an antenna is applied to a whistler wave transmitter

to control the precipitation of radiation belt electrons [Inan et al., 2003]. When the

high voltage is applied to the antenna, the antenna behavior may deviate strongly from

previous knowledge that is mostly based on a linear theory for the plasma response to

the antenna near field. The present EM-PIC approach can become a powerful tool for

the analysis of the non-linear plasma response to the high-voltage antenna. We hope that

the further investigations using the present numerical method will contribute to a better

understanding of the complex antenna–plasma interactions.





Appendix A

Capacity Matrix Method for
Conducting Body Surface

In order to obtain an equipotential solution on a conducting body, we use the Capacity

Matrix method [Hockney and Eastwood, 1981]. The electrical potential φ and the charge

density ρ on grid points within the computational space can be related by a matrix A as

follows:

ρi =
NG∑

j=1

Aijφj, (i = 1, . . . , NG), (A.1)

where i and j are the indices of the grid points, and NG represents the total number of

grid points. A is generally called a capacity matrix. Inversely, φ is calculated as

φi =
NG∑

j=1

Bijρj, (i = 1, . . . , NG), (A.2)

where B = A−1.

When the surface charge on a conducting body is redistributed, only ρs, which is

assigned on the body surface, is altered. The charge outside and inside the body is not

changed. Therefore, the correction of the electrical potential δφs is related to that of the

charge density δρs by

δφs,i =
NB∑

j=1

Bijδρs,j, (i = 1, . . . , NB), (A.3)

where NB represents the total number of grid points on the conducting surface and NB <

NG. Note that, although φ generally changes not only on the conducting surface but also

outside the body, we focus on potential values only on the conducting surface in Eq. (A.3),

because our goal is to control φs only on the surface for an equipotential solution. We

here redefine a partial upper-left block of B with NB rows and columns as a new matrix

B′.

125



126 APPENDIX A. CAPACITY MATRIX METHOD

As a matrix inversion of B′, we obtain a specialized capacity matrix C for the grids

on the conducting surface. By using C, the relation between δφs and δρs is given by

δρs,i =
NB∑

j=1

Cijδφs,j, (i = 1, . . . , NB). (A.4)

In a simulation run, Eq. (A.4) is used to obtain the equipotential solution as described

in Section 2.3.4. We should note that Cij is generally not identical to the original matrix

Aij.

A straightforward way to obtain C is to place a unit charge on each grid on the

conducting surface in turn with zero charge on the other grid points and solve for the

potential. The obtained potential values form the elements of one column of B′. We

repeat this process until all the elements of B′ are obtained. Finally, C is computed by

C = B′−1. These processes are performed only once at the initialization of the simulation

run.



Appendix B

Formulation of Antenna
Conductance

In order to calculate the antenna conductance, we first formulate the currents carried by

charged particles that impinge on or escape from the antenna surfaces as functions of

the antenna potential V . In the presence of photoelectrons, we consider the currents of

only background electrons and photoelectrons, and neglect the background ion current

contribution. The magnitude of the currents is given as follows:

Iph = SpheΓph exp

(
− eV

kBTph

)
(photoelectron), (B.1)

Ie = Sn0e

√
kBTe

2πme

2√
π

√
1 +

eV

kBTe

(background electron), (B.2)

where Sph represents the area of antenna surface that emits photoelectrons. In the absence

of photoelectrons, we consider the current balance between background electrons and ions.

The current magnitude is given as

Ie = Sn0e

√
kBTe

2πme

exp
(

eV

kBTe

)
(background electron), (B.3)

Ii = Sn0e

√
kBTi

2πmi

2√
π

√
1 − eV

kBTi

(background ion), (B.4)

where Ti represents the ion temperature. Here, we used the Orbital-Limited-Motion

(OML) theory proposed by Mott-Smith and Langmuir [1926] and assumed that the an-

tenna radius is smaller than the sheath thickness. In the above formulation, the expression

(B.3) of the background electron current for the non-photoelectron case is different from

equation (B.2) for the photoelectron case. This difference results from the fact that the an-

tenna is negatively charged in the non-photoelectron case, whereas it is positively charged

in the photoelectron case.

In the steady state of the plasma environment with an equilibrium floating antenna

potential Vf , the above currents are balanced, i.e., the net current flow I into the antenna
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is 0. The antenna conductance G represents how easily the current I is changed by a

small applied variation of an antenna potential from Vf , and is given as G = dI/dV |V =Vf
.

By substituting equations (B.1)–(B.4) into I = Ie − Iph for the photoelectron case and

I = Ie − Ii for the non-photoelectron case, G is calculated as

G =
dI

dV

∣∣∣∣∣
V =Vf

=
Sn0e

2

kBTe

√
kBTe

2πme

1√
π

(
1 +

eVf

kBTe

)− 1
2

+
Sphe

2Γph

kBTph

exp

(
− eVf

kBTph

)

=
1

2

e

kBTe + eVf

Ie(Vf) +
e

kBTph

Iph(Vf) (photoelectron case), (B.5)

G =
dI

dV

∣∣∣∣∣
V =Vf

=
Sn0e

2

kBTe

√
kBTe

2πme

exp
(

eVf

kBTe

)
+

Sn0e
2

kBTi

√
kBTi

2πmi

1√
π

(
1 − eVf

kBTi

)− 1
2

=
e

kBTe

Ie(Vf) +
1

2

e

kBTi − eVf

Ii(Vf) (non-photoelectron case). (B.6)

These are analytical expressions of G for cases with and without photoelectron emission.
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