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Abstract

In late 1980s, intrinsic localized mode (ILM) was theoretically discovered in a non-
linear coupled oscillator. This discovery triggered wide-spread investigations on
energy localization phenomena in spatially discrete systems. Recently, the ILM was
experimentally observed in micro-mechanical cantilever arrays fabricated by micro-
electromechanical system (MEMS) technology. This observation directly suggests
that if the spatial controllability is confirmed, ILM has potential applications in
MEMS devices. However, the dynamical behavior of ILM is still an open problem.
The dynamics of traveling ILM should be clarified to establish control schemes.
Therefore, this thesis aims to study the possibility of control of ILM in coupled
cantilever arrays.

In this thesis, at first, a nondimensionalized equation of motion is described
by modeling micro-cantilever arrays in which ILMs were observed. The resulting
equation consists of on-site and inter-site potentials. Each potential is represented
by quadratic and quartic terms. For the equation, the coexistence and the stabil-
ity of ILM are numerically discussed. Observed ILMs are classified into Sievers-
Takeno (ST) mode and Page (P) mode. According to the stability analysis, ST-
modes are stable when P-modes are unstable, and vice versa. The stability of
coexisting ILMs is flipped by varying the nonlinear inter-site coefficient.

The global phase structure is investigated by calculating invariant manifolds
of unstable ILMs. The drastic change of the global phase structure is caused when
the stability of coexisting ILMs is flipped. Furthermore, the influence of impurities
is also discussed. An impurity locally changes the global phase structure.

The dynamical feature of traveling ILM is discussed with the structure of in-
variant manifolds of unstable ILMs. Through the discussion, it is shown that the
relationship between the structure of invariant manifold and behavior of ILMs is
clearly understood. It is suggested that the motion of traveling ILM in the cou-
pled cantilever array is governed by the extension of unstable manifolds and its
recurrence.

A new manipulation concept is proposed based on the fact that the global phase
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structure governs traveling ILMs and is changed by varying the nonlinear inter-site
coefficient. The new manipulation is called “capture and release.” An ILM can
be shifted to any site in the cantilever array. In addition to that, a traveling ILM
wandering in the whole of array can also be produced. Furthermore, manipulations
using impurity is discussed. The mechanism of the attractive/repulsive manipulation
is revealed.

To confirm the numerically obtained results, a macro-mechanical cantilever ar-
ray is proposed. The cantilever array is designed to have individually tunable on-site
potentials. The attractive manipulation of ILM in the cantilever array is experimen-
tally demonstrated and numerically confirmed. The numerical investigation suggests
that the global phase structure plays an important role for the manipulation.
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Chapter 1

Introduction

1.1 Localized Solutions in Nonlinear Coupled Sys-

tems

Energy localization phenomenon is known as soliton for continuum media and intrin-
sic localized mode (ILM) for discrete media. ILM, also called discrete breather (DB),
appears as a spatially localized and temporally periodic solution in coupled differ-
ential equations with nonlinearity. In 1988, A. J. Sievers and S. Takeno analytically
discovered an odd-symmetric ILM in a Fermi-Pasta-Ulam (FPU) lattice [1,2], which
has both harmonic and anharmonic inter-site potentials1. An even-symmetric ILM
was derived by J. B. Page in 1990 [4]. After this discovery, ILM in nonlinear discrete
systems has attracted many researchers. In the first decade since the discoveries, the
existence [5–11], the stability [12–15], the movability [16–20], and the other prop-
erties of ILM have been investigated both theoretically and numerically for variety
of physical systems [21]. These analyses clarify the fundamental properties of ILM
in both FPU lattices and nonlinear Klein-Gordon (KG) lattices. Whereas the FPU
lattices contain linear and nonlinear inter-site potentials, the nonlinear KG lattices
consist of linear inter-site potential and nonlinear on-site potential including the
harmonic term. It seems that the analyses of ILM for both lattices provide the
impetus for further investigations on localized phenomena in realistic systems.

In this decade, experimental studies have appeared [22]. ILM is experimen-
tally generated or observed in various systems, for instance, Josephson-junction ar-
rays [23–25], optic wave guides [26,27], photonic crystals [28], micro-mechanical can-
tilever array [29], mixed-valence transition metal complexes [30, 31], antiferromag-

1The FPU lattice has been proposed as a discrete model of material by Fermi, Pasta, and Ulam
for investigating the equipartition of energy among the degrees of freedom [3].
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Figure 1.1: Schematic configuration of a micro-cantilever array fabricated by M. Sato
et al. [29]. Short and long cantilevers are coupled by the overhang region which is
a flexible thin film. To excite the cantilevers, the piezo vibrator is attached to the
support.

nets [32], and electronic circuits [33]. These experiments suggest the phenomeno-
logical universality of ILM and the possible application phase. Studies have indeed
appeared toward potential applications in both fundamental science and practical
engineering [22].

1.2 Experimental Studies in Micro-cantilever Ar-

rays

Sato et al. have shown the existence of intrinsic localized modes in micro-cantilever
arrays [29,34]. They fabricated a di-element cantilever array by microelectromechan-
ical system (MEMS) technology. Short and long cantilevers are alternately arranged
in one dimension and they are coupled by the overhang region as shown in Fig. 1.1.
To reduce energy dissipations, the cantilever array was in high vacuum, so that the
quality factor of resonating cantilever was about 104. A piezo vibrator, which is at-
tached to the substrate, excites the array to keep oscillations of cantilevers.At first,
the frequency of the piezo vibrator was set at the upper zone boundary of the band
formed by the coupled cantilevers. Then the zone boundary mode was excited. To
generate ILMs, the modulational instability of the zone boundary mode is caused by
frequency chirping. The initially excited mode lost its stability when the frequency
of vibrator was increased. After the chirping was stopped, several localized oscil-
lations remained. That is, ILMs were produced. When the external vibration was
turned off, the ILMs began to decay, and finally disappeared. On the other hand,
localized oscillations wandering in the array were also observed during frequency
chirping. These localized oscillations are called traveling ILM. It was shown by the
above experiment that standing ILMs exist even at a micrometer scale in mechanical
structure. It was also suggested by the observation of traveling ILMs that we can
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manipulate standing ILMs without destroying them.

Manipulation of ILM in micro-cantilever arrays has also been realized by
M. Sato [35,36]. They used a localized impurity to manipulate ILMs. The impurity
was induced by IR laser that could locally heat the array. Several cantilevers in
the heated region have different resonant frequency to the others. Thus, the heated
region can be thought of as a localized impurity. A standing ILM was attractively
or repulsively manipulated by the impurity. The ILM maintained its energy con-
centration during the manipulation. Therefore, ILM was possibly shifted from a
site to another without loss of its energy concentration. These experimental results
allow us to expect applications of ILM in practical engineering, especially micro-
and nano-engineering.

In terms of micro- and nano-engineering, a cantilever structure is widely used
for both sensing and actuating [37]. A resonating cantilever has capabilities to
measure various physical and chemical quantities with high accuracy. Mass sens-
ing is an example of sensor applications. The resonant frequencies of cantilever are
determined by the stiffness, the size, and the mass of cantilever. Therefore, the res-
onant frequency is changed when the mass is varied. By using the frequency shift,
attogram (10−18 g) level detections are realized [38]. On the other hand, a more
sensitive mass sensor has been proposed by M. Spletzer et al. [39]. They utilized
a coupled cantilever, which consists of two identical cantilevers. The coupled can-
tilever array is modeled as a linear coupled system in which two linear oscillators are
coupled by a linear spring. The linear coupled system has two eigenmodes, namely,
symmetric and antisymmetric mode. M. Spletzer et al. showed that the mode sym-
metries were sensitively broken when a tiny particle was attached on a cantilever.
The resonant frequencies of the eigenmodes were also changed but the amount of
the frequency shift was small. It was suggested that the sensitivity of mass sensors
using eigenmodes is three or four orders of magnitude greater than by using the res-
onant frequency [39]. That is, coupled cantilevers can be utilized to ultra sensitive
mass sensors. ILM is a solution of a nonlinear coupled oscillator as well as a linear
eigenmode of a linear coupled oscillator. Thus, ILM is a considerable phenomenon
for detecting the change of mass through dynamical transition. On the other hand,
an ILM can perform as a local exciter of micro-cantilever arrays. A desired can-
tilever can be excited when an ILM is manipulated. If the spatial controllability is
confirmed, ILM has potential applications in MEMS devices. Therefore, dynamical
analyses on ILM in micro-cantilever arrays are necessary to realize such applications.
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1.3 Global Dynamics of Propagating Waves

Standing ILMs are solutions that do not propagate in nonlinear coupled systems.
It allows us to expect that there is an analogy between the standing ILMs and
stationary waves. In a nonlinear coupled system, the global dynamics of traveling
waves related to stationary waves has been investigated in terms of the nonlinear dy-
namical system theory [40–42]. A magneto-elastic beam system has been proposed
as an experimental model of nonlinear coupled system. Cantilevered elastic beams
are placed with an equal interval in one dimension. In the model, two permanent
magnets are placed to face the free end of each beam so that nonlinearity is induced
in the restoring force. The coupling force between adjacent beams is caused by a
long elastic beam. Nonlinearity in the coupling force is also considered in the model.
It should be noted that the experimental model is described by a similar equation
of motion to that of the micro-cantilever array in which ILMs are observed. In the
model, an external vibrator is attached at a boundary of array while another bound-
ary is kept free. For a specific amplitude and a single frequency, many stationary
waves were observed both experimentally and numerically. That is, the stationary
waves coexist in the magneto-elastic beam system. The dynamics of traveling wave
was investigated by calculating basin structures around the coexisting stationary
waves. Resulting basin structures imply that there are heteroclinic connections be-
tween the stable and the unstable invariant manifolds of unstable stationary waves
around the unstable waves [41]. Consequently, it was suggested that the transition
of traveling wave is governed by the phase structure in the vicinity of coexisting
stationary waves. Based on the results in the magneto-elastic beam system, stand-
ing ILMs in the micro-cantilever array are assumed to have similar dynamics as the
stationary waves. That is, it is conjectured that the traveling dynamics of ILM is
governed by the phase structure around standing ILMs.

1.4 Purpose and Organization of Thesis

The main purpose of this study is to propose a new method to manipulate ILM in
coupled cantilever arrays. In order to achieve this goal, the global phase structure
regarding the dynamics of traveling ILM should be revealed, and can be changed as
desired.

To propose new manipulation methods, the fundamental characteristics of ILM
have to be clarified. Stability and local bifurcations are investigated in Chapter 3.
The global phase structure and the dynamics of traveling ILM are discussed in
Chapter 4. Chapter 2 is preliminary for the Chapters 3 and 4. A nondimension-
alized equation of motion is first introduced by modeling a micro-cantilever array,
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where ILMs were observed. The cantilever array is described by a coupled ordinary
differential equation. Parameter settings and boundary conditions are also given.
In addition, some general things needed to discuss ILM are briefly introduced. The
mechanism of localization is shown by theoretical analysis in the linearized equation
of motion. The classification of localized modes is also given in this chapter.

Chapter 3 discusses the local characteristics of ILM in coupled cantilever ar-
rays. Firstly, based on the results in coupled magneto-elastic beam system, it is
investigated whether ILMs coexist in the coupled cantilever array. Then the sta-
bility analysis is applied to the coexisting ILMs. The coexistence and the stability
are the basis for investigations in the proceeding chapters. In this chapter, local
bifurcations of ILM are also investigated for parameters in the coupled cantilever
array. It is shown how ILMs exchange the stability. The influence of an impurity in
the coupled cantilever array is also discussed.

Chapter 4 clarifies the global phase structure by calculating invariant manifolds
of unstable ILMs. In particular, the change of the structure due to the change in
stability change is discussed. Furthermore, the local changes of the structure are
shown by adding an impurity. The dynamical behavior of traveling ILM is also
discussed with the global phase structure. The discussion is based on the suggestion
that the global phase structure governs the dynamics of a solution wandering in
phase space [41,43].

In Chapter 5, a new concept to manipulate ILM is proposed on the basis of the
results in Chapter 3 and 4. First, the capture and release manipulation is numerically
demonstrated. Next, the mechanism of the manipulation is explained based on the
global phase structure. In addition to that, the attractive/repulsive manipulations,
which are realized by M. Sato [35, 36], are also shown. The mechanism for the
attractive/repulsive manipulations can be understood by the global phase structure.

In Chapter 6, a macro-mechanical cantilever array is proposed to confirm the
results in Chapter 3 to 5. First, equation of motion describing the oscillations
of cantilevers is described. Then, the validity of the modeling is experimentally
confirmed by a frequency response of a cantilever. Several localized oscillations were
observed experimentally and numerically. In addition, an attractive manipulation
is demonstrated experimentally by adding an impurity. Finally, the mechanism of
the manipulation in the experimental model is discussed numerically.

In Chapter 7, the conclusions of this study are summarized. Some proposals
for the future works are also presented.
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Chapter 2

Cantilever Array and Localized
Solutions

Intrinsic localized mode is a spatially localized and temporally periodic solution in
a nonlinear coupled oscillators array. A micro-cantilever array is one of the non-
linear coupled oscillators arrays which allow intrinsic localized modes to exist. In
this chapter, the micro-cantilever array is modeled as a coupled ordinary differential
equation. Experimental observations give parameter settings. In addition, funda-
mental topics related to spatially localized solutions are introduced for both linear
and nonlinear cases. The analysis for the linear case gives the relationship between
the frequency and the spatial decay rate of spatially localized solutions. A criterion
is also presented for discussing the dynamical stability of intrinsic localized modes.

2.1 Micro-mechanical Cantilever Array

2.1.1 Schematic Configurations

Various types of nonlinear coupled ordinary differential equation (ODE) can exhibit
intrinsic localized mode (ILM) [44]. Since ILMs were experimentally observed in
a micro-cantilever array, mechanically coupled cantilever arrays have been a well
known example of nonlinear coupled ODE exhibiting ILM. Here, we introduce a
nonlinear coupled ODE describing motion of the tip of individual cantilevers.

The micro-cantilever is designed to observe ILMs and is fabricated by using
photolithography technology [29]. A thin SiNx film on a silicon substrate forms
cantilevers and overhang [29]. In experiments, a di-element cantilever array, which
has short and long cantilevers, was fabricated to make experiments easy. For sim-
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Figure 2.1: Schematic configuration of coupled cantilever array. The array has eight
cantilevers arranged in one dimension. Both ends of the array are fixed by support.

Table 2.1: Size of cantilever array [34]

Each cantilever
Length(ℓ) 55 µm Width(w) 10 µm

Thickness(h) 300 nm Pitch(p) 40 µm

Overhang
Length(L) 60.0 µm Thickness(h) 300 nm

SiN
Density(ρ) 3.3 × 103 kg/m3 Young’s modulus(E) 300 GPa

plicity we can assume a mono-element cantilever array without loss of generality. A
schematic configuration of the cantilever array is shown in Fig. 2.1(a). All homoge-
neous cantilevers are arranged with equal intervals in one dimension. The number
of cantilevers is chosen as N = 8 because spatially localized solutions are mainly
discussed. Adjacent cantilevers are coupled by the elastic deformation of overhang
as shown in Fig. 2.1(b). The size of the array in Table 2.1 is determined as followed
in Ref. [34].
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2.1.2 Modeling of Cantilever Array

The vibration of cantilever is described by a partial differential equation. Since the
cantilever is thin, Euler-Bernoulli beam theory can be applied to obtain the resonant
frequencies and shape functions of the cantilever. The lowest resonant frequency
corresponds to the first mode oscillation of cantilever. Because the micro-cantilever
array is excited near the lowest frequency [34], we only focus on the first mode
oscillation. The shape function of the first mode shows the maximum amplitude at
the free end of cantilever. Here we describe the motion of the tip of cantilever by
a simple spring-mass model which has the same resonant frequency as the original
cantilever.

The nonlinearity of cantilever is arisen by more precise analysis. On the basis
of the theoretical analyses [45–47], the cantilever tends to be hard as the deformation
increases. This hardening nonlinearity is arisen from geometric nonlinearity. The
hardening nonlinearity, which appears as a cubic term in the restoring force, has
already been confirmed by experimental analyses [36,47]. Therefore the cantilever is
depicted by a spring-mass system with cubic nonlinearity in the spring. The coupling
force caused by the overhang is modeled by the same way [36]. The difference in
displacements of neighboring cantilevers causes the deformation of the overhang
region. The restoring force also has a cubic nonlinearity [36]. Consequently, the
motion of the micro-cantilever array is depicted by

mŸn = − kO2Yn − kI2 {(Yn − Yn−1) + (Yn − Yn+1)}
− kO4Y

3
n − kI4

{
(Yn − Yn−1)

3 + (Yn − Yn+1)
3} ,

(2.1)

where Yn denotes the displacement of the tip of the nth cantilever. The first and
third terms represent the restoring force caused by bending each cantilever. The
coupling force is depicted by the second and fourth terms. The mass denoted by m
is assumed to correspond to the cantilever’s mass given by m = ρwhℓ. Table 2.2
shows the values of parameters in Eq. (2.1). By fundamental experiments reported
by M. Sato, the linear on-site, inter-site, and the nonlinear on-site coefficients well
coincide with the values obtained by the theoretical analyses [29, 34–36]. However,
the experimentally estimated inter-site nonlinearity is quite smaller than the theo-
retical value. The assumptions applied to derive the inter-site nonlinearity may be a
main reason for the large difference [48]. Thus, it is assumed that the ratio of linear
coefficient between on-site and inter-site is equal to the nonlinearity ratio, namely,
kI2/kO2 = kI4/kO4.

Equation (2.1) does not include an energy dissipation term and an external
excitation term. Although these terms should be considered when we discuss ILMs
for real devices, we first investigate fundamental characteristics of ILM in the ideal
system, namely, the conservative system. Because results in the conservative system
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Table 2.2: Parameters of micro-cantilever array [34].

Symbol Value Symbol Value
kO2 0.303 kg/s2 kI2 0.0241 kg/s2

kO4 5 × 108 kg/s2m2 kI4 kO4kI2/kO2

m 5.46 × 10−13 kg

can be fundamentals for studies of ILM in realistic systems. In addition, experimen-
tal studies is very often done in a situation of low energy dissipation. In fact, the
micro-cantilever array was in high vacuum environment to reduce the air friction1.
Then the energy dissipation and the external force are omitted. So, we consider
the conservative system from Chapter 2 to Chapter 5. In Chapter 6, the energy
dissipation is considered.

2.1.3 Nondimensionalization

To generalize the equation of cantilever array, Eq (2.2) is nondimensionalized by
scaling t → T τ , Y → Xu, where T and X are unit values. The nondimensional
equation of motion is induced as follows:

ün = − α1un − α2 {(un − un−1) + (un − un+1)}
− β1u

3
n − β2

{
(un − un−1)

3 + (un − un+1)
3} ,

(2.2)

where ün denotes the second order time derivative,
d2un

dτ 2
. The unit for time is

determined as T =
√

m/kO2, so that the resonant angular frequency is to be unity.
Then α1 is always equal to 1. The linear coupling coefficient is given by α2 =
kI2/kO2 ≃ 0.1. The nonlinear coefficients β1 and β2 are decided by scaling in length.
Here the unit of length is set as X =

√
m/kI4/(10T ), so that β1 = 0.01. As a result,

the coefficient of nonlinear coupling term is defined as β2 = 0.01kI4/kO4 ≃ 0.001.
Values of unit time and length are in Table 2.3.

1The quality factor of a cantilever in high vacuum is evaluated about 104 [34].
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Table 2.3: Nondimensionalized parameters.

Symbol Value Symbol Value
α1 1 α2 = α1kI2/kO2 0.1
β1 0.01 β2 = β1kI4/kO4 0.001
T 1.34 µs X 2.46 µm

2.1.4 Boundary Conditions and Total Energy

To discuss a spatially extended system, boundary conditions should be specified.
For the coupled cantilever array, we mainly use the fixed boundary condition:

{
u0 = v0 =0,

uN+1 = vN+1 =0,
(2.3)

where vn corresponds to
dun

dτ
, namely, the velocity of the nth cantilever. The coupled

cantilever array with the fixed boundaries has the mirror symmetry with respect to
the center of array. On the other hand, the periodic boundary condition

{
u0 =uN ,

v0 =vN ,
(2.4)

is applied to both theoretical and numerical studies because the translational sym-
metry is maintained. The coupled cantilever array having the periodic boundary
condition is called ringed array in this paper. The ringed array is focused when we
discuss the influence of the fixed boundary condition.

One important thing is that Eq. (2.2) is a Hamiltonian system. The Hamilto-
nian is defined as follows:

H =
N∑

n=0

{
1

2
v2

n +
α1

2
u2

n +
α2

2
(un − un−1)

2 +
β1

4
u4

n +
β2

4
(un − un−1)

4

}
. (2.5)

The Hamiltonian corresponds to the total energy of the coupled cantilever array.
Then H must be conserved during numerical simulations. The conservation is es-
timated to confirm the accuracy of numerical simulations. All numerical results in
this paper include numerical errors under ϵH, where ϵ = 10−12.
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2.2 Localized Mode

2.2.1 Linear Wave Solution

Equation (2.2) has an obvious equilibrium point at (un, vn) = (0, 0) without relation
to the position of site. The linearization around the equilibrium point leads the
linearized equation of motion:

ün = − α1un − α2 {(un − un−1) − (un − un+1)} , (2.6)

where the number of oscillator is assumed to be infinite (n ∈ Z), so that the bound-
ary condition can be neglected. The general solution of Eq. (2.6) is easily obtained
as

un(t) =A1e
i(κn−ωt) + A2e

i(κn+ωt), (2.7)

where A1 and A2 are arbitrary constants, κ corresponds to wave number, and ω
denotes frequency [49]. Substituting Eq. (2.7) into Eq. (2.6) the relationship between
the wave number and the frequency is obtained as follows:

ω =
√

α1 + 2α2(1 − cos κ). (2.8)

The relationship (2.8) is called dispersion relation. As shown in Fig. 2.2 the disper-
sion relation has both upper and lower bound with respect to frequency. It implies
that the frequency of Eq. (2.7) is restricted to ω0 ≤ ω ≤ ωπ, where ω0 and ωπ denote
the angular frequency of the lower and the upper zone boundary, respectively (see
Fig. 2.2).

2.2.2 Linear Localized Mode

Here we assume that the oscillator at n = 0 is vibrated with a frequency outside the
band, namely, ω < ω0 or ω > ωπ. Substituting un = Bne

iωt into Eq. (2.6) we obtain
a difference equation [50]

Bn+1 − 2

(
α1 − ω2

2α2

+ 1

)
Bn + Bn−1 =0 for n > 0, (2.9)

where Bn denotes the amplitude of nth oscillator. Eq. (2.9) can be solved by putting
Bn = B0R

n. Then we have the following quadratic equation

R2 − 2

{
α1 − ω2

2α2

+ 1

}
R + 1 =0, (2.10)

12



¼0-¼
·

0

¼

Figure 2.2: Dispersion relation for Eq. (2.6). ω0 =
√

α1 and ωπ =
√

α1 + 4α2

represent the lower and the upper bound of frequency, respectively.

and the solutions

R =
α1 − ω2

2α2

+ 1 ±

√{
α1 − ω2

2α2

+ 1

}2

− 1. (2.11)

If the frequency ω is inside the band (ω0 ≤ ω ≤ ωπ), R becomes a complex number.
That is, a linear wave solution is obtained. For the case that the frequency is outside
the band, R becomes a real number. To avoid divergence, |R| has to be less than 1.
Therefore, we have

R =


RA =

α1 − ω2

2α2

+ 1 −

√{
α1 − ω2

2α2

+ 1

}2

− 1 for ω < ω0,

RO =
α1 − ω2

2α2

+ 1 +

√{
α1 − ω2

2α2

+ 1

}2

− 1 for ω > ωπ.

(2.12)

The amplitudes of oscillators thus exponentially decay as n is increased. The same
equations as Eq. (2.12) is obtained for the case of n < 0 [50]. Therefore, the
amplitude distribution has a peak at n = 0 with a tail decaying exponentially.
Fig. 2.3 shows the shape of localized solutions. All oscillators vibrate in-phase for
the case of R = RA because RA is positive (see Fig. 2.3(a)). On the other hand,
neighboring oscillators vibrate in anti-phase for R = RO as shown in Fig. 2.3(b).
The sign of RA and RO is independent with respect to ω. Therefore, the shape of
localized solution depends on the frequency. In addition, |R| becomes large as ω−ωπ

or ω0 − ω increase. That is, the shape of localized solution tends to be sharp.

For one dimensional oscillators array, an impurity can cause the vibration that
frequency is outside the band [50]. If α1 at n = 0 is larger than the others, the
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n

(a) R = RA > 0 (! < !0)

(b) R = RO < 0 (! > !¼)

Figure 2.3: Localized mode for (a) below the lower zone boundary (ω < ω0) and (b)
above the upper zone boundary (ω > ωπ).

oscillator at n = 0 tends to vibrate with a higher frequency than the upper bound
of band. For this case, a localized solution appears as in Fig. 2.3(b). The impurity
oriented localized solution is called linear localized mode.

2.2.3 Intrinsic Localized Mode

For the linear coupled oscillator, a localized mode exists if and only if there is an
impurity. However, a localized mode can appear without any impurity in nonlinear
coupled oscillators arrays. Here we consider a simple nonlinear oscillator described
by ü = −α1u − β1u

3. It is well known that the frequency of the solution of the
nonlinear oscillator depends on its amplitude as shown in Fig. 2.4. If β1 is positive,
the frequency increases with amplitude, and vise versa. In other words, an oscillator
with large amplitude vibration can be thought as an impurity for the linear case.
Therefore, the vibration does not propagate if the oscillator in the nonlinear coupled
oscillators array is excited with large amplitude. The localized oscillation is called
intrinsic localized mode or discrete breather. The shape of ILM is determined by
the sign of β1 for this case. If β1 is negative, the frequency tends to decrease as
the amplitude increases. In the linear case, the frequency decrement occurs if α1 is
smaller than the others. Then ILMs for β1 < 0 have a similar shape to Fig. 2.3(a).
Such ILMs are called acoustic ILM. ILMs like Fig. 2.3(b) are called optic ILM. That
is, for the positive/negative on-site nonlinearity, an optic/acoustic ILM can appear.
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Figure 2.4: Relationship between amplitude and angular frequency of time-periodic
solutions for ü = −α1u − β1u

3.

2.2.4 Spatial Symmetry of ILM

Intrinsic localized modes are roughly classified with its spatial symmetry into two
kinds, “Sievers-Takeno mode (ST-mode)” and “Page mode (P-mode)” [51]. The ST-
mode is odd-symmetric in amplitude distribution and centered on a site. This mode
is found analytically by Sievers and Takeno [1]. On the other hand, the P-mode
derived by Page [4] is even-symmetric in amplitude distribution. Two oscillators
nearby the center of P-mode show the same amplitude. Fig. 2.5 illustrates these
modes for both optic and acoustic ILMs.

2.2.5 Anticontinuous Limit for Existence Proof

Existence of ILM is rigorously discussed by using anticontinuous limit [52]. This
technique is applicable to prove the existence of ILM in nonlinear Klein-Gordon lat-
tices, which consist of linearly coupled nonlinear oscillators. The coupled cantilever
array is one of nonlinear KG lattices when the nonlinear coupling coefficient is taken
as zero, namely, β2 = 0. In the anticontinuous limit, it is first assumed that nonlin-
ear oscillators are arranged without any coupling. If an oscillator is excited while the
others are kept at zero amplitude, a localized solution is obviously obtained because
of no-couping. The existence of ILM is proven if the localized solution survives after
introducing a weak coupling. For Klein-Gordon lattice the existence was proven
by R. S. MacKay and S. Aubry [6]. Thus, the existence of ILM is guaranteed for
Eq. (2.2) at a situation that β2 = 0 and sufficiently small α2.
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Figure 2.5: Sievers-Takeno (ST) mode and Page (P) mode for both optic and acous-
tic ILMs [44].

2.2.6 Obtaining Intrinsic Localized Mode

The anticontinuous limit can also be applied to a numerical method to find ILMs.
The shooting method using Newton-Raphson method is a good numerical technique
to obtain ILM [53, 54]. However, an initial guess should be carefully chosen to
converge the Newton-Raphson method. That is, a good initial guess is necessary in
order to obtain a desired solution. The anticontinuous limit helps to estimate initial
guess for obtaining ILM [52]. At first, a spatially localized solution is obtained
in the lattice without coupling. As a result, an amplitude and the corresponding
frequency are obtained. Then the inter-site coefficient is slightly increased. Since
the existence of ILM at a weekly coupled oscillators is guaranteed, the shooting
method will converge to an ILM. The obtained ILM is used a new initial guess for
more larger coupling coefficient. By iterating the above process, an ILM is obtained
for the coupled cantilever array at desired parameters.

2.3 Stability of Periodic Solution

The stability of time-periodic solutions in Eq. (2.2) can be discussed in terms of the
Floquet multipliers [55]. Let Γ be a periodic orbit for Eq. (2.2) as shown in Fig. 2.6.
Here we introduce a hyperplane

Σp =
{
(u, u̇) ∈ R16 | up > 0, u̇p = 0

}
, (2.13)

where p is the index of cantilever. The point where Γ intersects Σp is denoted by
x∗ in Fig. 2.6. This point can be a fixed point for the Poincaré map, defined as
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Figure 2.6: Time-periodic solution in R2N and the corresponding fixed point, x∗ ∈
R2N−1, in a hyper surface Σp.

P : U → Σp, where U ⊆ Σp is a neighborhood of x∗. The stability of x∗ for P
reflects the stability of Γ for Eq. (2.2) [55].

The linearization of the map P leads to the linear map at the fixed point x∗:

ξk+1 = DP(x∗)ξk, (2.14)

where ξ depicts a variation. The matrix DP(x∗) has 2N − 1 different eigenvalues.
Then the stability of x∗ is determined by whether the eigenvalues are located inside
or outside unit circle in complex plane. The stability of ILM coincides with the
corresponding fixed point because the eigenvalues of the matrix DP(x∗) correspond
to Floquet multiplies [55].

As mentioned above, Eq. (2.2) is a Hamiltonian system. If λ is an eigenvalue

then λ̄,
1

λ
, and

1

λ̄
are also eigenvalue of the matrix, where λ̄ is the complex conjugate

of λ. Therefore, a fixed point, x∗, is not determined to be unstable if and only if
all of eigenvalues are on unit circle as shown in Fig. 2.7(a). Otherwise, the fixed
point is determined to be unstable (see Fig. 2.7(b)). The stability of ILM is not
determined to be stable.

However Floquet multipliers are widely applied to discuss the stability of
ILM [53]. The reason is that numerical simulations have shown that ILMs have
maintained its energy concentration for a very long period if all eigenvalues are on
unit circle. In addition, all Floquet multipliers of the ILMs enter into unit circle
if the system has a damping term. For this reason, the ILMs is determined to be
“marginally stable [53]”. In this paper, we simply call “stable” for the stability of
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Figure 2.7: Floquet multipliers for (a) marginally stable and (b) unstable ILMs [53].

the ILMs.

2.4 Remarks

The coupled differential equation obtained by modeling a micro-cantilever array has
nonlinearities in both on-site restoring and coupling forces. This equation can repre-
sent both the Fermi-Pasta-Ulam (FPU) lattice and the nonlinear Klein-Gordon (KG)
lattice, which frequently appear in researches discussing ILM/DB. In the FPU lat-
tice, any on-site restoring force does not exist. The coupled cantilever array ap-
proaches to the FPU lattice when α2 → ∞ and β2 → ∞. In the case of β2 = 0, the
coupled cantilever array coincides with a nonlinear KG lattice. Dynamical proper-
ties of ILM, such as the stability, are usually different between the FPU and the
nonlinear KG lattices [21]. Then the fundamental characteristics of ILM will be
strongly affected by the magnitude of β2. Therefore the nonlinear inter-site coeffi-
cient is a key parameter. For this reason, coexistence and stability are investigated
with respect to the coefficient, β2, in the next chapter.

Numerically obtained localized solutions are confirmed to be ILMs by the
theoretical analysis for the tail. It was shown that the tail is exponentially decay
in space. So, the theoretical result can be applied even in the nonlinear lattice.
The amplitude of ILM must be small except its locus. Then the shape of ILM
asymptotically approaches to the linear localized mode which has the same frequency
as the ILM. Therefore, a numerically obtained solution is identified as ILM if the

18



decay rate of tail coincides with the theoretically obtained value.
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Chapter 3

Coexistence and Stability

This chapter presents intrinsic localized modes in coupled cantilever arrays. It is
shown that several ILMs are obtained by using anticontinuous limit with different
initial guesses. That is, ILMs coexists in a coupled cantilever array. The stability
of coexisting ILMs is presented for two different coupled cantilever arrays. One is
similar to a nonlinear Klein-Gordon lattice and the other is similar to a Fermi-Pasta-
Ulam lattice. Here, a numerical method is applied to obtain ILMs for both arrays.
As results, obtained ILMs are classified into two kinds by the spatial symmetry of
amplitude distribution. The dependency on energy of coexisting ILMs is also dis-
cussed with bifurcation diagrams. At the low energy regime, ILMs will not exist
because the effect of nonlinearity becomes smaller. Thus, the number of coexisting
ILMs depends on the total energy of the system. On the other hand, the stabil-
ity is determined by the spatial symmetry and flipped by the nonlinear inter-site
coefficient. Bifurcation diagrams clearly show how the coexisting ILMs exchange
the stability. In addition, the ringed array, where influences of the fixed boundaries
are eliminated, is assumed for the analysis regarding to the stability change. In the
ringed array, influences of an impurity are discussed with bifurcation diagrams. It is
concluded that the impurity effectively affects coexisting ILMs where the stability
change occurs.
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3.1 Intrinsic Localized Modes in Coupled Can-

tilever Arrays

3.1.1 Coexisting ILMs

By using anticontinuous limit, several ILMs are obtained in coupled cantilever arrays
with the fixed boundary condition that parameters are set to N = 8, α2 = 0.1,
β2 = 0.001, and H = 250. The shape of amplitude distribution is shown in Fig. 3.1.
ILMs shown in Figs. 3.1(a)–(e) correspond to ST-modes. They are obtained by initial
guesses that only one cantilever is excited. P-modes are shown in Figs. 3.1(f)–(i).
The initial guesses for P-modes are that two neighboring cantilevers are excited in
anti-phase.

Coexisting ILMs in the cantilever array can be distinguished by the index
number of cantilever oscillating with the largest amplitude. In this paper, the ST-
mode standing at m-th site is called STm. For example, ST4 corresponds to the
ST-mode centered on the 4th cantilever as shown in Fig. 3.1(d). The P-mode is
depicted Pm-m′ with m′ = m + 1, because the P-mode has even symmetry in
amplitude distribution. The locus of the P-mode is found at m + 1/2.

In the cantilever array, ST-modes and P-modes are alternately observed as
shown in Fig. 3.1. In this parameter setting, all possible ILMs, ST1, . . . ST8, P1-
2, . . ., P7-8, are found. The ST-modes are obtained by anticontinuous limit with
the initial guesses that one cantilever is excited. Therefore, eight ST-modes are
found because the number of cantilever is set at N = 8. On the other hand, two
neighboring cantilevers are excited in anti-phase for the initial guesses of the P-
modes. Since the both ends of array are fixed, P0-1 and P8-9 are not obtained. The
initial guesses for P0-1 and P8-9 cannot be chosen because u0 and u9 are always
fixed at zero. Therefore, seven P-modes are found at the cantilever array with the
fixed boundaries.

The coexistence of ILM is also investigated for larger inter-site nonlinearity.
The nonlinear inter-site coefficient β2 is increased from 0.001 to 0.01. For this array,
ST2, . . ., ST7, P1-2, . . ., P7-8 are found. However, ST1 and ST8 cannot be obtained
by using anticontinuous limit. It implies that bifurcations occur between β2 = 0.001
and 0.01. The bifurcations are investigated in Sec. 3.3.

3.1.2 Wave Forms

The time-development of displacement of each cantilever is shown in Fig. 3.2. Each
cantilever shows a sinusoidal oscillation. A cantilever vibrates in anti-phase against

22



-15

-10

-5

0

5

 10

 15

0 1 2 3 4 5 6 7 8 9

u
n

n

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9

u
n

n

-5

0

5

 10

 15

0 1 2 3 4 5 6 7 8 9

u
n

n

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9

u
n

n

-5

0

5

 10

 15

0 1 2 3 4 5 6 7 8 9

u
n

n

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9

u
n

n

-15

-10

-5

0

5

 10

 15

0 1 2 3 4 5 6 7 8 9

u
n

n

-15

-10

-5

0

5

 10

 15

0 1 2 3 4 5 6 7 8 9

u
n

n

-15

-10

-5

0

5

 10

 15

0 1 2 3 4 5 6 7 8 9

u
n

n

(a)

(b)

(c)

(f)

(d)

(e)

(g)

(i)

(h)

Figure 3.1: Coexisting ILMs at α1 = 1, α2 = 0.1, β1 = 0.01, and β2 = 0.001.
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Figure 3.2: Wave form of each oscillator.

neighboring cantilevers because the coexisting ILMs are classified into optic ILM.
In the conservative coupled cantilever array, the first derivative of un, namely, the
velocity becomes zero at t = kT/2, (k ∈ N) for all cantilevers. Then each value of
un in Σ4 corresponds to the amplitude of cantilever. That is, Fig. 3.1 shows the
amplitude distribution.

3.1.3 Exponential Decay

The tail of ILM should be decayed exponentially. The linear analysis can be applied
to the region where the amplitude of oscillator is small because coexisting ILMs
shown in Fig. 3.1 are strongly localized. Fig. 3.3 shows the logarithmic plot of
amplitude distributions for ST1, ST4, P1-2, and P4-5. The dotted lines are obtained
by Eq. (2.12). The gradient of decaying amplitude of each ILM coincides with the
corresponding theoretical line where the small amplitude region. Around the locus of
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ILM, the gradient becomes small. In Eq. (2.12), an increment of the linear coupling
coefficient reduces the decay rate. The coupling force is enhanced by the nonlinearity
around the locus. Thus the differences between numerical and theoretical results
are mainly caused by the inter-site nonlinearity. The gradient always becomes small
around the locus of ILM as long as the inter-site nonlinear coefficient is positive.

The exponential decay of the tail of ILM shows that the localization mechanism
of ILM is the same as the linear localized mode. In addition, the number of cantilever
is enough to discuss the coexisting ILMs. As shown in Fig. 3.1, it seems that the
coexisting ILMs are not affected by the fixed boundaries. That is, the coexisting
ILMs are sufficiently localized at H = 250. However, at the low energy regime, the
coexisting ILMs will be affected by the boundary conditions. Because the decay rate
tends to small as the total energy decreases. The effect of boundaries is discussed
at the low energy regime in Sec. 3.2.

3.1.4 Stability of Coexisting ILMs

The stability of ILM depends on the symmetry of amplitude distribution in space [21].
As mentioned in Sec. 3.1.1, coexisting ILMs in the coupled cantilever array are clas-
sified into two kinds. Generally, one is stable if the other is unstable and vise versa.
Floquet multipliers of ST4 and P4-5 at β2 = 0.001 are shown in Figs. 3.4(c) and (d),
respectively. All of the multipliers for ST4 are on unit circle. Thus ST4 is stable. As
shown in Fig. 3.4(d), one of the multipliers is outside unit circle. That is, P4-5 is un-
stable. At β2 = 0.001, all coexisting P-modes are unstable and ST-modes are stable.
In addition, all unstable P-modes have only one multiplier outside unit circle. The
stability of coexisting ILMs is the same as in nonlinear Klein-Gordon lattices [21].
In terms of the stability of ILM, the coupled cantilever array at β2 = 0.001 is similar
to the nonlinear KG lattices.

On the other hand, ST4 becomes unstable when β2 is increased from 0.001
to 0.01. Fig. 3.5(c) shows the Floquet multipliers of ST4. One of the multipliers
is clearly located outside unit circle. All coexisting ST-modes are unstable. The
stability of P-modes is also flipped. The multipliers of P4-5 are shown in Fig. 3.5(d).
All multipliers are on unit circle. Stable P-modes are also observed in Fermi-Pasta-
Ulam (FPU) lattices [12]. ST-modes are unstable in the lattices. Thus, the cantilever
array at β2 = 0.01 is similar to the FPU lattices in terms of the stability of ILM.

The coupled cantilever array has both on-site and inter-site nonlinearity. Thus
the ratio of nonlinearity β2/β1 determines whether the array is similar to a nonlinear
KG or a FPU lattice. The stability of ST- and P-modes should be exchanged between
β2 = 0.001 and 0.01 because the stability of ILM is different between nonlinear KG
and FPU lattices. Therefore, in the coupled cantilever array, bifurcations appear by
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Figure 3.3: Exponential decay of amplitude of coexisting ILMs. Dotted lines are
drawn by Eq. (2.12).
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Figure 3.4: Floquet multipliers of ST4 (b) and P4-5 (d) at β2 = 0.001. Circle drawn
by dashed curve indicates unit circle in complex plane.

varying the nonlinear inter-site coefficient1 β2, so that drastic change of the global
phase structure is caused. The bifurcations will discussed in Sec. 3.3 in details.

3.2 Tangent Bifurcations

Coexisting ILMs show that the amplitude distributions are strongly localized, so
that many ILMs are obtained. The shape of amplitude distribution is derived by
Eq. (2.12) except the locus of ILM. That is, the gradient of the shape is determined
by the frequency ω of ILM. The gradient tends to be large as the frequency increases.
On the other hand, the gradient becomes small when the frequency decreases and
approaches to the upper zone boundary. Since the number of cantilever is limited to
be N = 8, coexistence of ILM will be changed with respect to the frequency. For the
coupled cantilever array, the frequency increases with increasing the total energy of
the system because all coefficients of Eq. (2.2) are positive. Then the total energy
H is chosen as a parameter for investigating the coexistence of ILM.

1The value of β1 is determined by the scaling for the homogeneous cantilever array. Then β1 is
kept 0.01 for all analysis in homogeneous cantilever arrays.
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Figure 3.5: Floquet multipliers of ST4 (b) and P4-5 (d) at β2 = 0.01. The total
energy is set to H = 250 as well as the case of Fig. 3.4.

To draw all coexisting ILMs in one bifurcation diagram, the collective variable
is introduced as follows:

XILM =

∑8
n=1 n × |un|∑8

n=1 |un|
, (3.1)

where |un| is the absolute value of nth cantilever’s displacement on the hyper surface
Σ4. The locus of ILM coincides with XILM. Then XILM takes integers for ST-modes
and half-integers for P-modes. For example, XILM ≃ 4 for ST4 and XILM ≃ 4.5 for
P4-5.

The bifurcation diagram of coexisting ILMs is shown at β2 = 0.001 in Fig. 3.6.
The total energy is swept from zero to 250. The amplitude distributions of coexisting
ILMs at H = 250 are shown in Fig. 3.1. The number of coexisting ILMs is not change
while H > 50. However, P1-2 and ST1 disappear for H < H3, where H3 is the
critical value when the bifurcation occurs. As the total energy decreases, coexisting
ILMs disappear. Finally, ST4, P4-5, and ST5 degenerate to a stable solution, which
is continuously connected to P4-5 in Fig. 3.6. The solution ultimately correspond to
the upper zone boundary mode when the total energy is reduced to be zero, namely,
H → 0. In other words, the upper zone boundary mode loses the stability and then
ILMs appear. This bifurcation is called tangent bifurcation [21].
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Figure 3.6: Bifurcation diagram for coexisting ILMs at β2 = 0.001. Solid and dashed
curves represent stable and unstable ILMs, respectively. The threshold energies are
evaluated as follows: H0 ≃ 14.2, H1 ≃ 19.0, H2 ≃ 25.4, H3 ≃ 48.1.

0

1

2

3

4

5

0  50  100  150  200  250

X
I
L
M

H

P4-5 (stable)

ST4 (unstable)

ST5 (unstable)

P3-4 (stable)

ST3 (unstable)

P2-3 (stable)

ST2 (unstable)

P1-2 (stable)

H
1

H
2

H
0

Figure 3.7: Bifurcation diagram for coexisting ILMs at β2 = 0.01. H0 ≃ 5.06,
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Figure 3.7 shows the bifurcation diagram at β2 = 0.01. The number of coex-
isting ILMs is also changed with H. In this case, P1-2 coincides with ST2 instead
of ST1 and disappears at H = H2. P2-3 and P3-4 also disappeared with unstable
ST-modes. However, P4-5 does not show any bifurcation to the other ILMs. The
stability of P4-5 is always stable.

Bifurcation diagrams show that an ILM requires an energy to exist. The
threshold energies depend on parameters of Eq. (2.2). The boundary conditions
also affect the threshold energies. Figs. 3.6 and 3.7 clearly show that the threshold
energies are increased as XILM approaches to the boundary. This implies that the
influence of the boundaries becomes weak at high energy regime because the energy
distribution of ILM is concentrated in narrow region.

3.3 Stability Change

The stability of coexisting ILMs is different between the array at β2 = 0.001 and
0.01. ST-modes are stable at β2 = 0.001 and unstable at β2 = 0.01. Thus the
stability should be flipped in the parameter region, 0.001 < β2 < 0.01. The locus
and the stability of coexisting ILMs are shown with respect to β2 in Fig. 3.8, where
the total energy H is kept at 250. The figure clearly shows how the stability of
coexisting ILMs is flipped with the change of the nonlinear inter-site coefficient.
ILMs standing around the center of array, 2.5 < XILM < 6.5, almost simultaneously
gain or lose stability at β2 ≃ 0.00545. On the other hand, ST1 coincides with P1-2
at β2 ≃ 0.00238 and disappears with increment of β2. ST1 could not found for
β2 > 0.00238. The disappeared P1-2 appears again with ST2 at β2 ≃ 0.00716.
That is, the P1-2 makes a pair with ST2 for β2 > 0.00716. As a result, ST1 is
isolated from pairs of coexisting ILMs and then it is prohibited to exit. Therefore,
the number of coexisting ILM is also changed with respect to β2.

The enlargement of the bifurcations is shown in Fig. 3.9(a). Bifurcation points
differ from each other even if ILMs are located around the center of array. The
difference between bifurcation points results in the situation that unstable P-modes
and ST-modes coexist. The unstable ST4 exists with the unstable P4-5 as shown
in Fig. 3.9(a). The region, where the unstable P-modes and ST-modes coexist, is
investigated in Sec. 3.4.

As shown in Fig. 3.9(a), the locus of stable ST3 is shifted from 3.0 toward 3.5
with β2. The stable ST3 finally coincides with unstable P3-4 and disappears. The
ST3 appears again as an unstable ILM with stable P2-3. Then the locus of stable
P2-3 asymptotically reaches to 2.5 as β2 increases. The region where ST3 does not
exist is arisen between these bifurcation points. That is, ST3 has a parameter gap
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Figure 3.8: Locus and stability of coexisting ILMs. Solid curve corresponds to stable
ILMs. Unstable ILMs are represented by dashed curve.

between stable and unstable modes. The parameter gaps also exist for P3-4 and
ST4.

However, P4-5 does not have any parameter gap because of the reflectional
symmetry about the center of array. That is, only P4-5 changes its stability without
any discontinuity. Unstable and stable P4-5 continuously join at BP. Two stable
ST-modes join with P4-5 and disappear at the same condition. P4-5 changes only
its stability at BP.

The absolute value and argument of the Floquet multipliers for P4-5 are shown
in Figs. 3.8(b) and (c). Two Floquet multipliers are on real axis for β2 < βP.
One of them exists outside unit circle. The other stays inside unit circle. As β2

increases, two Floquet multipliers approach toward +1 along real axis. At β2 = βP,
these multipliers are conjoined at +1. After the bifurcation, their multipliers are on
unit circle. Consequently, the bifurcation of ILMs on β2 is classified to saddle-node
bifurcation [56].
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3.4 Analysis on Ringed Array

3.4.1 High Energy Limit

The bifurcation diagram shown in Fig. 3.8 includes the influence of the boundaries
and has the dependency on energy. It suggests the influence of the boundaries
that a bifurcation point tends to depart from β2 ≃ 0.00545 as the locus of ILM
approaches to the end of array. Then this parameter gap seems to be affected by
the fixed ends. The influence of the boundaries can be reduced by substituting the
boundary conditions from Eq. (2.3) to Eq. (2.4). On the other hand, according
to the dependency on energy, the critical value at which P4-5 gains the stability,
namely βP, increases with H. To eliminate the dependency, the linear coefficients
are set to be zero. As a result, the equation which only consists of nonlinear terms
is obtained as follows:

ün = − β1u
3
n − β2

{
(un − un−1)

3 + (un − un+1)
3} , (3.2)

where the boundary condition is u0 = uN . The Hamiltonian is derived as follows:

H =
N∑

n=1

{
1

2
v2

n +
β1

4
u4

n +
β2

4
(un − un−1)

4

}
. (3.3)

Equation (3.2) describes the dynamics of cantilevers at high energy regime.
The contribution of the linear terms can be neglected in Eq. (2.2) because the
nonlinear terms become dominant as the total energy increases. Thus, Eq. (3.2) is
obtained by taking a limit H → +∞. This limit is called high energy limit.

3.4.2 Stability Change

Since Eq. (3.2) is invariant against the total energy, the tangent bifurcations shown
in Figs. 3.6 and 3.7 do not occur. However, the nonlinear inter-site coefficient β2 is
still included as a parameter in the equation. Therefore, we can investigate only the
bifurcations related to the stability. The bifurcation diagram for Eq. (3.2) is shown
in Fig. 3.10(a). The bifurcation point βP is slightly increased. In addition, the
parameter gaps are completely vanished. All ST-modes and P-modes are smoothly
connected to corresponding modes. In the ringed array, the bifurcations related to
the stability are simultaneously caused for each mode. The stability of all P-modes
is simultaneously flipped at βP as shown in Fig. 3.10(a). For coexisting ST-modes,
the stability is flipped at β2 = βST.
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3.4.3 Asymmetric ILM

As can be seen in Fig. 3.10(a), the critical values βP and βST are different. This case
corresponds to βP > βST. Thus there exists the region in which all of the coexisting
P- and ST-modes are unstable. The region is darkly hatched in Fig. 3.10(a). In the
region, asymmetric ILMs, which are represented by dash-dotted curve, also coexist
with P- and ST-modes. The amplitude distribution is shown in Figs. 3.10(b) and
(c). These asymmetric ILMs are stable and stand between P- and ST-modes. Then
they cannot be classified into P- or ST-mode.

3.4.4 Influence of Impurity

The parameter gaps shown in Fig. 3.8 are caused by the fixed boundaries. In this
section, bifurcation diagrams for Eq. (2.2) with an impurity are shown. The impurity
is added to the linear on-site coefficient α1 at n = 4. Thus, the equation of motion
is modified as follows:

ün = − α1,nun − α2 {(un − un−1) + (un − un+1)}
− β1u

3
n − β2

{
(un − un−1)

3 + (un − un+1)
3} ,

(3.4)

where

α1,n =

{
α1 for n ̸= 4,

α1 + αd for n = 4.
(3.5)

To reduce the influence of boundaries, the periodic boundary condition is assumed.
The magnitude of impurity is assumed to be 0.1% of α1, namely, αd = ±0.001. The
resulting diagrams are shown in Figs. 3.11(a) and (b). In both cases, the added
impurity causes parameter gaps between stable and unstable ILMs except ST4.
Stable ST4 is connected to unstable ST4 without any gap. However, the bifurcation
point of ST4 is shifted by the impurity. The stability change of ST4 is caused at
lower value of β2 by adding the negative impurity as shown in Fig. 3.11(a). It seems
that the direction of the shift depends on the sign of αd.

Coexisting ILMs located around the impurity disappear when β2 is close to
the critical value of the stability change in the original system. That is, ILMs are
strongly affected by disorders of cantilever array if the nonlinear inter-site coefficient
is close to the critical value. In other words, the influence of impurity is enhanced. It
implies that manipulations of ILM by adding impurity become possible by adjusting
parameters of system. The manipulations using impurity are discussed in Chapter 6.
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with an impurity. The impurity is added at n = 4. Parameters are set to α1 = 1,
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3.5 Remarks

In this chapter, we have numerically discussed the local characteristics of ILM. The
coexistence and the stability were first shown for two types of coupled cantilever
array. For the relatively small value of the nonlinear inter-site coefficient, ST-modes
are stable and P-modes are unstable. The stability of coexisting ILMs is flipped at
the other coupled cantilever array which has the large nonlinear inter-site coefficient.
According to bifurcation analysis, it has been shown that the stability change is
caused with saddle-node bifurcations by varying the nonlinear inter-site coefficient.
In addition, the dependency on energy was also discussed. The total energy should
be greater than the lowest threshold energy so that ILMs exist. This fact is one of
differences between ILMs and linear localized modes.

Stability analysis in the ringed array where the linear terms are eliminated has
revealed that the nonlinear inter-site coefficient governs the stability of ILMs. It
suggests that the stability of ILM is determined by the balance of nonlinear terms.
If the on-site nonlinearity is dominant, ST-modes is stable. On the other hand, P-
modes are stable in the system where the inter-site nonlinearity is dominant. This
allows to predict which modes appear in a realistic system. In addition, asymmetric
ILMs were obtained in the region where all coexisting P- and ST-modes are unstable.
Their amplitude distribution has no symmetry. These ILMs are not classified into
ST- or P-modes. In the region βST ≤ β2 ≤ βP, twice number of ILMs coexist. The
region still exists for a several hundred degree-of-freedom system. It is thus suggested
that the asymmetric ILM independently exists with respect to the degree-of-freedom
of system. In experiments, if the coupled cantilever array is precisely fabricated, the
asymmetric ILM will be observed. However the region is quite narrow. In addition,
analysis in the array with fixed boundaries suggests that the region is sensitive
against impurities breaking the symmetry of the system. Thus the excitation of
asymmetric ILMs seems to be difficult.

The influence of the fixed boundaries have also been discussed with relation
to bifurcation diagrams. At low energy regime, ILM can exist only around the
center of array because the gradient of the tail becomes small. Even in high energy
regime, ILMs near the fixed boundaries disappear when the nonlinear inter-site
coefficient is set around 0.005. Since the fixed boundaries are kinds of impurities,
the influence of impurities will be enhanced near the critical value of the nonlinearity
inter-site coefficient. It has been confirmed by comparing the periodic boundary
condition to the fixed boundary condition. In the ringed array, all coexisting ST-
modes simultaneously lose their stability at β2 = βST because of the translational
symmetry. The fixed boundaries, which are equivalent to quite heavy impurities,
break the symmetry of the array. As a result, the symmetry of the bifurcation
diagram is broken. The parameter gaps between stable and unstable ILMs are
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emerged. Even if an ILM stands near the center of the array, the parameter gap
exists. In other words, the influence of impurity against ILM is enhanced near the
critical values which change the stability of ILM.

The balance of nonlinearities is determined by the design of the array. Then
the stability of ILM depends on the design of the cantilever array. It implies that
the spatial symmetry of ILM is selectable in practical devices through the design.
In addition, if the balance is adjustable in time, the stability will be controllable.
Therefore, the nonlinearity of the system can be substantial parameter for controlling
ILM.

To control ILM, the global behavior of ILM and the related phase structure
should be investigated. Such global characteristics will be due to the local charac-
teristics shown in this chapter. Based on the discussion in this chapter, the global
phase structure and traveling ILMs are mainly focused in the next chapter.
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Chapter 4

Global Phase Structure and
Traveling ILM

In the previous chapters, it is revealed that intrinsic localized modes coexist in the
array and the total energy of the system is a key to grasp the coexistence. Moreover,
the stability of the coexisting ILMs depends on the nonlinear coupling coefficient. On
the basis of the facts mentioned above, the global phase structure and the behavior
of traveling ILMs are investigated in this chapter. The global phase structure is
examined by focusing on the invariant manifolds of unstable coexisting ILMs. The
structure formed by invariant manifolds is drastically changed when the bifurcation
occurs. It is also shown that an impurity can be a seeds of transition of the global
phase structure. Finally, the behavior of traveling ILMs is discussed with relation
to the global phase structure. It is concluded that a traveling ILM wandering in the
array is inherently governed by the phase structure formed by invariant manifolds
of unstable ILMs.

4.1 Traveling Waves and Global Phase Structure

Traveling waves, that wander in a spatially extended system, were investigated on
their behaviors in coupled magneto-elastic beam systems, which have a similar struc-
ture to the coupled cantilever array [40–42]. Several stationary waves instead of
ILMs coexist in the system with complicated basin structures. In particular, the
basin structure around unstable waves implies that there are heteroclinic connec-
tions of invariant manifolds governing unstable waves. That is, there is an orbit
connecting unstable stationary waves. If a solution is generated on the invariant
manifolds, the solution transits among the unstable stationary waves. Thus a wave
travels through the system [41].
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Intrinsic localized modes can be recognized as stationary waves because the
locus of ILMs is independent of time. So, it is possible to assume that coexisting
ILMs can behave in the similar dynamics to the stationary waves in the coupled
magneto-elastic systems. That is, it is conjectured that a traveling dynamics of
ILM is governed by the phase structure around coexisting ILMs.

4.2 One Dimensional Invariant Manifolds of Un-

stable ILMs

Let x∗ ∈ Σ4 be a fixed point for the Poincaré map P . Linearization around the fixed
point leads a following equation:

ξk+1 =DP(x∗)ξk, (4.1)

where k denotes the number of iteration of the linearized map and DP(x∗) is a
(N − 1)× (N − 1) matrix. As mentioned in Chap. 2, the stability of the fixed point
is determined by eigenvalues of the matrix DP(x∗). Now we consider subspaces
spanned by eigenvectors of the matrix. The subspaces is the direct sum of three
subspaces [57]:

the stable subspace, Es = span{e1
s, . . . , e

Ns
s },

the unstable subspace, Eu = span{e1
u, . . . , e

Nu
u },

the center subspace, Ec = span{e1
c , . . . , e

Nc
c },

(4.2)

where e1
s, . . . , e

Ns
s are the Ns eigenvectors whose eigenvalues are inside unit circle,

e1
u, . . . , e

Nu
u are the Nu eigenvectors whose eigenvalues are outside unit circle, and

e1
c , . . . , e

Nc
c are those whose eigenvalues are on unit circle. The hyper plane Σ4 is equal

to the direct sum of the subspaces, Es ⊕Eu ⊕Ec. That is, (N − 1) = Ns +Nu +Nc.
Each subspace is called eigenspace. If an initial point is chosen in Es, a sequence of
points obtained by the iteration of the map exponentially approaches to the fixed
point. Similarly, a sequence of points lying in Eu exponentially grows and those in
Ec neither grows nor decay [57].

For the nonlinear map P , the local stable and unstable manifolds of x∗, W s
loc,

W u
loc are defined as follows [58]:

W s
loc(x

∗) ={x ∈ U | Pk(x) → x∗ as n → ∞, and Pk(x) ∈ U,∀k ≥ 0},
W u

loc(x
∗) ={x ∈ U | Pk(x) → x∗ as n → −∞, and P−k(x) ∈ U,∀k ≥ 0},

(4.3)

where U ⊂ Σ4 is a neighborhood of the fixed point x∗. According to stable manifold
theorem [57], the local stable and unstable manifolds, W s

loc and W u
loc, have the same
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dimensions as the eigenspaces Es and Eu of the linearized system. In addition, the
local invariant manifolds are tangent to the eigenspaces at x∗. The local invariant
manifolds W s

loc, W u
loc have global analogues W s, W u, obtained by

W s(x∗) =
∪
k≤0

Pk(W s
loc(x

∗)),

W u(x∗) =
∪
k≥0

Pk(W u
loc(x

∗)).
(4.4)

In this thesis, W s and W u are called stable manifold and unstable manifold, respec-
tively.

Unstable ILMs have an eigenvalue outside unit circle in complex plane as
shown in the previous chapter. Then unstable manifolds of the unstable ILMs are
one dimensional in the hyper plane Σ4. The unstable manifolds are denoted by
W u(·) with the name of ILM. For instance, unstable manifold of ST4 is denoted
by W u(ST4). Stable manifolds are also one dimensional and have the same global
phase structure as the unstable manifolds because Eq. (2.2) is time-reversal. So, we
only discuss the global structure of unstable manifolds.

4.3 Projection to Draw Global Structures

Invariant manifolds are globally extended in the phase space. Then the phase space
and the configuration space are not suitable for discussing the global structure.
Hence a projection G : Σp → C is introduced, where C depicts a set of all complex
numbers. Here we define local potential energies as follows:

UOn(un) =
α1

2
u2

n +
β1

4
u4

n,

UIn(un − un−1) =
α2

2
(un − un−1)

2 +
β2

4
(un − un−1)

4,

(4.5)

where UOn and UIn represent the on-site and the inter-site potential of nth oscillator,
respectively. Then the energy distribution of the array is given by

E(s) =


UOn(un) +

1

2
v2

n

∣∣∣
n=s

for s = n,

UIn(un − un−1)
∣∣∣
n=s+ 1

2

for s = n − 1

2
,

0 for 2s /∈ N,

(4.6)
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where s denotes a spatial coordinate of array. The projection is thus defined as [19]

hk =G(xk),

=
N+1∑
n=0

{
1

2
u̇2

nei 2π
N+1

n + UOn(un)ei 2π
N+1

n +UIn(un − un−1)e
i 2π

N+1
(n+ 1

2
)
}

,(
=

∫ N+1

0

E(s)ei 2π
N+1

sds

)
,

(4.7)

for the coupled cantilever array with fixed boundaries.

The projection G implies the inner product of the energy distribution of ILM
and the sinusoidal wave whose wave number is unity in the array. Therefore, the
phase of hk, namely θk = arg hk, in complex plane reveals the locus of the energy
distribution. For the case of coexisting ILMs, the phase corresponds to the center
of ILM. In addition, the velocity of an traveling ILM can be estimate from the
differences between θk and θk+1, namely, ∆θk = θk+1 − θk [19].

4.4 Cyclic Structures

The structure of unstable manifolds is schematically drawn by Eq. (4.7). Invariant
manifolds of unstable ILMs often show a cyclic structure in (θk, ∆θk) plane. As an
example of the cyclic structure, unstable manifolds of P3-4 and P4-5 are shown in
Fig. 4.1, where β2 = 0.001 and H = 250. In Fig. 4.1, stable and unstable ILMs are
represented by open circles and squares respectively. Unstable manifolds are drawn
by solid curves. The right branch of unstable manifolds of P3-4 forms the cyclic
structure which lies between P3-4 and ST4. The unstable manifold seems to reach
ST4. However, it turns around ST4 in the phase space as shown in Fig. 4.2. The
other branches also appear unstable manifolds with the cyclic structure.

4.5 Connections between Vicinities of Unstable

ILMs

Unstable manifolds can form another structure instead of the cyclic structure. In
Fig. 4.3(a), a simple structure is shown. The total energy is slightly larger than H0

in Fig. 3.6. At the energy level, only three ILMs coexist, P4-5, ST4, and ST5. As
shown in the figure, the unstable manifolds extend from P4-5 and return to P4-5
again. The manifolds approach to ST4. However, the enlargement around P4-5 (see
Fig. 4.3(b)) shows that there is no-homoclinic structure in numerical estimation.
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On the other hand, another simple structure is shown in Fig. 4.4(a). In this
case, the nonlinear inter-site coefficient is set at β2 = 0.01. The total energy is
decided based on H0 at β2 = 0.01. In Fig. 4.4(a), all coexisting ILMs at the en-
ergy level, H = 7, are shown. There are two unstable ST-modes, ST4 and ST5.
The solid and dotted curves represent W u(ST4) and W u(ST5), respectively. The
right branch of W u(ST4) and the left branch of W u(ST5) are almost overlapped in
Fig. 4.4. Fig. 4.4(b) shows the fact that the unstable manifold of ST5 lies nearby
ST4. Although ST4 and ST5 seem to be connected by unstable manifolds, any het-
eroclinic connections are not identified in Fig. 4.4. However, the vicinities around
unstable ILMs are connected each other. On the basis of the results on nonlinear
waves in coupled magneto-elastic beam systems [41], the structure connecting the
vicinities of unstable ILMs will be the key to the global dynamics of traveling ILMs.
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4.6 Global Phase Structure Concerning ILMs

4.6.1 Drastic Change with the Stability Change

In the previous chapter, it was revealed that the stability of coexisting ILMs is
flipped by the nonlinear inter-site coefficient β2. Structures of unstable manifolds
also depend on β2 because of the stability change. Figs. 4.5(a)–(d) show structures
of unstable manifolds at β2 = 0.003, 0.005, 0.006, and 0.01. The stability change
occurs between β2 = 0.005 and 0.006. The right branch of W u(P3-4) forms a cyclic
structure centered at ST4 as shown in Fig. 4.5(a). The unstable manifold reaches
the middle between ST4 and P4-5. The other manifolds in Fig. 4.5(a) show similar
structure to the right branch of W u(P3-4). By increasing β2 from 0.001, the cyclic
structures become wide.

The structure connecting the vicinities of unstable P-modes are observed at
β2 = 0.005. The right branch of W u(P3-4) reaches the vicinity of P4-5 as shown in
Fig. 4.5(b). The unstable manifold returns to the vicinity of P3-4 again (see inset of
Fig. 4.5(b)). Other unstable manifolds show the same structure as the right branch
of W u(P3-4). Thus, the global phase structure becomes quite simple at β2 = 0.005.

The global phase structure at β2 = 0.006 is also simple as shown in Fig. 4.5(c).
However, the structure is drastically changed. The connections between unstable
P-modes are vanished. On the other hand, the vicinities of unstable ST-modes are
connected each other. The drastic change is caused by the stability change which
occurs between β2 = 0.005 and 0.006. Unstable manifolds observed at β2 = 0.005 is
vanished with unstable P-modes by increasing β2. ST-modes lose their stability by
the stability change. Then invariant manifolds of ST-modes appear at β2 = 0.006.
Although the unstable manifolds do not show any homo- or heteroclinic connections
as shown in the inset of Fig. 4.5(c), the unstable manifolds reach the vicinities of
ST-modes. The connections between the vicinities of ST-modes are observed.

By increasing β2 from 0.006 to 0.01, the simple structure is broken as shown in
Fig. 4.5(d). The right branch of W u(ST4) approaches to ST5; however, the unstable
manifolds forms a cyclic structure surrounding stable P-modes. The nearest point
of W u(ST4) to ST5 tends to leave as β2 increases. Thus, the unstable manifolds of
ST-modes will show more complicated structure in the (θk, ∆θk) plane. In other
words, the simple structure can be observed if β2 is close to the critical value at
which the stability change occurs.

The simple structure is similar to the phase space of a pendulum system derived
by ϕ̈ = − sin ϕ. Stable and unstable ILMs correspond to the stable and unstable
equilibrium points, respectively. The homoclinic orbit in the cylindrical phase plane
(ϕ̇, ϕ) forms very similar structure to the unstable manifolds of unstable ILMs. By
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Figure 4.5: Coexisting ILMs and unstable manifolds at β2 = 0.003(a), 0.005(b),
0.006(c), and 0.01(d). Structure of the vicinity of an unstable ILM is shown in the
insets. Unstable manifolds are located very close to the unstable ILM. There is no
homo- or heteroclinic connection.
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Figure 4.6: Unstable manifolds of ST-modes at β2 = 0.006, H = 250.

the similarity of the global phase structures, it is expected that the global dynamics
of traveling ILM is also similar to in the pendulum system. This point will be
discussed in Sec. 4.7.

4.6.2 Influence of Impurity

In the previous chapter, it was shown that an impurity strongly affects coexisting
ILMs when β2 is close to the critical value. Several ILMs around the impurity are
vanished by adding the impurity. As shown in Sec. 4.6.1, the stability change is
caused with the drastic change of the global phase structure. In this section, the
influence of an impurity to the global phase structure is discussed at β2 = 0.006.
To eliminate the influence of the fixed boundaries, the ringed array is considered.
The unstable manifolds of the ringed array without impurities are shown in Fig. 4.6.
The nonlinear inter-site coefficient β2 is set at 0.006. A quite simple structure
which is similar to the pendulum is observed. In addition, the simple structure has
translational symmetry because the ringed array has the symmetry.

The simple structure is changed by adding an impurity at n = 4. Figs. 4.7(a)–
(c) show the global phase structures for αd > 0. The unstable manifold of ST4
are inside of the other unstable manifolds in Fig. 4.7(a). Then the connections
between ST4 and neighboring ILMs are broken. P3-4 and P4-5 approach to ST4 as
αd increases as shown in Figs. 4.7(a) and (b). The loops surrounding P3-4 and P4-5
become smaller. As shown in Fig. 4.7(c), the unstable ST4 finally gains stability at
αd = 0.05 and the unstable manifold of ST4 is vanished. The connection between
ST3 and ST5 is observed at αd = 0.05. If a larger impurity added, the connection
will be vanished with disappearances of ST3, ST5, P2-3, and P5-6.

For the case of αd < 0, unstable manifolds of ST4 are outside of the other
unstable manifolds as shown in Fig. 4.8(a). The connections between ST4 and
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Figure 4.7: Unstable manifolds of ST-modes with impurity, (a) αd = 0.01, (b)
αd = 0.03, (c) αd = 0.05.
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Figure 4.8: Unstable manifolds of ST-modes with impurity, (a) αd = −0.01, (b)
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neighboring ILMs are also broken. The right branch of W u(ST4) returns to the
vicinity of ST4. The unstable manifold of ST4 form a large loop which surrounds
all coexisting ILMs and unstable manifolds except ST4. The loop becomes larger
as the magnitude of the impurity is increased. The stability of ST4 is not flipped
in this case. However, disappearances of coexisting ILMs are caused by varying αd

from −0.01 to −0.03. P3-4, ST4, P4-5, and ST5 disappear in Fig. 4.8(b). Therefore,
unstable ST4 is isolated as well as the case of αd > 0.

4.7 Behavior of Traveling ILM

4.7.1 Trajectory of Traveling ILM and Structure of Unsta-
ble Manifolds

In this section, the global dynamics of traveling ILMs are discussed based on the
global phase structures. Here, it is assumed that a traveling ILM is generated by an
initial point which is close to an ILM. If the ILM is unstable, the generated ILM will
wander in the array [41]. In addition, the behavior of the traveling ILM depends on
the global structure of invariant manifolds [41].

The global phase structure at β2 = 0.001 is shown in Fig. 4.9(a). It is already
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Figure 4.9: (a): Unstable manifold of P3-4 and P4-5. Coexisting ILMs are repre-
sented by circles and squares. The arrow in the upper panel implies the direction of a
perturbation against P3-4. The dots lying to the upper left are caused by definition
of the hyper plane Σ4. (b): Temporal development of a traveling ILM. Darkness
correspond to the energy E(s).

shown and discussed in Sec. 4.4. The unstable manifolds show cyclic structures.
The cyclic structure formed by the right branch of W u(P3-4) implies that a traveling
ILM initially excited near P3-4 wanders between P3-4 and ST4. In Fig. 4.9(b), the
behavior of a traveling ILM is shown with energy distribution given by Eq. (4.5).
Darkness corresponds to high energy state. The traveling ILM is generated on the
right branch of unstable manifold of P3-4. The arrow in Fig. 4.9(a) indicates the
direction of the trajectory of the traveling ILM. At first, the energy mainly distribute
on third and fourth sites and between them. The locus of the energy distribution is at
3.5. In other words, the traveling ILM stays near P3-4. The traveling ILM suddenly
move to ST4 at t ≃ 50. The energy concentrate on the third oscillator at t = 60.
Then the traveling ILM immediately returns to P3-4. Finally the traveling ILM
reciprocally moves for a long period. The reciprocal behavior seems to be caused
by the cyclic structure of W u(P3-4). The locus of the traveling ILM is restricted
in a region between n = 3.5 and 4. The region corresponds to the right branch of
W u(P3-4). Then the behavior of traveling ILM is predictable by the structure of
unstable manifolds in the phase space.

The global phase structure at β2 = 0.01 is shown in Fig. 4.10(a). The unstable
manifolds also show cyclic structures. However, the cyclic structures of the unstable
manifolds of ST-modes are centered at a stable P-mode. The unstable manifold
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Figure 4.10: (a): Unstable manifold of ST3, ST4, and ST5. (b): Temporal develop-
ment of a traveling ILM.

of ST4 is located nearby ST5, and vice versa. Thus, a traveling ILM will move
from the vicinity of ST4 toward ST5, if the traveling ILM is excited near the ST4.
The behavior of a traveling ILM is shown in Fig. 4.10(b). The initial point of the
traveling ILM is chosen on the right branch of W u(ST4). Thus, the traveling ILM
is initially located at n = 4 as shown in Fig. 4.10(a)(b). The traveling ILM begins
to move at t ≃ 50. Then the traveling ILM reciprocally moves between ST4 and
ST5. The reciprocal behavior corresponds to the structure of the unstable manifolds.
In addition, the traveling ILM maintains its localized energy distribution while it
wanders in the array. Therefore, the structure of unstable manifolds implies the
behavior of a traveling ILM which is generated near an unstable ILM.

4.7.2 Sensitive Dependence on Initial Condition

The simple phase structures, which are similar to a pendulum system, appear if
β2 is close to the critical value at which the stability change occurs. Analogous
to the case of a conservative pendulum system, it is expected that the invariant
manifolds of unstable ILMs can be separatrices. So, the behaviors of traveling
ILMs become completely different even if the initial points of the traveling ILMs
are close each other. Here we take two initial points, IP1 and IP2, as shown in
Fig. 4.11, where β2 = 0.006 and H = 250. IP1 is inside the cyclic structure formed
by unstable manifolds of unstable ST-modes, whereas IP2 is outside the structure.
The trajectory started at IP1 turns clockwise and the other trajectory moves to the
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concentration for both trajectories is shown in Fig. 4.12.

right hand side. The corresponding time-development of energy concentrations is
shown in Fig. 4.12. For the case of IP1, the locus of the high energy concentration
reciprocally moves between n = 3 and 4. On the other hand, a traveling ILM
started from IP2 wanders beyond ST4. Although IP1 and IP2 are close to each
other, the behavior of the ILMs show completely different feature. It suggests that
the structure of unstable manifolds determines the behavior of traveling ILM.

4.8 Remarks

In this chapter, the global phase structure was investigated by calculating unstable
manifolds of unstable ILMs. It was observed that an unstable manifold forms a loop
surrounding a stable ILM. The loop is called cyclic structure. Connections between
vicinities of unstable ILMs were also identified. In addition, the drastic change of
the global phase structure is caused when the stability change occurs. It was also
shown that the global phase structure tends to be simple when the nonlinear inter-
site coefficient is varied to the critical value causing the stability change. In the
simple structures, the vicinity of each unstable ILM is connected each other by the
unstable manifolds.

The simple structure can be changed by adding an impurity if β2 is set near
the critical value. A positive αd locally changes the simple structure. However,
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Figure 4.12: Time-development of energy concentration of traveling ILMs. (a) Re-
ciprocally traveling ILM generated at IP1 in Fig. 4.11. (b) Traveling ILM initially
started at IP2.

a negative αd can globally change the phase structure. An unstable ILM at the
negative impurity has an unstable manifold which surrounds all coexisting ILMs
and their manifolds.

On the other hand, the behaviors of traveling ILMs were considered. As re-
sults, it was suggested that the global phase structure governs the behavior. In
addition, it was shown that unstable manifolds can be thought as separatrices when
the global phase structure shows a quite simple structure which is similar to a pen-
dulum system. Behaviors of two traveling ILMs are completely separated by the
unstable manifolds. Therefore, it seems that a traveling ILM can be controlled if
the structure of unstable manifolds is changed as desired. In the next chapter, ma-
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nipulation methods for traveling ILMs will be proposed based on the facts mentioned
above.

Appendix to Drastic Change of Global Phase Struc-

ture

The global phase structure drastically changes between β2 = 0.005 and 0.006 as
shown in Fig. 4.5. Although the stability of coexisting ILMs are flipped in 0.005 <
β2 < 0.006, the drastic change and the stability change are not caused simultane-
ously. Fig. 4.13 shows the process of the drastic change. The parameter setting
is set as the same as Fig. 3.9. In the figure, stable ST- and P-modes are repre-
sented by open circles. Filled boxes indicate unstable ILMs. At β2 = 0.005453360,
the unstable manifold of ST4, W u(ST4) is surrounded by W u(P4-5) as shown in
Fig. 4.13(a). However, the configuration is changed by increasing β2. The right
branch of W u(ST4) surrounds W u(P4-5) at β2 = 0.005453372. On the other hand,
the right branch of W u(P3-4) encloses W u(ST4) and W u(P4-5) for both Figs. 4.13(a)
and (b). The drastic change for W u(P3-4) occurs in another parameter region,
0.005453372 < β2 < 0.005453380. Fig. 4.13(c) shows that W u(P3-4) is surrounded
by the left branch of W u(ST4). Unstable manifolds of P3-4 and P4-5 are finally
vanished when P3-4(u) and P4-5(u) disappear with neighboring stable ST-modes.
Consequently, the global phase structure is changed as shown in Fig. 4.5(c) when
β2 increases to 0.006.
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Chapter 5

Manipulation of ILM

This chapter presents new methods for manipulation of intrinsic localized modes in
coupled cantilever arrays. In the previous chapter, it was shown that the global phase
structure is changed when the stability change occurs. In addition, an impurity
in the array possibly affects the global phase structure. It was also cleared that
traveling intrinsic localized modes are governed by the global phase structure. In
this chapter, two manipulation methods are proposed for ILM based on the phase
structure. One is based on the drastic change of the phase structure according to
the change of stability. The nonlinear inter-site coefficient is abruptly varied, then
an ILM begins to move from a site to another. Another is achieved by adding
an impurity. The impurity is confirmed to attract or repulse an ILM. Dynamical
behaviors of manipulated ILMs are discussed based on the global change of phase
structures by these methods.

5.1 Capture and Release

5.1.1 Stability Change for Manipulation of ILM

In the previous chapter, it was suggested that the behavior of traveling ILMs are
governed by the structure of unstable manifolds of unstable ILMs. In addition,
the drastic change of the global phase structure was observed with respect to the
nonlinear inter-site coefficient β2. These facts allow us to expect that the behavior
of traveling ILM can be manipulated by adjusting β2. Fig. 5.1 depicts a concept
to manipulate ILMs by changing the global phase structure. Here, it is assumed
that a traveling ILM is initially excited near a stable ILM. Then the traveling ILM
stays around the stable ILM as shown in Fig. 5.1(a). When β2 is rapidly varied,
the stability of coexisting ILMs changes and the drastic change of the global phase
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Figure 5.1: Concept of ILM manipulation using stability change. Squares and circles
correspond to unstable and stable ILMs, respectively. Solid curves indicate unstable
manifolds of unstable ILMs. The arrow represents the trajectory of the traveling
ILM.

structure appears. As a result, the traveling ILM begins to move along an unstable
manifold of the destabilized ILM (Fig. 5.1(b)). That is to say, the traveling ILM
is released. The released ILM will wander in the array. The wandering ILM will
be captured by the secondary stability change of ILMs, when the wandering ILM
approaches to the vicinity of an unstable ILM. The captured ILM stays around the
stabilized ILM at a site as shown in Fig. 5.1(c). As results, the traveling ILM is
shifted from a site to the next.

5.1.2 Numerical Confirmation

Figure 5.2 shows the structure of unstable manifolds at β2 = 0.005 and 0.006. Stable
and unstable ILMs alternately exist. Stability of ILMs is flipped when β2 is increased
from 0.005 to 0.006. In Fig. 5.2(a), unstable manifolds connect between vicinities
of unstable P-modes and surround stable ST-modes. After the stability change of
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Figure 5.2: Coexisting ILMs and unstable manifolds at (a)β2 = 0.005, (b)β2 = 0.006.
Circles and boxes indicate stable and unstable ILMs, respectively. Solid curves
represent unstable manifolds.

ILMs, the structure of phase space drastically changes with relation to unstable
manifolds. Stable P-modes are surrounded by unstable manifolds which connect
vicinities of each unstable ST-modes.

A numerical simulation is shown for the capture and release manipulation as
in Fig. 5.3. Here, an initial condition is set as stable ST3 at β2 = 0.005. The
magnitude of energy is shown by the tone in Fig. 5.3. The locus of the energy
concentration initially exists at n = 3. The first stability change at t = 100 is due
to the discontinuous change of β2. Then the global phase structure changes from
Fig. 5.2(a) to (b). ST3 loses its stability and begins to travel toward n = 4 for
100 < t < 820. That is, ST3 is released. The nonlinear inter-site coefficient β2

is changed to 0.005 again at t = 820. Then the traveling ILM is captured around
n = 4. Consequently, the ILM is manipulated from the site at n = 3 to 4.

5.1.3 Success and Failure of Capture

The capture and release of traveling ILMs were numerically shown in the previous
section. It was confirmed that the released ILM can be captured and stayed around
a site. However, the captured ILM does not converge to the site. A small fluctuation
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Figure 5.3: Capture and release of a traveling ILM. Darkness is proportional to the
magnitude of energy. Dashed-lines indicate when the stability change is caused.

around the site remains. In this section, the reason of the fluctuation is discussed.

The capture and release manipulations of P3-4 are shown in Fig. 5.4 for dif-
ferent onset of the stability change of ILMs. The horizontal axis corresponds to the
iteration number of the Poincaré map P . In these cases, the stability changes are
fired when the orbit of traveling ILM intersects Σ4. It allows to discuss the position
of the traveling ILM in (θk, ∆θk) plane when the stability change occurs.

At first, it is shown that the captured ILM shows very small fluctuation. In
Fig. 5.4(a), the traveling ILM initially stands at P3-4. In the initial state, the
nonlinear inter-site coefficient is set at β2 = 0.006. Thus, P3-4 is stable. The
nonlinear inter-site coefficient is discontinuously varied from 0.006 to 0.005 at k = 69,
where k denotes the map number corresponding to time evolution. As a result, the
first stability change occurs and the ILM is released. The released ILM leaves from
the destabilized P3-4 at k ≃ 110. Then it moves toward the vicinity of P4-5,
because the unstable manifold of P3-4 reaches near the P4-5 (see Fig. 4.5(b)). After
the released ILM reaches the vicinity of P4-5, β2 is set at 0.006 again at k = 134
for stabilizing P4-5 (secondary change). The released ILM is captured around the
stabilized P4-5. Consequently, the ILM travels from P3-4 to P4-5.

However, the released ILM is not captured when the second stability change
is fired at k = 118 as shown in Fig. 5.4(b). The ILM travels back and forth in
the whole of array. On the other hand, Fig. 5.4(c) shows that the released ILM is
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Figure 5.4: Capture and release of traveling ILM. A stable ILM is initially excited.
The stability of coexisting ILMs is changed at k = 69, where k depicts the number
of the map and corresponds to the time development. The nonlinear inter-site
coefficient is instantaneously changed here. The stability is flipped again at k =
134(a), 118(b), and 115(c).
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stability changes, and (b) trajectories after the second stability change.
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captured around the ILM where the traveling ILM initially stands, when the second
stability change is fired at k = 115. The traveling ILM reciprocally moves around
P3-4.

The difference in the behaviors can be explained by the global phase structures.
In Fig. 5.5, the trajectories of manipulated ILMs and unstable manifolds of unstable
ILMs are shown. A released ILM travels along unstable manifolds from unstable
P3-4 as shown in Fig. 5.5(a). After the second stability change, the phase structure
is drastically changed. Fig. 5.5(b) shows the phase structure and trajectories of
traveling ILMs after the second stability change. For the trajectory corresponding
to Fig. 5.4(b), the traveling ILM is located outside all cyclic structures of unstable
manifolds. On the other hand, the traveling ILM is inside the cyclic structure for the
trajectory of Fig. 5.4(a) and 5.4(c). It implies that if a traveling ILM, released by
the first stability change, is inside the cyclic structure at the second stability change,
the traveling ILM is captured around a stabilized ILM. In addition, fluctuations of
captured ILMs depend on the position when the secondary stability change occurs.
If the secondary stability change occurs when the trajectory of traveling ILM is
sufficiently close to an unstable ILM, the fluctuation of the captured ILM is small.
On the other hand, a traveling ILM which wanders the whole of array is generated
if the traveling ILM is located outside all cyclic structures. The position, when the
secondary stability change occurs, determines the behavior of traveling ILM after
the capture and release manipulation.

5.2 Attraction and Repulsion

5.2.1 Motivation

An experimental manipulation of ILM was first achieved by adding impurities [35].
An ILM was attracted and repulsed by the impurities. The experimental results
suggest that the global phase structure can be changed locally by adding an impurity.
In Chap. 3 and 4, the influence of an impurity was discussed. As a result, it was
shown that the impurity can change the global phase structure if β2 is close to
the critical value for the stability change. In this section, manipulations using an
impurity are discussed numerically. Here, small variation of linear on-site coefficient
is assumed as an impurity of the array.

63



5.2.2 Global Phase Structure with Impurity

In this section, manipulations will be shown in the coupled cantilever array with
fixed boundaries. Fig. 5.6(a) shows the initial phase structure before an impurity
is added. The nonlinear inter-site coefficient β2 is set at 0.005. ST1 and P1-2 do
not exist because of the fixed boundaries. Here we consider the case that ST3 is
manipulated by adding an impurity at n = 4. The global phase structure is locally
changed when the linear on-site coefficient α1 of the 4th cantilever is varied from 1 to
1 + αd. At αd = 0.05, the global phase structure is changed as shown in Fig. 5.6(b).
Coexisting ILMs neighboring ST4 are disappeared. Unstable manifolds surrounding
ST4 form a larger loop than the initial phase structure in Fig. 5.6(b). In this case,
the stability of ST4 is not flipped. However, ST4 loses its stability when αd is set at
−0.05. In Fig. 5.6(c), the destabilized ST4 has one dimensional unstable manifold as
well as coexisting P-modes. The unstable manifolds of ST4 surround all coexisting
ILMs except ST4. For instance, P2-3 and its unstable manifold are surrounded by
the left branch of unstable manifold of the destabilized ST4. Figs. 5.6(b) and (c)
show that an impurity, added at a certain site, can locally affect coexisting ILMs
and can change the structure of unstable manifold.

5.2.3 Attractive and Repulsive Manipulation

Attractive and repulsive manipulations are shown with energy distributions in Fig. 5.7.
The stable ST3 is initially excited. An attractive manipulation of ST3 is achieved
by adding a positive impurity αd = 0.05 at n = 4. Fig. 5.7(a) shows the behav-
ior of the attracted ST3. The impurity is added at t = 0. ST3 is first attracted
by the impurity. Then the attracted ILM reciprocally moves around n = 4. The
corresponding trajectory is shown by filled boxes in Fig. 5.6(b). The stable ST3 at
αd = 0 is vanished by the impurity. Thus, the initially excited ST3 begins to move.
The arrow in Fig. 5.6(b) indicates the direction of the trajectory. The trajectory
first moves to the right hand side and revolves around ST4.

On the other hand, Fig. 5.7(b) shows a repulsive manipulation. The initially
excited ST3 is first repulsed by an impurity αd = −0.05. The repulsed ST3 wanders
between n = 1.5 and 3. That is, ST3 is repulsively manipulated. The trajectory
of the repulsed ST3 is shown in Fig. 5.6(c). In this case, the stable ST3 still exists
when the impurity is added. However, the stable ST3 approaches to the unstable
P2-3. In addition, the right branch of W u(P2-3) is located in n < 3 as shown in
Fig. 5.6(c). Therefore, the initial point which corresponds to ST3 in Fig. 5.6(a) is
located outside W u(P2-3) at t = 0. Then, the trajectory first moves along the arrow
shown in Fig. 5.6(c). The trajectory turns along the unstable manifold of P2-3.
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5.3 Remarks

In this chapter, manipulations for a traveling ILM in Eq. (2.2) were numerically
discussed based on the global phase structure. In the capture and release manipu-
lation, an ILM was arbitrary released and was captured around a site. The abrupt
change of the nonlinear inter-site coefficient was applied to achieve the drastic change
of global phase structure due to stability change. In the attractive and repulsive
manipulations, an ILM was attracted or repulsed by an impurity added at a site.
The mechanism of the manipulations was also explained based on the global phase
structure.

The capture and release manipulation using the stability change requires that
the nonlinear inter-site coefficient β2 of Eq. (2.2) is adjustable. The nonlinear inter-
site coefficient seems difficult to adjust experimentally. However, the nonlinear on-
site coefficient β1 can also flip the stability because the ratio β2/β1 determines the
stability of coexisting ILMs. It has already been reported that an on-site nonlinearity
can be adjustable by applying a static electric field to a micro-cantilever array [36].
When the electric field is applied between each cantilever and a substrate facing
the array, the electric force is induced in each cantilever. The on-site potential is
modified as UOn(un) = α1u

2
n/2 + β1u

4
n/4 − δ1V

2/(d′
0 + un) [36, 59], where d′

0 and V
depict a nondimensionalized distance and the voltage between the cantilever array
and the substrate, respectively. Relative magnitude of the static electric potential
is determined by a coefficient δ1, which depends on the size of cantilever. According
to Maclaurin’s expansion, the applied electric field changes the on-site nonlinear
coefficient as β′

1 = β1 − 4δ1V
2/d′5

0 . Therefore the on-site nonlinearity can be varied
as a function of the voltage. If a micro-cantilever array is fabricated to have the
stable ST-modes, the manipulation is possible because an applied voltage decreases
the nonlinear on-site coefficient.

In the next chapter, a macro-mechanical cantilever array having tunable on-
site potentials is proposed. An experimentally excited ILM will be manipulated by
a locally induced impurity. The mechanism of the experimental manipulation is
discussed and compared with the manipulations proposed in this chapter.
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Chapter 6

Experimental manipulation in
macro-mechanical system

This chapter presents experimental discussion on intrinsic localized modes. A macro-
mechanical cantilever array is first proposed as a coupled cantilever array. Each
cantilever in the array is designed so that the on-site potential can be adjusted.
Therefore, the cantilever array allows that attractive and repulsive manipulations
using an impurity are investigated experimentally. In this chapter, observations of
intrinsic localized modes are shown prior to manipulation. Numerical simulations
are applied to confirm the experimental results. The stability of ILM in the ar-
ray is also investigated numerically. Finally, an attractive manipulation is shown
experimentally.

6.1 Macro-mechanical Cantilever Array

6.1.1 Cantilever with Cylindrical Mass

In this section, an equation of motion of a macro-cantilever is derived. Figs. 6.1
and 6.2 show a schematic configuration of the cantilever. A cylindrical mass is
attached at the free end of cantilever. Vibration of the cantilever is described by
Euler-Bernoulli beam theory as follows:

ρwh
∂2y

∂t2
= − EI

∂4y

∂x4
, (6.1)

where y depicts the displacement of cantilever at x. Moment of inertia is represented
by I = wh3/12. To solve Eq. (6.1), a solution is assumed to be y(x, t) = Y (x) sin(ωt).
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Then an ordinary differential equation

d4Y

dx4
= − ρwh

EI
ω2Y, (6.2)

is obtained. Eq. (6.2) can easily be solved. The general solution with four arbitrary
constants is as follows:

Y (x) = C1 sin

(
λ

ℓ
x

)
+ C2 cos

(
λ

ℓ
x

)
+ C3 sinh

(
λ

ℓ
x

)
+ C4 cosh

(
λ

ℓ
x

)
, (6.3)

where λ is a nondimensional parameter defined as λ = ℓ
√

ω
√

ρwh/EI. Boundary

conditions for the cantilever are given as follows:{
Y (0) =0

Y ′(0) =0
for fixed end,{

EIY ′′′(ℓ) + mω2Y (ℓ) = 0

−EIY ′′(ℓ) + Jω2Y ′(ℓ) = 0
for free end,

(6.4)

where m and J denote the mass and the moment of the cylindrical mass, respectively.
The boundary conditions give C1 = −C3, C2 = −C4 and a condition

(1 + cos λ cosh λ) − λ3

ℓ3

J

ρA
(sin λ cosh λ + cos λ sinh λ)

−λ

ℓ

M

ρA
(sin λ cosh λ − cos λ sinh λ) +

MJ

ρ2A2

λ4

ℓ4
(1 − cos λ cosh λ) = 0,

(6.5)

which determines the frequency of vibrating cantilever. The lowest value of λ sat-
isfying Eq. (6.5) is obtained as about 1.64(= λ1)

1. The shape function Y (x) shows
that the end of cantilever oscillates with the largest amplitude. This oscillation is
called the first mode oscillation of cantilever. In this thesis, the first mode is only
focused so that the partial differential equation is reduced to an ordinary differential
equation.

When the cantilever oscillates with the first mode frequency ω0, the dis-
placement of the end of cantilever shows a simple harmonic oscillation y(ℓ, t) =
Y (ℓ) sin(ω0t). Since a linear spring-mass system has harmonic solutions, the motion
of the end of cantilever is described by a simple equation as follows:

ü = − ω2
0u, (6.6)

where u denotes the displacement of the tip of cantilever. Eq. (6.6) represents a
linear oscillation of the tip of cantilever for a small amplitude.

1The corresponding frequency is about 37.5 Hz.
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Figure 6.1: Schematic image of (a) thin beam and (b) cylindrical magnet.

O
Cantilever Cylindrical magnet

Figure 6.2: Configuration of cantilever with permanent magnet.
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6.1.2 Nonlinearity Caused by Magnetic Interaction

Intrinsic localized modes in a coupled cantilever array need nonlinearities in the
array in order to exist. Then, a macro-cantilever is designed to have a nonlinear-
ity in its restoring force. A static magnetic force is often employed to induce the
nonlinearity [40–42,60]. In this thesis, a magnetic interaction between a permanent
magnet and an electro magnet is applied. A schematic configuration is shown in
Fig. 6.3. A permanent magnet (PM) is attached at the tip of cantilever. An elec-
tromagnet (EM) is placed beneath PM. The magnetic force between PM and EM
can approximately be described by Coulomb’s law for magnetic charges. Then the
interaction force is nonlinearly changed against the displacement of cantilever. The
configuration of magnetic charges is shown in Fig. 6.3(c). If the displacement of
cantilever is sufficiently small relative to the length of cantilever, Coulomb’s law for
magnetic charges gives the restoring force

F (un) =
mpme

4πµ0

un

(u2
0 + d2

0)
3
2

,

=χ(IEM)
un

(u2
0 + d2

0)
3
2

,
(6.7)

where mp and me correspond to magnetic charges of PM and EM, respectively.
The distance between PM and EM at the equilibrium state is denoted by d0. The
magnetic permeability is represented by µ0. Because the magnitude of me depends
on the current flowing EM, the coefficient of the interaction can be represented as
a function of the current, χ(IEM). In this thesis, we assumed the linear relationship
χ(IEM) = χ0 + χ1IEM. Because EM has a ferromagnetic core, an attractive force
between PM and EM is caused even if the current is kept to be zero. Thus χ0 is
always negative. On the other hand, the current direction changes the sign of χ1IEM.
We chose the current enhancing the attractive force is positive. Therefore, χ1 is also
negative.

A voice coil motor is attached to excite the cantilever as shown in Fig. 6.3.
When the voice coil motor is driven by a sinusoidal signal, the motion of the can-
tilever is depicted by

ü = − ω2
0u − γu̇ + F (u) + A cos(ωt), (6.8)

where A and ω denote the magnitude and the angular frequency of the external
force excited by the voice coil motor, respectively. The damping coefficient γ is due
to the air resistance.
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Figure 6.3: (a) Side view of a cantilever. A permanent magnet is attached at the free
end of the cantilever. An electromagnet is placed beneath the permanent magnet.
(b) Configuration of magnetic charges.

6.1.3 Mechanically Coupled Cantilevers

A schematic configuration of a macro-mechanical cantilever array is shown in Fig. 6.4.
Eight cantilevers are placed with an equal interval in one dimension. Size of the array
are in Table 6.1. Each cantilever derived by Eq. (6.8) is mechanically coupled by a
elastic rod, which is called coupling rod. The coupling rod causes a force depending
on the difference of displacement of adjacent cantilevers. The force linearly changes
against the displacement difference if the deformation of the rod is sufficiently small.
As shown in Fig. 6.4, the rod is attached near the support. The displacement of
cantilever at the rod is quite small relative to the tip. Thus we assume the linearity
of the coupling force. Therefore, the equation of motion of the coupled cantilever
array is obtained as follows:


u̇n =vn,

v̇n = − ω2
0un − γun + F (un) + A cos (ωt)

− C (un − un+1) − C (un − un−1) ,

(6.9)
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Table 6.1: Size of cantilever array

Each cantilever
Length(ℓ) 70.0 mm Width(w) 5.0 mm

Thickness(h) 0.3 mm Pitch(p) 15.0 mm
Density(ρ) 8.0 × 103 kg/m3 Young’s modulus(E) 197 GPa

Cylindrical magnet
Radius (r) 1.5 mm Height(l) 3.0 mm
Mass (m) 96.6 mg

Table 6.2: List of symbols in Eq. (6.9)

Symbol Value Symbol Value
ω0 2π×35.1 rad/s γ 1.5 s−1

C 284 s−2 χ0 −4.71 × 10−5 m3/s2

d0 3.0 mm χ1 −9.14 × 10−3 m3/s2A
A 3.0 m/s2 ω 2π×36.1 rad/s

where n = 1, 2, . . . , 8 and C denotes the linear inter-site coefficient. The boundary
conditions of Eq. (6.9), {

u0 = 0, v0 = 0,

u9 = 0, v9 = 0,
(6.10)

are given by the fixed ends of cantilever array shown in Fig. 6.4. Parameters esti-
mated experimentally are in Table 6.2.

6.2 Experimental Setup

The experimental setup is shown in Fig. 6.6. The displacement of each cantilever un

is measured by using a strain gauge. The resistance of the strain gauge is slightly
changed with respect to the displacement of cantilever. To detect the small change
of resistance, a bridge circuit is used with a differential amplifier. The amplified
voltage signal is stored in a computer through a multi-channel A/D converter.

A current flowing in EM is individually adjusted by the computer. The com-
puter outputs a voltage signal via a multi-channel D/A converter. A V/I converter
including a current amplifier supplies the current to EM.
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Figure 6.4: Overview of the cantilever array. Eight cantilevers are mechanically
coupled by the coupling rod. A short cantilever is attached at the end of array
to realize the fixed boundary condition. The voice coil motor excites the whole of
cantilever array except electro magnets.
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To excite the cantilever array, the voice coil motor is attached to the support
as shown in Fig. 6.6. The voice coil motor is driven by a sinusoidal voltage signal
generated by a function generator.

6.3 Observation of Localized Oscillations

6.3.1 Frequency Response of Cantilever

Restoring force of each cantilever nonlinearly varies because of the magnetic inter-
action between PM and EM. Fig. 6.7 shows the relationship between amplitude and
frequency when both γ and A are set at 0. The curvature of the skeleton curves
shows the soft-spring characteristics of the cantilever. The curves in Fig. 6.7 asymp-
totically approach to the line of natural frequency of cantilever as the amplitude
increases. Because the contribution of magnetic interaction becomes small when
the amplitude is larger than the diameter of EM. On the other hand, the frequency
at small amplitude strongly depends on the current flowing EM. The linearization
of Eq. (6.9) decides a resonant frequency as follows:

ω′
0 =

√
ω2

0 − (χ0 + χ1IEM)/d3
0, (6.11)
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Figure 6.6: Experimental setup.

where χ0 and χ1 are assumed to be negative. The resonant frequency is shifted to
the high frequency side according to the increase of current.

Experimental frequency responses clearly show that a hysteretic response with
respect to the external force at the low frequency side from the resonant frequency as
shown in Fig. 6.8. Amplitude of a cantilever rapidly increased at 38.3 Hz in the up-
scan of frequency. However, in the down-scan, the amplitude jump occurred at 35.9
Hz. Therefore, the cantilever has two stable states when the frequency of external
excitor is set between 35.9 Hz and 38.3 Hz. To excite a localized oscillation, the
external excitor should vibrate the array with a frequency at which the hysteresis
occurs. Then the frequency is set at 36.1 Hz.

6.3.2 Localized Oscillations

Several localized oscillations were observed in the coupled cantilever array by a
external excitation. Figs. 6.9(a), (b), and (c) show wave forms of observed localized
oscillations. One of the cantilevers has a quite large amplitude while the others are
relatively small. The amplitude distribution is obviously localized.

We also observed localized oscillations at n = 2 and n = 4. However, a local-
ized oscillation standing at n = 3 could not be excited. The reason seems a disorder
of the array. The disorder is implied by a symmetry of amplitude distribution. As
shown in Fig. 6.9(a), amplitude of 6th cantilever is larger than 4th cantilever. Thus
the symmetry of observed localized oscillation is slightly broken. The asymmetricity
is not observed in numerical simulations shown in Figs. 6.10(a), (b), and (c). The
disorder seems to brake the symmetry of localized oscillations because any disorders
are not considered in numerical simulations.
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Figure 6.9: Experimentally excited ILMs. An ILM was excited at n = 5 (a), n =
6 (b), and n = 7 (c). It was also observed that there was no ILM (d). The cantilever
array was externally vibrated with 36.1 Hz.
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Figure 6.10: Numerically obtained ILMs for Eq. (6.9). Parameters are listed in
Table 6.2.
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Figure 6.11: Exponential decay of amplitude of localized oscillations. Theoretical
lines drawn by dotted line are given by Eq. (2.12).

The fixed boundaries of the array can be considered as a local impurity. Lo-
calized oscillations standing at n = 1 and n = 8 were not observed experimentally.
However, numerical simulations show the localized oscillations. It implies that the
fixed boundaries of the array in the experimental system are not completely fixed.
A short cantilever which is attached at the end of array is substitute by more stiff
one to improve the fixed boundaries.

6.3.3 Intrinsic Localized Modes in Conservative System

Intrinsic localized modes have the tail which exponentially decays. To classify the
observed localized oscillations into ILM, it is necessary to confirm whether the oscil-
lations have the exponentially decaying tail. However, the confirmation is difficult
in experiments because the cantilever array has the damping and the external force
terms. All cantilevers are always excited by the external force. Thus small oscilla-
tions are observed even if there is no localized oscillation as shown in Fig. 6.9(d).
Then we assume that the observed localized oscillations are classified into ILM if
the corresponding solution at the conservative system has the exponentially decaying
tail. The solution at the conservative system is obtained by iterating the shooting
method. The dumping coefficient γ and the amplitude of external force A are swept
with small step. As a result, a sequence of solutions is obtained. Solutions at the
end of the sequences are shown in Figs. 6.11(a) and (b). The gradient of the tail is
well fitted by the theoretical line given by Eq. (2.12). The solutions in the conser-
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Figure 6.12: Floquet multipliers of (a) odd symmetric mode and (b) even symmetric
mode. The left panel of each case shows an enlarged figure around +1 on unit circle.
Parameters are set to ω = 2π × 36.1 rad/s , A = 3 m/s2, and IEM = 24 mA.

vative system are ILMs. Consequently, the observed oscillations can be distinguish
as ILM.

6.3.4 Stability Analysis

Even symmetric localized oscillations could not be excited experimentally. It implies
that the even symmetric oscillations are unstable. In this section, the stability of ST-
and P-modes are discussed. Floquet multipliers are obtained numerically for both
ST4 and P4-5. Figs. 6.12(a) and (b) show the Floquet multipliers. All multipliers
of ST4 are located inside unit circle. Even if a small fluctuation around the ST4 is
caused by a disturbance, the fluctuation is exponentially decreased in time. Then,
the ST4 is stable. On the other hand, the P4-5 has two Floquet multipliers on
the real axis. The right panel in Fig. 6.12(b) shows that one of the multipliers are
outside unit circle. Thus, the P4-5 is unstable for the parameters in Table. 6.2.

However, the absolute value of the Floquet multiplier which is outside unit
circle is very close to +1. Thus, the multiplier will enter unit circle if the damping
coefficient is slightly larger. It implies that there is possibility to excite P-modes
experimentally.
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6.4 Manipulations of ILM

6.4.1 Excitation of ILM

Excitation of ILM is usually realized by the modulational instability [21, 29]. How-
ever, the position and the number of ILM cannot be controlled because the modu-
lational instability causes a random behavior of traveling ILMs [61]. On the other
hand, an ILM can be excited at any site by adding an impurity [35]. Here we con-
sider the excitation of ILM using an impurity in the macro-cantilever array. It is first
assumed that the frequency of external exciter is sufficiently lower than the linear
resonant frequency of each cantilever. If the resonant frequency of a cantilever is
exclusively decreased by adding an impurity, the corresponding cantilever will res-
onate. As a result, a localized oscillation appears at which an impurity is added to
change the resonant frequency of the cantilever. The impurity should be removed
with keeping the localized oscillation. If the localized oscillation is still remained
after the removing process, it becomes an ILM.

The experimental result of the excitation is shown in Fig. 6.13. The current
flowing in EM at n = 4 was decreased from 24.0 mA to 11.5 mA. Then the amplitude
of 4th cantilever began to increase. The current was increased to the original value
when the amplitude became a large value. As a result, an ILM at n = 4 was excited.
The excitation is called “seeding” [33].

6.4.2 Attractive Manipulation of ILM

The impurity which can excite an ILM also attracts an ILM excited beside the
impurity. Fig. 6.14 shows an attractive manipulation by the impurity. In the ma-
nipulation, ST5 is initially excited. After the impurity is added, the amplitude of
4th cantilever begins to increase. On the other hand, the amplitude of 5th cantilever
is decreased. The impurity is removed when the amplitudes of 4th and 5th cantilever
are almost same. The oscillation of 5th cantilever becomes smaller with spreading
small traveling waves. However, the amplitude of 4th cantilever grows in large. As
a result, the locus of ILM shifts from n = 5 to n = 4.

The attractive manipulation is also shown numerically. In Fig. 6.15, the current
flowing in EM at n = 4 is reduced from 24 mA to 4 mA at t = 1 s. Then the
amplitude of 4th cantilever begins to increase. The impurity caused by the reduced
current is removed at t = 4.5 s. The amplitude of 4th cantilever becomes almost
same as the 5th cantilever. Then the oscillation of 4th cantilever glows in large and
the oscillation of 5th cantilever becomes smaller. Consequently, ST5 is attracted by
the impurity as well as the experimental result.
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Figure 6.13: Generation of an ILM by adding an impurity. The impurity was added
at n = 4 by varying the current IEM4 from 24.0 mA to 11.5 mA.
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Figure 6.14: Manipulation of an ILM by adding the same impurity as Fig. 6.13. The
impurity is added at t = 0.81 s and removed at t = 1.55 s.
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Figure 6.16: Failure of attractive manipulation. The frequency of external excitor
is set at ω = 2π × 36.2 rad/s. The current flowing in EM at n = 4 is decreased to 8
mA from 24 mA when the impurity is added in this case. The impurity is added at
t = 1 s and removed at t = 4.5 s. The other parameters are same as in Table 6.2.
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Figure 6.17: Floquet multipliers of P4-5 at (a) 35.7 Hz and (b) 36.2 Hz.

However, the attractive manipulation is not always possible. An example of
failure to manipulate is shown in Fig. 6.16. The frequency of external exciter and
the lower value of the current are set at ω = 2π×36.2 rad/s and 8 mA, respectively.
The other parameters are same as Fig. 6.15. Until the impurity is removed, the
behaviors of each cantilever are similar to Fig. 6.15. However, the amplitude of
5th cantilever does not decay after removing the impurity. Finally, P4-5 remains.
That is, ST5 becomes P4-5 instead of ST4. It implies that P4-5 becomes stable at
ω = 2π × 36.2 rad/s.

In the attractive manipulation, the stability of P-modes seems to affect the
result of manipulation. Floquet multipliers of P4-5 are shown in Figs. 6.17(a), (b).
Although P4-5 is unstable at 35.7 Hz, it becomes stable at 36.2 Hz. One of Floquet
multipliers of unstable P4-5 is outside unit circle as shown in Fig. 6.17(a). Thus, the
unstable P4-5 has one dimensional unstable manifold. Therefore, it is conjectured
that the structure of the unstable manifold in phase space determines the behavior
of manipulated ILM.
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6.5 Remarks

In this chapter, the macro-mechanical cantilever array was proposed and modeled.
The array consists of cantilevers, a coupling rod, an external excitor, and electro
magnets. The electro magnets placed beneath cantilevers cause a soft-spring non-
linearity. It was experimentally confirmed that the nonlinearity was adjustable by
current flowing EMs. In addition, several ILMs were observed experimentally and
numerically. It suggests the validity of the model describing the oscillation of in-
dividual cantilever. Therefore, the proposed cantilever array seems suitable for the
study of ILM by comparison between the numerical and the experimental results.

The excitation and the attractive manipulation were demonstrated experi-
mentally. For the manipulations, an impurity was induced by reducing the current
flowing in EM. The impurity locally changed the resonant frequency of cantilevers.
Then the amplitude of cantilever increased while the impurity was added. If the am-
plitude becomes sufficiently large, a ST-mode remains after the impurity is removed.
On the other hand, the attractive manipulation was realized by the impurity. In
experiments, a ST-mode became another ST-mode. That is, the locus of the ILM
is attracted by the impurity. The attractive manipulation was confirmed by nu-
merical simulations. However, a numerical simulation showed that a stable P-mode
appeared after the impurity was removed. According to the stability analysis, it is
suggested that the attractive manipulation of ST-mode, discussed in the previous
chapter, is realized when the P-modes are unstable. Thus, it is conjectured that
the structure of unstable manifold of unstable P-modes determines the behavior of
manipulated ILM.

As mentioned above, the macro-mechanical cantilever array allows us the ex-
perimental investigation of manipulations for ILM. Several facts discussed in con-
servative systems are also observed in the experimental system. However, the array
includes a damping caused by the air resistance and an external excitor. The damp-
ing and the external excitation obviously affect the global phase structure. Thus,
more investigations are necessary to clarify the dynamics of ILM in the experimental
system. In particular, the global phase structure at the low damping regime will be
an important role for applications using ILM.
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Chapter 7

Conclusion and Future Prospects

In this study, intrinsic localized modes in coupled cantilever arrays were investigated
to clarify the mechanism of traveling ILMs and to propose new concepts for manip-
ulation of ILMs. The conclusions obtained in this study and some suggestions for
the future works are summarized below.

7.1 Conclusions

In coupled cantilever arrays modeled as nonlinear coupled ordinary differential equa-
tions, many ILMs coexist. They were classified into ST-mode, P-mode, and asym-
metric mode. ST and P-modes are alternately located in the coupled cantilever
array, and the asymmetric modes stand between them. The stability of the coexist-
ing ILMs was investigated by Floquet analysis with respect to the nonlinear inter-site
coefficient β2. The resulting bifurcation diagram showed how the coexisting ILMs
exchange their stability. In addition, it was also shown that there is the parame-
ter region in which all coexisting ST- and P-modes are unstable. The asymmetric
ILMs coexist as stable solutions in the region with unstable ST- and P-modes. The
region is very sensitive against impurities in the array. In other words, the influence
of disorder in the array is enhanced around the region where the stability change
occurs.

The stability change of ILM was also confirmed at high energy limit. The
highest order terms only remain in the equation of motion. The stability change was
observed by varying the ratio between nonlinear on-site and inter-site coefficients.
This implies that the stability of ILM is dominated by contribution of nonlinearities.
Odd symmetric modes tend to be stable when on-site nonlinearity is stronger than
inter-site nonlinearity. On the other hand, even symmetric modes tend to be stable
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in the regime where inter-site nonlinearity is dominant. This qualitative result seems
to be applicable to other systems.

By calculating invariant manifolds of coexisting unstable ILMs, the global
phase structure was discussed. As results, cyclic structures surrounding stable ILMs
and connections between vicinities of unstable ILMs were observed. In particular,
the connections only appear when the stability change occurs. It was also shown
that the global phase structure is drastically changed by varying the nonlinear inter-
site coefficient. The drastic change occurs almost simultaneously with the stability
change. In addition, the process of the drastic change was investigated. As a result,
it was suggested that global bifurcations occur. The global bifurcations in high-
dimensional phase space are difficult to confirm by numerical simulations. Hence,
theoretical approach will be necessary to clarify the problems of how the global
phase structure changes.

In Chapter 4, the behavior of traveling ILMs was also discussed. Unstable
manifolds of unstable coexisting ILMs strongly affect the behavior of traveling ILM.
Even though the initial conditions are very close to each other, the traveling ILMs
show completely different trajectories. This result suggests that the global structure
of invariant manifolds of unstable ILMs governs the dynamics of traveling ILMs.

In Chapter 5, manipulations of ILM were proposed based on the global phase
structure. Capture and release manipulation was first shown by numerical simu-
lations. The drastic change of the global phase structure was caused to capture
and to release traveling ILMs. Through the manipulation, in principle, ILM can
be shifted to any site. On the other hand, a traveling ILM wandering the whole
of the array can also be generated. The nonlinear inter-site coefficient was varied
for the manipulation. The nondimensionalization showed that the coefficient means
the ratio between the on-site and the inter-site nonlinearities. Then, the nonlinear
on-site coefficient can also be used as a control parameter in the capture and release
manipulation.

Another manipulation was numerically achieved by adding an impurity into
the array. This is known as attractive/repulsive manipulation. The manipulation
is based on the fact that the global phase structure is locally changed by the added
impurity. Therefore, investigations of the changed global phase structure allow us
to predict whether an ILM is attracted or repulsed.

Finally, the attractive manipulation was experimentally realized in the macro-
mechanical cantilever array. In the beginning of Chapter 6, the cantilever array
having tunable on-site potentials was proposed and modeled. The tunable on-site
potentials were realized by using electromagnets. The magnetic interaction causes
a soft sprint characteristic into the restoring force of cantilever. Therefore, acoustic
ILMs were observed. The observed ILMs have odd-symmetric amplitude distribu-
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tion. That is, ST-modes are stable in the cantilever array.

The attractive manipulation was shown by adjusting a current flowing in an
electromagnet. As a result, an ILM was attracted to the site where the impurity was
added. After the impurity was removed, the ILM survived. This manipulation was
also discussed by numerical simulations. As results, it was suggested that unstable
even-modes are the key to the manipulation.

The manipulations discussed in this study are possibly applied to other systems
in which intrinsic localized modes coexist. Because it was suggested that the nonlin-
earity ratio in on-site and inter-site potentials determines the stability of coexisting
ILMs and changes the global phase structure. That is, the capture and release and
the attractive/repulsive manipulations will be realized in a realistic system which
has nonlinearities in both on-site and inter-site potentials. The experimental re-
sults in the macro-mechanical cantilever array seem to provide an evidence of this
generality.

7.2 Future Prospects

The global phase structure regarding traveling ILMs is similar to a pendulum system
when the nonlinear inter-site coefficient is close to the critical value causing the sta-
bility change. It implies that there is a dynamical analogy between the trajectories
of traveling ILM and of the pendulum. It seems to be worthwhile to investigate the
analogy. Tremendous knowledge gained on pendulum system can also apply to the
dynamics of traveling ILM.

The possibility of control of ILM has been shown experimentally in electronic
circuit ladders [33]. The ladders were designed to have both ILMs and soliton-like
waves. The soliton-like waves excited at the both ends of ladder and propagated
into the ladder. An ILM was excited at which two soliton-like waves collided. The
mechanism of the excitation is the same as the seeding by using impurity. The ladder
has varactor diodes exhibiting capacitance variations as a function of applied voltage.
Thus, a soliton-like wave plays a role as a localized impurity. When the soliton-
like waves collide, the amplitude becomes twice as large. Then, a strong impurity
appears. Therefore, an ILM is excited. Other manipulations such as attraction were
also realized in the ladders. This suggests that ILM can be controlled by indirectly
added impurities. Since the individual adjustment of on-site potentials is hopeless in
atomic scale system, the manipulations using soliton-like waves become significant.

Intrinsic localized mode is not a rare phenomenon in the nature. As mentioned
in Chapter 1, ILM has been identified in various physical systems. Recently, it has
been suggested that ILM exists in nanometer scale system such as DNA [62,63], Si
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crystal [64], graphene sheet [65], and carbon nano-tubes [66]. It implies that ILM
plays an important role in nanoscience. In addition, it allows us to expect that ILM
can be utilized in nanoelectromechanical system (NEMS).
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[23] E. Tŕıas, J. J. Mazo, T. P. Orlando, Discrete breathers in nonlinear lattices:
Experimental detection in a Josephson array, Phys. Rev. Lett. 84 (2000) 741.

[24] P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, Y. Zolotaryuk, Observation
of breathers in Josephson ladders, Phys. Rev. Lett. 84 (2000) 745.

[25] A. V. Ustinov, Imaging of discrete breathers, Chaos 13 (2003) 716.

[26] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, J. S. Aitchison,
Discrete spatial optical solitons in waveguide arrays, Phys. Rev. Lett. 81 (1998)
3383.

94



[27] R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, Y. Silberberg,
Dynamics of discrete solitons in optical waveguide arrays, Phys. Rev. Lett. 83
(1999) 2726.

[28] J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, Observation
of two-dimensional discrete solitons in optically induced nonlinear photonic
lattices, Nature 422 (2003) 147.

[29] M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski, H. G. Craig-
head, Observation of locked intrinsic localized vibrational modes in a microme-
chanical oscillator array, Phys. Rev. Lett. 90 (2003) 044102.

[30] B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R.
Bishop, W.-Z. Wang, M. I. Salkola, Observation of intrinsically localized modes
in a discrete low-dimensional material, Phys. Rev. Lett. 82 (1999) 3288.

[31] K. Kisoda, N. Kimura, H. Harima, K. Takenouchi, M. Nakajima, Intrinsic
localized vibrational modes in a highly nonlinear halogen-bridged metal, J.
Lumin. 94 (2001) 743.

[32] M. Sato, A. J. Sievers, Direct observation of the discrete character of intrinsic
localized modes in an antiferromagnet, Nature 432 (2004) 486.

[33] M. Sato, S. Yasui, M. Kimura, T. Hikihara, A. J. Sievers, Management of
localized energy in discrete nonlinear transmission lines, Europhys. Lett. 80
(2007) 30002.

[34] M. Sato, B. E. Hubbard, L. Q. English, A.J.Sievers, B. Ilic, D. A. Czaplewski,
H. G. Craighead, Study of intrinsic localized vibrational modes in microme-
chanical oscillator arrays, Chaos 13 (2003) 702.

[35] M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, H. G. Craighead, Optical manip-
ulation of intrinsic localized vibrational energy in cantilever arrays, Europhys.
Lett. 66 (3) (2004) 318.

[36] M. Sato, B. E. Hubbard, A. J. Sievers, Colloquium: Nonlinear energy local-
ization and its manipulation in micromechanical oscillator arrays, Rev. Mod.
Phys. 78 (2006) 137.

[37] P. S. Waggoner, H. G. Craighead, Micro- and nanomechanical sensors for envi-
ronmental, chemical, and biological detection, Lab Chip 7 (2007) 1238.

[38] T. Ono, X. Li, H. Miyashita, M. Esashi, Mass sensing of adsorbed molecules
in sub-picogram sample with ultrathin silicon resonator, Rev. Sci. Instrum. 74
(2003) 1240.

95



[39] M. Spletzer, A. Raman, A. Q. Wu, X. Xu, R. Reifenberger, Ultrasensitive mass
sensing using mode localization in coupled microcantilevers, Appl. Phys. Lett.
88 (2006) 254102.

[40] T. Hikihara, Y. Okamoto, Y. Ueda, An experimental spatio-temporal state
transition of coupled magneto-elastic system, Chaos 7 (1997) 810.

[41] T. Hikihara, K. Torii, Y. Ueda, Wave and basin structure in spatially coupled
magneto-elastic beam system – transitions between coexisting wave solutions,
Int. J. Bifurcat. and Chaos 11 (2001) 999.

[42] T. Hikihara, K. Torii, Y. Ueda, Quasi-periodic wave and its bifurcation in
coupled magneto-elastic beam system, Phys. Lett. A 281 (2001) 155.

[43] K. Yamasue, Studies on time-delayed feedback control of chaos and its appli-
cation to dynamic force microscopy, Ph.D. thesis, Kyoto University (November
2006).

[44] S. Flach, A. V. Gorbach, Discrete breathers – advances in theory and applica-
tions, Phys. Rep. 467 (2008) 1–116.

[45] M. R. M. Crespo da Silva, C. C. Glynn, Nonlinear flexural-flexural-torsional
dynamics of inextensional beams. I. Equations of motion, J. Struct. Mech. 6
(1978) 437.

[46] M. R. M. Crespo da Silva, Non-linear flexural-flexural-torsional-extensional dy-
namics of beams – I. Formulation, Int. J. Solids Structures 24 (1988) 1225.

[47] P. Malatkar, A. H. Nayfeh, On the transfer of energy between widely spaced
modes in structures, Nonlinear Dyn. 31 (2003) 225.

[48] M. Sato, private communication (2008).

[49] M. Toda, Nonlinear Waves and Solitons, Nippon-Hyoron-sha, 1983, in Japanese.

[50] M. Toda, Oscillations, BAIFUKAN, 1968, in Japanese.

[51] S. Flach, A. Gorbach, Discrete breathers in Fermi-Pasta-Ulam lattices, Chaos
15 (2005) 15112.
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[56] P. Bergé, Y. Pomeau, C. Vidal, Order within Chaos, Wiley, New York, 1984.

[57] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, Springer-Verlag, 1983, Ch. 1, pp. 1–22.

[58] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos,
2nd Edition, Springer-Verlag, 2003.

[59] M. I. Younis, A. H. Nayfeh, A study of the nonlinear response of a resonant
microbeam to an electric actuation, Nonlinear Dyn. 31 (2003) 91.

[60] F. C. Moon, P. J. Holmes, A magnetoelastic strange attractor, J. Sound Vibrat.
65 (2) (1979) 275.

[61] T. Cretegny, T. Dauxois, S. Ruffo, A. Torcini, Localization and equipartition
of energy in the β-FPU chain: Chaotic brethers, Physica D 121 (1998) 109.

[62] T. Dauxois, M. Peyrard, C. R. Willis, Localized breather-like solution in a
discrete Klein-Gordon model and application to DNA, Physica D 57 (1992)
267.

[63] M. Peyrard, Y. Sire, Energy Localisation and Transfer, World Scientific, 2004,
Ch. 8, pp. 325–340.

[64] N. K. Voulgarakis, G. Hadjisavvas, P. C. Kelires, G. P. Tsironis, Computational
investigation of intrinsic localization in crystalline Si, Phys. Rev. B 69 (2004)
113201.

[65] Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani, T. Kitamura, Excitation of
intrinsic localized modes in a graphene sheet, Europhys. Lett. 80 (2007) 40008.

[66] Y. Kinoshita, Y. Yamayose, Y. Doi, A. Nakatani, T. Kitamura, Selective exci-
tations of intrinsic localized modes of atomic scales in carbon nanotubes, Phys.
Rev. B 77 (2008) 024307.

97



98



Acknowledgements

The author would like to express his gratitude to Professor Takashi Hikihara, Depart-
ment of Electrical Engineering, Kyoto University, for his continuous encouragement,
patient guidance and valuable suggestions to accomplish this study.

The author deeply acknowledge Professor Masao Kitano and Associate Pro-
fessor Hirofumi Yamada, Department of Electronic Science and Engineering, Kyoto
University, for their valuable comments and suggestions and critical reading of the
manuscript.

The author would like to appreciate Associate Professor Masayuki
Sato, Kanazawa University, for his helpful comments and discussions regarding ex-
periments in micro-cantilever arrays. The author would like to appreciate Professor
Vakhtang Putkaradze, Colorado State University, for his valuable comments and
discussions on the theoretical aspect of this study. The author would like to thank
Dr. Kazuyuki Yoshimura, NTT corporation, and Assistant Professor Yusuke Doi,
Osaka University, for fruitful discussions regarding the stability of ILM. The author
would like to appreciate Professor Tsuyoshi Funaki, Osaka University, for his helpful
comments and discussions regarding experiments in this study. The author would
like to thank Assistant Professor Yoshihiko Sususki, Department of Electrical Engi-
neering, Kyoto University, for his supports to research, encouragement, and valuable
discussions. The author also would like to acknowledge Assistant Professor Kohei
Yamasue, Department of Electrical Engineering, Kyoto University, for his fruitful
discussion, encouragement, and valuable advice in this study. The author would
like to thank Associate Professor Takeshi Fukuma, Kanazawa University, for his pa-
tient guidance and encouragement in the beginning of this work. The author would
like to thank Assistant Professor Keiko Saito and Assistant Professor Nobuo Sato,
Department of Electrical Engineering, Kyoto University, for his supports to accom-
plish this study. The author would like to give special thanks to all the members
of Professor Hikihara’s research group including the past members. In particular,
the author would like to thank Ms. Tomoko Oono, Ms. Minghua Li, Mr. Phankong
Nathabhat, Mr. Suketu Naik, Mr. Yuuichi Yokoi, and Mr. Akihiro Yamamoto for
their supports to research environment, encouragement, and valuable discussions.

99



The author is grateful to the support of the Ministry of Education, Culture,
Sports, Science and Technology in Japan, The 21st Century COE Program No.
14213201 and the Global COE program.

Finally, the author would like to thank my parents, Shinichi and Chiyo Kimura,
for their continual supports and encouragement.

100



List of acronyms and symbols

Acronyms

A/D Analog-to-Digital
DB Discrete Breather
D/A Digital-to-Analog
EM Electro Magnet
FPU Fermi-Pasta-Ulam
IEICE the Institute of Electronics, Information and Communication Engineers
ILM Intrinsic Localized Mode
IP Initial Point
KG Klein-Gordon
P Page
PM Permanent Magnet
ST Sievers-Takeno
VCM Voice Coil Motor

Symbols

ℓ Length of cantilever
w Width of cantilever
h Thickness of cantilever
ω0 Resonant frequency of the first mode of cantilever
α1 Nondimensional coefficient of linear on-site term
α2 Nondimensional coefficient of linear coupling term
β1 Nondimensional coefficient of nonlinear on-site term
β2 Nondimensional coefficient of nonlinear coupling term
un Displacement of nth cantilever
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