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Abstract

We consider the cost of hedging contingent claims in a financial market where
the trades of a large investor can move market prices. We provide a characterization
of a super-replication cost in terms of an associated stochastic control problem. We
also prove that the $super$-replication cost is a viscosity solution of a corresponding
dynamic programming equation in the case of a Markov market model.

Key words: large investor, super-replication cost, dynamic programming equation.
JEL Classification: G12, G13.

1 Introduction

Our concern is to examine the cost of hedging contingent claims in a financial market
where the trades of a large investor can move market prices, and the purpose of this
paper is to provide a characterization of a super-replication cost in terms of an associated
stochastic control problem.

1.1 General large investor problem

Let $T>0$ be a finite time horizon and $\{W(t), 0\leq t\leq T\}$ a standard d-dimensional
Brownian motion on a complete probability space $(\Omega, \mathcal{F}, P)$ , endowed with a filtration
$F=\{\mathcal{F}_{t}, 0\leq t\leq T\}$ which is the P-augmentation of the filtration generated by the
Brownian motion $W$ . Let $\mathcal{P}$ denote the set of all $R^{\mathfrak{n}}$-valued, F-progressively measurable
processes $p(\cdot)$ such that $\int_{0}^{T}|p(t)|^{2}dt<\infty$ a.s. Here $n\leq d$ .
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l.l.a $Pri$ ce dynamics in presence of large investor

We assume that there is a single large investor $I$ in a financial market where one bank
account and $n$ stocks are traded continuously up to the time $T$ . Let $\Pi\subset \mathcal{P}$ be a set of
admissible trading strategies $\pi(\cdot)$ of the investor $I$ . We assume $0\in\Pi$ .

Consider a model for price fluctuations as follows: If the investor $I$ starts at time $0$

with an initial capital $x\in R$ and holds $\pi_{j}(t)$ shares of the j-th stock at time $t\in[0, T]$ ,
$j=1,$ $\ldots,$

$n$ , then the price processes $B^{\pi}(\cdot)$ of the bank account and $\hat{S}^{\pi}(\cdot)$ of the stocks
evolve according to the stochastic differential equation (SDE, for short)

$dB(t)=B(t)r^{\pi}(t)dt$ , $B(O)=1$ ,
$d\hat{S}(t)=diag[\hat{S}(t)]\{b^{\pi}(t)dt+\sigma^{\pi}(t)^{T}dW(t)\}$ , $\hat{S}(0)=s\in(0, \infty)^{n}$ ,

and the discounted wealth process $X^{x}$ ,“ $(\cdot)$ of the investor $I$ is given as

$X(t)=x+ \int_{0}^{t}\pi(u)^{T}dS^{\pi}(u)$ , $t\in[0, T]$ , (1.1)

where $T$ denotes the transpose operation; $diag[s]$ is the $n\cross n$-diagonal matrix with
diagonal elements $s_{1},$ $\ldots,$

$s_{n};S^{\pi}(\cdot)$ $:=B^{\pi}(\cdot)^{-1}\hat{S}^{\pi}(\cdot)$ is the discounted price process of
stocks; $\{r^{\pi}(t), 0\leq t\leq T\},$ $\{b^{\pi}(t)=(b_{1}^{\pi}(t), \ldots, b_{n}^{\pi}(t))^{T}, 0\leq t\leq T\}$ and $\{\sigma^{\pi}(t)=$

$(\sigma_{1}^{\pi}(t)\cdots\sigma_{n}^{\pi}(t)),$ $0\leq t\leq T$ } are bounded F-progressively measurable processes taking
values in $R_{+},$ $R^{n}$ and $R^{d}\otimes R^{n}$ , respectively. Here the superscript $\pi$ means that the
process $h^{\pi}(t,\omega)$ ($h=r,$ $b,$ $\sigma$ , for instance) with the superscript $\pi$ depends on the path
$\{\pi(u, \omega), 0\leq u\leq t\}$ for a.e. $(t,\omega)\in[0, T]\cross\Omega$ and $\pi\in\Pi$ . Therefore the price dynam-
ics are influenced by the actions of the investor $I$ . It is for this reason that $I$ is called
the large investor. We also remark that the integral in (1.1) is well-defined by means of
$\int_{0}^{T}|\pi(t)|^{2}dt<\infty$ a.s. and of the boundedness of the coefficients of market.

l.l.b Contingent claim and super-replication cost

A contingent claim $\{B^{\pi}C^{\pi}, \mathcal{T}^{\pi}\}$ consists of an F-adapted, non-negative process $\{C^{\pi}(t)$ ,
$0\leq t\leq T\}$ and some class $\mathcal{T}^{\pi}$ of F-stopping times. We assume $T\in \mathcal{T}^{\pi}$ . Let us consider
now the following situation: At time $t=0$ , two agents (the “buyer” and (seller’) enter
into an agreement. The seller $I$ agrees to provide the buyer with the random payment
$B^{\pi}(\tau(\omega),\omega)C^{\pi}(\tau(\omega),\omega)$ at time $t=\tau(\omega)$ , where $\tau$ is an element of $\mathcal{T}^{\pi}$ and at the disposal
of the buyer.

The objective of the seller $I$ is to find a portfolio strategy $\pi\in\Pi$ which enables him
to fulfill his obligation whenever the buyer decides to ask for the payment. Hence the
super-replication cost $h_{up}$ is defined as

$h_{up}$ $:= \inf\{x\geq 0|\exists\pi\in\Pi$ s.t. $X^{x,\pi}(\tau)\geq C^{\pi}(\tau)$ a.s., $\forall\tau\in\tau^{\pi}.\}$ .
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1.2 Existent studies dealing with analogous models

In a standard market of a small investor model (the coefficients $r,$
$b$ and $\sigma$ do not depend

on $\pi$), there exists an F-progressively measurable process $\theta$ : $[0, T]\cross\Omegaarrow R^{d}$ such that

$b(t,\omega)-r(t,\omega)1_{n}=-\sigma(t,\omega)^{T}\theta(t,\omega)$ $a.e$ . $(t,\omega)\in[0, T]\cross\Omega$ (1.2)

and the stochastic exponential process

$Z_{\theta}(t)$ $:= \exp\{\int_{0}^{t}\theta(u)^{T}dW(u)-\frac{1}{2}\int_{0}^{t}|\theta(u)|^{2}du\}$ , $0\leq t\leq T$ (1.3)

is a martingale, where $1_{n}=(1, \ldots, 1)^{T}\in R^{n}$ . Further, if the standard market is complete,
by the martingale representation theorem and the Bayes’ rule, we then have

$E[\frac{Z_{\theta}(T)}{Z_{\theta}(t)}C(T)|\mathcal{F}_{t}]=E[Z_{\theta}(T)C(T)]+\int_{0}^{t}\pi(u)^{T}dS(u)$, $t\in[0, T]$ (14)

for some hedging portfolio $\pi$ . Therefore the super-replication cost1 of European contingent
claim $\{B(T)C(T), \{T\}\}$ is given by $h_{up}=E[Z_{\theta}(T)C(T)]$ .

In some special cases, we can also use the martingale duality approach to study the
replication of European contingent claims by the large investor. Cuoco &Liu[6] has
provided the dual formulation for the case that $r^{\pi},$ $\sigma^{\pi}$ and $C^{\pi}$ are independent of the
trading strategy $\pi$ , and $b^{\pi}$ satisfies

$q(t,\omega)^{T}b^{\pi}(t,\omega)=q(t,\omega)^{T}\mu(t,\omega)+h(t, q(t,\omega),\omega)$ $a.e$ . $(t,\omega)\in[0, T]\cross\Omega$ ,

where $q(t)=X(t)^{-1}diag[S(t)]\pi(t),$ $\mu$ is a bounded F-progressively measurable process
taking values in $R^{n}$ , and a function $h(t, q,\omega)$ on $[0, T]\cross R^{n}\cross\Omega$ satisfies: $h(\cdot, q, \cdot)$ is an
optional process for each $q\in R^{n};h(t, \cdot,\omega)$ is Lipschitz uniformly in $(t,\omega)\in[0, T]\cross\Omega$ ;
$h(t, \cdot,\omega)$ is concave and upper semicontinuous for all $(t,\omega)\in[0, T]\cross\Omega;h(t, 0,\omega)=0$

for all $(t,\omega)\in[0, T]\cross\Omega.$ Bank&Baum[3] dealt with a general semimartingale market
model with the large investor. They presented a characterization of the super-replication
cost for European contingent claims in terms of an associated stochastic control problem
under the condition that (1.2) was satisfied for some process $\theta$ which did not depend on
the large investor’s position $\pi$ despite of the dependence of $r,$

$b$ and $\sigma$ upon $\pi$ .
In the case of the general large investor model, however, it is difficult to use the

martingale duality approach in order to show the existence of a $po$rtfolio $\pi$ satisfying
(1.4) because of the dependence of $\theta,$ $C$ and $S$ upon $\pi$ . Hence the martingale duality
approach has not been successful to solve the general large investor problem. Therefore
the previous studies have provided several treatments of this problem which avoid the
passage from the dual formulation. These studies dealt with Markov market models with
the large investor as follows:

1For a standard asset pricing theory, see the usual textbooks, e.g. Duffie[9], Karatzas[12] and Karatzas
&Shreve[13].
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(i) Cvitani\v{c}&Ma[8]: For $h=b,$ $\sigma$ ,

$h^{\pi}(t)=h(t, S(t),$ $\pi(t),$ $X(t))$ , $r^{\pi}(t)=r(t, diag[S(t)]\pi(t), X(t))$ .

(ii) Soner&Touzi[18]: For $h=b,$ $\sigma$ and $q(t)=X(t)^{-1}diag[S(t)]\pi(t)$ ,

$h^{\pi}(t)=h(t, S(t),$ $q(t))$ , $r^{\pi}(t)\equiv 1$ .

$(1i1)Rey[10]$ : In one-dimensional case $(n=d=1)$ ,

$S^{\pi}(t)=\psi(t, Z_{\eta}(t),$ $\pi(t))$ , $r^{\pi}(t)\equiv 1$ , $\pi(t)=\phi(t, Z_{\eta}(t))$ ,

where $\psi$ is a smooth reaction function, the stochastic exponential $Z_{\eta}$ defined as (1.3)
with a constant $\eta$ is a fundamental state variable process, and the trading strategy
$\phi$ is selected from among smooth functions. In Platen&Schweizer[14] and Frey&
Stremme[ll] the state variable $Z_{\eta}$ and the reaction function $\psi$ have been obtained
from equilibrium considerations.

$Cvitani\acute{c}$ &Ma [8] characterized the cost and portfolio of hedging European option
$B(T)C(T)=g(S(T))$ as asolution of aforward-backward SDE corresponding to their
Markov model, and proved the existence and uniqueness of the $so1_{t1}tion$ of this equation
under regularity conditions on $r,$ $b,$ $\sigma$ and $g$ . $FYey[10]$ characterized the hedging portfo-
lio $\phi$ of European option $C(T)=g(S(T))$ as asolution of $\bm{t}$ associated quasi-linear
partial differential equation and provided results on existenoe $\bm{t}d$ uniqueness of the $St\succ$

lution to this equation under regularity conditions on $\psi$ and $g.$ Soner&Touzi[18] used a
new dynamic programming principle established in Soner&Touzi[16]to characterize the
super-replication cost for European option $C(T)=g(S(T))$ as aviscosity solution of a
corresponding dynamic programming equation under suitable conditions on $b,$ $\sigma$ and $g$ .

Since $r,$ $b$ and $\sigma$ in our model do not depend on the value of the large $inve8tor’ s$

wealth $X$ , our model does not include those of Cvitanic’ &Ma[8]and Soner&Touzi[18].
However we can apply our approach to the study of the replication in the model of Soner
&Touzi[18], and we can treat Example 5.1 of Cvitani\v{c}’ &Ma[8] in our framework (see
Appendix $B$ in the $author[1]$ ). Extending the set of admissible portfolios in the model of
Rey[10]to the set of controlled semimartingales

$d\pi(t)=\alpha(t)dt+\beta(t)dW(t)$ (where $\alpha$ and $\beta$ are controls),

we also have the application of our approach to the study of the replication in the model
of Frey[10].

The remainder of this paper is organized in the following way: In the next section we
characterize the $super$-rePlication cost in terms of associated stochastic control problem.
In \S 3, we derive a corresponding dynamic programming equation from the representation
obtained in \S 2, and characterize the super-replication cost as a viscosity solution of this
equation in the case of a Markov market model. For the proofs of assertions stated in \S 2
and \S 3, see the author’s paper[l].
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2 Main result

In order to characterize the super-replication cost in terms of the stochastic control prob-
lem, we need the notion of the change of measure. Let $\mathcal{D}_{m}$ be the class of all $R^{d}$-valued,
F-progressively measurable processes $\nu(\cdot)$ such that $|\nu(t,\omega)|\leq m$ a.e., and $\mathcal{D}$

$:= \infty\bigcup_{m=1}\mathcal{D}_{m}$ .
Then the stochastic exponential process

$Z_{\nu}(t)$ $:= \exp\{\int_{0}^{t}\nu(u)^{T}dW(u)-\frac{1}{2}\int_{0}^{t}|\nu(u)|^{2}du\}$ , $0\leq t\leq T$

is a martingale for each $\nu\in D$ , and

$\mathbb{P}_{\nu}(\Lambda):=E[Z_{\nu}(T)\bm{1}_{\Lambda}]$ , $\Lambda\in \mathcal{F}_{T}$

is a probability measure, where 1 is the indicator function.

When the seller $I$ receives the amount $x>h_{up}$ from the buyer, he can cover his
obligation at any time $\tau\in \mathcal{T}^{\pi}$ without risk, i.e.

$inf\sup_{\pi\in\Pi_{\tau\in T\nu\in \mathcal{D}}}\sup E_{\nu}[(C^{\pi}(\tau)-X^{x,\pi}(\tau))^{+}]=0$ ,

where $E_{\nu}$ denotes the expectation operator under $P_{\nu}$ and $a^{+}:= \max\{a, 0\}$ . Formally, we
calculate

$0=$
$inf\sup_{\pi\in\Pi_{\tau\in \mathcal{T}^{r}\nu\in D}}\sup E_{\nu}[(C^{\pi}(\tau)-X^{x,\pi}(\tau))^{+}]$

$=?,$, inf sup $supE_{\nu}[C^{\pi}(\tau)-X^{x,\pi}(\tau)]$
$\pi\in\Pi_{\tau\in \mathcal{T}^{\pi}\nu\in \mathcal{D}}$

$= \inf_{\pi\in\Pi}\sup_{\tau\in \mathcal{T}^{\pi}}\sup_{\nu\in \mathcal{D}}E_{\nu}[C^{\pi}(\tau)-X^{0,\pi}(\tau)]-x$

$= \inf_{\pi\in\Pi}\sup_{\tau\in \mathcal{T}^{n}}\sup_{\nu\in \mathcal{D}}E_{\nu}?[(C^{\pi}(\tau)-X^{0,\pi}(\tau))^{+}]-x$ .

Letting $x\downarrow h_{up}$ , we conjecture

$h_{up}= \inf_{\pi\in D}\sup_{\tau\in \mathcal{T}^{\pi}}\sup_{\nu\in \mathcal{D}}E_{\nu}[(C^{\pi}(\tau)-X^{0,\pi}(\tau))^{+}]$ . (2.1)

Indeed, we have

Theorem 2.1 The super-replication cost $h_{up}$ is erpressed as (2.1). Moreover, if
$E[|X^{0,\pi}(\tau)|^{p}]<\infty$ for any $\pi\in\Pi,$ $\tau\in \mathcal{T}^{\pi}$ and some constant $p=p(\pi, \tau)>1$ , then

$h_{up}=( \inf_{\pi\in\Pi}\sup_{\tau\in \mathcal{T}^{\pi}}\sup_{\nu\in \mathcal{D}}E_{\nu}[C^{\pi}(\tau)-X^{0,\pi}(\tau)])^{+}$ . (2.2)
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Remark 2.2 When we defer to the suggestion of Bank&Baum[3], the discounted wealth
process $X^{\pi}$ should be replaced by

$\tilde{X}^{\pi}(t)=X^{\pi}(t)-\frac{L^{\pi}(t)}{B^{\pi}(t)}$ , $0\leq t\leq T$,

where $\{L^{\pi}(t), 0\leq t\leq T\}$ is a right-continuous, F-adapted increasing process with
$L^{\pi}(O)=0$ . Here $L^{\pi}(t)$ has the interpretation of the cumulative cost of the liquidity
risk up to time $t\in[0, T]$ . As seen in the proof stage, however, it is clear that if we replace
$X^{\pi}$ with $\tilde{X}^{\pi}$ in the equations $(2.1)-(2.2)$ , the assertions in the previous theorem remain
to be true without additional assumptions on $L^{\pi}$ .

In order to obtain further sharp results, we are now in a position to make some
assumptions:

Assumption 2.3

(i) For all $\pi\in\Pi$ there exists $\theta^{\pi}\in D$ such that

$b^{\pi}(t,\omega)-r^{\pi}(t,w)1_{n}=-\sigma^{\pi}(t,\omega)^{T}\theta^{\pi}(t,\omega)$ $a.e$ . $(t,\omega)\in[0,T]\cross\Omega$ , (2.3)

where $1_{n}=(1, \ldots, 1)^{T}\in R^{n}$ .

(ii) For all $\pi\in\Pi$ there exists a constant $p>1$ such that

$E[\int_{0}^{T}|\pi(t)|^{2p}dt]<\infty$ . (2.4)

In the case of a small investor model, the $process-\theta$ of (2.3) is called the market price of
risk process and the risk-neutral equivalent martingale measure $P_{\theta}$ plays an important role
for the pricing theory, as stated in \S 1.2. Moreover the conditions $(2.3)-(2.4)$ guarantees
that there is no arbitrage opportunity in a standard market of the small investor model.
Therefore it seems natural to assume $(2.3)-(2.4)$ .

Corollary 2.4 Under Assumption 2.3, we have

$h_{up}=$ inf sup $supE_{\nu}[C^{\pi}(\tau)-X^{0,\pi}(\tau)]$ . (2.5)
$\pi\in\Pi_{\mathcal{T}\in \mathcal{T}^{\pi}\nu\in \mathcal{D}}$
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3 Dynamic programming equation

3.1 Markov market model

In order to adapt the arguments developed by Soner&Touzi[16]-[18] and Bensoussan $et$

$al.[4]$ to our large investor model, we now focus on the Markov case:

$h^{\pi}(t)=h(t, B(t),$ $S(t),\pi(t))$ , for $h=r,$ $b,$ $\sigma$ ,

where $r,$ $b$ and $\sigma$ are $R_{+},$ $R^{n}$ and $R^{d}\otimes R^{\mathfrak{n}}$-valued, bounded functions defined on $[0, T]\cross$

$R_{+}\cross R_{+}^{n}\cross R^{n}$ . We further assume that $r,$ $b$ and $\sigma$ are LIpschitz functions in the $(\beta, s, \pi)$

variable, uniformly in $t$ . We consider the special case of European contingent claim:

$C^{\pi}(T)=g(B(T), S(T))$ and $\mathcal{T}^{\pi}=\{T\}$ ,

where a non-negative function $g$ on $(0, \infty)\cross R_{+}^{n}$ satisfies the polynomial growth condition:

$g(\beta, s)\leq c_{0}(\beta^{-l}+\beta^{l}+|s|^{l})$ , $(\beta, s)\in(0, \infty)\cross R_{+}^{n}$

for certain constants $c_{0},$ $l>0$ .
Let $K\subset R^{n}$ be a compact convex subset which contain the origin. We assume that

$\Pi$ is the set of all processes $\pi\in \mathcal{P}$ such that $\pi(t,w)\in K$ a.e. Let $\delta$ denote the support
function $\delta(q)$ $:= \sup_{p\in K}(p^{T}q),$ $q\in R^{n}$ . Define

$\mathcal{H}(p):=\inf\{\delta(q)-q^{T}p$ : $|q|=1\}$ , $p\in R^{n}$ ,

$\wedge h(\beta, s):=\sup_{q\in R_{+}^{n}}\{h(\beta,q)-\delta(q-s)\}$ , $(\beta, s)\in(0, \infty)xR_{+}^{\mathfrak{n}}$ ,

for each function $h:(0, \infty)\cross R_{+}^{n}arrow R$. It is well known that the support function $\delta$ is
non-negative, convex and positively homogeneous, and

( $p\in K$ $\Leftrightarrow$ $\mathcal{H}(p)\geq 0$ “ and “ $p\in intK$ $\Leftrightarrow$ $\mathcal{H}(p)>0$ “. (3.1)

IFMrthermore we assume that $\sigma$ satisfies the uniform ellipticity condition:

$|\sigma(y, \pi)\xi|\geq c|\xi|$ , $y\in[0, T]\cross R_{+}^{n+1},$ $\pi\in K,$ $\xi\in R^{n},$ $(3.2)$

for some constant $c>0$ . This condition guarantees that there exists a bounded function
$\theta:[0,T]\cross R_{+}^{n+1}\cross Karrow R^{d}$ such that

$-\sigma(y,\pi)^{T}\theta(y,\pi)=b(y, \pi)-r(y,\pi)1_{n}$ ,

and hence the condition (2.3) holds.
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3.2 Stochastic control problem and dynamic programming equation

Thanks to Girsanov’s theorem, we have

$E_{\nu+\theta}[X^{0,\pi}(T)]=E_{\nu+\theta}[\int_{0}^{T}\pi(u)^{T}diag[S(u)]\sigma(Y(u), \pi(u))^{T}\nu(u)du]$ , $\pi\in\Pi,$ $\nu\in \mathcal{D}$ ,

where $Y(u)$ $:=(u, B(u),$ $S(u))^{T}$ and $\theta(u)=\theta(Y(u), \pi(u))$ . Flrom (2.5), therefore, we can
derive the stochastic control problem:

$U(y)$ $:= \inf_{\pi\in\Pi}\sup_{\nu\in \mathcal{D}}E^{y}[g(B^{\pi}(T), S^{\pi,\nu}(T))-\int^{T}\pi(u)^{T}diag[S^{\pi,\nu}(u)]\sigma(a(u))^{T}\nu(u)du]$ (3.3)

for $y=(t, \beta, s)\in[0, T]\cross(0, \infty)\cross(0, \infty)^{n}$ , where $a(u)=(Y^{\pi,\nu}(u), \pi(u))^{T},$ $S^{\pi,\nu}$ is a unique
solution of the equation

$dS(u)=diag[S(u)]\sigma(a(u))^{T}\{\nu(u)du+dW(u)\}$ , $t\leq u\leq T$,

and the suffix $y=(t,\beta, s)$ of $E$ means that we have specifled the data $(B^{\pi}(t), S^{\pi,\nu}(t))=$

$(\beta, s)$ .
Then, since $\{\sigma_{i}(y, \pi)\}_{i}$ is linearly independent by means of (3.2), the dynamic pro-

gramming equation (DPE, for short) for (3.3) is given as follows:

$0=U_{t}(y)+ \inf_{\pi\in K}\sup_{\nu\in R^{d}}\{r(y, \pi)\beta U_{\beta}(y)+(DU(y)-\pi)^{T}diag[s|\sigma(y, \pi)^{T}\nu$

$+ \frac{1}{2}n[\{diag[s]\sigma^{T}\sigma(y, \pi)diag[s]\}D^{2}U(y)]\}$

$=\{\begin{array}{ll}\mathcal{G}^{DU(y)}U(y), if DU(y)\in K,+\infty , if DU(y)\not\in K,\end{array}$ (3.4)

for $y=(t, \beta, s)\in[0,T)\cross(0, \infty)^{n+1}$ , where $D\varphi$ and $D^{2}\varphi$ are the first and second order
differentials of $\varphi$ with respect to the variable $s$ ,

$\mathcal{G}^{\pi}\varphi(y)=\varphi_{t}(y)+r(y, \pi)\beta\varphi_{\beta}(y)+\frac{1}{2},n[\{diag[s]\sigma^{T}\sigma(y, \pi)diag[s]\}D^{2}\varphi(y)]$

and Tr[MN] $= \sum_{1j=1}^{n}m_{ij}n_{ij}$ for symmetric matrices $M=[m_{jj}],$ $N=[n_{ij}]$ . Combining
(3.4) with (3.1), we have the DPE

$\min\{-\mathcal{G}^{DU(y)}U(y),$ $\mathcal{H}(DU(y))\}=0$ , $y\in[0, T$) $\cross(O, \infty)^{n+1}$ . (3.5)
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We are now in the position to provide some conditions on the payoff function $g$ and
convex set $K$ .

Assumption 3.1

(i) There are constants $c_{0},$ $l>0$ and $\gamma_{0}\in K$ such that

$g(\beta, s)\leq c_{0}(\beta^{l}+\beta^{-l})+\gamma_{0}^{T}s$ , $(\beta, s)\in(0, \infty)\cross R_{+}^{n}$ . $(3.6)$

(ii) Either one of the following conditions holds:

$\bullet$ $g$ is continuous, $or$ $\bullet$ $\wedge g$ is continuous and $g\wedge=\overline{g_{l}}$ , (3.7)

where

$g_{*}(z):= \lim_{e\downarrow 0}\inf$ { $g(z’)$ : $z’\in(0,$ $\infty)\cross R_{+}^{n}$ and $|z-z’|\leq\epsilon$ }, $z\in R_{+}^{n+1}$ .

$(\iota i\iota)$ For any $q,$ $q’\in R^{n}$ satisfying $q’-q\in R_{+}^{n}$ and $|q_{k}|=|q_{k}’$ , $k=1,$ $\ldots$ , $n$ , we have

$\delta(q)\geq\delta(q’)$ . (38)

Example 3.2 Let us consider the following two examples.

(i)
$K.isthe(38)$

.
closed ball $B_{\rho}(O)$ centered at $0$ with radius $\rho>0$ . Then $\delta(q)=\rho|q|$ satisfies

(ii) (Rectangular constraints) $K=J_{1}\cross\cdots\cross J_{n}$ with $J_{k}=[-\eta_{k}, \xi_{k}],$ $0\leq\xi_{k}\leq\eta_{k}<\infty$ .
Then $\delta(q)=\sum_{k=1}^{n}(\xi_{k}q_{k}^{+}+\eta_{k}q_{k}^{-})$ satisfies (3.8).

The following theorem characterizes the value function $U$ as a viscosity solution of
the DPE (3.5). For the notion and general theory of viscosity solutions, we recommend
readers to refer to the User’s Guide by Crandall et $al.[5]$ .
Theorem 3.3 Let (3.2) and (3.6) hold. Then $U$ satisfies the following expressions:

(i) (Growth condition) For all $(t,\beta, s)\in[0, T]\cross(0, \infty)\cross(0, \infty)^{n}$ ,

$0\leq U(t,\beta, s)\leq c_{0}(\beta^{l}+\beta^{-l})e^{l||r||_{\infty}T}+\gamma_{0}^{T}s$ .

(ii) (Supersolution) For any smooth test function $\varphi$ and local minimizer $y=(t,\beta, s)\in$

$[0, T)xR_{+}^{\mathfrak{n}+1}$ of $(U_{*}-\varphi)$ on $[0, T]\cross R_{+}^{\mathfrak{n}+1}$ , we have

$\min\{-\mathcal{G}^{D\varphi(y)}\varphi(y),\sup_{p\in R^{n}}\mathcal{H}(D^{s,p}\varphi(y))\}\geq 0$ .
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$(1i_{1})$ (Subsolution) For any smooth test function $\varphi$ and local maximizer $y=(t, \beta, s)\in$

$[0, T)\cross R_{+}^{n+1}$ of $(U^{*}-\varphi)$ on $[0, T]\cross R_{+;}^{n+1}$ we have

$\min\{-\mathcal{G}^{D\varphi(y)}\varphi(y))\tilde{\mathcal{H}}(D\varphi(y):s)\}\leq 0$ .

(iv) (Terminal condition) $U_{l}(T, z)\geq\overline{g_{*}}(z)$ , $z\in(O, \infty)^{n+1}$ .
Moreover if $\gamma_{0}$ in (3.6) is an element of int $(K\cap R_{+}^{n})$ and $(3.7)-(3.8)$ are satisfied,
then $U_{*}(T, z)=U^{*}(T, z)=\wedge g(z)$ , $z\in(O, \infty)^{n+1}$ .

Here the upper (resp. lower) semicontinuous envelope $U^{*}$ (resp. $U_{*}$ $:=-(-U)^{*}$ ) of $U$ is
defined as

$U^{*}(y)$
$:= \lim_{\epsilon\downarrow}\sup_{0}\{U(y’) : |y-y’|\leq\epsilon, y’\in[0, T)\cross(0, \infty)^{n+1}\}$ , $y\in[0, T]\cross R_{+}^{n+1}$ ,

$D^{s,p}\varphi$ $:=(D_{1}^{s,p}\varphi, \ldots, D_{n}^{s,p}\varphi)^{T}$ with $D_{j}^{s,p}\varphi:=D_{\epsilon_{j}}\varphi 1_{\{\epsilon_{j}>0\}}+p_{j}1_{\{\epsilon_{j}=0\}}$ ,

and $\tilde{\mathcal{H}}(p:s)$
$:=\mathcal{H}(p)1_{\{s\in(0,\infty)^{n}\}}+\infty 1_{ts\in\partial R}\dotplus$ }.

We conclude the paper with mention of a verification theorem for the DPE (3.5).

Corollary 3.4 (Verification Theorem) Let (3.2) and (3.6) be satisfied, and assume
$g\leq\overline{g_{*}}$ . Let $u\in C^{1,1,2}([0, T)\cross(O, \infty)\cross(0, \infty)^{n})\cap C([0, T]\cross(0, \infty)^{n+1})$ be solution of

$\mathcal{G}^{Du(y)}u(y)=0$ , $y\in[0, T$) $\cross(0, \infty)^{n+1}$ ,
$Du(y)\in K$, $y\in[0,T$) $x(0, \infty)^{n+1}$ ,

$u(T, z)=\overline{g_{*}}(z)$ , $z\in(0, \infty)^{n+1}$ ,

$u(t, z) \leq c_{0}(1+|z|^{l}+\prod_{j=0}^{n}z_{j}^{-\downarrow)},$ $z\in(0, \infty)^{n+1}$ ,

where $c_{0},$ $l>0$ are constants. Then $u=U$ on $[0, T$) $\cross(O, \infty)^{n+1}$ .
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