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Abstract

In this paper, we develop anew approach to deal with asymptotic be-
havior of the age-structured homogeneous epidemic systems. For homo-
geneous systems, there is no attracting nontrivial equilibrium, instead we
have to examine exlstence and stability of persistent solutions. Assuming
that the host population dynamics is described by the stable population
model, we rewrite the basic system into asystem of ratio age distribu-
tion, which is the age profile divided by the stable age profile. If the host
population has the stable age profile, the ratio age distribution system
is reduced to anormalized system. Then we prove alinearized stability
principle that the local stability [instability] of steady states of the nor-
malized system implies the orbital stability [instability] of corresponding
persistent solutlons of the original homogeneous system.
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1 Introduction: Homogeneous epidemic systems
First let us introduce a very general formulation for age-structured epidemic
systems. Suppose that the host population is a closed age-structured popula-
tion divided into $n$ subpopulations (compartments), each of which corresponds
to an epidemic i-state, for example, susceptible, exposed, infective, removed,
vaccinated state and so on. The state of such a population is described by
means of age density functions $U_{j}(t, a))$ where $t$ denotes time, $a$ stands for age

’This paper is a revised version of the first half of Inaba [13]. We have removed the
assumption used in [13] that the host population has a positive Malthusian parameter.
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and $j$ indicates the j-th epidemic state. The dynamics of this model is described
by the system of equations

$\frac{\partial U_{j}(t,a)}{\partial t}+\frac{\partial U_{j}(t,a)}{\partial a}=-\mu_{j}(a)U_{j}(t, a)+\sum_{k=1}^{n}g_{jk}(a, U(t))U_{k}(t, a)$ ,

$U_{j}(t, 0)= \sum_{k=1}^{n}\int_{0}^{w}m_{jk}(a)U_{k}(t, a)da$ ,
(1.1)

$U_{j}(0, a)=U_{0j}(a)$ ,

where $\omega$ denotes the upper bound of age, $U_{0j}$ is the initial data. The function
$\mu_{j}$ denotes the natural death rate of the j-th state population and $m_{jk}(a)$ is the
birth rate of j-th newborns by k-th individuals. The function $g_{ij}(a, U),$ $i\neq j$

denotes the density-dependent force of transition from j-th state to i-th state
and $g_{jj}$ is defined as

$g_{jj}(a, U):=- \sum_{i\neq j}g_{ij}(a, U)$
.

We assume that $U_{j}(t, \cdot)\in L_{+}^{1}(0,\omega)$ since $U_{j}$ represents a density. Moreover
each age-specific fertility function $m_{ij}$ is assumed to be a bounded nonnegative
function with a compact support $[a_{1}, a_{2}]$ , where $0<a_{1}<a_{2}<\omega$ and $[a_{1}, a_{2}]$ is
called the reproductive age period.

Let us define the survival function $\ell_{j}(a)$ at j-th state by

$\ell_{j}(a)$ $:= \exp(-\int_{0}^{a}\mu_{j}(\sigma)d\sigma)$ . (1.2)

In order to guarantee $l_{j}(\omega)=0$ , we assume that $\mu_{j}$ is a locally integrable
nonnegative function satisfying

$\int_{0}^{w}\mu_{j}(\sigma)d\sigma=+\infty$. (1.$\cdot$ 3)

Moreover we assume that the incident rate of death is essentially bounded:

$\sup\mu_{j}(a)\ell_{j}(a)<+\infty$ . (1.4)
$a\in[0,\omega]$

Then it is reasonable to restrict the state space of age density functions such
that $\mu_{j}(a)U_{j}(t, a)$ becomes integrable with respect to age $a$ . For this purpose,
we assume that the state space of age-density function $U_{j}$ is given by

$X_{j}$ $:= \{\phi\in L_{+}^{1}(0,\omega):\frac{\phi(\cdot)}{\ell_{j}(\cdot)}\in L_{+}^{1}(0,\omega)\}$ , (1.5)

where its norm is given by $\Vert\phi\Vert_{X_{j}}=\Vert\phi(\cdot)/p_{j(\cdot)\Vert_{L^{1}}}$ . If there is no differential
(natural) mortality among epidemic states, then each state space of age-density
functions is given by the same set as $\{U_{j}\in L_{+}^{1}(0,w):U_{j}(\cdot)/\ell(\cdot)\in L_{+}^{1}(0,\omega)\}$ .
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Then the age-structured epidemic system (1.1) can be formulated as a semi-
linear dynamical system as follows:

$\frac{dU(t)}{dt}=AU(t)+F(U)$ ,
(1.6)

$U(0)=U_{0}\in E_{+}$ ,

where $E=\Pi_{j=1}^{n}X_{j}$ is a Banach space of state vectors and $E+is$ its positive
cone, $U(t)=(U_{1}(t, \cdot),$ $U_{2}(t, \cdot),$ $\cdots,$

$U_{n}(t, \cdot))^{T1}$ is the state vector at time $t$ , and
the operator $A:D(A)\subset Earrow E$ is the population operator, given by

$(AU)(a)=(-dU_{1}/da-\mu_{1}(a)U_{1}, \cdots, -dU_{n}/da-\mu_{n}(a)U_{n})^{T}$ .

The domain $D(A)$ is given as follows:

$D(A)= \{U\in E:\frac{U_{j}}{p_{j}}\in AC[0,\omega],$ $U( O)=\int_{0}^{w}M(a)U(a)da\}$ ,

where $AC[0,w]$ denotes the set of absolutely continuous functions, $M(a)$ $:=$

$as(m_{ij}(a))_{1\leq i,j\leq n}$
is a $n\cross n$ fertility matrix, and the nonlinear term $F(U)$ is given

$F(U)(a)=G(a, U)U$, (1.7)

where $G(a, U)=(g_{ij}(a, U))_{1\leq i,j\leq n}$ is a $n\cross n$ transition matrix.
The transition rate from the susceptible class to the exposed or infected class

is called the force of infection. For many classical epidemic models, the foroe of
infection is the only density-dependent transition rate (which depends on the
density of infectious population) and other transition rates are $a\epsilon sumed$ to be
given age-dependent functions or constants.

To ensure the existence and uniqueness of asolution, we assume local Lip-
schitz continuity, that is, there exists an increasing function $k(r)$ such that
$\Vert F(U)-F(V)\Vert\leq k(r)\Vert U-V||$ for all $U,$ $V\in\{U\in E+:\Vert U||\leq r\}$ . Under the
above assumption, it can be shown that the epidemic system (1.1) has aunique
global mild solution $S(t)u_{0}$ such that $S(t)(E_{+})\subset E+and$ if $u_{0}\in E+\cap D(A)$ ,
$S(t)u_{0}$ becomes aclassical solution. In general the evolution system (1.1) can
be seen as anonlinear extension of ademographic multistate stable population
model [11], which has been extensively studied by many authors ([17], [19], [9],
[4]).

In this paper we focus on the special case in which the basic system (1.1)
defines ahomogeneous dynamical system. Adynamical system can be called ho-
mogeneous if its solution operator is homogeneous, that is, $S(t)(\alpha U)=\alpha S(t)(U)$

for all $U\in E+and$ for all $\alpha>0$ . For the semilinear Cauchy problem (1.6), if $F$

is ahomogeneous of degree one nonlinear continuous operator:

$F(\alpha U)=\alpha F(U)$ , $\forall U\in E+,$ $\forall\alpha>0$ , (1.8)

$1T$ denotes the transpose of the vector.
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then (1.6) becomes a homogeneous dynamical system. In the following we call
the age-structured multistate model (1.1) the homogeneous epidemic system if
it describes an epidemic compartment model and $F$ satisfies the homogeneity
condition $(1.7)-(1.8)$ with $G(a, \alpha U)=G(a, U)$ .

The assumption of homogeneity has been widely used in the epidemic mod-
eling to reflect the saturation of contact number in large scale populations ([3],
[6], [18]). In general, the force of infection $(\lambda)$ can be seen as a product of three
factors, the transmission probability of infectious agents per one contact $(\beta)$ ,
the number of contacts per capita and per unit time $(C(N))$ and the fraction
of the population that is infectious $(I/N)$ . That is,

$\lambda\approx\beta\cross C(N)\cross\frac{I}{N}$ (1.9)

where $I$ denotes the size of the infectious population and $N$ is the size of the
total population. Though it is natural to suppose that the number of contacts
$C(N)$ is an increasing function of the population size $N$ , for many cases it is also
believed that $C(N)$ levels off at high population densities ([1], [18], [14]). Then
it would be reasonable to adopt the simplified assumption that $C$ is constant if
the host population size is so large that $C(N)$ is essentially equal to its limiting
value ($C(N)$ is assumed to be an increasing function bounded above). In such
a case, $\lambda$ becomes homogeneous of degree zero with respect to the scale of
population densities, which leads to the homogeneous epidemic system.

If $U^{*}$ is an equilibrium solution of the system (1.6) with homogeneity con-
dition (1.8), then so is $cU^{*}$ for any $c>0$ . Then there is no possibility of
an attracting nontrivial equilibrium, which is very different from the classical
epidemic models whose force of infection is a linear functional of the infected
population density. So our interest focuses on the existence and stability of
persistent solutions defined as follows: The solution of (1.6) with (1.8) is called
a persistent solution if it has the form as $e^{r^{*}}{}^{t}U^{*}$ where $r^{*}$ is a constant and
$U^{*}\in E$ . Then it follows from the homogeneous nonlinearity that a (biologically
meaningful) persistent solution exists if and only if the nonlinear eigenvalue
problem

$AU^{*}+F(U^{*})=r^{*}U^{*}$ , $U^{*}\in E+$ ’ (1.10)

has a solution.
The homogeneous dynamical system has been studied by several authors who

have already developed some approaches to show stability results of persistent
solutions in the homogeneous (epidemic) dynamical systems ([5], [3], [6], [7], [8],
[20], [21], [10]). However, in fact the above nonlinear eigenvalue problem is very
difficult to solve except for some special cases. For the homogeneous epidemic
system, the most important special case such that the eigenvalue problem (1.10)
could be solved is the case that the host population dynamics is independent
ffom the epidemic and described by the stable population model.

In order to consider the solvable case, we adopt the following additional
assumption:
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Assumption 1.1 There is no differential mortality, $\mu(a)=\mu_{j}(a)(1\leq j\leq n)$

is the common age-specific natural death rate. Moreover there is no differential
$fertili\sim ty$, so there exists a state-independent age-specific fertility function $f(a)$

such that $m_{ij}(a)=k_{i}f(a)$ , where $k_{i}$ denotes the proportion of newbo$ms$ whose
epidemic state is $i$ and $\sum_{i=1}^{n}k_{i}=1,$ $k_{i}\geq 0$ .

Note that under the Assumption 1.1 we can escape from the regulation
problem, that is, the effects of the epidemic on the demographic vital rates. Yet
demography influences the disease dynamics. For example, the host population
structure and the Malthusian parameter could affect the basic reproduction
ratio ([2], [12]).

If the Assumption 1.1 is satisfied, it is easy to see that the age density
function of the host population, denoted by $P(t, a)$ $:= \sum_{i=1}^{n}U_{i}(t, a)$ satisfies
the stable population model:

$\frac{\partial P(t,a)}{\partial t}+\frac{\partial P(t,a)}{\partial a}=-\mu(a)P(t, a)$ ,

$P(t, 0)= \int_{0}^{w}f(a)P(t, a)da$ , (1.11)

$P(0, a)=P_{0}(a)$ ,

where $P_{0}(a)= \sum_{j=1}^{n}U_{j}(0,a)$ is a given initial data. Moreover, by adding term
to term in the eigenvalue problem (1.10), we can obtain the following linear
eigenvalue problem:

$(- \frac{\partial}{\partial a}-\mu(a))P^{*}(a)=r^{*}P^{*}(a)$ ,
(1.12)

$P^{*}( O)=\int_{0}^{w}f(a)P^{*}(a)da$ ,

where $P^{*}(a)$ $:= \sum_{i=1}^{n}U_{i}^{*}(a)$ . From (1.12), we know that $P^{*}(a)=P^{*}(0)e^{-ra}\ell(a)$ ,
where $\ell(a)$ $:= \exp(-\int_{0}^{a}\mu(\sigma)d\sigma)$ is the survival function. Inserting the expres-
sion of $P^{*}$ into the boundary condition, we know that the eigenvalue $r^{*}$ must
be a root of the Euler-Lotka characteristic equation:

$\int_{0}^{w}e^{-za}f(a)\ell(a)da=1$ , $z\in C$ . (1.13)

Then it is well known that (1.13) has a unique dominant real root $r_{0}$ , which is
called the intrinsic rate of natural increase.

Therefore the host population system (1.11) has a unique persistent age
profile (normalized age distribution) given by

$\psi(a):=\frac{e^{-r_{0}a}\ell(a)}{\int_{0}^{\omega}e^{-r_{0}\sigma}l(\sigma)d\sigma}=\psi(0)e^{-r_{0}a}p(a)$ , (1.14)

and $\psi$ is called the stable age profile. Therefore under the Assumption 1.1, per-
sistent solutions of the homogeneous epidemic system (1.1) have a unique growth
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rate $r_{0}$ . Then the remaining problem is to look for the persistent distributions
$U^{*}$ and to examine their stability.

Intuitively speaking, if the host population age distribution approaches a
stable age distribution independently from the epidemic, we could expect that
the long-run behavior (stability and instability of the persistent solutions) of the
basic system would be determined by the limiting system whose host population
has already attained the stable age distribution. In order to show this intuition
to hold, first we have to consider the dynamics of age profile more precisely. In
the following we call the homogeneous epidemic system under the Assumption
1.1 the homogeneous epidemic system in the stable population.

2 Age profile dynamics of the stable population
For the stable population model, its initial data are called trinial if $f(a+$
$t)P_{0}(a)=0$ for almost all $a\in[0,\omega]$ and all $t\geq 0$ , which means that the
support of $P_{0}$ starts beyond the maximum reproductive age ([9], p.22) (that is,
the initial individuals are too old to be fertile), otherwise they are called non-
trivial. It follows from the stable population theory ([11], [9]) that if a given
initial data $P_{0}(a)$ is non-trivial, the age distribution converges to the stable age
profile:

$\lim_{tarrow\infty}\frac{P(t,a)}{\int_{0}^{\omega}P(t,a)da}=\psi(a)$ . (2.1)

That is, $\psi$ is a relatively stable age distribution. Once the stable age profile
$\psi$ is attained, it is persistent and the population grows exponentially with the
Malthusian parameter $r_{0}$ .

In order to show the stability principle for the epidemic system in the next
section, here we introduce some properties of the ratio age distnbution $w$ defined
by:

$w(t, a)= \frac{P(t,a)}{N(t)\psi(a)}$ , (2.2)

where $N(t)= \int_{0}^{\omega}P(t, a)da$ is the total size of the population at time $t$ and
$P(t, a)/N(t)$ is the age profile (normalized age distribution) of the host popu-
lation at time $t$ , so $w$ is the ratio of the age profile at time $t$ to the stable age
profile. The ratio distribution is well defined as long as the initial data $P_{0}$ is
nontrivial.

Inserting $P=N\psi w$ into (1.11), we can derive that $w$ satisfies the following
system:

$\frac{\partial w(t,a)}{\partial t}+\frac{\partial w(t,a)}{\partial a}=(r_{0}-h(w(t, \cdot))w(t, a)$ ,

$w(t,0)= \int_{0}^{\omega}\pi(\sigma)w(t, \sigma)d\sigma$ , (2.3)

$w(0, a)=w_{0}(a)\in\Sigma$ ,
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where $\pi(a)$ $:=e^{-r_{O^{Q}}}f(a)\ell(a),$ $\Sigma$ is the state space of $w$ given by

$\Sigma$ $;=\{\phi\in L_{+}^{1}(0,\omega)$ : $\int_{0}^{w}\psi(a)\phi(a)da=1\}$ ,

and $h:\Sigmaarrow R$ is a functional defined by

$h(\phi)$ $:= \int_{0}^{w}(f(a)-\mu(a))\psi(a)\phi(a)da$.

It is easy to see that $h(1)=r_{0}$ and $h(w(t, \cdot))$ gives the growth rate of the host
population at time $t$ , that is, $N’(t)/N(t)=h(w(t, \cdot))$ .

Once the solution $w$ of (2.3) is given, the host population $P$ is recovered as

$P(t, a)=N(0)e^{\int_{0}^{t}h(w(\sigma,\cdot))d\sigma}\psi(a)w(t, a)$ . (24)

It follows that $P(t, a)$ becomes the persistent solution $N(0)e^{r_{0}t}\psi(a)$ if and only
if $w(t, a)=w^{*}\equiv 1$ , which is the unique nontrivial equilibrium solution of (2.3).

From the well-known strong ergodicity theorem for the stable population, it
is easy to see that the ratio distribution $w$ converges to $w^{*}\equiv 1$ exponentially
in $L^{1}$ norm as $tarrow\infty$ (see [9] Chapter II). However, more precisely, let us show
that $\Vert w-w^{*}\Vert/\Vert w_{0}-w^{*}\Vert$ is decreasing exponentially, which result is needed in
the next section.

Let us consider the system (2.3) as a Cauchy problem in $L^{1}(0, \omega)$ :

$\frac{dw(t)}{dt}=A_{0}w(t)+G(w(t)),$ $w(0)=w_{0}\in\Sigma$ , (2.5)

where $A_{0}$ is a population operator defined by $(A_{0}\phi)(a)=-d\phi(a)/da$ with the
domain given by

$D(A_{0})=\{\phi\in AC[0,\omega]$ : $\phi(0)=\int_{0}^{\omega}\pi(a)\phi(a)da\}$ .

and the nonlinear term $G$ is given by

$G(\phi)$ $:=(r_{0}-h(\phi))\phi$ .

Since $G$ is a continuously Fr\’echet differentiable nonlinear perturbation, for
each $w_{0}\in L^{1}$ there exists a maximal interval of existence $[0, T_{w_{0}}$ ) and a unique
continuous function $tarrow w(t;w_{0})$ from $[0, T_{w_{0}}$ ) to $L^{1}$ such that

$w(t;w_{0})=e^{tA_{0}}w_{0}+ \int_{0}^{t}e^{A_{0}(t-\sigma)}G(w(\sigma;w_{0}))d\sigma,$ $t\in[0,T_{wo}$ ), (2.6)

and $T_{w_{0}}=\infty$ or $\lim suptarrow T_{w_{0}}||w(t;w_{0})||=\infty$ and if $w_{0}\in D(A_{0})$ , then
$w(t;w_{0})\in D(A_{0})$ and $w(t;w_{0})$ is continuously differentiable and satisfies (2.6)
on $[0, T_{w_{0}}$ ) ([16]; [19], Prop. 4.16). Since (2.3) is induced from the stable pop-
ulation model (1.11) by the transformation (2.4), we know that $T_{w_{0}}=\infty$ if $w_{0}$

is a nontrivial data, and the following holds:
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Lemma 2.1 Let $\Sigma_{0}$ be the set of nontrivial initial data. Then $\Sigma\cap\Sigma_{0}$ is posi-
tively invariant with respect to the solution semiflow of the system (2.3).

Next consider the linearized equation of (2.5) at the equilibrium point $w^{*}\equiv$

$1$ :
$\frac{d\zeta(t)}{dt}=(A_{0}+G’[w^{*}])((t)$ , (2.7)

where $\zeta(t, a)$ $:=w(t, a)-w^{*}$ and $G’[w^{*}]$ : $L^{1}arrow L^{1}$ is a linear operator with
one-dimensional range defined as

$G’[w^{*}]\zeta:=-h(\zeta)w^{*}$ ,

Then $A_{0}+G’[w^{*}]$ generates a strongly continuous semigroup $T(t)=\exp((A_{0}+$

$G’[w^{*}])t)$ , because $A_{0}+G’[w^{*}]$ is a bounded linear perturbation of the popula-
tion semigroup generator $A_{0}$ .

From the biological meaning, the state space of the perturbation $\zeta$ is

$\Sigma^{*}$ $:=\{\phi\in L_{+}^{1}(0,\omega)$ : $\int_{0}^{\omega}\psi(a)\phi(a)da=0\}$ .

Then it is easy to see that $\Sigma^{*}$ is positively invariant with respect to the semiflow
$T(t)$ . So we write the restriction of $T(t)$ to the subspace $\Sigma^{*}$ as $T_{\Sigma}\cdot(t)$ .

Lemma 2.2 For the linearized semigroup $T_{\Sigma}\cdot(t)$ , there exist numbers $\epsilon>\dot{0}$

and $M(\epsilon)\geq 1$ such that
$\Vert T_{\Sigma}\cdot(t)\Vert\leq M(\epsilon)e^{-\epsilon t}$ . (2.8)

Proof: Since the semigroup generated by the population operator with a com-
pact perturbation is eventually compact ([11], [19] Prop. 4.14), it follows that
$\omega_{0}(A_{0}+G’[w^{*}])=\sup\{\Re z : z\in P_{\sigma}(A_{0}+G’[w^{*}])\}^{2}$ . Hence the restriction $T_{\Sigma}\cdot(t)$

is also an eventually compact semigroup. Then if there exists a negative domi-
nant eigenvalue for $A_{0}+G’[w^{*}]$ on the subspace $\Sigma^{*}$ , then there exist $M(\epsilon)\geq 1$

and $\epsilon>0$ such that $\Vert T_{\Sigma^{*}(t)}\Vert\leq M(\epsilon)e^{-\epsilon t}$ . So let us consider the eigenvalue
equation for $A_{0}+G’[w^{*}]$ on $\Sigma^{*}:$

$(\lambda-(A_{0}+G’[w^{*}]))\phi=0$ , $\phi\in D(A_{0})\cap\Sigma^{*}$ .

Then we have

$\lambda\phi+\phi’+h(\phi)=0$ , $\phi(0)=\int_{0}^{w}\pi(a)\phi(a)da$ ,

which is solved formally as follows:

$\phi(a)=\phi(0)e^{-\lambda a}-h(\phi)\int_{0}^{a}e^{-\lambda(a-s)}ds$ .

$2P_{\sigma}(A)$ denotes the point spectrum of the operator $A$ and $w_{0}(A)$ denotes the spectral
bound of the semigroup $e^{tA}$ (see [15])
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Inserting the above formal solution into the boundary condition, we have

$\phi(0)=\phi(0)\int_{0}^{\omega}\pi(a)e^{-\lambda a}da-h(\phi)\int_{0}^{\omega}\pi(a)\int_{0}^{a}e^{-\lambda(a-s)}dsda$ .

On the other hand, since $\phi\in\Sigma^{*}$ , we obtain a condition

$\phi(0)\int_{0}^{w}\psi(a)e^{-\lambda a}da-h(\phi)\int_{0}^{\omega}\psi(a)\int_{0}^{a}e^{-\lambda(a-s)}dsda=0$ .

Then we have a simultaneous equation system for the unknown numbers $\phi(0)$

and $h(\phi)$ as
$(\begin{array}{ll}\Psi_{1l}(\lambda) \Psi_{12}(\lambda)\Psi_{2l}(\lambda) \Psi_{22}(\lambda)\end{array})(_{h(\phi)}^{\phi(0)})=0$ ,

where

$\Psi_{21}(\lambda)\Psi_{11}(\lambda)$ $\Psi_{12}(\lambda)\Psi_{22}(\lambda))$ $:=(^{\int_{0}^{w}\pi(a)e^{-\lambda a}da-1} \int_{0}^{w}\psi(a)e^{-\lambda a}da$ $- \int_{0}\psi(a)\int_{0^{a}}e^{-\lambda(a-\epsilon)}dsda-\int^{w}\pi(a)\int_{0}^{a}e^{-\lambda(a-\epsilon)}dsda$

,

Let $\Psi(\lambda)=(\Psi_{ij}(\lambda))_{1\leq i,j\leq 2}$ . Then $\lambda$ is an eigenvalue of our interest if and only
if $\lambda\in\Lambda$ $:=\{\lambda\in C : \det(I-\Psi(\lambda))=0\}$ . It is easy to see that $\Lambda=\{\lambda\in C\backslash \{0\}$ :
$\Psi_{11}(\lambda)=0\}$ . By using the standard argument for the Euler-Lotka characteristic
equation, we know that all eigenvalues associated with eigenvectors in $\Sigma^{*}$ have
negative real part. $\square$

Proposition 2.3 Let $w(t)$ be the solution of (2.5). Then there emsts a nurnber
$\eta>0$ such that if Il $w_{0}-w^{*}\Vert<\eta$ , it follows that

$\Vert w(t, \cdot)-w^{*}||\leq M(\epsilon)e^{-\epsilon t}\Vert w_{0}-w^{*}\Vert$ , (2.9)

for so$rne$ numbers $M(\epsilon)\geq 1$ and $\epsilon>0$ , where $M(\epsilon)$ is independent from the
initial data $w_{0}$ .

Proof: Inserting $w^{*}+\zeta(t),$ $\zeta\in\Sigma^{*}$ into (2.5), we have

$\frac{d\zeta(t)}{dt}=(A_{0}+G’[w^{*}])\zeta(t)+R(\zeta(t))$ , (2.10)

where
$R(\zeta(t))$ $:=G(w^{*}+\zeta(t))-G’[w^{*}]\zeta(t)\in\Sigma^{*}$ .

IFlrom the IFMr\’echet differentiability, there exists a continuous increasing function
$k(r),$ $r\geq 0$ with $k(O)=0$ such that

$\Vert G(w^{*}+\zeta)-G(w^{*})-G’[w^{*}]\zeta\Vert=||R(\zeta)\Vert\leq k(r)\Vert\zeta\Vert$ ,

for all $\zeta\in L^{1}$ such that $\Vert\zeta\Vert\leq r$ . Applying the variation of constants formula
to (2.10), we have

$\zeta(t)=\tau_{\Sigma}$ . $(t) \zeta(0)+\int_{0}^{t}\tau_{\Sigma}.(t-s)R(\zeta(s))ds$ , (2.11)
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From Lemma 2.2, if we can choose $\gamma<0$ such that $\Vert T_{\Sigma^{*}}(t)\Vert\leq M(\gamma)e^{\gamma t}$ with
some $M(\gamma)\geq 1$ . Choose $r>0$ such that $k(r)\leq-\gamma/2M(\gamma)$ and let $\eta\leq r/M(\gamma)$ .
Suppose that $\Vert\zeta(0)\Vert<\eta$ and let $0<t_{1}\leq\infty$ be the largest extended real number
such that $\Vert((t)\Vert\leq r$ for $0\leq t<t_{1}$ . Then for $0\leq t<t_{1}$ , we have

$\Vert\zeta(t)\Vert\leq M(\gamma)e^{\gamma t}\Vert\zeta(0)\Vert+M(\gamma)\int_{0}^{t}e^{\gamma(t-s)}\Vert R(\zeta(s))\Vert ds$,

$\leq M(\gamma)e^{\gamma t}\Vert\zeta(0)\Vert+M(\gamma)e^{\gamma t}\int_{0}^{t}e^{-\gamma s}k(r)\Vert((s)\Vert ds$.

Therefore we obtain

$e^{-\gamma t} \Vert\zeta(t)\Vert\leq M(\gamma)\Vert\zeta(0)\Vert+\frac{-\gamma}{2}\int_{0}^{t}e^{-\gamma s}\Vert\zeta(s)\Vert d_{8}$.

From the Gronwall inequality, we have

$e^{-\gamma t}\Vert\zeta(t)\Vert\leq M(\gamma)\Vert\zeta(0)\Vert e^{-\iota_{t}}2$ .

Thus we arrive at the estimate as $\Vert((t)\Vert\leq M(\gamma)e^{2}2t\Vert\zeta(0)\Vert\leq r$ , so we know
that $t_{1}=\infty$ and (2.9) holds $for-\epsilon=\gamma/2$ . $\square$

3 Linearized stability for the homogeneous epi-
demic system

For the homogeneous epidemic system, once the stable age distribution is at-
tained, we can rewrite the basic system into the normalized system in which
the nonlinear term becomes bilinear (the mass action type). In the following,
we prove that the local stability [instability] of steady states of the normalized
system implies the stability [instability] of persistent solutions of the original
homogeneous system.

Let us introduce the ratio $dist7\dot{\tau}butions$ for each of the epidemiological classes
as follows:

$u_{j}(t, a)$ $:= \frac{U_{j}(t,a)}{N(t)\psi(a)}$ (3.1)

In the following we assume that $N(t)>0$ for all $t\geq 0$ , which holds if the initial
age profile is non-trivial.

Note that under the Assumption 1.1, we have

$w(t, a)= \frac{P(t,a)}{N(t)\psi(a)}=\sum_{j=1}^{n}u_{j}(t, a)=<e,u(t, a)>$ , (3.2)

where we define $e:=(1,1, \cdot\cdot, 1)^{T}$ so that for $u\in Y:=(L^{1}(0,w))^{n}$ , we have

$<e,$ $u(a)>:= \sum_{i=1}^{n}u_{i}(a)$ .
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Now in order to make a concrete normalization argument possible, we intro-
duce a special homogeneity condition:

Assumption 3.1 The force of infection is given by an expression of the form

$\int_{0}^{\omega}\beta(a, \sigma)\frac{U_{j}(t,\sigma)}{N(t)}d\sigma$ , (3.3)

where $\beta$ is the transmission probability function (which is assumed to be essen-
tially bounded and nonnegative) and $U_{j}$ is an infectious class. Other transition
$entr\dot{v}es$ in the matrix $G(a;U)$ are given bounded nonnegative functions indepen-
dent of the population density $U$ .

Inserting $U_{j}(t, a)=N(t)\psi(a)u_{j}(t, a)$ into (1.1), the homogeneous epidemic
system in the stable population is reduced to a Cauchy problem on the Banach
space $Y+=(L_{+}^{1}(0,w)^{n}$ :

$\frac{du(t)}{dt}=\tilde{A}u(t)+\tilde{F}(u(t))+B(u(t))$ , $u(O)=u_{0}$ . (3.4)

where the operators $\tilde{A},\tilde{F}$ and $B$ acting on $Y$ are defined as follows:

$\tilde{A}\phi$ $:=-d\phi/da$ ,

$D(\tilde{A})$ $:=\{\phi\in Y$ : $\phi_{i}\in AC[0,\omega],$ $\phi(0)=\int_{0}^{w}\tilde{M}(a)\phi(a)da,$ $\}$ ,

where $\tilde{M}(a)$ $:=(k_{ij}\pi(a))_{1\leq i,j\leq n}$ and $\tilde{F}(\phi)(a)=\tilde{G}(a, \phi)\phi$ where the force of
infection term in $\tilde{G}$ is given by the formula as

$\lambda[a|\phi_{j}]:=\int_{0}^{w}\beta(a, \sigma)\psi(\sigma)\phi_{j}(\sigma)d\sigma\phi_{k}$. (3.5)

Other elements of the matrix $\tilde{G}(a;U)$ are the same as the corresponding
elements of $G$ . The operator $\tilde{A}$ is a generator of the multistate population
semigroup $e^{t\overline{A}}$ ([11]). The nonlinear term $B$ is given by

$B(\phi)=z(\phi)\phi$ , (36)

where $z:Y+arrow R+is$ a functional given by

$z(\phi)$ $:=r_{0}-h(<e, \phi>)$ . (3.7)

Conversely if the system (3.4) is given, by using its solution $u$ we can recover
the total size $N(t)$ from the equation:

$\frac{1}{N(t)}\frac{dN(t)}{dt}=r_{0}-z(u(t))$ , $N( O)=\int_{0}^{w}P(O, a)da$ ,
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Once we can determine $N(t)$ from the above equation, $U_{j}$ and $P$ can be recovered
by (3.1) and (3.2).

Let $K_{1}$ be a closed convex set given by

$K_{1}$ $:=\{\phi\in Y+:<e, \phi(a)>=1\}$ .
Moreover, from the definition (3.2), biologically meaningful solutions $u(t)$ of
(3.4) should take a value in the closed convex set:

$K_{2}$ $:= \{\emptyset\in Y+:\int_{0}^{w}\psi(a)<e,$ $\phi(a)>da=1\}$ .

Then it follows from $\int_{0}^{\omega}\psi(a)da=1$ that $K_{1}\subset K_{2}$ and $z(\phi)=0$ if $\phi\in K_{1}$ .
Lemma 3.2 The sets $K_{1}$ and $K_{2}\cap\Sigma_{0}$ are positively $inva’\dot{\tau}ant$ with respect to
the solution $se7niflow$ of (S.4).

Proof: In the system (2.5), if $w(O, a)=w^{*}$ , we have $w(t, a)=w^{*}$ for all $t>0$ ,
which means that the positive orbit $u$ is included in $K_{1}$ if $u(O)\in K_{1}$ . Next
suppose that $u(0)\in K_{2}\cap\Sigma_{0}$ . Then it follows that

$\frac{d<e,u(t)>}{dt}=A_{0}<e,$ $u(t)>+z(u)<e,$ $u(t)>$ . (3.8)

The equation (3.8) is equivalent to (2.5) with $w=<e,$ $u>$ , hence it follows $hom$

Lemma 2.2 that $<e,$ $u(t)>stays$ in the state space $\Sigma_{0}\cap\Sigma$ , which implies that
$u(t)\in K_{2}\cap\Sigma_{0}$ . $\square$

Now we adopt a technical assumption, which would be satisfied for many
cases:

Assumption 3.3 The operator $\tilde{F}$ : $Yarrow Y$ is locally Lipschitz continuous and
continuously Fr\’echet differentiable.
Lemma 3.4 Let $u(t)$ be a solution of (3.4). Then there enists $B_{0}>0$ and
$\epsilon_{1}>0$ such that

$\Vert B(u(t))\Vert\leq B_{0}e^{-\epsilon_{1}t}\Vert u(t)||\Vert w_{0}-w^{*}\Vert$ , (3.9)

wheoe $w_{0}(a):=<e,$ $u(O, a)>$ .
Proof: It is sufficient to show that there exists $B_{0}>0$ and $\epsilon_{1}>0$ such that
$|z(u(t))|\leq B_{0}e^{-\epsilon_{1}t}\Vert w_{0}-w^{*}\Vert$ . It follows from $r_{0}= \int_{0}^{w}(f(a)-\mu(a))\psi(a)da$ that

$|z(u(t))| \leq\int_{0}^{w}|f(a)-\mu(a)|\psi(a)|w^{*}-w(t, a)|da$ .

IFhrom the estimate (2.9), there exist numbers $M>0$ and $\epsilon>0$ such that
$\Vert w(t, \cdot)-w^{*}\Vert\leq Me^{-\epsilon t}\Vert w_{0}-w^{*}\Vert$ . Hence ifwe choose $B_{0}$ as $B_{0}=M \sup_{a\in[0,w]}|f(a)-$

$\mu(a)|\psi(a)$ , then (3.9) follows immediately. $\square$
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From Lemma 3.4 we can expect that the asymptotic behavior of (3.4) is
determined by the system restricted to $K_{1}$ :

$\frac{dv(t)}{dt}=\tilde{A}v(t)+\tilde{F}(v(t))$ , $v\in K_{1}$ . (3.10)

In the following, we call (3.10) the normalized system. From Lemma 3.4, the
normalized system can be seen as a limiting equation with respect to (3.4). The
normalized system is no other than the ratio age distribution system in case that
the host population attains the stable age distribution, that is, we can prove
the following:

Lemma 3.5 Let $u(t)$ be the solution of (3.4). Then $u(t)\in K_{1}$ if and only if
$P(t, a)$ is the persistent solution of (1.11).

Proof: If $u(t)\in K_{1}$ , we have $<e,$ $u(t, a)>=1$ which implies that

$\sum_{j=1}^{n}u_{j}(t, a)=\frac{1}{N(t)\psi(a)}\sum_{j=1}^{n}U_{j}(t, a)=\frac{P(t,a)}{N(t)\psi(a)}$ .

Therefore $P(t, a)=N(t)\psi(a)$ . Then $P(t, a)$ is a separation of variable type
solution of (1.11), we know that $N(t)=\Vert P_{0}||e^{r_{0}t}$ and $P$ becomes the persistent
solution. Conversely if we assume that $P(t, a)=Ce^{r_{0}t}\psi(a)(C$ is a positive
constant), then $N(t)=Ce^{r_{0}t}$ , hence $\sum_{j=1}^{n}u_{j}(t, a)=1$ . $\square$

Since $K_{1}$ is positively invariant with respect to the solution semiflow of (3.4)
and (3.4) is reduced to (3.10) on $K_{1}$ , it follows that

Lemma 3.6 Let $V(t)$ be a solution semiflow such that $V(t)v_{0}=v(t;v_{0})$ where
$v(t;v_{0})$ denotes the solution of the norrnalized system (3.10) with the initial data
$v(O)=v_{0}\in Y$ . Then $V(t)(K_{1})\subset K_{1}$ .

Lemma 3.7 $u^{*}\in K_{2}$ is an equilibnum point of (S.4) if and only if $u^{*}\in K_{1}$

and $u^{*}$ is an equilibrium point of the normalized system (S.10), that is,

$\tilde{A}u^{*}+\tilde{F}(u^{*})=0$ . (3.11)

Let $u^{*}\in K_{1}$ be an equilibrium point of (3.4). Define a perturbation $\zeta(t, a)$

by $\zeta=u-u^{*},$ $u\in K_{2}$ . Inserting $u=u^{*}+(into(3.4)$ , we have an equation for
the perturbation:

$\frac{d\zeta(t)}{dt}=\tilde{A}\zeta(t)+\tilde{F}’[u^{*}]\zeta+R(u^{*}, \zeta(t))$ , (3.12)

where $\tilde{F}’[u^{*}]$ is a FXr\’echet derivative of $\tilde{F}$ at $u^{*}$ and the residual term $R$ is given
by

$R(u^{*}, \zeta(t)):=\tilde{F}(u^{*}+((t))-\tilde{F}(u^{*})-\tilde{F}’[u^{*}]((t)+B(u^{*}+\zeta(t))$ . (3.13)
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From Lemma 3.4, we obtain an estimate:

$\Vert B(u^{*}+\zeta(t))\Vert\leq B_{0}e^{-\epsilon_{1}}{}^{t}(\Vert u^{*}\Vert+\Vert\zeta(t)\Vert)\Vert w_{0}-w^{*}\Vert$ . (3.14)

From the definition of Fr\’echet differentiability, there exists a continuous
increasing function $k(r),$ $r\geq 0$ such that $k(O)=0$ and

$\Vert\tilde{F}(v^{*}+\zeta)-\tilde{F}(u^{*})-\tilde{F}’[u^{*}]\zeta\Vert\leq k(r)\Vert\zeta\Vert$ , (3.15)

for all $\zeta\in Y$ such that $\Vert\zeta\Vert\leq r$ .
Let $T^{*}(t),$ $t\geq 0$ be a strongly continuous semigroup of $bou_{\sim}nded$ linear

operators in the Banach space $Y$ with infinitesimal generator $A+F’[u^{*}]$ . Then
if $w^{*}>\omega_{0}(\tilde{A}+\tilde{F}’[u^{*}])$ , there exists a constant $M(\omega^{*})\geq 1$ such that $\Vert T^{*}(t)||\leq$

$M(\omega^{*})e^{w^{*}t}$ . Now we can prove the following:

Proposition 3.8 Let $u^{*}\in K_{1}$ be an equilibrium solution of (3.4). If $\omega 0(\tilde{A}+$

$\tilde{F}’[u^{*}])<0$ , there exist $\eta>0,$ $M\geq 1$ and $\gamma<0$ such that if $u_{0}\in K_{2}$ and
11 $u_{0}-u^{*}||<\eta$ , then for all $t>0$ , it follows that

$\Vert u(t;u_{0})-u^{*}\Vert\leq Me^{\gamma t}\Vert u_{0}-u^{*}||$ . (3.16)

Proof: From (3.12), the perturbation $\zeta(t)$ $:=u-u^{*}$ is given as the continuous
solution of the variation of constants formula:

$\zeta(t)=T^{*}(t)((0)+\int_{0}^{t}T^{*}(t-s)R(u^{*}, \zeta(s))ds$ . (3.17)

Let $w^{*}$ be a number such that $0> \omega^{*}>\max\{w_{0}(\tilde{A}+\tilde{F}‘[u^{*}]), -\epsilon_{1}\}$ where $\epsilon_{1}$ is
chosen in Lemma 3.4. Choose $r>0$ such that $k(s)\leq-\omega^{*}/4M(w^{*})$ for $s\in[0,r]$ .
Let choose $\eta<r$ so small such that

$0< \eta\leq\min\{\frac{r}{M(w^{*})(1+\frac{B_{0}||u^{*}||}{w^{*}+\epsilon_{1}})},$ $- \frac{w^{*}}{4M(w^{*})B_{0}}\}$ ,

Suppose that $\Vert\zeta(0)\Vert<\eta$ and let $0<t_{1}\leq\infty$ be the largest extended real
number such that $\Vert\zeta(t)\Vert\leq r$ for $0\leq t<t_{1}$ . Note that

$\Vert w_{0}-w^{*}\Vert=\int_{0}^{w}|\sum_{i=1}^{n}(u_{i}(0, a)-u_{i}^{*}(a))|da\leq\Vert u(0)-u^{*}\Vert=\Vert\zeta(0)||<\eta$ .

Then for $0\leq t<t_{1}$ , we have

$\Vert\zeta(t)||\leq M(w^{*})e^{wt}||\zeta(0)\Vert+M(\omega^{*})\int_{0}^{t}e^{\omega^{*}(t-s)}\Vert R(u^{*}, \zeta(s))\Vert ds$,

$\leq M(w^{*})e^{\omega t}\Vert\zeta(0)\Vert+M(\omega^{*})e^{w^{*}t}\int_{0}^{t}e^{-\omega s}[k(s)+B_{0}e^{-\epsilon_{1^{S}}}||\zeta(0)\Vert]\Vert\zeta(s)||ds$

$+M( \omega^{*})e^{wt}\int_{0}^{t}e^{-w\epsilon}B_{0}e^{-\epsilon_{18}}\Vert u^{*}\Vert||\zeta(0)||ds$.
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Therefore we obtain

$e^{-\omega^{*}t} \Vert\zeta(t)\Vert\leq M(\omega^{*})\Vert\zeta(0)\Vert(1+*\frac{B_{0}||u^{*}\Vert}{\omega+\epsilon_{1}})+\frac{-w^{*}}{2}\int_{0}^{t}e^{-\omega^{*}s}\Vert\zeta(s)\Vert ds$.

$Rom$ the Gronwall inequality, we have

$e^{-wt} \Vert\zeta(t)||\leq M(\omega^{*})\Vert\zeta(0)\Vert(1+*\frac{B_{0}||u^{*}\Vert}{\omega+\epsilon_{1}})e^{-*t}$ .

Then we arrive at the estimate as

$\Vert\zeta(t)\Vert\leq M(\omega^{*})e^{\dot{\tau}^{t}}(1+*\frac{B_{0}||u^{*}\Vert}{w+\epsilon_{1}})\Vert\zeta(0)\Vert\leq r$ .

Then we know that $t_{1}=\infty$ and (3.16) holds for $\gamma=\omega^{*}/2$ . $\square$

Here we should note that $\tilde{A}+\tilde{F}’[u^{*}]$ is the linearized generator of the nor-
malized system (3.10) but it is not the linearized generator of the system (3.4),
since $B(u(t))$ includes a linear term. Nevertheless Proposition 3.8 tells us that
the local stability of equilibrium point of the normalized system (3.10) implies
that of the ratio age distribution system (3.4).

In many cases, we can show that the linearized semigroup $e^{(\tilde{A}+\tilde{F}’[u])t}$ is
eventually compact, so the steady state is locally asymptotically stable if all
eigenvalues of the linearized generator $\tilde{A}+\tilde{F}’[u^{*}]$ have negative real part.

Here we clear the meaning of stability of the persistent solution implied in
Proposition 3.8. Observe that the initial data of the homogeneous system (1.1)
can be decomposed as follows:

$U_{j}(0,a)=N(0)\psi(a)(u_{j}^{*}(a)+r_{j}(a))$ , $1\leq j\leq n$ ,

where the function $r(a)=(r_{1}(a), \cdots,r_{n}(a))$ satisfies the condition

$\int_{0}^{w}\psi(a)<e,$ $r(a)>da=0$ ,

and the condition $||u_{0}-u^{*}\Vert<\eta$ can be written as $\Vert r||<\eta$ . Corresponding to
the equilibrium point $u^{*}$ , we can consider the persistent solution as

$U^{*}(t, a)=N_{\infty}e^{r_{0}t}\psi(a)u^{*}(a)$ ,

where $N_{\infty}$ $:= \lim_{tarrow\infty}e^{-r_{0}t}N(t)$ . Then we can show that following:

Proposition 3.9 There exists a number $\eta>0$ such that if $\Vert r||<\eta$ , then

$\lim_{tarrow\ovalbox{\tt\small REJECT}}e^{-r_{0}t}\Vert U(t, \cdot)-U^{*}(t, \cdot)\Vert=0$ . (3.18)
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Proof: Observe that

$\int_{0}^{w}|U_{j}(t, a)-U_{j}^{*}(t, a)|da\leq\int_{0}^{w}|\frac{U_{j}(t,a)}{N(t)\psi(a)}-\frac{N_{\infty}e^{r_{0}t}}{N(t)}u_{j}^{*}(a)|N(t)\psi(a)da$

$\leq N(t)\sup_{a\in[0,w]}|\psi(a)|[\int_{0}^{w}|\frac{U_{j}(t,a)}{N(t)\psi(a)}-u_{j}^{*}(a)|da+\int_{0}^{\omega}|u_{j}^{*}(a)|da|1-\frac{N_{\infty}e^{r_{0}t}}{N(t)}|]$ .

From (3.16) and $N(t)e^{-r_{0}t}arrow N_{\infty}>0$, we obtain (3.18). $\square$

For the system (3.4), if we choose the initial data such that $u(O)\in K_{1}$ ,
then $u(t)\in K_{1}$ for all $t>0$ since $K_{1}$ is positively invariant. In such case, the
orbit $u(t)\in K_{1}$ is described by the normalized system (3.10) since $B(u(t))=0$.
Therefore the instability of $u^{*}$ as the equilibrium point of (3.10) implies the
instability of $u^{*}$ as the equilibrium point of (3.4):

Proposition 3.10 Let $u^{*}$ be an equilibrium solution of (S.4) and (S.10). If $u^{*}$

is unstable with respect to the normalized system (3.10), it is also unstable for
the system (3.4).

Rom the above results, we know that to examine asymptotic behavior of
the persistent solutions of the homogeneous epidemic system in the stable pop-
ulation, it is sufficient to study equilibrium points of the normalized system by
using the principle of linearized stability in the classical sense.
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