A Lower Bound of the Expected Maximum Number of Edge－disjoint s－t Paths on Probabilistic Graphs

程鵬
Peng CHENG
増山繁
Shigeru MASUYAMA
豊橋技術科学大学知識情報工学系
Department of Knowledge－Based Information Engineering， Toyohashi University of Technology， Toyohashi－shi 441，Japan

Abstract

For a probabilistic graph $(G=(V, E, s, t), p)$ ，where G is an undirected graph with specified source vertex s and sink vertex $t(s \neq t)$ in which each edge has independent failure probability and each vertex is assumed to be failure－free，and $p=\left(p\left(e_{1}\right), \ldots, p\left(e_{|E|}\right)\right)$ is a vector consisting of failure probabilities $p\left(e_{i}\right)$＇s of all edges e_{i}＇s in E ，we consider the problem of computing the expected maximum number $\Gamma_{(G, p)}$ of edge－disjoint s－t paths．It has been known that this computing problem is NP－hard even if G is restricted to several classes like planar graphs，s－t out－in bitrees and s－t complete multi－stage graphs．In this paper，for a probabilistic graph（ $G=(V, E, s, t), p$ ）， we propose a lower bound of $\Gamma_{(G, p)}$ and show the necessary and sufficient conditions by which the lower bound coincides with $\Gamma_{(G, p)}$ ．Furthermore，we also give a method of computing the lower bound of $\Gamma_{(G, p)}$ for a probabilistic graph $(G=(V, E, s, t), p)$ ．

1 Introduction

We consider a probabilistic graph $(G=(V, E, s, t), p)$ ，where G is an undirected graph with specified source vertex s and sink vertex $t(s \neq t)$ in which each edge has independent failure probability and each vertex is assumed to be failure－free，and $p=\left(p\left(e_{1}\right), \ldots, p\left(e_{|E|}\right)\right)$ is a vector consisting of failure probabilities $p\left(e_{i}\right)$＇s of all edges e_{i}＇s in E ．The expected maximum number $\Gamma_{(G, p)}$ of edge－disjoint s－t paths（namely，s－t paths having no edge in common）in a probabilistic graph（ G, p ）is useful for network reliability analysis．Note that the problem of computing s, t－connectedness $[1,3]$ ，namely， probability that there exists at least one operative s－t path，is a special case of computing $\Gamma_{(G, p)}$ in a probabilistic graph（ G, p ）．

However，it is known that the problem of computing $\Gamma_{(G, p)}$ in a probabilistic graph（ G, p ）is NP－hard，even if G is restricted to several classes，e．g．，planar graphs，s－t out－in bitrees and s－t complete multi－stage graphs［2］．Thus，for estimating $\Gamma_{(G, p)}$ ，it is interesting for us to find its lower bound in a probabilistic graph（ G, p ）．

In this paper，we define a lower bound of $\Gamma_{(G, p)}$ using an s－t path number function of G for a probabilistic graph（ G, p ），and give the necessary and sufficient conditions by which this lower bound coincides with $\Gamma_{(G, p)}$ and a method of computing this lower bound．This paper is organized as follows：

Graph theoretic terminologies used throughout this paper are described in section 2．A lower bound of $\Gamma_{(G, p)}$ in a probabilistic graph（ G, p ）is defined in section 3 ．Section 4 shows the necessary and sufficient conditions by which this lower bound coincides with $\Gamma_{(G, p)}$ ．Furthermore，we suggest a method of computing the lower bound in section 5 ．

2 Preliminaries

2.1 Graph Theoretic Terminologies

A two-terminal undirected graph $G=(V, E, s, t)$ consists of a finite vertex set V and a set E of pairs of vertices, called edges, where s and t, called source and sink, respectively, are two specified distinct vertices of V. For an edge (u, v), the two vertices u and v are said to be end vertices of (u, v), and (u, v) is said to be incident to u and v.

In $G=(V, E, s, t)$, an $x-y$ path π of length k from vertex x to vertex y is an alternating sequence of vertices $v_{i} \in V(0 \leq i \leq k)$ and edges $\left(v_{i-1}, v_{i}\right) \in E(1 \leq i \leq k)$,

$$
\pi:(x=) v_{0},\left(v_{0}, v_{1}\right), v_{1}, \ldots, v_{k-1},\left(v_{k-1}, v_{k}\right), v_{k}(=y)
$$

where vertices v_{i} 's $(0 \leq i \leq k)$ are distinct. i.e., a path denotes a simple path throughout this paper. For short, we also denote an $x-y$ path π by

$$
\pi:(x=) v_{0}, v_{1}, \ldots, v_{k-1}, v_{k}(=y)
$$

The vertices v_{1}, \ldots, v_{k-1} are called its internal vertices and the vertices $v_{0}(=s), v_{k}(=t)$ are called its end vertices. Let $V(\pi), E(\pi)$ denote the set of all vertices and the set of all edges on an x-y path π, respectively. The set of all x-y paths in G is denoted by $P_{x y}(G)$. Paths π_{1}, \ldots, π_{r} are called internal vertex-disjoint paths if they have no vertex in common except their end vertices. s-t paths π_{1}, \ldots, π_{r} are called edge-disjoint s-t paths if any two of them have no edge in common, and the maximum number of edge-disjoint s-t paths in G is denoted by $\lambda_{s t}(G)$.

A graph $G_{1}=\left(V_{1}, E_{1}\right)$ is a subgraph of $G=(V, E, s, t)$, if $V_{1} \subseteq V$ and $E_{1} \subseteq E$ hold. If G_{1} is a subgraph of G, other than G itself, then G_{1} is a proper subgraph of G. For a subset $E^{\prime} \subseteq E$, the subgraph derived from G by deleting all edges of E^{\prime} is denoted by $G-E^{\prime}\left(=\left(V, E-E^{\prime}, s, t\right)\right)$. A subset $E^{\prime}(\subseteq E)$ is called an s-t edge-cutset if $G-E^{\prime}$ has no s-t path. An s-t path π is an $s-t$ edge-cut-path if $E(\pi)$ is an s-t edge-cutset. An s-t edge-cutset with the minimum cardinality among s-t edge-cutsets of G is said to be minimum. By well-known Menger's theorem [4], $\lambda_{s t}(G)$ is equal to the cardinality of a minimum s-t edge-cutset of G for any G.

2.2 Probabilistic Graph

A probabilistic graph, denoted by $(G=(V, E, s, t), p)$, or (G, p), for short, is defined as follows:
(i) $G=(V, E, s, t)$ is a two-terminal graph, where each edge e of E is in either of the following two states: failed or operative (not failed), having known independent failure probability $p(e), 0 \leq p(e) \leq 1$ (or operative probability $q(e)=1-p(e)$), and each vertex is assumed to be failure-free.
(ii) p is a vector consisting of all edge failure probabilities $p(e)$'s in E.

For a probabilistic graph $(G=(V, E, s, t), p)$, let a subgraph $G-U(\subseteq E)$ correspond to an event \mathcal{E}_{U} that all edges of U are failed and all edges of $E-U$ are operative. Clearly, the probability $\rho(G-U)$ of arising a subgraph $G-U(\subseteq E)$ is computed by the following formula.

$$
\rho(G-U)=\prod_{e \in U} p(e) \prod_{e \in E-U} q(e)(=1-p(e))
$$

Furthermore, $\sum_{U \subseteq E} \rho(G-U)=1$ holds.
Now, we define the expected maximum number $\Gamma_{(G, p)}$ of edge-disjoint s-t paths in a probabilistic graph $(G=(V, E, s, t), p)$ as follows:

$$
\begin{equation*}
\Gamma_{(G, p)} \equiv \sum_{U \subseteq E} \lambda_{s t}(G-U) \rho(G-U) \tag{1}
\end{equation*}
$$

It is known that the problem of computing $\Gamma_{(G, p)}$ for a probabilistic graph (G, p) is NP-hard, even if G is restricted to several special classes like planar graphs, s-t out-in bitrees and s-t multistage complete graphs, etc. [2]. Thus, it is interesting for us to consider a lower bound of $\Gamma_{(G, p)}$ for estimating it.

3 A Lower Bound of $\Gamma_{(G, p)}$

We define a lower bound of the expected maximum number of edge-disjoint s-t paths in a probabilistic graph.

An s - t path number function f of $G=(V, E, s, t)$ is a one-to-one integral function $f: P_{s t}(G) \mapsto$ $\{1, \ldots, l\}$. The s-t path π with $f(\pi)=k$ is said to be the s - t path of number k, and denoted by π_{k}. The s-t path with the minimum number in $G-E^{\prime}(\subseteq E)$ with respect to f is denoted by $\pi_{m\left(G-E^{\prime}, f\right)}$.

First, we give the following procedure FEDP to find edge-disjoint s-t paths in $G=(V, E, s, t)$.

Procedure FEDP

Input A graph $G=(V, E, s, t)$ and an s-t path number function f of G.
Output The set of edge-disjoint s-t paths $\operatorname{FEDP}(G, f)$.
BEGIN

```
G
WHILE P Pst (G')}\not=\phi\mathrm{ DO
        BEGIN
            Find }\mp@subsup{\pi}{m(\mp@subsup{G}{}{\prime},f)}{}\mathrm{ from }\mp@subsup{P}{st}{}(\mp@subsup{G}{}{\prime})
            FEDP(G,f):= FEDP(G,f)\cup{\mp@subsup{\pi}{m(G',f)}{}};
            G}:=\mp@subsup{G}{}{\prime}-E(\mp@subsup{\pi}{m(\mp@subsup{G}{}{\prime},f)}{}
        END;
Output FEDP(G,f)
```

END.

It is clear that $\operatorname{FEDP}(G, f)$ obtained by FEDP is a set of edge-disjoint s-t paths in G. Namely, the following formula holds.

$$
\begin{equation*}
|F E D P(G, f)| \leq \kappa_{s t}(G), \quad \text { for any } G, f \tag{2}
\end{equation*}
$$

For a probabilistic graph $(G=(V, E, s, t), p)$ and an s-t path number function f of G, we now define the value $\underline{\Gamma}_{(G, f, p)}$ as follows:

$$
\begin{equation*}
\underline{\Gamma}_{(G, f, p)} \equiv \sum_{U \subseteq E}|F E D P(G-U, f)| \rho(G-U) \tag{3}
\end{equation*}
$$

By formulas (1),(2),(3), $\underline{\Gamma}_{(G, f, p)}$ is a lower bound of $\Gamma_{(G, p)}$, namely, the following formula holds.

$$
\underline{\Gamma}_{(G, f, p)} \leq \Gamma_{(G, p)}, \text { for any } G, f, p
$$

4 Necessary and Sufficient Conditions

In this section, we give the necessary and sufficient conditions by which $\underline{\Gamma}_{(G, f, p)}$ coincides with $\Gamma_{(G, p)}$ in a probabilistic graph (G, p).

4.1 A Necessary and Sufficient Condition of an s-t Path Number Function

By formulas (1),(2),(3), the following Theorem 4.1 immediately holds.
Theorem 4.1. Given $(G=(V, E, s, t), p)$, then $\underline{\Gamma}_{(G, f, p)}=\Gamma_{(G, p)}$ holds iff G has an s-t path number function f satisfying the following formula.

$$
\begin{equation*}
|F E D P(G-U, f)|=\lambda_{s t}(G-U), \text { for any } U \subseteq E \tag{4}
\end{equation*}
$$

Definition 4.1. An s-t path number function f of G is called exact if f satisfies formula (4).

A graph $G=(V, E, s, t)$ is said to be s-t k-edge-connected if $\lambda_{s t}(G)=k$ holds. A graph G is said to be π-edge-cut if π is an s-t edge-cut-path in G. A graph G is said to be π-edge-cut s-t 2-edge-connected if π is an s-t edge-cut-path of G and G is s-t 2-edge-connected. A π-edge-cut s-t 2-edge-connected graph $G=(V, E, s, t)$ is minimal, if $G-\{e\}$ for any $e \in E-E(\pi)$ is not π-edge-cut s-t 2 -edge-connected. For example, the graph G shown in Fig. 1 is a π-edge-cut s-t 2-edge-connected graph, where $\pi: v_{0}(=s), v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}(=t)$. But it is not minimal as $G-\{e\}$ is π-edge-cut s-t 2 -edge-connected. Furthermore, the set of all π-edge-cut s-t 2 -edgeconnected subgraphs of an s-t path π of G is denoted by $\mathcal{W}(G, \pi)$. For example, in the graph G given in Fig.1, $W(G, \pi)=\left\{G-\left\{e=\left(u_{1}, u_{2}\right)\right\}, G-\left\{\left(u_{1}, v_{4}\right),\left(u_{2}, v_{5}\right),\left(v_{3}, v_{5}\right)\right\}\right\}$. Clearly, the following Lemma 4.1 holds.

Fig. $1 \mathrm{~A} \pi$-edge-cut s -t 2 -edge-connected graph.

Lemma 4.1. If $\lambda_{s t}(G) \geq 2$ holds and an s-t path π of G is an s-t edge-cut-path, then $\mathcal{W}(G, \pi) \neq \phi$ holds.

Lemma 4.2. In a graph $G=(V, E, s, t)$, if there exists an s-t path π satisfying $\mathcal{W}(G, \pi)=\phi$, then the following formula holds.

$$
\lambda_{s t}(G-E(\pi))=\lambda_{s t}(G)-1
$$

Proof. Clearly, $\lambda_{s t}(G-E(\pi)) \leq \lambda_{s t}(G)-1$ holds. Assume that $\lambda_{s t}(G-E(\pi))<\lambda_{s t}(G)-1$ holds. By this assumption, there exists a minimum s-t edge-cutset E^{*} in $G-E(\pi)$ that satisfies $\left|E^{*}\right| \leq \lambda_{s t}(G)-2$ by Menger's Theorem [4]. Consider graph $G-E^{*}$, and it is clear that all s-t paths in $G-E^{*}$ share at least one edge of $E(\pi)$, i.e., π is an s-t edge-cut-path of $G-E^{*}$. Furthermore, let E^{\prime} be a minimum s-t edge-cutset of $G-E^{*}$. As $E^{\prime} \cup E^{*}$ is an s-t edge-cutset of G, $\left|E^{\prime} \cup E^{*}\right|=\left|E^{\prime}\right|+\left|E^{*}\right| \geq \lambda_{s t}(G)$ holds. By $\left|E^{*}\right| \leq \lambda_{s t}(G)-2$, we obtain $\left|E^{\prime}\right|=\lambda_{s t}\left(G-E^{*}\right) \geq 2$, contradicting the fact that $\mathcal{W}(G, \pi) \neq \phi$ holds by Lemma 4.1.

We now prove the following Theorem 4.2.

Theorem 4.2. In a graph $G=(V, E, s, t)$, an s-t path number function f of G is exact iff for any $U \subseteq E$ with $P_{s t}(G-U) \neq \phi, \quad \mathcal{W}\left(G-U, \pi_{m(G-U, f)}\right)=\phi$ holds.
Proof. Necessity: Assume that an s-t path number function f of G is exact and that for some $U \subseteq E$ with $P_{s t}(G-U) \neq \phi, \mathcal{W}\left(G-U, \pi_{m(G-U, f)}\right) \neq \phi$ holds. By $\mathcal{W}\left(G-U, \pi_{m(G-U, f)}\right) \neq \phi, G-U$ has a subgraph $G^{\prime} \in \mathcal{W}\left(G-U, \pi_{m(G-U, f)}\right) . \quad \lambda_{s t}\left(G^{\prime}\right)=2$ holds by the definition of $\mathcal{W}\left(G-U, \pi_{m(G-U, f)}\right)$. As $\pi_{m(G-U, f)}$ is the s-t path with the minimum number of G^{\prime} and an s-t edge-cut-path of G^{\prime}, we have $F E D P\left(G^{\prime}, f\right)=\left\{\pi_{m(G-U, f)}\right\}$ by FEDP. Hence, $\left|F E D P\left(G^{\prime}, f\right)\right|(=1)<\lambda_{s t}\left(G^{\prime}\right)(=2)$ holds, contradicting the fact that f is exact.

Sufficiency: Assume that for any $U \subseteq E$ with $P_{s t}(G-U) \neq \phi, \mathcal{W}\left(G-U, \pi_{m(G-U, f)}\right)=\phi$ holds. Then it is easy to prove that for any $U \subseteq E,|F E D P(G-U, f)|=\lambda_{s t}(G-U)$ holds by iteratively applying Lemma 4.2.

4.2 A Necessary and Sufficient Condition of s-t Paths

Definition 4.2. (Prohibitive s-t Path Set)

Let $P\left(\subseteq P_{s t}(G)\right)$ be a subset of the set of all s-t paths of G. If, for each s-t path π of P, there is a π-edge-cut s-t 2-edge-connected subgraph $G_{\pi} \in \mathcal{W}(G, \pi)$ in G that satisfies $P_{s t}\left(G_{\pi}\right) \subseteq P$, then P is called a prohibitive s-t path set.

Procedure TEST

Input: A graph $G=(V, E, s, t)$.
Output: Either an s-t path number function f of G or a subset P of $P_{s t}(G)$.

BEGIN

$P:=P_{s t}(G) ; \quad i:=1 ; \quad Q:=\left\{\pi \in P_{s t}(G) \mid \mathcal{W}(G, \pi)=\phi\right\} ;$
WHILE $Q \neq \phi$ DO BEGIN
$P:=P-Q ;$
REPEAT
Select an s-t path π from Q;

$$
f(\pi):=i ; \quad i:=i+1 ; Q:=Q-\{\pi\}
$$

UNTIL $Q=\phi$;
$Q:=\left\{\pi \in P \mid P_{s t}\left(G_{\pi}\right) \nsubseteq P\right.$, for all $\left.G_{\pi} \in \mathcal{W}(G, \pi)\right\}$ END;
IF $P=\phi$ THEN output f ELSE output P END.

Clearly, the following Lemma 4.3 holds by Definitions 4.1 and 4.2 .

Lemma 4.3. If TEST outputs an s-t path number function f of G, then f is exact, when a graph $G=(V, E, s, t)$ is input. If TEST outputs a subset P of $P_{s t}(G)$, then P is a prohibitive s-t path set, when a graph $G=(V, E, s, t)$ is input.

If there is a prohibitive s-t path set $P\left(\subseteq P_{s t}(G)\right)$ where $G=(V, E, s, t)$, then there does not exist any exact s-t path number function f. Otherwise, if G has an exact s-t path number function f, and suppose π_{m} be the s-t path of the minimum number with respect to f among P. By Definition 4.2,
there is $G_{\pi_{m}} \in \mathcal{W}\left(G, \pi_{m}\right)$ in G that satisfies $P_{s t}\left(G_{\pi_{m}}\right) \subseteq P$. Thus, π_{m} is also the s-t path of the minimum number with respect to f in $G_{\boldsymbol{\pi}_{m}}$. Therefore, by FEDP, $\operatorname{FEDP}\left(G_{\boldsymbol{\pi}_{m}}, f\right)=1<\lambda_{s t}\left(G_{\boldsymbol{\pi}_{m}}\right)=2$ holds. This leads to a contradiction that f is an exact s-t path number function of G. Hence, by Theorem 4.2 and Lemma 4.3, the following Theorem 4.3 holds.

Theorem 4.3. In a graph $G=(V, E, s, t), G$ has an exact s-t path number function iff it contains no prohibitive s-t path set as its s-t path subset.

4.3 Characterization of Graph Having a Prohibitive s-t Path Set

A graph is connected if there is a path connecting each pair of vertices and otherwise disconnected. A connected component of G is a maximal connected subgraph, which is simply called a component. If there exist vertices x and $y, x \neq v$ and $y \neq v$ such that all the paths connecting x and y have v as an internal vertex, then v is an articulation vertex. A two-terminal connected graph is said to be s, t non-separable if its subgraph obtained by removing s, t is connected. In the following discussion, we assume that G is an s,t non-separable two-terminal connected graph, unless otherwise specified.

Definition 4.3. (s-t 2-edge-connected Articulation Vertex)
A vertex v is said to be an s-t 2-edge-connected articulation vertex of G, if v is an s-t articulation vertex of G and there exist both two edge-disjoint s-v paths and two edge-disjoint v-t paths in G.

For example, in the graph illustrated in Fig.2(a), vertices u, v, w are s-t 2-edge-connected articulation vertices of G.

(a)

(b)
(c)

(d)

Fig. 2 An illustration of separation of G at an s-t 2-edge-connected articulation vertex.

Definition 4.4. (Separation of G at an s-t 2-edge-connected Articulation Vertex)

Assume that G has an s-t 2-edge-connected articulation vertex v. The following sequence of operations is said to be separation of G at an s-t 2-edge-connected articulation vertex v.
(i) The two components C_{1} and C_{2} are obtained by removing v from G.
(ii) v is connected to C_{1} (or C_{2}) with all edges (u, v)'s of G having one end vertex u in C_{1} (or C_{2}).
(iii) Note that C_{1} contains either of s, t. If C_{1} contains s (or t) then let s (or t) be s_{1} (or t_{1}) and let v be t_{1} (or s_{1}). s_{2} and t_{2} are similarly defined for C_{2}.

For example, the two graphs illustrated in Fig.2(b),(c) are obtained by separation of the graph given in Fig.2(a) at an s-t 2-edge-connected articulation vertex v.

Definition 4.5. (Prohibitive Graph)

A graph G is said to be a prohibitive graph, if G, or one of the graphs derived from G by separations of G at all s-t 2-edge-connected articulation vertices in G is homeomorphic to the graph shown in Fig.3.

The two graphs illustrated in Fig.2(a),(b) are both prohibitive graphs. But the graph given in Fig.2(d), although it contains a subgraph homeomorphic to the graph shown in Fig.3, is not a prohibitive graph as the vertex u is not its s-t 2-edge-connected articulation vertex and it is not homeomorphic to the graph shown in Fig.3. It is easy to verify that for a prohibitive graph $G, P_{s t}(G)$ is a prohibitive s-t path set. Thus, we immediately obtain the following Lemma 4.4.

Fig. 3 A prohibitive graph.
Lemma 4.4. If G contains a prohibitive graph as its subgraph, then it also has a prohibitive s-t path set as its s-t path subset.

Now, we show that if G has a prohibitive s-t path set as its s-t path subset, then it contains a prohibitive graph as its subgraph. For our aim, we need more definitions.

Definition 4.6. (Attachment Vertex [5][6])
An attachment vertex of a subgraph G_{1} in G is a vertex of G_{1} incident in G with some edge not belonging to G_{1}.
Definition 4.7.(Bridges [5],[6])
Let J be a fixed subgraph of G. A subgraph G_{1} of G is said to be J-detached in G if all its attachment vertices are in J. We define a bridge of J in G as any subgraph B that satisfies the following three conditions:
(i) B is not a subgraph of J.
(ii) B is J -detached in G.
(iii) No proper subgraph of B satisfies both (i) and (ii).

Definition 4.8.(Degenerate and Proper Bridges. Nucleus of a Bridge [5],[6])
An edge $e=(u, v)$ of G not belonging to J but having both end vertices in J is referred to as a degenerate bridge.
Let G^{-}be the graph derived from G by deleting the vertices of J and all edges incident to them.

Let C be any component of G^{-}. Let B be the subgraph of G obtained from C by adjoining to it each edge of G having one end vertex in C and the other end vertex in J and adjoining also the end vertices in J of all such edges. The subgraph B satisfies the conditions (i),(ii),(iii) in Definition 4.7 and is a bridge. Such a bridge is called to be proper. The component C of G^{-}is the nucleus of B.

For the graph G shown in Fig.4, let J be an s-t path $\pi: v_{0}(=s), v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}(=t)$, then all vertices on π other than v_{4} are all attachment vertices of π in G. B_{1}, B_{2}, B_{3} are proper bridges of π in G and B_{4} is a degenerate bridge of π in G. By Definitions 4.6,4.7, the following Lemma 4.5 obviously holds.

Fig. 4 An illustration of attachment vertices, bridges and nuclei.
Lemma 4.5. Let π be an s-t path of G. If there is a proper bridge B of π in G, then any two vertices u, v in B are connected by a path consisting of edges and vertices only in the nucleus of B.

Let $\gamma: v_{0}, v_{1}, \ldots, v_{k-1}, v_{k}$ be a path from v_{0} to v_{k} of G. If $0 \leq i<j \leq k$, then the sequence $v_{i}, v_{i+1}, \ldots, v_{j-1}, v_{j}$ is a subpath of γ, and denoted by $\gamma\left[v_{i}, v_{j}\right]$.

Definition 4.9.(Path Avoiding s-t Path π)
Let π be an s-t path of G. For two vertices v_{i}, v_{j} in $V(\pi)$, a path between v_{i} and v_{j} consisting of edges not in $E(\pi)$ and vertices not in $V(\pi)$ except v_{i}, v_{j} is said to be avoiding π.

For example, the path $v_{1}, u_{1}, u_{2}, v_{5}$ is avoiding the s-t path π in the graph G illustrated in Fig.1.

Definition 4.10. (Order Relation with Respect to an s-t Path π)

Let $\pi: v_{0}(=s), v_{1}, \ldots, v_{k-1}, v_{k}(=t)$ be an s-t path of G. We define an order relation $<_{\pi}$ on $V(\pi)$ with respect to π as follows: For any $v_{i}, v_{j}(0 \leq i, j \leq k), v_{i}<_{\pi} v_{j}$ holds iff $i<j$ holds. If $v_{i}<\pi v_{j}, v_{i}$ $\left(v_{j}\right)$ is said to be to the left (right) of $v_{j}\left(v_{i}\right)$.
Definition 4.11. (Intersection Vertex of Two Paths π, α)
Let π, α be two paths of G. A vertex v is called an intersection vertex of π, α if π and α have at least three distinct edges incident to v. The set of all intersection vertices of π, α is denoted by $V_{\pi \alpha}$. \square

In the graph G given in Fig.1, for two s-t paths π and $\alpha: v_{0}(=s), v_{1}, u_{1}, u_{2}, v_{6}, v_{7}, v_{9}(=t)$, we have $V_{\pi \alpha}=\left\{v_{1}, v_{6}, v_{7}, v_{9}\right\}$.

Definition 4.12.(Interlacing Subpaths)

Suppose that G has an s-t path $\pi: v_{0}(=s), v_{1}, \ldots, v_{k-1}, v_{k}(=t)$ satisfying $\mathcal{W}(G, \pi) \neq \phi$. Let $G_{\pi} \in \mathcal{W}(G, \pi)$ be a minimal π-edge-cut s-t 2 -edge-connected subgraph of G. Let α, β be two edge-disjoint s-t paths of G_{π}. Let $V_{\pi \alpha}=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}(\subseteq V(\pi))$ be the set of all intersection vertices of π, α, where $x_{1}<_{\pi} x_{2}<_{\pi} \cdots<_{\pi} x_{p}$. Let $V_{\pi \beta}=\left\{y_{1}, y_{2}, \ldots, y_{q}\right\}(\subseteq V(\pi))$ be the set of all intersection vertices of π, β, where $y_{1}<_{\pi} y_{2}<_{\pi} \cdots<_{\pi} y_{q}$. Let $V_{\pi \alpha \beta}=\left\{z_{1}, \ldots, z_{r}\right\}(\subseteq V(\pi))$ be the set of all vertices which π, α, β have in common, where $z_{1}<_{\pi} z_{2}<_{\pi} \cdots<_{\pi} z_{r}$. Subpaths $\alpha\left[x_{i}, x_{i+1}\right]$ of α avoiding π and $\beta\left[y_{j}, y_{j+1}\right]$ of β avoiding π, where either $x_{i}<_{\pi} y_{j}$ or $y_{j}<_{\pi} x_{i}$, are said to be interlacing subpaths, if the subpath $\pi\left[x_{i}, y_{j+1}\right]\left(\pi\left[y_{j}, x_{i+1}\right]\right)$ contains no vertex of $V_{\pi \alpha \beta}$ when $x_{i}<_{\pi} y_{j}\left(y_{j}<_{\pi} x_{i}\right)$.

In the graph G given in Fig.1, for two edge-disjoint s-t paths;
$\alpha: v_{0}(=s), v_{1}, u_{1}, v_{4}, v_{5}, u_{2}, v_{6}, v_{7}, v_{9}(=t), \beta: v_{0}(=s), w_{1}, v_{2}, v_{3}, v_{5}, v_{6}, v_{8}, v_{9}(=t)$,
we have $V_{\pi \alpha}=\left\{v_{1}, v_{4}, v_{5}, v_{6}, v_{7}, v_{9}\right\}, V_{\pi \beta}=\left\{v_{0}, v_{2}, v_{3}, v_{5}, v_{6}, v_{8}\right\}, V_{\pi \alpha \beta}=\left\{v_{0}, v_{5}, v_{6}, v_{9}\right\}$. And subpaths $\alpha\left[v_{1}, v_{4}\right]$ and $\beta\left[v_{0}, v_{2}\right]$ are interlacing subpaths, and $\alpha\left[v_{7}, v_{9}\right]$ and $\beta\left[v_{6}, v_{8}\right]$ are also interlacing paths. But $\alpha\left[v_{1}, v_{4}\right]$ and $\beta\left[v_{6}, v_{8}\right]$ are not interlacing subpaths as $v_{5}, v_{6} \in V_{\pi \alpha \beta}$ are on $\pi\left[v_{0}, v_{8}\right]$.

In order to show that if graph G has a prohibitive s-t path set $P\left(\subseteq P_{s t}(G)\right)$, then G must contain a prohibitive graph as its subgraph, we can prove the following Lemma 4.6 and Lemma 4.7.

Lemma 4.6. Suppose that G has a prohibitive s-t path set P. Then there is an s-t path π of P whose proper bridge B in G contains two interlacing subpaths $\alpha\left[x_{i}, x_{i+1}\right]$ of α and $\beta\left[y_{j}, y_{j+1}\right]$ of β with respect to π in G_{π}, where G_{π} is a minimal π-edge-cut s-t 2-edge-connected subgraph of G, and α, β are two edge-disjoint s-t paths in G_{π}.
Sketch of Proof. Let P be a prohibitive s-t path set of G. We can find the s-t path π of P satisfying the following condition I by using the following procedure I.
Condition I : There is a proper bridge B of π in G suth that B contains interlacing subpaths $\alpha\left[x_{i}, x_{i+1}\right]$ of α and $\beta\left[y_{j}, y_{j+1}\right]$ of β with respect to π in G_{π}, where G_{π} is a minimal π-edge-cut s-t 2 -edgeconnected subgraph of G, and α, β are two edge-disjoint s-t paths in G_{π}.
Procedure I: Let π be an s-t path of P. Let B be a proper bridge of π in G. We do the following Loop iteratively.
Loop: If π satisfies Condition I then end. Otherwise, we can find an s-t path π^{\prime} of P such that there is a bridge B^{\prime} of π^{\prime} in G whose nucleus contains the nuleus of B and there are more vertices in the nucleus of B^{\prime} than in the nucleus of B. Let B, π be B^{\prime}, π^{\prime}, respectively.

Note that, in each loop, the nucleus of B increases at least by one vertex. Thus the loop will end in at most $|V|$ times, where V is the set of vertices in G.

Fig. 5 An illustration of the proof of Lemma 4.7.
Lemma 4.7. Suppose that G has an s-t path π satisfying $\mathcal{W}(G, \pi) \neq \phi$. Let α, β be two edge-disjoint s-t paths of $G_{\pi} \in \mathcal{W}(G, \pi)$. Let $V_{\pi \alpha}=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}, V_{\pi \beta}=\left\{y_{1}, y_{2}, \ldots, y_{q}\right\}$ and $V_{\pi \alpha \beta}=\left\{z_{1}, \ldots, z_{r}\right\}$
be defined as in Definition 4.12. If a bridge B of π in G contains interlacing subpaths $\alpha\left[x_{i}, x_{i+1}\right]$ of α and $\beta\left[y_{j}, y_{j+1}\right]$ of β in G_{π} with respect to π, then G contains a prohibitive graph as its subgraph. Sketch of Proof. By the known conditions given in this lemma, we construct a prohibitive graph as its subgraph.

By Lemma 4.5, there is a path $\pi_{u v}$ between an internal vertex u on $\alpha\left[x_{i}, x_{i+1}\right]$ and an internal vertex v on $\beta\left[y_{j}, y_{j+1}\right]$ consisting of edges and vertices only in the nucleus of bridge B, i.e., $\pi_{u v}$ is vertex-disjoint path with π except u, v. See Fig.5. Thus, we can also find a prohibitive graph as subgraph of G independently of the way how the path $\pi_{u v}$ is traced.

By Theorem 4.3 and Lemmas 4.5, 4.6, 4.7, the following Theorem 4.4 holds.
Theorem 4.4. In a probabilistic graph $(G, p), \underline{\Gamma}_{(G, f, p)}=\Gamma_{(G, p)}$ holds iff G contains no prohibitive graph as its subgraph.

5 A Method of Computing the Lower Bound

Given a probabilistic graph (G, p) and an s-t path number f of G, we show a method of computing the lower bound $\underline{\Gamma}_{(G, f, p)}$. We first wish to recall the procedure FEDP and the definition of $\underline{\Gamma}_{(G, f, p)}$ in section 3.

For a probabilistic graph ($G=(V, E, s, t), p)$ and an s-t path number function f of G, let $\mathcal{U}_{f, \pi_{i}}$ denote the set of all $U \subseteq E$ for which s-t path π_{i} is selected as a member of edge-disjoint s-t paths $\operatorname{FEDP}(G-U, f)$. Let $p\left(\mathcal{E}_{U}\right)$ be the probability of the event \mathcal{E}_{U} that all edges of U are failed and all edges of $E-U$ are operative, and $p\left(\mathcal{E}_{f, \pi_{i}}\right)$ is the probability of the event that at least one event \mathcal{E}_{U}, for all $U \in \mathcal{U}_{f, \pi_{i}}$, arises in (G, p). Thus, we have

$$
\begin{align*}
\underline{\Gamma}_{(G, f, p)} & =\sum_{U \subseteq E}|F E D P(G-U, f)| \rho(G-U) \\
& =\sum_{i=1}^{\left|P_{o t}(G)\right|} \sum_{U \in \mathcal{U}_{f, \pi_{i}}} \rho(G-U) \\
& =\sum_{i=1}^{\left|P_{a t}(G)\right|} \sum_{U \in \mathcal{U}_{f, x_{i}}} p\left(\mathcal{E}_{U}\right) \\
& =\sum_{i=1}^{\left|P_{a t}(G)\right|} p\left(\mathcal{E}_{f, \pi_{i}}\right) . \tag{5}
\end{align*}
$$

We can compute the lower bound $\underline{\Gamma}_{(G, f, p)}$ by formula (5) instead of formula (3).

6 Concluding Remarks

For a probabilistic graph, we proposed a lower bound for estimating the expected maximum number of edge-disjoint s-t paths. The necessary and sufficient conditions with respect to both s-t path number function and graph construction, where this lower bound coincides with the expected maximum number of edge-disjoint s-t paths, are clarified. A method of computing this lower bound is also given, although by this computing method the lower bound does not seem to be efficiently computed for a general probabilistic graph.

However, for a probabilistic one-layered s-t graph, (a two-terminal graph where the subgraph obtained by deleting its s, t is exactly a simple path. Fig. 6 illustrates an example of one-layered s-t graph.) as it satisfies the necessary and sufficient conditions and the number of all its s-t paths is a polynomial function in the number of its vertices, the lower bound based on its exact s-t path number function can efficiently be computed by the computing method shown in section 5 , i.e., the expected maximum number of edge-disjoint s-t paths in a probabilistic one-layered s-t graph can efficiently be computed. Detailed description of these proofs is lengthy and to be reported elsewhere.

Fig. 6 A one-layered s-t graph.

References

[1] M. O. Ball:"Computational complexity of network reliability analysis: An overview", IEEE Trans. Reliability, Vol.R-35, pp230-239 (1986).
[2] P. Cheng and S. Masuyama:" Problem of computing the expected maximum number of vertexdisjoint s-t paths on probabilistic graphs", Research Report COMP92-1, Inst. Electron. Infor. Comm. Eng. Japan, pp1-8, (1992) (in Japanese).
[3] C. J. Colbourn: The Combinatorics of Network Reliability, Oxford University Press (1987).
[4] K. Menger:" Zer allgemeinen kurventheorie", Fund. Math. Vol 10, pp.96-115(1927).
[5] B. Mishra and R. E. Tarjan: " A linear-time algorithm for finding a ambitus", Algorithmica, 7, pp.521-554(1992).
[6] W. T. Tutte:" Bridges and hamiltonian circuits in planar graph", Aequationes mathematicae, 15, pp.1-13(1977).

