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Abstract. In this paper, we consider the quickest flow problem in a net-
work which consists of a directed graph with capacities and transit times
on its arcs. We present an O(n log n) time algorithm for the quickest flow
problem in a network of grid structure with uniform arc capacity which
has a single sink where n is the number of vertices in the network.

1 Introduction

It is very important to establish crisis management systems against large-scale
disasters such as big earthquakes, conflagrations and tsunamis. We need to con-
sider the crisis management against disasters to secure evacuation pathways and
to effectively guide residents to a safe place. In our work, we adopt dynamic
network flows as a model for evacuation. A dynamic network flow is defined on
a network which consists of a directed graph D = (V,A) with capacity c(e) and
transit time τ(e) on every arc e ∈ A. For example, if we consider urban evac-
uation, vertices model buildings, rooms, exits and so on, and an arc models a
pathway or a road connecting vertices. For an arc e, capacity c(e) represents the
number of people which can traverse the arc e per unit time, and τ(e) denotes
the time it takes to traverse e. Given a network with initial supplies at vertices,
the problem is to find an optimal dynamic network flow such that we can send all
the initial supplies to sinks as quickly as possible. In the case where a network
has several sources and sinks which have specified supply or demand respec-
tively, this problem can be solved by the algorithm of Hoppes and Tardos [1]
in polynomial time. However their running time is high-order polynomial, and
hence is not practical in general. So it is necessary to devise a faster algorithm
for a tractable and practically useful subclass of this problem.

In this paper, we restrict our attention to grid networks with uniform arc
capacity. The condition that arc capacity is uniform is practically acceptable
because the width of road or corridor is generally standardized. Restriction of
network structure to grid networks is useful since such structure often appears
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in modelling building corridors and city streets. We present an O(n log n) time
algorithm for the quickest flow problem in a network of grid structure with uni-
form arc capacity which has a single sink where n is the number of vertices in
the network.
Previous Works. As mentioned above, Hoppes and Tardos proposed a polyno-
mial time algorithm for the problem [1]. As a special class of networks, Mamada
et al. [2] considered tree networks with a single sink and presented an O(n log2 n)
time algorithm. For the case of tree networks with multiple sinks, Mamada et
al. [3] presented an O(n log3 n) time algorithm for two-sink case and Mamada
et al. [4] presented an O(n2k log2 n) time algorithm for k-sink case under the
restriction that all the supplies going through a common vertex are sent to a
single sink. However, to the authors’ knowledge, no one has ever studied special
class of networks other than tree networks for the evacuation problem.
Organization. Section 2 gives necessary definitions and preliminaries. Section 3
considers the quickest flow problem for grid networks with uniform arc capacity
and proposes an O(n log n) time algorithm. Section 4 concludes the paper.

2 Problem Formulation and Notations

We consider a network N = (D = (V,A), c, τ, bv, V ∗), where D is a directed
graph, V is a set of vertices, A is a set of arcs, c:A → R+ is the upper bound
for the rate of flow that enters each arc per unit time, τ : A → Z+ is a transit
time function, bv ∈ R+ gives an initial supply of v ∈ V , and V ∗ ⊂ V is a set
of sinks. Here R+ denotes the set of nonnegative reals and Z+ denotes the set
of nonnegative integers. For simplicity, we write c(v, w) and τ(v, w) instead of
c((v, w)) and τ((v, w)) respectively for any (v, w) ∈ A. Given a network, our
problem is to compute the minimum time required to send all supplies to sinks.

Here we define a discrete-time dynamic network flow f :A×Z+ → R+. For
any arc e ∈ A and θ ∈ Z+, we denote by f(e, θ) the flow rate entering the arc e
at time θ which arrives at the head of e at time θ+τ(e). We call f : A×Z+ → R+

a feasible dynamic flow in N if it satisfies the following three conditions, i.e.,
capacity constraint, flow conservation, and demand constraint [2].
Capacity constraint: For any arc e ∈ A and θ ∈ Z+,

0 ≤ f(e, θ) ≤ c(e). (1)

Flow conservation: For any v ∈ V and Θ ∈ Z+,

∑

e∈∆+(v)

Θ∑

θ=0

f(e, θ)−
∑

e∈∆−(v)

Θ∑

θ=τ(e)

f(e, θ−τ(e))≤bv. (2)

Demand constraint: There exists a time Θ ∈ Z+ such that

∑

e∈∆−(V ∗)

Θ∑

θ=τ(e)

f(e, θ−τ(e))−
∑

e∈∆+(V ∗)

Θ∑

θ=0

f(e, θ)=
∑

v∈V \V ∗
bv. (3)



Here ∆+(V ′) ≡ {(v, w) ∈ A, | v ∈ V ′, w /∈ V ′}, and ∆−(V ′) ≡ {(v, w) ∈ A | v /∈
V ′, w ∈ V ′} for any V ′ ⊆ V . For simplicity, we write ∆+(v) and ∆−(v) instead
of ∆+({v}) and ∆−({v}), respectively. For a feasible dynamic flow f , let Θ(f)
denote the completion time for f , i.e., the minimum time Θ satisfying (3), and let
FN denote the set of all feasible dynamic flows in N . The quickest flow problem
asks to find a feasible dynamic flow f that minimizes Θ(f).

Here we define flow-table [2] which is a function from Z+ to R+. There are
two kinds of flow-tables, arriving-table ATv for each vertex v ∈ V , and sending-
table STe for each arc e ∈ A. Arriving-table ATv represents the sum of the flow
rates arriving at the vertex v as a function of time θ, i.e.,

ATv(θ) = Bv(θ) +
∑

e∈∆−(v) f(e, θ − τ(e)) (4)

where we regard the initial supply bv as a flow-table Bv as follows: Bv(0) = bv

and Bv(θ) = 0 if θ 6= 0. Sending table STe represents the flow rate entering the
arc e as a function of time θ, i.e.,

STe(θ) = f(e, θ). (5)

We define T as a function of flow-table FT as follows: T (FT ) = max{θ ∈
Z+ |FT (θ) > 0}. T (STe) + τ(e) represents the time to complete the evacuation
from e.

In this paper, we will focus our attention on grid graph as an underlying
graph of a network. For simplicity, we assume a grid graph is on N2 grid points
{1, . . . , N}×{1, . . . , N} in the plane, and let n = N2. Here a vertex is identified
with (i, j) with 1 ≤ i ≤ N and 1 ≤ j ≤ N . A sink r is specified as one
of vertices. The distance between two vertices (i, j) and (i′, j′) is defined as
|i− i′|+ |j − j′|. Two vertices (i, j) and (i′, j′) are connected by an edge if and
only if |i − i′| + |j − j′| = 1 (Fig. 1(a)). The edge which connects v and v′ is
directed from v to v′ if and only if the distance from v′ to r is smaller than
that from v to r (Fig. 1(b)). A network defined on a grid graph is called grid
network. We assume throughout this paper that, in networks we are concerned
with, the capacities of all arcs have the same value c ∈ R+ and the transit
times of all arcs take the same value τ ∈ Z+. Notice that we define c and τ as
not a function but an integer here. From this assumption, we use the notation
N = (D = (V, A), bv, V ∗) for simplicity by omitting the capacity function and
the transit time function. In addition to the above assumption for the capacities
and the transit times of arcs, we assume a sink is an inner vertex, i.e. the in-
degree of a sink is four (the other case can be similarly treated).

Given a grid network N =(D=(V,A), bv, V ∗={r}), we consider the quickest
flow problem QF formally defined as follows:

QF: minimize T (AT f
r ) subject to f ∈ FN

where AT f
r is the arriving-table at the sink r with respect to f .

For any vertices v and w such that there exists a directed path from v to w,
we define l(v, w) as the sum of transit times of arcs on the path. Vertex set V is



partitioned into layers according to the distance from r. Thus, a directed graph D
can be viewed as a layered graph. A layered graph D = (V, A) is a directed graph
consisting of several layers which partition V into subsets V 0(= {r}), V 1, V 2, . . .
such that vertices v ∈ V i and w ∈ V j are connected by a directed arc (v, w)
only if i− j = 1, and V p (p−th layer) denotes the set of all of vertices satisfying
l(v, r) = pτ (Fig. 1(c)). A network defined on a layered graph is called a layered
network.
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Fig. 1. (a)Grid network (b)Sink r and direction of arcs (c)Layers of grid network

Now we define mτ = max{l(v, r) | bv > 0, v ∈ V } for a grid network. A vertex
v ∈ V p is said to be at level p, and an arc connecting between V p and V p−1 is
said to have a level p . For any v ∈ V , let CHv denote the set of children of v
(i.e., w ∈ CHv has a level higher than v by one), and let PAv denote the set of
parents (i.e., w ∈ PAv has a level smaller than v by one).

3 Quickest Flow Problem for Grid Graphs

In this section, we consider the quickest flow problem for a grid network N =
(D = (V,A), bv, V ∗ = {r}). First we propose the overall idea of our algorithm.

Our algorithm benefits from the structure of a grid graph. Let CHr =
{u1, u2, u3, u4}. By the way of directing arcs of a grid graph, we can decom-
pose V into eight subsets, U1, U2, U3, U4 and W1,W2,W3,W4 as in Fig. 2 where
Ui denotes the set of vertices on horizontal or vertical axis whose supplies are all
sent to sink r through arc (ui, r) and Wi denotes the set of vertices whose sup-
plies are sent to sink r through either (ui, r) or (ui+1, r) (we assume throughout
the paper that the index i is given as (i mod 4)+1). Here let Hi, i = 1, 2, 3, 4 be
a subgraph induced by Wi−1 ∪Ui ∪Wi ∪{r}. For an optimal dynamic flow f for
problem QF, it can be decomposed into four flows fi, i = 1, 2, 3, 4 such that each
fi represents the flow of supplies which reaches r through arc (ui, r). The subflow
fi, i = 1, 2, 3, 4 induces a rooted graph Di such that its vertex set and arc set
are defined as those which a positive amount of fi passes through. Notice that
Di contains an arc (ui, r) and its vertex set is a subset of Wi−1 ∪ Ui ∪Wi ∪ {r}
(Di is clearly a subgraph of Hi).

The proposed algorithm is based on the following four ingredients.



Theorem 1. There exists an optimal dynamic flow f such that fi and fj does
not share any arc for every i 6= j.

Now suppose that for every v ∈ Wi with i = 1, 2, 3, 4, the amount of supply (de-
noted by bv,i and bv,i+1 respectively) which reach r via arcs (ui, r) and (ui+1, r)
respectively are fixed.

Theorem 2. There exists a subgraph H ′
i of Hi which spans Wi−1∪Ui∪Wi∪{r}

for i = 1, 2, 3, 4 such that H ′
i are arc disjoint for i 6= j.

Notice that that arc-disjoint subgraph H ′
i are not uniquely determined.

Theorem 3. Let us consider dynamic flow problems QFi defined on H ′
i such

that the supply of v ∈ Wi−1 ∪ Ui ∪ Wi is bv,i. The optimal objective value for
QFi for every i does not depend on the choice of arc-disjoint subgraphs H ′

i, but
remains the same.

From these facts, when for every v ∈ Wi and every i with i = 1, 2, 3, 4, the
amount of supply at v which flow through (ui, r) and (ui+1, r), respectively are
fixed, an optimal flow of QF can be found by independently obtaining an optimal
flow f∗i for QFi for each i. Since the subgraph H ′

i can be chosen as a rooted tree as
will be seen in Fig 3 (this fact clearly proves Theorem 2), the solution of QFi can
be given by simply specifying the supply at each v ∈ Wi−1 ∪Ui ∪Wi. Therefore,
the problem QF reduces to finding an optimal allocation of bv to bv,i and bv,i+1

for each v ∈ Wi with i = 1, 2, 3, 4, and we call this problem the optimal allocation
problem for supplies. Moreover, we prove the following theorem. Consequently,
we can solove the quickest flow problem for grid networks with uniform arc
capacity efficiently.

Theorem 4. The optimal allocation problem for supplies can be transformed
into the min-max resource allocation problem under network constraints [6–8].
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From the above discussion, our algorithm consists of two phases: (1) The
first phase is to reduce the quickest flow problem QF to the optimal allocation



problem for supplies, and (2) the second phase is to reduce the optimal allocation
problem for supplies to the min-max resource allocation problem under network
constraints [6–8].

3.1 Reduction the quickest flow to the optimal allocation problem
for supplies

In this subsection, we prove that the quickest flow problem QF can be reduced
to the optimal allocation problem for supplies. From the above discussion, the
reduction is done by proving Theorem 1 and Theorem 3. Theorem 3 is proved
after showing Lemma 1 and Lemma 2. We prove these lemmas by using prop-
erties of flow-tables. Thus, before proving these lemmas we introduce operators
concerning flow-tables: shifting, and ceiling [2], and we will then show some basic
properties of those operations.

Definition 1 (table shifting). For any flow-table FT , τ ∈ Z+ and θ ∈ Z+,
we define Sτ (FT ) as follows : Sτ (FT )(θ) = 0 if θ < τ and Sτ (FT )(θ) = FT (θ−
τ) if θ ≥ τ .

It is easy to see that for any flow-tables FT1, FT2 and τ1, τ2 ∈ Z+, Sτ1(FT1 +
FT2) = Sτ1(FT1) + Sτ2(FT2) and Sτ1+τ2(FT1) = Sτ1(Sτ2(FT1)) hold. From the
above definitions and (4), (5) can be rewritten as

ATv = Bv +
∑

e∈∆−(v) Sτ(e)(STe). (6)

Definition 2 (table ceiling). For any flow-table FT and c ∈ R+, [FT ]c is
a flow-table obtained by carrying over the excess of FT (θ) (i.e. FT (θ) − c) to
FT (θ + 1) in the order of θ = 0, 1, . . ..

c c

FT
[ ]

c
FT

the sum of flow

time

Fig. 4. Table ceiling

Here we show two facts concerning flow-tables. We use Fact 1 to prove that we
need a single ceiling operation to calculate the minimum completion time of a
layered network with single sink whose in-degree is one.

Fact 1 For any flow-tables FT1, FT2 and for any c ∈ R+, [[FT1]c + FT2]c =
[FT1 + FT2]c.



Fact 2 For any flow-table FT , c ∈ R+ and τ ∈ Z+, Sτ ([FT ]c) = [Sτ (FT )]c
holds.

Here it should be noted that given a network N = (D = (V, A), bv, V ∗) and
ATv for a v ∈ V and the distribution of ATv to each e ∈ ∆+(v) as AT e

v , we will
assume STe = [AT e

v ]c holds for any e ∈ ∆+(v) in order to attain an optimal
solution [5]. Thus, throughout this paper, we restrict the set of feasible dynamic
flows to those which satisfy this condition.

Let us now return to Theorem 3 again. Here we consider a layered network
L = (D̃ = (Ṽ , Ã), b̃v, Ṽ ∗ = {r̃}) with |∆−(r̃)| = 1, where Ṽ p = {v ∈ Ṽ | l(v, r̃) =
pτ}, m̃ is the number of layers in L, B̃v denotes the extension of b̃v to flow-
table, B̃

p
=

∑
v∈Ṽ p B̃v for any p ∈ {1, 2, . . . , m̃} (Fig. 5). We show the following
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Fig. 5. Layered network L

lemmas concerning L. Lemma 1 shows the relationship between the arriving-
tables of vertices whose level is p and those of vertices whose level is p + 1.

Lemma 1. For any feasible flow of L we have

[
∑

v∈Ṽ p ATv]c = [B̃
p

+ Sτ (
∑

u∈Ṽ p+1 ATu)]c.

Proof. Consider ATv for v ∈ Ṽ p. Then

ATv = B̃v +
∑

u∈CHv
Sτ (ST(u,v)) (7)

holds by (6). Here we define {AT
(u,v)
u | v ∈ PAu} as a distribution of ATu for

u ∈ Ṽ p+1 such that
∑

v∈PAu
AT

(u,v)
u = ATu and ST(u,v) = [AT

(u,v)
u ]c hold. It is

clear that such distribution always exists. Thus, we have

[
∑

v∈Ṽ p ATv]c

= [
∑

v∈Ṽ p(B̃v +
∑

u∈CHv
Sτ (ST(u,v)))]c (by (7))

= [
∑

v∈Ṽ p B̃v +
∑

v∈Ṽ p

∑
u∈CHv

Sτ (ST(u,v))]c

= [B̃
p

+
∑

u∈Ṽ p+1

∑
v∈PAu

Sτ (ST(u,v))]c

= [B̃
p

+
∑

u∈Ṽ p+1

∑
v∈PAu

Sτ ([AT
(u,v)
u ]c)]c (by ST(u,v) = [AT

(u,v)
u ]c)



= [B̃
p
+

∑
u∈Ṽ p+1

∑
v∈PAu

[Sτ (AT
(u,v)
u )]c]c (by Fact 2)

= [B̃
p

+
∑

u∈Ṽ p+1

∑
v∈PAu

Sτ (AT
(u,v)
u )]c (by Fact 1)

= [B̃
p

+ Sτ (
∑

u∈Ṽ p+1

∑
v∈PAu

AT
(u,v)
u )]c

= [B̃
p

+ Sτ (
∑

u∈Ṽ p+1 ATu)]c (by
∑

v∈PAu
AT

(u,v)
u = ATu). ut

The following lemma is immediate from Lemma 1. This lemma says that the
minimum completion time remains the same for any layered network with a single
sink whose in-degree is one, and thus it does not change as long as the initial
supply and the level of every vertex remain the same. This proves Theorem 3.

Lemma 2. In the layered network L of Lemma 1 , we have ATr̃ = [
∑m̃

i=1 Siτ (B̃
i
)]c.

Proof. We first prove

[
∑

v∈Ṽ p ATv]c = [
∑m̃

i=p S(i−p)τ (B̃
i
)]c (8)

holds for any p ∈ {1, . . . , m̃} by induction on p. Let us first consider the case
of p = m̃. Since ATv = B̃v holds for any v ∈ Ṽ m̃, we have [

∑
v∈Ṽ m̃ ATv]c =

[
∑

v∈Ṽ m̃ B̃v]c. Next assume that the lemma is true for p = t + 1. Thus, by
Lemma 1 and the induction hypothesis, we have

[
∑

v∈Ṽ t ATv]c

= [B̃
t
+ Sτ (

∑
v∈Ṽ t+1 ATv)]c (by Lemma 1)

= [B̃
t
+ Sτ ([

∑
v∈Ṽ t+1 ATv]c)]c (by Fact 1 and Fact 2)

= [B̃
t
+ Sτ ([

∑m̃
i=t+1 S(i−(t+1))τ (B̃

i
)]c)]c (by the induction hypothesis )

= [
∑m̃

i=t S(i−t)τ (B̃
i
)]c. (by Fact 1 and Fact 2).

This completes the proof of (8). Let CHr̃ = {v1}. [ATv1 ]c = [
∑m̃

i=1 S(i−1)τ (B̃
i
)]c

holds from (8). Thus, from ATr̃ = Sτ ([ATv1 ]c), the lemma follows. ut
Notice that the lemma does not always hold if the in-degree of r̃ is more than
one.

Next let us consider Theorem 1. There may be an arc e such that both fi

and fj(i 6= j) share. If there is such an arc e, it is called a mixed arc with respect
to f , and such flow f is called a mixed flow.

Proof. (Theorem 1) Let us consider an optimal dynamic flow f̂ , and assume
that it is a mixed flow. Let us decompose f̂ into f̂i, i = 1, 2, 3, 4, and Di for f̂i

be D̂i ≡ (V̂i, Âi).
From the proof assumption, Âi ∩ Âj 6= ∅ for some i 6= j. Let us define a

network N̂i for D̂i such that the arc capacity and the transit time of all e ∈ Âi

remain the same as the original problem, and the initial supply of v ∈ V is
equal to bv,i. Now, it holds for i = 1, 2, 3, 4 that f̂i is a feasible dynamic flow



of N̂i. Here let us define a network Ni such that initial supply of vertices, the
arc capacity and transit time are the same as N̂i and the underlying graph is
H ′

i ≡ (Vi, Ai) as the one shown in Fig. 3. Notice that V̂i ⊆ Vi holds.
If we independently consider the dynamic flow problems for N̂i, i = 1, 2, 3, 4,

the optimal objective values for Ni and N̂i are the same for each i = 1, 2, 3, 4
from Lemma 2. Let f∗i for i = 1, 2, 3, 4 denote an optimal dynamic flow for
Ni, i = 1, 2, 3, 4 respectively, and let f̂∗i for i = 1, 2, 3, 4 denote an optimal
dynamic flow for N̂i, i = 1, 2, 3, 4, respectively. Then, we have

Θ(f∗i ) = Θ(f̂∗i ) ≤ Θ(f̂i).

This proves the theorem because Ni with i = 1, 2, 3, 4 are arc-disjoint. ut
Let us consider the four arc-disjoint networks Ni defined in the proof of Theorem
1. For each v ∈ Wi, i = 1, 2, 3, 4, initial supply bv at v goes through either Ni

or Ni+1 to reach r. Let bv,i and bv,i+1 denote the amount of supplies which go
to r through Ni and Ni+1 respectively. We say that bv,i and bv,i+1 are assigned
to Ni and Ni+1, respectively. For a vertex v on Ui with i = 1, 2, 3, 4, all the
supply goes to v using Ni. In this case, we say that bv,i(= bv) is assigned to Ni.
In general, let Bv and Bv,i denote the flow-table corresponding to bv and bv,i

respectively. Then the quickest flow problem QF can be written as follows:

minimize maxi=1,2,3,4 T ([
∑

v∈V Sl(v,r)(Bv,i)]c)
subject to Bv,i = Bv and Bv,j = 0, j 6= i for v ∈ Ui,

Bv,i + Bv,i+1 = Bv and Bv,j = 0, j 6= i, i + 1 for v ∈ Wi,

For every p and i, let bp
i =

∑
v∈V p∩(Wi∪Ui∪Wi−1)

bv,i which represents the amount
of supply of vertices at level p assigned to Ni, and let Bp

i denote its flow-table
extension. Then from Lemma 2, the completion time for Ni is expressed as
T ([

∑m
p=1 Spτ (Bp

i )]c). Therefore, the assignment of bv of a particular vertex v ∈
V p ∩ (Wi ∪Wi−1) does not affect the minimum completion time for Ni but only
the total amount bp

i assigned to Ni does affect it. From this observation, we
contract the set V p∩Wi into a single vertex wp

i for each p with 1 ≤ p ≤ m and i
with 1 ≤ i ≤ 4 such that the initial supply of wp

i is equal to
∑

v∈V p∩Wi
bv which

is simply denoted by ap
i . Let up

i denote a single vertex corresponding to V p ∩Ui.
The initial supply of up

i is denoted by gp
i . Let the assignment of ap

i to Ni and
Ni+1 be ap

i,i and ap
i,i+1, respectively. Therefore, defining the flow-table FTi such

as
FTi(pτ) = gp

i + ap
i,i + ap

i−1,i, p = 1, 2, . . . ,m, (9)

the minimum completion time of Ni is equal to T ([FTi]c). Here we introduce
the following theorem to calculate T ([FTi]c) efficiently. Lemma 3 shows that we
can calculate T ([FT ]c) without operating table-ceiling explicitly.

Lemma 3. For any flow-table FT and c ∈ R+,

T ([FT ]c) = max
0≤θ≤T (FT )

⌈
cθ +

∑T (FT )
t=θ FT (t)

c

⌉
− 1.



Proof. We give a sketch of the proof. The idea is to prove the time that satisfies
max0≤θ≤T (FT ){cθ +

∑T (FT )
t=θ FT (t)} is equal to

max
{

θ ∈ Z+

∣∣∣ ∑θ
t=0 FT (t) =

∑θ
t=0[FT ]c, θ < T ([FT ]c)

}
+ 1.

This claim can be proved by the properties of any flow-table FT as follows:
∑θ

t=0 FT (t) ≥ ∑θ
t=0[FT ]c(t) for any θ ∈ Z+, and∑θ

t=0 FT (t) =
∑θ

t=0[FT ]c(t) for any θ ∈ Z+ with [FT ]c(θ) < c. ut

Thus, from Lemma 3 and (9), QF can be redeuced to the following problem QF′.

QF′
∣∣∣∣ minimize max

1≤i≤4
max

1≤p≤m
{cpτ +

∑m
k=p FTi(kτ)}

3.2 Reduction to min-max resource allocation problem under
network constraints

The problem QF′ can be reduced to the min-max resource allocation problem
under network constraints as will be shown below. This problem is a kind of
min-max flow problem with multiple sources and sinks in a static network [6–8]
which is defined as follows. Suppose we are given a network with multiple sources
and sinks such that a fixed amount of supply is associated with each source, and
the cost function γt(xt) which is nondecreasing in xt is associated with each sink
t where xt denotes the amount of flow entering t. Then the problem asks to find
a (static) flow that minimizes the maximum of the cost functions of sinks.

all
t

m
C

2
C1

C

Fig. 6. Illustration of the entire network constructed in Section 3.2

We will explain how we construct a (static) network (see Fig. 6) for which
finding an optimal solution for the min-max resource allocation problem pro-
duces an optimal solution of problem QF′. The network to be constructed con-
sists of m components C1, C2, . . . , Cm. Each component Cp except Cm has four
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Fig. 7. (a)p-th component Cp (b)m-th component Cm (c)p-th bridges

layers while Cm has three layers. The first layer of each component Cp has eight
sources which correspond to vertices wp

i , up
i , i = 1, 2, 3, 4 defined in the previ-

ous subsection. The second and third layers consists of four vertices denoted by
vp
1,i, v

p
2,i, i = 1, 2, 3, 4. The fourth layer consists of a single vertex vp

3 . The con-
nection between the layers are as shown in Fig. 7(a). Vertex wp

i is connected to
vp
1,i and vp

1,i+1 such that the flows on (wp
i , vp

1,i) and (wp
i , vp

1,i+1) represent the
assignment of ap

i to Ni and Ni+1, respectively. The vertex up
i is connected to

vp
1,i and the flow on (up

i , v
p
1,i) represents the supply gp

i assigned to Ni. In general,
if p is large, V p ∩ Ui may become empty. This case can be treated by letting
gp

i = 0. Only the arcs from the second to third layer have finite capacity cτ
in Cp with 1 ≤ p ≤ m − 1 while the arcs in Cm have infinite capacity. The
capacity of the other arcs is ∞. All vertices vp

3 with 1 ≤ p ≤ m − 1 are con-
nected to tall. The vertices vm

2,i, i = 1, 2, 3, 4 of Cm as well as tall are sinks of
this network which are associated with a cost function. The actual cost function
for each vm

2,i, i = 1, 2, 3, 4 is equal to the amount the flow entering it. The cost
function associated with tall takes zero irrespective of the flow value entering
it. In addition to this, we prepare arcs between consecutive components. More
precisely, as shown in Fig. 7(c), there is an arc from vp

1,i to vp+1
1,i for each p with

1 ≤ p ≤ m− 1 and i with 1 ≤ i ≤ 4. The capacity of this arc is defined to be ∞.
This arc is called a bridge.

The meaning of the capacity cτ on the arcs from the second to the third
layer in Cp with 1 ≤ p ≤ m − 1 is as follows. Let us consider FTi of (9) and
perform ceiling operation to obtain the completion time of Ni. Let us recall that
in performing the ceiling operation the amount of supply carried over to time p′τ
plus the amount FTi(p′τ) will then be carried over to FTi(p′τ + 1), FTi(p′τ +
2), . . .. If the amount of supply carried over to time p′τ plus the amount FTi(p′τ)
is less than or equal to cτ , max1≤p≤m{cpτ+

∑m
k=p FTi(kτ)} is attained for p > p′.

Thus, a positive flow going through a bridge stands for the situation that the
amount of supply carried over to time p′τ plus the amount FTi(p′τ) is larger
than cτ and thus a positive amount of flow will be carried over to FTi((p′+1)τ).
The cost function associated with the min-max resource allocation problem here
associated with each sink vm

2,i, i = 1, 2, 3, 4 is the amount of the excess carried



over to time mτ when performing ceiling operation to FTi which is equivalent
to max1≤p≤m{cpτ +

∑m
k=p FTi(kτ)}− cmτ . Since cmτ is constant, the min-max

resource allocation problem defined in this subsection solves problem QF′.
It is known that the min-max resource allocation problem for the network

with |V | vertices, |A| arcs and |T | sinks can be solved in O(|T |(|V ||A| log |V | +
|T | log M

|T | )) time where M denotes the sum of supplies [6–8]. The second term
in the parenthesis, i.e., O(|T | log M

|T | ), is the time required to solve the resource
allocation problem without the network constraints. Since our cost function as-
sociated with vm

2,i, i = 1, 2, 3, 4 is linear, we can reduce the time to O(|T |) (the
details are omitted). In our case, |T | is constant and |V | = O(

√
n), |A| = O(

√
n),

thus the running time becomes O(n log n).

4 Conclusion

We have presented an O(n log n) time algorithm for the quickest flow problem
in a grid network with uniform arc capacity. The algorithm proposed in this
paper can be extended to a general layered network N such that (1) the transit
time from a vertex v to a sink r dose not depend on the choice of a path, and
(2) the underlying layered graph D can be decomposed into arc-disjoint layered
graphs D1, D2, . . . , Dk which spans V1, V2, . . . , Vk respectively, where CHr =
{v1, v2, . . . , vk} and Vi is the set of vertices from which vi is reachable in D.
Thus, the result can also be generalized to the case where the arc capacity is
a multiple of c by regarding the arc as multiple ones as long as the resulting
layered graph satisfies the requirement just mentioned above.
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