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Preface

        In the first four chapters we shall describe several 

proofs of the celebrated theorem due to Schwarz: The first will 

be devoted to Schwarz' proof, the second and the fourth to 

Landau and A. Errera's and the third to Klein's. In the last 

chapter transcendental liouvillian solutions will be treated.

       In 1873 Schwarz  [35] succeeded in determination of all 

algebraic solutions of hypergeometric differential equations by 

Steiner's classification of all finite subgroups of the rotation 

 group. An important role was played by the Schwarzian derivative 

which appears in Kummer's equation  [25], who considered rational 

transformations of hypergeometric differential  equations. A 

proof without the Schwarzian derivative can be found in Goursat's 

book  [9 ,  Chap.VI].

       An algebraic proof  of this theorem was given by Klein  [16], 

who reduced the algebraic function fields defined by algebraic 

solutions to those of genus zero through  Kummer's  equations. Ex-

plicit description of algebraic solutions was made by Schwarz, 

Brioschi [3], 0. Fischer and Klein himself (cf. footnote of [16, 

 II,  §10] in Gesammelte Abhandlungen, Springer, 1922).

       Landau [26], [27] attempted to gain Schwarz' table arith-

metically by Eisenstein's theorem on power series expression of 

algebraic functions, where we can see a beautiful application of 

Dirichlet's theorem on prime numbers in arithmetical progressions, 

and it was accomplished by A. Errera  [4].

The first two chapters are based on the lectures delivered
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by the author at Kyoto University in Autumn of 1981. There 

Landau's second theorem was stated without knowing that it is 

due to him. K. Okamoto, who happened to be visiting Kyoto Uni-

versity, kindly informed the author of Landau's work. Those 

lectures will be completed by the third and fourth chapters.

        In the last chapter the following works will be treated: 

M. Hukuhara - S.  Ohasi [11] and T. Kimura [15] proved that 

there are no new liouvillian solutions in hypergeometric differ-

ential equations other than those considered by Gauss (cf. Klein 

[18, §61]). The proof is based on M. Kuga's theorem that the 

Zariski closure of the monodromy group of a Fuchsian equation is 

its Picard-Vessiot group [24, p.173]. Recently M. Setoyanagi  [36], 

a student of the author, gave an algebraic proof of this theorem 

by Liouville's lemma [30, p.448] on Riccati's equation in case 

there is no logarithmic singularity, without making use of Kuga's 

theorem. H. P. Rehm's comments have enabled us to improve §13.

        Note on the second chapter will be offered to prove T. 

Honda's theorem on the sufficiency of Eisenstein's criterion 

 [10,  §1]-

       Note on the fifth chapter will be offered to prove 

Liouville's theorem [29], [30], [31] on elementary solutions in 

Bessel's equation.

        Goursat's works [7], [8] on  Kummer's equation will not be 

treated here.

        For an application of N. Katz' general theory [14] to our 

problem confer with F. Baldassarri - B. Dwork [1].



       The author would like 

K. Nishioka and M. Setoyanagi

November 1984

to express his sincere gratitude to

for fruitful discussions with them. 

          Michihiko Matsuda
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Preliminaries

       The analytic treatment in this note is based on the  fol-

lowing existence theorem. In the complex plane let us consider 

a homogeneous linear differential equation whose coefficients 

are polynomials of the independent variable x:

      dyn n-1        P
0(x)d

xn+ P1(x)dn-1y++  Pn(x)y =  0.                           dx 

If the absolute value of every root of  P0(x) is greater than a

positive constant r, then a formal solution 

 co  a _ - 

 y(x) = E.0-kXk, 
         k=0

which is determined by the initial values at x = 0: 

 dkv   (0) =  ak' 0 < k < n, 

 dxk

converges for  lx1 < r. It will be proved as follows. Setting 

 dky
 zk  - k - ak,0<k < n, 

             dx 

we have a system of linear differential equations:

 dz

 dx   k-1 -zk+ak' 1<k< n, 

 = dzn -1n-1 Pn-k(x) 

 dx  k0P0(x) (zk + ak) 

 =

with the initial condition:

 zk(0) = 0, 0  < k < n.

For the right hand sides of our equation we can take a majorant
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power series:

 M  n-1

 X  L (Zk + A) 1 - 
r k=0

with positive constants A 

       dZ nM(Z + A)
 dX1  - X  '

 r

is given by 

       Z = A[(1 -  X)-nMr

 c(c+1)....
 A  E 

 k=1

 radius of 

converges

 n-1 
 =  M  E 

 k=0

 and M. 

 Z(0) =

-  1] 

 (c+k  -1)

 E  r-hXh(A
 h=0

  A formal 

0

r-kXk,

is r. Hence,

+ Zk)

solution Z of

whose 

 y(x)

 k!

convergence

for  Ix' < r.

 c  = 

our

nMr, 

formal solution
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(E) 

with 

 E(a, 

given

(1)  F(a,  S, y,  x) =

unless  y is a rational 

verges in  xl < 1.

        If we change the 

then (E) is transformed

(2) x1yF(a+1-y,

is a solution of (E).

       If we change the 

then (E) is transformed

       z  F(a+1-y, 

is a solution of  E(a+1-y, 

tion of  (E), Here we re 

obtain a solution of  (E):

(3) (1 -  x)Y-a-F(y-a,

Chapter  I. Schwarz' theorem.

 §1. Kummer's table and Gauss' transformations. 

Consider a hypergeometric differential equation

  d2ydy  x(1 - x)---+  [y - (1 + a+ S)x]-  aSy =  0 
         dx

complex numbers  a,  S and  ', which will be indicated by 

 S,  y). It has the symmetry in  a  and  S. A solution is

by a hypergeometric series 

 00  a(a+1)....(a+n-1)S(S+1)....(S+n-1)
x=40  1 .2....n.y(y+1)....(y+n-1) 

 integer not greater than 0, which con-

dependent variable y into z by y =  x1-yz

to  E(a+1-y,  S+1-1,  2-y) for z, whence

 S+1-y,  2-y, x) 

 independent variable x into t by x =  1-t 

 to  E(a,  S,  1+a+S-y) for t. Hence,

 S+1-y,  a+13+1-y,  1-x)

 S+1-y,  2-y), and y =  xl-iz is a  solu-

  )lace y by  1+a+S-y and x ty 1 - x , and 

 E): 

 -a ,  Y, x). 

            -1-



In (3) we replace  a,  IS and y by 

 a'  =  a  +  1  -  y,  3'  =  Q  +  1  -  y,  y'  =  2  -  y

and multiply it by xl-i then

                         y-a-            1-y         x(1 - x) (4)13F(1-a ,  1-3, 2-y, x)

is a solution of (E).

In (1) - (4) we replace y and x by 

 y'  =  1  +  a  +  3-y,  x'  =  1  -  x

and obtain solutions of (E): 

(5)  F(a,  13,  1+a+(3 -y, 1 -  x),

         (1 - x) (6)F(y-a,  y-13,  1+  a-(-Y, 1 -  x), 

(7)  x1-yF(l+a-y,  1+3-y,  1+a+3-y, 1 -  x), 

(8)  xl-Y(1 -  x)Y-a-F(1-a,  1-3,  1+a-3-Y, 1 -  x).

       If we change the independent variable x into t by 

then (E) is transformed to

 t2(1  - t)d  - t[ot -  1  -  (Y2)tldtdy                                                   al3Y  = 
         dt

 Here, let us change the dependent variable y into z by 

Then this equation is transformed to E(a,  a-y+l,  a-3+1) 

and z. 

        In (1) - (8) we replace  3,  y and x by

 3'  =  a  -  y  +  1, y' = a -S+ 1, x'  =  x-1

and multiply them by  x-a then

-2-

x

 0  .

=
 Y

for

t 

 cc
 t  —  z  . 

t



(9) 

(10)

(11) 

(12)

(13) 

(14)

(15) 

(16)

are

and 

(17) 

(18) 

(19) 

(20) 

(21) 

(22)

x-aF(a,  a-y+1,  a-6+1, x-1), 

 x  13E(3, 6-y+1, 6-a+1, x-1), 

xa-Y(1 -  x)Y-a-6F(1-a, y-a, 6-a+1, x-1), 

 x6-Y(1 -  x)Y-a-13F(1-6,  Y-6,  a-6+1,  x-1) 

 x-aF(a, a+1-y, a+6+1-y, 1-x-1), 

 x6Y(1 -  x)Y-a-F(y-6,  1-6,  y+1  -u-13,  1-x-1), 

°B-1 
xF,13+1-y,  a+6+1-y, 1-x), 

 xa1(1  -  1-a,  y+l-a-6,  1-x-1)

solutions of  (E). 

   In (9)  - (16) we replace  y and x by 

 y!  =  1  4.  a  -I-  6-  y,  "°  =  1  -  x

obtain solutions of  (E):

(1 -  x)-aF(a,  I-6,  a-6+1,  (1-x)-1), 

(1 -  x)  -6F(6,  Y-a,  6-a+1,  (1-x)-1), 

 xl-Y(1 -  x)Y-13-1F(6+1-y, 1-a,  6-a+1,  (1-x)-1), 

 x1 y(1 -  x)Y-a-1F(a+1-y,  1-6,  a-6+1,  (1-x)-1), 

(1 -  x)-aF(a,  y-6,  a-6+1,  x(x-1)-1), 

 xl-Y(1 -  x)Y-a-1F(a+1-Y,  1-6,  2-y,  x(x-1)-1),

-3-



(23) (1 -  x)  (3F((3,  Y-a,  13-a+1,  x(x-1)-1), 

(24)  x1-y(1 -  x)  1F((3+1-y, 1-a, 2-y,  x(x-1)-1).

Thus we have completed Kummer's table of twenty four solutions 

of (E)  [25].

Let us set 

 X  =  1  -  y,  p  =  y  -  a  -  3,  v  =  a  -  (3.

Then in the equation  E(a',  (31,  y') for t = 1 - x we have 

      a'  =  a,  V  =  S,  = a + (3 + 1 - 1-1

and 

 xi =  1  _  yi =  p,  p! =  y‘  -  a'  - =  X,  v' =  a; =  v.

In the equation E(a",  (3", y") for t =  x-1 and z = xay we have

 a"  =  a,  3"  =  a  -  y  +  1,  y"  =  a  -  S  +  1

and 

    Au = 1  -  y" = V, pn  =  y" -f311 =  v, =  a"  -  (3,u =  A.

In the  equation  E(a*,  (3*,  y*) for z =  xy-ly we have

 a*  =  a  +  1  -  y,  =  +  1  -  y,  y*  =  2  -  y

and 

 A* = 1 -  y* =  -X,  p* =  y* - a*  _  (3* =  -9* =  a*  -  v.

Thus,  +X,  +I-1,  +v are permuted on Kummer's table. 

        Let us consider Gauss' transformations of hypergeometric

differential equations (cf. Goursat[ 9, §34]). If we set 

 z = ay + xy'

-4-



for a non-trivial solution y of E(a,  5,  y), then z is a solution 

of E(a + 1,  IS,  y), which can be zero if and only if

        a(a + 1 -  y) = 0. 

For, we have the identity

                                                                      - 

 E = (1 -  x)z° -(1 + a - i)x-1lz +  a(1 + a - 1)x1Y,

where E is the left hand side of  (E). For a non-trivial solu-

tion y of  (E) we set

z1= (y - a -(x)y +  x(1 - x)y', 

z2 =  (y  -  1)y +  xyl, 

z3 =  (y a  -  13)y + (1 -  x)y'.

Then z1 is a solution of E(a - 1,  13,  y), which can be zero if

and only if

(1  m a) a)  = 0;

 z2 is a solution of E(a,  y - 1), which can be zero if and only

if

(a + 1 -  y)  (3 + 1 -  y) = 0;

z3 is a solution of E(a,  y  +  I), which can be zero if and only

if

 (y - a)  (I - = 0. 

For, we have the identities:

E = z'1- (1 - a)x-1z1 + (1 - a)  (y -  a)x-1y 

  =  (1  - x)z2+  (y - a -Q-  1)z 2 - (a+1-y)($1-1-y)y

-5-



and

then

and

we

  = xz3+  yz
3 

If we set

-a

 y  =  x n,

Y2 = x1-yn2,

z = x-c, z 

 2-y_
 z2  =  x  2' 

 have

 =  -  --fl       d
t'

   = 

 2 dx  2'

- -  a) -

xa-y(1 -  111'

 Y3 = (1 -  x)Y-a-T-1  3 

= -  x)Y-u-i3+1-
1 

 z3 = (1 - x)1+Y 3, 

 -1

 1  =  -  dt  ''1'  =  x 

c =  d
3  dx  •3-

-6-



§2. Reducibility and logarithmic singularity.

     The equation (E) is said to be reducible if it has a solu-

tion y whose logarithmic derivative  171/y is a rational function 

of x. The necessary and sufficient condition is that one of a, 

 3,  y - a, y -  3, is a rational integer (Schwarz[35, Art.  I]).

     The sufficiency can be proved by finding a solution of 

this property from  Kummer's table as follows. Let us assume 

that a is an integer. If  y is not an integer then a polynomial 

solution is given by (1) in case a < 0 and in the other case 

 F(1 - a,  1 -  3, 2  -  y, x) is a polynomial of x, where the solu-

tion (4) has our property. Suppose that  y is an integer. First 

we assume that y > 0. Then a polynomial solution is given by

(1) in case a < 0, and  F(3, ya, y, x(x-1)-1i                                                    )is a polynomial 

 of x(x-1)®1in case a >  y,where the solution (23) has our prop- 

erty. If  0<  a< y then F(a,  a-y+1,  a-3+1, x-1i                                                     )is a polynomial 

of x-1  in case  3 is not an integer and the solution (9) has our

property. Suppose that  3 is an integer. Then a polynomial so-

lution is given by (1) in case  3 < 0. If  3 > 0 then

 F(a+l-y,  1-3,  a-3+1, (1-x)-1))s a polynomial of (1-x)-1in case

a >  3, where the solution (20) has our property and in the other

case  F(3+1-y, 1-a,  3-a+1, (1-x)-1))s a polynomial of (1 - x)-1,

where the solution (19) has our property. Secondly let us 

assume that y < 0. Then F(1-a,  1-3,  2-y, x) is a polynomial of 

x in case a > 1 where the solution (4) has our property and in 

case y < a < 0 a polynomial solution is given by (1). If a < y

-7-



then F(a+1-y, 1-13, 2-Y, x(x-1)-1))s a polynomial of x(x - 1)-1

and the solution (22) has our property. Thus  (E) is reducible 

if a is an integer. Suppose now that  y-a is an integer. Then, 

 (3 is an integer if  y - a -  6 is an integer and a is an integer 

if y is an integer. Hence, we may assume that neither  y-a-

nor  y is an integer. In case a <  6,  F(y-a,  y-13,  y-a-(3+1,  1-x) 

is a polynomial of 1 - x where the solution (6) has our property, 

and in the other case  F(a+1-y,  6+1-y, 2-y, x) is a polynomial 

of x where the solution(2) has our property. Therefore, (E) is 

reducible if  y-a is an integer. The sufficiency has been proved.

     In order to prove the necessity it is sufficient to show 

that one of +  A + p +  v is an odd integer, since we have

11 
a =—2 (1 --+  v)  ,=—2(1 -  A -  u -  v)  , 

                                   1  y - a =—1(1 -  A +-  v)  , a -IS=—
2(1 -++  v)  .        2

For a non-trivial solution y of  (E) we set z = y'/y. Then it 

satisfies

 2 y -  (1+a+6)x a6  
z'+ z + z- -0,  x(1 - x) x(1 - x)

that is

z' + z2 + (1 +x - 1)a6(1-                           xx )  =  O.

If the logarithmic derivative of our solution y is a rational 

function of x we can express z as the sum of partial fractions: 

 e..
 z  =  P(x)  +  y  y   13                                0 < i < n+1, 1  <  j  <  r., 

     i j (x - ci)j='

-8-



where P(x) is a polynomial of x and  ci, e1"are complex numbers 

By the differentiation 

                                      je..     -I1,1f--N 7 711   z' =P'(x)  -  X  L   
                     j  (X C )1-1 

Comparing the order of the pole at x =  ci we have  ri = 1 for

every i, and P(x) = 0 at x =  co by comparing the order of the 

pole at that point. Hence, 

 e. e.
z =                        = - 

X C 2  i (x - c
i)

Let us set c0= 0 and c1 = 1. Then comparing the coefficient 

of (x-c.1)2we have

        2 
           o,  ei = 1 

           1

for every i different from 0 and 1. Comparing the coefficient

of  x-2 and  (x -  1)-2 we have

- e
0 + e20+ (1 - A)e0= 0

and

     -  e
l + el + (1 -  u)e1 = 0. 

Hence, e0is either 0 or  A and e1 is either 0 or  u. Multiply--

          2
ing the equation  for z by x- we have 

 x2z' + (xz)2+ (1--X+x
x1- 1—)xz + a(3   

 -  

 x  1                                                                      = 0.

If we set X =  X e.1then for x =we obtain 

-  X +  X2 + (2 -  A -  11)X +  as = 0,

and

-9-



     A= m  -  _  

 (m:)2 

which is the coefficient of  xm in F(a, 1, x) and

1 1 1  1+1+1 11 B=--r---1-". ++,++ ••• +   
m  a a+1a+m-134.1 (3+m-1 

      11,            - 2(1 +2+ ••• +-)• 

                           m

The power series AmBmxm converges in  Ix! < 1. Here,

sumed that neither a nor  Q is an integer less than 1. 

a or  IS is an integer less than 1 we set

  B
m = 0, m > N,

where N is the minimum of m such that 

      (a +  m)(ii + m) = 0.

In this caseYA mBmxmis a polynomial of x, and in each
x = 0 is a logarithmic singular point of (E).

-10-

x =2(X p - 1 ±  v),

which takes one of the following four values:

     n,  n  +  A,  n  +  u,  n  +  X  +  p. 

Hence, one of +X +p  +v is an odd integer (cf. M.  Kuaa[24,  §19]).

     Let us consider the logarithmic singularity of (E). If  A 

is not a rational integer there is no logarithmic singularity 

at x =0. We assume that A is an integer. If it is zero, that 

is  y = 1, then we have a solution of the form

 4,(x) = F(a,  R, 1, x)log x +  / A  B  xm, 
 m=1 mm

where 

 a(a+1)•  •(a+m-11iiO3+1)•  •((31-m-1)

we 

 If

 as-

either

case



by 

if 

In

which

    (1 

by  Gaus

 Q' 

dx

 if and 

since

    (1 

by  (3). 

the  for

 X  

with 0  < m

Suppose that y < 1. Then (E) has a solution of the form

 1-y  d1 y
x4)(x) 
      dx1-y

Gauss' transformations, and we have 

 d1-y

 dxl-yF(a,0,  1, x) =  U

and only if 

 a(a+1)-  -(a-y)0(0+1)- = 0.

this case we have a polynomial solution of the form

 a-  ...  .(a+m-1)13•  .(13+m-1)  
                         xm  0  <m< y,  1 -.m.y. .(y+m-1)

 forms a fundamental system of solutions with (2). 

Suppose that  y > 1. Then (E) has a solution of the form

        dy-1 
            f(1 - x)(14--10(x)}-  x) 

 dx)-1

 Gauss' transformations, and we have 

 y-1  .„

 y_lf(1 -  x)u-l-f3-1F(a, 1,  x)].  = 0

only if

 (1-  a)  (2-  a)  •  •  •  •  •  (y-  a-1)  (1-13)  (2-(3)  •  •  •  •  •  (y-13-1) = 0,

- x)a+0-1F(a ,  R, 1, x) =  F(1-a,  1-, 1, x)

In this case we have a rational function solution of

 form

1-1  y  (a+1-y).  •••  ya+m-y)(13+17y):  -((3+m-y)  xm
 1.  -m.(2-y).  .(m+1-y) 

 <  y - 2, which forms a fundamental system

 -11-

of solu-



tions with (1).

    Therefore, under the condition that A is an integer, there 

is no logarithmic singularity at x = 0 if and only if  a and  13 

are such integers that one of the couples  (a,  a+l-y) and 

 (S,  13-1-l-y) consists of numbers h and k satisfying h  < 0 < k 

(cf. Goursat[g , §18]).

     It follows that an irreducible equation (E) has a logarith-

mic singularity if one of  A,  p and v is a rational integer.

-12-



§3. Schwarz' table.

       We shall assume that our equation (E) is irreducible, 

that is, neither  a, 13, y -  a nor y - 13 is a rational integer. 

It will be proved that every solution of (E) is algebraic if it 

has a non-trivial algebraic solution in §7. Hence, we may as-

sume that there is no logarithmic singularity, that is, neither 

 X,  1.1 nor  v is a rational integer. We write (E) as 

(E) 
ddx22ydy                 + p(x)+  q(x)y =  0,                       dx

where 

 _  y  ,  1  +  a  + - (x)  =+1-1-a+Yq(x)  = aP1 -  1 )  x  1,'‘1x x11° 

Take a fundamental system of solutions  y1 and y2 of  (E). If 

we denote the ratio  yl/y2 of them by z then we have

                                                              .  z' =  (Y1Y2Y1Y2)Y22' 

z"_Y1Y2Y1Y2Y2Y2 
                      2--  =- p(x) - 2--,  z'  YiY2 yly2  y2 Y2

     y'2,2 d(z",171 J2l'Y2 
dx'z''=-Iat-2-1----2-= -PI + 2q+ 2P7-+ 2-2-   Y21 

     Y22Y2 

 

. _ 1 2 Y2 n. 2 ....               = -  p' + 2q -  7p  1 2                                        ++ 
                          Y2- 

whence z =  y1/ y2 satisfies 

   dz"1z"212 (S)
asi-(To -7(7T)p' 2q -7/3

-13-



 7   2  2  2 2
_l1-X+1--p

2 X-  +  p  - v -  1    2 
      x2  (1-x)  x(1-x)

The left hand side is the Schwarzian derivative of z.

The wronskian W =  yiy2 -  17117 satisfies W' = - pW, and 

W  =X-1 -  1)p-1

with a constant C distinct from 0. If we set y =  /W/Z' for a 

solution Z of (S) then

 yl =-12--(11471--111-)y = --1(p  + ;1-)y, 

 = Zr'YI c1(;)111
and

 1 Z" Z" 1dZ" 
y" =py'1-(-1)TT) (pTOY - 4[p°a)7(i7)]y

            1 d Z" 1 Z" 1 = py' qy74Ti(TT) 7(fr)2 P'-2g27P21/1

= -  p177 -  gy
,

whence y is a solution of  (E). If we set y3 = yZ then

 _1

 yi = y'Z + yZ' =  (y'y3 +  W)y 

   = (11%7
3  YiYi WI)Y-1  Y317'17-1

= -  (py' + gy)y3y-1- pWy-1

 =  P(YIY3  W)Y  -  (1/73  =  PY3  clY3'

-14-



whence y3 is a solution of  (E). Therefore, Z is expressed in

the form

 C1y1 + C2y2 C1z +  C2

 Z  =   _- -      Cy+ C'
yC'z + C'   112212

with constants C11C2'C' and C.          12

At every point different from 0, 1 and  co we can take a

fundamental system of solutions  yl and y2 such that  y1(x0) =  0 

and y2(x0) = 1 at this point  x0. Hence,  yl(x0) 0 by the

uniqueness theorem of solutions, and we have

dz   (x)=0
. d

x0'

We shall assume that our equation (E) has only algebraic

singularities, that is,  u,  13, and y are rational numbers. If z 

is algebraic then  yl and y2 are algebraic. For, we have

 yl =  zy2,  y2 =  /W/z' 

and W is algebraic by our assumption. This is due to Heine  (cf. 

Schwarz [35, p.298]).

At the point 0, 1 and  ... we can take  yl and y2 such that

z takes the following form:

 zo =  x-(x),  E  (0) 0, 

z1= (x - 1)Up (x-1)  ,n(0) 0, 

 z =  x-vc(x-1),  c(0) 0,

where  (x),  n(x-1) and  C(x-1) are convergent power series with

real coefficients. Hence, the line segments  (-a.,  0), (0, 1) and

-15-



(1,  +0.) of real numbers are transformed to segments of lines 

passing through the origin by  z0, z1 and  z respectively.

       If (E) has an algebraic solution then by Gauss' trans-

formations  E(a+k,  13+m,  y+n) has this property for all integers 

 9, m and n. Hence, we may assume that

 0  <  X  <  1,  0  <  u  <  1, 0 < +v < 1. 

                                                    - The upper plane of complex numbers is transformed to the inte-

rior of a circular triangle with vertical angles  X7,  117 and  V7 

by z. By a suitable choice of z we may suppose that the two 

circles are two lines crossing at the origin. Then the origin 

is contained either in the interior or in the exterior of the 

third circle. The former case occurs if and only if the fol-

lowing condition is satisfied: 

(L)  X + p +  v > 1, p + v > 1 +  X, 

 v  +  X  >  1  +  p,  X  +  p  >  1  +  v.

       If a function f(x) is holomorphic at  x0 then the func-

tion  f(x) is holomorphic at  x0 by definition, where the bar in-

dicates the conjugate. The functions  z0, z1 and  z have the

property that z(x) = z(x) by a proper choice of its branch in a 

domain which is symmetric in the line of real numbers. Hence, 

the analytic continuation of z across the line segments  (-00,  0), 

(0, 1) and (1,  +c) of real numbers induces the reflections in 

the circles corresponding to them. Thus the lower plane of com-

plex numbers is transformed to the interior of an adjacent cir-

-16-



cular triangle.

        A many-valued analytic function which has only algebraic 

singularities is algebraic if and only if it is finitely  many-

valued (cf. for instance Bieberbach [2,  p.230]).

        By geometric consideration Schwarz proved that the con-

dition (L) is satisfied if (E) has an algebraic solution (cf. 

Goursat [9 , Chap. VI]). It will be proved here by Landau's

first theorem in  §5.

       Suppose that the condition (L) is satisfied. Then we 

have a  great-circular triangle on the unit sphere with vertical 

angles  ?r,  iir and  V7 by a stereographic projection. The  compo-

sition of the reflections in two sides is the rotation around 

the common vertex of them with the negative rotation angle equal 

to the twice of this vertical angle. Thus we have three rota-

tions around the vertices, and they generate a finite group if 

and only if (E) has an algebraic solution.

       Such finite groups are the dihedral group, the tetra-

hedral group, the octahedral group and the icosahedral group: 

The second is contained in the third and the fourth as a sub-

group (cf. for instance Weber [40,  Chap.VIII]).

        The three great circles form four triangles whose ver-

tical angles have the following values multiplied by  7:

 {X,  u,  yl,  {A, 1 -  11, 1 -  v}, 

 {1 - X,  p, 1 -  -0,  {1 - A, 1 -  p,  v}.

A solution corresponding to {X, 1 -  p, 1 -  0 is given by 

(1 - x)1+a-1-(3-yF(a,Q+ 1,  y,  x).

-17-



       We assume that the triangle corresponding to {A 

has the least area among them and A > p > v. Then (E) 

algebraic solution if and only if  {A,  u,  vl is in the

table due to Schwarz  [351:

Dihedral group: 

 1  1
(I)  t2,  2,  yl,  v is arbitrary,  Area/7 =  v.

Tetrahedral group:

(II)f' 7'71' Area/7=1= A, 

                                  6 

        111 

 2  1 1 1 (III)
5' 7' 71'  7= 2A.(III) =} 

       Octahedral group:

   111111 (IV)1--r7r741-J,Area/7 =I2 =  B, 

        111                       1 (V) {.5'71-'74-}'= 2B.6

Icosahedral group:

  1  1 11 (VI)
2' 3' 71' Area/if == c,

 2 1  1 1 (VII)  1-
5'  —3'  —51'= 2C,                                   15

 1 1  1 1 (VIII)  {-7'  
51.  7}' — = 152C, 

    12 -S11                                   1  (IX) {.f''71' --0=  3C, 

  3 1 1 2  (X) {-S.' 5' }' -- =  4C,                                   15 

                                  1 (XI) {-1'
5—1'-5}= 6C,           5—1'5

 -18-

 P.  vl

 has an 

following



      2 1 1 (XII) {—'T"5' 1}Area/7 == 6C,   3

                                     1 (XIII) {S,51'-1-1-5-= 6C, 

5

           12 -
51 (XIV) {7''-3} 70= 7C,                                      3 

                                     1 
(XV) {11=  10C.                5' 5' 3'

        The order N of these groups are respectively 2n, 12 

and 60, where n is the denominator of v. The irreducible 

braic equation F(x, z) = 0 has its degree with respect to

z equal to  M-1N/2 and N respectively, where  M7 is the area

the corresponding triangle. In particular x is a rational 

tion of z in the case of (I) with  v = 1/n,  (II), (IV) and

, 24 

alge-

x and

of 

func-

(VI)  .
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Chapter II. Landau's criterion. 

 §4.  Eisenstein's theorem.

If  a.convergent power series y =  X cxn whose coefficients 
 n=0n

are rational numbers expresses an algebraic function of x over 

the field C of complex numbers then there exists an integer A

distinct from 0 such that  Anc
n is an integer for every n.

     This is known as a theorem of Eisenstein (cf.  Landau[26]), 

which will be proved as follows.

     We shall see that y is an algebraic function of x over the 

field  Q of rational numbers. Let F(X, Y) be a polynomial over 

 T such that F(x, y) = 0, which we write as

     F(X, Y) =  X  Ak(X)Yk,  Ak(X) =  ak.X,  akj  c  C. 
    k>0 j>0 

We may assume that  co = 0, and under this assumption

yk = xkXcnkxn' cnk E k  >  1. 

                              — 

        n1

For every m we have

 y a.cnk= 0+ k + n = m). 

We can take a system of finite complex numbers eh (h > 1) such

that they are linearly independent over  Q and

a=Xb.,0 kjk
jhehbkjhE

for all k and j. Then for every m we have

 y ehkjhcnk= 0 (j + k + n = m)

 -20-



and

 b.khcnk=0 (j + k + n = m)

for every h. Hence, y satisfies

      j   (Yb
khx)yk=  0 k jj

for all h, and one of them gives us a non-trivial relation.

Thuswemayassumethatall.                                 ak
]are rational numbers and

that they are integers multiplying F(X, Y) by a common multiple 

of their  denominators. They satisfy

a00= 0, a01 + a10c1 = 0,

2
a02 + a10c2 + a11c1 + a201c-= 0

and

a.c.+ ac.++ a.c O
j10j11j-11,j-11

 j  -1
                                            h) 

 i>2 h=0

for j >  2.

     First we assume that a10 does not  vanish. If we set a = 

a10 then

               A3r= - a2(a+ a11 1c+ a  c2)                            02 c"-1-
01'--220  1

are integers. If we assume that 

 2k-3
a  ck -1°  2 <  k  <  J

are integers, then

a 2j-1     cj = - a2j-2(a+Yac+x ya. X 
            J'-J-'- 

                    0j h =1 ill j-hi>2  h=0                                                        ill 

       X y ckck...ck),k1
1+ -0- + k.= j - h 

  . 

 1  2 1

-21-



is an integer, because 

 2-i-2
 a  -  ck  ck

.  1

2j-2-2k1-•••-2ki+i 2k1-1 2k--1
 =  a  ck  ...a  ck

.  1

and

2j - 2 - 2k1 - -  2ki + i = 2j - 2 -  2(j - h) +  i

=  2(h - 1) + i > 0

for i > 2. Therefore, we can take a10 as A in our theorem.

     Secondly we assume that  a10 vanishes. For a power series 

B  =  b
nXn we define its order  0(B) as the minimum of such n  n=0 

that  b
n does not vanish, and for a polynomial H = BnZn of Z

whose coefficients are power series of X we define its order 

 0(H)astheminimumof0(B
11).[RewriteyandA.which does not

vanish as

y = cxY + cXYc(i)+0,  0  <  y  <  y'  <

 a!

A.(X) =  a.X  1 +  a!X  1 +j) 0,0 < a. < a! <      '=

and define z by

y =  cxY +  xlz, z =  c'XYy+  cux''y

If we replace Y in F(X,  Y) by Y =  XY(C + Z) then it is expressed

in the form

 F(X,' Y) =  F(X,  XY(C +  Z)) =  F(X,  CXY) +  FY  (X,  CXY).XYZ 

                            + 1-!FYY'(X CXY)  .x2yz2 

      2

 If we set 

                                           -22-



E(X, C) = F(X,  CX')

then we have

 Ec(X, C) =  XYF  (X, CXY)'ECC(X, C)

and

 F(X, Y) =  E(X, C) +  E (X,  C)Z +1—TE                                                   2
.

It satisfies

0 =  F(x, y) =  E(x, c) +  EC  (x,  c)z +

where we have

 0(E(X, c)) <  0(Er(X, c)) <  °(ECC(X°

 If we write  E(X, C) as

                                   f3,1 E(X
, C)  =  O(C)X +  (1)1(C)X +

then we have

 1(c)  =  a,Ci =  a. +  i1)

and  cD(c) =  0. Let us set

     L =  O(F(X, X(c + Z)) 

and

 G(X, Z) =  X-LF(X,  XY(c +  Z)).

We have

 G(X, Z) =  X-L{E(X, c) +  E  (X,  c)Z +

and

 EC(X, c)  =  V(c)X13 + 011(c)X+ 

ECC(X'c)=0"(c)X+cl,"1(c)X1 +

 -23-

=  X2yF 

CC(X'

1 
         .,  2! CC 

c))  < 

 0  <

 CXI)  , (X,
 YY

2
C) Z

2

 

)  z x   C ,

 13

  E( X 2 :CC' c) Z 2  ±  •  •  •  }



Suppose that c is a root of  0(C) of multiplicity  s. Then we

have(s)(c) 0 and 

 0(=--E(X,  c)) = 0, 
 acs

whence L =  a. If c is a simple root of  0(C), then  40(c) 0 and 

we are in the first case for z. If c is a multiple root of  0(C), 

then  0(C) can not consist of less than three terms and there is 

an index  j distinct from 0 and 1 such that  a. + jy  =  g. We have

  >  jy > y and L = >  y. By the definition J 

FY'(X X1  (c + Z)) = XL-YGZ'(XZ) 

 '

We may assume that F(X, Y) is irreducible over  Q. Then we have

    FY'(XXcnXn) 0 

and its order M is finite. Therefore, if we define  zm by

 (m-1) 
   y =  cx1 +  c+• • •+ cxy(m-1)xy                                                 + xymz 

then there is an index m not  greater than M such that we are in 

the first case for z  .
 m
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We write

         a 

where a, 

Then  cn

 c =

By  Eisen 

such  tha 

does not 

the  cona

 ther is 

isfies

§5. Landau's first and second theorems.

        We shall assume that a,  f3, y are rational numbers and 

that neither A, p,  v, a,  3,  y - a nor  y -  13 is an integer. Sup-

pose that the equation (E) has an algebraic solution. Then ev-

ery solution is algebraic, since (E) is irreducible  (§7). The 

power series  F(a,  Q,  y, x) which is algebraic by our assumption 

has its coefficient cnof the form:

     a(a+1)....(a+n-1)(30+1)....(13+n-1)  
  - n ° 

 a,  Q and y as

 a
 =  u  +                = v +

m,  y  =  w  +  =,  a,  b, c

b, c, m are natural numbers and u, v, w are

takes the form: 

 a(a+mu)....{a+(u+n-l)m}(b+vm)....1b+(v+n-1)ml
 n  l.2....n.(c+wm)....{c+(w+n-l)m} 

 Eisenstein's theorem there is an integer A  distinct

 that  Ancn is an integer. Suppose that a prime

divide A. Then if a non-negative integer x

 congruence 

     + (w +  x)m  E 0 (mod  p), 

 e is a non-negative integer y not greater than x which

 the congruence 

 fa + (u + y)m}{b + (v +  ym)}  E 0 (mod  p).

<  M

integers. 

 -n
 m 

  from 0

number p 

 satisfies

 sat-
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       We have infinitely many prime numbers p which take the 

form p = 1 + km with a positive integer k. This is a special 

case of  Dirichlet's theorem and can be proved elementarily (cf. 

for instance Takagi [37,  §10], Landau [28,  §108]).  ,If we set 

x = ck - w then

        c + (w +  x)m = c + ckm = cp  = 0 (mod  p). 

Here, we may assume that k is greater than  lui +  Iv! +  iwl and 

 IAL We may suppose that

 a  +  (u  +  y)m  =  0  (mod  p). 

Then we have

     0  = a + (u+y)m  = a(p-km) + (u+y)m  E m(u+y-ak) (mod p) 

and u + y - ak = ph with an integer h. Since 0 < y < x, we get

      ak - u > - ph, ck + u - w > ph, 

whence h = 0 because p > km and k >  1111 +  lwl- Therefore, we 

have y = ak + u and a < c by k >  jul +  M. Thus we obtain ei-

ther a < c or b <  c.

       From  Kummer's table let us take a solution of (E) of the 

form:

 1- 
x YF(a  +  1  -  y,  8  +  1  -  y,  2  -  y,  x).

Then  F(a+1-y,  (+1-y,  2-y, x) is an algebraic function of x. 

Here, we have

2 - y -m - c+  1+  w 
          m

and 

                                          -26-



 a -  c
a +  1  -  y  =   

m +  1  +  u  w,

in case a >  c, 

                       c+ m 
 a+  1-  y= a-m+ u-  w,

in the other case. Similarly      

13 +  1  -  y  - b mc+  1+  v-  w,

in case b > c, 

 +  1  -  y  -b - c + m+  v  -  w, 
                       m

in the other case. Since both of 

 a  -  c  +  m  b  -  c  +  m  

 M' m

are greater than (m  - c)/m, we have 

       Suppose that 0 < A < 1, 0 <

 we  have  -1  <  a  <  le  -1  <  $  <  1  and 

and (a + 1) +  (3 + 1) >  y + 1, we 

Therefore, we get

 A+  p+  v=  1-  21 > 1 

and

 1+  v=  1  +  a  -  Q>  1  -  a  -  IS3 

We have

ab 
 a  =_, (3 =— -  1 
mm

and

 a  -  c   0  <  <  1

m

 <  1
a -  c  +  m

 m
 0  <

    b -  c   0  <   <  1

 m

 0  <
 b  -

either a >

p < 1 and 0 

0 <  y <  1.

obtain  a >  0

 =  A.  +  .p.

 c  +  m
   <  1 

m

c or b > c 

 <  v <  1. 

Since  a + 

>  Q by  a -

Then 

 $  <  "Y

 13 >  0.
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                     - 

 1>  a-ab-+  1.

Therefore, a < b and a < c < b, that is  a <  y < 1 +  Q. Hence, 

 1  +  A  =  2-  y>  y  -  26  =  p  +  v

and 

 1+  p=  1  +y-a-  Q>  1  -y+a-  Q= v.

Thus the condition (L) in §3 is satisfied if (E) has an algebraic 

solution. This is Landau's first theorem  [26].

        If we make use of another special case of Dirichlet's 

theorem that there are infinitely many prime numbers p of the 

form p = 1 + km with a natural number k (Landau [28, §108]), 

then we can prove our result that either a > c or b > c inde-

pendently of the discussions of §1. This remark is due to 

Landau [27].

       There are infinitely many prime numbers p of the form 

p = e + km with a natural number k for a given integer e which 

is relatively prime to m.

        This is Dirichlet's theorem (cf. for instance Weber [40, 

 §198]). Take a natural number e which is relatively prime to m. 

Then we can write a, b and c as

       a  = a0e + hm,b = b0e + im,c = c0e + jm 

with natural numbers a0,b0,c0less than m and integers h,

j. By Dirichlet's theorem there is a prime number p of the form 

p  = e + km such that k is greater  than  Wand

 

Ihl +  lil +  Ijl + lu +  Ivl +  Iwl.
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If we set x = c0k - j - w, then we have

c + (x +  w)m =  c0e + (j + x +  w)m =  co  (e + km) =  cop.

We may suppose that

 a  +  (u  +  y)m  E  0  (mod  p). 

Then we have

 0  ri a + (u +  y)m =  a0e + (h + u +  y)m 

    (h +  u + y  -  aok)m (mod p)

and

h + u + y  -  a0k  = Hp

with an integer  H. Since 0 < y < x, we get 

        a0k-h-u> - Hp

and

c0k+h+u-j-w>Hp,

 whence H = 0 because p > mk and k > h +  1j + u +  wl.

Therefore, we have

       y =  a0k - h - u 

and  a0 <  co by k >  lh + +  lul +  iwl. Thus, we obtain 

ther  a0 < c0or  b0 <  co.

If we replace e by m - e with e < m, then 

a = (m -a0) (m - e) + (a0+ e - m + h)m, 

b = (m - b0) (m - e) + (b0+ e - m +  i)m, 

c = (m - c0)(m - e) + (c0+ e - m + j)m.

ei-
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Hence, we have either m - a0< m - c0or m - b0< m - c0,that 

is, either  a0 > c0or b0> c0. Following Landau we write

       A  <  B  (mod  m) 

for two integers A and B which are not multiples of m if they 

satisfy

AEA0' BEBo (mod  m)  , 0 <  A0 <  B0 < m.

We have obtained the second theorem of Landau  [27]: 

For every integer p which is relatively prime to m we

have either 

       pa < pc < pb  (mod  m)

or 

 pb  <  pc  < pa  (mod  m)

if (E) has an algebraic solution. 

       Suppose that A < C < B (mod  m). Then we have

 A  <A+B-C<B  (mod  m),  A<C<C-B  (mod  m), 

 C  -A<C<B  (mod  m),  B-C<  -C<A-C  (mod  m)

and 

 C-A<C<C-B  (mod  m)

if C - A and C - B are not multiples of m. Hence, every triple 

a',  i31 and  y' in Kummer's table satisfies the criterion in 

Landau's second theorem independently of the discussions in §1. 

This remark is due to Landau [27], and we have the following 

 table:
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9.

 10. 

11.

12. 

13. 

14.

15. 

16. 

17.

18. 

 19. 

20.

 {X,  P,  v}: 

 fX, 

 {A,  v, 

 {-A,  u,-0: 

 {-X,  -u,  v}: 

 -v
, 

 f-X, 

 {u,  X,  y}: 

 -v,  -A)  : 

 f/14,  V,  A.): 

 A,-yl: 

 {-P, -X,  °: 

 {7u,, 

 {-  v,  u,-X}: 

 {-v, 

 {-V, 

 {-V,  -A,  )4):

{a, b, c}, 

{c - a, m +  c - b,  c}, 

{a, m + c - b, c}, 

{c - a, b, c}, 

 00  -  c,  m  +  a  -  c,  m  -  cl, 

 {m - b, m  - a, m -  c}, 

{m - b, m + a - c, m -  c}, 

 00 c, m  - a, m  -  cl, 

{a, b, a + b  - c}, 

 {0  -  c,  m  +  a  -  c,  a  +  b  -  c}, 

 {a, m + a  - c, a + b -  c}, 

{b c, b, a + b -  c}, 

 {c  -  a,  m  +  c  -  b,  m  -  a  -  b  +  c}, 

 {m - b, m  - a, m - a  - b +  c}, 

 {c  -  a,  m  +  c  -  b,  m  -  a  -  b  +  c}, 

 {m  b,  m  +  c  -  b,  m  -  a  -  b  +  c}, 

 {a, m + a - c, m + a -  b}, 

 {m  -  b,  m  +  c  -  b,  m  +  a  -  b}, 

 {a, m + c - b, m + a -  b}, 

 {m  -  b,  m  +  a  -  c,  m  +  a  -  b},
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21. 

22. 

23. 

24.

{v, 

 {v, 

 {V, 

 {11,

 -x}: 

 4,  p-}:

 {b - 

 {c  - 

{c - 

{b -

 c, 

a, 

a, 

 c,

 b,

 m

b,

m

 b  -  al, 

- a , b -  a},

 b -  al, 

- a, b -  a}.
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§6. Rough estimation.

       For a given natural number m we consider a triple of 

natural numbers a, b and c less than m with (a, b, c, m) = 1 

satisfying Landau's criterion that for every integer p relative-

ly prime to m we have either pa < pc < pb (mod m) or pb < pc < 

pa (mod  m). Let  co be the greatest common divisor of c and m.

Then there is an integer P relatively prime to m such that pc 

  C0(mod  m). We may assume that

     0 <  a0< c0< b0< m,a0p  E a,b0p E b (mod  m). 

Suppose that  p0 is relatively prime to  co and satisfies

p0El (mod n0),m=cn 0000°

We are in one of the following two cases (A) and  (B):

(A) For every  p0 we have  a0p0 <  c0 (mod  m); 

(B) There is such  p0 that  co <  a0p0 (mod  m),

Suppose that X= p = 1/2 and  v = s/r, where r and s are

mutually prime natural numbers with s < r. Then from the table 

at the end of §5 we have the following six triples with  m = 2r:

 {s, 2r - s,  rl,  {r - s, r +  s,  r},  {s, r + s,  r}, 

   - s, 2r - s,  rl,  {s, r + s, 2s}, 

 {r s, 2r - s, 2r -  2s}.

If we set r' = r and s' = r - s then the second, the fourth and 

the sixth are derived from the first, the third and the fifth

respectively. In the first and the third cases we have  co =  r, 

and we are in the case  (B). In the fifth case  co = 2 and we
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are in the case (A) if r is odd, in the case (B) if r is even.

       We shall prove that we are in one of the three cases 

above stated if m is sufficiently great in the following dis-

cussions, which are unnecessary in order to establish Landau-

Errera's theorem. We define n1 and n2 by

        m = (a,  m) n1= (b,  m)n2. 

 Let 13multiple of1nj with i, j =

0, 1, 2. The number of natural numbers t less than m  satisfy-

ing

t  E 1 (mod n 13..), (t, m) = 1

is(m)/(n..13), wherecpis the Euler function. The number of

natural numbers  s less than m such that

 E  apo (mod  m),  p0  E 1 (mod  no),  (p0,  co) = 1 

is  flnol)/flno).

       Let us suppose that we are in the case  (A). If  p0 and 

 p' satisfy the above conditions then we have

 ap0  E  ap6 (mod  e), 

where e is the greatest common divisor of  m and (m,  a)n0.

Hence, we have

 efflnol)/(1)(no) -  1} <  co. 

Suppose that  cp(nol)/cp(no) is greater than one. Then we have

 21("n01)/"n0) -  1/  C"n01)/"n0)

and
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 efln01)/4)(no) < 2co. 

Here, if we write  n0 and n1as

no = df0,n1= dfl,d = (n0,n1) 

                                                                     '

then we have

e =  (m, (m,  a) n0)=  (m, a)  (n0,  nl) =  (m,  a)d =

and

n01 = n1f0'm(m,  a) nl(m,  a)nol/fo,  m

Hence, we obtain

el)(n01) = (m, a) n0f014)(mf0-1(m,a)) > n0f-1 (mf 

                     = 

and

      4)(mf0) = f04)(m) 

because  m is divisible by  fo. Therefore, we have 

 Cb(m/no) <  4)(m)/01-10)  <  en014)  (n01)"(nO)

< 2c0n-1 = 2m/n0 

                                                      .

Suppose that  "n01)"(n0) is equal to one. Since 

ible by  (m,  a), we have  n0 < n1 and  n01 =  2n0 with 

Hence, we obtain  nl =  2n0 and  a0 =  (m,  a). There 

ger p relatively prime to  m such that p  E 2 (mod n 

p is odd and p / 1, 2, 3 (mod n1). We have

pc0E 2c0(mod m),2c0=  4a0 <  m,

and

 pa0  / a0,2a0,3a0(mod  m).
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Hence,  pa0 >  pc0 (mod  m), and  pb0 < pc0(mod  m). The number

of natural numbers  p less than m satisfying

       p E 2 (mod n0')(p, m) = 1 

is  cp(m)/(1)(n0). For these p and p' we have  pb0 /  p'b0 (mod  m), 

since  n()1(p - p') is even and  b0 is relatively prime to  a0 = 

 c0/2. Therefore, we obtain

 el{q)(m)/(1)(n0) -  11 < 2c0, 

where e' is the greatest common divisor of m and (m,  b)n0. 

Let us suppose that  Om)/cp(no) is greater than one. Then we

have 

   „ , 2
(1)(m/n00) < 4m/n-.

Thus, we have either

 Cb(nol)/4)(no) =  gi(m)/(1)(no) = 1

 2or  (1)(m/n0) <  4m/n;. We shall assume that the above equalities 

hold. Then we have m = 2n0= n1and n0is odd.Since c0= 2 

and (m, b) <  2c0, we obtain  (m, b) = 1, 2, 3. If it is equal

to 2, then we have

       pa0E 2 (mod n0))pb0E 2 (mod  m). 

and  {2,  n0 + 2,  4} is the fifth triple given above with s = 2 

and r =  n0. Suppose that (m, b) 2. Then,

 pa0 E  n0 + 2,  pco E 4,  pb0  E 1, 3 (mod  m).

Hence, we have

p2a0E n0+ 4,p2c0E 8,p2b0 E n0'+ 2n0+ 6 (mod m).
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Therefore, we obtain  n0 < 5 and m < 10.

       Let us suppose that we are in the case  (B). Take a nat-

ural number p less than m satisfying p 1 (mod n0), (p, m) = 1 

We have either a0p < c0or a0p > c0(mod  m). We may assume

that the number of p for which we have the former is not less 

than that of p for which we have the latter. Let us indicate

                    1 it b
yA. Then A>7 q5(m)/q)(n0). We have  a0p  E  aop° (mod m) 

if and only if p  E  p° (mod  n01). Hence, we obtain

 efAcHnol)/0m) -  11 <  co

and

 ef(nol)/qp(no)  -  2} <  2c0. 

Suppose that  Onol)Pp(no) is greater than 2. Then we have

 3{C6(n01)/"n0)  -  2}  (n01)/qb(n0)

 and

     Om/n002) < 6m/n. 

By our assumption there is an integer p0 relatively prime to m 

such that a0p0> c0p0Ec0(mod  m).  If  T  satisfies

      T  E 1 (mod n01))(T,= 1, 

then b0p0T < c0(mod m) and they are distinct from each other.

Hence, we have

 n01{°m)/(19(n01) -  11 <  c 10. 

Suppose that  go(m)/q)(n01) is greater than 1. Then we have

n01"m)/(Hn01)<  2c0.
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Since

 ("n01)  =  ("n0n01/n0)                        (nol/n00)n0),

we obtain

                           1 
("m/n0)("m)/C"n0)n01n0("m)/"n01) < 2m/no2 

                                                                                                                                                                                          .

Therefore, either

 (n01)/(1"n0) = 2,  4(m)/(1)(n01) = 1 

or  cb(m/no) <  6m/n. We shall assume that the above equalities

hold. One of the following four cases is possible:

(i) m = n01 = 4n0,n0E 1 (mod  2); 

(ii) m = n01 = 3n0,(n0,3) = 1; 

(iii) m =  2n01, n01 =  3n0,  (n0, 6) = 1; 

(iv) m = n01-= 2n0'n0E 0 (mod  2).

If we are in the case (iv) then c0= 2,a0= 1 and b0= n0+1. 

This is the fifth case stated at the beginning with r =  n0 and 

s = 1. Suppose that we are in the case  (i). Then,  co = 4 and 

we have either a0= 1,b0= 2n0+ 1 or a0= 3,b0= 2n0+ 3. 

Let us set p = n0+ 2.Then,pc0E 8 (mod m) and we have

pa0E n0+ 2,pb0E 3n0+ 2 (mod m)

in the former case,

       pa0E 3n0+ 6,pb0E n0+ 6 (mod m) 

in the latter case. Hence, n0< 5 and m < 20. Suppose that 
 — — 

we are in the case (ii). Then,  co = 3 and  a0 = 1, 2. We have
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       b0E n0+ 1,  2n0  +  2  (mod  m) 

in case n0E 1 (mod  3)  , and

      bo E 2n0'+ 1n0+ 2  (mod  m) 

in case  n0  E 2 (mod  3). Let us set p =  n0 + 3. 

(mod  m). We have

       pa0E n0+ 3,  2n0 + 6 (mod  m), 

and

        b0E 2n0+ 3,n0+ 6 (mod m) 

in each  case. Hence,  n0 < 5 and m <  15. Suppose 

in the case  (iii). Then,  co = 6 and  a0 = 2, 4,  5.

       b0E 2n0+ 2,  4n0 + 4,  2n0 + 5 (mod m) 

in case n0E 1 (mod  6)  , and

 b0  E  4n0 + 2,  2no + 4,  4n0 + 5 (mod m) 

in case  n0 E 5 (mod  6). Let us set p =  no + 6. 

36 (mod  m). We have

       a0 E 2n0+ 12,4n0+ 24,  5n0 + 30 (mod m) 

and

       b0E 4n0+ 12,2n0 24,+ 24n0+ 30 (mod m) 

in each case. Hence,  n0 < 30 and m < 174.

From the table at the end of  §5 we may 

c'  =  a  +  b  -  c,  c"  =  b  -  a.

Let  n' and  n" be the numbers defined by  0  0

Then

that 

  We

 pco  9

we are 

have

Then  c0             

replace c by
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       m  = (m,  c')n6 = (m,  c")n5, 

and n be the least common multiple of  n0,  n6 and n5.

is either n or 2n, since

                        1 a =1(c + c'  -  c"), b =7(c + c' + c")• 

    2

By the inequality

3 >  (1  +  1)N

for a natural number N we have

N > (N +  1)N/  (N+1)                            N >  2.

For a given natural number t greater than 3, let us 

N into the product of prime numbers as follows: 

 h
 N  =  ilpHq-,  p  >  t  >  q. 

Then,

 (1)(N) = Hpa-1(p -  1)Hqb(1 -  1) 

     > Hpa-1+(t-1)/tHqbq - 1  

     > Hp          a(t-1)/tHqb(t-1)/t•q - 1 
                            q

  N(t-1)/t t - 2 t - 3 1  =-m(t-1)/t(t  -       't  -  l't  -

If we have

 Om/no) <  6m/11'0",

then

 (t-1) /t2  (m/n
o)< 6(t - 1)m/no, t > 3

Then, m

decompose

 1)-1.
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and

Let 

and

for

and

For

and 

in

 l/tn0(t+1)/t          < 6(t -  1)mt > 3.

us suppose that this inequality holds for each of n0,n                                                                      0' 

       ' n"0Then we obtain

 (t+1)/t (nn'n")<  [6(t - 1)]3m3/t3(En<  [6(t -  1)]n'n") 
0000 

t > 3 with  c = 1, 2, since m <  En0n6n5. Therefore, 

   (Enn1/(t+1)3t/(t-2) (t+1)1/(t-2) 

                     " 

      0'n0)<  [6(t - 1)]

            t/(t+1)1/(t+1) 
n< [6(t - 1)](Enn'n") 000 

   < [6(t - 1)]                 t/(t - 2)21/(t - 2).

t = 10 we have

 6(t - 1)         t/(t-2)= 545/4< (162)12,  21/(t-2) = 21/8  <

 3
n0< 167. Hence, if m is greater than  2(167)- then we

the case (I) of Schwarz' table.

0 

3/t

9 

 8

are
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Note. Honda's theorem.

        Consider a homogeneous linear differential equation of 

the first order over  C(x):

       dx  =  a(x)' q  E  C(x).

If q(x) takes the form:

e.

 q(x) =  E    x -c                      ,c.e(rpe.e.CD 

                                                                 .

1

then it has an algebraic solution 

                                         e.

y =  11(x -  ci)

        We shall show this converse that if there is an  algebra-

ic solution then q(x) takes the form as above. Let F(X, Y) be 

an irreducible polynomial over  C satisfying F(x, y) =  O. We 

write F(X, Y) as

 m  n

F(X, Y) =  E An(X)Y-, An E C[X], Am 0, 
             n=0

then the differentiation of F(x, y) = 0 gives as

 E  NI(x)yn + EnAn(x)yn-ly' = E[A;1(x) + nAn(x)q(x)lyn -  O.
 n  n  n

Since F(X, Y) is irreducible, we have 

 (A' +  nAnq)/An = A'/A                      0 0

for every n. In particular it holds for n = m, and we obtain

 A' A'     1 

q =m_( -_a),      A0
O Am
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which takes the form as above.

A convergent power series y =  Xcnx- (0 < n <  co) whose

coefficients are rational numbers satisfying a linear homoge-

neous differential equation of the first order over  Q(x) is an 

algebraic function of x over  Q if there is a rational integer

A distinct from 0 such that  Anc
n is an integer for every n.

       This is due to T. Honda [10,  §1] and will be proved as 

follows. He prepared a lemma:

       Let K be an algebraic number field of finite degree and 

a be an element of K. If there is a rational number a satisfy-

ing the congruence a a (mod  P.%) for all prime ideals  11 in K

with exception of finite number of them, then a is a rational 

number.

       A proof will be given as follows. Since there is a ra-

tional integer A distinct from 0 such that Aa is an integer, 

we may assume that a is an integer in K. Let k denote  Q(a) 

and n be [k  a  W. A prime ideal in k is decomposed into 

the product of prime ideals in K:

      e2g 
          = V11622T'

g• 

 Supposethateveryis not an exceptional one. Then there 

is  arationalintegera.satisfying the congruence  ai a 

(mod  s.) for every  i. We have

e.

 a  .)  1  E  0  (mod  p) 

and there is an index  i such that  a  a. (mod  )  . Suppose
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that  r does not divide the discriminant of an irreducible

equation defining  a over the ring of rational integers. Then 

for every integer w in k there is a rational integer a satisfy-

ing the congruence w  E a  (mod Hence, the degree of all

prime ideals in k is one with the exception of finite number 

of them, and all prime numbers p with the exception of finite 

number of them are decomposed into the product of n prime ideals 

in k:

 P =  M2.-  •  1n.

A fundamental formula in algebraic number theory gives us

lim Ep-s/log    s-1  =  1 
 s±1+

and

        lim E(Nr)-s/log -- = 1, 
                           s1 

where p and  T> run over all prime numbers and all prime ideals

of degree 1 in k respectively (cf. Weber [40, p.727], Takagi 

[38,  Chap.12 and  p.255]). Since p =  Nli = =  Nrn in the

decomposition of p, we obtain

1 = lim E(Iip')-s/log1= lim nLp-s/log--- 
                                                    s11  =  n. 

 s±1+  s->-1+

This completes the proof of our lemma.

       As stated there by Honda, if we make use of Tschebotareff 

-Artin's theorem (Takagi [38 ,  Chap.16]) then the equality n = 1 

is an immediate consequence of our result that all prime num-

bers with the exception of finite number of them are decomposed
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into the product of n prime ideals of decree 1 in k.

He prepared another lemma: 

Consider a homogeneous linear differential equation of

the first order with the prime field  F of characteristic p: 

 dy           =  r(x)y, r  E  r  (x).  d
x

If it has a non-trivial power series solution y =  Ecnxn over 

 T then there is a non-trivial polynomial solution over  F  .

It will be proved as  follows. If we write r(x) as 

  N N
       r(x) =  E anxn/ E bnxn, 

         n=0  n=0 

then the coefficients  cn of y satisfy

 b0c1 =  a0c0,  b0(2c2) +  b1c1 =  a0c1 +  a1c0, 

 b0(NcN) +  b(N-1)cN -1 + +  bNcO

     =  a
0cN-1 +  a1cN-2 +  oa. + ac                                        N-10 

b0(ncn)+ b1(n-1)cn -1 ++ bN(n-N)cn-N 

    = a
0cn-1 + + ac                        Nn-N-1'  "' •

Hence, if we have 

   c
n-1=== =  0         cn-2cn-N-1

then 

          2  n  -N  -2
      c0+  clx + c2x + cn -N-2x 

is a solution. Take an integer s such that ps > N and there 

an index n less than ps for which cn  O. Then, if we write

is

 Y
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as

y = v0+ v1xPs+ v2x2ps +  ...

with 

                                            ps -1v0 - c0-Fclx  + . . .+c
ps-1x' 

 i

 ps  -1
v1 = cps+ cps+1x + ... + c2ps -lxr- -

then there is an index m such that

vm = d0v0+ dlvl + ... + dm -lvm-1'  diE(E'ID.

If we set

w =  Y(1 - doxmPs - dix (m-1) Ps                                  -...-  d  xPs), 
 m-1

then

w = v0+ (v1 - dm-1v0)xPs + (v2 - dm-1v1-dm-2v0)x2Ps + 

... + (vm-dm -1vm-1-...-d0v0)xps+  ...  ,

where the coefficient of x-i  [mps < i <  (m+l)ps] vanishes. 

Hence, from w we have a non-trivial polynomial solution, be-

cause w is a solution by

d ,,
x=p-1   kxp)p  d

x=  0.

By these two lemmas we shall prove our theorem as fol-

lows. Since all c
n are rational numbers, q(x) = yt/y is a ra-

tional function of x over  Q. We write q(x) as

 q(x) =  P(x)/Q(x), P, Q E  Cx]. 

In the splitting field K of  Q(x) let us decompose q(x) into the 

sum of partial fractions:
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 q(x) =  R(x) +e          x-c+  2 +  •  ' 
                            (x - c)

where R E K[x] and c, e,  e', ... are elements of K. Take a 

prime number p which does not divide A, the leading coefficient 

of  0(x) and one of Ancn distinct from 0. Then y satisfies the

congruence y'  E q(x)y (mod p) and there is a non-trivial poly-

nomial solution z(x) over  7 of the congruence z'  E q(x)z (mod 

p) by the second lemma. Let us decompose z(x) into the product 

of powers of irreducible divisors over  Y:

 z(x) =  Rg(x)a.

Then we have

 z'  (x)  g° (x)  

       - 

 z  (x) Ea  g  (x)  '

Hence, for a prime  ideal  JA in K which divides p we have 

      R(x)  E 0,  e'  e" E E 0  (modlt.)

and

e  E a  (mod1)

Since these congruences are satisfied for all prime ideals

in K with exception of finite number, we obtain 

        R(x) = 0,_                   e=e-_   = 0,

and e is a rational number by the first lemma. Therefore, y 

is an algebraic function of x over C, and it is an algebraic 

function over  0 (cf.  §4).
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Chapter III. Klein's settling.

 §7. Reduction through Kummer's equation. 

We assume that our equation (E) is irreducible, that is,

neither a,  Q,  y - a nor  y -  13 is a rational integer. The field 

of Puiseux series  C{{x}} over C is algebraically closed (cf. 

for instance K. Iwasawa [12,  p.64]). Let us suppose that we 

have an algebraic solution y in  C{{x}}. Then there is an iso-

morphism  c of C(x, y) over C(x) which does not leave  171/y in-

variant and we have

 y'ay -  y(ay)' =  yay[XL -  a(17-1)] 0.

Hence,  ay is a solution of (E) which is linearly independent 

of y, and every solution of (E) is algebraic.

There is a natural number n such that we have 

   1  n-1 

 n  n
y = z0+ x-z1++  x- zn-1

with 

                   e.  00
zZ.=xEc..x3, e.e, c..E  C.    1]1] 

         j=0

Since we have

[xnz =nri-1           XL—XZ+  z']

each of  z. is a solution of  (E). Hence, there are two solutions

 yi and y2 of (E) which take the form:

 0.

    y. = x 11Ec..xJ,p.EQ,cijEC, c.00 
                j=0 1J 

with p1p2.The indices p1and p2 are determined by
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 p(p - 1) -  yp =  p(p - 1 +  y) = 0. 

Therefore, they are 0 and A, and A is a rational number dis-

tinct from 0. By Kummer's table  u and  v are rational numbers. 

Hence, a,  3 and y are rational numbers.

       We shall see that A is not an integer. To the contrary 

suppose that A is an integer. The coefficients cn of a solu-

tion y of the form:

 cc

 y  =  cnx  c0 
     n=0

satisfies

(n +  1)  (y +  n)cn+, = (a + n)  (( +n)cn, n > 0,

and we have c -Y= 0 in case y < 0 because neither a norQis

an integer. Therefore, we get c -y-1= c = 0,                    = c=-y-2 0 

which contradicts our assumption that  co 0. Similarly there

is no solution y of the form: 

 03 

 X

y =  x-  cnx,             C00 
 n=0

in case  y > 1. Thus,  A is not an integer, and neither  u nor 

 v is an integer by Kummer's table.

       The derivation d/dx of C(x) is uniquely enlarged into a 

derivation of every algebraic extension K of C(x) of finite 

degree (cf. for instance A. Weil  [41, p.13]). Hence, every 

isomorphism of K over C(x) is a differential one.

       Take a fundamental system of solutions y1 and y2 of (E) 

Then the ratio z =  y1/y2 satisfies
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(S)d57(-f()=z"1z"2 11 -2A2 + 1 - u22  X2+p2-v2-1]
, 
                               x2                               (1 - x) x(x - 1)

where the left hand side, the Schwarzian derivative of z, will 

be denoted by  [z,  xl. For its calculus confer for instance H. 

Morikawa [33,  Chap.3,§1].

        The field C(x, z) is a normal extension of  T(x), since 

every isomorphism  o of  T(x, z) over C(x) gives a solution  oz 

of (S) and it takes the form:

 Gz = (C1z + C2)/(C3z +  C4)  ,  Ci  E  t, 

which belongs to  C(z). Let F(X, Z) = 0 be an irreducible equa-

tion for z over  T(x) and F(X, Z) be of the form:

 F(X, Z) =  zn  Al(x)zn-1 + +  A
n(X),  Ai  E  C(X). 

Then there is an element  E of  C(x) such that

      C(A1'. ,(x)A
n(x)) = T(E) 

by  Liiroth's theorem. It is contained in  E(z) and the latter 

is a normal extension of the former, since every root of 

F(x, Z) is in  T(z). We have  [T(z):  T(E)] = n and  T(z)(AC(x) = 

 C(0.

        For an element u of  T(x) with u' 0 we define a deri-

vation d/du of  Tffx11 by

        ddu-1 d 
      du = (a7) dx 

and  fw,  u} for an element w of  E{{x}} by this derivation.

       The Schwarzian derivative  fz,  0 is an element of  C(E), 

since for every isomorphism  a of  T(z) over  T() we have
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C1z + C2

 c{z,  El = {az,  El  - {  El =  {z, E}.                        C
3z + C4'

The identity

 fE,  x} +  {z, EA4)2 =  {z,  x}

holds, and  E is a solution of the differential equation

 {E, x} +  {z,  E1(al)2  = s(x),

where s(x) is the right hand side of  (S). This is Kummer's 

equation  [25]. The coefficient  {z,  El will be determined lat-

er in this  section.

If we have

 E  Eo = (z-0)eci)1(z)/(1)2 ,(z)eEg,E0'z0c C, 

                                (1).
1, -1  C[z](z0)(1)2(z0)0

with the ramification exponent e, then 

 1  1

 (E  E0)e = (z -  z0)  [yz)/(1)2(z)]e

and by the implicit function theorem 

           1 1

      z - z0= teflte),t = - E0                                   0 

in  C{{t}}, where  f(u) is a convergent power series of u with 

 i(0) 0. Hence, we obtain

                          1  {z
,  El =  iz -  z0,  E - E0=7(1 -  e-2)t-2 +  c -1t-1 

 +  co  +  clt  + ,  c.  E  C.

For  E =  co we have 

                                           -51-



 {z, C4{z,  E-1},

and for z =  cc

 {z, El = {z-1,  E}.

Hence, {z,  El takes the form:

  a  

          (E - c)
 a  E  0, b, c  E.  IT,  Zip  =  0, 

              (E - c) 

where c runs over all branching points of  E.

If Y is a rational function of X of the form

   0(X)   Y - 0 ,  E C[X],  (0,T) = 1,     T(X)'

then

2N - 2 =  E(e
x -  1), N = max{deg  0, deg  T}.

Here,  e
x is the ramification exponent of Y  - y at X = x with y 

= 0(x)/T(x). We replace Y - y by Y-1in case  T(x)  = 0 and X - 

x by X-1in case x =  cc. This is Klein's formula [17, Part I,

Chap.V], which is a special case of Riemann's one and can be 

proved elementarily (cf. Forsyth [5,  §59]).

       If  E -  Eo has the ramification exponent e at z =  z1, 

then it has the same exponent for z =  zi which satisfies  E(z.) 

=  E0  and takes the form:

M

 E -  Eo = II (z - zi)e/T(z),  zi  E  CD,  T  E  C[z], 
 i=1 

                         z.z.(ij),1-IT(z.) 0,

where  degT =  e(M + 1) in case  degT >  eM. Suppose that the 

branching points of  E are  El,  ,  E
r and that  E -  Ei has the
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ramification exponent  ei. Then the degree n of 

vided by ei and n = eifi. By Klein's formula we

 r

2n - 2 =  E  f.  (e. - 1) 
 1=1 1

and

 r    1
=  =  r  - 2 +

 i=1 ei 

Here, we have r = 0 if and only if n = 1, and in

^ > 2  =  > 1.
 n

Since

^1

<r               -1=r,                                       ' E —E= 
  e7 7  i=1i i=1

we obtain 

 2
^  - 2  +  =  < 

 n

and r <  3. We shall show that r 0,  2. To the 

pose that r is either 0 or 2. We have

 1  z" y - (1 +a+12,)x  
 =_ 

 Y22[z° x(x -  1)

and the identity 

 7
 z"   d-z dz  E" 

 dE  '  E'  •  dE 

If r = 0 then  d2z/dE2 = 0 and  12/y2 is contained

r = 2, then we have

 n(1 1  += 2 
 ele2

and e1 = e2 = n. We may take 0 and  co as  E1 and

 E(z) is 

have

the

di-

other

contrary

in  C(x).

 E2' and

case

sup-

If

in this
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setting

 E = czn,  c  E  C,  c  O.

Hence,

 d-z  dz  1  -  n  -1 

 dE2  /  dE 

and  17/y2 is in  C(x). Thus in each case the conclusion contra-

dicts our assumption that  (E) is irreducible. Therefore, r = 

3 because r 1 unless r = 0. Since

1 ,1,12 
 + +-  1 = v,

 e1  e2  e3 

we are in one of the  following four cases with  el <  e2 < e3:

(i)  e1  =  e2  =  2, n = 2e•                                         3' 

(ii) e1 = 2, e2 = e3 = 3, n = 12; 

(iii)  el = 2, e2 = 3, e3 = 4, n = 24; 

(iv) e1= 2,  e2  =  3,  e3  =  5,  n  =  60.

We may take 0, 1 and  oo as  El,  E2 and  3. Then  {z,  0 takes the

form:

1-ei21 - e;2 eT2+e;2-e-32-1
(K)  {z,  El  -  -[  2' +                                   2 

                      - 1) CE - 1)

with (i) -  (iv). This equation will be solved at the end of

the section.

        Conversely, for a given finite group G of linear trans-

formations of z we have a subfield  C(E) of  C(z) consisting of 

all elements of  C(z) each of which is left invariant under the
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 _ 
b" F  E C[z]„    F( z)

such that

11"(z)C
1  -  =  '                      E C[zr, 

       F(z)

here we have

 a.deg  0 = b(deg F + 1) 

in case  a.deg  F >  b.deg F,

 b.deg  F  =  a(deg  0  +  1) 

in case b.deg F > a.deg  0  and

       b.deg F = c(deg  T + 1) 

in case b.deg F > c.deg  Y. Let

  1 2 

1  

 a++-1=n,  n

Then we have

 (a - 1)R. + (b - + (c
By Klein's formula,  0,  F  and F do

action of G by  Liiroth's theorem. The Schwarzian  {z,  El is  con-

tained in  CM and  C(z) is a normal extension of  (C(). Hence, 

G is the Galois group of  1(z) over  CM. The subfield  CM is 

determined by a solution of (K) with (i)-(iv) unless G is a cy-

clic group. Therefore, G is one of the four groups stated in 

§3 unless it is cyclic. 

       Suppose that  E takes the form:

 (z) a
 (F, F) = 1

us assume

 max{a.degF

 1)

not

that  

,  C.  deg  Y,

= 2n - 2 

possess

b.deg  F}.

 multiple roots,
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and there are no branching points of other than 0, 1 and  co. 

Hence, z is a solution of (K) with a =  el, b = e2 and c = e3. 

Our solution z of (K) with (i)-(iv) is given as follows (cf. 

for instance Weber [40,  Chap.9]):

          2it 
                         2 (i)  z  =  e•,  E = sin t,  i  =  /1717,  n  =  2r,

 22     (
zr- 1)(zr+ 1)   =,1- 

          4zr                                    4zr

 (ii)1 = z4 +  2147.-5z2 + 1, 

 02  =  z4  -  21/7-z2  +  1,  f  =  z(z4  -  1), 

                  3  121/-3f2 =1- 02' E = 12.1-3f2-13• 

                                                                                                '

(iii) W = z8 +  14z4 + 1, 

        K = z12 - 33z° - 33z4 + 1, f = z(z4 -  1), 

 W3 - K2 =  108f4'  =108'"v2,-4;

(iv) T = z30 + 1 + 522(z25 - z5) - 10005(z20 + z10), 

       H = - (z20 + 1)  + 228(z15 - z5) - 494z10, 

       f = z(z10 + llz5  - 1),

                 1    T2 + H3 =  1728f5, E = 1
728T2f-5•

The Galois group is the dihedral group, the tetrahedral group, 

the octahedral group and the icosahedral group respectively.
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 §8. Explicit description of algebraic solutions. 

  We shall solve Kummer's equation for  C:

 {c,  x} +  {z, C1(4i)2 =  {z,  x}.

Here, z is the ratio  y1/y2 of linearly independent algebraic 

solutions  y1 and y2 of (E) which is assumed to be irreducible.

It may be supposed that the branching points of  C as a function 

of z are 0, 1 and By  Gauss° transformations we may assume 

that A,  p and  v have their values in  Schwarz' table, and they 

can be permuted in each  other. Our equation has been solved in

case of (I) with v®1 E g and  (II),  (IV),  (VI). We shall solve

it in the remained cases, where (XII) and (XV) will be replaced 

by

              4 (XII)° A =-              5,u=_  7,  v =  7,  Area/7 =  T7 =  14C

and

(XV)'  A  = 2  2  2 715=  140. 

              - 

         3' 1-1 ==

By  s(A,  1J, v, x) we indicate

             222 

   „ 

                    A + - -  
s(x)j"[-L +  P2                                                                             J.  2

x22  (x  -  1) x(x  -  1)

If we are in the case of (i)-(iv) of the previous section, then 

for a rational function  (x) we have a normal extension  cI(x, z) 

of  C(x) by the translation theorem because  C(z) is a normal ex-

tension of  C(C). Under the action of the Galois group {z,  x} 

is left invariant and it is an element of  C(x).
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(I) Suppose that we are in the case  (i). If we set  

.  2  t
x = sin  T

with a natural number s which is relatively prime to r, then 

we have

  =  xH(x)2, 1 -  E = (1 —  x)K(x)2, H, K E  7[x]

with

               1 de
g H = deg K =7(s - 1)

in case s is odd, and

 E =  x(1 —  x)H(x)2, 1 - = K(x)2, H, K  E  X[x]

with

 deg  H  =  7  —  1,  deg  K  =  7

in case s is  even.  In each case

       deg H + deg K + s - 1 = 2s - 2. 

Hence, by Klein's formula H(x) and K(x) satisfy

(H,  Hx) = (K,  Kx) = 1,  H(0)H(1)K(0)K(1) 0,

and there are no branching points of other than 0, 1 and  co.

The ramification exponent of  E-1 at x =  00 as a function of x 

is s, and that of  E-1 at z = 0 as a function of z is r. There-

fore, we have

          11
7s              T {z,  x} = s(7,,, x).

For, at x =  co we get

 E-1 = x—sci)(x-1) = zrT(z),  0  E (r(x),  T  E  T(Z)
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and 

 1  1
           -1 

 xr[0(x)]r  =  z[T(z)]r.

By the implicit function theorem we obtain 

 _  j

 z  =  x  r E  a.x r,  a.  (E  C,  ao  0 

 j=0

and

  -11s-22
blx®1+  {z, x1 =-2-41(T)lx+ b -1x +b+blx                                    0

with  b.  E  C.
 J 

 Suppose that  E(x) takes the  form:

  =  xa(x  1)b(1)(x)d/F(x)e, F(0)F(1)  0, 

1  -  E =  Y(x)f/F(x)e,  (0, F) =  (T, F) = 1,

 0,  'Y, F  €  C[x]

with natural numbers a, b, e, d and f; here we set 

        c =  f.deg  T  -  e.deg F

in case  f.deg  T >  e.deg F, and 

   c =  max{e.deg F - a  - b -  d.deg  0,  e.deg F  -  f.deg  T}

in the other case. We assume that 

 a  -  1  +  b  -  1  +  c  -  1  +  (d  -  1)deg 

                   + (e -  1)deg F + (f -  1)deg  T = 2n - 2

with 

        n =  rilax{a + b +  d.deg  0, e.deg F, f.deg  T}.

Then, by Klein's formula there are no branching points of
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other than 0, 1 and  co.

 (III),  (V), (VIII). Suppose that we are in one of the 

cases  (ii), (iii) and  (iv). Let us set

(2 - x) - x2  2 kz - x) - x  
   4(1 - x)'  1 E -                             4(1 -  x)• E -

Then in a function z(x), x = 2 is not a branching point. If 

we write  {z,  El as

fz, El = s(1 1 E) 
           21 pf qf 1

then we have

        2 1 1  {
z,  x} = s(=, x).

 p.  q  q. 

In the following discussions for the cases  (VII),  (IX),

 (X), (XI) and (XIII) we are in the case  (iv), where we set

  17285' 117285'H '117                                   {z, E) = s(7''1'  E) E-                      E -

in  (VIII), 

 5  -2   -2
 E =  1728f-T  ,  1 -  E = -  H-T ,

          11
71              7  {z, El = s(7,,,  E)

in  (IX)  ,  (X)  , and

 E =  1728f5H-3, 1 -  E = -  1728f5T-2, 

          fl1  {z
r= S1T,7,7,,

in  (XI)  ,  (XIII). 

       (VII) Let us set

 E  =  (2  -  x)  2x-2,  1  -  E  =  -  4(1  -  x)x-2.
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Then we have

         11,  {z
,  x} = skT,7,7, xl.

(IX) We have the identity:

 27x2(x - 1) - (3x - 4)3= (9x -  8)2.

Let us set

 E =  27x2(x -  1)  (9x -  8)-2, 

1 - =  - (3x - 4)3(9x  -  8)-2.

Then we have

          21
T1              7  {z,  x} = s(T,,,  x).

(X) We have the identity:

64x3(x -  1) - (8x - 9)3= (8x22 - 36x + 27).

Let us set

  =  64x3(x -  1)  (8x2  - 36x +  27)-2, 

1 ------ (8x - 9)3(8x2  - 36x +  27)-2.

Then we have

          31
T1              7  fz,  x} = s(T,,,  x).

(XI) We have the identity:

(2x3 - 3x2 - 3x + 2)22+ 27x2(x - I)= 4(x23- x + 1).

Let us set

  27222   =71---x (x  - 1)(x  -  x  +  1)-3,
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       1 1 - =—4(2x3 - 3x22- 3x + 2)(x2- x + 1) -3

Then we have

          22
T2 {z, x} = s(T,,,  x)•

(XIII) We have the identity:

 (x3 + 30x2 - 96x + 64)2= (x2- 16x + 16)3 + 108x4(x - 1)

Let us set

 E = -  108x4(x -  1)  (x2 - 16x +  16)-3, 

1 -  E = (x3 + 30x2 - 96x + 64)2(x2 - 16x +  16)-3.

Then we have

 4  1  1 {z
, x} = T, , x)•

Thus,  Kummer's equation has been solved in the twelve

cases of Schwarz' table. These are those treated by Brioschi 

 [3].

The icosahedral group is generated by

 CI =  EC, E5 = 1,  C' = -  C

and

 C' =  (wc + 1)(C - w)-1w2 = 1 -  w,

if we consider it a group of linear transformations of  C. It

consists of

 y = Erc,  c, = cr_g-1 

 c, = (Erwc cr-s)(c E-sw)-1,
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 C' =(sr+sC - Erw)(sswC + 1)-1

with r = 0, 1, 2, 3, 4 (cf. for instance Weber [40,  §74]).

Let us set

 z =  q(C) =  C2(C5 -  7)(7C5 +  1)-1.

Then we have

 g(E0 = s2z, g(-cl) = -z-1,

and

 z  

g(ug4-1)  - wz  14

This is due to Gordan [6]. Hence,  g(C') is a linear transform 

of  g(C) for every transformation of the  group.

The roots of

 f(c)/( =  c10 +  11c5  - 1

are

r
w, Erw°,  ww'  =  1,  r  =  0,  1,  2,  3,  4,

where

W = E E4, w'  = E2 + E3.

The polynomial

 2   (C5 +  C2(1 +  
w)(7C5 + 1)

has a multiple root  cw. Hence, the branching points of in 

 z =  g(0 are

         0,co, Era), crw',  r  =  0,  1,  2,  3,  4 

with the ramification exponents 2 at each point by Klein's
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formula.

        In the following discussions for the cases  (XII)1, (XIV) 

and  (XV)' we suppose that

 C =  H()3T(0, 1 -  E =  1728f(C)5T(0, 

         11  fc
, EI = s(7,1E)

in  (XII)' and

  =  1728f()5T(0, 1 -  C=  H(C)3T(0, 

          11
71              7  {, El = s(7,,,  E)

in  (XIV)  ,  (XV)'. 

 (XII)' If we set

 E = 4x(x -  1)  (2x -  1)-2, 1 -  E = (2x -  1)-2,

then we have

 1  1  2  {
, = x) (VII)

and by the translation theorem C(x, z) is a normal extension of 

 C(x), since  C(0 is a normal extension of  C(E). The Galois 

group is the icosahedral group because there is no proper in-

termediate field between  T(x) and  T(E). Under the action of 

the Galois group {z, x} =  fg(c),  x} is left invariant, and it 

is an element of  C(x). Hence, we have

          11
74  {z,  x} = s(7,, x).

(XIV) Let us set  E = x. Then we have

 {z,  x} =  {g(0, x/ =11x). 
                            5'3'2'
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Then

and

 (XV)  ' Let us 

  =  4x  (x - 1)

we have 

 {c, x} =

 z  , =  {g(c)

set

(2x - 1)-2,

1 2 
x)         x)

, = s4,

1 —  E = (2x

 (VIII)

2 2 , 
        x) .

- 1)-2
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Chapter IV. Landau-Errera's theorem. 

 §9. Errera's lemma.

        For a given natural number c we call a divisor v of  (1)(c) 

an E-number of c if the number of integers r relatively prime 

to c which satisfy the inequality

 k  -  1   c  <  r<  —  c

is equal   v  v  to  (1)(c)/v for every integer k. This notion is due to 

Errera  [4]. Suppose that c = ap with p prime and that a has an 

E-number v. If p divides a, then the number of r satisfying

 k  -  1  
 c<  r < -  (r, c)  =  1

 vp  vp

is equal to  q(a)/v =  cb(c)/(vp). Hence,  vp is an E-number of c. 

If p does not divide a, then the number of r satisfying

k -  1        ap < r <  — ap,  (r, a) = 1

is equal to  0(a)/v. For a multiple r = ps of p we have 

 k  -  1   a  <  s  < — a .

Hence, the number of r satisfying our inequality with  (r,  ap) 

= 1 is equal to

 p(P(a)/v -  (a)  /v = (p -  1)cp(a)/v =  (P(c)/v. 

Hence, v is an E-number of c. This is due to Errera  [4].

If p is prime, then for every integer k the inequality

k - 1 

137—Tp<r<p_ip

is satisfied only by r = k. Hence, p - 1 is an E-number of p.
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The number of r satisfying

              k k-1 c2 < r <
Ec2  (r,  c)  =  1

is equal to  (1)(c) =  (c2)/c. Hence, c is an E-number of c2. 

Suppose that c = Ppe and v = Hpe-1 with prime numbers p. Then,

c/v =  Pp and the number of r satisfying our inequality with 

(r, c) = 1 is equal to

 ¢(11p)  =T  (p) =  (P(c)/v. 

Hence, v is an E-number of  c. For our c we have another E-num-

her pe-1(p -  1).

        Suppose that three natural numbers n, k and c are given 

such that

      n > 1, k < c, (k, c) = 1. 

Let q be the number of natural numbers r satisfying

       r <cn, r  E k (mod  n)  , (r, c) = 1, 

and s be the number of r which satisfy additional condition 

that r <  c. In the following case (i) we have s/q = 1:

 (i) c = 2, (n, 2) = 1, k  = 1; 

the number r satisfying our condition with r < cn is  1. In 

the following eleven cases (ii)-(xii) we have s/q = 1/2:

        (ii) c = 2, n E 0 (mod  2)  , k = 1; 

the  numbers  r satisfying our condition with r < cn are 1 and 

n +  1.

       (iii) c = 3, (n, 3) = 1, k = 1, 2; 

our r are k and k + jn, where j is either 1 or 2 and k + jn  /
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0 (mod  3).

        (iv) c = 4, n  E 1 (mod  2)  , k = 1, 3; 

our r are k and k + 2n.

       (v) c = 6, (n, 6) = 1, k = 1, 5; 

our r are k and k + jn, where j is either 2 or 4 and k +  jn  / 

 0 (mod  3).

(vi)1n = 2, (c, 2) = 1; 

 (vi)2 n = 2, c  E 0 (mod 2) , (k, 2) = 1;

if c is odd then  C(2c) =  4(c) and for a natural number p rela-

tively prime to c which is less than c we have an even number 

c - p in case p is odd, an odd number c + p in case p is even; 

if c is even then  qb(2c) =  2C(c).

       (vii)  n  =  3,  c  =  5,  k  E  1  (mod  3); 

 our  r  are  1,  4 and 7, 13.

        (viii)  n  =  3,  c  =  8,  k  E  1  (mod  3); 

our r are 1, 7 and 13, 19.

        (ix) n = 3, c = 10, k  E 1 (mod  3); 

our r are 1, 7 and 13, 19.

       (x)  n  =  3,  c  =  20,  k  E  1  (mod  3); 

our r are 1, 7, 13, 19 and 31, 37, 43, 49.

       (xi)  n  =  4,  c  =  6,  k  E  1  (mod  4); 

our r are 1, 5 and 13, 17.

        (xii) n = 5, c = 12, k  E 1 (mod 5); 

our r are 1, 11 and 31, 41. We shall prove the following lemma 

due to Errera  [4]:

Either s/q < 1/2 or s/q = 1. The latter case occurs
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only if we are in the case  (i). The case s/q = 1/2 occurs only 

if we are in one of the above eleven cases  (ii)-(xii).

       Before we begin the proof we note the following: Sup-

pose that  (c, n) = 1. Then there is an integer y satisfying 

cy  E - k (mod  n). If r satisfies r  E k (mod  n), then r  E - cy 

(mod n) and it can be written as r = nx - cy with an integer x. 

We have (r, c) = 1 if and only if (x, c) = 1, and 0 < r < jc 

if and only if

17-c<x<17-1-jc
 n  n

for every integer  j. 

        First suppose that the greatest common divisor d of c

and n is not 1. If r satisfies 

       ^  E k (mod  n)  , (r, c) = 1,

this condition is satisfied by  r° = r  +  cn/d. Hence, the num-

ber of r satisfying our condition with r < cn/d is equal to 

q/d. We have s < q/d and s/q < l/d <  1/2. If s/q = 1/2, then 

d = 2. Suppose that c is divisible by 4. Then,  r" = r + cn/4 

is relatively prime to c, and the number of our r satisfying

jin<r< (j + 1)4n

is equal to q/4 for every j. Therefore, n = 2. If c is not

divisible by 4, then we can write c as c =  2c' with  (c', n) = 1.

A number r satisfying

       ^  E k (mod  n)  ,  (r, c') = 1 

is relatively prime to c, since it is odd. If it is less than
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c'n then it is less than 2c'. Suppose that v is an E-number of 

 c'. Then we have

       (v -  2)/v < 2/n, 

and

       v < 2n/(n -  2)  , n/2 < 1 + 2/(v -  2). 

If v > 3, then n < 6. If n = 4, then v < 4 and c' = 1, 3. If 

 c' = 3, then two of k, k + n and k + 2n are relatively prime 

to 3, since (n, c') = 1. Hence, n < 6 and n = 2, 4.

        Secondly let us suppose that (n, c) = 1. For an E-num-

ber v of c we have a natural number h such that

       (h - 1)/v <  1/n < h/v. 

Hence,

           21 
s/q < (h +  1)/v <7+F.

We have q =  cp(c), and  cp(c) < 2 if and only if c = 2, 3, 4, 6. 

We may assume that  c(c) > 2. Suppose that n > 6. Then, if 

v > 6, we have s/q < 1/2. Let us suppose that every E-number 

of c is less than 6. Then, a prime number different from 2, 3 

and 5 can not divide c, and

        c = 120, 60, 40, 30, 24, 20, 15, 12, 10, 8, 5. 

We have s - 1 < c/n, and s/q < 1/2 if n >  c/[4)(c)/2 - 1]. In 

case c is even, we have 2(s - 1) < c/n, and  s/q < 1/2 if n is 

greater than  c/Wc) - 2]. For the above c these values are

120 60 40 30 24 20 15 12 10 8 5 

 30 ' 14' 14' 6 ' 6 ' 6 ' 3 ' 2 ' 2 '  2'  1' 
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They are less than 6 except 12/2, but 12 is not relatively 

prime to 6. Thus, if n > 6 then s/q < 1/2. Suppose that n = 5. 

If v > 7 then s/q < 1/2. We have

1<1<22<3<3<4<4<5 

  56<56565  6'

Hence, s/q < 2/6 < 1/2 if v = 6. Let us suppose that every E-

number of c is less than 6. Then a prime number different from 

2 and 3 can not divide c, since c is relatively prime to 5. 

We have c = 24, 12, 8. If c = 24, then the natural numbers 

less than 24 which are relatively prime to 24 are

        1, 5, 7, 11, 13, 17, 19,  23. 

Hence, s/q < 2/8 < 1/2. Suppose that c =  12. Our numbers are 

1, 5, 7, 11. As above we define y by cy  - k (mod  n). If y 

E 2 (mod  5), then s/q = 1/2. In the other case we have s/q < 

1/2. The former case occurs if and only if k E 1 (mod  5). 

Suppose that c = 8. Our numbers are 1, 3, 5, 7. We have

     8162432       1 <
T< 3 <7-<7-< 5 << 7. 

Hence, s/q < 1/4 < 1/2. Suppose that n = 4. If v > 8, then 

s/q < 1/2. If c is divisible by 7, then 6 is an E-number of c

and

1<1<22 _ 3<4<3<5 
   46<4-66< 6'

Hence, s/q < 2/6 < 1/2. If c is divisible by 5, then 4 is an 

E-number of c and s/q = 1/4 < 1/2. Let us assume that every 

E-number of c is less than 8 and c is relatively prime to 35. 

Then c = 9. The natural numbers less than 9 which are relative-
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 ly prime to 9 are 1, 2, 4, 5, 7, 8, and

      91827< 7 .       2 << 4 <4< 5 <                            4 

Hence, s/q  < 2/6 < 1/2. Suppose that n = 3. If v > 12, then 

s/q < 1/2. If c is divisible by 11, then 10 is an E-number of

c and

3<  1  ,  4 6<  2  ,  7 
 10  3  17'  10  3  17'

Hence, s/q < 4/10 < 1/2. If c is divisible by 7, then 6 is an 

E-number and s/q = 2/6 < 1/2. Let us assume that every E-num-

ber of c is less than 12 and c is relatively prime to 77. Then 

c is divisible only by 2 and 5, and

        c = 80, 40, 20, 16, 10, 8, 5. 

If c = 80, then 8 is an E-number of c and

    80160       20 << 30
, 50 <-T< 60.            3 

Here, 21 is relatively prime to 80 and less than 80/3. Hence, 

s/q < 1/2. If c = 40, then the numbers less than 40 which are 

relatively prime to 40 are

   1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 

and

       13<4017,23 <82 < 27. 
  33 

Hence, s/q < 6/16 < 1/2. Suppose that c = 20. Then our num-

bers are 1, 3, 7, 9, 11, 13, 17, 19, and

 2040 3 << 7, 13 <7- < 17.
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If y  E 1 (mod  3), 

The former occurs 

c = 16. Then our

       5 <16< 7 

Hence, s/q < 3/8 

bers are 1, 3, 7,

        1 < 13- < 3, 

If y  E 1 (mod 3) 

The latter occurs 

c = 5. Then our

           5        1 <
7 < 2, 

If y  E 1 (mod 3) 

The former occurs

then s/q = 1/2. In the other 

if and only if k  E 1 (mod  3). 

numbers are 1, 3, 5, 7, 9, 11 

 32
 , 9 <  3<  11. 

< 1/2. Suppose that c = 10.

9, and 

  5 < 16<  7. 

      3

then s/q = 0. In the other case 

 if and only if k E 1 (mOd  3).

numbers are 1, 2, 3, 4, and 

  3 <  12<  4. 

       3

then s/q =  1/2. In the other case 

 if and only if k E 1 (mod  3).

case s/q 

 Suppose

 , 13, 15,

Then our

 s/q = 

Suppose

= 1/4. 

that 

and

 num-

1/2, 

 that

s/q = 1/4.
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 §10. Two lemmata.

        Given natural numbers c, k and n, we shall prove the 

following lemma:

       Suppose that for a divisor e of n every integer r sat-

isfying

       r E k (mod  n)  , (r, c) = 1, 0 < r < cn 

is less than ec. Then (n, c) = 1 and c = 1, 2, 3, 6 unless e 

= n. We have c = 3, 6 only if e/n = 1/2.

       If d = (c, n) is greater than  1 then the number of r 

satisfying our condition with

 cn  <  r  <  +1             dcn,  0  <  j  <  d

is equal to each other. Hence, 

 d  - 1

d.n < e

and

 e<   d4.  1       dl-i'dl=

Therefore, e = n. Suppose that d = 1. If v is an E-number of

c then we have

 v  -  2   <

 v  n

by our note in the previous section. Hence,

 <  1  +     -e-
v2                              2' 

If v > 4 then n/e < 2. Suppose that every E-number of c is 

less than 4. Then, c = 6, 4, 3, 2. We have

 - <   

      (c) -  1
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and

 n  <  1 
 e 2  O(c) - 1

in case c is even. Hence, if c = 3, 6 then n/e < 3, and if c 

= 4 then n/e < 2.

We shall prove another lemma: 

Suppose that n is an odd integer greater than 1 and

 0 < k < 2c. Let us assume that every integer r satisfying our 

condition with 0 < r < cn is less than  2c. Then we are in one 

of the following five cases  (i)-(v):

(i)  c  =  1,  k  =  1; 

(ii) c = 2, k = 1, 3; 

(iii) n = 3, c = 4, k = 1, 7; 

(iv) n = 3, c = 10, k = 1, 7, 13, 19; 

(v)  n  =  5,  c  =  6,  k  =  1,  11. 

If c = 1 then our r with 0 < r < on is k, which is  1.

If c = 2 then r is odd and our r with 0 < r < cn is either k or 

k + n. In case k is odd the latter is even and r = k < 2c. If 

k is even then we have r =  k + n < 2c = 4. It is impossible, 

because n > 3. In the case  (iii) our r are 1, 7, which are 

less than 2c. In the case (iv) our r are 1, 7, 13, 19, and 

they are less than 2c. In the case (v) our r are 1, 11, and 

they are less than 2c. Thus, the above five cases actually oc-

cur. If d = (n, c) is greater than  1 then we have

       (d -  1)cn/d < 2c 

and
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Hence 

 d= 1. 

then

 1  , 
 a

 ,  d 

  We

1 

2.

may

 2 1

 n = 3. 

It is

assume

 v  - 2
_ < 

V

 2 

 n

impossible 

that  C(c)

  ,2n vs —
n - 2

 , since n is odd. Suppose that 

 >  1.  If  v  is  an  E-number  of  c

and

We have 

even. 

than 5, 

vide c. 

tains a 

is less

we have 

and r = 3, 

c = 5 then

 r  = 

in case k  =

 r  = 

in case k =

 r  = 

in case k = 

Then v < 4

 < 1 +
v 7v-  2'

 n <  2c/[b(c) - 1], and n <  c/[b(c) - 1] in case c is 

Suppose that n = 3. There is no E-number of c greater

and a prime number different from 2 and 5 can not di-

A closed interval whose length is not less than 4 con-

number relatively prime to 10. Hence, c/3 < 4 and c 

than 12. Since

 8  8 

 g5(8) - 1   3 < 3,

    8. If c = 4 then we have r = 5, 11 in case k = 2 

3. 9 in case k = 3. These cases are impossible. If9 in case k = 3. These cases are impossible. 

we have 

1, 4, 7, 13

 1, 4, 

2, 8, 11, 14

 2, and 

3, 6, 9, 12

 3. Hence, it is impossible. Suppose that n 

and there is no E-number of c greater than 3.

> 5. 

 Hence,

-76-



c = 6, 4, 3. We have  c/Wc) 

then n = 5, and we have

r = 7, 17 in case k = 

    3, 13 

    9, 19 

    5, 25

These cases are  imnossible. 

odd. We have

r = 1, 11 in case k = 

    2, 7 

    8, 13 

    4,  14 

    5, 10

 It is impossible.

-  ll =  C, and

2, 7, 

3, 8, 

4, 9, 

5, 10.

If c = 3 then

1, 

2, 

3, 

4, 

5.

 c 4. If c = 6

 n  = 5,  since n is
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§11. Attainment of Schwarz' table.

In Schwarz' table we set 

 a  =  a/m,  =  b/m,  y  =  c/m,

where a, b, c and  m are natural numbers satisfying (a, b, c,  m) 

= 1. From each triple we have 24 triples by the table at the 

end of §5, which may not be distinct from each other. For the

values of c there are six elements:

     c,  m  -c, a  +  b - c,  m  - a  -  b  + c,  m  + a - b,  b  -  a. 

If all of them are equal to  m/2, then

            b,  c} =  {1, 3,  2}, m = 4. 

This triple satisfies Landau's criterion, and it belongs to (I) 

of  Schwarz' table with  v = 1/2. We shall assume that the great-

est common divisor c0of c and m is not m/2. Under this assump- 

tion we have the following table of {a, b, c} with  m 0 (mod  c):

 m = 2r with even r:

(1) r + 1,  2}, (r 2) (I)

m = 2r with odd r:

(2) { 1, r + 1,  2}, (I)

m = 6:

(3) { 1, 3,  2},  {1, 5,  2}, (III)

m = 10:

(4) { 1, 3,  2},  {l, 9,  2}, (XIII)
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 m  = 

(5)

(6) 

(7)

=m

(8)

(9)

=m

(10)

=m

(11)

(12)

= m

(13)

12:

 15:

n n _ 
 Z.  V

24:

30:

1 

2

{ 

{

{2

1 

3

 { 

{

 {, 

{2, 

 {1, 

{4,

 5, 

5, 

5, 

 7, 

7,

7, 

7, 

7, 

7,

 1, 

 },

3 

3

 4},

 4}, 

 4},

3}, 

 3},

 5}, 

 5},

 {1,  11,  4}, 

 {3, 11, 4},

 {1, 

{5, 

{1, 

{7,

 13, 

13,

13, 

13,

 6} 

6} 

8} 

8}

e

{1, 11,  6},

1 

2

2

1 

3

1 

2

1 

4

 {

10,  3}, 

10,  3}, 

11,  4}, 

9,  4}, 

9,  4},

11, 

11,

13, 

13,

 }, 

 },

3 

3

 5), 

 51,

 {1, 13,  4}, 

{3, 13,  4},

{1, 

{5, 

 {1, 

 {7,

17, 

17,

19, 

19,

 61, 

 6}, 

 8}, 

 8},

{1, 25,  6},
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 (II)

 (X)

(X)

(IX)

(IV)
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        {5, 11,  6}, {5, 25,  6}, 

(14) {3, 13,  6},  {3, 23,  6}, 

(15)  {1, 19,  10},  {1, 21,  10}, 

(16) {3, 13, 10 ,  {3, 27,  10}, 

(17) {5, 11,  10}, {5, 29,  10}, 

(18) {5, 17,  10}, {5, 23,  10}, 

(19) {7, 13,  10}, {7, 27,  10}, 

(20) {9, 19,  10},  {9, 21,  10}, 

m = 60: 

(21) {1, 31,  12},  {l, 41,  12},

 {11, 31,  12},  {11, 41,  12}, 

(22) {1, 31,  20}, {1, 49,  20}, 

(23) {7, 37,  20},  {7, 43,  20}, 

(24) {7, 37,  20},  {7, 43,  20}, 

(25) {13, 37,  20}, {19, 49,  20},

Given natural numbers a, b, 

 a<  c<  b< m,  m= 0 (mod

we assume that for every integer p 

       ap < cp <  by (mod m)

or 

 by < cp < ap (mod  m). 
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 c and m satisfying 

 c), (a, b, c) = 1,

relatively prime to m

(VIII) 

(XII) 

(VII)

 (XII) 

VIII) 

 (XV)

 (

(XII) 

(VII)

(VI)

(VI)

(XIV) 

(XIV) 

(VI)

either



If  m/c is not equal to 2 then  fa, b,  c} is one 

ble. We shall prove this theorem due to Errera 

Let us set m = cn0and

 a  =  da',  c  =  dc',  d  = (a, c),  m  =  m'd 

If p' is relatively prime to m' then there is 

atively prime to m such that p  E p' (mod  m'). 

are in the case (A) of  §6. If  p' satisfies

 p'  E 1 (mod n0'0)(p''c') = 1 

                                  then there is an integer  p0 such that

P0 =p' (mod m'),(P0,m) = 1 

and we have

 p0a  <p0c c (mod  m), 

that is,  p6a° < c' (mod  m°). If r = a' + xn 

to c' then there is an integer  p6 satisfying 

that  p'a'  E r (mod  m°). For, there is an  in 

 a'y  E x (mod  c'), and if we set  p6 = 1 +  yno

 a'p6  E a' +  n0x (mod  m'),  (q),  c')

By our assumption we have

r < c' (mod  m').

If we set k = a', c = c' and n =  n0 in Errera's

are in the case  (i), since s/q = 1. Therefore,

c' = 2, a' = 1, (no, 2) = 1,

and

of the 

 [4] as

above ta-

 follows.

 , m' = c'n.            0

an integer p 

 Suppose that

 rel  - 

we

is relatively prime 

our condition such

 integer y satisfying 

 no then 

    = 1.

lemma, 

we have

then we
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       c = 2a, m =2an0,(a, b) = 1. 

Here,n0> 1 because c < m. Let us set

b =  d'b', c = d'c", (b, c) =  d',

 m" = c"nm = m"d'.            0'

Here, d' = 1, 2, and the latter happens only if 

There is an integer  p1 such that

      p1E 2 (mod n0),)(p1, c) = 1, 

and  p1 = 2 +  xn0 with an odd integer x, since c

have

        m
=_m  p1a =c+xfc+f  (mod  m),

and

 plc  E 2c (mod  m)  , 2c < c + < m, 

because n0> 2. Hence,

 plb < 2c (mod m)  ,

that is,

p1b' < 2c" (mod m").

We define k by

 k=  p1b' (mod  m"),  0<  k< m".

Then, k is relatively prime to c" and less than 

k + xn0is relatively prime to c" then there is

relatively prime to  c" such that

p"1b' E k +  xn0 (mod  m").

c" is

is

2c" 

an

odd.

even  . We

 

.  If  r 

integer  P  1
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Hence, we have

r <  2c" (mod  m").

Let us set c =  c" and n = n0in the second lemma of the previous

section. Then we are in one of the following five cases:

(i)  c" = 1, k = 1; 

(ii)  c" = 2, k = 1, 3; 

(iii)  n0 = 3,  c" = 4, k = 1, 7; 

(iv)  n0 = 3,  C" = 10, k = 1, 7, 13, 19; 

(v)  n0 = 5, c" = 6, k = 1, 11.

In the last four cases  d' = 1, since  c" is even. We shall  dis-

cuss each case separately. 

        (i) Since c > 1, we have  d' = 2, and

 c = 2, a = 1, b E 0 (mod  2)  , m = 2n0,n0E 1 (mod  2). 

Let us set p111=2+-0°Then it is relatively prime to  m and

       ap1E 2 + n0'cp1E 4,bp1E 2  (mod  m). 

We have b = 1 + n0.This is the case (2) of our table.

(ii) We have

   c = 2, a = 1, b  E 1 (mod  2),  m =  2n0,  n0  E 1 (mod  2). 

Let us set  pl = 2 +  n0. Then it is relatively prime to m and

 api  E 2 + n0,cp1E 4, bp1  E 1, 3 (mod  m).

We have

     ap2 E 4 + n0,cp2 E 8,bp2 E 2 + n0,6 + n0(mod  m).  111 

Therefore, if  n0 > 6 then each of 4 + n0,2 + n0and 6 + n0is
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greater than 8 and less than  2n0. It contradicts our assump-

tion. Hence,  n0  < 5. Suppose that  n0 = 3. Then  pl = 5 and 

 2_ 5= 1 (mod  6). Therefore, b is either 3 or 5. This is the 

case (3) of our table. Suppose that  n0 = 5. Then  pi = 7 and

 7.3 E 1 (mod  10). Hence, b is either 3 or 9. This is the case 

(4) of our table.

(iii) We have

c = 4, a = 2, m = 12,  pl = 5,  bpi E 1, 7 (mod  12),

and b = 5, 11. This is the case (6) of our table. 

        (iv) We have

c = 10, a = 5,  m = 30,  pi = 11, 

 bpi  E 1, 7, 13, 19 (mod  30),

and b = 11, 17, 23, 29. These are the cases (17) and (18) of 

our table.

(v) We have

c = 6, a = 3, m = 30,  pi = 7,  bpi  E 1, 11 (mod  30),

and b = 13, 23. This is the case (14) of our table. 

       Let us assume that we are in the case (B) of §6. As

above we set

a = da', c = dc', m' =  c'n0, m =  mid, d = (a, c)

and

b = d'b', c = m" =  c"n0, m = m"d', d' = (b, c).

We say that a natural number p less than m belongs to C if it
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is relatively prime to m and p  E 1 (mod  no). For an element p 

of C we write p  E C1 in case ap < c (mod  m) and p  e C2 in case 

 by < c (mod  m). By our assumption  1cl =  Icil  lc2  , where the

absolute value indicates the cardinal number. We say that a 

natural number p' less than m' belongs to C' if it is relative-

ly prime to m' and p' E 1 (mod  no). For an element p' of C' we 

write p'  E  CI if a'p' < c' (mod  m'). We have  IC1/  CI = 

 C'I/ C°1-If r = a' + xn0is relatively prime to c' then there 

is an element  p° of C' such that  a°10'  E r (mod  m'). Let q' be 

the number of such r with 0 < r <  my, and s' be that of such r

with 0 < r <  c°. Then we have  s°/q° =  Ici /  c'  . We say that

a natural number p" less than  m" belongs to  C" if it is rela-

tively prime to  m" and p" E 1 (mod  no). For an element  p" of 

C" we write  p"  e  C° if b'p" < c" (mod  m"). We have  Ic2Mci 

=  C /  C"  . By Errera's lemma we have

C°1 /IC` = C2I/ C"

since both sides are positive by our assumption. If an integer 

p1 satisfies

 pi E 1 (mod  m"),  (p1, d') = 1

then we have

 cpi  E c,  bpi  E b (mod m) 

and  ap1 < c (mod m). Here, a is relatively prime to d', and

if r = a + xm" is relatively prime to d' then there is an in-

teger  p1 satisfying our condition such that  api E r (mod  m).
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Hence, we have r < c (mod  m). Let us set c =  d', k = a, n = 

 m" and e =  c"  in the first lemma of the previous section. 

Since  c"  m", we have

(m", d') = 1, d' = 1, 2

by our assumption that  n0 2. Similarly we have

 (ml, d) = 1, d = 1, 2. 

By our assumption that (a, b, c) = 1 we have (d, d') = 1. 

Hence, either d = 1 or d' = 1. We may assume that d = 1, that 

is, (a, c) = 1. Let us set k = a and n =  n0 in  Errera's lemma. 

Then we are in one of the following ten cases (i)-(x) by  n0 2:

(i) c = 2,  n0 E 0 (mod  2)  , a = 1; 

(ii) c = 3,  (n0, 3) = 1, a = 1, 2; 

(iii) c = 4,  n0  E 1 (mod 2), a = 1, 3; 

(iv) c = 6,  (n0, 6) = 1, a = 1, 5; 

(v) n0= 3, c = 5, a = 1, 4; 

(vi) n0= 3, c = 8, a = 1, 7; 

(vii)  n0 = 3, c = 10, a = 1, 3, 7, 9; 

(viii) n0= 3, c = 20, a = 1, 7, 13, 19; 

(ix) n0= 4, c = 6, a = 1, 5; 

(x)  n0 = 5, c = 12, a = 1, 11.

We shall  tat them separately. 

        (i) If we set p = 1 +  n0 then it is relatively prime to

m = 2n0,since n0is even. We have p2 E 1, cp E 2 (mod  m), and 

b = 1 + n0.This is the case (1) of our table.

(ii) If  no  E 1 (mod 3) then we set p = 1 + n0. We have
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p2  E 1, cp  E 3 (mod m). Hence, b = 1 + n0,2 + 2n0. For T = 

3 +  no we have

aT = 3 + n6 + 2nCT E 9,bT E 3 + 2n6 + n   0'0'0'0 

                                             (mod  3no).

Hence,  no < 6 and n0= 4. It is the case (5) of our table. 

If  n0  E 2 (mod 3) then we set  a = 1 + 2n0. We have a2 E 1 

(mod m) and b = 1 + 2n0,2 +  n0. For T = 3 +  n0 we get

 bT  E 3 + 2n0,6 + no(mod 3n0). 

Hence,n0< 6 and  n0 = 5. It is the case (8) of our table, 

        (iii) For p = 1 +  2n0 we have p2  E 1 (mod 4n0) and

b =  1 +  2n0, 3 +  2n0,

since d' = 1 by  (m", d') = 1. If we set T  = 2 +  no then 

 aT  E 2 + no,6 + 3n0,cT E 8, 

       bT E 2 + 3n0,6 + n0(mod  4n0).

Hence,  n0 < 6. If  n0 = 3 it is the case  (7), and if  n0 = 5 it

is the case (10) of our table.

(iv) If  n0 E 1 (mod 6) then we set p = 1 +  4n0. We

have p2  E 1 (mod 6n0) and b = 1 + 4n0,5 + 2n0.For T = 

2 +  3n0 we get

a  E 2 + 3n0,10 + 3n0,c E 12, 

b  E 2 + 5n0'10 + n0(mod 6n0), 

                                                            '

and  n0 < 4. This is impossible. If  no  E 5 (mod 6) then we set
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 P = 1 +  2n0. We have p2  E 1 (mod  6n0) and b = 1 + 2n0,5 +  4n0. 

For T = 2 + 3n0we get

       b E 2 + n0'10 + 5n0(mod 6n0), 

                                                                               ' and n0< 10.Hence,n0= 5. This is the case (13) of our table 

 (v) We have  pc  E c (mod 15) if and  („nlv if 

p  E 1, 4, 7, 13 (mod  15).

Hence, b = 7, 13. This is the case (9) of our table. 

        (vi) We have pc  E c (mod 24) if and only if 

        p  E- 1, 13, 19 (mod  24).

Hence, b = 13, 19. This is the case (12) of our table. 

        (vii) We have pc  E c (mod 30) if and only if 

        p  E 1, 7, 13, 19 (mod  30).

We get the following table: 

 p 1 7 11 13

pa 1 

3 

7 

9

7 

21 

19 

3

11 

3 

17 

9

13 

9 

1 

27

 pc 10 10 20 10

Hence

 pb 13 1 23 19 

  19 13 29 7 

  21 27 21 3 

  27 9 27 21

 , we have the cases  (15)  ,  (16)  , (19) and (20) of our table. 

  (viii) We have pc E  c (mod 60) if and only if 

  p  E 1, 7, 13, 31, 37, 49 (mod 60)
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and get

 p

the following table: 

1 7 11 13 23 29

pa 1 

7 

13 

19

7 

49 

31 

13

11 

17 

23 

29

13 

31 

49 

7

23 

41 

19 

17

29 

23 

17 

11

 pc 20 20  40 20 40 40

pb 31 37 41 43 53 59 

  37 19 47 1 31 13 

  43 1 53 19 49 47 

   49 43 59 37 47 41

Hence, we obtain the cases  (22),  (23), (24) and (25) of our  ta-

ble. 

        (ix) We have pc  E c (mod 24) if and only if

        p  = 1, 5, 13, 17 (mod  24). 

Hence, b = 13, 17. This is the case (11) of our table. 

 (x) We have pc E c (mod 60) if and only if

        p E 1, 11, 31 (mod  60). 

Hence, b = 31, 41, and we get the case  (21), filling up our 

table.

        Thus, we have proved  Landau-Errera's theorem. We shall 

note that if  m/c = n0is equal to 2 then either d = (a, c) or

 d' = (b, c) is equal to 1. To prove it we shall assume neither 

d nor d' is 1 to the contrary. By the first lemma of the pre-

vious section we have either d = 2 and d' = 3 or d = 3 and  d° 

= 2. Let us suppose that the former occurs. Then c = 2c' = 

3c" and b is odd. If we set p = c + 1, it is odd and relatively

-89-



prime to  m = 2c. We have

 op  a,  Cp  E  C,  by  E  b  - 

which contradicts our assumption 

criterion. Hence, either d = 1  or 

our theorem we are in one of the 

rived from Schwarz' table: 

 m = 2r:

{s, r + s, r}, (s, r) = 1 

 {s, m - s,  r},  (s, r) = 1

 m = 12:

 {1, 9,  6}, {3, 7,  6}, {3, 11

 m = 20:

 {1, 13,  10},  {l, 17,  10}, 

{3, 19,  10}, {7, 11,  10}, 

{9, 13, 10},  {9, 17,  10},

 m = 24:

 {1, 17,  12},  {l, 19,  12}, 

 {5, 23,  12}, {7, 11,  12}, 

 {11, 17,  12},  {11, 19,  12},

m = 60:

{1, 41,  30}, {1, 49,  30}, 

 {11, 59,  30}, {19, 31,  30},

c (mod 

 hat they

 d' = 1. 

 following

,  6},

 2c),

satisfy 

If  m/c

cases,

 Landau's 

= 2 then

which are

{5, 9,  6},

 {3, 11,  10}, 

{7, 19,  10},

{5, 11,  12}, 

{7, 23,  12},

 {11, 31,  30}, 

{19, 59,  30},

(I) 

(I)

(II)

 (IX)

(IV)

by 

de-
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In 

the

 {29, 41,  30} 

 {7, 43,  30}, 

 (13, 43,  30) 

 {23, 43,  30}

this case where 

 assumption that

 

,  {29, 49

 {7, 47,  

,  {17, 37,  

,  {23, 47 

 m/c = 2 it

either d

,  30}, 

 30},  {13,

 30},  {17,  

,  30}.

 was proved 

= 1 or d' =

37, 

 53

by 

 1  .

(VI)

 301, 

,  30},

     (XIV) 

Landau  [27] under
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Chapter V. Transcendental liouvillian solutions. 

            §12. Picard-Vessiot theory.

     Let k be a differential field of characteristic 0. E. R. 

Kolchin [22] proved the existence of its universal extension 0, 

which has the following property. Suppose that K is a finitely 

generated differential extension of k in  P and L is a finitely 

generated differential extension of K. Then L has a differen-

tial isomorphic image over K in 0. The proof is based on the 

following theorem in Ritt's book[34,  p.51]: Let II be a prime

differential ideal in k{y} with the indeterminates  y1,  ,  Yn 

and K be a differential extension of k. Then the ideal in  Kfyl 

generated by  II is a prime ideal if k is algebraically closed.

     If an element u of  P is not contained in k then there is a 

differential isomorphism  o of k<u> over k such that au u (cf. 

 Kolchin[20,  p.25], [19]). It will be proved as follows. We may 

assume that u is transcendental over k, since if u is algebraic 

over k then there is an algebraic isomorphism  o of k(u) with au 

  u and it is a differential one. Let  II denote the ideal com-

posed of all differential polynomials with a single indeterminate 

y over  k which vanishes at u, where  k is the algebraic closure 

of k. Then it is a prime ideal in  R{y}. If we set K =  k<u> 

then the ideal in  K{y} generated by  P is a prime ideal and 

does not contain y - u because u is transcendental over k. 

Hence, a generic zero v of  II' is not equal to u, and if we set 

 au = v then it gives a differential isomorphism over  R.
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     Let II be a prime differential ideal in  k{y}. If a differ-

ential polynomial D(y) is not contained in  11 then there is a 

zero u of  H such that D(u) 0 and every constant of k<u> is 

algebraic over k. This existence theorem is due to  Kolchin[21] 

(cf. M. Matsuda[32, pp.108-109]). 

     Consider a homogeneous linear differential equation over k:

 y (n)      + ay (n-1)      1+ + any = 0,  a.  E k.

We assume that the field of constants k0of k is algebraically

 closed. Then, by the existence theorem there is a fundamental 

system of solutions  nl,  nn in Q such that the field of 

constants of  k<ni, ,  nn> is k0,since the wronskian determi- 

nant  W(yi, ,  y
n) is not contained in the differential ideal

generated by

    7a.vn-i) 1  <<  n      L
1,] 

in  k{y}. This is a Picard-Vessiot extension for our equation.

 Kolchin's work[20] tells us its fundamental properties. 

Let G denote the group of all differential automorphisms of  E = 

 k<r)  ,n> over k. Then it is an algebraic matric group 

of degree n over  k0. An element of  P which is left invariant 

under every  automorphism in G belongs to k. The component  G0 of

the identity in G is a normal algebraic subgroup of G of finite 

index. If K is an algebraic subgroup of  G then there is a dif-

ferential subfield E of  E such that K consists of all auto-

morphisms in G which leave every element of  E invariant. For 

the component  G0 we have
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     [G : G0l = [E0'ki 

                                                                 • where E0is the subfield of  E left invariant under G0.If the 

wronskian determinant  W(111,  ••• ,  n
il) is constant, that is  al =

0, then every element  a of G has its determinant equal to 1, 

since  oW =  deta•W. Extension  E of k is  algebraic if and only 

if G is finite.

A differential extension L of k whose field of constants

is k0is called a liouvillian extension of k if there is a fi-

nite chain of differential extensions of k:

   k = L0c LlL
n  =  L 

such that  Li is an algegraic extension of L.
1-1(ui) of finite 

degree and we have either u!1E Li -1or u'/ui L. Efor each i.        i 

If  E =  k<n/,  •••,fln> is contained in a liouvillian extension of 

k then the component G0is reducible to triangular form.

     Suppose that the order of our equation is 2 and the coef-

ficient a1 of y' vanishes. We assume that our equation is ir-

reducible over k, that is, the logarithmic derivative n'/n of 

every non-trivial solution n does not belong to k. Then, G can 

not be reduced to triangular form. If there is a non-trivial 

solution in a liouvillian extension of k then there is a Picard-

Vessiot extension  E of k for our equation which is contained in 

a liouvillian extension of k. The component  Go of the identity 

is reducible to triangular form. There is a non-singular solu-

tion of our equation such that 

 TE = c, c  E  k,
 0

for every element T of G0.Since G0is normal in G, we have
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 T(O  ) =  c'aE,  c' e k
 0

for every element  cs of G. Here,  aE is linearly independent of 

over k0,because G is not reducible to triangular form. Hence, 

G0is reducible to diagonal form. We shall suppose that there 

is no algebraic solution. Then G is not finite and  Go does not 

consist of a single element, the identity. Since  G0 is an al-

gebraic group, it consists of

 '
a, 0 

              a  E k0,a 0.                   a' 

       3, 

For every element G of G which is not contained in G0we have

 GT)1 = c1n2,  an2 =  c2nl  Cl, c2  e  k0. 

Therefore, [G  a  G0] = 2. This is due to I.  Kaplansky[13,  §19].
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§13. Liouville's lemma.

     We shall suppose that k = C(x) with x' = 1 and consider a 

homogeneous linear differential equation of the second order 

over k:

      d-Y 

        dx2xprx0117 q(x)y  =  0, P, q E12(X).                  'd 

If we set Y = y/i171 with the wronskian W then it satisfies

     Y" + (s/2)Y = 0,  s = - p' + 2q - p2/2 

 by W' = - pW. The logarithmic derivative v  = Y'/Y of Y is a 

solution of the Riccati equation:

v' + v2 = - s/2.

Let us assume that our equation is irreducible over k and

that it has a non-trivial solution in a liouvillian extension 

of k. Then there is a Picard-Vessiot extension  A of k for y 

which is contained in a liouvillian extension of k. The exten-

sion  E(^R) contains a Picard-Vessiot extension  E' of k for Y . 

Let G' be the group of all automorphisms of  A' over k and  G6 be 

the component of the identity in G'.  1n our  hvpergeometric case 

if Y is algebraic then A and  p are rational numbers, and W is 

algebraic: Hence, G' is finite if and only if G is finite. We 

shall assume that is not an algebraic extension of k . Then 

[G' :  N] = 2 and there is a solution Y such that TY/Y is a con-

stant for every automorphism T in  N. Its logarithmic deriva-

tive v is left invariant under T and it satisfies a quadratic 

equation over k:
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 v2  +  av  +  b  =  0,  a,  b  E  T(x).

The coefficients a and b satisfy

     a' = a2  +  s  -  2b,  b'  =  a(b  +  s/2) 

because of v' + v2 = - s/2. As the compatibility condition we

have

a" = 3aa' +  s' - 2as - a3,

which is due to I.  Kaplansky[13, §25]. For  Liouville's original 

treatment confer Watson[39,  Chap.IV]. Due to him we obtain the 

following lemma:

     The coefficient a is the half of the logarithmic derivative 

of the discriminant D of the quadratic equation for v.

For, we have

 D' = (a2  -  4b)' = 2aa' - 4b'

 =2a  (a2 +s 2b)  4a  (b +  s/2) 

=  2a(a4  m 4b) =  2aD.

     Return to our hypergeometric differential equation, which 

will be assumed to be irreducible over  k. Suppose that A and p 

are equal to 1/2. Then a fundamental system of solutions is 

given by

 ivt-ivt2 
 Y1 = e,  y2 = e,i =  /-1, x = sint,

which lie in a liouvillian extension of k because

dx2 (IT)=  4x(1 -  x).

Here, the problem on the field of constants can be solved by 

Kolchin's existence theorem in the previous section. If two of 

A, p and  v are half integers then our equation has a solution
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in a liouvillian extension of k by Gauss' transformations. It 

is algebraic if and only if the remained one of A,  p and  v is a 

rational number. We shall prove that this is the only case 

where our equation has a transcendental liouvillian solution 

under the assumption that neither  A,  p nor  v is a rational in-

teger.

     Let us express the coefficient a of v in the sum of par-

tial fractions: 

 n+1 e.
  a  = 1 

        x -c0= 0,                                  c1 = 1,  ci  e  C,      i =0ci 

where ei is either an integer or a half integer. Then we have

-e.  2e,

a'=1X 
 2  ' an 1  

           - X 
 3  •  (x  -  c.)  (x  -  c.  ) 

 1

Comparing the coefficients of (x -  ci)-3 in the compatibility

condition we get

2e.1=3e.2ei,0, 1. 
Hence, 

     e.
1= -1, -2,  i  0,  1.

Comparing those of  x-3 and (x -  1)-3 we obtain

1 _ 2
 2e0 = -3e- 2P - 2Pe00- e3     0'  P =-(1 - X2)                                   2

and

2e1 = -  3e1 - 2Q - 20e1- e11Q =  -(1 -  p2).

Hence,

     e0= -1,-1±A,e1= -1,  -1±p. 

Let us multiply each term in our equation by x3:
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 3
                2e.x-                                                            e.x 

x3a" =  1  

                                    - 

        31  

                                                                                                 ,                                         3 

 3(xa)'x-c)  (
x  -  c.) 1 

 1 

                            2
          eix-e 

lx  xax2a° =)(I      x-c 2),                 i  (x  -  c.)
1

                2Qx3  R(2x  -  1)x  x3s' =  -  2P  - 

 (x - 1)3 (x - 1)2

                    e.x                            Q
x2    1  

        x- C. xax2s = (7)[P +2 + 1Rx x]' 

  L 

           1 (x - 1)

where

    1 R =-2-(1 +  v2 -  X2 u2)

For x =  00 we have

2X = -3X2  - 2S  - 2SX -  X3, S = P + Q  -  R,

where 

 n+1

X = ei. 

 i=0

Hence,

 X = -1,  -1±v,

            1 because S =-2-(1 - v2). If each of  en and e1is equal to -1,

then X is a negative integer less than -1. Hence, X =  -1 ±  v 

and  v is an integer. If e0 = -1 ± X then  X is either an integer 

or a half integer, since 2e0 is an integer by our lemma. Sup-

pose that X is a half integer. Then, if  el = -1,  X is a half 

integer and  v is a half integer. If  el  X -1 then  v is either

an integer or a half integer. As the last case let us assume
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that 

half

e0=  -1 and e1 = -1

integer. If p is a 

This proof is due to                         ±

 u. 

half

M.

Then  1J is either an

 integer, then  v is a 

 Setoyanagi[36].

integer or a 

half integer.
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§14. Kuga's theorem.

     Consider a homogeneous linear differential equation over k. 

Take a simply connected domain U in the complex plane which does 

not contain any singular point of our equation. Then the dif-

ferential field generated by a fundamental system of solutions 

and x over U is a Picard-Vessiot extension of k for our  ecruation. 

It has an isomorphic image  E over k in Q and there is a regular 

matrix p over the field of constants such that the group H of

all automorphisms of  E over k is equal to  p-1Gp. We shall prove

that the Zariski closure of the monodromy group is equal to H if 

our equation is  Fuchsian. It is sufficient to show that an  el-

ement f(x) of  E which is returned to itself by every analytic 

continuation around the singular points is a rational function 

of  x. Suppose that x = 0 is a singular point. Then f(x) takes 

the form f = u/v such that  u and v are expressed in the form:

 m  m' a,13A

'               (11_,.4(x)x''(log x)O,ahEC 
 h=1  j=1--I 

attheorigin,wherea.                        h
j(x) is holomorphic at 0 and a .(0) 0  hj

 and  13. is a non-negative integer. If  c denotes the automorphism

of  E over k induced from the analytic continuation around the 

origin then  anu/anv = f for every n. Let us suppose that v 

takes the above form. If  ah = ah +  ibn with real numbers ah 

and bh then we can suppose that

a1 =  •  ..•  •  =  ak <  ah' h >  Z.

We may assume that we are in one of the following three cases:
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 (i) h)0,< b' 2 < h<  1bhl=

(ii) b1 < 0, bh >  bl' 2 < h <  t: 

(iii) b1= 0,Q= 1.

We may suppose that  (31 >  bj, 2 < j < n. Let us set 

               a 

 v(x) = x11(log x) [qi(x) +  (42(x)],

where  g1(x) is the sum of the terms with 1  < h <  Z, j = 1 and 

g2(x) is the sum of the other terms. If the absolute value of

the argument x is not greater than  7 then we have

      

. 

lim  c  g2(x) = 0 
 x+0

for every n. Let us set

                 ibh 

q_ (x)=XcPhl(0)x+  g3(x). 

' 

         h=1

Then under the above condition we get

 limng3(x) = 0 
 x+.0

for every n. If we set 

 P  ib                                          -
i L(x) =  Ig'111(°)xh1, 

 h=1

then we obtain

                                (b -b )arg x -b argx 
L(x)[111(0)1 - Xkbh1(C1)1 e1 h] e1 

 • 

 h=2

In the first case (i) we have L(x)  --  co if arg x  +  -...: In the 

second case (ii), L(x)  +  0.  if  arg x  +  +0: In the third case
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(iii), L(x) =  iq1(0)1 > 0. Hence, there is an  integer n which

may be negative such that

 lim xNanu(x)/anv(x) = 0
 x->0

for a sufficiently great number N under the condition that the 

absolute value of arg x is not greater than  7. Therefore, the 

origin is not an essential singular point  of f(x). Thus, f(x) 

is a rational function of x. This theorem is due to M. Kuga 

[24,  p.173], where a sketch of the proof is  given. The condi-

tion that our equation be Fuchsian can not be removed. For 

instance, Bessel's equation

x2y" + xy' + (x2 - A2)y = 0,  X  E  C

gives a counter example.

     Return to our hypergeometric differential equation. By 

this theorem we shall prove that two of X,  u and  v are half in-

teger if our equation has a transcendental liouvillian solution 

under the assumption that it is irreducible over k and there is 

no logarithmic singular point. Since it is irreducible, there 

is a logarithmic singular point if and only if one of X, p and 

 v is a rational integer. Let  aco denote the automor-

phism of  E which is induced from analytic continuation 

around 0, 1 and respectively; here  H is a Picard-Vessiot ex-

tension of k for Y over a complex domain and

     OR=  cx(X-1)/2(x - 1)(1.1-1)/2,c( 0)  E  C. 

Then the component  H0 of the identity e in H can not contain
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all of a0'a1and a., since they generate our monodromy group

by van Kampen's theorem (cf. for instance A. Komatsu, M. Nakaoka 

and M. Sugawara[23, p.293]). They satisfy aao=e,and H                            01cc'H0 

contains one and only one of them. Suppose that neither  ao nor 

 a1 is contained in H0.Then there is a fundamental system of

solutions of Y" + (s/2)Y = 0 such that

                                                                         

,   -eXTri     A -ep7i 0 

 u1=  G0= 
                                           -e-wri   0 -e-X7iB 

                                      '

 2here AB 0 because of the irreducibility. Each of  00 and  Gel

 -1
(= a.-)is containedin H0which is reducible to diagonal form;

here

 2 
 CT_ =

 U

a001=

If the eige 

then we hay 

Hence, A is 

p is either 

T.  Kimurarl

     We sha 

solution if 

assumption 

 tion.  SUDIO

        -A(eX7i + e-Affi) e2X7i

0 e-2X7i

 (A+p)Tri  e + AB -Ae-p7i 

-BeATri  e-(A+P)

of a-2  are

-Be-ATri = 0
, which

either an integer or a 

an integer or a half i

• 

note that there is

our equation has a  loc 

hat it is irreducible.

that  x= 0  is a

 eigenvalues 

 have -Be-A

 Kimura[15] 

  We shall

ion that 

Suppose

 -(A+p)Tri 

distincttinct, that is e 

contradicts our 

 a half integer,

integer. This

 2Xri         e-2XTri

assumption.

 and similarly 

proof is due to

s no transcendental liouvillian 

logarithmic singularity under the

le. There is no  algebraic solu-

logarithmic singular point. Then
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there is a

 o2Y./Y. is 
 0  1  1

tion that 

holds for

fundamental system of solutions Y1, Y2 such that 

a constant for each i. This contradicts our assump-

x = 0 is a logarithmic singular point. Our statement 

an equation which is not Fuchsian.
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Note. Bessel's equation.

Consider Bessel's equation:

x2 
dx2d2yydd(x2 _ v2)y = 0,  v c. 

             x

A solution is given by Bessel's function:

 Jv(x)=X
0(-1)k 1   x  n+2k        k=F(k+1)F(n+k+1)  (y)

unless  v is a negative integer. If  v is not an integer a funda-

mental system of solutions is given by  J
v(x) and  J_v(x). For  v

= 0 we have a solution of the form:

 Jo(x)•log x +  y  (-1)k-1  1  22k2(1 +1• • +1) (=i) 2k. 
 k=1  (lc!)

If  V is a positive integer n then by the recurrence formula: 

 dy

 yn+1(x)  xyn(x)-dTc

we have a solution of the form:

 Jn(x)•log x  +n(x), 

where  01)n(x) is defined inductively by
 d(ID

      n+1 (x) = 1Jr-1,1)n(x) - Jn(x)] - din 

 • Thus a logarithmic singularity appears if and only if  v is an 

integer. Let us set Y  =y. Then we have

d2Y  

 2 + [1 - 12(v2 - 1)]Y = 0. 

                   4

 dx- x 

                                        - The logarithmic derivative V = Y'/Y satisfies

dV 2121 
 di + v+_2(v _T)  =  0.

 x 
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If we set

Y =  P(t)eix, t = x-1, i =

then we get

   2 

t2  
dt2+ (2t - 2i)dp 4-v.2)P = O.                   dt

The coefficient ck of P(t) = cktkis determined by 
 k=0 

    11  2ik ck = (k - 7+  v)(k - v)ck -1.

Hence, P(t) is a polynomial of t if and only if  v is a half in-

teger. In this case V is a rational function of x and our equa-

tion is  reducible. Conversely let us suppose that V is a ratio-

nal function of  x. Then it takes the  form: 

 n e.
 V(x)= e co+  x] c  ,0=0,c.  j =0  j

and we have

 e2  =  -1,  ej  =  1,  j  0, e02=± v. 

Let us multiply each term in  Riccati's equation for V by x2 and

set x =  a>. Then we obtain 

 n
ec°L e. = 0 

   =0  3

and hence

   1 n +
7 ±  v = 0.

Therefore,  v is a half integer if our equation is reducible. 

We shall show that there is no algebraic solution. First sup-

pose that  v is a half integer. Then every solution is expressed
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in the form

 Y(x) = f(x)eix + g(x)e-ix, f, g  E  C(X).

If Y(x) would be algebraic then  eix would be so. It is impos-

sible, since  eix is a transcendental function of x. Secondly

suppose that  v is not a half integer. Then if our equation 

would have an algebraic solution  J .9(x)J _v(x) would be an alge-

braic function of x, since our equation is irreducible over  cC(x). 

However, it is impossible because this function is an integral 

one which is not a polynomial. We shall prove that  v is a half 

integer if our equation has a liouvillian solution. There is a 

rational function a(x) which satisfies the differential equation:

 a" =  3aa' +  s' - 2as -  a3,

where

                 1  s = 2 - =
2(2v- -7).

 x

It takes the form 

 n e.

a =         x -C . ic(21=0,C.€C                            7    j =0

Here, we have

 ej = -2, j 0, e0= -1,  -1±2v.

Let us multiply each term in our differential equation for a by 

x and set x =  co. Then we obtain 

 n
-4 e . = 0 

  j=0  3

and hence
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- 1 ±  2v + e . = 0, 

 j=1

because e0can not be equal to

integer or a half integer. The 

logarithmic singularity appears 

theorem is due to  Liouville[29]

-1 . Therefore,  v is

former is impossible 

in this case. This

 , [30] , [31]  .

either an 

 , since a 

 epoch-making
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