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On an  effective determination of Shintani's 

    decomposition of the cone R+

Ryotaro Okazaki

September 24, 1992

1_ Introduction

1.1. Problem

Let K be a totally real algebraic number field of degree n > 2, oK the ring of 

integers of K, 4 the set of all totally positive elements of oK, E k the totally 
positive unit group of K and coj for i = 1, 2, ... , n the distinct e~mbeddings of 
K into R. We embed K into Rn (considered as vectors) by identifying each 
element a of K with t(cp1(a), cp2(a), ... , cpn(a)). Then, the group E t acts on 
the cone R+ by componentwise multiplication. Further, we define the open 
polyhedral cone C (v1i v2, ... , vr) generated by v1, v2, ... , v, to be

C (vi, v2, ... , vr) = R+vl + R+v2 + ....i... R+v, (1)

for v1, v2, ... , Vr E R. An open polyhedral cone C (v1, v2, ... , vr) is called an 
open simplicial cone of rank r if v1, v2, ... , yr are linearly independent. Shin-

tani [3] proved a theorem which insists that there is a fundamental domain 
D of form 

          D = U C , var(j)) (disjoint) (2) 
7EJ 

for the action of Ei on R+, where J is a finite index set, v(j) is an inte-
ger depending on j such that 1 _< r(j) < n and vjk E 4 (ii) the sense K is 
embedded into R") such that vi1, vi2, ... ,viru) are linearly in dependent. Al-
though his proof is effective, there remains a gap between this theorem and
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actual determination of a fundamental domain so that fundamental domains 

are known only for real quadratic fields [3] and totally real cubic fields [4]. 
The purpose of this paper is to describe an applicable and effective method 

for determining a fundamental domain of form (2) in the case of number 
fields of higher degree.

1.2. Main Result and Method

To this aim, we have developped a method which can be thought of as a 

generalization of Hirzebruch's continued fraction expansion working in the 
case of real quadratic fields (see [3]). The Hirzebruch's continued fraction 
expansion is a computation of a sequence of adjacent integers on the bound-
ary of the convex hull of the set of all quadratic integers in  R. Thus, we 
firstly study the structure of the boundary of the convex hull of the set 4 in 
Theorem 8. We will find a notion of adjacency between hyperpolyhedras on 
the boundary. This adjacency between hyperpolyhedras can be considered 
as a generalization of adjacency between integers in the case of quadratic 
fields, because two integers are adjacent if and only if the two edges, which 
are to the "right" of those integers, are adjacent. Secondly, we will construct 
a fundamental domain for the action of E t on R+ by an effective method in 
Theorem 11. We note that our construction works without knowing gener-

ators of the unit group beforehand, and also gives generators of the totally 

positive unit group as a side effect. Therefore, our construction can be also 
viewed as an algorithm for determining the totally positive unit group of a 

totally real number field. In this sense, our method can be thought of as a 
"positive" version of the generalized Lagrange algorithm of Buchmann [1]. 
The following modification of the Buchmann's algorithm makes the similarity 
to our method clearer although it is slower than the original graph theoretic 
version: attach an abstract simlex to each minmal subset, consider elements 
of a minimal set as vertices of the simplex, construct a suitable complex, 
compute a non-associated maximal connected family of simplices on that 
complex and then one has enough information of the unit group.
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2. Preparation 

We will give some notations and terminologies which will be used in this 

paper together with those introduced in §1 and we also recall some basic 
facts. We note that some terminologies differ from standard ones for the 
sake of simlicity of the argument on the topic dealt here.

2.1. Unit Theorem 

We use the  Dirichlet's unit theorem in the following form: 

Proposition 1. The totally positive unit group EK of K has the following 
properties. 

 (i) Let k be an integer such that 1 _< k < n. Then, there is a unit ek E EK 
    such that 

              0 < cpt(ek) < 1 for i k, (3) 
                 1 < cpk(ek)• 

 (ii) The group Eh acts on R+/R+ and has a fundamental domain whose 
    topological closure is compact in the natural topology.

2.2. Convex Sets 

A subset B of Rn is called convex if the segment connecting arbitrary two 

points of B is contained in B. The convex hull B of a set S is the smallest con-
vex set containing S, i.e., the set of all points of form tlpl -}- t2p2 + • • + t,.pr 
with a positive integer r, positive real numbers ti, t2, ... , t,. such that 
ti t2 + • • • + t,. = 1 and points Pi, p2, ... , pr of S. A hyperplane r is 
called a support hyperplane of a convex set B provided 

 (i) The hyperplane 7r contains a boundary point of B and 

 (ii) 7r divides Rn into the disjoint union of a closed half-space which com-
    pletely contains B and an open half-space which is disjoint with B. 

The following fact is well known. 

Proposition 2. Let p be a boundary point of a convex set B in Rn. Then, 
there exists a support hyperplane it of B containing the point p.
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2.3. Faces 

We denote by  B the topological closure of a set B in Rn. Let B be a convex 
set. Then, the intersection F of the set B and a support hyperplane of B is 
called a face of B. 

Definition 3. Let B be a convex set in R' . Then a face P of B is called a 
hyperface of B if the dimension of P is n — 1. and a face E of B is called a 
hyperedge of B if the dimension of E is n — 2. 

Definition 4. Two distinct hyperfaces P and P' of a convex set of the di-
mension n are called adjacent at a hyperedge E if P and P' contain E. 

Clearly, any hyperface can have at most one hyperface adjacent at a single 
hyperedge. 

Definition 5. A family .F of hyperfaces of a convex set is called connected 
if an arbitrary pair of distinct hyperfaces P, P' E .P has a sequence P = P1, 
P2, ... , Pk = P' of hyperfaces in .T such that Pi and Pi+1 are adjacent for 
i=1,2,...,k-1. 

Let pi, P2, ... , pr be points in Rn. Then we denote by P (pl. p2i ... , pr) the 
convex hull of pi, p2i ..., pr. If the set P (pl, p2i ... ,pr) has the dimension 
n — 1, it is called a convex hyperpolyhedra. In this case. we denote by 

7r (pi, p2, • • . , pr) the unique hypeplane containing points p1 . p2i ... , pr. We 
finish this section by defining the notion of open faces. 

Definition 6. Let P = P (pl, p2,... ,pr) be a face of a convex set B. Then, 
the set P° = P° (p17 p2i ... , pr) is defined by 

 (i) P° = P 
`if P has the dimension 0 or  (ii) P° =l/~i-1tipiIti, t2, ... , tr E R+, >i-1 ti = 1} otherwise. 

The set P° is called an open hyperface spanned by pi, p2, ... , pr.
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3. Theorems 

3.1. The Family of Hyperfaces 

Let A be a finite set of points in  R+, SA the union 4 U A, BA the convex 
hull of S, DA the boundary set of BA and DA the family of all hyperfaces of 
BA. The set A is called an auxiliary set and its elements are called auxiliary 
points for the reason which will be stated before Theorem 15. We omit the 
subscript A when the set A is empty. For brevity, elements of SA are called 
SA-points. 
  The following lemma is fundamental: 

Lemma 7. Let 7r be a support hyperplane of BA. Then, the hyperplane ~r 
has an equation of the form 

clxl + c2x2 + ... + cnxn = 1(4) 

where c1, c2, ... , cn > 0. Moreover, BA is contained in the closed half-space 

clxl+c2x2+...+cnxn> 1.(5) 

This further implies that there are at most finitely many SA-points on any 
segment on AA. 

Proof of Lemma 7. Let --/V be the map defined by 

N : t(xl, x2, ... , xn) E R+ xlx2 • • xn E R+ (6) 

and set a = min Or U 4) = min (N(A) U {1}) > 0. Then, the set SA is 
contained in the convex set 

xlx2 ... xn > a.(7) 

This implies that all boundary points of BA and, in particular, a point 

p = (pi, P2, . . . , pn) on 7r are contained in R. Write the equation of 7r: 

Clxl + c2x2 + ... Cnxn = c(8) 

and assume that the set BA is contained in the half-space 

cixi + c2x2 + ... cnxn > c.(9) 

                       5



On the other hand, one has a unit  ek for 1 < k < n as stated in Proposition 1. 

Applying inequality (9) to sufficiently high power of ek, one sees that ck's 
are non-negative and that c < 0 if one of ck's is zero. However, applying 

equation (8) to the point p E R+ mentioned after (7), one has that 

C1p1+C2p2+•••+cnpn = c.(10) 

One sees that c is positive because some of ck's must be non-zero. Therefore, 
all of ck's and c are positive. One gets the desired form of equation by dividing 
coefficients of equation (8) by c. The last assertion is proved by observing 
that the support hyperplane 7r of BA at the middle point of a segment o has 

the form (4) and that 7r contains a. • 
  Using this lemma, we describe the structure of BA as follows: 

Theorem 8. The set BA, AA and DA have the following properties: 

 (i) theset BA is a closed set in Rn and each face of BA is of the form 
     P(pi, p2) ... , pr) with SA-points pi, p2, ... , pr; 

 (ii) there are at most finitely many faces of BA intersecting a given bounded 
    set; 

(iii) the set DA is a union of all hyperfaces of BA; 

(iv) the set DA forms a system of representatives for R+/R+; 

 (v) there are exactly two hyperfaces containing a given hyperedge; 

(vi) the family DA is connected and 

(vii) the set DA is uniquely decomposed into a union of all open faces of BA. 

Proof of Theorem 8. Let p be a boundary point of BA. Then, there is 
a support hyperplan 7r containing p of the form (4) by Proposition 2 and 
Lemma 7. We denote by lrt the hyperplane defined by 

c1x1 + c2x2 + .. • + cnxn = 1 + t(11) 

Clearly, one can find a small positive real number t such that the set 

1 <c1x1+c2x2+•••+cnxn <1+t(12) 
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does not contain SA-points because the hyperplane 7rt together with all of 

coordinate hypreplanes enclose a bounded set. Let  pi, P2i ... , pr be all of 

SA-points on it and P the convex set P = P (p1, p2i ... , p,.). Assertion (i) 
follows if one shows p E P. Take an arbitrary point p' in BA which is close 

to p. Then, p' can be written as

p'=t1P1+t2P2+ ... + trPr + tr+1Pr+1 + ... + tr'Pr' (13)

where pr+1, Pr+2, • • , Pr' are SA-points outside it and t1, t2, ... , tr, are non-

negative real numbers such that t1 + t2 + • • + tr, = 1. From this, one sees 

that there are positive real numbers s, s', a point q on P and a point q' in the 

opposite side of the hyperplane lrt to the origin such that p' = sq + sq'. This 

further implies that p' is on the segment connecting a point on P and a point 

on 'xi fl R. Hence, the point p' is in M = P (p1, P2, • • • , Pr, q1, q2, • • • , qn) 
where qi is the intersection of lrt and the i-th axis. Now, one has that p is in 

M, since p' can be chosen arbitrary close to p. It is, however, obvious that 

M is closed and that the intersection 7r fl M is P. This implies that p is in 

fact on P, proving assertion (i). 
  Let M be a bounded set. We assume, without loss of generality, that M 

is of the form

M = {t(xl, x2, ... , xn) E R+ I x1 + x2 + ... + xn <, m} (14) 
where m is a positive integer. Let P be a hyperface of BA intersecting M. 

Then, by assertion (i), P can be written as P = P (p1, p2,...,Pr)with SA- 
points P1, p2, ... , Pr. The assumption on the shape of M guarantees that at 
least one of pi's, say p = pi, is contained in M. There are at most finitely 

many such p's since M is bounded. Observe that the segments P (p, pi) are on 
DA and one sees that assertion (ii) follows if one shows that there are at most 
finitely many SA-points q's such that segments P (p, q)'s are on AA. Suppose 
contrary, that there are infinitely many such q's. Draw a small sphere E at p 

and look at the set of intersections of P (p, q)'s and that sphere. Then, there 
is an accumulating point pcx, on E of those intersection points since Lemma 7 

guarantees that there are at most finitely many SA-points on a segment in 
AA. By Proposition 2, there is a support hyperplane 7r of BA containing peo 

of the form (4). Let c' > 1 be a constant such that the hyperplane 7r' defined 
by 

~lxl+c2x2+.••+Cnxn=c -(15)
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does not intersect E. When q is in the opposite side of  7r' to the origin, the 

intersectio of P (p, q) and E is in the set P (p, qi, q'2, . . . , qn) where q; is the 
intersectio of ir' and the i-th axis. On the other hand there are finitely many 

SA points in the region

cixl + C2X2 + ... +Cnxn < C. (16)

Thus, pe,0 must contact P (p, qi, q2, ... , qn). This together with the defini-
tion of ir' implies that p and q must coniside. But q must differ q by the 
radious of E. This contradiction proves assertion (ii). Assertion (iii) follows 
from assertion (i) , (ii) and that DA has the dimesion n — 1. Assertion (iv) 
follows from Lemma 7. Assertion (v) follows from assertion (i) and (ii). As-
sertion (iv) guarantees that given pair of points on AA can be connected by 
a pass 7 on DA which does not intersect any face of dimension lower than 
n — 2 except at the given initial and terminal points. Applying this state-
ment to the barycenters of given hyperfaces P and P', one sees that there 
is a sequence P1 = P, P2, ... , Pk = P' such that successive pair Pi and Pi+i 
are adjacent by taking as Pi's the hyperfaces through which the pass 7 goes 
in order. Assertion (vi) is proved. Assertion (vii) is obvious. • 

  On the other hand, we have the obvious action of EK on the family 
of subsets of R+ defined by e E EI : G C R+ ' --' eG = p E G} . Two 
subsets G and G' of R+ are called associated if there is a unit e in Ei such 
that G = eG', and a family .F of subsets of Rn is called non-associated if no 

pair of distinct sets from .F are associated. When the auxiliary set is empty, 
the group EI acts on B = Bo, on 0 = 00 and on the family of all support 
hyperplanes of B. Thus, The group EI also acts on the family D = Do. This 
action has the following properties:

Theorem 9. Assume that the auxiliary set A is empty. Then, one firstly 
has that D decomposes into finitely many EI -orbits. Secondly, let M be a 
maximal connected non-associated family of hyperfaces of B. Then, M is 
finite and is a system of representatives for the action of EI. Lastly, let E be 
the family of all hyperedges contained in exactly one hyperface in M. Then, 
there is exactly one unit e(E) 1 in EI such that c(E)E E E. The group 
EI is generated by those units {e(E) I E E E}.

Proof of Theorem 9. By assertion (iv) of Theorem 8, is thought 
as R+/R+. Proposition 1 says that there is a compact closure Do of

of 

a
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fundamental domain of the action of  Eh on the set A. Let Mo be the 
family of all hyperfaces which intersect Do. Then, the family Mo is finite by 

assertion (ii) of Theorem 8. This implies that any non-associated family of 
hyperfaces is finite, i.e., 0 decomposes into finitely many EK-orbits. Thus, 
the first assertion is proved. Now, it is clear that there is a maximal connected 

non-assocaited family M. The family M is finite by the first assertion. To see 

that M is a system of representatives, we pick up an arbitrary hyperface P 

from D and a hyperface P' from M. Assertion (vi) of Theorem 8 guarantees 
the existance of a sequence P1= P, P2, ... , Pk = P' in which successive 
hyperfaces are adjacent. We will shorten this sequence by substituting P1 
by an associated hyperface while k > 1 as follows. Firstly, we substitute 
P' by Pk_1 if Pk_1 belongs to M. If this is not the case, there must the 
associated hyperface P" of Pk_1 in M from the maximality of M. Let e be 
the unit which tranfers Pk_1 to P". We substitute P by eP, P' by P" and the 
sequence P1, 132, ... , Pk by the sequence eP1, eP2, ... , ePk_1. We obviously 
get a shorter sequence in either case. Repeating these procedures, we will 
finally reaches to a sequence of length 1, i.e., the associated hyperface in M 
of the original P. This proves that the family M is system of representatives. 
This argument also proves the last assertion except the uniqueness of e(E). 
Let E be a hyperedge in £ and assume that a unit e E Eh carries E to a 
hyperface eE which also belongs to E. Further, let P be the hyperface in M 
containing E and P' the hyperface in M containing eE. Then, e-1P' must 
be the adjacent hypreface to P at E. Thus, the hyperface P' is determined 
as the unique representative in M of the orbit of the adjacent hyperface of P 
at E. Therefore, the condition eE E £ uniquly determines the unit e(E) = e. 
• 

  In fact, Theorem9 is the key to the construction of a fundamental domain 
for the action ofnon R+ as follows:

Theorem 10. Let M be a maximal connected non-associated family of hy-

perfaces of B, D1 the union of all hyperfaces in M and M° the family of all 
open faces contained in D1. Then, one can find a subfamily Mo of M° such 
that the union 

Do = U F (disjoint)(17) 
FeM 

is a fundamental domain for the action of EI on A. Moreover, one has the
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fundamental domain D for the action of  Eh on R+ defined by 

     D = R+Do(18) 
             = U R+F (disjoint)(19) 
FEM0 

where, R+F 's are open polyhedral cones. The fundamental domain D has a 
decomposition into a disjoint union of open simplicial cones. 

Proof of Theorem 10. The theorem follows from Theorem 8 and 9. •

3.2. Effectivity 

For speaking on the effectivity, we assume that a generator a of K over Q is 

given by its minimal equation, that a basis /31 = 1, /92, ... , ,37, of the integral 
ring of integers is given by a set polynomials in a and that the following 
operations are effective: 

 (i) the basic operations of real numbers to the desired precision (i.e. ad-
    dition, subtraction, multiplication and division), 

 (ii) the exact basic operations of algebraic integers (i.e. addition, subtrac-
    tion, multiplication, test for divisibility and division in the divisible 

case.) 

Now, we present the following algorithm for finding a fundamental domain 
and later fill in the details of that algorithm. 

Theorem 11. The following algorithm effectively leads to a fundamental do-
main D for the action of Ei on R+: 

  • Firstly, find out one particular hyperface of B by the method to be 
    described in Proposition 15. 

  • Secondly, using the method to be described in Proposition 14, succes-
    sively search for adjacent hyperfaces which are adjacent to one of hy-

    perfaces so far found and associated to none of hyperfaces so far found. 
    We surely reaches to a maximal connected non-assocaited family M of 

hyperfaces in finite steps.
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 • Thirdly, divide the hyperfaces (found in the second step) into open faces, 
    then select maximal non-associated family of faces from those. 

  • Lastly, we divide the faces (found in the third step) into open simplices 
    to find a family  S of simplices on 0 spanned by 4-points. Now, the 

union D = UCES R+o is the desired form of a fundamental domain. 

Furthermore, let £ be the family of all hyperedges which are contained in 
exactly one hyperface of M. Then, there exists exactly one unit e(E) 0 1of 
K such that e(E)E belongs to 1, and the totally positive unit groupnis 
generated by {e(E) E E £}. 

Proof of Theorem 11. The effectivity of the first and the second steps 
will be proved by Propositions 14, 15 and tha fact that non-associatedness 
of hyperfaces can be checked by computing quotients of their vertices. The 
third and fourth steps are no doubt effective. Therefore, Theorems 9 and 10 
guarantee that the repetition in the second step terminates and that the set 
D is a fundamental domain for the action of E on R. We note that the 
faces found in the third step are not always simplices so that the last step is 
neccessary. The second assertion is a part of Theorem 9. •

Lemma 12. Let P = P (p1 i p2i ... ,p,.) be a hyperface of BA and assume 
that vectors pl, p2i ... , pn are linearly independent. Then, points pi, p2i 

, pn-1 are contained in a hyperedge of BA if and only if all determinants 
I P1, p2, • • • , pn-1, pi I for i = n, n 1, ... , r are simultaneously non-negative 
or non-positive. Moreover, if pi, p2i ... , Pn-i are contained in a hyperedge E, 
then one has that E = P (pe(1), pe(2), • • • 'NV)) where 1(i)'s are all of indices 
such that the determinants I p1, p2, • • • , pn_1, pe(i) I = 0.
Proof of Lemma 12. We note that r must be greater than or equal to n 
for P to be a hyperface. The proof of this lemma is obvious and therefore is 
omitted. • 

  Let pi, p2, ... , pn be linearly independent vectors in R. We denote by 
  = ,pn) the hyperplane containing tp1, p2, p3, ... , pn. When 
t does not pass through the origin, we denote by ct = ct(p1; p2, ,pn) the 

normal vector of lrt such that rt = {p E Rn (ct,p) = 1}. When c1 con-
sists of positive entries, we denote by tc, = tco(pi; p2i ... , pn) the real num-
ber inf {t E R+ I ct E R+}. We also denote by k(p1; p2, ... , pn) the index
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 min i-th entry of ct. is zero}. Well-definedness of these numbers are eas-
ily verified as follows. Let qi be the intersection of in and the i-th axis for 

i = 1, 2, ... , n. Then, qi's approach to the origin as t goes to 0. But lrt 

contains a point p2. Thus, the coordinate of one of qi's, say, qk, becomes 

negative at a small t, for otherwise 192 E R+ must be arbitrary close to the 
origin. This implies that the coordinate of qk becomes 0 or qk diverges at cer-

tain t before qk has a negative coordinate since coordinate of qk is written as 

a linear fractional function of t. However, the qk can't be the origin except at 

t = 0. Therefore, qk diverges at certain t such that 0 < t < 1. It is clear, that 

ck becomes zero at this point. Well-definedness of 40 and k(p1; p2) ... , pn) 
follows since there are finitely many indices k.

Lemma 13. Let E be a hyperedge of BA whose SA-points are known, P a 
hyperface of BA containing E, P' the hyperface adjacent to P at E, pl a point 
on P which is not on E, P2, P3, ... , pn linearly independent points on E, 

p'1 a vector in Rn whose entries are zero except the k = k(pl; p2, 
entry is the inverse of the k-th entry of ci(Pi; p2, . . .,pn) the intersection 
of the k-th axis and( pl, p2, ... , pn)) and Ug = P (0, sp'1, p2, p3) ... , pn) for 
real number s > 1. Then, U3 for sufficiently large s contains a point from 
SA which does not belong to E. Moreover, one can effectively determine the 
minimum so of such .s and the set V = SA fl it (sopi, p2, p3, . . . , pn) including 
a point q outside E provided that A consists of points of K. The set V spans 
the hyperface P'. 

Proof of Lemma 13. Proposition 1 says that there exists a unit e E Eh such 
that each component CO i(e) is less than 1 except cpk(e) > 1. Taking sufficiently 
high power of e, one finds an algebraic integer e' which is very close to the k-th 

axis. It is clear, that e' is contained in U3 for sufficiently large s. We proved 

the first assertion. The last assertion is clear. For the second assertion, we 

adopt the following algorithm which determines the minimum of s. 

  • Firstly, compute all integral points within U3 for s = 2, 4, 8, ... until an 

    integral point in U3 — E is found. Let sl be the second s such that 

U3 — E is found to contain an integral point and ql, q2, ... , q,, all of 

    integral point in U31 — E.

• Secondly, compute determinants

Iq.i,P2—gi,p3—gi,...,pn—qil (20)
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for 1  <i,j  <r' 
that mA C °K•

to the absolute precision of 1/(4mn) 
Then, one finds a q = qt such that

with m E Z such

Iq2,P2 —q,p3—q,•••,pn—qI /Ige,P2—q,p3—q, ,Pn—gI (21)

is greater than or equal to 1 for 1 

paying respect to the precision).

<j<r' (comparison should be done

• Lastly, compute the intersection p' of 7r (q,p2, p3, ... , pn) and the k-
 th axis. Then, the number so is the quotient of the k-th coordi-

 nates of p'1' and pi. Moreover, the point q E is on the hyperplane 
7r (sopi, p2) p3, ... ,N) and the set V is the union of the SA-point on E 

 and the set of all qi's such that the quotient (21) equals to 1 (compar-
 ison are done paying respect to the precision).

The first assertion guarantees that this algorithm terminates. On the other 

hand, it is clear that this algorithm computes the desired result if computa-

tion could be exact. Thus, we only need to verify that the precision refered 

to in the second step is sufficient for obtaining the correct answer. Let d be 

the disctiminant of K. Then, determinants I q„ p2 — qi, P3 — qi, ... , pn — qi I 
are a priori known to be greater than or equal to v/mn. Therefore, the 
precision of 1/4mn is sufficient. • 

  A face F of BA is said to be effectively determined if all of SA-points on 
F is effectively determined.

Proposition 14. Assume that the auxiliary set A consists of algebraic num-
bers of K. And let P =P(pl,p2,...,pr) be a hyperface of BA whose SA-
points are known. Then, one can effectively list all hyperedyes contained in 
P by computing determinants I pe(i), Pe(2), • • • ,Pe(n) I for all possible injections 

: {1,2,... , n} {1,2,... , r}, as stated in Lemma 12. 
  Let E be a hyperedge contained in P and P' the hyperface adjacent to P 

at E. And assume that 732i p3i ... , pn are independent points on E and that 
pi is on P — E. Then, by Lemma 13, one can effectively determine P'. 

Proof of Proposition 14. The proof is obvious. • 
  To find one hyperface from which we can compute successive hyperfaces, 

we fake the method of Proposition 14 by adjoining auxiliary points to S to 
form a "known" hyperface.
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Proposition 15. One can  effectively find a basis 01' = 1,132,' /3n                                                     ' of oK                                                        '~ 

consisting of totally positive integers. Set yi = /3;/tr/3L for 1 < i _< n and 
Ai = {yi+1, yi+2, ... , yn } for 0 < i < n, (in particular, An = 0.) Then, the 
set P1 = P (y1, y2, ... , yn) is a hyperface of BA, such that SA fl Pl = Ao. 
One can inductivly and effectively define Pi's which are hyperfaces of BA, 's 
as follows: One can effectively determine a hyperedge Ei C Pi - {yi+1} by 
Lemma 12 and the adjacent hyperface Pi+1 of Pi at Ei by Lemma 13. In 
particluar, Pn is an effectively determined hyperface of B. 

Proof of Proposition 15. The first assertion is verified by recalling that 
each algebraic integer can be computed to the precision of 1/2. The second 
assertion is proved by the fact that the hyperplane 7r : x1 + x2 + • • • + xn = n 
contacts the convex set xlx2 • • • xn > 1, which contains all totally positive 
integers, at t(1, , 1). The third and the fourth assertions are clear. •

3.3. Example 

For a demonstration of Theorems 9 and 11, we give the following example. 
Let [; be a primitive 11-th root of unity, 0 be the sum of ( and its complex 
conjugate. Then 0 has the minimal polynomial 

X5+X4-4X3-3X2+3X+1. 

We take the field Q(0) as K. Then, the field K is totally real number field 
of degree 5 and has the discriminant 14641. One can take 

                    1, e, 02, 03, 04 

as a basis for oK . Computation shows that one can take M to be the family 

consisting of the following 9 hyperfaces: 

               P (a1, a3, a5, as, alo), 
                P (a5, as, a1o, a11, a12), 

                P (a1, a2, a3, a5, a8, a9), 
                P (a1, a5, a8, as, a1), a16), 
                P (a2, a3, a5, a7, as, aio), 

                 P (as, a7, a10, a13, a14, ais), 
                P (as, as, a10, a12, a13, ais), 
                P (as, as, aio, ais, a16, a17), 
                  P (a2, a4, a5, a6, a7, as, a9, a10, a12, a13)
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where  ai's are given as follows:

a1 

a2 

a3 

a4 

as 

as 

a7 

as 

as 

a10 

an 

an 

an 

a14 

als 

a,s 

017 

a1s 

a,9

= -1-30+502+03-04 , 

= -1- 40 + 02 + 503 + 204, 

= -1 - 40 + 402 + 303, 

_ -20 - 02 + 303 + 204, 

= 02, 

= 92 + 203 + 04, 

= 202 + 03, 

= 1-20-02+203+04, 

= 1 - 202 + 04, 

= 1, 

= 1+9-202-03+04 

= 1+20-202-03+04, 

= 1+20+02, 

= 1+50+602-203-204, 

= 10 - 50 - 1202 + 203 + 304 , 

= 2-30+03, 

= 3-20-302+03+04, 

= 3 + 110 + 502 - 403 - 204, 

= 4-402+04.

  It turns out that there are too many lower dimensional faces to list up 

here. Therefore, we only list association between hyperedges. Association 

between hyperedges within the family 6 of Theorem 9 are as follows:

P (a4, as, an, a,2) 
 P (a2, a4, as, as) 

P (a2, as, as, a7) 
P (a7, as, am, an) 

P (as, a1o, a12, a,3) 
P (a,, as, am, am) 

 P (a2, a7, as, a,3)

= 717P (as, as, au), a,,), 
= r14P (as, a1o, a11, a,2), 
= 773P (as, au), a11, a,2), 
= i7ioP (as, a9, a11, a,2), 
= r711P (a1, as, as, a16), 
= 1I9P (as, a1o, a13, an), 
= 714P (as, am, a,4, als),

15



One can check that units  771, 772,• .. , 1712 are written as products of powers of 

772=02, 

                  775 = (0 — 1)2(0+ 1)2, 
777 = (0 + 1)2, 

illo = 0+2. 

Moreover,one has the identity 772757710(02 — 3)2 = 1. This implies that the 
group EKis generated by square units. Thus, the unit group EK of K is 
generated by 

                  0, 0 + 1, 0 — 1, 02 — 3. 

This is consistent with a result in [2]. 
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