
!

■

京大附図

請 論 文

 

申位

 

学
`

!

、

ノ

'

菟

h
凱

鴨灘
欝
無

総

齢

ゾ

、

ノ
F

も

㍗

へ

霞
㌧
㌦

5

:

、

㌃灘

繋
臨

'

鬼F

㍗

幽
7

'

7

生明田石

P

雪

牛

"

・

駕

い・
㌧

「

曳

【

・

H

ノ

ヤ

'

答

骨

,

」

覧

7

む

ア

ノ

ひ

ム

だ

,

ヤ

「
9

'

峨

`

甲

碍

・

」

'

{

、

鞍

高

』

監

兜

∵
勘
恥邪筋鞍

黛

潜

齢
墾

ぐ
鮒
轟
難

輸

暫
が籔

蝋
説

.、

曲
「
【
国
』
【
7
【O

岡
日

膣

「

'

f

㌔

一

～
{皇此_』

ト

甘

-

哩
～

肩

,

 

勤
臨
戴
驚
欝

,

欺

、
議
勲
煮

導

璋
拳

学
曇

轟
・
婁

f

も

'

.

「

『
f

舜
㎏

、"
・

七

τ
加
蓼

馨

}

へ

儒欝

蓬
1



Effectsofpartialmeridionalbarriers

ontheAntarcticCircumpolarCurrent

(南 極 周 極 流 に対 す る部 分 的 な子 午 線 境 界 の 効 果)

石 田 明 生
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                          Abstract 

  The structure and transport of the Antarctic Circumpolar Current are exam-

ined by means of a simple barotropic model. We investigate the effects of a partial 

meridional barrier corresponding to the South American peninsula and the island arc 

which overlaps meridionally with the barrier. The island arc is modeled as another 

meridional barrier. 

  The transport is given by the ratio of the pressure difference produced by wind 

stress to the resistance resulting from bottom friction. In the limiting case with no 

friction, the pressure difference is determined by the magnitude of the wind stress 

at the latitudes of the ends of two meridional barriers, while the resistance is  pro-

portional to the difference between the Coriolis parameters at the same sites. The 

transport predicted by the model is reasonable as compared to the observed value. 

This suggests that the mechanism discussed in this paper can be applied to the real 

ocean. 

  We also find the relationship between the transport and the topographic drag on 

the meridional barriers. The time change of the transport is determined by the drag 

on the meridional barriers, the bottom stress, and the rate at which momentum is 

supplied by wind stress. The transport lags wind stress by several days.



1 Introduction 

  The Southern Ocean or Antarctic Ocean is the only zonally unbounded region 

within the world ocean. The Antarctic Circumpolar Current (ACC) flows eastward 

in the region. The transport of the current is about  130Sv (1 Sv =1012  cm3s-1), 

which is much greater than that of other ocean currents (e.g. Whitworth et al., 1982; 

Whitworth, 1983). Although numerous studies have attempted to find the dynamics 

that determine the transport of the ACC, those dynamics remain unclear (Nowlin 

and Klinck, 1986). 

  Hidaka and Tsuchiya (1953) constructed models of the ACC as a laterally viscous 

zonal stream driven by surface wind stress. In order to limit the total transport of the 

ACC to observed values, a lateral eddy viscosity of more than  101°cm2s-1 is required 

by their models — several orders of magnitude greater than that generally envisaged 

in other oceanic currents. Subsequently, attempts have been made to describe a 

model of the dynamics of the ACC that predicts a transport independent of the 

friction coefficient. 

  Munk and  Palmen (1951) suggested that drag due to bottom topography provides 

sufficient retarding force on the flow to balance the surface wind forcing. Gill and 

Bryan(1971) developed a primitive equation, three-dimensional numerical model of 

the ocean. In their experiments the combined action of topography and baroclinicity 

increased the transport. 

  In recent years, a downward transfer of wind-imparted zonal momentum by syn-

optic eddies has been proposed. Studies using an eddy-resolving quasi-geostrophic 

numerical model have been carried out (McWilliams et al., 1979; Treguier and 

McWilliams, 1989; Wolff and Olbers, 1989; Wolff et al., 1991). In these experi-

ments the momentum input by wind stress is transferred to the lowest layer by eddy 

activity, where it may leave the system by bottom form drag. The bottom form drag 
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thus provides sufficient retarding force on the flow to balance the surface wind forcing. 

However the effects of lateral topography (e.g. the South American peninsula and an 

island arc to the east) are not sufficiently represented in these experiments. So, it is 

not clear if bottom form drag is the only mechanism that balances the surface wind 

forcing. 

  Although all of the above studies regard the ACC as a purely zonal phenomenon, 

Stommel (1957) and Gill (1968) pointed out the effects of lateral topography. Stom-

mel observed that although Drake Passage is quite broad and deep, the flow through 

Drake Passage is blocked by an island arc to the east and the ACC therefore cannot 

be purely zonal. He suggested the possibility that  'the ACC is essentially amenable 

to treatment by the Sverdrup theory; that the current is essentially frictionless except 

in a narrow region just after it passes through Drake Passage.' Stommel (1962) later 

constructed a model that treated Drake Passage as a porous barrier in a meridional 

wall, but he did not state the physical meaning of the porous barrier. 

  Gill (1968) examined in detail the effects of a partial meridional barrier with a 

gap corresponding to Drake Passage. The transport was determined to be the ratio 

of eastward wind stress to bottom stress on the first order dynamics of his model. 

Gill found that large values of vertical or horizontal friction were needed to keep 

the model transport to a reasonable value. (He cited a vertical friction coefficient of 

 103cm2s-' and a horizontal friction coefficient of  108cm2s-1.) 

  Klinck (1986) ran a barotropic numerical model to study the effects of the island 

arc suggested by Stommel (1957). He modeled the island arc as a partial barrier 

and showed the dependence of the transport of the ACC on the lengths of the two 

meridional barriers. As the results of his experiments, he showed that as the two 

barriers' overlapping length increased, the transport decreased. However, he did not 

show how the barriers retarded the model current.

2



  The main objective of this paper is to describe the effects of a partial meridional 

barrier and of an island arc. The problem to be considered, then, is how their effects 

control the transport of the ACC, and, furthermore, how the momentum input by 

wind stress is retarded. The bottom form drag mentioned previously also seems to be 

important in the balance of momentum. However, we can acquire the whole image 

only after resolving each element of the physical process. We therefore consider only 

the effects of lateral topography. 

2 Formulation 

  The bottom topography near Drake Passage is shown in Fig. 1, where the South 

Sandwich Islands and South Georgia Island are part of an island arc. Peterson and 

Whitworth(1989) suggested a schematic view of the ACC in which it is deflected north 

over the Falkland Plateau after passing through Drake Passage and moves along the 

northern flank of the Ewing Bank and the  Falkland ridge. 

  Stommel (1957) modeled the South American peninsula and the island arc as two 

partial meridional barriers. He emphasized that the ACC cannot be purely zonal, 

namely, that there is no latitude band without a meridional barrier. However, if we 

regard the island arc, the Ewing Bank and the  Falkland ridge as the second meridional 

barrier, the South American peninsula and the barrier overlap in the latitude band 

from about 50°S to 57°S. It is expected that the western boundary current develops 

in the latitude band, where momentum is dissipated. We then use the geometry 

shown in Fig. 2. The model is a zonal channel with two meridional barriers. The 

geometry appears to be the simplest that can include the above features. 

  A rectangular coordinate system is used with  x,  y and z measuring distances 

eastward, northward and upward respectively. The origin corresponds to a point at 

the southern end of Drake Passage. The lines  x = 0 and x = represent the same 
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meridian, the section y >  yi being a barrier similar to the South American peninsula. 

The line x =  ls represents the second meridional barrier, which corresponds to the 

island arc. The latitudes at y = y1 and  y2 represent those at the southern end of the 

South American peninsula and at the northern flank of the Ewing Bank, respectively. 

The geometry shown in Fig. 2 is basically the same as that used by Gill (1968). 

However, he did not include the second meridional barrier. 

  Dynamically, the model is essentially that used by Stommel (1948). The ocean is 

assumed to be homogeneous and of constant depth, H, and the horizontal momentum 

equations are integrated over this depth. If  u and v are the eastward and northward 

velocity components and p the density, the mass transport components are defined 

by 

        to to  U=  j.  Hpudz,  V=iHpvdz, 
                                              - and the integral of the pressure p is also defined by 

 P  =Io                                       pdz. 
                                   -H 

  Following Stommel (1948), a linear friction law is assumed so that the vertically 

integrated equations have the form 

                        a             —fV = —p—
a+ Tx — vU, (1) 

                       a 

             fU = —p+ rY— vV, (2) 
                          ay 

where f is the Coriolis parameter given by f = fo  +13y  (0 is constant),  Tr and  Ti 

are the eastward and northward components of wind stress, respectively, and  11 is the 

coefficient of friction. 

  From the continuity requirement, a transport stream function  V) is defined by 

                aoao                       =—u— =  V. 
              ay'  ax 
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Substitution in (1) and (2), and elimination of P, leads to 

 vV20 + ,a—a=  curly,(3) 

                                         x where V2  (92/8x2  e2/ay2 

  The boundary conditions are that there must be no flux across solid boundaries, 

that is, that  V) must be constant on solid boundaries. The value of the constant can 

be set to zero on the northern boundaries (x = 0, x =  Lx and y =  Ly), but will 

have a different value on the southern boundaries (x =  lx and y = 0). This value is 

a measure of the total transport through the channel and will be designated  Q. 

  Now  iko and  IP  I are defined as the solution of the equations 

                          a1P0 
             vv200,u,= C11117, (4) 

                            ax 

             vv201a0.                                       (5) 

We solve (4) with the condition  00 = 0 on all boundaries and solve (5) with the 

 condition = 0 on the northern boundaries, and  otki  = 1 on the southern boundaries. 

The solution of (3) is then given  by 

 =o+ (6) 

 o represents the flow field driven only by the curl of the wind stress. The transport 

of this flow through the channel is zero. On the other hand, the flow field of  irbi is 

independent of the forcing, i.e., of the wind stress. 

  The total transport Q is given by substituting (6) in (1) and (2), and by integrating 

the momentum equations around the channel. Here the notations 

                               a'cbi(90i                         (u
i,v,)=(--ay,—ax), 

 i[u,dx+  J,  =  fV,dx  f  Uidy] (i =  0, 1), 
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are introduced. Since the pressure term is zero due to the continuity of pressure, Q 

is given by 

                     f[rxdx-1-rYdy] — (1110+ Jo)     Q=(7) 

 , 

                        vh+ Ji 

where  vI0 and  vIi are the frictional force acting on the flow along the path of inte-

gration. Jo and J1 are the Coriolis forces on the flow across the path. 

  The solution  //)1 of the homogeneous equation (5) represents the flow field driven 

by a wind stress whose curl is zero. Although  I.Pi depends on the geometry of the 

model basin and on the parameters v and  j3, it is independent of the distribution of 

wind stress. Therefore,  vI1  + J1 can be regarded as the resistance on a unit volume of 

the free flow defined by  01 to which relative vorticity is not supplied. The numerator 

of R.H.S. of  (7) is the driving force, which generates the total transport of the current 

through the channel. This can be interpreted as the pressure difference across the 

boundary established at Drake Passage. It is discussed in Section 4. 

  The flow defined by  00 is driven only by  curlr and is independent of  T itself. If 

 Ty increases to  Tr +  To  (To is constant), the transport increases by  ToLz/(v-ri +  J1). 

This is a general result independent of the detail of the basin geometry (e.g. whether 

or not the meridional barriers overlap.) This suggests that not only the distribution 

but also the absolute value of the wind stress affects the transport of the ACC. 

3 Solution for Low Friction 

  The problem of finding solutions analytically is not as straightforward as it might 

be because of the unusual geometry involved. The objective of this section is to find 

the functions  iki and  do on the assumption that the value of the friction coefficient 

v is small, similar to the assumption in Gill (1968). The whole basin can be divided 

into the sub-regions shown in Fig. 3, because the dominant vorticity balance is 

different in each sub-region. There are zonal jets in regions A and A' Regions B 
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and B' correspond to the western boundary layers. The Sverdrup solution is a good 

approximation in regions C and C' Regions D and D' are required to represent the 

flow around the ends of the meridional barriers. Since regions D and D' have the 

scale of  0(v/P), the solutions for these regions do not affect the transport of the 

current. Thus we need not find the solutions for regions D and D' The path of the 

line integral in (7) is chosen along the path PQRSP in Fig. 4. 

  If the lines y = 0 and y  =  Ly are regarded as solid boundaries, boundary layers 

are formed near the lines. Here we assume the Sverdrup balance on the lines y = 0 

and  Ly and remove the influence of the boundaries. The flow field near Antarctica 

is not represented correctly due to this assumption. However, the flow near the 

path PQRSP chosen for line integral is not affected, because it is apart from the 

boundary. Though the flow near y = 0 may not be derived correctly, the transport 

and the structure of the ACC are not affected by this assumption. 

3.1 Homogeneous Solution 

  In this sub-section we find the function defined by the homogeneous equation 

(5) and calculate the denominator  (vIi J1) in (7). The solutions in regions C and 

C'  (cbic and  'Vic') are that  bic = 1 and  ikic, = 0, from the Sverdrup balance. Thus 

there must be zonal jets in regions A and A' to match the solution in region C with 

that in region C' There are western boundary currents in regions B and B' 

  As  v 0, the solution in region A tends to a solution of the parabolic equation, 

 va201A  +13(901A             = 0,(8) 
 aye 

where  lkiA represent  01 in region A. 

  If the co-ordinates defined by 

 e  =  x,  77  =  —  Y2  (9) 
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are introduced, the equation (8) becomes 

                         .911)1Aa2.01A  
               aez---- a,72  ,(10) 

where a  E  4,6 (a is a measure of width of the western boundary current), the 

boundary condition at e = 0 is 

                         ,0 77 > o,           01,1(0,77)=(11) 
 1 77 < 0. 

  The solution of (10) is given by 

                    1 -2 
                   1,biA(x,y) =-2erfc(y

wi(y) ), (12) 

where 

 w1(x) =  2[a(ix  -  x)]1/2, erfc(x)  =I                                                                  e-t2c/t. 
                                                    v71"x 

In a similar manner, in deriving (12), the solution in region A' is given by 

                            ,1„y-yi, 
                                         (13)                      01.1,(x, y)=-2ertc( w2(x) ). 

where 

                    w2(x) =  2[a(Lx -  x)]1/2 

The widths of the zonal jets in regions A and A' are  Oaa(ls - x)]112) and  Oacr(Lx - 

 x)]1/2), respectively. They spread in proportion to  a1/2 If the width of the zonal 

jets is larger than the overlapping length  6(E  y2 -  yi) of the two meridional barriers, 

the boundary condition (11) will not be valid. Therefore 6 should be longer than the 

width of the jets, i.e., 6 >  max((a/x)1/2,[a(Lx  -  /x)]1/2). If the condition is rewritten 

to that for the friction coefficient,  11 <  min(382//s,i352/(Lx -  lx)). The solutions are 

valid for a friction coefficient small enough to satisfy this condition. If we set the 

parameters  0 =  10-13  cm-1  s-1,  6 = 1000km,  Lx = 20000km and  l, = 2000km, 

to estimate the condition approximately, the constraint is rewritten to that for the 
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width of western boundary current,  v//3 < 56 km. The width of western boundary 

current represented in this model is comparable with the observed one, though it is 

slightly narrower. 

  In region B, the western boundary layer of thickness of  0(v/g) develops and the 

solution tends to a solution of 

                    a2o1B  al/4B   =  O. (14) 
                   axe  ax 

The appropriate solution  01B satisfying the conditions that lb+ih                                                               rIAr1B  -7-7 0 at  x = 0, 

 Y  >  Yi  and  —>  0  for  x  oo  is 

               =—2e                      __eerfc( —Y2)e(Y — Yi),(15)              01/3(x, y) 
               2wi(0) 

where 

 0  t  <  0                    61(t) =l  1  t  >  0: 

Similarly the solution in region B' is 

           1y  
           Ovp(r, y)  = [1 ——2erfc(w

2(1s)(/ -x)/ct • 9(y2 y). (16) 

  The resistance  v11 + J1 is calculated by using the above solutions.  vli is given by 

 vI1 = v(  f Q01B dy—/'R aikiA dx +ao1B, dyIP aoi,  dx) 
 P  ax Q  5YFt axs ay 

  =  v(lis  + (17) 

where 

             0/.)1/2 
 A=(18) 

 vrias  =vg(Ls —  lx))1/2, (19) 
 7r 

        —'38erfc(  vglx62  UI1B= 
          2/DIM)()/-[exp(wi)1],(20) 

                      662         =11-8[2 — erfc(
w2(1,))] +vfl(Lrir— /.))1/2[exp(                                          w2(1x)2)1]. (21) 

 2 

                          9



The terms  v.TIA and  vim, represent the frictional force acting on the zonal jets in 

regions A and A', while  vI1B and  v/LB, represent that on the western boundary 

currents in regions B and  B' The frictional force is proportional to (friction coefficient 

v)/(width of jet). Since the widths of the zonal jets are proportional to v112, the 

frictional force is proportional to  v1/2 On the other hand, since the width of the 

western  boundary current is  0(v/0), the frictional force does not strongly depend on 

v. However, since the widths of the zonal jets broaden toward the western boundaries 

due to friction, the frictional force acting on the western boundary currents becomes 

small (the second terms of R.H.S. in eqs. (20) and (21)). These terms include those 

which set off the friction force on the zonal jet((18) and (19)). 

  Since there is no normal flow across the lines PQ and RS, the Coriolis term J1 is 

given by 

             801L. alki  Jl= —f(y2)\o  axY-Y2tdx — f(y1)1 ax  ly=dx 

                         =  —[f(Yi) —  f  (Y2)] (22) 

From the equations  (17)-(21) and (22), 

                     6  

 vI1 +  Ji  =—138  [erfc(—2w1(0)) erfc( w2(1x))] 
    22 

           Q(«)1/2[Fxexp(               `rw18(0)2) +N/Lx1, exp(w2(1.)2)]. (23) 
The resistance  vIl + J1 includes a term which is proportional to  ,66, which has the 

finite value  As in the limit of v 0. This result suggests a mechanism that earlier 

models did not include and also shows that the island arc plays an important role in 

the transport by the ACC. 

3.2 Nonhomogeneous Solution 

  Now we attempt to find the function  00 defined by the nonhomogeneous equation 

(4) and calculate the numerator in R.H.S. of (7). The meridional component of the 
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wind stress is neglected because it is smaller than the zonal component. Moreover, 

the wind stress distribution is presumed to be uniform in a zonal direction. 

  In regions C and C', the Sverdrup solutions are good approximations. If the wind 

stress curl at y =  y2 and y =  yi does not disappear, zonal jets will develop in regions A 

and A'. Western boundary currents exist in regions B and B' The dominant vorticity 

balance is the same as that in the case of  01. 

  The solution when 0  < x  <  lx is given by 

 1  x _Ls—lz erfc(  — Y2\          00(X) y) = --lir— x+            a
y2wi(x)) 

                      —Y vi 
                — e—xic([1,-PLs2erfcw

i(0Y)LI •  u(Y —  Yi)}, (24) 

while the solution when  lx  <  x <  Lx is given by 

      1ayy  
          A:1(xY) = --{Lx —  x + —erfc( ) 

           ,6ay2w2() 
               — —  lx + —Gerfc(Y  Y1)]•  9(y2 — y)}. (25) 

                            2w2(11) 

Details of the derivation of (24) and (25) are given in the Appendix. 

  The term  1110 + Jo is calculated by using these solutions. Since the transport of 

the current  00 is zero, J0 is zero. Therefore, only  v10 is required, and it becomes 

 1110 =  (Ls —  2/x)(7-'(yi) —  rx(y2)]  NM2 —  N  M3, (26) 

where 

 Ls  — Is al-- (y2)  (6
erfc( )2( al. )1/2 exp( 82   NM2 =              2 ay W1(0)7rW1(0)2)1 (27) 

 1. ars (Y 1)  V
erfc(                            )2(x)— I.))1/2exp(52                                             w

2(1,)2)1,           2  ayw2(1.) 
 aLs1, 027-r(y2)crLs(Ls —  lx) a27-(yo  

N=(28) 
      2 aye 2 aye 

The first term in the R.H.S. of (26) is the frictional force acting on the western 

boundary current, according to Sverdrup's theory and independent of  v.  NIII2 is the 
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frictional force on the western boundary currents, formed by the zonal jets in regions 

A and A'. The zonal jets are generated because the value of the wind stress curl at 

y =  y2 and y =  yi is not zero.  NM3 is the frictional force on the zonal jets in regions 

A and A' 

  The line integral of the wind stress is given by 

 i r'dx =  rz(n)(Lx  —  4)-1-  Tr(y2)/x. (29) 
From (26) and (29), the numerator in (7) is given by 

             NM =  NM1  +  NM2  +  NM3, (30) 

where 

 NM1 =  Ts(y1)/z +  r2(y2)(Lx — lx). (31) 

 NM1 in (30) is dominant in the appropriate range of parameters. Therefore the 

values of the wind stress on lines PS' and R'Q' are more important than those on 

the lines QR and  SP' along which zonal jets flow. This is due to the frictional force 

on the western boundary currents driven by  curir; a physical explanation is given in 

Section 4. The points P',Q',R' and S' are located just west of points P,Q,R and S 

across a meridional boundary (see Fig. 4). 

4 Physical Interpretation of the Solution 

  The transport prediction equation (7) is composed of the terms (23) and (30). 

Although equation (7) is so complicated, it has a simple form in the limiting case 

with no friction  (v  --+ 0 i.e.  a  --^ 0), that is 

                Q=                      Tr(Y1)/.+ Tr(Y2)(Lx-1..) (32)  P6 

The purpose of this section is to provide a physical interpretation of this formula. 
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  If Drake Passage is presumed to be closed by a meridional barrier, the pressure 

difference across the barrier is caused by the surface wind stress. Then, if the barrier 

is removed, the flow through Drake Passage is generated and the transport of the flow 

is determined by the resistance on the flow. The resistance equals to the pressure 

decrease resulting from the free flow  7,b1. So we first investigate how the pressure 

difference across Drake Passage is generated. Next, we find the pressure decrease 

along with the free flow  01. 

4.1 Pressure Difference induced by Wind Stress 

  Now we consider the pressure difference across Drake Passage, which is presumed 

to be closed by a meridional barrier. If the equations of motion are integrated along 

the path PQRSP', the pressure difference between P and P' may be determined. The 

northward velocity V on the path PQ is  (/s/v)arr/ay, if V is assumed to be the 

Sverdrup transport divided by the width  v//I of western boundary layer. Similarly, 

V =  (L, —  /x)/varr/ay along path RS. The Coriolis force is zero, because the trans-

port through the channel is set at zero because of the inclusion of the barrier in Drake 

Passage. Integration along each path leads to 

           PQ — Pp  =  —[Tx(y2) —  Tx(Mis, (33) 

 PR  —  PQ  =  rx(y2)/i, (34) 

 PS —  PR  =  —[Tx(y1) —  Tr(Y2)](Ls  —1.), (35) 

 Pp, —  Ps =  rx(yi)(L, —  1r). (36) 

The sum of these equations yields 

 Pp, — Pp =  Tx(Y1)1. +  Tx(Y2)(Ls —  1.). (37) 

Equation (37) is equal to the numerator in (32). Thus this pressure difference can be 

interpreted as the driving force of the transport through the passage. 
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  It should be noted that the terms including  Tx(y2) in (33) and (34) and the terms 

including  e(yi) in (35) and (36) cancel each other. Since the pressure gradient along 

the eastern boundary becomes zero due to the  /3-effect in the case of  Ty = 0, the 

pressure difference between P and R is determined only by the difference between P 

and  S' The difference between R and  P' is also determined only by that between R 

and Q'. The first term of the R.H.S. of (37) is the pressure difference between P and 

S', and the second term is that between R and Q' 

  However the above discussion is not correct, if the meridional compornent of 

the wind stress is not zero. If the meridional compornent is included, the pressure 

difference between P and  P' is given by 

 PPS - Pp =  ips,R,QT,  7  • dl, (38) 

where dl is the line-element along the path  PS'R'Q'P' The pressure difference  be-

tween S' and R' is given by  fS,  7-Ydy, while that between Q' and P' is given by 

 f 1  T.Ydy. Thus the meridional component of the wind stress also affects the trans-
port through the channel. 

  The equation (38) represents that the pressure difference between P and  P' equals 

to the line integral of wind stress along the path PS'R'Q'P' Although the pressure 

difference is derived from the line integral along the path PQRSP' in this subsection, 

the same result can also be derived from that along the path PS'R'Q'P' The result 

is independent of the integration path, because pressure is conservative force. 

  If the wind stress is uniform eastward  (7-- =  To,  7-Y = 0), there is no flow, and the 

stress balances with the purely zonal pressure gradient force. The pressure difference 

across the barrier at x = 0 is then  roLr.

14



4.2 Pressure Decrease resulting from free flow  01 

  We consider the situation that the barrier presumed in the previous subsection 

is removed and investigate the pressure decrease resulting from free  flows with the 

transport Q. Since the velocity along the paths PQ and RS is given by  PQ/v, and 

the transport across the paths QR and  SP' is Q, the pressure differences are given by 

            PQ — Pp =  —138Q, (39) 

 PR  PQ  f(Y2)Q, (40) 

 PS  PR =  —1-38C2, (41) 

 pp, —  Ps  =  —f(Y1)Q. (42) 

These equations show that the pressure decrease along the western boundaries is 

 2/8Q (eqns. (39) and (41)), and the pressure increase due to the Coriolis force is 

 ,86.Q  (eqns. (40) and (42)). The sum of the equations gives 

 Pp, —  Pp =  —2  95Q  -F[f(y2) —  f(yi)]Q =  —,88Q. (43) 

  The transport Q of the current is determined, as the pressure difference given by 

(37) is cancelled by the pressure change given by (43). That is, 

 /38Q =  Tx(Yi)/x +  Ts(Y2)(Lx (44) 

This equation is the same as (32).  /36 in (44) is the resistance on a unit volume of the 

flow through the channel that has the meridional barriers with the overlapping length 

 b. The value  ,88 is independent of  v, because the width of the western boundary 

current is proportional to  v. As v decreases, the width becomes narrower. The 

resistance thus does not change. The transport is determined as a result of the 

balance between the pressure difference and the resistance. 

  Stommel (1962) constructed a model that treated Drake Passage as a porous bar-

rier. The physical meaning of the porous barrier settled by him is clear from (44).  If 
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the current is essentially frictionless except in a narrow region near western bound-

ary, the ACC must flow through the frictional western boundary with the length 6. 

Therefore the porous barrier is interpreted as the frictional western boundary, which 

has the resistance  #6. 

  Equation (32) is the same as equation (12) in Godfrey (1989) and equation (52) in 

Minato and Kimura (1980). These studies found the circulation around Australasia 

and Japan to be driven by wind stress. Their models differ from the one in the 

present study in that equation (32) predicts non-zero transport even by wind stress 

with a curl of zero. 

5 Results 

  The dependence on parameters of the solution derived in section 3 is now dis-

cussed. The structure of the solution depends on the friction coefficient  I), the distri-

bution of the wind stress and the geometry of the model basin. In order to clarify the 

effects of partial meridional barriers on the ACC, the dependence on the geometry 

is also investigated. The transport of the current is given by the ratio of the driv-

ing force (30) to the resistance (23). The driving force (the numerator) depends on 

the distribution of wind stress but the resistance (the denominator) does not. The 

dependence of these two terms on appropriate parameters is also investigated. 

5.1 Resistance to Flow 

  The driving force (30) is  O('roLz), if the typical wind stress magnitude is  To. 

For an intuitive understanding, we investigate the dependence on parameters of the 

transport instead of the resistance (the denominator), provided that the numerator 

is fixed at  7-0Lr. The first term in (23) is  opo, while the second term is less than 

 o(,6s) for 8 >  max((a/r)1/2,  [a(Lx-1s)]112) (see Section 3). The first term is therefore 
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dominant. The denominator  vh + J1 depends on the friction coefficient  v and the 

geometry of the basin. The geometry is characterized by the overlapping length  6 

and the distance  Ix between two meridional barriers. We investigate the dependence 

of the transport on these two factors using  v as a parameter. 

   Figure 5 shows the transport as a function of 6, where  )5' =  10-13  Ls 

20000km,  l,, = 2000km, and  7-0 = 1  dyn.cm-2. The thick line represents the transport 

in the limiting case with no friction  (zi  —+ 0), and is given by  7-0Lr/138. As  v increases, 

the transport decreases. However, as  6 increases, the curves approach the curve 

representing the limit with no friction, and thus the dependence on  v becomes small. 

This fact shows that as  6 increases, the frictional force on the western boundary 

current becomes dominant, because the dissipation of the western boundary current 

depends on a mechanism which is independent of v. 

  Next we find the dependence of the transport on From the symmetry of 

equation (23), the value of the denominator is symmetrical about  lx =  Lx/2. Figure 

6 shows the transport to  Ix when  6 = 1000km. The thick line shows the transport with 

zero friction, that is  roLs/P8. The transport reaches a maximum when  Ix =  Lx/2. 

As  Ilx —  Lx/21 increases, the transport becomes small, but the relationship is limited. 

  From the above results, it is found that there is resistance in proportion to  6 and 

that the value is almost independent of 

5.2 Driving Force 

   Following up on the previous subsection, we investigate the dependence of the 

transport on parameters with the denominator fixed at  )36 for an intuitive under-

standing. The numerator depends on the distribution of wind stress relative to the 

basin geometry. The dependence of the numerator on the distribution of wind stress 

is then investigated, when the geometry is fixed  (Lx = 20000km,  Ix = 2000km,

17



 yl = 1000km,y2 = 2000km). 

  We estimate the order of the three terms  NM1,  NM2 and NM3 in (30).  NM1 

is  0(7-0L2). The terms in the parentheses in NM2 are less than  6 by one order for 

 <  (aLr)1/2, because the terms in the parentheses cancel each other. If the typical 

spatial scale of the wind stress is  Liv, NM2 is  O(ToLz  •  0.184,,,). Thus  NM2 is less 

than  NM1 by more than one order for  6 <  L. NM3 is  OfroLz  •  aL2/L2,,,) and is less 

than  NM1 by one order. Therefore, only  NM1 is the most dominant term and NM3 

affects the value of the numerator slightly. 

  The wind stress is assumed to have the following distribution 

 Tr(y) =  ro cosIr(yL
Wyo)(45) 

where  ro = 1 dyn  •  cm', and  L,,, =  4000km are typical scales (Hellerman and 

Rosenstein, 1983).  yo is the latitude where the zonal wind stress is a maximum. 

  Figure 7 shows the transport as a function of yo. The numbers in the figure 

correspond to the contributions from  NM1, NM2 and NM3. As denoted above, 

 NM1 has a maximum amplitude, and also for  lz  <  Lz—lz, the term  ri(y2)(Lz. —  lz) 

in  NMi is dominant. Therefore  NM1 reaches a maximum value when  yo is near  Y2- 

On the other hand, since the term  [aLz(Lz—lx)/2]027-r(yi)/8y2 in NM3 is dominant, 

NM3 reaches a maximum when yo is near  yl, and its sign is opposite to the sign of 

 NMI. Figure 8 shows the total transport as a function of  yo, when  v is chosen 

as a parameter. As v increases, NM3 increases and the total transport becomes 

different from the value predicted by  NM1. However, since  NM3 is near zero when 

 yo  N 3000km, the transport depends little on  v in that case. 

  The range of the transport of the model ACC to the parameters is estimated to 

be from 95Sv to 330Sv, if the parameters are set as follows: 500 <  S < 1000km, 

 10-7 < v < 5 x  10-7s-1, and 2000 <  yo < 3000km. The upper limit is slightly larger, 

but in the order of the observed values (e.g.  Whitworth et al., 1982). This result 
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shows that the model can represent the essential mechanisms of the ACC despite its 

simplicity. 

5.3 Flow Pattern 

   The zonal means of the annual zonal wind stress have a maximum value near 

latitude 47°S (Hellerman and Rosenstein, 1983). This latitude corresponds to one 

that is somewhat north of the northern edge (50°S) of the Ewing Bank, and also 

to one somewhat north of latitude  y2 in the model basin. According to Fig. 2 in 

Johnson (1989), the zero curl latitude, i.e., the maximum eastward wind stress, varies 

from 40°S to 50°S. Thus the real distribution of the wind stress corresponds to the 

range of yo: 2000<  yo <3000km. 

  Figure 9 shows the flow patterns when  yo = 2000km (a) and 3000km (b). The 

transport in Fig. 9(a) is larger than that in Fig. 9(b), because  r(y2) in (a) is larger 

than that in (b). Since the curl of the wind stress at latitude  y2 is zero in (a), a 

strong zonal jet exists in region 0 < x <  lz. This reflects the structure of free flow 

 Qifii. In (b), there is a northward western boundary current along the boundary 

at x = 0, and the zonal flow elsewhere with a southward component. It has been 

well known that there seems to be a general southward component of the current 

over the entire southern ocean except just after it passes through Drake Passage (e.g. 

Deacon,1937). It is because the transport through the passage is nearly the same as 

the Sverdrup transport in the latitude bands that  yi < y <  y2. Since the free flow 

 QI,bi must be zonal due to the a-effect except in the western boundary region, it has a 

southward component at x =  lz. However, the western boundary current derived by 

Sverdrup's theory cancels the component of  WI, so that the total southward current 

at x =  is does not appear. Baker (1982) indicated that the transport predicted from 

the wind stress curl around 55°S (which is in the latitude band where the meridional 
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barriers' overlap) is much the same as the transport through Drake Passage. Thus it 

is suggested that the flow pattern in (b) is more real than the pattern in (a). 

6 Topographic drag and transients 

  The eastward momentum balance in the model gives the relationship between the 

topographic drag on the meridional barriers and the transients of the transport of 

the ACC. 

  If the eastward momentum equation is integrated over the whole basin, the equa-

tion becomes 

                       a            Lx(dt+  v)Q +11aP_dxdy= ifrxdxdy, (46) 
                                         x where the pressure gradient term is the sum of the force on the barriers, i.e. the 

topographic drag. If the magnitude of the topographic drag and the wind stress 

is given, the transport fluctuations can be calculated by using (46). However the 

magnitude of the drag is a consequence of the forcing. So the drag depends on the 

pattern of the current and the magnitude of the transport. To avoid this difficulty, 

it is assumed that the pattern of the current is in steady state but the transport is 

not steady. This is equivalent to the assumption that the propagation speed of a 

barotropic Rossby wave is so fast that the propagation time can be neglected. The 

topographic drag term can be represented as a function of the transport Q on this 

assumption. Thus the transport fluctuations can be found by (46). 

  We find the drag on the meridional barrier at x = 0. If the width of the west-

ern boundary current can be approximated to be  v10, the meridional momentum 

equation along the eastern coast (x = 0+) is given by 

 ap(o+, y) —13Q —141—;-' yi < y < y2 
                                          (47) 

         ay —Lx                              ay Y2  <  y  <  L  y 

Since only the pressure difference across the barrier is necessary to find the drag, then 
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the pressure  P(0-, y) on the western side of the barrier is set to zero. If ( 

(47) is integrated meridionally, the pressure on the eastern side is given by 

 P(0+1  y) - —18c2(Y—Yi)—1.[7-x(y)—rx(n)]<Y<Y2            -,68Q-L.Tx(Y)+IsTz(n)+ (Lx -  lx)Tx(y2)  y2 <  y < Ly. 

Thus the drag  F(1) on the barrier at x = 0 is given by 

                             Ly 
         F(2) 

311 
 P(0+,  y)dy 

                    (-5-+  LY- y21Q +Is.1Trdy +f Trdy 
            Y2V 

             = /38[
2                Y1r2 

              -  Is(Ly-  yi)Tx(yi) -  (Ls -  Is)(Ly -  y2)7-r(y2). 

 Similarly, the drag  F(2) on the barrier at x =  Is is given by 

 p(2) =)361-52+ YIP+ (L.-1.)7'+ L, f Txdy 
                     Yy24Yi10 

               -  1xYlrr(Y1) -  (L.-  ix)Y2Tx(Y2)- 

The sum of both drag components is 

 F(1) +  F(2) =[361yQ +  Ls  f L,-rxdy -  Ly[1sTr(y1)+  (Ls -  /x)Tx(y2)], 

which, when substituted into the pressure term of (46), yields 

 (-dt+  v +  #6Ly)Q = -21/x"rx(Yi) +  (L. -  1.)7x(Y2)].                                 Ls 

If  v  <  ,681y/Lx, we obtain (32) in the steady  state as the balance between  t 

on the meridional barriers and the rate at  which momentum is supplied by  t 

stress. 

  Equation (52) represents the response of the transport to the time change 

stress. If  Tr  =  Tbeic", where w is the frequency of wind fluctuations, (52)  bec 

                d 1 
                        (-dt +T-)Q = roLyetwt, 
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(48)

(49)

(50)

(51)

(52) 

 ;tate as the balance between  he drag 

 h momentum is supplied by  he wind 

transport to the time change in wind 

of wind fluctuations, (52)  becomes 

Lye", (53)



where T  E (v  poLyAr)—i The solution is given by 

                      LyT   Q - ei(wt-w)                 (
1 4.(4)2712)1/2(54) 

where  co =  tan-l(cvT). If the forcing period is much longer than T, the response has 

the same amplitude as that at the steady state and lags the forcing by T At higher 

frequencies, the response is attenuated by a factor of (1 w2T2)-1/2 and the time 

lag is reduced. The time lag is estimated to be from 4.6 days to 10.5 days, if the 

parameters in the previous section are set. This is comparable with the observations 

of Wearn and Baker (1980) who showed that the pressure difference across Drake 

Passage lagged the wind by about 9 days, and by Whitworth (1983) who showed 

that the transport lagged the wind by about 17 days. Peterson (1988) also derived 

that the pressure difference lagged the wind by about 14 days by comparisons of 

multilayer bottom pressure records with time series of the zonally averaged wind 

stress. 

  Wearn and Baker (1980) constructed a simple model similar to the one included 

in this paper. They introduced the dissipation in proportion to the transport and 

found that the transport lagged behind the wind by about 7 days. Although the 

physical mechanism of the dissipation was not given, it is represented in this model 

as the sum of bottom friction and topographic drag. 

  Both models are incomplete, as they exclude the mechanism of Rossby wave 

propagation. If this mechanism is included, the time lag will be longer than that 

predicted in the models. However, it is difficult to include the mechanism because of 

the unusual geometry included. 

  Rossby wave must propagate the distance  Ls so as to spin up the flow field in 

the latitude bands that the meridional barriers don't overlap ( y <  yi and y >  y2 ). 

The propagation time around the Southern Ocean for a Rossby wave with the half 

wave length  Ly is given by  7r2Lx/13/4, which is about 14 days. This is comparable 
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with the time lag estimated above. On the other hand, Rossby wave must propagate 

the distance  Ix (0 < x <  Ix) and  Lx. —  lx  (Is < x <  Lx) in the latitude band 

that the barriers overlap  (yl < y < y2). Therefore the time required for the flow 

field to spin up in the region is much shorter than that in the other regions. The 

Rossby wave propagation time thus could be neglected in the latitude band that the 

meridional barriers overlap. It is left for future work to formulate the fluctuation of 

the transport through the channel including Rossby wave generation and propagation 

in the complex geometry. 

7 Summary 

  The effects of two partial meridional barriers overlapping each other on the ACC 

were investigated, using a simple barotropic model. It was found that the transport 

is predicted by equations (7), (23) and (30). Equation (7) became (32) in the lim-

iting case with no friction. Equation (32) is interpreted as the ratio of the pressure 

difference between the two sides of Drake Passage to the resistance /36. This shows 

that the friction acting on the western boundary current with length  (5 is given by  /36 

in the limiting case with no friction. The results provide a solution to the problem 

that large values of the friction coefficient are required to keep the model transport 

at a reasonable value. 

  The pressure difference is driven by the wind stress at the latitudes of the ends of 

the meridional barriers and it also drives the ACC. The distribution of wind stress 

curl is therefore not necessarily important for the determination of the transport. 

However, it influences the flow pattern. The model can represent the horizontal 

structure of the ACC, which has a northward boundary current just after moving 

through Drake Passage, and the southward current over the entire southern ocean. 

  The drag on the meridional barriers and the response of the ACC to wind  fluc-
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tuations were investigated. The momentum input by wind stress is balanced by the 

transient of the transport of the ACC, the drag on the meridional barriers , and the 

dissipation due to bottom friction. The response of the model ACC lags the fluctu-

ations of the wind stress by several days due to the drag and the bottom friction. 

It is left for future work to study the process of the response of the ACC to forcing 

fluctuations associated with the generation and propagation of Rossby waves. 

  We have paid no attention to the probable disturbing effects of bottom topography 

within ocean basins. Because of the small stratification in the Southern Ocean, 

the flat bottom models are not as good as in subtropical gyres where a permanent 

pycnocline exists and  insulates the wind driven flow from the bathymetry. The flat 

bottom models are useful to give order of magnitude estimates for processes but not 

sufficient for a realistic description of the transport. However, the main objective 

of the paper is to illustrate the process how partial meridional barriers control the 

transport of the ACC. The South American peninsula and the island arc to the 

east are most pronounced topography, thus the effects of them on the ACC is most 

important. More comprehensive models that can describe the effects of both lateral 

and bottom topography are required to illustrate a realistic description of the ACC. 
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Appendix A: Nonhomogeneous solution 

   Since the Sverdrup solution is a good approximation in regions C and C' , the 

solutions  00c and  ikoci are given by 

                Iz — x or- Lx— x or- 
            lkoc =0 a

y;0C1P,0 ay(A.1) 

  The vorticity equation in region A is the same as that for  01A. The boundary 

condition is 
                       0 —co < 77 < 0 

                  ikoA(0, 17)=  Lx-1,  arz 
 0  <  1f  <  co,  (3r1 

from matching of the Sverdrup solution in region C'. The solution is given by 

 Lz—  lx(77- P)2               0
0,42

,6(irae)1/2 ap exP( 4ae)dp.(A.2) 

We calculate this equation replacing  ayx(p)/ap with  ayrovap in the integrand, 

because the meridional scale of region A is much smaller than the spatial scale of the 

wind stress. The solution in 0 < x <  lx is given by 

                  ,1)0A(X, y)                         ,=Lx— Ixayrerfc(y-y                          2 ). (A.3)                      20 ay wi(x) 

Similarly, the solution in region A' is given by 

                     Ix arx,)
.              00,1,(x, y) = ——erick  (A.4)  2g a

yw2(x) 

  The vorticity equation and the boundary conditions for  0013 are the same as those 

for  Ikig. The solution is given by 

             1 r,—Y—
i(0)Y2           ogx,y)  =8Y-,%ix+Lx2 erfcw)]9(y—(A.5)e

In the same way, the solution in region B' is given by 

           1 ay-lx-yl1(I2Y)— Ix+—erfc( )19(yy). (A.6), —         0B        ay 2w2(0) 
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  We find  vI0 + Jo using the above solutions. Since the transport by the flow  00 is 

zero,  J0 is zero.  /0 is found from the equation 

           Q 500ER s 000B, P 500A,      vrav(i p-79T-dy —dxaxdyaydx) 
     =  v(Ios +  ICA+ +  -roA,)• (A.7) 

  Using equations (A.3)  and (A.4), we obtain 

            vLzlz527-r(y2)rrisa(y2)(
A.8)      vioA  (Lslz)()1I2         2P a

y2 it  ay 
               vLr(Lz— lr)a27--(yi)a(L.— arz(y1)      ----)/2(A .9)           2j3 a

y2+7r ay 

Using equation (A.5), we obtain 

          r,—erfc(             //Lis =f[l=ay+Y- Y2Ady•  (A.10) 
            ylaLzy2aywi(0) 

Since there is a second term in the integrand originally for non-zero wind stress curl 

at y =  y2, we replace  a7-2(y)/ay with  arx(y2)/ay(constant). Thus equation  (A.10) 

becomes 

 vios =  /..[Ts(Y2)  rx(Y1)] 

                  +  Lz 2— Is 07;
y(y2)  {5 erfc( (0) ) 

                                 az                    — 2(7
7l—r)1/2[exp(                                w1(0)2) 1]}.  (A.11) 

Similarly, 

 vioB, =  (Lx  —1.)[Tx(n) Ts(Y2)] 

                  aT-(n){8 
erk( s   2 a

yw2(1.)) 
                (Lz1.)62  — 2(a)12[exp(   

                             W2(1.)2 ) (A.12)                                                   7f' 

The sum of the above equations gives equation (26). The last term in (A.8) is set off 

by the last term in  (A.11). Also, the last term in (A.9) is set off by the last term in 
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(A.12). These cancellations  on 

currents becomes small due to 

same as that in Subsection 3.1.

ginate because the friction on 

broadening of the zonal jets.

the western boundary 

The discussion is the
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Captions: 

Fig. 1. Bottom topography near Drake Passage with a contour interval of 1 km. 

  Depths less than 3 km are shaded. 

Fig. 2. The geometry of the model. 

Fig. 3. A schematic diagram of the boundary layers that exist when the friction 

  coefficient v is small. 

Fig. 4. The path (PQRSP) of integration used to obtain the transport. The lines 

  PQ, RS are along the eastern coasts of the meridional barriers. The discussion of 

  the path PS'R'Q'P' is in Section 4. 

Fig. 5. Transport as a function of the overlapping length  b. The thick line is the 

  solution in the limiting case with no friction. The friction coefficient  v ranges 

  from  10-7s' ( curve labeled  a) to 5 x  10's-1 ( curve labeled e ). As  v increases, 

  the transport decreases. 

Fig. 6. Transport as a function of the distance  lr. The thick line is the solution in 

  the limiting case with no friction.  v varies in the same way as in Fig. 5. 

Fig. 7. Transport as a function of the latitude yo where the eastward wind stress 

  is a  maximum. The numbers 1, 2 and 3 correspond to  Arilli,  N  M2,  N1113. The 

  thick line shows the sum of the three terms, or the total transport. 

Fig. 8. As in Fig. 7 except that v varies in the same way as in Fig. 5. 

Fig. 9. Transport lines with  yo = 2000km (a) and 3000km (b). The stream 

  functions are normalized by the values of the transport through the channel. The 

  values of the transport are 167Sv (a), and  119Sv (b). Shaded areas indicate 

  anti-clockwise circulation.
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                         Abstract 

   The transport and vertical structure of the Antarctic Circumpolar Current (ACC) are 

examined, especially the component of the current driven by buoyancy, by using a three-layer 

model. We investigate the effects of the South American peninsula, the island arc to the east, 

and the Macquorie ridge, which are modeled as partial meridional barriers overlapping 

meridionally each other. We found that the buoyancy-driven component is given as a function 

of the transport out of the Weddell Sea (Sw) and the sum of the transports into the North 

Atlantic  (SA) and the North Pacific  (Se) out of the Southern Oecan. The buoyancy-driven 

current flows westward, if  Sw and SA+Sp are positive. The transport depends on the value of 

 Sw more than SA+Sp by one order of magnitude within a realistic range of parameters. The 

most predominant term in the transport equation is inversely proportional to the difference 

between the Coriolis parameters  at the tips of the partial meridional barriers. Thus, the 

magnitude of the transport strongly depends on the overlapping length of the meridional 

barriers. The eastward current of the ACC is driven by the predominant eastward wind stress 

in the Southern Ocean, although a part of the wind-driven component is canceled by the 

westward buoyancy-driven component. The vertical structure of the ACC is found to be 

attributed to the surface wind-driven circulation and the deep and bottom buoyancy-driven 

circulation.



  1. Introduction 

   The Southern Ocean, or Antarctic Ocean, is the only zonally unbounded region among the 

world oceans. The Antarctic Circumpolar Current (ACC) flows eastward in the region and 

carries abyssal water to the world oceans. Thus, it is important to investigate the volume 

transport and the structure of the ACC to understand the global ocean circulation and water 

formation. 

   To date, the ACC has been studied as a wind-driven ocean current by using barotropic 

models (Munk and  Palinen, 1951;  Hidaka and Tsuchiya, 1953; Gill, 1968; Johnson and Hill, 

1975; Baker, 1982; Klinck, 1986). Hidaka and Tsuchiya (1953) constructed models of the 

ACC as a laterally viscous zonal stream driven by surface wind stress. To limit the total 

transport of the ACC within the observed values, a lateral eddy viscosity of more than  10" 

 cm2S-1 was required by their models — several orders of magnitude greater than that generally 

envisaged in other oceanic currents. Many efforts have been made to find a dynamical balance 

for the ACC that allows for observed surface wind stress as a driving force while maintaining 

reasonable transport values. 

  Ishida (1994) investigated the effects of the South American peninsula and the island arc to 

the east of Drake Passage on the ACC using a barotropic model. The South American 

peninsula and the island arc were modeled as two partial meridional barriers overlapping each 

other in a latitude band. The transport of the ACC was given by the magnitude of the zonal 

wind stress at the latitudes of the ends of two meridional  barriers and the difference between 

the Coriolis parameters at the same latitudes. The  topographic drag on the meridional barriers 

was shown as the force balancing the surface wind stress. The transport value predicted by 

Ishida's model was reasonably compared with observed values. This suggests that the 

existence of the meridional barriers overlapping each other in a  latitude band plays an important
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role in the transport and structure of the ACC. 

   While research on the ACC as a wind-driven circulation is ongoing , the buoyancy effects 

on the ACC and the coupled wind- and buoyancy-driven circulation have not yet been 

investigated. Some observations and data analysis (Rintoul, 1991; Whitworth et al., 1991) 

have suggested the importance of buoyancy effects on the circulation in the Southern Ocean . 

   Rintoul (1991) estimated the exchange of water mass between the South Atlantic poleward 

of  32° S and the neighboring ocean basins using hydrographic data and inverse methods. 

There was the westward flow near the bottom in the northern portion of Drake Passage. The 

velocity field across Drake Passage is similar to that obtained by Nowlin et  al. (1977) (see their 

Figure 11), who used short-term current meter measurements to reference geostrophic 

calculations based on the same hydrography used by Rintoul (1991). The westward flow in 

the bottom layer is suggested to be driven by buoyancy rather than the wind stress, because the 

predominant wind over the Southern Ocean is eastward. 

   Whitworth  et  al. (1991) showed that a current flows westward along the northern flank of 

the Falkland Plateau from bottom to at least 1000 m. The mean transport was 8.2 Sv (1 Sv  = 

 1012  cm's-1) to the west with variability induced by the meandering of the overlying ACC. 

They suggested that the westward flow was similar to the boundary current along the southern 

boundary in a closed basin predicted by Stommel and Arons (1960a). However, application 

of the Stommel-Arons theory is not straightforward when applied to zonally periodic basins 

such as is found in the Southern Ocean. The bottom westward currents through Drake 

Passage and along the northern flank of the  Falkland Plateau may be portions of the zonal 

recirculation in the Southern Ocean rather than locally driven currents, and the pronounced 

topographies, such as the South American peninsula and the Falkland Plateau, are expected to 

play an important part in recirculation.



  The buoyancy effects on the ACC have been investigated in global abyssal circulation 

models. Stommel (1958) showed a schematic pattern of global abyssal circulation with two 

sources of abyssal water in the North Atlantic and the Weddell Sea. The abyssal water from 

the North Atlantic, together with that from the Weddell Sea, flows eastward in the Southern 

Ocean, and then extends up northward into the Indian and Pacific Oceans. Although the 

abyssal currents in the Southern Ocean were depicted to be eastward currents in the figure, the 

direction and transport of the currents were not determined based on a dynamical theory, as 

stated in his paper. 

   Stommel and Arons (1960b) derived a schematic budget of transports in various portions 

of the World Ocean. An arbitrary value was assigned to the transport around the Antarctic 

Continent in the budget because they did not have an adequate understanding of just what 

happens dynamically in this region. 

  Kuo and Veronis (1973) and Kuo (1978) attempted to study the abyssal oxygen 

distribution using the model by Stommel and Arons (1960a). The recirculation transport 

around the Antarctic Continent was prescribed as a parameter because of the reason stated 

above. They showed that a best fit to the observed oxygen was given, if the recirculation was 

fixed at  35S  v. 

   As stated above, no model that can has yet described the buoyancy-driven circulation in a 

zonally unbounded basin such as the Southern Ocean based on dynamically consistent 

discussion. The main objective of this paper is to describe the effects of partial meridional 

barriers on the ACC mainly with regard to buoyancy-driven circulation. The problem to be 

considered, then, is how the buoyancy-driven circulation is described in a zonally unbounded 

basin such as the Southern Ocean. Buoyancy effects are included as exchange of fluids 

between the layers. The zonal transport of the buoyancy-driven recirculation can be predicted
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in the model basin similar to that of Ishida (1994), which includes the meridional barriers 

overlapping each other. We also discuss the vertical structure of the ACC, including wind 

stress effects in the model in section 5. While bottom bathymetry is not included in the model 

basin of this study, such a model should be  constructed to realistically describe the ACC. The 

main objective of this paper is to illustrate how partial meridional barriers affect the 

buoyancy-driven component of the transport of the ACC. Therefore, we only studied the 

effects of lateral topography.

 2. Model formulation 

   The model used in this study is a three-layer model, as depicted in Fig. 1. The uppermost 

layer corresponds the surface and intermediate layers. The middle layer corresponds the deep 

layer occupied by the North Atlantic Deep Water (NADW) and the lowest layer corresponds 

the bottom layer occupied by the Antarctic Bottom Water. The mean thickness of each layer is 

 Hk, and the interfacial deviation from rest state is  Ilk  . The density in each layer is represented 

as  pk. The subscript k indicates that the symbol corresponds to the kth layer. 

   The buoyancy effects are incorporated as exchange of fluids between the layers. The rate 

 (wIf. ) of exchange between layer i and layer j is specified as a spatially constant value. 

Tziperman (1986) and Kawase (1987) suggest that the upwelling velocity is a function of the 

layer height field. In this study, for simplicity, and because our primary interest is how 

buoyancy affects the circulation in the Southern Ocean, we specify  wij to be spatially constant. 

Since the buoyancy driven circulation is focused in this study, the surface wind stress is not 

included in the model except in section 5. 

   The model geometry used in this study is depicted in Fig. 2. A spherical coordinate 

system is used where  2. represents longitude,  yo represents latitude, and r is the radius of the
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earth. The model is of the Southern hemisphere basin with three meridional  barriers. The 

whole basin is divided into subregions I to V. The lines  cP = 0 and  cp =  (po  repreient the 

equator and the Antarctic coastline, respectively. The lines A.  = 0 and A.  =  2 represent the 

same meridian, the section  (pi  <  <  0 being a barrier similar to the South American  peninsula. 

The line A.  =  Al represents the second meridional barrier, which corresponds to the island arc 

formed by the South Sandwich and South Shetland islands. 

   Stommel (1957) modeled the South American peninsula and the island arc as two partial 

meridional barriers. He emphasized that the ACC cannot be purely zonal because there is no 

latitude band without a meridional barrier. Thus the southern end of the South American 

peninsula and the northern end of the island arc were settled on the same latitude in his model. 

However, if we regard the island arc, the Ewing Bank and the  Falkland ridge, as the second 

meridional barrier, the South American peninsula and the second barrier overlap in latitude. 

So the northern end of the second meridional barrier at A.  =  Al is settled to the north of the 

southern end of the first barrier at  A. = 0. The line  A.  =  A.2 represents the third meridional 

barrier, which corresponds to the boundary between the Indian and Pacific Oceans. The 

southern part of this barrier represents the Macquarie ridge, and the southern end is settled at 

the same latitude as the southern end latitude of the South American peninsula for simplicity. 

The boundary between the Atlantic and the Indian Ocean is not included in the model because 

the boundary does not affect the circulation in the Southern Ocean. This is because the 

southern end of the African Continent is north of the latitude  (p2. 

   The basin geometry is similar to that of Ishida (1994), but the meridional barrier at  A.  = 

is added to find the effects of outflow of deep water to the  North Pacific. The difference 

between the results in Ishida (1994) and in this study due to inclusion of the barrier at  2.  =  A, is 

discussed in section  5.
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  The net upward flux out of layer equals the net inflow flux from the neighboring basins. 

The inflow flux from the Weddell Sea is  S  Wk, the outflow flux to the North Atlantic and the 

North Pacific across the equator are  S  Ak  ,  S  pk, respectively. The subscript k indicates that the 

symbol corresponds to the kth layer. For mass conservation, the following relation is given, 

                   — Wk  r2/143  sitiTo = SWk — (SAk +  SPk), (1) 

where wk is the net upward outflow out of the kth layer, that is given by 

                      1 —w12,:  k=1            Wk=W12—W23 : k = 2 (2) 

                    I W23  :  k  =  3 
   Each layer is assumed to be in geostrophic balance. The corresponding equations of 

motion and continuity in the kth layer are 

 —  f  Vk= 1   aPk(3a) 
 por  cosT ax  , 

           fuk.—  1 aPk(3b)                           p
or aco, 

                 aliktika
pp+ (H  k  Vk coscp) = —  wk r cos9(3c)      aA.ac 

where u and v are the eastward and the northward components of velocity, f =  2D  sinT is the 

Coriolis parameter,  �2 is the rate of planetary rotation, and Pk is the pressure given by; 

                                  k 
             pk= I grinn ,(4) 

                                                 n=1 

where  gi, is the  gravity acceleration or the reduced  gravity given  by  ;
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               J g: n  =  1             gn=(p2 — pi) g / po :  n  =  2 (5) 

 (P3  —  P2)  g  /  Po :  n  =  3 

where g is the  gravity acceleration and  pc, is the mean density. The interfacial deviation  77„ is 

derived  from  p, by using equation (4). 

   Because the above equations are similar to those used in Stommel and Arons (1960a), the 

same circulation as that shown in Stommel and Arons (1960a) is expected to be derived in an 

interior region. The difference between the present model and the Stommel-Arons model is 

that the model basin used in this study is  zonally unbounded. Therefore, the zonal boundary 

currents are generated at the end latitudes of the meridional barriers. The boundary currents 

derived in this model correspond to the ACC. The boundary currents have the transports  Qi.„, 

 Qak, and  Qck as shown in Fig. 2. 

   The meridional transport in an interior region is found from the vorticity equation and the 

continuity equation (3c). It is  given by 

 HkVk=  wk  r  tan  go (6) 

Elimination of  Hkv  k from (3c) and (6) leads to the zonal transport given by 

 Hk  Uk=  —  2Wkr(A—  Ãe)  cosy°  . (7) 

where is a longitude at an eastern boundary. Elimination of vk from (3a) and (6), and zonal 

 integration of the derived equation lead to the pressure field given by 

 Pk = 1±/  Hkpo f r20. —  A.,) sin  cp + p(ok  , (8) 

where  p(,), is the value of  p, at  A.=Ag. The pressure  p(,)k is usually set to zero because the
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circulation in a closed basin is independent of the value. However, we must derive the values 

of pressure at the eastern boundaries in the model basin with multiple meridional barriers, and 

their derivation is represented in the next section. 

  The interior circulation in kth layer depends solely on the vertical flux  wk except the 

parameters of the basin geometry  (A,,,  A2,  Ao,  (p1,  92,  90 ). Thus we can investigate the 

circulation in each layer independently, if the flux wk or the net inflow  S  wk -  (  S  Ak +  S  pk  ) is 

specified. 

   There is no flow in interior regions, if the net upward flux is zero (  wk =  0  ). However, 

the transports  a„,  QBk, and  Qck of the zonal boundary currents are not necessarily zero, 

because they depend on the magnitude of the flux from the neighboring basins. The 

dependence on flux is investigated in the next section.

  3. Solution 

   The purpose of this section is to derive the transport of the zonal current and the values of 

pressure at the eastern boundaries in the model basin. We show how the buoyancy-driven 

circulation is determined in a zonally unbounded basin. The subscript k is omitted in this 

section because the solution is derived in the kth layer. 

   We set the eastern boundary values of pressure as follows: Zero at the eastern boundary 

of regions II and IV,  p(41) at that of regions I and III,  p(e2) at that of region V The value of 

pressure at the eastern boundary of regions II and IV is arbitrary because the transport of the 

zonal boundary current depends on the deviation of pressure, but not on the pressure itself. 

The meridional pressure difference across the line  9  =  92,  0  <  A  <  A,, can be represented with 

 p(41) , after the interior pressure is given by (8). Using equations (3b) and (8), we can obtain 

the relation equation between  Q, and  p(,„;
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 QA  =  w  r2  (A2  —  A1)  sin  4) —  Hp(ei)  1  f2  , (9a) 

 where  f2 is the Coriolis parameter at the latitude  92  . In the same way , the relations between  QB 

and  p(gi) and between  Qc and  pi ,2) are given by 

 QB  =  —  w  r2  (Ao  +  A1  —  A2)  sin  Cal  —  HP(el)  /  fl  ' (9b) 

 Qc  =  —  w  r2  Al sin  (pi  -  Hp(e2)  In , (9c) 

 where  f, is the Coriolis parameter at latitude  (pi 

   Consider the mass exchange between region  HI and the other neighboring regions. The 

total inward flux of mass to region  III consists of some parts: the flux of the western boundary 

current across  co  =-.  (pi at A=A,, the net vertical flux  integrated over the area, the net meridional 

flux across  col and  co2 in the interior of the ocean, The net influx of the zonal currents on  (p=ro, 

and  92. Since the sum of these components must be zero because of the mass conservation, 

we can get the following equation, 

    QA — QB  =  —  (S A — Sp)  +  2w  r2  [(A0 +  A.1 — A2) sin  yai + (A2 — A1) sin  1p2]  (10a) 

This equation gives the relation between  Q, and  QB. Since the difference between QB and  Qc 

equals the northward transport of the western boundary current from region IV' to region V. 

the equation is given by 

 QB — Qc =  Sp  —  2w r2  (4 — A2) sin  (Pi  (10b) 

   Now there are five equations (9a,b,c) and  (10a, b) and five unknowns ( Q,,,  QB and  Qc, 

 p  (di),  p(e) ). The transport of the zonal currents and the pressure at the eastern boundaries are 

derived as follows:
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where S

 QA  W  r2  (A2  —  Ai)  sin  92  +  fisx  /  (f2  —  fl), 

 QB  =  W  r2  (Ao  +  —  A2)  sin  (pi  +  f2Sx  /  (f2  — 

 Qc  +  sp  =  w  r2  (Ao  —  —  A2)  sin  Col  +  f2Sx  I  (f2  , 

      HP(el)  =  flf2Sx  I  (f2—  fl), 

 Hp(e2)  =  HP(e1)  +  fi  [Sp —  wr2(Ao — A2) sin  91] 

 x is given by 

       fr .r\ Ao(sin  (po  —  sin (pi) + (A2—  Ai)  (sin  (Pi  —  sin92)

 (11a) 

 (lib) 

 (11c) 

(12a) 

 (12b)

                Sx = (S A+Sp)  ••1/1.-'•-•.  "'"•" Ti/ ' k".4  "I/  '"' Y'4./  
 A0 sin  90 

 +  Sw (A0  +  Ai  —  A2)  sin (pi + (A2 — A1) sin 92 (13) 
                             A0 sin  90 

   The transports  QA, QB and  Qc are given as  functions of the transports  Sw,  SA, and  S. 

However, the transports  QA,  QB, and  Qc+S  p can be represented as functions of the transports 

 S  w and  S  A+S  p, as shown in  (11a,b,c). Thus, we may investigate the dependence of the zonal 

current transports to  S  w and  S  A+S  p 

   Equations  (1  la,b,c) include the terms inversely proportional  to  f2—f,  . Since the magnitude 

of  f2f, in the denominator is smaller  than  fl  or  f2 in the numerator by one order, the terms are 

predominant in the equations. The dependence of the transports  QA,  QB, and  Qc on the model 

basin geometry is essentially determined by the dependence of the term  S  z on the geometry 

because the  term including  S  z predominates in  (11a,b,c). Equation (13) is rewritten to 

 S, =  ( SA +  Sp  )•( Area of Region III, IV.  IV') / ( Total area of model  basins  ) 

         +  S  w  (  Area of Region I, II,  V) /  (  Total area of model basins ) (14) 

Regions III, IV, and IV' are the polar regions from about the latitude band, which the
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meridional barriers overlap, and regions I, II, and V are the equatorial regions. Thus the ratio 

of the area in R.H.S. of (14) depends on latitude  91 and  92. It is expected that  S . depends on 

 Sw more than SA+Sp because the area of the equatorial regions is larger than that of the polar 

regions. Since the coefficient of  S  x is inversely proportional  to  f2 —  f,, it is expected that the 

transport of the zonal currents strongly depends on  92 and  91. If a rough estimation of 

parameters is given as follows:  To  = 70°S, = 60°S,  co2 =  50°S,  Ao  =  360°,  A, =  30°,  A2  =  180°, 

 S  x  is given by 

 Sz=0.12(SA+Sp)+0.88Sw. 

Thus we find  that ,  S, depends on  Sw more than SA+Sp and the zonal current transport also 

depends on  Sw 

   The physical  inteipietation of  S  x can be obtained by investigating the solution of the 

simplified situation where vertical flux is zero  (w=0), as described below. The zonal currents 

and the interior circulation are driven by buoyancy, which is incorporated as the net inward 

flux  S„—(S  A+S  p) from the other basins and as the exchange of fluids between the layers in this 

study. If the net inward flux from the other basins is zero  ( if exchange between the layers is 

zero), there is no circulation in the interior regions. However, as seen from equations 

 (1  la,b,c), the zonal current transport is not zero even if exchange between the layers is zero. 

For example, the transports of zonal currents are  QA=f1S  I  (f2  —  ft) and  Q8=Qc=f2S  /  (f2  —  f1) 

under the condition that inflow S out of the  Weddell Sea and outflow S into the North Atlantic 

 (S, =  SA =  S,  Sp =  0  ). These are derived from (11), and  S= equals S as found by (13). The 

westward currents are generated because of the high pressure in the southern side of the basin 

owing to the inflow out of the southern  boundary. The magnitude of the transport is provided 

when the resistance on the western boundary currents balances the the driving force.
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  These solutions can also be derived by the discussion described in Section 4 of Ishida 

(1994). If Drake Passage is presumed to be closed by a meridional barrier, the water out of 

the Weddell Sea flows northward along the eastern boundary of the meridional barrier at 

and turns west at latitude  92 as a zonal boundary current, and flows northward again along the 

barrier at The pressure difference across the barrier is caused by the these boundary 

currents. The pressure difference is given  by  f2SIH when the transport  out of the  Weddell Sea 

is S. This is obtained under the assumption of geostrophic balance to the zonal currents on the 

line 0 < <  9=  92  . If the barrier is removed, recirculation around the Antarctic Continent 

is generated. The transport is provided when the pressure difference balances the pressure 

decrease along the recirculation caused by the resistance. The pressure decrease along the 

recirculation is  (f2  —  f  1)Q1H if the transport of the recirculation is Q. Then, the transports of 

the zonal currents are given as follows:  QA=f1S I  (f2-1.1),  QB=Qc=f2S I  (f2—f1). 

   Thus, we found that transport of the buoyancy-driven zonal current can be derived 

according to the discussion in Ishida (1994), who showed that the driving force of the 

wind-driven zonal current was given by the pressure difference at Drake Passage. Transport 

 S, is part of the driving force of the buoyancy-driven recirculation, and is  QB—Q, when w = 0. 

   Figure 3a shows a schematic view of the boundary currents derived above. Similarly, 

schematic views of the circulation driven by flux S out of the Weddell Sea into the North 

Pacific (Fig. 3b) and out of the North Atlantic into the North Pacific (Fig. 3c) are also drawn. 

The transports of the zonal currents in Fig. 3b are the same as in Fig. 3a except 

 Qc=f1S1(f2—fi). In the situation where the Weddell Sea is not included as source or sink (Fig. 

3c), QA and  QB are zero, and the transport  Qc is equal to inflow flux  S. 

   The direction of the zonal current is determined by the positions of source and sink. Zonal 

current is westward (eastward) when flow is from (into) the Weddell Sea (Fig. 3a, b). Zonal
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current is westward (eastward) when flow is from (into) the North Atlantic and into (from) the 

North Pacific (Fig. 3c). The component driven by exchange between the layers must be added 

in the real ocean. The relation between the total transport of the zonal currents and the fluxes 

out of the source and into the sink is described in the next section .

   4. Parameter sensitivities 

   Now we examine the parameter sensitivities of the solutions derived in the previous 

section. The transports  QA,  QB, and  Qc-FS  p are proportional to the transports  Su, and  S  A-f-S  p, 

and are given by 

          (QA  )  PA  4A                    QB  =  PB  Sw +  qB  ( SA  +  Sp  ) (15) 
 Qc  +  Sp  Pc  4C 

Thus, the dependence of the proportional coefficients  (D DD                                                  B) <A,  qB,  qc) on the model 

basin geometry were investigated to study the parameter sensitivities of the zonal current 

transports. In particular, we show the dependence on the positions of the tips of the 

meridional barriers (  (pi and (p2 ) because the transports depend on  (pi and (p2 more than the 

other parameters. 

   Figure 4 shows the proportional coefficients  (PA,  pB, and  pc) as functions of the latitudes 

 cp, and  (p2 The values shown in the figure equal the  transport of the zonal current when 

 Sy,=1,  S  A+S  e=0. Latitude  91 represents the southern end of the South American peninsula and 

is about  57°  S. Latitude  co, represents the northern end of the island arc to the east of Drake 

Passage and is about 53°S, if the northern tip of the South Georgia Island is chosen as  (p2. 

However, if we regard the island arc, the Ewing Bank, and the  Falkland ridge as the second 

meridional barrier, as described in section 2, the northern end of the barrier is to the north of
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latitude  50°S. Thus, the range of  92 in Fig. 4 is set north of latitude  50°S . The parameters 

except  91 and  92 are as follows:  90=70°S, =  30°,  A.2  180°,  a  = 360°. 

   All the values in Fig. 4 are negative, and the result shows that westward currents are 

driven by the inward flux from the Weddell Sea . Since Figure 4(c) shows the transport 

 Qc+Sp, the zonal current in the Pacific sector is not necessarily westward. However, since 

deep water is thought to be supplied into the North Pacific  (Sp>  0  ) , the westward current is 

probably driven by the inflow  out of the Weddell Sea in deep Pacific as well. 

   The magnitude of the zonal current transport increases as  sin92 — sin9 , decreases, as 

stated in the previous section. Figure 4 shows that the magnitude increases from the position 

 91= 60°S and  92=45°S to the position  91=55°S and  92 = 50°S. The values  of  pA,  pa, and  pc 

are about from —4 to —12 in the range of  cp, and  92 (Fig. 4). 

   Figure 5 shows the proportional coefficients  ( qA,  qa, and  qc) as functions of latitudes  91 

and  92 The values shown in the figure equal the transport of zonal current when  S„,=0, 

 SA+Sp=1. The results in Fig. 5 show the same tendency as Fig. 4 at points where the value is 

negative, and the magnitude of the zonal current transport increases as  sin92—  sin9i decreases. 

However, the magnitude  of  pA,  pa, and  pc is larger than that of  qA,  qa, and  qc, which is in the 

range —0.4 to —2.5. This shows that the magnitude of the zonal current transport driven by 

 Sp, is larger than that driven by  SA+Sp. As described in the discussion about Eq. (14), this is 

because the area of equatorial regions of the overlapping latitude band is larger than that of 

polar regions. 

   Another difference of the results in Fig. 4 and Fig. 5 is the manner of the dependence on 

 9, and  92 If  9, and  92 are set more to the equatorial side keeping  92-91 at a certain value 

(from the point  91 = 60°S and  92= 50°S to the point  91  =  55°S and  92= 45°S), the magnitude 

of the transport driven only by the the flux from the Weddell Sea decreases (Fig. 4).
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However, the magnitude of the transport driven by the flux into the Northern hemisphere 

increases (Fig. 5) because factor  S. increases as found in (14). The zonal current transport 

becomes more sensitive to the magnitude of the  flow  out of the Weddell Sea (the Northern 

hemisphere) as the latitude band that the meridional barriers overlap is set to poleward 

(equatorward). However, the sensitivity to the position of the latitude band is less than that to 

the magnitude of  92 — , and the range of the  magnitude of the transport is at most 1.5 in 

 Fig.  4  and  0.3  in  Fig. 5.

  5. Wind stress effects on the Circulation 

   Now we examine the effects of wind stress on the zonal current transport and the interior 

circulation.  If surface wind stress is added to the equations (3a, b, c) and the upward fluxes 

introduced to express buoyancy effects are omitted, the equations (3a, b, c) become 

                    1  apk    —  f  vk+ TA      =(16
a)                                por cos 

,DA. 

                        1apk     f(16b) 
                           poro(p 

                      aHkUk
k Vk COST) =  0 

        aa. a cp  (16c) 

 where' is eastward wind stress which acts only on the uppermost layer. The meridional 

component of the wind stress is neglected because it is smaller than the zonal component. The 

wind stress distribution is assumed to be zonally uniform for simplicity. The assumption of 

no stress-transfer across the interfaces, so that the middle and lowest layers are quiescent, is 

equivalent to assuming zero horizontal pressure  gradients in the lower layers. We thus focus 

on the circulation in the top layer and  omit subscript k in the following equations.
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   Elimination of pressure by cross differentiating (16a) and (16b) and use of (16c) yield the 

Sverdrup meridional transport relation 

 PHI/  =  1  a  ( A.  cccos9)  ,  (17)                            r cos9a9 

      p _-1df  
whereP-7(19 

   We integrate (16a) zonally to obtain 

 p  =  por  cos  9  fliv  +  -rill (A  —  Ae)  1H  +  pe  , (18) 

where  p, is the value of pressure at =  A.,, a longitude near the eastern boundary. We can also 

obtain the zonal transport in the interior by substituting the value of Hv given by (17) to (16c) 

and  integrating (16c) zonally. 

   The total zonal transports  QA,  QB, and  Qc driven by wind stress are given by the sum of 

the component of the recirculation Q around the Antarctic Continent and the component 

originated from the wind stress curl is not zero at latitudes  91 or  92. For example, transport 

QA is given as the following. If the wind stress curl is not zero at latitude  92, there is 

meridional flux given by (17) in the interior across the line  (p=92,  A  ,<A42. Since the 

exchange of fluids between regions I and  III must be zero, except for the net recirculation 

transport Q, the interior meridional flux across the line must be compensated for the supply of 

water by the zonal current on the line  c92,  O<A<A1. The transport is  Hv(92)r(A2—Adcos92, 

which is the value of the zonal integration of Hv at  92 given by (17). Thus, the transport  a, is 

given by 

 QA  =  Q  +  Hv  ((p2)  r(,2  —  Ai)  cos  92. (19a) 

The transports QB and  Qc are given in the same way as follows:
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 QB  =  Q  —  Hv  ((pi)  r  (A.1  +  Ao  —  A2)  cos  (pi, (19b) 

 Qc=Q  —  Hv  ((p1)  r  A,l  cos  91. (19c) 

   If the zonal currents at latitudes  9, and  92 are assumed to be in geostrophic balance , the 

transports  QA,  QB, and  Qc, given by (19a, b, c), are expressed with pressure differences across 

the zonal currents, i.e. the differences at the northern and southern side of the currents . If we 

set the eastern boundary values of pressures in the same way as in section 3, the geostrophic 

relations give the following equations: 

                f2Q  =  T'l(c92)  r  (A2 —  COS  92  —  P(e1)1  PO' (20a) 

                 fiQ  =—TAkoi)r(A.0  +  1 —  2,2) cos  (pi  —P(eilPo, (20b) 

 fiQ=—TA(91)r  Al cos  (pi —  P(e2)/PO• (20c) 

   We can derive the net recirculation transport Q from these equations (20a, b, c): i.e., 

    Q  =rril(Coi)  r +  A.1 —  A2)  cos  (pi +  T'lf92)r(A2 —  2.1)  cos  921  /  (f2  — (21) 

This equation shows that the transport Q is given by the ratio of the line integrals of the zonal 

wind stress to the difference between the Coriolis parameters at the latitudes  92 and  91. The 

zonal wind stress is  integrated along three lines, (a)  9  =  (pp 0  < < (b) =  (p2,  <  A< 

 /12  , and (c)  9=  9,,  A.2  <  <  2,0. Equation (21) is similar to equation (32) in Ishida (1994), 

referred as  (I-32) hereafter, who derived the wind-driven recirculation transport in the model 

basin with two partial meridional barriers overlapping each other under the planetary  p 

approximation. To make clear the difference between (21) in this study and  (1-32) derived in 

Ishida (1994), the latter is rewritten under spherical coordinates to lead
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       Q  =k){(p1)  r  Al cos  (pi +  2A(4.)2)  r  (A0 — A1) cos  (p2]  /  1f2  —  fi)  • (22) 

The comparison between (21) and (22) shows that the path of integration of wind stress is 

different in two cases. Figure 6 shows the stream lines of the recirculation (solid lines), and 

the paths of line  integral of wind stress (dashed line). Although the stream lines are the same 

(PQRSP') in both cases with two meridional barriers (Fig. 6a) and with three meridional 

barriers (Fig. 6b), the paths of the line integral of wind stress is not the same. In the case of 

the basin with two meridional barriers, the line  integral of the wind stress along the lines PS' 

and RQ' gives the driving force of the recirculation, as shown in Fig. 6a. On the other hand, 

for a basin with three meridional barriers, the paths of the line integral in the  longitudinal band 

0 < A  <  A2 are the lines PS' and  RT, which are the same with two barriers, but the path in the 

band A2  <  A  <  A0 is the line UP' Although the paths of wind stress  integration are different in 

the two cases, the recirculation transports around the Antarctic Continent are derived from the 

same mechanism in which the recirculation is driven by the pressure difference at Drake 

Passage induced by the wind stress. 

   As stated above, the net recirculation transports in the two cases are not the same, even if 

the wind stress distribution is the same. However, since the scale of the distance between 

latitudes  (pi and  92 is small compared with the scale of the wind stress distribution, the 

difference of the transports between the two cases is expected to be small. 

   The dependence of the recirculation transport on the wind stress distribution was also 

investigated. The wind stress is assumed to have the following distribution 

 TA  (co)  =  cos  [Ir  (yo  —  (pc)/  (Pw  , (23) 

where  cp, is the latitude of the maximum eastward wind stress, and  cp„ is the meridional scale 

for the distribution. Figure 7 shows the recirculation transport Q as functions of  goc and  go,
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The parameters of model geometry are given as follows:  A0=360°,  A,  =30°  ,  A2=180°,  (p,=57° S, 

and  q2=49°S. The recirculation transport is maximum when  (pc is near the mean latitude of  co, 

and  cot  ((pc.----:53°S). This is because the distance of the line integral at  (pi, r  (.10-1-A,-12)covp, = 

13000 km, and the distance at  cot, r  (A2—Adcos92 11000 km are nearly the same. The 

transport Q becomes larger as the scale  yaw becomes larger, and the transport is 195 Sv in the 

limit of infinity of  cow If the parameters of the wind stress distribution are given as the 

typical scales:  cpc=47°S,  (pw=40°  (Hellerman and Rosenstein, 1983), the transport Q is about 

163 Sv. This value is slightly larger but is in the same order of the observed value 130 Sv 

being generally accepted (Whitworth  et  al.  , 1982; Whitworth, 1983).

  6. Discussion 

   The relation between the observed transport of the zonal current and the flux into or out of 

the Southern Ocean is discussed, applying the model results to observations. The 

buoyancy-driven component of the model ACC depends on the flux out of the Weddell Sea 

(Sw) much more than that into the Northern hemisphere  (SAA-Sp) as described in Section 4. 

Table 1 shows the values of the proportional coefficients in (15) obtained by using the 

appropriate values of the basin parameters:  cp, =  57°S and  cp., =  49°  S. The magnitude of the 

flux  S, is critical to the transport of the model ACC, because inflow  out of the  Werlrif-11 Sea 

drives the westward current whose magnitude is about 7 to 9 times as large as  S, 

   It is relevant to prescribe the transport of about 2 to 5 Sv of the bottom water out of the 

Weddell Sea, although the transport has been estimated in numerous studies with a wide range 

from 1 to 50 Sv (Solomon, 1974). Carmack and Foster (1975) suggested that the transport of 

the newly-formed bottom water is smaller than that estimated formerly, because the high 

values of the total transport out of the Weddell Sea estimated in some studies possibly include
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a large fraction of Antarctic Bottom Water entering the Weddell Sea from the southeast . 

Foster and  Carmack (1976) estimated a transport of 2 to 5 Sv from observed changes in 

bottom water properties between the southeastern and northwestern Weddell Sea. Weiss et  al . 

(1979) obtained a transport of 2.9 Sv using tritium data. These low values seem to  agree 

closely with the values estimated from dynamical considerations  (Killworth, 1973; Gill, 

1973). 

   If the transport of bottom water  out of the Weddell Sea is about 3 Sv, the transports of the 

bottom zonal currents are  given by about —21 to —27 S v. This result does not represent the 

feature generally known that there is a mean eastward current in the deep layer rather than a 

westward current in the Southern Ocean (e.g. Gordon, 1966; Reid, 1986, 1989). However, 

some observations have shown bottom westward currents. Nowlin  et  al. (1977) showed a 

westward current through Drake Passage, using short-term current meter measurements to 

reference geostrophic calculations.  Callahan (1971) also obtained a westward current with 

westward transport of about 24 Sv, using deep current measurement and  hydrographic data in 

the Pacific sector. Whitworth  et  at. (1991) showed a current flows westward along the 

northern flank of the  Falkland Plateau with mean westward transport of 8.2 Sv. They 

suggested that the observed bottom westward current is the southern boundary current in the 

Argentine Basin predicted by the Stommel-Arons model because the observed westward 

transport was larger than that into the Argentine Basin estimated by Georgi (1981). However, 

the Southern Ocean is not a closed basin in which the Stommel-Arons model can be applied in 

a straightforward manner. The model suggests that the bottom westward current observed by 

Whitworth et  al. (1991) is a part of the zonally periodic  recirculation shown in this model. 

   The current in the bottom layer is considered to be influenced by the bottom  topography 

and not to be a simple zonal current like that shown in the model. However, it is reasonably
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considered that the observed westward currents are driven by the mechanism shown in this 

model, because the model geometry is the most pronounced topography in the Southern Ocean 

and its effect on the circulation is expected to be large. 

   The deep current is also considered to be driven mainly by the flux between the Southern 

Ocean and the Weddell Sea. If the bottom water is formed by recooling of NADW (Broecker 

and Peng, 1982), the flux is  given by  S  w2=  —3 Sv. Then the deep currents are eastward and 

the transports are given by about 21 to 27 Sv. The deep current is partially driven by the 

fluxes out of the North Atlantic and into the North Pacific, which are given by  SA2=-14  S  v and 

 Sp2=10 Sv according to estimates of Stommel and Arons (1960b). Thus the transports of the 

deep currents are about 30 Sv in the Atlantic sector and about 18 Sv in the Pacific sector. The 

transport in the  Pacific sector is smaller than that in the Atlantic sector, because the transport in 

the Pacific sector  given by (15) includes the flux  Sp into the North Pacific. 

   It is well known in many observations that there is a mean eastward current in the deep 

layer. Kuo and Veronis (1973) and Kuo (1978) showed that a best fit of their model result to 

the observed oxygen was given, if the transport around the Antarctic Continent was fixed at 

35Sv. Rintoul (1991) showed that the net eastward transports through Drake Passage in the 

deep layer is about 44 Sv using  hydrographic data and inverse methods. Although the deep 

eastward transport obtained in this model is smaller than these values, the magnitudes are of 

the same order. This suggests that the deep currents are driven mainly by the flux of the 

NADW into the Weddell Sea. 

   The transports of the buoyancy-driven currents in each layer are shown in Table 2, 

provided that the above estimates of the source and sink fluxes are given with the proportional 

coefficients shown in Table 1. The surface currents are expected to be driven mainly by the 

predominant eastward wind stress because the magnitude of the transports of the



buoyancy-driven currents is smaller than that of the the wind-driven currents described in the 

previous section. We now describe the pattern of the interior circulation driven by both 

buoyancy and wind stress. Figure 8 shows the distributions of the surface deviation (Fig . 8a) 

and the interface deviation (Fig. 8b and c) in interior regions . The parameters of model 

geometry are the same as those used in Fig. 7, and the wind stress is given by (23). Then, the 

net eastward transport is 163 Sv as stated in the previous section . The transports  QA,  QB, and 

 Qc of the zonal boundary currents driven by wind stress at each sector are 142, 232, and 

173Sv, respectively. The surface or interface deviations depend on the magnitudes of reduced 

gravity and layer thickness, and the following values are used:  ( g,, g2,  g3)  =  (  980, 2.0,  0.5 

)cm•s-1and  (H,, H2, H3)  = (1, 2, 2) km. 

   Since the wind-driven circulation is predominant in the top layer, the distributions of the 

surface deviation  Tit and the interface deviation  712 reflect the patterns of wind-driven 

circulation. On the other hand, the deviation  773 reflects purely the patterns of buoyancy-driven 

circulation because the wind stress effects are restricted in the top layer. Since the circulations 

are derived in the limiting case with no friction in this study, the model ACC is represented as 

the zonal boundary currents with zero widths in three sectors. The interfacial gaps 

corresponding to the model ACC are found in Fig. 8. The order of the gap, i.e. the difference 

of interface deviation across the model ACC seems to be the same as that observed. The 

pattern of  lb is similar to that described by Stommel and Arons (1960a), but the magnitude of 

 773 is less than that of the interfacial gap by two orders. Thus, the zonal current is found to be 

predominant in the circulations in the Southern Ocean. 

   The wind stress drives the surface eastward current whose magnitude exceeds the 

westward buoyancy-driven component. The currents in the deep and bottom layers are 

eastward and westward, respectively, and are driven by buoyancy. Then it is found that the
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vertical profile can be attributed to the surface wind-driven circulation and the deep and bottom 

buoyancy-driven circulation. Although the vertical profile can be explained qualitatively, the 

magnitude of the shear obtained by the model is larger than that observed. According to 

Rintoul (1991), the net eastward transports through Drake Passage in each layer are as 

follows: 85 Sv in the surface layer, 44 Sv in the deep layer, and 1 Sv in the bottom layer . The 

model of this study predicts the eastward transport in each layer to be 137, 31, and —27 Sv in 

order from the top layer, by using the parameters used in Fig. 8 and the fluxes  Si,,, SA, and  Sp 

in Table 2. The surface eastward transport obtained by the model is larger than that observed, 

and the deep eastward transport is smaller. The model bottom current is large westward, 

although the small  eastward current is given in the analysis of observations. One reason of 

the difference between the model and the observed transport is that the model does not have 

variable depth. The magnitude of the bottom current transport will become smaller than that 

given above if the effect of variable depth is included, because the current is retarded by the 

bottom drag. Another is considered to be owing to that the model wind-driven circulation is 

restricted in the top layer because the linear and inviscid equations are used and no stress can 

be transferred across an interface. With regard to the prominence of eddies in the Southern 

Ocean (e.g. Patterson, 1985), Johnson and Bryden (1989) showed downward transfer of 

wind-imparted zonal momentum by eddy form drag using a simple model. Downward 

transfer also is shown as the result of eddy-resolving quasi-geostrophic models (McWilliams 

 et  al., 1978; Treguier and McWilliams, 1990; Wolff and Olbers, 1989; Wolff  et  al., 1991). If 

the mechanism of momentum exchange across an interface is included, the surface eastward 

momentum is transferred to the deep and bottom layers and the water will be accelerated 

eastward there.
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  7 Summary 

  The effects of three  partial meridional barriers overlapping in a latitude band on the ACC 

have been investigated, especially the buoyancy-driven component, using a three-layer model. 

The model geometry is similar to that used by Ishida (1994) except that a third meridional 

barrier dividing the Pacific and the Indian basin was added. The transport of the 

buoyancy-driven component of the ACC in each layer is found to be given by (11) and (13). 

The transport can be expressed as a linear function of the transport  Sw  out of the  Weddell Sea 

and the net northward transport  SA-i-Sp into the Northern hemisphere across the equator. The 

zonal current flows westward if the fluxes  Sp, and  SA-1-Sp are positive. The magnitude of the 

predominant term in equation (11) is inversely proportional to the difference between the 

Coriolis parameters at the latitudes of the ends of meridional barriers. The predominant term is 

proportional to  S., which is part of the driving force of the buoyancy-driven zonal currents. 

The dependence of the zonal transport on  Sw and  SA-I-Sp is characterized by the ratio of the 

equatorial and polar area of the meridional barriers' overlapping latitude band. The transport 

of the zonal current depends on  Sp,  more than  SA+Sp by one order because the equatorial area is 

larger than the polar area by one order  (  see equation (14)). 

   It was found that the transport of the wind-driven component of the ACC is given by (21). 

The effects of the meridional barrier dividing the Pacific and the Indian Ocean are also 

investigated by comparing the result of this study with that of  Ishida (1994). The difference 

between the results was found to be the latitude of the path of the line  integral of zonal wind 

stress in the Pacific section. However, the wind-driven components of the ACC in two 

studies can be derived in the same mechanism, in which the recirculation around the Antarctic 

Continent is driven by the pressure difference across Drake Passage induced by wind stress. 

   The model results were applied to the real ocean based on observational data. The model



shows that the smaller estimates of the outflow from the Weddell Sea should be given to obtain 

an acceptable value of bottom current transport. The westward current is driven by the 

outflow from the Weddell Sea in the bottom layer. Although the bottom currents are 

considered to be influenced by the bottom  topography and not to be simple zonal currents, the 

observed bottom westward currents are suggested to be driven by the mechanism shown in 

this model. The deep eastward transports obtained in this model are smaller than that shown 

in Kuo and Veronis (1973) and Rintoul (1991) but the magnitudes are of the same order. 

   The vertical shear of the ACC was found to be attributed to the surface wind-driven 

circulation and the deep and bottom buoyancy-driven circulation. Although the vertical 

structure is explained by the model qualitatively, the magnitude of the vertical shear obtained 

by the model is larger than that observed because wind effects are restricted in the top layer. It 

is because the linear equations and no stress transfer across an interface are assumed. The 

process of the momentum transfer across an interface should be included to describe the 

vertical structure of the ACC more realistically. However, the main objective of this paper was 

to illustrate the process how partial meridional barriers affect the transport and the structure of 

the ACC especially the buoyancy-driven component. It is left for future work to study the 

effects of bottom  topography and the momentum exchange across an interface on the ACC.
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Table 1. The proportional coefficients  (PA,  p8,  pc,  qA,  q8,  qc) to the 

   transports of the zonal currents in each section. The parameters of the 

   model geometry are as follows:  A,=30°,  A2=180°,  4=360°,  9,  =57° S, 

 cp2=49°S,  To=70°S.

PA —8.9 qA —1 .1

PB —7.2  qB —1 .8

Pc —8.1  qC —0 .9

Table 2.   The transports  (Sy„, SA, and  Sp) of the source/sink fluxes and the 

transports  (QA,  QB, and  Qc) of the zonal currents (Sv).

 sw  SA  SF  QA  QB  QC

 k  =  1 0 14 -10 -4 .4 -7 .3 6.3

 k  =  2

 

I  -3 -14 10 31.1 28.8 17.9

 k  =  3

 

I  3 0 0  -26 .6 -21 .5 -24 .2



Figure Captions

Fig. 1 Schematic of the three-layer model with isopycnal heights  (17,), densities  (pk), mean layer 

    thicknesses  (Hk), and cross-isopycnal fluxes  (w  v) as indicated. 

Fig. 2 The  geometry of the model.  S  wk is the transport out of the Weddell Sea, and  Silk and  S  pk 

    are the transports into the North Atlantic and the North Pacific across the equator, 

 respectively.  •  atle  QB)C, and  Qc  k are the transports of the zonal boundary currents 

    corresponding to the ACC. 

Fig. 3 The schematic view of zonal and western boundary currents driven by flux S  out of the 

    Weddell Sea into the North Atlantic (a),  out of the Weddell Sea into the North Pacific (b), 

    and out of the North Atlantic into the North Pacific (c). 

Fig. 4 The proportional coefficients  pA (a),  AB (b),  and  pc (c) as functions of latitudes  91 and  go2. 

     These values equal the transports  QA,  QB, and  Qc+S  p, respectively, when  Sw=1,  SA+Sp=O. 

Fig. 5 The proportional coefficients  q, (a),  qB (b), and  qc (c) as functions of latitudes  9, and  92. 

     These values equal the transports  QA,  QB, and  Qc+S  p, respectively, when  Sw=0,  SA+Sp=1. 

Fig. 6 The stream lines (solid lines) of the recirculation driven by wind, and the path of line 

 integral (dashed line) of wind stress in the model basin with two meridional barriers (a) 

    and with three meridional barriers (b). The points  P', Q', R' and  S' are located just west 

    of points P, Q, R, and S across a meridional boundary. 

Fig. 7 The net eastward transport as a function of parameters  9c and  (pw which characterize the 

    wind stress distribution. 

Fig. 8 The distributions of interface deviations driven by surface wind stress and buoyancy. 

    The wind stress distribution is given by eqution (23). The transports into or out of the 

    Southern Ocean are given in Table 2.
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