学位中語输文

阿印孝顺

On the homotopy types of the groups of equivariant diffeomorphisms

By Kojun Abe

理 3 20 函

§0. Introduction

The purpose of this paper is to study the homotopy type of the group of the equivariant diffeomorphisms of a closed connected smooth G-manifold M, when G is a compact Lie group and the orbit space M/G is homeomorphic to a unit interval [0,1].

Let $\operatorname{Diff}_{G}^{\infty}(M)_{0}$ denote the group of equivariant $\operatorname{C}^{\infty}$ diffeomorphisms of the G-manifold M which are G-isotopic to the identity, endowed with $\operatorname{C}^{\infty}$ topology. If M/G is homeomorphic to [0,1], then M has two or three orbit types G/H, G/K₀ and G/K₁. We can choose the isotropy subgroups H, K₀, K₁ satisfying $\operatorname{H} \subset \operatorname{K}_{0} \cap \operatorname{K}_{1}$. Moreover the G-manifold structure of M is determined by an element n of a factor group N(H)/H, where N(H) is the normalizer of H in G (see §1). Let $\Omega(N(H)/H$; $(N(H) \cap N(K_0))/H$, $(N(H) \cap N(\eta K_1 \eta^{-1})/H)_0$ denote the connected component of the identity of the space of paths a: $[0,1] \longrightarrow N(H)/H$ satisfying $a(0) \in (N(H) \cap N(K_0))/H$ and $a(1) \in (N(H) \cap N(\eta K_1 \eta^{-1}))/H$.

Theorem. $\text{Diff}_{G}^{\infty}(M)_{0}$ has the same homotopy type. as the path space $\Omega(N(H)/H; (N(H)\cap N(K_{0}))/H, (N(H)\cap N(\eta K_{1}\eta^{-1}))/H)_{0}$.

The paper is organized as follows. In §1, we study the G-manifold structure of M and give a differentiable structure of M/G such that the functional structure of M/G is induced from that of M. This differentiable structure is important to study the structure of $\text{Diff}_{G}^{\infty}(M)_{0}$. In §2, we define a group homomorphism P: $\text{Diff}_{G}^{\infty}(M)_{0} \rightarrow \text{Diff}_{G}^{\infty}(0,1)_{0}$ and prove that P is a continuous homomorphism between topological groups. In §3, we prove that there exists a global

continuous section of P and KerP is a deformation retract of $\text{Diff}_{G}^{\infty}(M)_{0}$. In §4, we study the group structure of KerP. In §5 and §6, we prove our Theorem. §1. G-manifold structure of M and the functional structure of M/G.

In this paper we assume that all manifolds and all actions are differentiable of class C^{∞} .

In this section we study the G-manifold structure of M. First we see that it is sufficient for us to consider n=l (see Lemma 1.1). Next we give a differentiable structure of M/G such that the functional structure of M/G is induced from that of M (see Lemma 1.2).

Let M be a closed connected smooth G-manifold such that M/G is homeomorphic to [0,1]. We denote this homeomorphism by f. Let $\pi: M \longrightarrow M/G$ be the natural projection. Put $M_0 = (f \cdot \pi)^{-1}([0,1/2])$ and $M_1 = (f \cdot \pi)^{-1}([1/2,1])$. Let x_i be a point of M with $f(\pi(x_i)) = i$ for i = 0,1. Then M_i is a G-invariant closed tubular neighborhood of the orbit $G(x_i)$ (c,f. G. Bredon [3, Chapter VI,§6]). Moreover M is equivariantly diffeomorphic to a union of the G-manifolds M_0 and M_1 such that their boundaries are identified under a G-diffeomorphism $n': \partial M_0 \longrightarrow \partial M_1$. Let V_i be a normal vector space of $G(x_i)$ at x_i and K_i be the isotropy subgroup of x_i for i = 0,1. Then V_i is a representation space of K_i . From the differentiable slice theorem, M_i is equivariantly diffeomorphic to a smooth G-bundle $G^{\times}_{K_i} D(V_i)$ which is associated to the principal K_i bundle $\pi_i: G \longrightarrow G/K_i$, where $D(V_i)$ is a unit disc in V_i .

Let H be a principal isotropy subgroup of the G-manifold M. We can assume that H is a subgroup of $K_0 \cap K_1$. Let $e_i \in S(V_i)$ be a point such that the isotropy subgroup of e_i is H for i = 0, 1, where $S(V_i)$ is a unit sphere in V_i . There exists a G-diffeomorphism $h_i: G/H \rightarrow$ $G \times_{K_i} S(V_i)$ given by $h_i(gH) = [g, e_i]$, i = 0, 1. Then we have a Gdiffeomorphism

$$\eta'': G/H \xrightarrow{h_0} G_{K_0}^{\prime} S(V_0) = \partial M_0 \xrightarrow{\eta'} \partial M_1 = G_{K_1}^{\prime} S(V_1) \xrightarrow{h_1} G/H.$$

Since any G-map G/H \rightarrow G/H is given by a right translation of an element

of N(H)/H, η'' defines an element $\eta \in N(H)/H$.

Put $x'_{1} = n \cdot x_{1}$. Then the isotropy subgroup K'_{1} of x'_{1} is $nK_{1}n^{-1}$. Let V'_{1} be a normal vector space of the orbit $G(x'_{1}) = G(x_{1})$ at x'_{1} . Put $e'_{1} = (dn)_{x_{1}}(e_{1}) \in S(V'_{1})$. There exists a G-diffeomorphism u: $G \times_{K_{1}} D(V_{1}) \rightarrow G \times_{K_{1}} D(V'_{1})$ given by $u([g,v]) = [gn^{-1}, n \cdot v]$. Then $(u \circ n')([g,e_{0}]) = u([gn,e_{1}]) = [g,e'_{1}]$ for $[g,v] \in G \times_{K_{0}} S(V_{0})$. Therefore M is equivariantly diffeomorphic to a union of the G-bundles $G \times_{K_{0}} D(V_{0})$ and $G \times_{K_{1}} D(V'_{1})$ such that their boundaries are identified under a G-diffeomorphism $u \circ n'$. Now we have:

Lemma 1.1. Let M be a closed connected smooth G-manifold such that M/G is homeomorphic to [0,1]. Then M has two or three orbit types G/H, G/K₀ and G/K₁ with $H \in K_0 \cap K_1$, and there exist representation spaces V_i , i = 0, 1, of K_i such that M is equivariantly diffeomorphic to a union of G-bundles $G_{K_0}^{\times} D(V_0)$ and $G_{K_1}^{\times} D(V_1)$ with their boundaries identified under a G-diffeomorphism $\eta: G_{K_0}^{\times} S(V_0) \longrightarrow G_{K_1}^{\times} S(V_1)$. Moreover we may assume that $\eta([g, e_0]) = [g, e_1]$, where e_i is a point of S(V_i) such that the isotropy subgroup of e_i is H for i = 0, 1.

Hereafter we shall assume that M is a G-manifold as in Lemma 1.1. Let ξ : [0,1] \longrightarrow R be a smooth function such that

> $\xi(r) = r^2 \text{ for } 0 \le r \le 1/2,$ $\xi'(r) > 0 \text{ for } 0 \le r \le 1 \text{ and}$ $\xi(r) = r - 1/2 \text{ for } 7/8 \le r \le 1.$

Let $\theta: M = G \times_{K_0} D(V_0) \bigcup_{\eta} G \times_{K_1} D(V_1) \longrightarrow [0,1]$ be a map given by

 $\begin{aligned} \theta([g,v]) &= \xi(||v||) & \text{for } [g,v] \in \mathsf{G} \times_{K_0} \mathsf{D}(\mathsf{V}_0), \\ \theta([g,v]) &= 1 - \xi(||v||) & \text{for } [g,v] \in \mathsf{G} \times_{K_1} \mathsf{D}(\mathsf{V}_1). \end{aligned}$

Since θ is a G-map, there exists a map $\phi: M/G \longrightarrow [0,1]$ such that $\phi \circ \pi = \theta$. It is easy to see that ϕ is a homeomorphism. We give a differentiable structure of M/G by ϕ .

Lemma 1.2. In the above situation, we have

- 4 -

(1) θ is a smooth map,

(2) there exists a G-diffeomorphism $\alpha: \theta^{-1}((0,1)) \longrightarrow G/H \times (0,1)$ such that $\theta \circ \alpha^{-1}$ is the projection on the second factor, and

(3) f: $M/G \longrightarrow R$ is smooth if and only if $f \circ \pi : M \longrightarrow R$ is smooth.

Proof. (1) Let $\alpha_i: G_{K_i}^{(D(V_i)-0)} \longrightarrow G/H \times (0,1]$ be a map given by $\alpha_i([g,re_i]) = (gH,r)$ for $g\in G$ and $r\in(0,1]$ (i=0,1). Then it is easy to see that α_i is a G-diffeomorphism. Since $\alpha_1 \circ \eta = \alpha_0$ on $G_{K_0}^{(K_0)}S(V_0)$, the composition $\beta: \theta^{-1}((0,1)) = G_{K_0}^{(D(V_0)-0)}O_{\eta}^{(K_1)}(D(V_1)-0)$ $\xrightarrow{\alpha_0 \circ \alpha_1} G/H \times (0,1] \cup_{1_{G/H} \times 1} G/H \times (0,1] = G/H \times (0,2)$ is a G-diffeomorphism. Note that

$$(\theta \circ \beta^{-1})(gH,r) = \begin{cases} \xi(r) & \text{for } 0 < r \le 1, \\ 1 - \xi(2-r) & \text{for } 1 \le r < 2. \end{cases}$$

Thus $\theta \circ \beta^{-1}$ is a smooth map, and θ is a map on $\theta^{-1}((0,1))$. From the definition, θ is a smooth map on $\theta^{-1}(r)$ for $r \neq 1/2$. Therefore θ is a smooth map.

(2) Let $\overline{\theta}$: (0,2) \longrightarrow (0,1) be a smooth map given by

$$\overline{\theta}(\mathbf{r}) = \begin{cases} \xi(\mathbf{r}) & \text{for } 0 < \mathbf{r} \le 1, \\ 1 - \xi(2 - \mathbf{r}) & \text{for } 1 \le \mathbf{r} < 2. \end{cases}$$

Since $\overline{\theta}'(\mathbf{r}) > 0$ for $0 < \mathbf{r} < 2$, $\overline{\theta}$ is a diffeomorphism. Let α : $\theta^{-1}((0,1))$ $\rightarrow G/H \times (0,1)$ be a G-diffeomorphism given by $\alpha = (1,\overline{\theta}) \circ \beta$. Then $(\theta \circ \alpha^{-1})(gH,r) = (\theta \circ \beta^{-1})(gH,\overline{\theta}^{-1}(\mathbf{r})) = r$, and $\theta \circ \alpha^{-1}$ is the projection on the second factor.

(3) Let f: M/G \rightarrow R be a function such that $f \circ \pi : M \rightarrow R$ is smooth. We shall prove that $f \circ \phi^{-1}$: [0,1] \rightarrow R is smooth. Since

 $(f \circ \pi \circ \alpha^{-1}) (gH, r) = (f \circ \phi^{-1} \circ \theta \circ \alpha^{-1}) (gH, r) = (f \circ \phi^{-1}) (r) \text{ for } 0 < r < 1,$ $f \circ \phi^{-1} \text{ is smooth on } (0, 1). \quad \text{Let } i_0 \colon D_{1/2}(V_0) = \left\{ v \in D(V_0) ; ||_v|| \le 1/2 \right\}$ $\longrightarrow G \times_{K_0} D(V_0) \quad \text{be an inclusion given by } i_0(v) = [1, v]. \quad \text{Note that}$ $(\theta \circ i_0) (v) = ||v||^2 \text{ for } v \in D_{1/2}(V_0). \quad \text{By Corollary 5.3 of G. Bredon}$ $[3, \text{ Chapter VI, §5], f \circ \phi^{-1} \text{ is smooth if and only if } (f \circ \phi^{-1}) \circ (\theta \circ i_0) \text{ is}$

smooth. Since $(f \circ \phi^{-1}) \circ (\theta \circ i_0) = f \circ \pi \circ i_0$, which is smooth, then $f \circ \phi^{-1}$ is smooth on [0, 1/4]. Similarly we can prove that $f \circ \phi^{-1}$ is smooth on [3/4, 1]. Since $(f \circ \phi^{-1})(r) = (f \circ \phi^{-1} \circ \theta \circ \alpha^{-1})(1H, r) = (f \circ \pi \circ \alpha^{-1})(1H, r)$ for 0 < r < 1, $f \circ \phi^{-1}$ is smooth on (0, 1). This completes the proof of Lemma 1.2.

Remark 1.3. Lemma 1.2 is essentially proved by G. Bredon [3, Chapter VI, §5], and (3) implies that the functional structure of M/G is induced from that of M.

§2. On the group homomorphism P.

In this section we shall define a group homomorphism P: $\text{Diff}_{G}^{\infty}(M)_{0} \rightarrow \text{Diff}^{\infty}_{0}[0,1]_{0}$, and we shall prove P is continuous.

We shall identify the orbit space M/G with [0,1] by the homeomorphism ϕ in §1, therefore the projection $\pi \colon M \longrightarrow M/G$ is identified with the smooth map $\theta \colon M \longrightarrow [0,1]$. Let $h \colon M \longrightarrow M$ be a G-diffeomorphism of M which is G-isotopic to the identity l_M , and let $f \colon [0,1] \longrightarrow [0,1]$ be the orbit map of h. Since $f \circ \pi = \pi \circ h$ is a smooth map, f is a smooth map by Lemma 1.2 (3). Similarly the inverse map f^{-1} of f is smooth, and f is a diffeomorphism. Then there exists an abstract group homomorphism P: $\text{Diff}_G^{\infty}(M)_0 \longrightarrow \text{Diff}^{\infty}[0,1]$ which is given by P(h) = f, where $\text{Diff}_0^{\infty}(0,1]$ is the group of C^{∞} diffeomorphism of [0,1], : endowed with C^{∞} topology.

Proposition 2.1. P: $\text{Diff}_{G}^{\infty}(M) \longrightarrow \text{Diff}^{\infty}[0,1]$ is a continuous homomorphism of topological groups.

Let $C^{\infty}(M_1, M_2)$ denote the set of all smooth maps from a compact smooth manifold M_1 to a smooth manifold M_2 , endowed with C^{∞} topology. Before the proof of Proposition 2.1, we begin with some lemmas.

Lemma 2.2. Let M_i be a compact smooth manifold and N_i be a smooth manifold for i = 1, 2. Then we have

(1) Let $\phi: \mathbb{N}_1 \longrightarrow \mathbb{N}_2$ be a smooth map, and let $\phi_*: \mathbb{C}^{\infty}(\mathbb{M}_1, \mathbb{N}_1) \longrightarrow \mathbb{C}^{\infty}(\mathbb{M}_1, \mathbb{N}_2)$ be a map which is given by $\phi_*(f) = \phi \circ f$. Then ϕ_* is continuous.

(2) Let $\phi: \mathbb{M}_1 \longrightarrow \mathbb{M}_2$ be a smooth map, and let $\phi^*: \mathbb{C}^{\infty}(\mathbb{M}_2, \mathbb{N}_1) \longrightarrow \mathbb{C}^{\infty}(\mathbb{M}_1, \mathbb{N}_1)$ be a map which is given by $\phi^*(f) = f \circ \phi$. Then ϕ^* is continuous.

(3) Let $\phi: M_1 \longrightarrow N_2$ be a smooth map and let $\phi_{\#} : C^{\infty}(M_1, N_1) \longrightarrow C^{\infty}(M_1, N_1 \times N_2)$ be a map which is given by $\phi_{\#}(f) = (f, \phi)$. Then $\phi_{\#}$ is continuous.

(4) Let $\phi: M_2 \longrightarrow N_2$ be a smooth map and let $\phi_!: C^{\infty}(M_1, N_1) \longrightarrow C^{\infty}(M_1 \times M_2, N_1 \times N_2)$ be a map given by $\phi_!(f) = f \times \phi$. Then $\phi_!$ is continuous.

(5) Let $\kappa: C^{\infty}(M_1, N_1) \times C^{\infty}(M_1, N_2) \rightarrow C^{\infty}(M_1, N_1 \times N_2)$ be a map given by $\kappa(f,g)(x) = (f(x), g(x))$ for $x \in M_1$. Then κ is continuous.

(6) Let L be a smooth manifold. Let comp: $C^{\infty}(M_{1}, N_{1}) \times C^{\infty}(N_{1}, L)$ $\rightarrow C^{\infty}(M_{1}, L)$ be a map given by comp(f,g) = g of. Then comp is continuous.

Proof. (1) and (2) are proved by R. Abraham [2, Theorem 11.2 and 11.3]. It is easy to see (3), (4) and (5). From J. Cerf [4, Chapter I, §4, Proposition 5], (6) follows.

Lemma 2.3. Let X be a topological space. Let M be a compact smooth manifold and N be a smooth manifold. Choose an open covering $\{U_i\}$ of M such that each closure \overline{U}_i of U_i is a regular submanifold of M which is contained in a coordinate neighborhood of M. Then a map $\Psi: X \to C^{\infty}(M,N)$ is continuous if and only if each composition $\Psi_i: X \xrightarrow{\Psi} C^{\infty}(M,N) \xrightarrow{j_i^*} C^{\infty}(\overline{U}_i,N)$ is continuous for each i, where $j_i:$ $\overline{U}_i \hookrightarrow M$ is an inclusion.

Proof. From Lemma 2.2 (2), if Ψ is continuous, then Ψ_i is continuous for each i. We can choose $\{U_i\}$ as a coordinate covering of M. Let $\{V_\lambda\}$ be a coordinate covering of N. Let $f \in C^{\infty}(M,N)$ and $K \subset U_i$ be a compact subset such that $f(K) \subset V_\lambda$ for some λ . $N^r(f, U_i, V_\lambda, K, \epsilon)$ ($r = 0, 1, 2, \ldots, 0 < \epsilon \le \infty$) denote the set of C^r maps g: $M \longrightarrow N$ such that $g(K) \subset V_\lambda$ and $|| D^k f(x) - D^k g(x) || < \epsilon$ for any $x \in K$, $k = 0, 1, 2, \ldots, r$. Then the C^{∞} topology on $C^{\infty}(M,N)$ is generated by these sets $N^r(f, U_i, V_\lambda, K, \epsilon)$ (see M. Hirsch [6, Chapter 2, §1]).

Let $x \in X$ and let $f = \Psi(x)$. For any open neighborhood W of f, there exist above sets $N_k = N^{r_k}(f, U_{i_k}, V_{\lambda_k}, K_k, \varepsilon_k)$, $k=1,2,\ldots,n$, such that $\bigcap_{k=1}^{n} N_k \subset W$. Note that $j_{i_k}^* : C^{\circ}(M,N) \rightarrow C^{\circ}(\overline{U}_{i_k},N)$ is an open map and $(j_{i_k}^*)^{-1}(j_{i_k}^*(N_k)) = N_k$. Since Ψ_i is continuous, $\Psi^{-1}(N_k) = \Psi_{i_k}^{-1}(M_k)$, $j_{i_k}^*(N_k)$) is an open neighborhood of x in X, for each k. Then $\bigcap_{k=1}^{n} K^{n_k}$.

 $\Psi^{-1}(N_k)$ is an open neighborhood of x in X. Since $\Psi(\bigcap_{k=1}^{n} \Psi^{-1}(N_k)) \subset \bigcap_{k=1}^{n} N_k \subset W$, Ψ is continuous at x. This completes the proof of Lemma 2.3.

Remark. Lemma 2.2 and Lemma 2.3 are hold in the cases of manifolds with corneres.

Let $C_e^{\infty}([-1/2,1/2], R)$ denote the set of all smooth functions f: $[-1/2,1/2] \longrightarrow R$ satisfying f(-x) = f(x), endowed with C^{∞} topology. Let T: $C_e^{\infty}([-1/2,1/2], R) \longrightarrow C^{\infty}([0,1/4], R)$ denote a map defined by $T(f)(x) = f(\sqrt{x})$. Then we have

Lemma 2.4. The above map T is well defined and continuous.

Proof. Put $f = T(\hat{f})$ for each $\hat{f} \in C_{e}^{\infty}([-1/2,1/2], R)$. Since \hat{f} is a C^{∞} even function, we have the Taylor expansion $\hat{f}(x) = \hat{f}(0) + (\hat{f}''(0)/2)x^{2} + ... + (\hat{f}^{(2n-2)}(0)/(2n-2)!)x^{2n-2} + (f_{0}^{1}((1-t)^{2n-1}/(2n-1)!)\hat{f}^{(2n)}(tx) dt)x^{2n}$

for
$$-1/2 \le x \le 1/2$$
, n=1,2,... Thus we have
 $f(x) = \hat{f}(0) + (\hat{f}''(0)/2)x + ... + (\hat{f}^{(2n-2)}(0)/(2n-2)!)x^{n-1} + (\int_{0}^{1} ((1-t)^{2n-1}/(2n-1)!)\hat{f}^{(2n)}(t\sqrt{x}) dt)x^{n}$

for $0 \le x \le 1/4$. By the composite mapping formula, we can compute the n-th derivative

$$D^{n}(f^{(2n)}(t\sqrt{x})x^{n}) = \sum_{p=0}^{n} \sum_{q=0}^{p} \sum_{\substack{i_{1}+\dots+i_{q}=p\\i_{1}>0,\dots,i_{q}>0}} B(p,i_{1},\dots,i_{q})\hat{f}^{(2n+q)}(t\sqrt{x})x^{q/2}t^{q},$$

where $B(p,i_1,...,i_q)$ is a real number. Put $f_i = T(\hat{f}_i)$ for $\hat{f}_i \in C_e^{\infty}([-1/2,1/2], R)$ (i=1,2). Then there exists a positive number A_n such that

$$\sup_{0 \le x \le 1/4} |D^{n}f_{1}(x) - D^{n}f_{2}(x)| \\ \le A_{n} \cdot \max_{0 \le q \le 3n} (\sup_{-1/2 \le x \le 1/2} |D^{q}\hat{f}_{1}(x) - D^{q}\hat{f}_{2}(x)|)$$

- 9 -

for each n = 1,2,... Note that

 $\sup_{0 \le x \le 1/4} |f_1(x) - f_2(x)| = \sup_{-1/2 \le x \le 1/2} |\hat{f_1}(x) - \hat{f_2}(x)|.$ Therefore T is a continuous map, and this completes the proof of Lemma 2.4.

Proof of Proposition 2.1. Let J denote a closed interval [0,1/4], [1/5,4/5] or [3/4,1]. By Lemma 2.3, it is sufficient to show that the composition P_J : $\text{Diff}_G^{\infty}(M)_0 \xrightarrow{P} \text{Diff}^{\infty}[0,1] \xrightarrow{j^*} C^{\infty}(J,[0,1])$ is continuous, where j: $J \hookrightarrow [0,1]$ is an inclusion map.

We shall first consider the case J = [0, 1/4]. Let $1: [-1/2, 1/2] \rightarrow G \times_{K_0} D(V_0)$ $\rightarrow [0, 1/4]$ be a map given by $1(x) = x^2$. Let $\hat{1}: [-1/2, 1/2] \rightarrow G \times_{K_0} D(V_0)$ $\rightarrow M$ be a map given by $\hat{1}(r) = [1, re_0]$, where e_0 is a point of $S(V_0)$ as in §1. Then $\pi \circ \hat{1} = 1$. Let \hat{P}_J denote the composition $Diff_G^{\infty}(M)_0$ $\xrightarrow{\hat{1}^{\star}} C^{\infty}([-1/2, 1/2], M) \xrightarrow{\pi_{\star}} C^{\infty}([-1/2, 1/2], [0, 1])$. Then $\hat{P}_J(h) = \pi \circ h \circ \hat{1}$ $= P(h) \circ i = i^*P(h)$ for $h \in Diff_G^{\infty}(M)_0$, and the image of \hat{P}_J is contained in $C_e^{\infty}([-1/2, 1/2], R)$. Note that $P_J = T \circ \hat{P}_J$. Combining Lemma 2.2 and Lemma 2.4, P_J is continuous.

Next consider the case J = [1/5, 4/5]. By Lemma 1.2, there is a G-diffeomorphism α : $\pi^{-1}([1,5,4/5]) \longrightarrow G/H \times [1/5,4/5]$. Let i: $\pi^{-1}([1/5,4/5]) \hookrightarrow M$ be the inclusion map and let k: $[1/5,4/5] \longrightarrow G/H \times [1/5,4/5]$ be a map given by k(r) = (1H,r). Then P_J is the composition

 $\text{Diff}_{G}^{\infty}(M)_{0} \xrightarrow{(i \circ \alpha^{-1} \circ k)^{*}} C^{\infty}([1/5, 4/5], M) \xrightarrow{\pi} C^{\infty}([1/5, 4/5], [0, 1])$ which is continuous by Lemma 2.2.

We can prove that P_J is continuous in the case J = [3/4, 1] similarly as in the case J = [0, 1/4], and this completes the proof of Proposition 2.1. §3. A continuous global section of P.

In §2 we have proved that P: $\operatorname{Diff}_{G}^{\infty}(M)_{0} \longrightarrow \operatorname{Diff}_{0}^{\infty}[0,1]$ is continuous. Thus the image of P is contained in the connected component $\operatorname{Diff}_{0}^{\infty}[0,1]_{0}$ of the identity. In this section we shall construct a continuous global section of P: $\operatorname{Diff}_{G}^{\infty}(M)_{0} \longrightarrow \operatorname{Diff}_{0}^{\infty}[0,1]_{0}$.

Let f be an element of $\operatorname{Diff}^{\infty}[0,1]_{0}$. We shall define a map $\Psi(f): M \longrightarrow M$ as follows: $\Psi(f)$ is defined on $\pi^{-1}((0,1))$ by the composition $\pi^{-1}((0,1)) \xrightarrow{\alpha} G/H \times (0,1) \xrightarrow{(1,f)} G/H \times (0,1) \xrightarrow{\alpha^{-1}} \pi^{-1}((0,1))$, and $\Psi(f) = 1$ on $\pi^{-1}(0) \vee \pi^{-1}(1)$.

Proposition 3.1. $\Psi(f)$ is a G-diffeomorphism of M.

In order to prove Proposition 3.1, we need the following lemma : and notations.

Lemma 3.2. Let Ψ_1 : Diff^{∞}[0,1]₀ \longrightarrow Diff^{∞}(Dⁿ) be a map defined by $\Psi_1(f)(v) = \begin{cases} (\sqrt{f(||v||^2}) / ||v||)v & \text{for } v \neq 0, \\ 0 & \text{for } v = 0, \end{cases}$

where D^n denotes an n-dimensional unit disc. Then Ψ_1 is a well defined and continuous map.

Notations 3.3. For i = 0,1, we shall use the following notations: $\pi_i: G \to G/K_i$ the natural projection, U_i an open disc neighborhood of lK_i in G/K_i , $\sigma_i: U_i \to G$ a smooth local cross section of π_i , $\sigma_{i,a}: aU_i \to G$ (a(G) a smooth local cross section of π_i defined by $\sigma_{i,a}(x) = a \cdot \sigma_i (a^{-1}x)$.

Put $M_i = G_{K_i} D(V_i)$ and $M_i(r) = G_{K_i} D(V_i)$, where $D_r(V_i)$ is a closed r-disc in V_i (0<r<1). $p_i: M_i \rightarrow G/K_i$, $p_{i,r}: M_i(r) \rightarrow G/K_i$ the bundle projections, $\phi_{i,a}: p_i^{-1}(aU_i) \rightarrow U_i \times D(V_i)$ (a(G) a chart of p_i over aU_i defined by $\phi_{i,a}([g,v]) = (a^{-1}\pi_i(g), ((\sigma_{i,a}\circ\pi_i)(g))^{-1}g\cdot v),$ $\pi_2: G \longrightarrow G/H$ the natural projection, U_2 an open disc neighborhood of lH in G/H, $\sigma_2: U_2 \longrightarrow G$ a smooth local cross section of π_2 .

Proof of Proposition 3.1. Put $h = \Psi(f)$. We shall first prove that h is smooth on $\pi^{-1}(0)$. Since f(0)=0, there exists a real number ε such that $0 < \varepsilon \le 1/2$ and $f(\varepsilon^2) \le 1/4$. Then $h(\pi^{-1}([0,\varepsilon^2]) \subset \pi^{-1}([0,1/4]))$, and $h(M_0(\varepsilon)) \subset M_0(1/2)$. For $[g,re_0] \in G^{\times}_{K_0} D_{\varepsilon}(V_0 - 0)$ $(0 < r \le \varepsilon)$, $h([g,re_0]) = (\alpha^{-1} \circ (1,f) \circ \alpha) ([g,re_0]) = (\alpha^{-1} \circ (1,f)) (gH,r^2) = \alpha^{-1}(gH,f(r^2))$ $= [g,\sqrt{f(r^2)}e_0]$. Then, for $[g,v] \in G^{\times}_{K_0} E^{(V_0-0)}$, $h([g,v]) = [g,\sqrt{f(||v||^2)}/||v||$ $v] = [g,\Psi_1(f)(v)]$. Since h([g,0]) = [g,0], $h([g,v]) = [g,\Psi_1(f)(v)]$ for any $[g,v] \in M_0(\varepsilon)$. Then the composition

$$\widehat{\mathbf{h}}: \ \mathbf{U}_{0} \times \mathbf{D}_{\varepsilon} (\mathbf{V}_{0}) \xrightarrow{(\phi_{0,a})^{-1}} \mathbf{p}_{0,\varepsilon}^{-1} (\mathbf{a}\mathbf{U}_{0}) \xrightarrow{\mathbf{h}} \mathbf{p}_{0,1/2}^{-1} (\mathbf{a}\mathbf{U}_{0}) \xrightarrow{\phi_{0,a}} \mathbf{U}_{0} \times \mathbf{D}_{1/2} (\mathbf{V}_{0})$$

is given by $\tilde{h}(x,v) = (x, \Psi_1(f)(v))$ for a(G. Since $\Psi_1(f)$ is a smooth map by Lemma 3.2, h is smooth on $\pi^{-1}(0)$. Similarly we can prove that h is smooth on $\pi^{-1}(1)$. Since h is smooth on $\pi^{-1}((0,1))$ by the definition, h is a smooth map. Since $h^{-1} = \Psi(f^{-1})$, h^{-1} is also a smooth map. Thus h is a G-diffeomorphism of M, and this completes the proof of Proposition 3.1.

In order to prove Lemma 3.2, we need the following assertion.

Assertion 3.4. Let
$$\Phi$$
: Diff[®][0,1]₀ $\longrightarrow C^{\degree}([0,1],R)$ be a map given by

$$\Phi(f)(x) = \begin{cases} \sqrt{f(x)/x} & \text{for } x \neq 0, \\ \sqrt{f'(0)} & \text{for } x = 0. \end{cases}$$

Then ϕ is a well defined continuous map.

Proof. For $f \in Diff^{\infty}[0,1]_0$, we have the Taylor expansion

- 12 -

$$\begin{split} f(\mathbf{x}) &= f'(\mathbf{0})\mathbf{x} + \mathbf{x}^2 \int_0^1 (1-t)f''(t\mathbf{x}) \, dt & \text{for } 0 \leq \mathbf{x} \leq 1. \\ \text{Put } F(\mathbf{x}) &= f'(\mathbf{0}) + \mathbf{x} \int_0^1 (1-t)f''(t\mathbf{x}) \, dt & \text{for } 0 \leq \mathbf{x} \leq 1. \\ \text{Note that } F(\mathbf{x}) > 0 & \text{for } 0 \leq \mathbf{x} \leq 1. \\ \text{It is easy to see that } \phi & \text{is continuous.} \end{split}$$

Proof of Lemma 3.2. Let N: $D^n \to [0,1]$ be a map given by N(v)= $||v||^2$. Let i: $D^n \hookrightarrow R^n$ be the inclusion and let μ : $R \times R^n \to R^n$ be the scalar multiplication. Since $\Psi_1(f) = \Phi(f)(||v||^2)v$, $\Psi_1(f)$ is a smooth map by Assertion 3.4. Since $\Psi_1(f^{-1}) = \Psi_1(f)^{-1}$, $\Psi_1(f)^{-1}$ is also a smooth map. Thus $\Psi_1(f)$ is a diffeomorphism of D^n . Note that Ψ_1 is the composition $\text{Diff}^{\infty}[0,1]_0 \xrightarrow{\Phi} C^{\infty}([0,1],R) \xrightarrow{N^*} C^{\infty}(D^n,R)^{\frac{1}{\#}} \rightarrow C^{\infty}(D^n,R \times R^n) \xrightarrow{\mu_*} C^{\infty}(D^n,R^n)$. Combining Assertion 3.4 and Lemma 2.2, Ψ is continuous. This completes the proof of Lemma 3.2.

Proposition 3.5. Ψ : Diff[∞][0,1]₀ \longrightarrow Diff[∞]_G(M) is continuous.

Proof. Let $B_i \subset U_i$ be a closed disc neighborhood of $|K_i|$ in G/K_i for i = 0, 1. Let $B_2 \subset U_2$ be a closed disc neighborhood of 1H in G/H. We can choose $\{int(p_{0,\epsilon}^{-1}(aB_0)), int(p_{1,\epsilon}^{-1}(aB_1)), int(\alpha^{-1}(aB_2 \times [\epsilon/2, 1-\epsilon/2])); a \in G\}$ as an open covering of M for $0 < \epsilon < 1/2$. Put $W = \{f \in Diff^{\infty}[0,1]_0; f([0,\epsilon^2]) \subset [0,1/4), f([1-\epsilon^2,1]) \subset (3/4,1]\}$. Then W is an open neighborhood of the identity in $Diff^{\infty}[0,1]_0$. Since Ψ is a homomorphism as an abstract group, it is enough to show that Ψ is continuous on W. Let C denote one of the sets $p_{0,\epsilon}^{-1}(aB_0), p_{1,\epsilon}^{-1}(aB_1)$ or $\alpha^{-1}(aB_2 \times [\epsilon/2, 1-\epsilon/2])$ for a G. If we can prove that the composition $\Psi_C: W \xrightarrow{\Psi} Diff_G^{\infty}(M)_0 \xrightarrow{i*} C^{\infty}(C,M)$

is continuous for each C, then Ψ is continuous on W by Lemma 2.3, where i: C \hookrightarrow M is an inclusion map.

First consider in the case $C = p_{0,\epsilon}^{-1}(aB_0)$. $\Psi(f)(C)$ is contained in $p_{0,1/2}^{-1}(aU_0)$ for each few. Note that $\Psi(f)([g,v]) = [g,\Psi_1(f)(v)]$ for $[g,v]\in C$ and $(\phi_{0,a}\circ\Psi(f)\circ\phi_{0,a}^{-1})(x,v) = (x,\Psi_1(f)(v))$ for $(x,v)\in B_0 \times D_{\epsilon}(V_0)$. Thus Ψ_C is given by the composition

- 13 -

$$W \xrightarrow{\Psi_{1}} C^{\infty}(D_{\epsilon}(V_{0}), D(V_{0}))$$

$$\xrightarrow{j_{1}} C^{\infty}(B_{0} \times D_{\epsilon}(V_{0}), U_{0} \times D(V_{0}))$$

$$\xrightarrow{\Phi_{0,a}} C^{\infty}(C, U_{0} \times D(V_{0}))$$

$$\xrightarrow{(k \circ \phi_{0,a})} C^{\infty}(C, M),$$

where j: $B_0 \hookrightarrow U_0$ and k: $p_0^{-1}(aU_0) \hookrightarrow M$ are inclusions. Combining Lemma 3.2 and Lemma 2.2, Ψ_C is continuous.

Now consider the case $C = \alpha^{-1} (B_0 \times [\epsilon/2, 1-\epsilon/2])$. Ψ_C is given by the composition

$$W \xrightarrow{1^{\star}} C^{\infty}([\varepsilon/2, 1-\varepsilon/2], (0, 1))$$

$$\xrightarrow{j_{1}} C^{\infty}(B_{0} \times [\varepsilon/2, 1-\varepsilon/2], G/H \times (0, 1))$$

$$\xrightarrow{\alpha^{\star}} C^{\infty}(C, G/H \times (0, 1))$$

$$\xrightarrow{(k \circ \alpha^{-1})_{\star}} C^{\infty}(C, M),$$

where $\iota: [\varepsilon/2, 1-\varepsilon/2] \hookrightarrow [0, 1]$. j: $B_0 \hookrightarrow G/H$ and $k: \pi^{-1}((0, 1)) \hookrightarrow M$ are inclusion maps. By Lemma 2.2, Ψ_C is continuous.

We can prove that Ψ_{C} is continuous in the case $C = p_{1,\epsilon}^{-1} (aB_{1})$ similarly as in the case $C = p_{0,\epsilon}^{-1} (aB_{0})$, and this completes the proof of Proposition 3.5.

By Proposition 3.5, P: $\mathrm{Diff}^\infty_G(M)_0 \longrightarrow \mathrm{Diff}^\infty[0,1]_0$ is a globally trivial fibration. Then we have

Corollary 3.6. $\text{Diff}_{G}^{\infty}(M)_{0}$ is homeomorphic to $\text{Diff}^{\infty}[0,1]_{0} \times \text{KerP}$.

§4. On the group Ker P.

In this section we shall define a group homomorphism L: Ker P \rightarrow Q, where Q is a subgroup of C^{∞}([0,1], N(H)/H), and we shall prove that L is a group monomorphism between topological groups (see Lemma 4.5 and Proposition 4.6).

Let h be an element of Ker P. Let h be the composition $G/H \times (0,1) \xrightarrow{\alpha^{-1}} \pi^{-1}((0,1)) \xrightarrow{h} \pi^{-1}((0,1)) \xrightarrow{\alpha} G/H \times (0,1).$ Then h is a level preserving G-diffeomorphism. Let a: $(0,1) \rightarrow N(H)/H$ be a smooth map satisfying h(gH,r) = (ga(r),r) for $(gH,r) \in G/H \times (0,1)$.

Proposition 4.1. With the above notations, there exists a smooth map $\bar{a}: [0,1] \longrightarrow N(H)/H$ such that

- (1) $\bar{a} = a \text{ on } (0,1)$,
- (2) $\overline{a}(i) \in (N(H) \cap N(K_i))/H$ for i = 0, 1.

To prove Proposition 3.1, we need the following lemma.

Lemma 4.2. Let G be a compact Lie group. Let K and N be closed subgroups of G. Let $\pi: G \to G/K$ be the natural projection. Then there exists a smooth local section σ of π , which is defined on an open neighborhood U of 1K, such that $\sigma(1K) = 1$ and $\sigma(x) \in N$ for $x \in \pi(N) \cap U$.

Proof. Let $\pi_1: N \to N/(N \cap K)$ be a natural projection. Let i: N \hookrightarrow G be the inclusion and let I: $N/(N \cap K) \to G/K$ be a map satisfying $\pi \circ i = I \circ \pi_1$. Since $I(N/(N \cap K)) = \pi(N)$ is an orbit of the natural action $N \times G/K \to G/K$, I is an imbedding. Let U be a disc neighborhood around $\pi(1)$ in G/K and let U_1 be a disc neighborhood around $\pi_1(1)$ in $N/(N \cap K)$. Since I is an imbedding, we can assume $I(U_1) = U \cap I(N/(N \cap K)) = U \cap \pi(N)$. Let $\sigma_1: U_1 \to N$ be a smooth local section of π_1 satisfying $\sigma_1(\pi(1)) = 1$. Then $\sigma_1 \circ I^{-1}$ is a smooth section defined on $I(U_1)$. We can extend $\sigma_1 \circ I^{-1}$ to a smooth local section defined on U. Then $\sigma(\pi(1)) = 1$ and $\sigma(U \cap \pi(N)) \subset N$. This completes the proof of Lemma 4.2.

Lemma 4.3. Let G be a compact connected Lie group. Let V be a representation of G such that G acts transitively and effectively on a unit sphere S(V) of V. Let H be the isotropy subgroup of a point of S(V). Then we have the following list:

G	SO(n) (n≥3)	SU(n) (n≥2)	U(n) (n≥1)	Sp(n) (n≥l)	$Sp(n) \times \frac{S^3(n \ge 1)}{2}$
н	SO(n-1)	SU(n-1)	U(n-l)	Sp(n-l)	н ₁
N(H)/H	^Z 2	U(1)	U(l)	Sp(1)	^Z 2

Sp(n)× _{Z2} S ¹ (n≥1)	G2	Spin(7)	Spin(9)
Н2	SU(3)	G2	Spin(7)
s ¹	^z 2	^Z 2	^Z 2

where $H_1 = \left\{ [(q,A), q^{-1}] \in Sp(n) \times_{\mathbb{Z}_2} S^3; (q,A) \in Sp(1) \times Sp(n-1) \subset Sp(n) \right\}$ and $H_2 = \left\{ [(z,A), z^{-1}] \in Sp(n) \times_{\mathbb{Z}_2} S^1; (z,A) \in S^1 \times Sp(n-1) \subset Sp(n) \right\}.$

Proof. It is known that G and H are the above Lie groups (c.f. W. C. Hsiang and W. Y. Hsiang [7, §1]). We can determine the Lie group N(H)/H by an immediate calculation except for $G = G_2$, Spin(7), Spin(9). For the cases $G = G_2$, Spin(7), Spin(9), we can determine N(H)/H by using I. Yokota's definitions of these Lie groups in [9, Chapter 5].

Lemma 4.4. (1) Let F: $[-1,1] \rightarrow R$ be a smooth function such that F(0) = 0. Put f(x) = F(x)/x for $x \neq 0$ and f(x) = F'(0) for x = 0. Then f: $[-1,1] \rightarrow R$ is a well defined smooth function.

(2) Put $C_0^{\infty}([-1,1],R) = \{F \in C^{\infty}([-1,1],R); F(0) = 0\}, \text{ endowed-with}$

- 16 -

endowed with C^{∞} topology. Let $\Phi: C_0^{\infty}([-1,1],R) \longrightarrow C^{\infty}([-1,1],R)$ be a map given by $\Phi(F)(x) = f(x)$. Then Φ is continuous.

Proof. For $F \in C_0^{\infty}([-1,1], R)$, we have $\Phi(F)(x) = f(x) = F'(0) + x \int_0^1 (1-t)F''(tx) dt$. Then the n-th derivative $f^{(n)}(x) = x \int_0^1 (1-t) \cdot t^n F^{(n+2)}(tx) dt + n \int_0^1 (1-t)t^{n-1}F^{(n+1)}(tx) dt$. Thus there exists a positive number A such that $|| \Phi(F) ||_n \leq A ||F||_{n+2}$, and Lemma 4.4 follows.

Proof of Proposition 4.1. Let ε (0< $\varepsilon \le 1/2$) be a real number. Let W_i and U_i be open neighborhoods of $1K_i$, satisfying $\overline{W}_i \subset U_i$. for i = 0,1. Put O = {h(Ker P; h($p_{i,\varepsilon}^{-1}(\overline{W}_i)) \subset p_{i,\varepsilon}^{-1}(U_i)$ for i = 0,1}. Then O is an open neighborhood of the identity in Ker P. By Corollary 3.6, Ker P is connected, and O generates the topological group Ker P. Thus we can assume h(O.

Let $\widetilde{\mathbf{h}}$ be the composition

$$\begin{split} & \mathbb{W}_0 \times \mathbb{D}_{\varepsilon}(\mathbb{V}_0) \xrightarrow{\left(\begin{array}{c} \phi_{0,1} \end{array}\right)^{-1}} \mathbb{P}_{0,\varepsilon}^{-1}(\mathbb{W}_0) \xrightarrow{h} \mathbb{P}_{0,\varepsilon}^{-1}(\mathbb{U}_0) \xrightarrow{\phi_{0,1}} \mathbb{U}_0 \times \mathbb{D}_{\varepsilon}(\mathbb{V}_0) \\ & \text{Let } \rho_1 \colon \mathbb{U}_0 \times \mathbb{D}_{\varepsilon}(\mathbb{V}_0) \longrightarrow \mathbb{U}_0 \text{ and } \rho_2 \colon \mathbb{U}_0 \times \mathbb{D}_{\varepsilon}(\mathbb{V}_0) \longrightarrow \mathbb{D}_{\varepsilon}(\mathbb{V}_0) \text{ be projections on} \\ & \text{the first factor and the second factor, respectively.} \quad \text{Let } i \colon [-\varepsilon, \varepsilon] \\ & \longrightarrow \mathbb{W}_0 \times \mathbb{D}_{\varepsilon}(\mathbb{V}_0) \text{ be an imbedding given by } i(r) = (\mathbb{I}\mathbb{K}_0, \mathrm{re}_0). \text{ Then the} \\ & \text{compositions } \widetilde{h}_1 = \rho_1 \circ \widetilde{h} \circ i \colon [-\varepsilon, \varepsilon] \longrightarrow \mathbb{U}_0 \text{ and } \widetilde{h}_2 = \rho_2 \circ \widetilde{h} \circ i \colon [-\varepsilon, \varepsilon] \longrightarrow \\ & \mathbb{D}_{\varepsilon}(\mathbb{V}_0) \text{ are smooth maps.} \quad \text{Let } \overline{\pi}_0 \colon \mathbb{G}/\mathbb{H} \longrightarrow \mathbb{G}/\mathbb{K}_0 \text{ be the natural projection.} \\ & \text{Note that} \end{split}$$

$$(\alpha \circ h \circ \phi_{0,1}^{-1}) (lK_0, re_0) = (\alpha \circ h) ([l, re_0])$$

= $(\hat{h} \circ \alpha) ([l, re_0])$
= $\hat{h} (lH, r^2)$
= $(a(r^2), r^2)$ for $|r| \le \varepsilon, r \ne 0$.

Then

$$\widetilde{h}(lK_0, re_0) = (\phi_{0, l} \circ \alpha^{-1}) (a(r^2), r^2)$$

= $(\overline{\pi}_0' (a(r^2)), (\sigma_0 \circ \overline{\pi}_0) (a(r^2))^{-1} \cdot a(r^2) \cdot re_0),$

and

- 17 -

$$\widetilde{h}_{1}(r) = \overline{\pi}_{0}(a(r^{2})), \widetilde{h}_{2}(r) = (\sigma_{0}^{\circ}\overline{\pi}_{0})(a(r^{2}))^{-1} \cdot a(r^{2}) \cdot re_{0},$$

for $|\mathbf{r}| \leq \varepsilon$, $\mathbf{r} \neq 0$.

Here we can assume that $\sigma_0(1K_0) = 1$ and $\sigma_0(\pi_0(N(H)) \cap U_0) \in N(H)$ by Lemma 4.2. Let b: $[-\varepsilon, \varepsilon] \rightarrow G$ be a smooth map given by b(r) = $\sigma_0(\widetilde{h}_1(r))$. Then b(r) = $\sigma_0(\overline{\pi}_0(a(r^2)) \in \sigma_0(\pi_0(N(H)) \cap U_0)$, and b(r) $\in N(H)$ for r = 0. N(H) for r = 0. Since b is a smooth map, b(r) $\in N(H)$ for r = 0. For $[1,0] \in \pi^{-1}(0)$, we have $h([1,0]) = (h \circ \phi_{0,1}^{-1})(1K_0, 0) = (h \oplus \phi_{0,1}^{-1})(i(0)) = \phi_{0,1}^{-1}(\widetilde{h}_1(0), 0) = [b(0), 0]$. Note that p_0 is a G-diffeomorphism on the zero section of p_0 and $h(\pi^{-1}(0)) = \pi^{-1}(0)$. Then the composition $p_0 \circ h \circ p_0^{-1} \in G/K_0 \rightarrow G/K_0$ is a G-diffeomorphism, and $(p_0 \circ h \circ p_0^{-1})(1K_0) = (p_0 \circ h)([1,0]) = p_0([b(0),0]) = b(0)K_0$. Thus $b(0) \in N(K_0)$, and $b(0) \in N(H) \cap N(K_0)$.

Put J = $[-\varepsilon, 0)^{\bigcup}(0, \varepsilon]$. Let c: J $\rightarrow N(H)/H$ be a smooth map given by $c(r) = b(r)^{-1} \cdot a(r^2)$. Since $\overline{\pi}_0(c(r)) = \overline{\pi}_0(\sigma_0(\overline{\pi}_0(a(r^2))^{-1} \cdot a(r^2)) = |K_0|$, then $c(r) \in K_0/H$. Thus $c(r) \in N(H, K_0)/H$ for $r \in J$. Since Ker P is connected, the maps a,b and c are homotopic to the constant maps. Note that the identity component $(N(H, K_0)/H)^0$ of $N(H, K_0)/H$ is contained in $(N(H, K_0) \cap K_0^0) \cdot H/H$, and there exists an isomorphism $(N(H, K_0) \cap K_0^0) \cdot H/H \simeq (N(H, K_0) \cap K_0^0)/(H \cap K_0^0)$ as a Lie group, where K_0^0 is the identity component of K_0 . Then there exists a smooth map \hat{c} : J $\xrightarrow{c} (N(H, K_0)/H)^0 \hookrightarrow (N(H, K_0) \cap K_0^0) \cdot H/H \simeq (N(H, K_0) \cap K_0^0)/(H \cap K_0^0)$ $(\rightarrow N(H \cap K_0^0, K_0^0)/(H \cap K_0^0)$. Now we shall prove that \hat{c} can be extended to a smooth map on $[-\varepsilon, \varepsilon]$, and so is c.

Note that K_0 acts transitively on the unit sphere $S(V_0)$ of V_0 . If dim $S(V_0) = 0$, then $K_0/H = Z_2$ and $N(H, K_0)/H = Z_2$. In this case \hat{c} is a trivial map, and it is clear that \hat{c} can be extended to a smooth map on $[-\varepsilon, \varepsilon]$. Now we assume dim $S(V_0) > 0$. Since $S(V_0)$ is connected, K_0^0 acts transitively on $S(V_0)$ and $K_0^0/(K_0^0 \cap H)$ is diffeomorphic to $S(V_0)$.

- 18 -

Put $D = \bigcap_{g \in K_0^0} g(K_0^0 \cap H)g^{-1}$ which is the kernel of the action $K_0^0 \times S(V_0)$ $\rightarrow S(V_0)$. Put $\overline{K}_0 = K_0^0/D$ and $\overline{H} = (H \cap K_0^0)/D$. Then \overline{K}_0 acts transitively and effectively on $S(V_0)$ and $\overline{K}_0/\overline{H}$ is diffeomorphic to $S(V_0)$. Put $\overline{N}_0 = N(\overline{H}, \overline{K}_0)/\overline{H}$ which is isomorphic to $N(H \cap K_0^0, K_0^0)/(H \cap K_0^0)$ as a Lie group. The pair $(\overline{K}_0, \overline{N}_0)$ is one of pairs (G, N(H)/H) in the list of Lemma 4.3. Now we shall prove that \hat{c} can be extended to a smooth map on $[-\varepsilon, \varepsilon]$. If $\overline{N}_0 = Z_2$, this is clear since \hat{c} is a trivial map.

Consider the case $\overline{K}_0 = SU(n)$ $(n \ge 1)$ and $\overline{N}_0 = U(1)$. In this case V_0 is an n-dimensional complex vector space and $\overline{N}_0 = U(1)$ acts on V_0 as a scalar multiplication. We can regard C^n as a 2n-dimensional real vector space R^{2n} and \overline{N}_0 as SO(2). Then there exist smooth functions $c_i: J \longrightarrow R$, i = 1, 2, such that

$$\hat{c}(r) = \begin{bmatrix} c_1(r) & -c_2(r) \\ c_2(r) & c_1(r) \end{bmatrix} \in SO(2) \text{ for } r \in J.$$

Note that $\tilde{h}_2: [-\varepsilon,\varepsilon] \to D_{\varepsilon}(V_0)$ is a smooth map and $\tilde{h}_2(r) = c(r) \cdot re_0$ = $\hat{c}(r) \cdot re_0$ for $r \neq 0$. In this case $e_0 = (1,0,\ldots,0) \in S^{2n-1}$ and $\tilde{h}_2(r) = (c_1(r)r, c_2(r)r, 0, \ldots, 0)$ for $r \in J$. Put $c_1(0) = \lim_{r \to 0} c_1(r)$ for i = 1, 2. From Lemma 4.4, $c_1: [-\varepsilon,\varepsilon] \to R$, i = 1, 2, are smooth functions and \hat{c} can be extended to a smooth maps on $[-\varepsilon,\varepsilon]$.

Now consider the case $\overline{K}_0 = Sp(n)$ $(n \ge 1)$ and $\overline{N} = Sp(1)$. In this case \dot{V}_0 is an n-dimensional quaternionic vector space H^n and $\overline{N}_0^=$ Sp(1) acts on V_0 as a scalar multiplication on the right. We can regard H^n as R^{4n} and Sp(1) as a subgroup of SO(4) naturally. By the similar way as in the case $K_0 = SU(n)$, there exist smooth functions $c_i: J \longrightarrow R$, i = 1, 2, 3, 4, such that $h_2(r) = (c_1(r)r, c_2(r)r, c_3(r)r, c_4(r)r, 0, \ldots, 0)$ for $r \in J$, and we can extend \hat{c} to a smooth map on $[-\varepsilon, \varepsilon]$.

The proof of the other cases are similar to those of the above cases. Thus we can extend c to a smooth map on $[-\varepsilon,\varepsilon]$. Since $c(r) \in N(H,K_0)/H$

for $r \neq 0$, we see $c(0) \in N(H, K_0)/H$. Put $\bar{a}(0) = b(0) \cdot c(0)$. Since $b(0) \in N(H) \cap N(K_0)$ and $c(0) \in N(H,K_0)/H$, we have $\overline{a}(0) \in (N(H) \cap N(K_0))/H$. Let \hat{a} : $[-1/2, 1/2] \longrightarrow N(H)/H$ be a map given by $\hat{a}(r) = \overline{a}(r^2)$. Since $\hat{a}(r) = b(r) \cdot c(r)$ for $-\epsilon \le r \le \epsilon$, \hat{a} is a smooth map. Since \hat{a} is an even map and $\overline{a}(r) = \hat{a}(\sqrt{r})$ for $0 \le r \le 1/4$, \overline{a} is a smooth map on [0, 1/4]by Lemma 2.4. Thus we can extend the map a to a smooth map \bar{a} on [0,1) satisfying $\bar{a}(0) \in (N(H) \cap N(K_0))/H$. Similarly we can extend a to a smooth map \overline{a} on [0,1] satisfying $\overline{a}(1) \in (N(H) \cap N(K_1))/H$. This completes the proof of Proposition 4.1.

Let Q denote the set of smooth maps $f:[0,1] \longrightarrow N(H)/H$ satisfying $f(i) \in (N(H) \cap N(K_i))/H$ for i = 0, 1, endowed with C^{∞} topology. Using Proposition 4.1, we define a map L: Ker P \rightarrow Q by L(h) $= \overline{a}^{-1}$.

Lemma 4.5. L: Ker P \rightarrow Q is a group monomorphism.

Proof. Let
$$h_i \in \text{Ker P}$$
 for $i = 1, 2$. For $0 < r < 1$ and $g \in G$, we have
 $(g \cdot L(h_2 \circ h_1)(r)^{-1}, r) = (\alpha \circ h_2 \circ h_1 \circ \alpha^{-1})(gH, r)$
 $= ((\alpha \circ h_2 \circ \alpha^{-1}) \circ (\alpha \circ h_1 \circ \alpha^{-1}))(gH, r)$
 $= (\alpha \circ h_2 \circ \alpha^{-1})(g \cdot L(h_1)(r)^{-1}, r)$
 $= (g \cdot L(h_1)(r)^{-1} \cdot L(h_2)(r)^{-1}, r)$.
Thus $L(h_2 \circ h_1) = L(h_2) \cdot L(h_1)$ on $(0, 1)$. Since $L(h_1)$, $L(h_2)$ and $L(h_1 \circ h_2)$
are smooth maps on $[0, 1]$, $L(h_2 \circ h_1) = L(h_2) \cdot L(h_1)$ on $[0, 1]$. Thus
L is a group homomorphism. Suppose $L(h) = 1$ for $h \in \text{Ker P}$. Then
 $(h \circ \alpha^{-1})(gH, r) = \alpha^{-1}(gH, r)$ for $g \in G$ and $0 < r < 1$, and $h = 1$ on $\pi^{-1}((0, 1))$.
Thus $h = 1$ on M , and L is a monomorphism.

Propostion 4.6. L is a continuous map.

L

Proof. We shall use the notations in the proof of Proposition 4.1. Since L is a group homomorphism, it is sufficient to show Proposition 4.6 that L: $0 \rightarrow Q$ is continuous. Let I denote a closed

interval $[0, \epsilon^2]$, $[\epsilon^2/2, 1-\epsilon^2/2]$ or $[1-\epsilon^2, 1]$. By Lemma 2.3, it is sufficient to prove that $L_I: O \xrightarrow{L} Q \xrightarrow{j^*} C^{\infty}(I, N(H)/H)$ is continuous, where j: $I \hookrightarrow [0, 1]$ is an inclusion map.

First we shall consider the case $I = [0, \epsilon^2]$. Let L_1 be the composition

$$O \xrightarrow{(k \circ \phi_{0}, 1^{\circ} i)^{*}} C^{\infty}([-\varepsilon, \varepsilon], p_{0, \varepsilon}^{-1}(U_{0}))$$
$$\xrightarrow{(\sigma_{0} \rho_{1} \circ \phi_{0, 1})^{*}} C^{\infty}([-\varepsilon, \varepsilon], G),$$

where k: $p_{0,\epsilon}^{-1}(\overline{W}_0) \hookrightarrow M$ is an inclusion map. Then L_1 is continuous by Lemma 2.2. Note that $L_1(h) = b$.

Let $L_2: O \longrightarrow \tilde{C}([-\varepsilon, \varepsilon], (N(H, K_0)/H)^0)$ be a map given by $L_2(h) = c$. We shall prove that L_2 is continuous. This is trivial in the case $N(H, K_0)/H = Z_2$. Consider the case $\overline{K}_0 = SU(n) \ (n \ge 2)$. In this case $V_0 = C^n = R^{2n}$ and $\overline{N}_0 = U(1) = SO(2)$. Put $C_0^{\infty}([-\varepsilon, \varepsilon], V_0) =$ $\{F \in C^{\infty}([-\varepsilon, \varepsilon], V_0); F(0) = 0\}$, endowed with C^{∞} topology. Let Φ : $C_0^{\infty}([-\varepsilon, \varepsilon], V_0) \rightarrow C^{\infty}([-\varepsilon, \varepsilon], R^2)$ be a map defined by $\Phi(F) = (\Phi(F^1), \Phi(F^2))$, where $F = (F^1, \ldots, F^{2n})$ and $\Phi(F^1)$ is a map defined in Lemma 4.4. Then Φ is continuous by Lemma 4.4. Let $m: R^2 \rightarrow M_2(R)$ denote a smooth map defined by

$$m(\mathbf{x},\mathbf{y}) = \begin{bmatrix} \mathbf{x} & -\mathbf{y} \\ \mathbf{y} & \mathbf{x} \end{bmatrix}$$

where $M_2(R)$ denote the set of all 2×2 matrices over R. Let L'_2 denote the composition

$$\begin{array}{c} 0 \xrightarrow{(k \circ \phi_0, 1^{\circ i})^*} & C^{\infty}([-\varepsilon, \varepsilon], p_{0, 1}^{-1}(U_0)) \\ \xrightarrow{(\rho_2 \circ \phi_{0, 1})^*} & C^{\infty}([-\varepsilon, \varepsilon], D_{\varepsilon}(V_0)). \end{array}$$

From Lemma 2.2, L'_2 is continuous. Note that $L'_2(h) = \widetilde{h}_2$ and $L'_2(0)$ is contained in $C_0^{\infty}([-\varepsilon,\varepsilon], V_0)$. Let \widehat{L}_2 denote the compositizion $0 \xrightarrow{L'_2} C_0^{\infty}([-\varepsilon,\varepsilon], V_0)$ $\xrightarrow{\Phi} C^{\infty}([-\varepsilon,\varepsilon], R^2)$ $\xrightarrow{m_{\star}} C^{\infty}([-\varepsilon,\varepsilon], M_2(R)).$

Then $\hat{L}_2(h) = \hat{c}$ and \hat{L}_2 is continuous. This implies that L_2 is

continuous by using Lemma 2.2. Similarly we can wee that L_2 is continuous in the other cases.

Let μ : $G \times G/H \longrightarrow G/H$ be a map defined by the left translation and let ι : $(N(H, K_0)/H) \xrightarrow{0}{\hookrightarrow} G/H$ be an inclusion map. Then the composition \hat{L} : $O \xrightarrow{(L_1, \iota * \circ L_2)} C^{\infty}([-\epsilon, \epsilon], G) \times C^{\infty}([-\epsilon, \epsilon], G/H)$ $\xrightarrow{\kappa} C^{\infty}([-\epsilon, \epsilon], G \times G/H)$ $\xrightarrow{\mu *} C^{\infty}([-\epsilon, \epsilon], G/H)$

is continuous by Lemma 2.2, where κ is defined by $\kappa(f_1, f_2)(r) = (f_1(r), f_2(r))$. Note that $\hat{L}(h) = b \cdot c = \hat{a}$ and $\hat{L}(0)$ is contained in $C_e^{\infty}([-\epsilon, \epsilon], N(H)/H)$. Here $C_e^{\infty}([-\epsilon, \epsilon], N(H)/H)$ denote the set of all smooth even maps f: $[-\epsilon, \epsilon] \longrightarrow N(H)/H$, endowed with C^{∞} topology. Let T: $C_e^{\infty}([-\epsilon, \epsilon], N(H)/H) \longrightarrow C^{\infty}([0, \epsilon^2], N(H)/H)$ be a map defined by $T(f)(r) = f(\sqrt{r})$. By the same argument as in the proof in Lemma 2.4, we can prove that T is continuous. Thus $L_T = T \circ L$ is continuous.

Now consider the case $I = [\epsilon^2/2, 1-\epsilon^2/2]$. L is given by the composition

$$O \xrightarrow{k^{*}} C^{\infty}(\pi^{-1}(I), \pi^{-1}(I))$$
$$\xrightarrow{(\alpha^{-1}\circ 1)^{*}} C^{\infty}(I, \pi^{-1}(I))$$
$$\xrightarrow{(q_{2}\circ\alpha)_{*}} C^{\infty}(I, G/H),$$

where k: $\pi^{-1}(I) \hookrightarrow M$ is an inclusion, $\iota: I \longrightarrow G/H \times I$ is a map given by $\iota(r) = (lH,r)$ and $q_2: G/H \times I \longrightarrow G/H$ is the projection on the first factor. Thus L_I is continuous. We can see that L_I is continuous in the case $I = [1-\epsilon^2, 1]$ similarly as in the case $I = [0, \epsilon^2]$, and this completes the proof of Proposition 4.6. §5. Subgroups of the topological groups Q and Ker P.

In this section we shall consider subgroups Q_1 and S of the topological groups Q and Ker P, respectively, such that $L(S) = Q_1$, and we shall prove that the inclusions $Q_1 \hookrightarrow Q_0$ and $S \hookrightarrow \text{Ker P}$ are homotopy equivalence, where Q_0 is the identity component of Q.

Put $Q_1 = \{a \in Q_0; a(r) = a(0) \text{ for } 0 \le r \le 1/4 \text{ and } a(r) = a(1) \text{ for } 3/4 \le r \le 1\}$. Then Q_1 is a topological subgroup of Q_0 . Let i: $Q_1 \subseteq Q_0$ be an inclusion.

Lemma 5.1. i: $Q_1 \hookrightarrow Q_0$ is a homotopy equivalence.

Proof. Let
$$\sigma:[0,1] \longrightarrow [0,1]$$
 be a smooth map such that
 $\sigma(r) = 0$ for $0 \le r \le 1/4$,
 $\sigma(r) = 1$ for $3/4 \le r \le 1$.

Let μ_t : $[0,1] \rightarrow [0,1]$ $(0 \le t \le 1)$ be a smooth homotopy given by $\mu_t(r) = t\sigma(r) + (1-t)r$. Since $(a \circ \mu_t)(i) \in (N(H) \cap N(K_i))/H$ for i = 0,1, $a \circ \mu_t$ is an element of Q. Define q: $Q_0 \times [0,1] \rightarrow Q$ by $q(a,t) = a \circ \mu_t$. Let μ : $[0,1] \rightarrow C^{\infty}([0,1],[0,1])$ be a map given by $\mu(t) = \mu_t$. Then it is easy to see that μ is continuous. Note that q is given by the composition

$$Q_0 \times [0,1] \xrightarrow{(1,\mu)} Q_0 \times C^{\infty}([0,1],[0,1])$$
$$\xrightarrow{\text{comp}} C^{\infty}([0,1], N(H)/H),$$

where comp is given by comp(a,f) = a of. By Lemma 2.2 (6), g is continuous. Then $q(Q_0 \times [0,1])$ is contained in Q_0 . Let $q_t:Q_0 \rightarrow Q_0$ be a map given by $q_t(a) = q(a,t)$. Since $\mu_1 = \sigma$, $q_1(Q_0)$ is contained in Q_1 . Thus g is a homotopy between $q_0 = l_{Q_0}$ and $q_1 = i \circ q_1$. Note that $q_t(Q_1)$ is contained in Q_1 for any t. Then g: $Q_1 \times [0,1] \rightarrow Q_1$ is a homotopy between l_{Q_1} and $q_1 \circ i$. Therefore Lemma 5.1 follows.

Put $S = L^{-1}(Q_1) \subset Ker P$. Let $\iota: S \subseteq Ker P$ be an inclusion.

- 23 -

Lemma 5.2. 1: S Ker P is a homotopy equivalence.

Proof. Put $a = L(h^{-1})$ for $h \in Ker P$. Let $h_t: M \to M$ $(0 \le t \le 1)$ be a map as follows: h_t is given on $\pi^{-1}((0,1))$ by the composition $\pi^{-1}((0,1)) \xrightarrow{\alpha} G/H \times (0,1) \xrightarrow{h_t} G/H \times (0,1) \xrightarrow{\alpha^{-1}} \pi^{-1}((0,1)),$ where \hat{h}_t is defined by $\hat{h}_t(gH,r) = (g \cdot q_t(a)(r),r)$. $h_t(gK_i) = ga(i) \cdot K_i (i = 0,1)$ for $g \in G$. Here we need the following

Assertion 5.3. h_{+} is a smooth map for any t.

Proof. By the definition, h_t is smooth on $\pi^{-1}((0,1))$. We shall prove that h_t is smooth on $\pi^{-1}(0)$. Let a_0 be an element of G such that $a_0H = a(0)$ and $a_0 \in N(H) \cap N(K_0)$. For $[g,0] \in P_{0,1/2}(1K_0)$, $(P_{0,1/2} \circ h)$ $([g,0]) = \pi_0(ga_0) = \pi_0(a_0) \in a_0U_0$. Then there exists a neighborhood W_0 of $1K_0$ in G/K_0 such that $(P_{0,1/2} \circ h)(P_{0,1/2}^{-1}(\tilde{W}_0))$ is contained in a_0U_0 . For $[g,re_0] \in P_{0,1/2}^{-1}(\tilde{W}_0)$ and $0 \le t \le 1$, $(P_{0,1/2} \circ h_t)([g,re_0]) = \pi_0(gq_t(a)(r^2))$ $= \pi_0(ga((1-t)r^2))$ $= (P_{0,1/2} \circ h)([g,\sqrt{1-t}re_0])$

which is contained $\operatorname{in}(p_{0,1/2}\circ h)(p_{0,1/2}(\bar{w}_0)) \subset a_0 U_0$. Then $h_t(p_{0,1/2}(\bar{w}_0)) \subset a_0 U_0$. Then $h_t(p_{0,1/2}(g\bar{w}_0))$ is contained in $p_{0,1/2}(ga_0 U_0)$ for geG and 0sts1.

Let $\tilde{h}: W_0 \times D_{1/2}(V_0) \rightarrow U_0 \times D_{1/2}(V_0)$ be a map given by $\tilde{h} = \phi_{0,ga_0} \cdot h \cdot \phi_{0,gi}^{-1}$. Let $\rho_1: U_0 \times D_{1/2}(V_0) \rightarrow U_0$ and $\rho_2: U_0 \times D_{1/2}(V_0) \rightarrow D_{1/2}(V_0)$ be the projections on the first factor and the second factor respectively. Put g' = ga_0 and put $\tilde{h}^i = \rho_i \cdot \tilde{h}$ for i = 0, 1. Then \tilde{h}^i is a smooth map and $\tilde{h}^1(x, rke_0) = g'^{-1}g\sigma_0(x)k \cdot \overline{\pi}_0(a(r^2))$,

$$\tilde{h}^{2}(x, rke_{0}) = \sigma_{0,g}, (g\sigma_{0}(x)k \cdot \bar{\pi}_{0}(a(r^{2}))^{-1} g\sigma_{0}(x)ka(r^{2}) \cdot re_{0}$$

for $x \in W_0$ and $k \in K_0$, where $\overline{\pi}_0$: $G/H \longrightarrow G/K_0$ is the natural projection. Put $\widetilde{h}_t^i = \rho_i \circ \phi_{0,g'} \circ h_t \circ \phi_{0,g}^{-1}$ for i = 0, 1. Then $\widetilde{h}_t^1(x, rke_0) = g^{r-1} g \sigma_0(x) k \cdot \overline{\pi}_0(a(\mu_t(r^2))),$

- 24 -

 $\widetilde{h}_{t}^{2}(x, rke_{0}) = \sigma_{0,g}, (g\sigma_{0}(x)k \cdot \overline{\pi}_{0}(a(\mu_{t}(r^{2}))^{-1} g\sigma_{0}(x)ka(\mu_{t}(r^{2})) \cdot re_{0})$ for $x \in W_{0}$ and $k \in K_{0}$.

Since $\sigma(r^2) = 0$ for $r \le 1/2$, $\mu(r^2, t) = (1-t)r^2$ for $0 \le r \le 1/2$. Then $\widetilde{h}_t^1(x, v) = \widetilde{h}^1(x, \sqrt{1-t} v)$ for $0 \le t \le 1$ and $\widetilde{h}_t^2(x, v) = 1/\sqrt{1-t} \widetilde{h}^2(x, \sqrt{1-t} v)$ for $0 \le t < 1$. Thus $\widetilde{h}_t^1(0 \le t \le 1)$ and $\widetilde{h}_t^2(0 \le t < 1)$ are smooth maps.

By the Taylor formula (c.f. J. Dieudonne, [5, Chapter VIII, (8, 14,3)]), we have

$$\begin{split} \widetilde{h}^2(x,v) &= \widetilde{h}^2(x,0) + (\int_0^1 (D\widetilde{h}^2)(x,\zeta v) \ d\zeta)v, \\ \text{where } D\widetilde{h}^2 \text{ is the derivative of } \widetilde{h}^2. \quad \text{Since } \widetilde{h}^2(x,0) = 0, \\ \widetilde{h}_t^2(x,v) &= (\int_0^1 (D\widetilde{h}^2)(x,\sqrt{1-t}\,\zeta v) \ d\zeta)v \quad \text{for } 0 \leq t < 1. \\ \text{Then } \widetilde{h}_1^2(x,v) = \lim_{t \to 1} \widetilde{h}_t^2(x,v) = (D\widetilde{h}^2)(x,0)v, \text{ and } \widetilde{h}_1^2 \text{ is a smooth map.} \\ \text{Therefore } h_t \text{ is smooth on } \pi^{-1}(0) \text{ for any } 0 \leq t \leq 1. \\ \text{Similarly we can } prove \text{ that } h_t \text{ is smooth on } \pi^{-1}(1), \text{ and Assertion 5.3 follow's.} \end{split}$$

Proof of Lemma 5.2 continued. Let \bar{q} : Ker P× $[0,1] \rightarrow$ Ker P be a map defined by $\bar{q}(h,t) = h_t$. By Assertion 5.3, h_t and h_t^{-1} are smooth maps, and \bar{q} is a well defined map. Next we shall prove that \bar{q} is continuous. Let W_i be a neighborhood of $1K_i$ in G/K_i satisfying $\bar{W}_i \subset U_i$ for i = 0, 1. Put $O = \{h \in \text{Ker P}; h(P_{i,1/2}^{-1}(\bar{W}_i)) \subset P_{i,1/2}^{-1}(U_i)\}$ for i = 0, 1. Then O is an open neighborhood of 1_M in Ker P. For $h \in O, g \in G \setminus 0 \le t \le 1$, $h_t(P_{i,1/2}^{-1}(g \bar{W}_i))$ is contained in $P_{i,1/2}^{-1}(g U_i)$ (i = 0, 1). Let W_2 be an open neighborhood of 1H in G/H satisfying $\bar{W}_2 \subset U_2$. Let C be one of the sets $\{P_{i,1/2}^{-1}(g \bar{W}_i)$ ($i = 0, 1, g \in G$), $\alpha^{-1}(g \bar{W}_2 \times [1/5, 4/5])$ ($g \in G$). By Lemma 2.3, it is sufficient to show that the composition \bar{q}_C : $O \times [0,1] \xrightarrow{\bar{q}}$ Ker P $\xrightarrow{j_C} \infty^{\infty}(C,M)$ is continuous for any C, where j_C : $C \subseteq M$ is an inclusion map.

First consider the case $C = p_{0,1/2}^{-1}(g\overline{w}_0)$. Let $v_1: C^{\infty}(\overline{w}_0 \times D_{1/2}(V_0), U_0) \times [0,1] \rightarrow C^{\infty}(\overline{w}_0 \times D_{1/2}(V_0), U_0)$ be a map given by $v_1(f,t)(x,v) = \underbrace{\times [0,1]}_{(x,\sqrt{1-t} v)} \cdot Let v_2: C^{\infty}(\overline{w}_0 \times D_{1/2}(V_0), D_{1/2}(V_0)) \longrightarrow C^{\infty}(\overline{w}_0 \times D_{1/2}(V_0), D_{1/2}(V_0))$ be a map given by $v_2(f,t)(x,v) = (\int_0^1 (Df)(x,\sqrt{1-t} \zeta v) d\zeta)(v)$. It is easy

to see that
$$v_1$$
 and v_2 are continuous. Note that \bar{q}_C is the composition
 $0 \times [0,1] \xrightarrow{(j_C^*,1)} C^{\infty}(C, P_{0,1/2}^{-1}(gU_0)) \times [0,1]$
 $\xrightarrow{((\phi_{0,g})_* \circ (\phi_{0,g})^*, 1)} C^{\infty}(\bar{w}_0 \times D_{1/2}(V_0), U_0 \times D_{1/2}(V_0)) \times [0,1]$
 $\xrightarrow{((\rho_1)_*, (\rho_2)_*, 1)} C^{\infty}(\bar{w}_0 \times D_{1/2}(V_0), U_0) \times C^{\infty}(\bar{w}_0 \times D_{1/2}(V_0), D_{1/2}(V_0))$
 $\times [0,1]$
 $\xrightarrow{v} C^{\infty}(\bar{w}_0 \times D_{1/2}(V_0), U_0) \times C^{\infty}(\bar{w}_0 \times D_{1/2}(V_0), D_{1/2}(V_0))$
 $\xrightarrow{\kappa} C^{\infty}(\bar{w}_0 \times D_{1/2}(V_0), U_0 \times D_{1/2}(V_0))$
 $\xrightarrow{(\phi_{0,g}^{-1})_* \circ (\phi_{0,g}^{-1})_*} C^{\infty}(C, p_{0,1/2}^{-1}(gU_0)) \hookrightarrow C^{\infty}(C, M).$

Here v is given by $v(f_1, f_2, t) = (v_1(f_1, t), v_2(f_2, t))$ and κ is the map defined in Lemma 2.2 (5). Then \overline{q}_C is continuous by Lemma 2.2.

Next consider the case $C = \alpha^{-1}(g\overline{W}_2 \times [1/5, 4/5])$. Let m: N(H)/H × $G/H \rightarrow G/H$ be a map defined by m(nH,gH) = (gn)H and p_2 : $G/H \times [1/5, 4/5] \rightarrow$ [0,1] be a map given by $p_2(gH,r) = r$. Let δ : $\Omega_0 \rightarrow Q_0$ be a map given by $\delta(a) = a^{-1}$. Then the map \overline{q}_C is the composition $O \times [0,1] \xrightarrow{(L,1)} Q_0 \times [0,1] \xrightarrow{\delta \circ q} Q_0 \xrightarrow{P_2^*} C^{\infty}(G/H \times [1/5, 4/5], N(H)/H)$ $\xrightarrow{(1_{G/H} \times [1/5, 4/5])!} C^{\infty}(G/H \times [1/5, 4/5], N(H)/H \times G/H \times [1/5, 4/5])$ $\xrightarrow{m_*} C^{\infty}(G/H \times [1/5, 4/5], G/H \times [1/5, 4/5])$

$$\xrightarrow{(\alpha \circ j_{C})} \circ (\alpha)_{*} \xrightarrow{(\alpha \circ j_{C})} C^{\infty}(C, \alpha^{-1}(G/H \times [1/5, 4/5]) \hookrightarrow C^{\infty}(C, M),$$

which is continuous because L and q are continuous.

Similarly as in the case $C = p_{0,1/2}^{-1}(g\bar{W}_0)$, we can see that \bar{q}_C is continuous in the case $C = p_{1,1/2}^{-1}(g\bar{W}_1)$. Thus \bar{q} is continuous. Since $q_1(Q_0) \subset Q_1$, $\bar{q}_1(\text{Ker'P}) \subset S$. Therefore \bar{q} is a homotopoy between $\bar{q}_0 = 1_{\text{Ker P}}$ and $\bar{q}_1 = 1 \circ \bar{q}_1$. Since $q(Q_1 \times [0,1]) \subset Q_1$, $\bar{q}(S \times [0,1]) \subset S$. Then \bar{q} : $S \times [0,1] \longrightarrow S$ is a homotopy between 1_S and $\bar{q}_1 \circ 1$. Thus 1 is a homotopy equivalence, and this completes the proof of Lemma 5.2.

- 26 -

§6. Proof of Theorem.

In this section, we shall see that L: $S \longrightarrow Q_1$ is an isomorphism between topological groups, and we shall prove our Theorem.

Proposition 6.1. L: S \longrightarrow Q _1 is an isomorphism between topological groups.

Before the proof of Propositin 6.1, we begin with some lemmas. For any topological subgroup K of G, K^0 denotes the identity component of K.

Lemma 6.2. For any $a \in N(K_0)^0 \cap N(H)$, there exist $a' \in N(H^0) \cap K_0^0$ and $n \in Cent(K_0^0)$ such that $a = n \cdot a'$, where $Cent(K_0^0)$ is the centralizer of K_0^0 in G.

Proof. Since $N(K_0)^0$ is a compact connected Lie group, there exist a torus group T and simply connected semi-simple compact Lie group G' such that $\hat{N}_0 = T \times G'$ is a finite covering group of $N(K_0)^0$ (c.f. L. Pontrjagin [8, §64]). Let $q_0: \hat{N}_0 \longrightarrow N(K_0)^0$ be the covering projection. Put $\hat{K}_0 = q_0^{-1}(K_0^0)$. Since K_0^0 is a normal subgroup of $N(K_0)^0$, \hat{K}_0 is a normal subgroup of \hat{N}_0 . Then \hat{K}_0^0 is also a normal subgroup of \hat{N}_0 . Here we need the following :

Assertion 6.3. There exists a closed normal subgroup K'_0 of \hat{N}_0 such that \hat{N}_0 is isomorphic to the product group $\hat{K}_0^0 \times K'_0$ as a Lie group.

Proof. There exist simple Lie groups G_i ($1 \le i \le r$) such that $G' = G_1 \times \ldots \times G_r$. Since \hat{K}_0^0 is a compact connected Lie group, there exist simply connected simple Lie groups K_j ($1 \le j \le s$) and a torus group T' such that $\tilde{K}_0 = T' \times K_1 \times \ldots \times K_s$ is a finite covering of \hat{K}_0^0 . Let $P_0: \tilde{K}_0 \longrightarrow \hat{K}_0^0$ be the covering projection. Let $\rho_i: \hat{N}_0 = T \times G_1 \times \ldots \times G_r$ $\longrightarrow G_i$ be a projection on the direct factor G_i ($1 \le i \le r$). Since \hat{K}_0^0 is a normal subgroup of \hat{N}_0 , $\rho_i(\hat{K}_0^0)$ is a normal subgroup of G_i . Since G_i is a simple Lie group, $\rho_i(\hat{K}_0^0) = G_i$ or $\{1\}$. If $\rho_i(\hat{K}_0^0) = G_i$, $\rho_i(p_0(K_j))$ is a normal subgroup of G_i . Thus $\rho_i(p_0(K_j)) = G_i$ or $\{1\}$, for $1 \le i \le r$, $1 \le j \le s$.

Put $\rho'_{i} = \rho_{i} \circ P_{0}$. If $\rho'_{i}(K_{j_{1}}) = \rho'_{i}(K_{j_{2}}) (j_{1} \neq j_{2})$, then $\rho'_{i}(g_{1}) \cdot \rho'_{i}(g_{2})$ $= \rho'_{i}(g_{1} \cdot g_{2}) = \rho'_{i}(g_{2} \cdot g_{1}) = \rho'_{i}(g_{2}) \cdot \rho'_{i}(g_{1})$ for $g_{1} \in K_{j_{1}}, g_{2} \in K_{j_{2}}$. Then $\rho'_{i}(K_{j_{1}})$ is a commutative normal subgroup of G_{i} , and $\rho'_{i}(K_{j_{1}}) = \{1\}$. If $\rho'_{i}(K_{j}) = G_{i}$, then $\rho'_{i}(T')$ is a normal subgroup of G_{i} , hence $\rho'_{i}(T')$ $= \{1\}$. Therefore, if $\rho'_{i}(K_{j}) = G_{i}$, then $\rho'_{i}(T') = \{1\}$ and $\rho'_{i}(K_{n}) = \{1\}$ for $n \neq j$.

Assume $\rho'_{i_1}(K_j) = G_{i_1}$ and $\rho'_{i_2}(K_j) = G_{i_2}$ for $i_1 \neq i_2$. Let $\rho': \widetilde{K}_0$ $\rightarrow G_{i_1} \times G_{i_2}$ be a map defined by $\rho'(k) = (\rho'_{i_1}(k), \rho'_{i_2}(k))$. Since \widehat{K}_0^0 is a normal subgroup of \widehat{N}_0 and $\rho'(\widetilde{K}_0) = \rho'(K_j)$, $\rho'(K_j)$ is a normal subgroup of $G_{i_1} \times G_{i_2}$. Then, for $x, y \in K_j$, there exists $k \in K_j$ such that $(\rho'_{i_1}(x), 1)\rho'(y)(\rho'_{i_1}(x)^{-1}, 1) = \rho'(k)$. Then $\rho'_{i_1}(xyx^{-1}) =$ $\rho'_{i_1}(x)\rho'_{i_1}(y)\rho'_{i_1}(x)^{-1} = \rho'_{i_1}(k)$ and $\rho'_{i_2}(y) = \rho'_{i_2}(k)$. Since K_j , $G_{i_n}(n = 1,$ 2) are simply connected simple Lie group, $\rho'_{i_n} \times K_j \to G_{i_n}$ is an isomorphism between the Lie groups. Thus $xyx^{-1} = k = y$ for any $x, y \in K_j$, and K_j must be a commutative Lie group, which is a contradiction since K_j is a simple Lie group.

Thus we may assume that $\rho'_{j}(K_{j}) = G_{j}$ and $\rho'_{i}(K_{j}) = \{1\}$ (i \equiv j) for $l \le j \le s$, $l \le i \le r$. For i>s, $\rho_{i}(\widehat{K}_{0}^{0}) = \rho'_{i}(\widetilde{K}_{0}) = \rho'_{i}(T')$ which is a commutative normal subgroup of G_{i} , hence $\rho'_{i}(T') = \{1\}$. Then $p_{0}(T')$ is a subgroup of T, and there exists torus subgroup S of T such that $T = p_{0}(T') \times S$. Put K'= $S \times G_{s+1} \times \ldots \times G_{r}$. Then $\widehat{N}_{0} = \widehat{K}_{0}^{0} \times K'_{0}$, and Assertion 6.3 follows.

Proof of Lemma 6.2 continued. By Assertion 6.3, there exists a closed normal subgroup K'_0 of \hat{N}_0 such that $\hat{N}_0 = \hat{K}_0^0 \times K'_0$. Since K_0^0 is a connected group, $q_0(\hat{K}_0^0) = K_0^0$. Then $N(K_0)^0 = q_0(\hat{N}_0) = q_0(\hat{K}_0^0) \cdot q_0(K'_0)$

- 28 -

 $= K_0^0 \cdot q_0(K'_0).$ Note that $q_0(K'_0)$ is contained in $Cent(K_0^0).$ Thus, for $a \in N(K_0)^0 \cap N(H)$, there exists $a' \in K_0^0$ and $n \in Cent(K_0^0)$ such that $a = a' \cdot n.$ Since $N(H) \subset N(H^0)$ and $H^0 \subset K_0^0$, $H^0 = a H^0 a^{-1} = a' n H^0 n^{-1} a'^{-1}$ $= a' H^0 a'^{-1}.$ Thus $a' \in N(H^0)$ and Lemma 6.2 follows.

For
$$a \in Q_1$$
, we define a map h: $M \to M$ as follows:
 $h(\alpha^{-1}(gH,r)) = \alpha^{-1}(ga(r)^{-1},r))$ for $(gH,r) \in G/H \times (0,1)$,
 $h([g,0]) = [ga(i)^{-1},0]$ for $[g,0] \in \pi^{-1}(i)$ (i = 0,1).

Lemma 6.4. h is a smooth map.

Proof. Choose $a_0 \in (N(H) \cap N(K_0))^0 \subset N(H)^0 \cap N(K_0)^0$ such that $a(0)^{-1} = a_0^H$. There exists a neighborhood W_0 of $1K_0$ in G/K_0 such that $\pi_0^{-1}(W_0) \cdot a_0$ is contained in $a_0 \cdot \pi_0^{-1}(U_0)$. Since a(r) = a(0)for $0 \le r \le 1/4$, $h(p_{0,1/2}^{-1}(gW_0))$ is contained in $p_{0,1/2}^{-1}(ga_0U_0)$. Let $\widetilde{h}_1: W_0 \times D_{1/2}(V_0) \longrightarrow U_0$ be a map given by the composition $\rho_1 \circ \phi_0, ga_0^*$ $h \circ \phi_0, g^1$, and let $\widetilde{h}_2: W_0 \times D_{1/2}(V_0) \longrightarrow D_{1/2}(V_0)$ be a map given by the composition $\rho_2 \circ \phi_0, ga_0^* h \circ \phi_0, g^1$. Note that $(h \circ \phi_0, g^1)((x, rke_0)) = h([g\sigma_0(x)k, re_0])$ $= h(\alpha^{-1}((g\sigma_0(x)ka_0H, r^2)))$ $= [g\sigma_0(x)ka_0, re_0]$ for $x \in W_0$, $k \in K_0$, $0 \le 1/2$. Since $a_0 \in N(K_0)$, $ka_0 K_0 = a_0 K_0$. Then $\widetilde{h}_1(x, v) = a_0^{-1} \sigma_0(x) a_0 K_0$ for $(x, v) \in W_0 \times D_{1/2}(V_0)$, and

$$\tilde{m}_{2}(x, rke_{0}) = \sigma_{0, ga_{0}}(g\sigma_{0}(x)a_{0}K_{0})^{-1}g\sigma_{0}(x)ka_{0} \cdot re_{0}$$
 for

 $x \in W_0$, $k \in K_0$, $0 \le r \le 1/2$. Thus $\widetilde{h_1}$ is a smooth map and $\widetilde{h_2}$ is smooth on $W_0 \times (D_{1/2}(V_0) - 0)$. We shall prove that $\widetilde{h_2}$ is smooth on $W_0 \times 0$, hence h is smooth on $\pi^{-1}(0)$. This is trivial in the case dim $S(V_0) = 0$.

Let $\xi_{a_0,g} \colon W_0 \longrightarrow G$ be a map given by $\xi_{a_0,g}(x) = \sigma_{0,ga_0}(g\sigma_0(x)a_0)^{-1}g\sigma_0(x)$. Then $\xi_{a_0,g}$ is a smooth map. By Lemma 6.2, there

- 29 -

exist $a'_0 \in N(H^0) \cap K_0^0$ and $n \in Cent(K_0^0)$ such that $a_0 = na'_0$. Then $\widetilde{h}_2(x, rke_0) = \xi_{a_0,g}(x)kna'_0 \cdot rke_0 = \xi_{a_0,g}(x)nka'_0 \cdot re_0$ for $x \in W_0$, $k \in K_0^0$ and $0 \le r \le 1/2$. Note that $N(H^0) \cap K_0^0 = N(H^0, K_0^0)$.

Assertion 6.5. For $a \in N(H^0, K_0^0)$, let $\psi_a \colon D(V_0) \longrightarrow D(V_0)$ be a map defined by $\psi_a(rke_0) = rkae_0$ for $0 \le r \le 1$, $k \in K$. Then ψ_a is a diffeomorphism. Moreover, let $\psi \colon N(H^0, K_0^0) \longrightarrow \text{Diff}^{\infty}(D(V_0))$ be a map given by $\psi(a) = \psi_a$, then ψ is continuous.

Proof. If dim $S(V_0) = 0$, then $K_0^0 \subset H$ and $\psi_a = l_{D(V_0)}$. In this case, the proof is trivial. We assume dim $S(V_0) > 0$. Since $S(V_0) = K_0/H$ is connected, K_0^0 acts transitively on $S(V_0)$. Let L be the ineffective kernel of the action $K_0^0 \times S(V_0) \rightarrow S(V_0)$. Put $\overline{K} = K_0^0/L$ and $\overline{H} = (H_0 K_0^0)/L$. Then \overline{K} acts transitively and effectively on $S(V_0)$ and \overline{H} is an isotropy subgroup of this action. By Lemma 4.3, \overline{K} , \overline{H} and $N(\overline{H},\overline{K})/\overline{H}$ are G, H and N(H)/H in Lemma 4.3, respectively. Hence \overline{H} is connected. Since the identity component of $H_0 K_0^0$ is H^0 , $\overline{H} = H^0 \cdot L/L$. For $a \in N(H^0, K_0^0)$, the left coset aL is an element of $N(\overline{H},\overline{K})$. Then a defines an element $\widetilde{a} \in N(\overline{H},\overline{K})/\overline{H}$. Note that $\psi_a(rke_0) = rkae_0 = rk\widetilde{a}e_0$ for $0 \le r \le 1$, $k \in K_0^0$.

Consider the case $\overline{K} = SU(n)$ $(n \ge 2)$, $\overline{H} = SU(n-1)$ and $N(\overline{H},\overline{K})/\overline{H} = U(1)$. In this case, $V_0 = C^n$ and U(1) acts on V_0 as a scalar multiplication. Thus $\psi_a(rke_0) = \widetilde{a} \cdot rke_0$ for $rke_0 \in D(V_0)$. Hence ψ_a is a diffeomorphism. It is easy to see that ψ is continuous.

Next consider the case $\overline{K} = Sp(n) (n \ge 1)$, $\overline{H} = Sp(n-1)$ and $N(\overline{H},\overline{K})/\overline{H} = Sp(1)$. In this case, $V_0 = H^n$ and Sp(1) acts on V_0 as a scalar multiplication on the right. Then $\psi_a(v) = v \cdot \widetilde{a}$ for $v \in D(V_0)$, hence ψ_a is a diffeomorphism and ψ is continuous. Similarly we can see that ψ_a is a diffeomorphism and ψ is continuous in the other cases, and Assertion 6.5 follows.

Proof of Lemma 6.4 continued. Since $\tilde{h}_2(x,v) = \xi_{a_0,g}(x) \cdot \psi_{a_0}(v)$,

by Assertion 6.5, \tilde{h}_2 is a smooth map. Thus \tilde{h}_1 and \tilde{h}_2 are smooth maps, hence h is smooth on $\pi^{-1}(0)$. Similarly we can see that h is smooth on $\pi^{-1}(1)$. By the definition, h is smooth on $\pi^{-1}((0,1))$, and this completes the proof of Lemma 6.4.

Let $\hat{L}(a)$ be a smooth map h: $M \longrightarrow M$ in Lemma 6.4, for $a \in Q_1$. Since $\hat{L}(a^{-1}) = \hat{L}(a)^{-1}$, h is a diffeomorphism of M. By the definition, h is an equivariant map. Thus we have a map $\hat{L}: Q_1 \longrightarrow \text{Diff}_G^{\infty}(M)$. Note that \hat{L} is an abstract group homomorphism.

Lemma 6.6. $\hat{L}: Q_1 \longrightarrow \text{Diff}^{\infty}_{G}(M)$ is continuous.

Proof. Let W_i be a neighborhood of $|K_i$ in G/K_i such that $\overline{W}_i \subset U_i$ (i = 0, 1), and let W_2 be a neighborhood of lH in G/H such that $\overline{W}_2 \subset U_2$. Put $A_i = \{n \in N(K_i)^0; n^{-1}\overline{W}_i n \subset U_i\}$. Then A_i is an open neighborhood of the idetity in $N(K_i)^0$. Let $q_i: \hat{N}_i \rightarrow N(K_i)^0$ be a finite covering such that \hat{N}_i is a direct product $T_i \times G'_i$. Here T_i is a torus group and G'_i is a simply connected semi-simple compact Lie group. Put $\hat{K}_i = q_i^{-1}(K_i^0)$. By Assertion 6.3, there exists closed normal subgroup K'_i of \hat{N}_i such that $\hat{N}_i = \hat{K}_i^0 \times K'_i$. Let s_i be a smooth local cross section of q_i defined on an open neighborhood B_i of the identity in $N(K_i)^0$. Since $\pi_2: (N(H) \cap N(K_i))^0 \rightarrow ((N(H) \cap N(K_i))/H)^0$ is a fibration, there exists a smooth local cross section t_i of π_2 defined on an open neighborhood $E_i \cap \pi_2$ defined open neighborh

Put $O = \{a \in Q_1; a(i)^{-1} \in E_i \ (i = 0, 1)\}$. Then O is an open neighborhood of the identity. Since \hat{L} is a group homomorphism, it is enough to show. Lemma 6.6 that \hat{L} is continuous on O. Let C denote one of the sets $\{p_{i,1/2}^{-1}(g\bar{W}_i) \ (i = 0, 1, g \in G), \alpha^{-1}(g\bar{W}_2 \times [1/5, 4/5]) \ (g \in G)\}$. By Lemma 2.3, if $\hat{L}_C: O \xrightarrow{\hat{L}} Diff_G^{\infty}(M)^0 \xrightarrow{j} C^{\infty}(C, M)$ is continuous for any C, then \hat{L} is continuous, where $j_C: C \hookrightarrow M$ is an inclusion map.

- 31 -

First consider the case $C = p_{0,1/2}^{-1}(g\overline{W}_1)$. Let $\beta_1: \hat{N}_0 = \hat{K}_0^0 \times K'_0$ $\rightarrow \hat{K}_0^0$ and $\beta_2: \hat{N}_0 \rightarrow K'_0$ be the projection on the first factor and the second factor respectively. Let L_1 be the composition

$$0 \xrightarrow{\mathbf{r}} \mathbf{E}_{0} \xrightarrow{\mathbf{t}_{0}} \mathbf{A}_{0} \cap \mathbf{B}_{0} \xrightarrow{(\xi_{g}, q_{0} \circ \beta_{2} \circ \mathbf{S}_{0})} \mathbf{C}^{\infty}(\bar{w}_{0}, \mathbf{G}) \times \operatorname{Cent}(\mathbf{K}_{0}^{0}) \xrightarrow{\mathbf{m}} \mathbf{C}^{\infty}(\bar{w}_{0}, \mathbf{G}).$$

Here r, ξ and m are given by $\mathbf{r}(\mathbf{a}) = \mathbf{a}(0)^{-1}$, $\xi_{g}(\mathbf{a}_{0})(\mathbf{x}) = \xi_{\mathbf{a}_{0},g}(\mathbf{x})$
and $\mathbf{m}(\mathbf{f},\mathbf{n})(\mathbf{x}) = \mathbf{f}(\mathbf{x}) \cdot \mathbf{n}$, respectively. Put $\mathbf{a}_{0} = (\mathbf{t}_{0} \circ \mathbf{r})(\mathbf{a})$ for $\mathbf{a}\in\mathbf{O}$.
Then $\pi_{0}(\xi_{g},\mathbf{a}_{0}(\mathbf{x})) = \pi_{0}(\mathbf{a}_{0}^{-1})$ for $\mathbf{w}\in\bar{\mathbf{w}}_{0}$ and $\pi_{0}((q_{0} \circ \beta_{2} \circ \mathbf{s}_{0})(\mathbf{a}_{0})) = \pi_{0}(\mathbf{a}_{0}).$
Therefore $\mathbf{L}_{1}(\mathbf{a})\in\mathbf{K}_{0}$ for any $\mathbf{a}\in\mathbf{O}$, and $\mathbf{L}_{1}(\mathbf{O})\subset\mathbf{C}^{\infty}(\bar{\mathbf{w}}_{0},\mathbf{K}_{0})$. Let \mathbf{L}_{2} be the composition

$$\xrightarrow{r} E_0 \xrightarrow{t_0} A_0 \cap B_0 \xrightarrow{q_0, \beta_1, s_0} N(H^0, K_0^0) \xrightarrow{\psi} \text{Diff}(D_{1/2}(V_0)).$$

By Assertion 6.5, L₂ is continuous. Let L₃ be the composition

$$O \xrightarrow{(L_{1}, L_{2})} C^{\infty}(\bar{w}_{0}, K_{0}) \times \text{Diff}^{\infty}(D_{1/2}(V_{0})) \xrightarrow{(\rho_{1}^{*}, \rho_{2}^{*})} C^{\infty}(\bar{w}_{0} \times D_{1/2}(V_{0}), K_{0}) \times C^{\infty}(\bar{w}_{0} \times D_{1/2}(V_{0}), D_{1/2}(V_{0})) \xrightarrow{\kappa} C^{\infty}(\bar{w}_{0} \times D_{1/2}(V_{0}), K_{0} \times D_{1/2}(V_{0})) \xrightarrow{\mu} C^{\infty}(\bar{w}_{0} \times D_{1/2}(V_{0}), D_{1/2}(V_{0})),$$

where μ is given by $\mu(k,v) = k \cdot v$, and κ is the map in Lemma 2.2. Then L_3 is continuous, and $L_3(a) = \widetilde{h}_2$. Let $\gamma: A_0 \to C^{\infty}(\overline{W}_0, U_0)$ be a map defined by $\gamma(a_0)(x) = a_0^{-1}\sigma_0(x)a_0K_0$. γ is a restriction map to A_0 of a map $\overline{\gamma}: N(K_0) \to C^{\infty}(G/K_0, G/K_0)$ given by $\overline{\gamma}(n)(gK_0) = n^{-1}gnK_0$. Since $\overline{\gamma}$ is a continuous map, γ is continuous. Let L_4 be the composition

$$0 \xrightarrow{r} E_0 \xrightarrow{t_0} A_0 \xrightarrow{\gamma} C^{\infty}(\overline{W}_0, U_0) \xrightarrow{\rho_1} C^{\infty}(\overline{W}_0 \times D_{1/2}, U_0).$$

Then L_4 is continuous and $L_4(h) = \widetilde{h}_1$. L_C is the composition

$$\begin{array}{c} & \xrightarrow{(\mathbb{L}_{4},-3)} C^{\infty}(\overline{\mathbb{W}}_{0} \times \mathbb{D}_{1/2}(\mathbb{V}_{0}), \mathbb{U}_{0}) \times C^{\infty}(\overline{\mathbb{W}}_{0} \times \mathbb{D}_{1/2}(\mathbb{V}_{0}), \mathbb{D}_{1/2}(\mathbb{V}_{0})) \\ & \xrightarrow{\kappa} C^{\infty}(\overline{\mathbb{W}}_{0} \times \mathbb{D}_{1/2}(\mathbb{V}_{0}), \mathbb{U}_{0} \times \mathbb{D}_{1/2}(\mathbb{V}_{0})) \\ & \xrightarrow{(\phi_{0},g)^{*} (\phi_{0},g)} C^{\infty}(C, \mathbb{P}_{0,1/2}^{-1}(g\mathbb{U}_{0})) & \hookrightarrow C^{\infty}(C,\mathbb{M}). \end{array}$$

Thus L_C is continuous.

Now consider the case $C = \alpha^{-1}(g\bar{W}_2 \times [1/5, 4/5])$. Let m: $g\bar{W}_2 \times N(H)/H$

 \rightarrow G/H be a map defined by m(gH,nH) = gnH, and let ρ : G/H × [1/5,4/5] \rightarrow [1/5,4/5] be the projection on the second factor. Then \hat{L}_{C} is given by the composition

$$\begin{array}{c} O \xrightarrow{i \ast \circ \delta_{4}} C^{\infty} \left([1/5, 4/5], N(H)/H \right) \\ \xrightarrow{(1_{g}\overline{W}_{2} \)} & \xrightarrow{(1/5, 4/5], g\overline{W}_{2} \times N(H)/H} \\ \xrightarrow{m_{\star}} C^{\infty} (g\overline{W}_{2} \times [1/5, 4/5], G/H) \\ \xrightarrow{\rho_{\#}} C^{\infty} (g\overline{W}_{2} \times [1/5, 4/5], G/H) \\ \xrightarrow{\rho_{\#}} C^{\infty} (g\overline{W}_{2} \times [1/5, 4/5], G/H \times [1/5, 4/5]) \\ \xrightarrow{\alpha^{\star} \circ (\alpha^{-1})} \times C^{\infty} (C, \alpha^{-1} (G/H \times [1/5, 4/5]) \hookrightarrow C^{\infty} (C, M), \end{array}$$

where i: $[1/5, 4/5] \hookrightarrow [0,1]$ is the inclusion map and δ : N(H)/H \rightarrow N(H)/H is a map given by $\delta(a) = a^{-1}$. By Lemma 2.2, \hat{L}_{C} is continuous.

We can see that L_{C} is continuous in the case $C = p_{1,1/2}^{-1}(g\bar{W}_{1})$ similarly as in the case $C = p_{0,1/2}^{-1}(g\bar{W}_{0})$, and this completes the proof of Lemma 6.6.

Proof of Proposition 6.1. From Lemma 6.6, $\hat{L}(Q_1)$ is contained in $\text{Diff}_{G}^{\infty}(M)_{0}$. Then, by the definition, $\hat{L}(Q_1)$ is contained in S, and $\hat{L} = L^{-1}$. Combining Lemma 4.5, Proposition 4.6 and Lemma 6.6, $\hat{L}: S \rightarrow Q_1$ is an isomorphism between topological groups, and this completes the proof of Proposition 6.1.

Proof of Theorem. By Corollary 3.6, $\operatorname{Diff}_{G}^{\infty}(M)_{0}$ has the same homotopy type as Ker P. Combining Lemma 5.1, Lemma 5.2 and Proposition 6.1, Ker P has the same homotopy type as Q_{0} . Note that Q_{0} has the same homotopy type as the path space $\Omega(N(H)/H$; $(N(H)_{0} N(K_{0}))/H$, $(N(H)_{0}N(K_{1}))/H)_{0}$. This completes the proof of our Theorem.

- 33 -

§7. Concluding remarks.

From our Theorem, we have the following:

Corollary 7.1. (1) If $K_0 = K_1 = G$, then $\text{Diff}_G^{\infty}(M)_0$ has the same homotopy type as $(N(H)/H)^0$.

(2) If N(H)/H is a finite group, then $\text{Diff}_{G}^{\infty}(M)_{0}$ is cotractible.

Remark 7.2. In K. Abe and K. Fukui [1], we have proved that $\operatorname{Diff}_{G}^{\infty}(M)_{0}$ is perfect if M is a G-manifold with one orbit type and dim M/G \geq 1. But, by using Proposition 3.1, we can see that $\operatorname{Diff}_{G}^{\infty}(M)_{0}$ is not perfect in the case M/G = [0,1].

Shinshu University

References

- [1] Abe, K., and Fukui, K., On commutators of equivariant diffeomorphisms, Proc. Japan Acad. 54, (1978), 52-54.
- [2] Abraham, R., Lectures of Smale on Differential topology, Mimeographed Notes, Columbia Univ., (1962).
- [3] Bredon, G., Introduction to Compact Transformation Groups, Academic Press, New York and London (1972).
- [4] Cerf, J., Topologie de certains espaces de plongements, Bull.Soc. Math. France 89 (1961).
- [5] Dieudonné, J., Foundations of Modern Analysis, Academic Press, New York and London (1960).
- [6] Hirsch, M., Differential Topology, Springer-Verlag, New York Heidelberg Berlin (1976).

- 34 -

- [7] Hsiang, W. C., and Hsiang, W. Y., Classification of differentiable actions on Sⁿ, Rⁿ and Dⁿ with S^k as the principal orbit, Ann. of Math. 82 (1965), 421-433.
- [8] Pontrjagin, L., Topological Groups, Princeton Univ. Press, Princeton New York (1946).
- [9] Yokota, I., Groups and Representations (Japanese), Shokabo (1973).

- ×