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On the homotopy types of the groups of eguivariant diffeomorphisms

By Kojun Abe ?%s_mmi
§ =

E0. Introduction : *%

The purpose of this paper is to study the homotopy type of the
group of the eguivariant diffeomorphisms of a closed connected smooth
G-manifold M, when G is a compact Lie group and the orbit space M/G

is homeomorphic to a unit interval [0,1].

Let Diffz(M) denote the group of eguivariant c” diffeomorphisms

0
of the G-manifcld M which are G-isotopic to the identity, endowed

with C° topology.- If M/G is homeomorphic to [0,1], then M has two
cr three orbit types G/H, G/KD and G/Kl. We can choose the isotropy
subgroups H, KO‘ Kl satisfying H(:Rof\Kl. Moreover the G-manifold

structure of M is determined by an element n of a factor group N(H)/H,
where N(H) is the normalizer of H in G (see §1). Let Q(N(H)/H;
(N(HL«N(KO))/H, (N(HLWN(nKln_l)/H)O dencte the connected ccmponent

of the identity of the space of paths a: [0,1] — N(H)/H satisfying

a(0) € (N(H)AN(K,))/H and a(1) € (N (B)AN (nK n~ 1)) /H.

Theorem. DiffZ{M) has the same homotopy type as the path space

0
Q(N(H) /H; (N(HAN(K))/H, (NHANMK N 1)) /H) .

The paper is organized as follows. In 51, we study the G-manifolc
structure of M and give a differentiable structure of M/G such that
the functional structure of M/G.is induced from that of M. This
differentiable structure is important to study the structure of
DiffZ(M)O. In §2, we define a group homomorphism P: Diffz(M)O —
Diffmlo,ll0 and prove that P is a continuous homomorphism between

topological groups. In §3, we prove that there exists a global



continuous section of P and Ker P is a deformation retract of DiffG(M)D.

In 84, we study the group structure of Ker P . In 55 and f6, we

\

prove our Theorem.



§1. G-manifold structure of M and the functional structure of M/G.

In this paper we assume that all manifolds and all actions are
differentiable of class C .

In this section we study the G-manifold structure of M. First
we see that it is sufficient for us to consider n=1 (see Lemma 1.1).
Next we give a differentiable structure of M/G such that the functional
structure of M/G is induced from that of M (see Lemma 1.2).

Let M be a closed connected smooth G-manifold such that M/G is
homeomorphic to [0,1]. We denote this homeomorphism by f. Let
m: M — M/G be the natural projection. Put M0==(fﬂﬂ}_l{[0,l/2])

1

and M, = (fem) " ([1/2,1]). Let x, be a point of M with £(m(x;)) =1

for 1=0,1. Then Mi is a G-invariant closed tubular neighborhood

of the orbit G(xi) (c,f. G. Bredon [3, Chapter VI,&6]). Moreover

M is equivariantly diffeomorphic to a union of the G-manifolds MO and My

such that their boundaries are identified under a G-diffeomcrphism

- BMO — oM Let V. be a normal vector space of G(xi) at x; and

1°
Ki be the isotropy subgroup of X, for i=0,1. Then Vi 1s a represen-
tation space of K, From the differentiable slice theorem, M is

equivariantly diffeomorphic to a smooth G-bundle Gx D(Vi) which is
i

assoclated to the principal Ki bundle my 8 =5 G/Ri, where D(vi) is

K

a unit disc in Vi.
Let H be a principal isotropy subgroup of the G-manifold M.
We can assume that H is a subgroup of KynK, - Let eigS(Vi) be a point

such that the isotropy subgroup of e, is H for i=0,1, where S(Vi)

is a unit sphere in Vi. There exists a G-diffeomorphism hi: G/H —
G X 4 S(Vi) given by hi{gH)==[g,ei], i=0,;1. Then we have a G-
i
diffeomorphism
o’ n' hl—l
n"” : G/H — Gx_, S(V,) =3M_ —> 3M, =Gx_ S(V,) —> G/H.
Ky 0 0 1 X4 2 |

Since any G-map G/H — G/H is given by a right translation of an element



of N(H)/H, n'" defines an element n e N(H)/H.

i of xi is nKln

Let V, be a normal vector space of the orbit G[xi)==6(xi) at xi-

Put e; = (dn)_ (e,)ES(V!). There exists a G-diffeomorphism u: Gx_
i hl 1 1 hl
— G"K,D(Vi) given by u(lg,v]) = Igﬂ_l,n'v] . Then (uen’) (lg,eO]J
1
= u(lgn,e;]) =lg,el] for [g,v] €Gx_, S(V.). Therefore M is egqui-
1 1 KO 0

variantly diffeomorphic to a union of the G-bundles Gx

Put xi==n'xi. Then the isotropy subgroup K _l.

D{Vl)

KDD(VO) and

GxKiD(Vi) such that their boundaries are identified under a G-

diffeomorphism uen’. Now we have:

Lemma 1.1. Let M be & closed connected smooth G-manifold such that
M/G is homeomorphic teo [0,1]. Then M has two or three orbit types

G/H, G/KO and G/Kl with H(:KOnK and there exist representation

1 r
spaces Vi‘ i1i=0,1, of Ki such that M is eguivariantly diffeomorphic

to & union of G-bundles Gx_, D(V_) ang Gx
KO 0 Kl
identified under a G-diffeomorphism n: Gx_, S(V_ ) — Gx_, S{(V.).
KO 0 Kl 1
Moreover we may assume that n([g,eo]) =[g,91], where e, is a point

D(vl) with their boundaries

of S(Vi) such that the isotropy subgroup of e is H for 1=0,1.

Hereafter we shall assume that M is a G-manifcold as in Lemma 1.1.
Let £: [0,1) — R be a smooth function such that
E(x) = r° for Osrsl/2,
£E'(r) >0 for 0<r<l and
E(r) = r-1/2 for 7/8<r<l.

let €6: M = G D(VO)kﬁGX D(Vl) — [0,1] be a map given by

Ba Ky
B(lg,v)) = £(]]v]|) for [g,v] € GXK D(VU),
0
B(lg,v]) = 1 ~ £{||v||) for {g,v]e,GxH D(Vl).
1

Since B8 is a G-map, there exists a map ¢: M/G — [0,1) such that
den = 6. It is easy to see that ¢ is a homeomorphism. We give
a differentiable structure of M/G by ¢.

Lemma 1.2. In the above situation, we have



(1) 6 is a smooth map,
(2) there exists a G-diffeomorphism o: 8 *((0,1)) — G/H x (0,1)
such that Boa_l is the projection on the second factor, and

(3) f: M/G — R is smooth if and only if fen: M — R is smooth.

Proof. (1) Let a;: Gx, (D(V;)-0) — G/Hx (0,1] be a map given
by Gi(lg,rﬁi]) = (gH,r) forlgEG and re(0,1] (i=0,1). Then it is
easy to see that ay is a G-diffeomorphism. Sincea1?n=:a0 on
GXKQS(VO)' the composition B: B-l((O,l)) = GNKO{D(VU)-O}\ﬁGxKl(D(Vl)~0}
igliﬁ‘»lG/H x(0,11\./l x1G/Hx (0,1] = G/Hx (0,2] is a G-diffeomorphism.
Note that i

-1 Elxr) for 0<r<l,
(6eB ) (gH,r) ={
1 - £(2-r) for lzr<?2.
=3 mooth -1
Thus 68 is a smooth map, and 6 igﬁéiﬁgb on 6 ~((0,1)). From
the definition, 8 is a smooth map on B-l(r) for r¥1/2. Therefore

8 is a smooth map.

(2) Let €: (0,2) —> (0,1) be a smooth map given by

_ E(x) for 0<r<l,
6(x) =
1 - £(2-r) for lsr<2.
Since 6’ (r)>0 for 0<r<2, 5 is a diffeomorphism. Let a: 8_1((0,1))
— G/Hx (0,1) be a G-diffecmorphism given byc = (1,8)¢R. Then
(Boa-l)(gH,r) = (808—1)(gH,§—l(r)}==r, and eea_l is the projection

on the second factor.

(3) Let f: M/G — R be a function such that fom: M — R is smooth.

l: [0,1] — R is smooth. Since
- -1
(gH,r) = (fo¢ Yo gea 1)

We shall prove that fod

(Femoo 1) (gH,z) = (fo¢ 1) (r) for 0<r<l,

f i t i
o is smooth on (0,1). Let 10. Dl/2

=—F G><K D(VO) be an inclusiocn given by io(v)= [1,v]. Note that
0
) 2
(Boi ) (v) = ||v]|© for veDl/z(VO). By Corollary 5.3 of G. Bredon

(VO) = {VED (Vo) i Hv“ .<_l/2}

[3, Chapter VI, §5], fn¢—l is smooth if and only if (fo¢-l)o(eoio) is
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1

smooth. Since (fo¢_l)o{eoio) = foﬂnio, which is smooth, then fod
is smooth on [0,1/4]. Similarly we can prove that fo¢_l is smooth
on [3/4,1). Since (fuda_l)(r) = (foqu“loeoa_l}(m,r) = (fomea 1) (1H,r)
for 0O<zr<l, f0¢_l is smooth on (0,1). This completes the proof of

Lemma 1.2.

Remark 1.3. Lemma 1.2 is essentially proved by G. Bredon [3,
Chapter VI, §5], and (3) implies that the functional structure of

M/G is induced from that of M.



§2. On the group homomorphism P.

In this section we shall define a group homomorphism P: Diffz(M)D
— Diffmlo.l]o, and we shall prove P is continuous.

We shall identify the orbit space M/C with [0,1] by the homeomor-
phism ¢ in 81, therefore the projection m: M — M/G is identified with
the smooth map 6: M — [0,1]. Let h: M — M be a G-diffeomorphism

of M which is G-isotopic to the identity lM' and let f: [0,1] —

[0,1) be the orbit map of h. Since fem = meh is a smooth map, f is
a smooth map by Lemma 1.2 (3). Similarly the inverse map £L of £
is smooth, and f is a diffeomorphism. Then there exists an abstract

group homomorphism P: DiffZ(M) — Diffm[o,l] which is giwven by P (h)

0
= f, where Diffm[O,l] is the group of i diffeomorphism of [0,1],

endowed with C topology.

Proposition 2.1. P: Diff:(M)o —> Diff [0,1] is a continuous

homomorphism of topological groups.

Let Cm(Ml,Mz) denote the set of all smooth maps from a compact
smooth manifold Ml to a smooth manifold MZ’ endowed with C topology.

Before the proof of Proposition 2.1, we begin with some lemmas.

Lepma 2.2. Let Mi be a compact smooth manifcld and Ni be a

smooth manifold for i=1,2. Then we have
(1) Let ¢: Nl —> N2 be a smooth map, and let ¢, : Cm(Ml,Nl) —>
Cm(Ml,Nz) be a map which is given by ¢, (f) = ¢=f. Then ¢, is continuous.
(2) Let ¢: Ml — Mz be a smecoth map, and let ¢*: Cm(ME,Nl) —
Cm(Ml,Nl) be a map which is given by ¢* (f) = fe¢. Then ¢* 1s continuous.
(3) Let ¢: Ml-—% N, be & smooth map and let ¢# 3 Cm(Ml,Nl) —
Cm(Ml,leNz) be a map which is given by ¢#(f):=(f,¢).: Then ¢# is
continuous.



(4) Let ¢: M, — N, be a smooth map and let ¢,: Cm(Ml.Nl) -3

c” (M, xM,, N xN,) be a map given by ¢,(f) =£x¢ . Then¢, is continuous.
oo [= ] o0 0
(5) Let «k: C (Ml,Nl) %0 “HJN2} — C {Ml,NIXNz) be a map given
by «x(f,g) (x) = (£(x),g(x)) for X€M, - Then ¥ is continuous.
(6) Let L be a smooth manifold. Let comp: Cm{Ml,Nl) me(Nl,L)
— Cm(leL) be a map given by comp(f,g) =gof. Then comp is continuous.

Proof. (1) and (2) are proved by R. Abraham [2, Theorem 11.2 and
11.3]. It is easy to see (3), (4) and (5). From J. Cerf [4,

Chapter I, 84, Proposition 5], (€) follows.

Lemma 2.3. Let X be a topological space. Let M be a compact
smooth manifold and N be a smooth manifold. Choose an open covering
{Ui} of M such that each closure ﬁi of Ui is a regular submanifold‘
of M which is contained in a coordinate neighborhood of M. Then
a map Y: X — Cm(M,N) is continuous if and only if each composition
j*

?i: X j; Cm(M,N) —i+ Cm(ﬁi,N} is continuous for each i, where ji:

61L5M is an inclusion.

Proof. From Lemma 2.2 (2), if ¥ is continuous, then Wi is
continuous for each 1i. We can choose {Ui& as a coordinate covering
of M. Let {Vk}be a coordinate covering of N. Let £€C (M,N) and
K(:Ui be a compact subset such that f(K)CﬁG\for some A. Nr(f,Ui,VA,
K,e) (r=0,1,2,..., 0<gsgw) denoteﬁihe set of c¥ maps g: M — N such
that g(K) C V, and ]]Dkf(x)-Dkg(x)||<E for any xeK, k=0,1,2,...,r.
Then the C topology on c”(M,N) is generated by these sets Nr(f,

Ui’ Vl, K,e) (see M. Hirsch [6, Chapter 2, §1]).

Let xeX and let £=Y¥(x). For any open neighborhood W of £, there
T
exist above sets N, =N k(f,U. 'Vy K ,E ), k=1,2,...,n, such that
k 1, X k' k
@ [ == E—
A D N, CW. Note that j* : C (M,N) — C (U, ,N) is an open map
k=1 "k 1y Tk :

N TE - - Y. o3 ; y~1 e
and (3% ) (3% (Nk))-Nk. Since ¥, is continuous, {Nk) o

k x k Tx

j* (N)) is an open neighborhood of x in X, for each k.  Then r\§=l

k
- =



W-l(Nk) is an open neighborhood of x in X. Since W([\£=l W_l(N}})(:

N £=l NkC:W, ¥ is continuous at x. This completes the proof of

Lemma 2.3.

Remark. Lemma 2.2 and Lemma 2.3 are hold in the cases of

manifelds with corneres.

Let C:([“1/2,l/2], R) denote the set of all smooth functions
£f: [-1/2,1/2] — R satistying f(-x) = £(x), endowed with c” topclogy.-

Let T: C:([—l/2,1/2], R) — Cm([O,l/4], R) denote a map defined

by T(f) (x) = £ (V/x). Then we have
Lemma 2.4. The above map T is well defined and continuous.
Proof. Put f=T(f) for each feC_([-1/2,1/2], R). Since f is a

c” even function, we have the Taylor expansion

Flx) = E(0) + €57 (0)/20%°8 .., & (£"2°2) oy rion-2) 1y 2R
+ U (102 /@ TP (1) ) X7
for -1/2<x<1/2, n=1,2,... . Thus we have

F(x) = £(0) + (£ (0)/2)x+ ... + (£2"2) gy s(2n-2) )"t

(2n)

3 cfé (1-0)2" 1 2n-1) £ P (1z7) ar)x™

for 0=xs<l/4. By the composite mapping formula, we can compute

the n-th derivative

p” (£ 2™ (/) x™)

_ gh p : - (2n+q) a/2.9
= I, 0 Ig=0 zi1+---iq=P B(p,dys..si)f (tvx)x* “t=,
- s wey 2 20
11 0, 1q
where B(p,il,...,lq) is a real number. Put fi==T(fi) for fi.éce(

[-1/2,1/2], R) (i=1,2). Then there exists a positive number An

such that
n n
SUP (eyc1ya D Ey 0 -DTE, ()]

dr (i _nde
S A emax g o3y (SUP o g,y [DRE () -DRE, G0 ])



for each n=1,2,... . Note that

SUP geyersa £330 — 5,000 = sup ) o g p €00 - 5,00,

Therefore T is a continucus map, and this completes the proof of

Lemma 2.4.

Proof of Proposition 2.1. Let J denote a closed interval [0,1/4],

[1/5,4/5]) or [3/4,1]. By Lemma 2.3, it is sufficient tc show
that the composition P : Diffg (M), — piff”[0,1] 1% c¥(3, [0,1))
is continuous, where j: J&[0,1] is an inclusion map.

We shall first consider the case J= [0,1/4]. Let 1:(-1/2,1/2]

—>» [0,1/4] be a map given by 1tx)==x2. Let 1: [-1/2,1/2] — GXK D(VO)
(s M be a map given by ?(r)==[l,reo], where 4 is a point of S(VO?

as in §&1. Then me{ =1. let ;J denote the composition.Diffz(M)o

5 ®(-1/2,1/2),m T% c™(1-1/2,1/21, [0,1]). Then P_(h) =mohef

= P(h)e1 =1*P(h) for he DiffZ(M}O, and the image of PJ is contained

in C:([—l/B,l/Z], R) . Note that PJ==T°PJ. Combining Lemma 2.2

and Lemma 2.4, PJ is continuous.

Next consider the case J= [1/5,4/5]. By Lemma 1.2, there is
a G-diffeomorphism a: 7 “([1,5,4/5]) — G/H x [1/5,4/5]. Let i:
ﬂ_l([l/5,4/5])C9M be the inclusion map and let k: [1/5,4/5] —
G/Hx [1/5,4/5] be a map given by k(r) = (1H,r). Then PJ is the

composition

. -1
Diffy (M) (Gea “=X)* o= (11/5,4/51, M)—Ta c®([1/5,4/5],10,1])

which is continuous by Lemma 2.2.

We can prove that P, is continuous in the case J= [3/4,1] similarly

as in the case J= [0,1/4), and this completes the proof of Proposition 2.1.

- 10 -



§3. A continuous global section of P.

In §2 we have proved that P: Diffz(M) — Diffmlo,l] is continuous.

0
Thus the image of P is contained in the connected component Diffm[0.l]0
of the identity. In this section we shall construct a continuous
global section of P: Diff‘zm)o —i5 Diff“’{o,l]o.

Let f be an element of Diffm[O,l]O. We shall define a map
Y(f): M — M as follows: ¥ (f) is defined on ﬂ_l((o,l)) by the
composition ﬂ_l((O,l)‘) 25 G/H % (0,1) Lﬂ) G/H x (0,1) E—ie n_l((O,l)) ’

and Y(f) =1 on ﬂ_l(O)Uﬂ_l(l).
Proposition 3.1. VY¥(f) is a G-diffeomorphism of M.

In order to prove Proposition 3.1, we need the following lemma

and notations.

Lemma 3.2. Let ¥: DiffmIO,l]O — Diff" (D") be a map defined by
{(/f(”vilz) /lIvl)v  for v¥o,

?l(f)(v} =
‘ 0 for v=20,

where Dn denotes an n-dimensional unit disc. Then Wl is a well

defined and continuous map.

Notations 3.3. For 1i=0,1, we shall use the following notations:

T.: G — G/Ki the natural projection,

i

Ui an open disc neighborhcod of lKi in G/Ki'

Oi: Ui — G a smooth local cross section of ﬂi,

Ui a: an —» G (ae€G) a smooth local cross section of “i defined
r

-1
X

by o, (x) =a-0. (a Yi s

i,a i
= = , . ic a closed r-disc
Put Mi GXK‘D(Vi) and Mi(r) GXKIQJVl), where Dr(Vl) is

i 1
in Vi (O<r<l).
Mir} — G/Ki the bundle projections,

P

- l . .
¢i,a: Py (an).—a U, * D(Vi) (a€G) a chart of p, over aU, defined

Mi — G/Ki, pi,r'

- AN ~



e -1
by ¢i'a([9rv]) = (a T'l[g) ’ ((_Gi,anni) (9)) g '\J),
T,: G — G/H the natural projection,
U an open disc neighborhood of 1H in G/H,

02: U2 — G a smooth local cross section of ﬁz.
Proof of Proposition 3.1. Put h=V¥(f). We shall first prove

that h is smooth on ﬂ_l(O). Since f(0)=0, there exists a real

number € such that 0<e<l/2 and f(e2)<l/4. Then h(n 1(10,e°]) C

171(10,1/41), and h(M(€)) (M (1/2). For lg,reyle Gx, D_(V,-0) (0<rse),
0 0 KO € 0

h(lg,regl) = (a e (1, £)ea) ([g,rey]) = (@ To(1,£)) (gH,r?) =a *(gH, £ (x”))

=[g,Jf(r2)e0]. Then, for [g,v] ¢ GXK %JVU_O)’ h([g,v]) =[9er(||VH2)/W|VH

0
v] = [gf?l(f)(V)]. Since h([g,0]) = [g,0], h(lg,v]) = [g,Wl(f)(V)J

for any [g,v]EMO(E). Then the composition

~ (¢0,a)_l <1
h: UO;KDE(VO) —_— pO,E (aUO)
h -1
—;—————% pO,l/E(aUO)
0

!a 5
—— LO XD1/2(VO
is given by h(x,v)==(x,¥l(f){v)) for aeG. Since Wl(f) is a smooth

)

map by Lemma 3.2, h is smooth on ﬂ_l(D). Similarly we can prove
that h is smooth on ﬂ_l{l). Since h is smooth on ﬂ_l((ﬂ,l)) by the
; = =1 =1 4
definition, h is a smooth map. Since h l=‘¥[f ), h is also a smooth

mép. Thus h is a G-diffeomorphism of M, and this completes the

proof of Proposition 3.1.
In order to prove Lemma 3.2, we need the following assertion.
Assertion 3.4. Let &: Diffw[O,l]O — Cw([o,l],R] be a map given by
VI (%) /% for x %0,
o (f) (x) =
VET(0) for x = 0.

Then ¢ is a well defined continuous map.

Proof. For £ &Diffm[o,llo, we have the Taylor expansion

_12_



fix) = £°(0)x + ngé (I=t)y£"tx) dt for Osm<l.

1
0

Note that F(x)>0 for 0<x<1. It is easy to see that ¢ is continuous.

Put F(x) =£'(0) + x{7 (1-t)£” (tx) at for 0O<x<l. Then ¢(f) = /F.

Proof of Lemma 3.2. Let N: D' — [0,1] be a map given by N(v)
|]VH2- " Let i: D"GR™ be the inclusion and let u: RxR” — R be

V)
the scalar multiplication. Since ?l(éﬂ§=¢(f)(||vﬂz)v, Wl(f} 15 &
smooth map by Assertion 3.4. Since qfl(f”l) =wl(f)‘1, ‘}'l(f)_l is

also a smooth map. Thus Wl{f) is a diffeomorphism of B, Note that
*

e N l#

vy, is the composition Diffw[o,l}o —5 e ([0,1],R) —— € (D",R}—5
Cm(Dn,RXRn) —Eiﬁ»ngn,Rn). Combining Assertion 3.4 and Lemma 2.2,

¥ is continuous. This completes the procf of Lemma 3.2.
Proposition 3.5. V¥: Diffm[o,ll ——;lef (M) 1s continuous.

Proof. Let Bi(:Ui be a closed disc neighborhocd of lKi in G/Ki
for i=0,1. Let B C:U be a closed disc neigchborhood of 1H in G/H.
We can choose {mt(p0 (aB()), int(p)l (aB))), int(a™*(aB,yx[e/2,1-¢/2)
: aEG} as an open covering of M for 0O<e<l/2Z2. Put W=={fEDiffm[G,l]O
: f([D,E%)(:[U,l/4), f([l—g,lDCJ3/4rl]}. Then W is an open

neighborhcod of the identity in Diffm[O,ljD. Since ¥ is a homomorphism

as an abstract group, it is enough to show that Y is continuous

on W. Let C denote one of the sets pO {aB ) pl E(aB ) or

0_1(aB2X[E/2,l-E/2]) for a G. If we can prove that the composition

¥ Lo % i* =
WC: W — lefG(M)O — C (C;M)

is continuous for each C, then ¥ is continuous on W by Lemma 2.3,

where i: CGM is an inclusion map.

-1

First consider in the case C==pO €(aBO). Y(f) (C) is contained

in pall/Z(aU ) for each fewf Note that ¥ (f) ([g,v]) = [g'wl(f)(v)]
for [g,v]eC and (¢0’ uw(fJo¢0 ) (x,v) = (x,¥, (£) (v)) for (x,v)E€ B
DE(VO). Thus WC is given by the composition

- 13 -



¥y

W25 T, (vy), D(V,))
J,
= D
;——%* c” (BOXDE(VO). on (VO))
9.8, ™, Uy*D (Vy))
-1
(ked ) % @
0.2 *. ¢%(c.mM),
where Jj: EOQ*UO and k: pal(auo)céM are inclusions. Combining
Lemma 3.2 and Lemma 2.2, ?C is continuous.
Now consider the case C =a—1(BOX[E/2,l—E/2]). ?C is given

by the composition
w—"5 c®(le/2,1-e/21, (0,1))
j 5
—5 " (Byxle/2,1-€/2], G/HX(0,1))

o ©

-1
koo Ty o (o, my,

where 1: [£/2,1-¢/21¢[0,1). 3: B(>G/H and k: 771 ((0,1))M  are

inclusion maps. By Lemma 2.2, WC is continuous.

We can prove that W is continuous in the case C= p1 (aB )

similarly as in the case C= p0 (aB ), and this completes the proof

of Proposition 3.5.

By Proposition 3.5, P: Diff:(M)O — Diff [0,1), is a globally

trivial fibration. Then we have

Corollary 3.6. Diff:(M)D is homeomorphic to Diffm[O,l] x Ker P .

0



§4. On the group KerP .

In this section we shall define a group homomorphism L: Ker P
— Q, where Q is a subgroup of Cw([D,l], N(H) /H), and we shall prove that
L is a group monomorphism between topological groups (see Lemma 4.5
and Proposition 4.6).
Let h be an element of Ker P . Let ﬂ be the composition
G/H x (0,1) —919 0,1y B amtio,1)) - 6/Ex (0,1).
Then ﬁ is a level preserving G-diffeomorphism. Let a: (0,1) —

N(H)/H be a smooth map satisfying h(gH,r) = (ga(r),r) for (gH,xr)E€

G/Hx (0,1).

Proposition 4.1. With the above notations, there exists a smooth
map a: [0,1] — N(H)/H such that
(1) a=a on (0,1),

(2) a(i) € (N(H) A N(K,))/H for i=0,1.
To prove Proposition 3.1, we need the following lemma.

Lemma 4.2. Let G be a compact Lie group. Let K and N be
closed subgroups of G. Let m: G — G/K be the natural projection.
Then there exists a smooth local section o of 7m, which is defined on an

open neighborhood U of 1K, such that (1K) =1 and o(x)eN for x ¢ m(N)~U.

Proof. Let 7 N — N/(N~K) be a natural projection. Let

1:
i: NG be the inclusion and let I: N/(NAK) — G/K be a map

satisfying ﬂoi.=Ioﬂ1. Since I(N/(N~K)) =7n(N) 1is an orbit of the
natural action N x G/K — G/K, I is an imbedding. Let U be a disc

neighborhood around 7(l) in G/K and let U, be a disc neighborhood

around ﬂl(l) in N/ (N~K). Since I is an imbedding, we can assume
I(Ul) =UNnI(N/(NAK))=U~AT(N). Let 01: U1 — N be a smooth local

. =0 & X
section of ™y satisfying ol(ﬂ(l))==l. Then 0191 is a smooth section

- 15 -



We can extend o ol_l to a smooth local section

1
Then o(n (1)) =1 and o(Unn(N))C N.

defined on I(Ul).
defined on U. This completes

the proof of Lemma 4.2.

Lemma 4.3. Let V be

Let G be a compact connected Lie group.
a representation of G such that G acts transitively and effectively
on a unit sphere S(V) of V. Let H be the isotropy subgroup of a

point of S(V). Then we have the following list:

G S0(n) (n23)|SU(n) (n22)|U(n) (n2l)|Sp(n) (n21) Sp(n)xZ S™ (nxz1)
2
H SO (n-1) SU(n-1) U(n-1) Sp(n-1) Hl
N(R)/H| 2, U(1) U(1) sp (1) s
Sp(n)x, st (n21) G, |spin(7) |Spin(9)
2
H .
2 SU(3) GZ Spin(7)
1
S 22 22 Z2 ‘

where H, = {[(q,A),q ") ¢ Sp(n)x, S7; (q,A) € Sp(1)xSp(n-1) CSp(n)} and
P

Hy = [((z,A) ,z_l] € sp(n)x, sl; (z,R) € Sl><5p(n—l) QSp(n)}.

2

Proof. It is known that G and H are the above Lie grcups (c.f.

W. C. Hsiang and W. Y. Hsiang [7, §1]). We can determine the Lie group

N(H) /H by an immediate calculation except for G==G2, Spin(7), Spin(9).
For the cases G==G2, Spin(7), Spin(9), we can determine N(H)/E by

using I. Yokota’s definitions of these Lie groups in [9, Chapter 5].

Lemma 4.4. (1) Let F: [-1,1] — R be a smooth function such

that F(0) =0. Put f(x) =F(x)/x for x%0 and f(x) =F’"(0) for x=0.

Then f: [-1,1] — R is a well defined smooth function.

(2) Put Cj([-1,1],R) = {Fec™([-1,1],R); F(0) = 0], endewed—with

- 16 -



endowed with C topology. Let ¢: C:([-l,l] ,R) — C ([-1,1],R)

be a map given by ¢ (F) (x) = £ (x). Then ¢ is continuous.

[==]

Proof. For F ECO{[—l,l],R), we have ¢(F)(x) =f(x) =F'(0) +
xgé (1-t)F" ( tx) dt. Then the n-th derivative f(n){x)==x5é (L~E)-
(P BF2Y o ar 4 ngé (1-4) $7 - 1p intl)

a positive number A such that || ¢(F)|| < a[|F||__, and Lemma 4.4 follows.

(tx) dt. Thus there exists

Proof of Proposition 4.1. Let € (0<e<l/2) be a real number.
Let W, and U, be open neighborhoods of 1K,, satisfying ﬁiCZUi-

. _ . -1 .= =1 v
for i=0,1. Put O={hexer®; h(p; , (W) (p; ,(U;) for i=0,1].
Then O is an open neighborhocod of the identity in Ker P . By Corollary
3.6, Ker P 1is connected, and O generates the topological group Ker P .
Thus we can assume h€OQ.

Let h be the composition

=1
(¢ ) -1

Wo*D(Vp) 0.1 Py e

*D_(Vy) — U

_l ¢
—h—,‘»pO,e(UO) —-gl—l—*;'onDs(vO)'

xDE(VOJ—a DéVOJ be projections on

(W)

Let pl: UO 0 and Pyt UO

the first factor and the second factor, respectively. Let i: [-g,€]

— W ><DE(V0) be an imbedding given by i(r) = (lKO,ré ). Then the

0 0

compositions %i==ploﬁoi: [-e,e] — UO and 32=:p2uﬁoi: [-e,e] —
DE{VO) are smooth maps. Let ﬁoz G/H — G/I{0 be the natural projection.
Note that
(aehegy 1) (1K, Teq) = (aeh) ([1,re])
= (hea) ([1,re])
= ﬂ(lH,rz)
= (a(rz),rz) for |r|ze, r¥o0.
Tgen
Rk reg) = (85 jo0” D) (alr®), %)
= (T la(r?)), (0T (alr®)) Halr?) rey),
and

= 17 -



By (r) = 7 (ax)),
(0,2) (atr?)) Tra(r?) re,

h, (r)
for |r|ze, ©*0.

Here we can assume that 00(1K0)= 1 and Uo(ﬂ (N(H))r\UO)(:N(H)

0
by Lemma 4.2. Let b:[-€,€] — G be a smooth map given by b(r) =

0o (B (x)). Thed b(r) =0 (i (alr’)) € oy (n, (NENAVY), and b(r)e
N(H) for r 0. Since b is a smooth map, b(r) € N(H) for r=0.
he
=, B -1 - R
For [1,0]em ~(0), we have h([1,0]) = (he¢g™)) (1K, 0) = fooy) (i (0))
= ¢611(g1(0)'0)==[b(0)'0]' Note that Py is a G-diffeomorphism on
the zero section of pO and h{w_l(D)) =v-l(0). Then the composition

_.]_. s _ i % 6 0-_'_ _
pooh PD' G/KO —> G/KO is a G-diffeomorphism, and q%)h p;)(lxo) =

(pooh)(ll,o]) =p0([b(0}.O]}=b(0)K0. Thus b(O)GN(KD) , and
b(0) € N(H)r\N(KO)-

Put J = [-g,0)VY(0,e]. Let ¢c: J — N(H)/H be a smooth map

given by e(r) =b(r) " Y-a(r?). Since 50(c(r)) = %O{UO(EO(a(rz))—l-

a(rz})==1K then c(r) € KO/H. Thus c(r) € N{H,KO)/H for rédg.

Ol‘

Since Ker P 1is connected, the maps a,b and c are homotopic to the
constant maps. Note that the identity component (N(H,Ko)/H)U of
N(H,KGVH is contained in (N(H,KU)an)J{/H, and there exists an

isomorphism (N[H,Ko)an)J{/qu(N(H,K an)/(ang) as a Lie group,

0’

where Kg is the identity component of KO.

smocth map &: J =<5 (N(H,KO)/H)UL+(N(H,KO}an)ﬁi/H:z(N(H,KO)ng)/(Han)
0
0 r

to a smooth map on [-g,€], and so is c.

Then there exists a

(5 N(HnK Kg)/(Han). Now we shall prove that & can be extended

Note that K. acts transitively on the unit sphere S(VO) of Vv

0
If dim S(V0)==U, then KO/H==22 and N(H,KO)/H==Z

0
5¢ In this case
€ is a trivial map, and it is clear that & can be extended to a smooth
map on [-g,€]. Now we assume dim S(V0)> 0. Since S(VO) is connected,

KO acts transitively on S(VOJ and Kg/(KgnH) is diffeomorphic to S(VO).

0
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Put D =f\g€K0 g(KgﬂH)g—l which is the kernel of the action K8:XS(VO)
0

— S(VDJ- Put ﬁ0==Kg/D and ﬁ==(HﬂK8)/D. Then EO acts transitively

and effectively on S(VO) and iofﬁ is diffeomorphic to S(V,). Put
0
Ol
N.) is one of pairs (G, N (H) /H) in the list

ﬂ6=N(ﬁ,RO)/ﬁ which is isomorphic to N(HnAK Kg)/(Han) as a Lie

group. The pair (ﬁo, N,

of Lemma 4.3. Now we shall prove that & can be extended to a smooth

map on [-€£,€]. 1f ﬁ0==22, this is clear since & is a trivial map.
Consider the case ﬁ0==SU(n] (nz1) and ﬁd=U(l). In this case

VO is an n-dimensional complex vector space and ﬁ;=U(l) acts on VO
as a scalar multiplication. We can regard c” as a 2n-dimensional
real vector space R2n and ﬁoas 50(2). Then there exist 'smooth

functions c,: J — R, 1=1,2, such that

cl(r) -cz[r)
eg(r) = € S0(2) for redJd.
cz(r) cl(r)
Note that Ez: [-e,e] — DE(VO) is a smooth map and‘K2(I)==c(r)~re0
= &(r)-reo for r0. In this case ao=:(l,0,...,0)6 S2n-l and
hz(r)==(cl{r)r, cz(r)r,D,...,O) for red. Put ci(0)==11mr%0 ci(r)
for 1i=1,2. From Lemma 4.4, Ci:[—E,E] — R, i=1,2, are smooth

functions and ¢ can be extended to a smooth maps on [-g,e].
Now consider the case R0==Sp(n) (nz1) and N =Sp(l). In this

. . » . . . n ==
case VO is an n-dimensional guaternionic vector space H and Ng=

Sp(l) acts on VO as a scalar multiplication -es—the-right. We can

in

regard E" as R and Sp(l) as a subgroup of SO(4) naturally.

By the similar way as in the case KU==SU(n), there exist smooth functions
c;: I >R, i=1,2,3,4, such that h,(r) = (¢, (r)xr, c,lrlr, cylnx,
cq(r)r,O, ..,0) for r€J, and we can extend & to a smooth map on [-g,€e].

The proof of the other cases are similar to those of the above cases.

Thus we can extend c to a smooth map on [-g,e].  Since c(r) € N(H,K,)/H
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for r¥ 0, we see c(0) ¢ N(H,K)/H. Put a(0) =b(0)-c(0). Since
b(0)€ N(H)n N(K;) and c(0) € N(H,K,)/H, we havea(0)€ (N(HN(K,))/H.
Let &: [-1/2,1/2) — N(H)/H be a map given by &(r) =5(r2). Since
d(r) =b(r)-c(xr) for -e<rse, & is a smooth map. Since 4 is an

even map and al(r) =&(/r) for 0<r<l/4, a is a smooth map on [0,1/4)

by Lemma 2.4. Thus we can extend the map a to & smooth map a on [0,1)
satisfying 5{0) € (N(H)mN[KO))/H. Similarly we can extend a to a
smooth map a on [0,1] satisfying a(l) € (N(H}(\N(Kl))/H. This

completes the proof of Proposition 4.1.

Let Q denote the set of smooth maps f:[0,1] — N(H)/H satisfying

f(i) € (N(H)r\N(Ki))/H for i=0,1, endowed with C  topology. Using

Proposition 4.1, we define a map L: Ker?P — Q by L(h) =.5—l.

Lemma 4.5. L: KerP — Q 1s a group monomorphism.

Proof. Let hieKerP for i=1,2. For 0O<r<l and geG, we have

(gL (hyoh)) () 1,x) = (@shyehiea™t) (gH,x)
= {(aohzo a_l)v:( aohloa-l))(gH,r)
= (eshyea ) (eL(h)) ()7, 1)
= (g-L(h;) (r)-l.L(hz) {r)_l,r) .
Thus L(hzohl) =L(h2)-L(h1) on (0,1). Since L(hl), L(h2) and L(h1°h2)
are smooth maps on [0,1], L(hzohl) =L(h2}- L(hl) on [0,1]. Thus
L is a group homomorphism. Suppose L(h) =1 for heXer P. Then

(ho{!_l) (gH,x) =a-l(gH,r) for geG and 0<r<l, and h=1 on 11_1[(0,1)).

Thus h=1 on M, and L is a monomorphism.
Propostion 4.6. L is a continuous map.

Proof. We shall use the notations in the proof of Proposition 4.1.
Since L is a group homomorphism, it is sufficient to show

Propesitien 4.6 that L: 0 — Q is continuous. Let I denote a closed
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' 2 2 ; ]
interval [0,e7), [¢ /2,1-52/2] or [l-ez,l]. By Lemma 2.3, it is

- . 1 *
sufficient to prove that LI: 0 —£+ Q 1, CW(I,N(H)/H) is continuous,

where j: IG[0,1] is an inclusion map.

First we shall consider the case I = [0,52}- Let L1 be the
composition -1
(koo yod)” o -1
0] — o ([_EJE],pD,E(UO))

(oe p- o0 ) I
d L O’lﬁc ([_EIE]f G]F

where k: pafs{ﬁo)cﬂM is an inclusion map. Then Ly is continuous
by Lemma 2.2. Note that Ll(h}==b.

Let L,: 0 — Cll-¢,el, (N(H,KO)/H)O) be a map given by
L2(h1==c. We shall prove that L2 is continuous. This is trivial in
the case N(H,K,)/H=1Z,. Consider the case ﬁ0==SU(n) (n=2). In
this case '\/’0==Cn==Rzrl and ﬁ0==U{1} =50(2). Put C;([-E,E}, VO)=
{FE Cm([“E,E], VO),- F(0) =0}, endowed with CO‘7 topclogy. Let &:

C?([‘E;E], VO) — C (l-¢e,el, RZ) be a map defined by ¢(F)==(¢(Fl),

8(F%)), where F= (FL,...,F°®) and &(F') is a map defined in Letima.4.4.
2

Then ¢ is continuous by Lemma 4.4. Let m: R™ — MZ(R) denote a
smooth map defined by
= X -y
m(x,y) [ v % [
where MZ(R) denote the set of all 2x2 matrices over R. Let Lé
denote the composition -1 s
(Ko °1i) L =1
o 071 g X [—ExE] Po,lwon
(payed )
2 "0y 2 P
- € {[=e,€], DE(VO)).
From Lemma 2.2, Lé is continuous. Note that Lé(h)=;§2 and Lé(O)
is contained in C:([—E,E], VD). Let L2 denote the compositiXon
Lé &
0o —— CU([—E,E], VD)
'_?—'%Cw([-cxs]f Rz)
m* =]
— C ([-e,e], M,(R)).
Then Lz(h)=:& and L2 is continuous. This implies that L2 is

- ) =



continuous by using Lemma 2.2. Similarly we can wee that L2 is
continuous in the other cases.
Let p: GxG/H — G/H be a map defined by the left translation

and let 1: (N(H,KO)/H)OC_*G/H be an inclusion map. Then the composition

~ (L, y140L,) - «
L: O 1"+ 2 s C ([-e,e], G) xC ([-e£.,e]l, G/H)

e Cw{I-E,E], G x G/H)

—Hes c®([-e,e), G/H)

is continuous by Lemma 2.2, where ¥ is defined by K(fl,fz) (r) =

(fl(r) ,fz(r)). Note that I:(h) =b.c=32a and £.(O) is contained in
C:{[;E,E] . N(H)/H). Here C:([—E,E], N (H) /H) denote the set of all
smooth even maps f: [-e£,e] — N(H)/H , endowed with C'Jo topology-
Let T: Co([-¢,e], N(H)/H) — c™(10,¢%], N(H)/H) be a map defined
by T(f) (r) = £ (V1) . By the same argument as in the proof in Lemma 2.4,
we can prove that T is continuous. Thus LI =TeL is continuous.

Now consider the case I = [52/2, 1—52/2]. LI is given by the
composition

o X ", o tan

{—l * - -1
foe ov) 5 e®, m (1))

(gyea),

—5 " 5 c¥(1, ¢/H),
where k: ﬂ_l(I)(_',M is an inclusion, 1: I — G/HxI 1is a map given
by 1(r) = (1H,r) and g, : G/HxI — G/H is the projection on the first
factor. Thus LI is continuous. We can see that LI is continuous in

2 .. .
the case I=[1-e7,1] similarly as in the case I = [olgz]J and this

completes the proof of Proposition 4.6.



§5. Subgroups of the topoclogical groups Q and Ker P.

In this section we shall consider subgroups Ql and S of the
topological groups Q and Ker P, respectively, such that L(S)::Ql,
0

and we shall prove that the inclusions Q and S« Ker P are

1 0

homotopy equivalencéf where QO is the identity component of Q.
Put Ql=={a€Q0: alr) =a(0) for 0<r<l/4 and al(r) =al(l) for 3/4<

rsl}. Then Ql is a topoclogical subgroup of QO' Let 1: QIL;QO

be an inclusion.

Lemma 5.1. i 0,50Q, is a homotopy eguivalence.

Proof. Let o:[0,1)] — [0,1] be a smocth map such that
cf(r) =0 for 0<r<l/4,
g(r) =1 for 3/4<r<1l.

Let My [0,1] — [0,1) (0<t<l) Dbe a smooth homotopy given by

pt(r)==t0(r) + (1-t)r. Since (aout](i) é(N(HL\N(Ki])/H for 1=0,1,
aeu, is an element of Q. Define qg: QOX [0,1) — Q by q(a,t)==aaut.
Let p: [0,1] —erc“([o,l],[o,lj) be a map given by u{t)==ut. Then
it is easy to see that p is continuous. Note that g is given by
the composition

Qy» 10,1 =¥ g« (10,1, [0,1))

EOMP 5 ¢ (l0,1), N(H)/H),
where comp is given by comp(a,f) =acf. By Lemma 2.2 (6), g is
continuous. Then q(QOXIO,l]) is contained in QO. Let qt:QD —s
Q be a map given by qt(a)==q{a,t). Since L ql(QD) is contained
in Ql. Thus g is a homotopy between q0==lQO and ql==ioql. Note
that qt(Ql) is contained 1in Ql for any t. Then q: Ql w [0:1] —»
Q is a homotopy between lQl and qlci. Therefore Lemma 5.1 follows.
Put S==L—l(ol)(;KerP . Let 1: SGKer P be an inclusion.
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Lemma 5.2. 1: S Ker P is a homotopy eguivalence.

Proof. Put a==L(h_l) for heKer P . Let ht: M — M (0<t<l)

be a map as follows: ht is given on n_l((o,l)) by the composition
- " -1
m100,1)) %5 6/8 % (0,1) —Pes 6/H x (0,1) -5 1L ((0,1)),

~

where ht is defined by ht(gH,r) =(g-qt{a)(r),r). ht(gKi) =

ga(i) "k, (1=0,1) for geG. Here we need the following

Assertion 5.3. ht is a smooth map for any t.

Proof. By the definition, h't is smooth on 11"1({0,1)] 5 We shall

prove that h_ is smooth on (0. Let a, be an element of G such

~ =1
that a H=a(0) and a € N(H)AN(K,). For [g,0]¢ pO,l/Z(lKo)’ (pO,l/,2°h)

([g,0]) = 'ﬂo(gao) = ﬂo(ao) €ayU,- Then there exists a neighborhood

) -1
w0 of 1K0 in G/KG such that (pO,l/2°h)(p0,l/2

' ._l —
in aOUO' For [g,reo] EPO,_L/Z (WO) and 0<t<1,

(ﬁo)] is contained

(Pg, 1,2 ° by (L9 xeg]) = Tj(ga, (a) (x%))

(ga(1-t)r2))

= %0
= (poll/zoh)([gf/l—treol)
which is contained in(p; ) ,eh) (pg 1/51@;0)) CaOUO' Then h_(p, 1/51

= ; i : =1, .,
(gWO)J is contained in pO,l/Z (gaobo) for geG and 0<tx<l.

Let h- WD xnl/z{vo) — UO XD1/2(VD) be a map given by h= ¢ he

[+]
—1for ge¢G ] 1980
¢0’§E—'“ZEE p1: Uy XDy ,p(Vg) —> Uy and p,: Uy xDy o (V) — Dy o (V)
be the projections on the first factor and the second factor respectively.
s ~d ~
0 and put hl=pioh for 1=0,1. Then h* is a smooth map and

g’ rgo g (x) kT (a (),

Put g’ =ga

Tul(x,rkeo)
~2 _ - 2,,-1 -

h [x,rkeo) = Oo’g.(gﬂotx}k ﬂo(a(r )) g0g (x)ka(r”) -reg
for xeW, and k&K, where 50: G/H — G/K, is the natural projection.

~io -1 ‘.
Put ht— pi°¢0,g’°ht°¢0,g for 1=0,1. Then

~1 _ -1 = 2
hi (x,rkej) =g go, (x)k ﬂO(a(ut(r Vs
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_‘h42 _ - 2 _l ]
ht(X.rkeo) = oo’g,(gco(x)k-no(a(ut(r )) go.(x)ka(u, (r"))-re
for xEWO and kEKO-

Since o ( )-—0 for r<1/2, u(rz,t) = (].-—t)r2 for 0<r<1/2. Then
i}:(x,v) =%l(x,=/l—t v) for 0<t<l and r}%12:(3{,\:) =1/v1-t rﬁz(x,al-t v)
for O<t<l. Thus g%__ (0<t<l) and rﬁi (0<t<l) are smooth maps.

By the Taylor formula (c.f. J. Dieudonne- [5, Chapter VIII , (8,
14,3)]1), we have

w2 ~ "
h™(x,v) = hz(X,O) + (Sé‘ (th)(XrCV) ac)v,
3 . . ~2 ; ~2
where Dh™ is the derivative of h°. Since h (x,0) =0,
hi(x.V) = (Ré (Dnl';z)(x,#l-t tv) dz)v for 0O<t<l.

~2 2 ~2

5 ht(x,v) = (Dh") (x,0)v, and hl is a smooth map.

Therefore ht is smooth on n_l(O) for any 0<t<1. Similarly we can

Then %]2. (x,v) = 1lim

prove that ht is smooth on '?T—l(l) , and Assertion 5.3 follows.

Proof of Lemma 5.2 continued. Let c-;: Ker Px [0,1] — Ker P be
-1

a map defined by g (h,t) =h-t' By Assertion 5.3, ht and ht are

smooth maps, and g is a well defined map. Next we shall prove that q

is continuous. Let wi be a neighborhecod of lK. in G/Ki satisfving
- . _ ) 1 ~ -1
W,CU, for i=0,l. Put 0 = { hé€Ker P ; hip; 1,5 (Wi”‘:pi,l/z(”i)
for i= O,l} . Then O is an open neighborhocd of l in Ker P . For

an ! 1
heo, gEG)\}S‘itﬂ. h (p. i,1/2 gW )) 1is contained in P; 1/2 (gU ) (1=0,1).

Let W, be an open neighborhood of 1H in G/H satisfying W2 CU2

2
Let C be one of the sets {p 1/2 (gW ) (1=0,1, g¢G), u*l(gﬁ
[1/5,4/5]) (qeG_)}. By Lemma 2.3, it is sufficient to show
that the compoiion c—_J_C: Ox [0,1] _q_) Ker P i} c(C,M) is
continuous for any C, where jC: CGM is an inclusion map.

First consider the case C =p0'l/£l(gv_ﬁ0) . Let v, : c” (ﬁDxDl/Z(VO} ,
UO) x [0,1] — Cm(ﬁox[i/z[vo), U, ) be a map gi.\ffgnlby v, (f,t) (x,v) =
£{x, /1-t v). Let v,: c” (W 0*Py (V1 Dy sp V ﬂ::}lc (W 0*P1 2 V) ’Dl/zwo))
be a map given by vz(f,t) (x,v) = (SO (Df) (x,¥1I-t zv)dr) (V). It is easy
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to see that vy and v, are continuous. Note that éc is the compositicn

(3% 1)
DX [0,)Y] ————sz3 & g, p0 1/2 (gU W< [0,1]

((¢ ),o(d¢ } 1) ’

LF L 0,9° * (W% T ox X

» C¥ (R xDy , (Vg), UgxDy 5 (Vg))x[0,1)
(o) 4r ()40 1) o o o
» C (WyxDy 5 (V) Ug)x C (WpxDy /5 (V)i Dy 45 (Vg
*x [0,1]

\V
— ¢ (W XDl/z(V Yy UD) x C (W XD1/2 ) D1/2(V0))
. .
s S pxDy (V) © l/gtv )
(¢ ) (¢ ) *

0,g" * 0,9 o 1

Here v 1s given by v(fl,fz,t)==(vl[fl,t), v2(f2,t)) and k 1s the
map defined in Lemma 2.2 (5). Then ac is continuous by Lemma 2.2.
Next consider the case C==u—1(gQZX[l/5,4/5]). Let m: N(H)/H x

G/H — G/H be a map defined by m(nH,gH) = (gn)H and Ps: G/Hx[1/5,4/5]—

[0,1] be a map given by pz(gH,r}==r. Let &: QU — Q0 be a map given
by §(a) =a"t, Then the map qC is the compOSlthD
(L,1) Py*

ox [0,1] ——— Qox (0,1] L Ry — =9 c” (G/Hx[1/5,4/5], N(H)/H)

) o
Yosmxiiss,azs’y o (G/Hx[1/5,4/5), N(H)/Hx G/Hx[1/5,4/5])

— M 5 c®(6/Hx[1/5.4/5), G/Hx[1/5,4/5]))

(ao3a) e (a7 h),

> ¢¥(c, o t(e/Bx(1/5,4/5]1) > 7 (C, M),
which is continuous because L and g are continuous.

Similarly as in the case C= pO 1/2 (gw ), we can see that aC is
continuous in the case C= pl 1/2 (gW W Thus g is continuous.
Since ql(QO)C_Ql, ql{KerIj)CLS. Therefore g is a homotopoy between
4y =lgo, p and g; =10q;- Since g(Qyx[0,11) CQ,, a(sx[0,1])Cs.
Then a: sx[0,1] — S is a homotopy between lS and 5101. Thus 1

is a homotopy eguivalence, and this completes the proof of Lemma 5.2.
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86. Proof of Thecrem.

In this section, we shall see that L: S — Q, is an isomorphism

between topological groups, and we shall prove our Theorem.

Proposition 6.1. L: § — Ql is an isomorphism between

topological groups.

Before the proof of Propositin 6.1, we begin with some lemmas. For

any topolegical subgroup K of G,AKO denotes the identity component of K.

Lemma 6.2. For any a eN(KO)Or\N{H), there exist a’e¢ N(HOLWKJJ

and nELCent(KgH such that a=n-a’, where Cent(Ké% is the centralizer
0

of KO in G. ‘

Proof. Since N(KD)D is a compact connected Lie group, there

exist a torus group T and)simply connected semi-simple compact Lie

group G’ such that N0==TXG' is a finite covering group of N(KO)O

( c.f. L. Pontrjagin [8, &64]). Let 95° N0 — N(KG)D be the
covering projection. Put KO==q0_l(Kg)). Since KéJis a normal
subgroup of N{KD)D, L is a normal subgroup of ND. Then Kg)is

also a normal subgroup of NO' Bere we need the following :

~

Assertion 6.3. There exists a closed normal subgroup K6 of NO

such that N. is isomorphic to the product group K 9%k’ as a Lie group.

0 0] 0
simply connecte

Proof. There exist ] simple Lie groups Gi(lsigr)such that
G‘:=Glx,,,xGr. Since K;}is a compact connected Lie group, there
exist simply connected simple Lie groups Kj(lsjgs) and a torus group
T’ such that ﬁ6==T’XK1X"'XKs is a finite covering of Kél Let

~ e 0 . . . z - -
po. KO — KO be the covering projection. Let Pyt NO TxGlx"'xGr
_Q.Gi be a projection on the direct factor Gi(lsiSr). Since KJ)

is a normal subgroup of NO’ pi(KéH is a normal subgroup of Gi'

= 77 =



0,_ e O,
0)-Gi or{l}. If pi(KO)_Gi'

Since G, is a simple Lie group, p, (K
Di(pD(Kj)) 1s a normal subgroup of G, - Thus pi(pO(Kj))=:Gi or {1},

for l<i<r, 1l<j<s.

Put p! =p,. : ’ =q! ' i i ep!
ut p; =p,epP, 1f pi(Kjl) oi(sz) (J; ¥3,), then piig;)-p;(g,)
= ) - = ¥ - = ’ 5 r
Pi(81795) =pi(9,°97) =pilg,) pi(g,) for gleKjl, gzﬁsz. Then
! : J ! =
pi(Kjl) 1ls a commutative normal subgroup of G, and pi(Kjl) = {l}

'(K.) =G., 4 Yy i - T (T
i g ol( j) i then pl(T ) is a normal subgroup of GJL hence pl(T )

e : ’ — ’. Yy = i r -
j\l}. Therefore, if pi(Kj) G, then pi{T ) {l} and pi(Kn) {1}
for n¥j.
Assume oy (Kj) =Gi and p: (Kj) =Gi for i, #12. Let p': KD
1 1 2 2
— G. xG, be a map defined by p’' (k) = (p! (K),p! (k)). Since
i i s a
1 2 1 2
KOO is a normal subgroup of ND and p’ (’I-\{JO) =p' (Kj), p'(Kj) is a normal
subgroup of G. xG, . Then, for x,ye¢K., there exists k€K. such
that (p! (x),1)p' (y) (p! (x)_l,l) =p’(k). Then p! (xyx_l) =
L i 5
1 1 1
-1
p! (x)p! (¥)p! (x) =p! (k) and p! (y) =p! (k). Since K., G, (n=1,
1y iy iy i, i, i, | i,

2) are simply connected simple Lie groupf P! :K,—-c, 1sanisomorphism
n ) 1
- E n
between the Lie groups. Thus Xyx l=k=y for any x,yEKj, and Kj
must be a commutative Lie group, which is a contradiction since Kj

is a simple Lie group.

Thus we may assume that p:’.J(Kj) = G. and pJf_{Kj) = {l} (i%3) for

J
1lz3%s, lgigy. For i>s, pi(KOO)= p:.'L(tI\(JO) =p;(T') which 1s a commutative
normal subgroup of G,., hence p;(T7) = {l} . Then pO(T') is a subgroup
a
of T, and there existsItorus subgroup S of T such that T=p0(T’)xS.
i Ry § N .
Put K'= ssz+lx._,xGr. Then NO .KU KO' and Assertion 6.3 follows.

Proof of Lemma 6.2 continued. By Assertion 6.3, there exists

a closed normal subgroup K6 of NO such that N0=KOD XKE)'- Since KOO
) ~0, _.0 0 _ ke s - 0 '
is a connected group, qO(KO ) -KO o Then N(KO) —qO(NO) qD(}{O ) qO(KO)

= 2§ =



0 i .
= K, 'QO{KO). Note that qotkb) is contained in Cent(KJ)). Thus,
0
for aéiN(KD) M N(H), there exists a'éKé) and neCent(KJ)) such that
a=a''n. Since N(H)C:N(HO) and Ho( K£ ) H0==aHOa-l==a’nH0n_la'ml
o =1
= a'H’a’"". Thus a'eN(#%) and Lemma 6.2 follows.

For aEQl, we define a map h: M — M as follows:
_l — '
h{o (gH,r))=0 J“ga(r) lar)) for (gH,r)EG/HX (0,1),

h(lg,0]) = [ga(i)"t,0] for [g,0l€n *(i) (i=0,1).
Lemma 6.4. h is a smooth map.

Proof. Choose aoe (N(H)nN(KU))OC:N(H)Or\N(KO)O such that

a(O)_l==aOH. There exists a neighborhood WO of lKOin G/K0 such

=1 4 . ; ; _
that “O (WO) aO is contained in ao-ﬂo (UO). ~ Since a(r}-—a(O)
1

for 0<r<l/4, h(po 1/51{gwon is contained in Po 1/5

(gaDUD). Let

hl: WO NDI/Z(VO) =7 UO be a map given by the composition pl°¢0,ga5
—_ l s '
h°¢0,g . éfd let h,: W0><Dl/2(vo) — Dl/2(VO) be a map given by
: =1
the COmPO%&lOD 02°¢0’ga6>h°¢olg . Note that

(ho¢0';l)((x,rke0)) = h(lgo,(x)k,re l)

I

h(a g, (x)kH,x)))

H, r?))

I

o hgoo[x)kao

[goo(x)kao, re0]

for XEWO, kéRo,

~ _ -1
hl(x,v) = aj Go(x)aOKO for (x,v) & W0><Dl/2(vo}, and

O<r<l/2. Since aDeN(KD), kaOKO==aOKO. Then

~ _]_
h2(x,rkeo) O(guo(x}aoKO) gco(x)kag-reD for

- UO,ga

xewo, kEKO, 0<r<l/2. Thus ?ﬁ is a smooth map andﬁfl2 is smooth o©on

-0). We shall prove that Ez is smooth on WOXO, hence h is

(0). This is trivial in the case dim S(v0)==0.

Wy * (Dy s (V)

smooth on .

: b iven b =
Let an,g WO — G e a map g Yy EaO’g(x) UO.gao

K )-lgo (x) . Then £ is a smooth map. By Lemma 6.2, there
0 0 ag9 :

(gootx)ao
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. ) v , 0 '

exist aﬂéliﬂvgn IWJ and né¢€ Cent(Ké)) such that a0=:na0. Then
~
h(x, rke ) = kna' s E pe ., W ]-;eK0 and
o\ 0 anrg(x) na;-rke an,g(x)nkao re, for xeWg, 0
0<r<1/2. Note that N(HOL\K;)==N(HO,KJ))-

Assertion 6.5. For aEN(HO,KDD), let y_: D(V)) —>D(V,) bea
map defined by wa(rke0)==rkae0 for 0<r<l, ke€K. Then v is a
diffeomorphism. Moreover, let y: N(HO,K;)} —%—Diffm(D(VO)} be a

map given by w(a)==wa, then Y is continuous.

. _ 0 B .
Prococf. If dim S(VO)-—O, then KO C H and wa-—l In this

D(vo)'
case, the proof is trivial. We assume dim S(VO) > 0. Since S(VO}

0
0

ineffective kernel of the action KJ}XS{VO)-—}S(VOJ. Put ﬁ==Ké)/L

and ﬁ==(Han))/L. Then K acts t Qsitively aﬂd effectively on S(VO)

= KO/H is connected, K acts transitively on S(VO). Let L be the

and H is an isotropy subgroup of this action. By Lemma 4.3, K, H

and N(ﬁ,ﬁ)/ﬁ are G, H and N(H)/H in Lemma 4.3,respectively. Hence

H is connected. Since the identity component of HnKé) is HO,
£ ), the left coset al, is an element of

N(E,K) . Then a defines an element a € N(H,K) /H. Note that wa(rkeo)
— _ o~ 0
= rkaeo-—rkaeo for D=<r<i, keKU .

Consider the case K=8SU(n) (n22), H=5SU(n-1) and N(H,K)/H=0U(1).

F=8%L /L. For aen(u’,k

o @S @ scalar multiplication.

for rkeOED(VO). Hence wa is a diffeomorphism.

0
Thus y_(rke) =3a-rke

In this case, V =c™ and U(l) acts on V
0
It is easy to see that y is continuous.

Next consider the case K=Sp(n) (n>1), H=Sp(n-1) and N(H,K)/E=5Sp(l).

In this case, v_=u" and Sp(l) acts on V. as a scalar multiplication

0 0
on the right. Then wa(v)==v-§ for VED{VO), hence wa is a diffeomorphism
and ¢ is continuous. Similarly we can see that wa is a diffeomorphism

and ¥ is continuous in the other cases, and Assertion 6.5 follows.

Proof of Lemma 6.4 continued. Since ﬁz(x,v)=éga (x)n-wa,(v),

09 0



by Assertion 6.5, Ez is a smooth map. Thus ﬁl and gz are smooth

maps, hence h is smooth on 7 *(0). Similarly we can see that h is
._1 —

smooth on m ~(1). By the definition, h is smooth on = l((O,l)),

and this completes the proof of Lemma 6.4.

Let J:(a) be a smooth map h: M — M in Lemma 6.4, for ate.
Since i(a-l)==£(a)_l, h is a diffeomorphism of M. By the definition,
h is an eqguivariant map. Thus we have a map i: Ql — DiffZ(MJ.
Note that i 1s an abstract group homcmorphism.

~

Lemma 6.6. L: Ql —3 DiffE(M) is continuous.

Proof. Let Wi be a neighborhood of lKiin G/Kisuch that ﬁic:Ui

(i=0,1), and let W2 be a neighborhood of 1H in G/H such that ﬁzcjuz.

Put A, ={nEN(Ki)0; n'lﬁincjui}. Then A, is an open neighborhood

of the idetity in N(Ki)o. Let q;: ﬁi — N(Kilo be a finite covering
such that ﬁi is a direct product TixGi' Here Ti is a torus group

and Gi is a simply connected semi-simple compac: Lie group. Put
£i==qi-l(KiD). By Assertion 6.3, there exist%lélosed normal subgroup

~

~ ~
K! of N. such that N. =}(0
i i i

i XKi. Let s; be a smooth local cross

section of qi defined on an open neighborhood Bi of the identity

in Nk since myr MBANK O — (@ank)I/m° i a
fibration, there exists a smooth local cross section ti of T defined
on an open neighborhood Ei of 1H such that ti(Ei)(:AfﬂBi.

Put O=={aEQ1: a(i)hle E. (i==D,l)}. Then O is an open neighborhood
of the identity. Since L is a group homomocrphism, it is enough
to show. &emma—6<=6 that L is continuous on O. Let C denote one of

the sets {pi 1/51(9‘:"1) (1=0,1, g&G), u_l(gﬁzx[l/S.fi/S]) tges)}.

~

oo ] * @
By Lemma 2.3, if Le: 0 —ﬁ'DiffG(M}o de—5 ¢”(c,M) is continuous for

any C, then L is continuous, where jC: CGM is an inclusion map.

|
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~ ~ 0 ,

. % _l —
Fi + d = - =
rst consider the case C Po,1/2 (gW,). Let By: Nj Xy K
A 0 o
— KO and 821 ND — Ké be the projection on the first factor and the
second factor respectively. Let L, be the composition
t (E_» Qe B,es,)
4 0 0270 oo 0 m o =
o} g ;
- EO — AOnEU C (W O,G)xc:e,nt 0 ) — C (WO,G)
Here r, £ and m are given by r(a) =a{0}_l, £ {(a,)(x)=¢E (x)
g 0 ao.lg
and m(£f,n) (x) = £(x)+n, respectively. Put a, = (tge° r) (a) for a€o.
._l a2
Th = = .
en HO(Egraotx)) 'no(aO ) for wewo and ﬂD((qoaszoso)(aD)) ﬂotao)
[+ = Np—
Therefore Llia)EKO for any ac0O, and Ll(O] e Wy, Kq) - Let L, be
the composition
t o} uB oS
T 0 071 70 0,0 ] L@
. > —_ :
0 E, Ayn B N (H Ky ) — lef(Dl/ztvo))
By Assertion 6.5, L2 1s continuous. Let L3 be the composition
(L 1,L2) i :
0] ————? C (WO KU) xDiff (Dl/z[vo))
(ol 1Py ) o -
—-_ﬁ ' r
c” (WOXDl/Z(VO) Ky) xC (WOxDl/?_(vo) Dl/z(vo))
U :
. L C (W XD1/2(V0)’ Dl/z(vo”'
where p is given by u(k,v) =k+v, and k is the map in Lemma 2.2. Then
. . N oo e
L3 is continuous, and L3(a) _h2' Let vy: AO — C (WD,UO) be a map
defined by y(ao)(x)==a0 lo {x)aOKO Yy is a restriction map to A,

of a map vy: N(K,) — c” (G/Ky:G/K,) given by v (n) (gK,) =n-lgnK0

Since vy is a continuous map, Yy is continuous. Let L, be the composition

- 4
r tU 2% oo = pl
O —— Ej — Ay —> C (W, 0, ) —— (W xDl/z, Uy) -
Then L4 is continuous and Lg(h)==h1. LC is the composition
(L4 L3)
o —2i 2y o (wo"Dl/zWo)’ Uy) xC (W "Dl/z o) Dlﬂ(vo))

K
55 €T (@gxDy 5 (V) s UGxDy 5 (V())

(69,4) " (#p,g

x5 (€, By 4,5 (9Ug)) G5 CTiC, M.
Thus LC is continuous.

_l - —_
Now consider the case C=a (91-02)([1/5,4/5]). Let m: ng x N(H)/H

- 3 -



— G/H be a map defined by m(gH,nH) = gnH, and let p: G/H x [1/5,4/5]

— [1/5,4/5]1 be the projection on the second factor. Then L

is given by the composition

0% c®([1/5,4/5], N(H)/H)

(1 = )
ng | o _

—=— 3 C (gng[1/5,4/5], ng x N (H)/B)
m* [os) —

———  C(gW,x[1/5,4/5], G/H)
P e _

—*5  c®(gii,x[1/5,4/5], G/Hx [1/5,4/5])
* 1

@-0(a ay o®(c, o T (G/H x [1/5,4/5)) (5 CT(C,M),

where i: [1/5,4/5)¢5[0,1]) is the inclusion map and é: N(H)/H —
N(H) /H is a map given by 6{a)==a-l. By Lemma 2.2, Le is continuous.
_ -1
P1,1/2
as in the case C::pD l/;l(gﬁo), and this completes the proof of Lemma 6.6.

We can see that LC is continucus in the case C (gﬁl) similarly

Proof of Proposition 6.1. From Lemma 6.6, L(Ql) is contained
in DiffZ(M)O. Then, by the definition, L(Ql) is contained in S,
and L==L—l. Combining Lemma 4.5, Proposition 4.6 and Lemma 6.6,

~

L: 8§ — Ql is an isomorphism between topclogical groups, and this

completes the proof of Proposition 6.1.

Proof of Theorem. By Corcllary 3.6, Diffz(M)D has the same
homotopy type as Ker P . Combining Lemma 5.1, Lemma 5.2 and
Propeosition 6.1, Ker P has the same homotopy type as QO. Note
that QO has the same homotopy type as the path space Q(N(H)/H; (N(H)~

N(KO))/H, (N(H}mN{Kl))/H)O- This completes the proof of our Theorem.



§€7. Concluding remarks.
From our Theorem, we have the following:

Corollary 7.1. (1) 1If K =K, =G, then DiffZ(M)D has the same

homotopy type as (N(H)/H)O.

o

(2) If N(H)/H is a finite group, then Diff .

(M)O 1s cotractible.

Remark 7.2. In K. Abe and K. Fukui [1l], we have proved that

DiffziM)O is perfect if M is a G-manifold with one orbit type and

dim M/G > 1. But, by using Proposition 3.1, we can see that Diffz(M)o

is not perfect in the case M/G= [0,1].

Shinshu University
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