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Spitzer's Markov

Introduction and

measurablewithchains

By

 MIYAMOTOMunemi

results.ofsummary

duced Markov chains, whose space of  "tim parame 

nite tree T, and whose state space is a set { 1, 

gates Gibbs distributions on T that are Markov c 

construction. Several works  [1],[4] and [8] are 

distributions on trees. 

     In a present paper, we generalize  Spitzer's 

when the state space is a compact set. If the  s 

of two points as in a case of Spitzer,  all  Marko 

reversible. So, in that case, the "time  paramet 

not be equipped with a direction. But, since  Ma 

not be reversible in our case, we must  introduce 

into T. Thus, we consider Markov chains whose  s 

parametres" is an infinite directed tree T, and 

is a compact measure space (X,B,p). 

     Let F(x,y) be a measurable function on X x 

symmetry F(x,y) = F(y,x) of which we  d not  as 

chain on T, whose transition density we denote  b 

Gibbs distribution on T with the  potenti 

 1  -

able potentials  14:1 

                             ;$ 

 Spitzer  [10]  has  intro-

  parametres" is an  infi-

set { 1, +11. He  investi-

Markov chains of such 

 [8] are made on Gibbs 

 pitzer's results to a case 

If the  state space consists 

 11  Markov chains are 

 parametre" space T need 

since  Markov chains may 

 ntroduce a direction 

 whose  pace of "time 

 T, and whose state space 

 on X x X, boundedness or 

 o not  assume. A Markov 

denote  y  p(x,y), is a 

 al F, if and only if

144-



 P(x2Y) 

where u and 

Hammerstein

Numbers  s,  n  and  X( 

Let  M(F  be  the  set 

Gibbs  distributions 

ditions  on  F,  all  o 

 speaking,  all  chain 

nearly  symmetric. 

 p(x,y)  has  the  form 

 p(x,y)  =  A(s,n 

where u  is  a  positi 

 u(x)  =  X(s,n)f 

 Existence  of  positi 

proved  by  applying 

 Dobrushin  and 

tions  in  Z2  whose  s 

under  rotation  of  t 

of  C2-class  and  rot 

chains  in  M(F)  that 

tial F  is  rotation-

x,y)  =  A(s,n)u(x)  1u(y)sv(y)n-1e-F(x,y), 

 and  v  are  positive solutions of integral equations of the 

 tein  type 

 u(x)  =  X(s,n)  fXe-F(x'y)u(y)sv(y)n-1p(dy), 

 v(x)  =  A(s,n)  Ixe-F(y,x)u(y)s-1v(y)np(dy). 

 s,  n  and  (s,n) will be defined in the following sections. 

 )  be  the  set of Markov chains that are, at the same time, 

 istributions with the potential  F. Under  summability  con-

            r  F,  all  o no chain in M(F) is reversible. Roughly 

 g,  all  chains in M(F) are reversible if and only if F is 

 symmetric. In a symmetric case, the transition density 

 has  the  form; 

 x,y)  =  A(s,n)u(x)  1u(y)n+s-1e-F(x,y) 

 is  a  positive solution of the integral equation; 

 x)  =  X(s,n)ixe-F(x,y)u(y)s+n-1  1-1(dY). 

 ce  of  positive solutions of the integral equations is 

 by  applying theory of cones in a Banach space. 

 brushin  and  Shiosman [3] proved that all Gibbs  distribu-

n  Z2  whose  state space is the circle S1, are invariant 

 otation  of  he circle, if the potential is of finite range, 

 lass  and  rotation-invariant. We present an example of 

 in  M(F)  that are not rotation-invariant although the  poten-

is  rotation-invariant and of Cm-class.
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     Next, we consider a potential  OF, where 

cal temparature. We prove uniqueness of M(0 

small  13. We present an example in  which the 

 M(SF) is exactly calculated for  sufficiently 

2. Potentials and Gibbs  distributions Let

metric space. Let B be the  topologica Borel 

be a measure on (X,B). Let T be the  infinite 

which s branches emanate from every  vertex  an 

every vertex. Two vertices a  0 b in T are  ne 

connected by a branch, which we denote by a-b 

connecting a and b emanates from a,  which is 

branch flows into b, we write a  ± b or b ÷ a. 

For a subset V of T, let  DV be the set of  ver 

neighbours of vertices in V. Let  0 = XT.  Fo 

let  xa(w)  =  wa- For V c T, let xV(w)bethe 

w on V, and let BVbe the a-algebra of0 gene 

the a-algebra generated by the  cylinder sets. 

    A potential is a pair F =  (F1,  F2 of  re 

functions F1 and  F2, where F1 and F2  are  defi 

respectively. For a finite subset V  o T and 

    HV -V=(x) = HF(x) = E  F1(xa) +  E F2(xa'x 
 aEV  a,bEV 

 a+b 

              +  E F2(x
a'xb)+E  aEV

,bE9VaEV, 
 a÷b a÷b 

The family 1HV1Vis called  Hamiltonian. 
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where f3 > 0 is the  recipro-

of M(OF) for sufficiently 

 ch the number of chains in 

 iently large  0. 

 . Let X be a compact 

 1 Borel field of X and let p 

 nfinite directed tree, in 

 rtex  and n branches flow into 

 are  neighbours if they are 

 by a-b or b-a. If a branch 

 ich is equivalent to that the 

 b ÷ a. We remark s,n  > 1. 

 of  vertices in  VC that are 

XT.  For  w  E  Sl and a E T, 

be the restriction colVof 

 0  generated by  xv.  BQ is 

 r sets. 

 ) of  real-valued measurable 

 re  defined on X and on X  X  X, 

 f T and for x  E  R, put 

 F2(xa'xb) 

+ E F(xx1 '             2b'a' 
   aEV,bEDV 

   a÷b



Definition. Two potentials F = (F1, F2) and F' =  (Ft,  Fp are 

said to be equivalent, which we denote by F F', if 

 Hy(x) Hy  (x) does not depend on  xy for every finite subset V. 

We remark that it may depend on  xay. 

Lemma 1. Let F =  (F1, F2) be a potential and put 

                       1  F(x
,y) = F2(x,y) +1T                       -iIF1(x) +  Fl(y)}, 

then F (0,  F). If F2 is symmetric,  FZ is also symmetric. 

Proof. Put  F(x,y) = +  Fl(y)}. We haven+s 

     E  P2(xa,x1D) +  E  F(xa'xb) +  E F"(xx)                                                 2b'a  a
,bEV  aEV,  bEDV  aEV,bE3V 

 a÷b  a-*b  a÷b 

             1 = E  F
1(xa) + RT-s- E  #{aEV;  a-b}F1(xb).  a EV  bEDV 

 Therefore,  HV(0'F2)(x)  HF(x) = n+sE  #{aEV; a-b}F(x) 
 V-                  b

EDV1b' 

which implies F (0,  Fp. 

     In the following we assume always F1 = 0. We identify 

a potential (0, F) with the function  F. 

Definition. 1) A potential F is said to be symmetrizable if 

there exists a symmetric potential  P with F  ;  P. We call  P a 

symmetrization of F-

2) A potential F is said to be uniformly symmetrizable if there 

exists a symmetrization  P of F such that 

 supIF(x,y) -  P(x,y)1(+co. 
     x,y 

We call  P a uniform symmetrization of  F._ 
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Lemma 2. 1) A potential F is symmetrizable if and only if there 

exists a measurable function f such that 

 F(x,y) -  F(y,x)  f(x) -  f(y). 

2) A potential F is uniformly symmetrizable if and only if 

there exists a bounded measurable function f which satisfies the 

above equality. 

Proof. Assume F(x,y) - F(y,x) f(x) - f(y). We have 

 F(x,y) =  1{F(x,y) +  F(y,x)} +  1{F(x,y)  F(y,x)} 

                              1 

            T{F(x,y) +  F(y,x)} +7{f(x) -  f(y)}. 

Put  P(x,y) =  1{F(x,y) +  F(y,x)} +  2(n2s)ff(x)  f(Y)}. Since

and

a,bEV 
 a÷b

since 

 a,bEV 
 a-*b

 {f(xa) -  f(xb)}

(s - n) E  f(xa) + 
       aEV 

 {f(xa) +  f(x/3)} +

 =  (s+n)
aEV

f(x) + E   a  
bEDV

 E  {f(xa) 
 aeV,bEW 

 a÷lo 

  E  Mx/3)  - 
aEV,bEDV 
 a÷b 

 E  P{aEV;a÷b}  - 
bEDV 

 E  {f(xa) + 
 aeV,bEDV 

 a-  -b 

 E  {f(xb) + 
 aEV,bEDV 

 a4-13 

 #{aEV;a-b}f(xb),

 f(x01 

 f(xa)1 

 #{afV;a4-13}lf(xl ,),

 f  (xb)  1

 f  (xa)  )
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we have HFV(x) -Hv(x)=      = = 

     = 1E  PqaEV;a4-1.1-  #{aEV;a-±b} - !=
+nitfaEV;a-bilf(x13),                              sa  b EDV 

which implies F  =  P. If f is bounded, from an equality 

    F(x,y) -  P(x,y) =  H4Inf(x) -  sf(y)}, 
it follows  supIF(x,y) - 
             x,y 

     Conversely, assume F  f, where  P is symmetric. Let 

 a.  -4- a  (15i�n) and a!a (1�j�s). By the equivalence of poten- 
                  3 

tials, the difference  H{a}(x) -  Hfal(x) does not depend on  xa, 
which we denote by A(x,x,,x,x „x,,x  ,). Fixing                       ala2                      an  al ai as 

any  xo  E X, we take arbitrary x and y from X. Put  x
a =  y, 

xa
l= x' xa.= xo (2�i�n) and xa, = xo (1�j�s). Put A(x) = 

             1 

 0(x,x0, ,x0). We have 

 A(x) =  A(x,x0,  ,x0) 

        = Hfal(x) -  Hfal(x) 

          = E {F(x
ai,xa) P(xai,xa)1 + E {F(xa'xa') -  P(xa'xa')1   i=1j =1 

         = {F(x,y) -  P(x,y)1 +  (n-1){F(xo,y) -  P(xo,y)1 

                             +  s{F(y,x 0) -  ky,x0)1• 

Consequently, 

    F(x,y)  =  P(x,y)-(n-1){F(x0,y)-P(x o,y)}-s{F(y,x0)-P(y,x0)1+A(x).

6



Exchanging x and y, we have 

 F(y,x)  =  P(x,y)-(n-1)(F(x0,x)-P(x0,x)J-s{F(x,x0)-P(x,x0)}+A(y), 

from which follows an equality 

    F(x,y) - F(y,x) = f(x) - f(y), 

where f(x) =  A(x) +  (n-1)-(F(x0,x)-P(x0,x)J +  s{F(x,xo)-P(x,xo)}-

    If  supIF(x,y)-P(x,y)I  <+co, then  A(x) is bounded, therefore 
         x,y 

f is also bounded. 

     For a finite subset V of T, put pv(dxv) =p(dxa).                                  "  aEV 

Definition. A potential F is said to be admissible if for any 

finite subset V of T 

 E(V,xav) E Ive-H(x)V- pv(dxv)  <+. a.e.(pav). 
                    X" 

Lemma 3. A potential F is admissible, if 

 (k,1)  Ile  (n+s)F(x,y)p(dx)p(dy)  <+w, 

or if 

   (A,2)sup{fe-F(x,y)m(dy),fe-F(y'x)p(dy)} 

Proof. Admissiblity under  (A,1) is a direct consequence of 1) 

in the following Lemma 3'. Under (A,2) we have 

  -H(x) f
eV-VuDV(dxVu3V)<+....by 2) in Lemma 3', if we put  Fa

,b = F 

 fora  bEVu3V with  {a,b}t3V, and if we put  Fa
,b = 0 for  a-b  E  31 
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Lemma 3'. Let be given a family  {Fa
rb;  a+bET} of functions 

-=  F
a,b(x'y). For a finite subset V of T, put 

Rv=  E F
a,b(xa'xb) + E                               Fa,b(xa'xb) +  E Fb  a

,bEV aEV,bEav aEV,bEDV  ' 
 a+b  a.+1)  a÷b 

Hv(x) =  E Fa
,b(xa'xb). 

    = 

 a,bEV 
 a-s-b 

1) If for each a b E T, 

 (A,l)'  ffe (n+s)Fa,b(x'y)p(dx)p(dy) 

then it holds  fe-FIVOOpv(dxv)  a•e•(pav). 

2) If for each a b  E T, 

   (A,2)'  sup{fe-Fa,b(x'y)p(dy),fe-Fa,b(y'p(dy)}  <4.00, 

 x then it holds fe-W (x)Pv(dxv)  <+0). 

Proof is carried out by induction in #V. 

1) Let V be a set consisting of  a'single vertex a. Let  a.  -' 

 (1�i�n) and  a'  4- a  (1�j�s). We have 

    R(x)=EFa .a(xa.,xa) +EF,(xx)   {al=aa.a'a!'        i =11'1j=1J 3 

    fci-I{a}(10,i(cbca)=.rrre-Fai,a(xa.xa)eFa,a'(xa,xal 
 1=1 j=1 

 -  8  -

 Fa  
,b

 a  (xb  'xa)

a

 )11  (dx
a)



                                                          1 

 <{  H fe-(n+s)Fa.a(xa.xa)p(dx) H fe-(n+s)Fa,a1(xa,xa1)p(dx)1n+s 
 1=11,aa                                    J=1 

 <+00  a.e.(pa{ a}). 

We assume that the statement is true if #V < k. Let #V =  k+1. 

Fix any  ao  E V and let  Vo =  V\faol Put 

     FL.a(x)  = -1log fe-(n+s)Fa'oa(x'z)p(dz), if a  4-  ao'         'o 

    Fa(x) = -n1+slog fe,a__-(n+s)F                                     ao,a(z'x)p(dz), if a4-  ao, 

 F
,b(x,y) =  Fa,b(x,y), if otherwise. 

It is clear that fie-(n+s)F'(xy                          a,b')p(dx)u(dy) We have 

              E Fa a (xa
,xa) +  E Fa a(xao'xa)     FIVW =  aEVou3V ' ooaEVoOV o' 

 a÷ao  afrao 

 E FL.,b(xa,xb) + F'a b(xa'xb) 
        a,bEV, aEV,bE3V  \{a } ' 

 a- -ba+b°  o  o 

                         F'(x'x ) 

                                                                                                              • 

           aEV ,bE3V\{a}b'                      aba 
       a÷b°oo 

Denote the sum of the first two terms and the sum of the last 

three terms by  H1(x) and by  n2(x), respectively. Remark that 

 #{aEV
oLJDV ;  a-ao} = n + s. We have by Holder's inequality 
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f eN 

 <I
 aEV 

 a+a

where

() =p(dx
a ) =  f  H e-Fa,a 

 aEV  ualf 
 a÷ao  0 

 H fe-(n+s)Fa'
oa(xa'xa)p(dx 
 ouaV 

 0 

=  expl  E FL.a(xa) - 
        aelfoualf'o 

 a-  a. 

On the other hand, 

H2 (x) + 2 E F'         a EVouaVa'ao(xa) + 
 a÷a.o 

= gV(x) + E FL.a (xa) + 
    o=  aEaV' o 

 a÷ao 

gV(x) is the Hamiltonian 

   o gV (x) = 
  o = E F'ab(xa'xb)            a,bEV,  ' 

 a±b

Therefore 

 Ce-g

  we have 

 V(X)pv(dxv)  =

 (xa'xa  )  H e-Fa
o'a(xao'xa)p(dxa)   a EVuaVo 

          a÷ao                o 

                                1 

      Jr fe-(n")Fa'aa'xa)p(dx )1n" a) 
oaEVoualfo(xoao 

   ata° 

      E FL.a(xa)1. 
 aEVouaVo' 

 o 

  E FL.a(xa) 
aEVoualfo' 
a÷ao 

    FL.a(xa)' 
aEaVo' 
 a±ao 

determined by  {FL.03}, i.e., 

             Fa'b(x,,x13) 
   aEV  ,bEaVo' 

   a÷b° 

 Fb  a(xb'x
a)*  aEV 

,bEav 
 a÷b°o

 -R(x 
fe2)=pV(dxV 

 o  o 

        - 10

 )fe-g1(2i  )p(dx
a  )



 <  exp{- E F
a) E Fa)}fe-HV(-:s)p(dxV).  aE3Va'aoa  a EDV aao,aoV  0  0 

        a+ao a+ao 

The last integral is finite  a.e•(p,v  ) by the assumption of 

 o induction. 

2) If #V = 1, gv(x) = 0. Consequently, fe-HV(K)pv(dxv)  <+03  is 

trivial. We assume that the statement is true if #V < k. Let 

#V =  k+1. It is easy to see that there exists  a
o  E V such that 

 #(Vnaa o) = 0 or 1. Put  Vo =  V\laol- If  #(V0a0) =  0, 

If(x) = 1-1V•            (x)Therefore, by the assumption of  induction, V
0         

    !e-ITV(Ic)p (dxV) = 1!e-FiVoWpV(dxV)p(dxa
o) 

 V 

 o  o 

                     = p(X)fe-171VWp(dx
V) <+oo.           

 0  0 

If  VriDao = {b} and if, for example,  a
o  + b, then 

         ti 

 V 

 (x) = fV(x)Fa
o'b(xa 'xb) 

 =
o 

Therefore, 

               (x-
opp     fe-ITV(K)p(dx)= ffe-ffV)Fao-           VVo'b(xa'xb)(dxa)V(dxV) 

 0  0  0 

 <  sup !e-Fa
o'b(xao'x)p(dxao)fe-11V(K)pV(dxV) <4-co. 

                                                   0 

 = 
 x0 0

     In 

without

the following we 

mentioning.

 consider only admissible potentials

11 -



     Put 

 F -HF(x) 

                                                    = 

     cIV
,x(xV)=V                                -1E(V'xa'V) e 

which is a probability density on (XV,  pv). We call  4 ,xnr 

 ' conditional Gibbs density.We remark thataF  F                                        x=cIVxfor 
                                     'aV'alr 

all finite subset V and for  a.a.(pav)  xav, if and only if F F'. 

Definition ([2], [8]). A probability measure P on  (Q,Bd is 

called Gibbs distribution with a potential F, if for each finite

subset V of T, conditional probability distribution P(  IBvc) 

relative to  Bvc is absolutely continuous with respect to and 

 dP(  IBvc) 
 dpv clY,xav a.e.(P). 

Let G(F) be the set of Gibbs distributions with the potential  F-

3. Markov chains on the directed tree T. Let p(x,y) be a positive

transition density on (X,B,p) and let h(x) be 

bility density of p(x,y). Put 

      A 

    P(X,Y) = h(Y)P(Y,x)h(x)-1 

which is called reversed transition density

 if  p  =  P. 

connected finite subset of T. 

 14-  in  V.  Fix  any  a
o  E  V-  If 

o  a1---- ak a  b,  we  write 

o  14- a if  ao - a. We remark  th 

 a  -0  b. Put 

                  12 -

the invariant

 of  p. 

    Let 

 If  a  -  b 

 ite  a 14. 

 that if

proba-

p is reversible  

    Let V be a 

second direction 

exists a chain a 

In particular, a 

either a  19- b or

We say that 

us introduce 

 and there 

b  or  b  -0  a. 

 a-b  e V,

the



                                                   A 

 pv(xv) = h(xa )p(xa,xb)p(xaxb), 
             o  a,bEV  a,bEV 

 at+b  al+b 
 a->b  a÷b 

    PVfwEQ. xV(w)EE1 = IEpV(xV)pV(dxV) for E E BV. 

 ' It is easy to see that  pv does not depend on the choice of the 

centre  ao and that {PV} is a consistent cylinder measure. By 

Kolmogorov's extension theorem,  {PV} extends to a measure p on 

(0B0)•We identify the measure p with its transition density 

 P(x,Y). 

Definition. A measure p constructed above is called Spitzer's  

Markov chain with a potential F if p  E G(F). Denote by M(F) the 

set of Spitzer's Markov chains with the potential F. 

Theorem 1. A transition density p = p(x,y) belongs to M(F), if 

and only if p(x,y) has the expression; 

                                                                              , 

 p(x,y) = A(s,n)u(x)-1u(y)sv(y)n-1e-F(x,y) 

where A(s,n) is the Perron-Frobenius eigenvalue of the kernel 

 e-F(x,y)  if s = n = 1, and X(s,n) = 1 if otherwise, and u and 

v are positive measurable functions satisfying

(*)

u(x) =  X  (s  ,n)Ixe-F  (x'Y)u(y)sv  (y)n-  ip  (dy)  , 

 v  (x) =  A  (s,n)Ixe-F(y,x)u(y)s  -1v(y)np(dy) 

 I  Xu(x)sv(x)rip  (dx)  <1-co.

13 -



 The invariant probability density  h(x) has the form; 

 h(x) = c  u(x)sv(x)n, 

where c is a normalizing constant. 

Proof.10.Assumep(x,y)ENIM.Leta.->a (lsi�n) and 

                                                  1 a! ÷ a (1�j�s) as before. Choose a as the centre of  fa,al,a2,---, J 

an' a' a'"s---a'l in the definition of the directionH. We have   '2 

      n  s 
     qa(x) =E.(a,xDa)-1expI E F(x,x) - E F(x,x,)1   ,xaa  i=1ai j=1aj 

       n s 

 = Z(xD
a)-1 Ah(x)  II p(x,x)II p(x,xa,),                   1 =1aij=1j 

        n As 

where  Z(xaa) =  fh(x)  IIp(x,xa .) II p(x,xa,)p(dx). Put  U(x,y) =            1=1 i  j=1 j 

 p(x,y)eF(x'y)• Then, 

 n  A  S 

    Z(xDa)-1h(x)  II p(x,x)  Rp(x,x,) 
 i=1ai  j=iaj 

             _1n  ns   = Z(xaa)IIh(x,)h(x)1-nIIU(xa.,x)  II U(x,x,,)  x        i=1'i i=1 1 j=1aj 

    n  s 

 x  exp{  E F(x ,x) E F(x,x ,)}-
           1=1  ai j=1 aj 

 s Consequently, W  E h(x)1-nIII U(x, .,x)  R U(x,xa,) does not depend                                                                  '3
.  i=1j=1J 

on x. 

     Fix  x
o in X and take arbitrary y from X. Let  xa =  xo  1 

 (1�i�n) and let  xa, =  xo or y  (1�j�s). Put v  =  #{j:  xa, = y}. 
 i  i 
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We have 

     W =  h(x)1-nU(x
o,x)nU(x,y)vii(x,xo)s-u 

       = h(x)i-nU(x0,x)nU(x,x0)s{2°„r))1v.                                     'o'' 

Letting v = 0, we see that  h(x)1-nU(x
0,x)nU(x,x0)s does not 

depend on x. Next, letting v = 1, we see that   does not 

depend on x, which we denote by V(y). Putting U(x) =  U(x,x
0), 

we have U(x,y) = U(x)V(y). Therefore, p(x,y) =  U(x)V(y)e-F(x,y) 

and c1E h(x)1-nU(x)sV(x)n does not depend on x. 

Case, n = 1. Put 

 U(x)-1, if s = 1, 

 u(x) =  1 

                      c1s-1  U(x)-1, if s  2 2. 

From c1 =  U(x)sV(x), it follows that 

                        _s c1u(x), if s = 1, 
         V(x) = ciU(x) 

                                                               - 

 c11  u(x)s, if s  � 2. 

We have 

         p(x,y) =  U(x)V(y)e-F(x,y) 

 ciu(x) 1u(y)e-F(x,y).                                 ,s = 1, 

 u(x)-1u(y)se-F(x,y)                                           if s  Z 2. 

The equality  1p(x,y)p(dy) = 1 implies that 
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                cfe-F(x'Y)u(y)p(dy), if s = 1, 

 u(x)1 

 -F(x 'y)u(y)sp(dy) , if s  Z  2.  le 

Since u(x) > 0,  cl is the Perron-Frobenius  eigenvalue  A(1,1) 

of  e-F(x°r). Thus we have 

 p(x,y) =  A(s,l)u(x)1u(y)se-F(x'y) 

        u(x) =  A(s,l)fe-F(x°r)u(y)sp(dy)• 

Put v(x) =  u(x)-sh(x). The equality h(x) =  fh(y)p(y,x)p(dy) 

implies v(x) =  A(s,l)fe-F(y'x)u(y)s-1v(y)p(dy). 

From  Ihdp = 1, it follows  fusvdp = 1. Thus, the proof is com-

pleted in case n = 1.  1 

Case, n  2 2. Put u(x) = U(x)  land v(y)  =  111(y)sV(y)}n-1, i.e., 

         U(x) = u(x) 1,  V(y) = u(y)sv(y)n-1. 

Consequently, p(x,y) = u(x) 1u(y)sv(y)n-le-F(xJ). The equality 

 fp(x,y)p(dy) = 1 means 

         u(x) =  to-F(x°r)u(y)sv(y)n-lp(dy). 

     On the other hand, 

         c1 =  h(x)l-nu(x)sv(x)n 

                                              n-1 
 =  [h(x) 1u(x)sv(x)n1  , 

which means h(x) =  c2u(x)sv(x)n with a constant  c2. The equality 

 fhdp = 1 implies  fusvndu From h(x) =  ih(y)p(y,x)p(dy), 
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it follows that 

         v(x) =  re  F(y,x)u(y)s-lv(y)np(dy). 

The proof is completed in case n  > 2. 

 2°. Assume conversely that positive functions u and v satisfy (*). 

Put 

 p(x,y) = A(s,n)u(x)-lu(y)su(y)n-1e-F(x,y) 

                                                                                               , 

          h(x) = c  u(x)sv(x)n with c =(rusyndo-1. 

The reversed transition density  P(x,y) =  h(y)p(y,x)h(x)iis equal to 

 A 

 p(x,y) =  A(s,n)v(x)-1v(y)nu(y)s-1e-F(y,x) 

 . Let V be a connected finite subset of  T and fix  ao  E V as the 

centre of V u  DV in the definition of the direction  1±. We have 

                                                                   A 

 = h(x
a)Hp(xa'xb)  PVuDV(xVuDV)H                        oa

,bEVuDVa,bEVu3Vp(xa,xb) 
 ai+b  ai-0) 

 a÷b  a÷b 

    =  c A(s,n)It{a-bEVuW}A1                            (V'xV
u9V)exP {-  E  F(xa'xb)}'  a

,bEVu3V 
 a4-1) 

where we put 

   Arw)-1                   = u(x
a )sV(Xa  )n  H{u(x)- lu(x)sv(x)n-11 x    =Iv'xVu3V)o                   o  a

,bEVuDVabb 
 all±b 

 a4b 

 x 

 H fv(xa)-1v(xb)nu(xb)s-11 
 a,beVu3V 

 ai-4) 
 a÷b 

As usual, let  ai  -›-  ao  (15i5n) and  ai  4--  ao  (15j�s). Remark that 
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 Dao =  {a1,...,an,a1,...,aL} c  VuDV. We have 

 s e(Vx= u(x
an)sv(xH {u(xa)-1u(x,)sv(xa,)n-11 x 

   oo 

 'Vu9V) 1a)
o  j=1a.                  J  i 

   n 

 X H {v(x
a) 1v(xa)nu(xa)s-1}II{u(xa)-1u(xb)sv(xb)n-11 x 

           o 

 i=11  1  a,bEVuDV,a#ao 
 al+b 
 a-4-b 

 X  H {v(x
a1  1v(xb)nu(xb)s-11  a

,bEVuDV,a#ao 
 al+.11 

 a-4-b 

s n 
                           n-1  =H{u(x

,Is_rx,1111{vfxInuf..,IS.".11  x 
 J  7   j=1a)'' a)                      i=1a.)                                       1'''a..)                                                1 

 x  II  {u(x
a)-1u(xb)sv(xb)n-11  II  {v(xa)-1v(xb)nu(x 1  b)  a

,bEVu3U,a�a a,bEVu3V,a#ao                 o 
al4-bal4-b 
 a-*b  a÷b 

Therefore,A:1(V,xv uav)-1Adoes not depend on xa . SinceL.(V,x                                                              Vu3V)-1 

                                                       o does not depend on the choice of the centre  a
o  E V of the direction  14-, 

it does not depend on  xv. Thus, we have D                                              ..VuDV(xVu3V) = 

=A:...(Vx)-1exp{- E F(x,x1))}, whereL.A                                              (V,xav) depends only    'DV 
a,bEVuDVa 
 a÷b 

on xay.It is easy to see that the extension of the cylinder 

measure {-loVuDV} belongs to G(F). The proof of Theorem 1 is completed. 

   - 

     We remark that the expression of p(x,y) in Theorem 1 is not 

unique. If u and v satisfy (*), then also a  = cn-lu and  ir =  c-(s-1)v 

satisfy (*) and determine the same p(x,y) as u and v. In order to 

make the expression unique, we need summability of us vn-1 and us -lvn, 

which does not follow from fusvndp  <+.. 
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Lemma 4. Put  X(x,M)={yEX;F(x,y)<M} and  X*(x,M)={yEX;F(y,x)<M}. 

We assume that there exist M and an integer k such that 

                             k 
 1-1k{(xl,x2,  ..,xk); p(X\ .0  X(xi,M)) =  01 > 0, 

                                          1=1 

 (A,3) 

                            k  
 plcf(xl'x2.xk')-11(X\ur.,.(xi,                                         M)) =  01 > 0. 

 i=1 

If u and v satisfy (*) in Theorem 1, it holds that 

 fusvn-ldp <co                         +and  fus-ivndp  <+.0. 

Proof. Since  u(x)=fe-F(x'y)u(y)sv(y)n-1p(dy) >. e-mfu(y)sv(y)n-1p(dy), 
 X(x,M) 

 k k 
 fusvn-1dp < E  fusvn-1dp <  eM  E u(x.)  <+...         -  i =1  X(xi,M)  - i=1 1 

Theorem 1'.  We assume that there exist M and an integer k such 

that (A,3) holds. A transition density p = p(x,y) belongs to 

M(F), if and only if p(x,y) has the  expression: 

 p(x,y) =  A(s,n)u(x)-lu(y)sv(y)n-le-F(x,y), 

where u and v are positive measurable functions satisfying 

 ru(x) =  A(s,n)  Ij(x,y)u(y)sv(y)n-111(dy), 

          v(x) =  A(s,n)fe-F(y'x)u(y)s-1v(y)np(dy), 

    (*)'<?fu(x) sv(x)n-ip                         (dx) = n                                     fu(x)s-iv(x'p"                                         j(dx), 

 fu(x)p(dx) = rv(x)p(dx) = 1, if s = n = 1, 

 fu(x)sv(x)np(dx)  <4-00. 

The expression is unique. 

Proof. By Theorem 1, a transition density p(x,y)  E M(F) has the 

following expression with  el and  ir satisfying (*) 
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                      A1AsAn-1e-F(x,y)  p(x
,y) = X(s,n)u(x)u(y)v(y) 

          AAAA 
In case n = s = 1, functions u = (fudp)-1uand v = (fvdp)-1v 

                                                                        A satisfy (*)', and in case s+n > 2, functions u = cn-1u and 

                                  1  
    A.AAAA 

v =  c(s-1)vwith c = f(fs-ln                          uvdp)(fsn-1                                       uvdp)-1}s+n-2 satisfy  (*)'. 

                      AA 
In both cases, u and v determine the same p(x,y) asu andv. 

     Next, assume that 

 p(x,y) = A(s,n)u(x) 1u(y)sv(y)n-1e-F(x,y) 

                               1-s-n-1e-F(x,y)                 =  X(s ,n)u(x)u(y)v(y) 

where u, v and u, v satisfy (*)'. We have u(x)u(x)-1 = 

    s-s-n-1v(y)-(n-1) u(y)u(y)v(y)
, which implies u(x) = c  u(x) in 

                                                                              _s-1 

                                                          - case n = 1, and implies u(x) = c  u(x) and v(x) = cn-1v(x) in 

case n  � 2. From  fudp =  fiidp = 1 in case s = n = 1, or from 

          ---- 

fusvn-1dp = fus-1vndp and fusvn-1dp = fus-1vndp in case s+n > 2, 

it follows that c = 1. Therefore the expression is unique. 

     In the following, we indentify a transition density p(x,y) 

 E M(F) with a pair (u,v) of positive solutions of (*)'. The set 

of pairs of positive solutions of  (*)1 is denoted also by M(F). 

Theorem 2. The set M(F) is not empty,either if 

            )               -F(x 
         se'yp(dy) and fe  (A,4)-F(y,x)p(dy) do not depend on x, 

or if 

  (A,5) supife- (n+s)F(x,y)                           p(dy), fe-(n+s)F(y,x)u(dY)1 <+. 

 x and 

  (A,6)  supife  (n+s)(n+s-2)F(x,y)  p(dy),fe(n+s)(n+s-2)F(y,x)p(dy)} 

 x 
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Proof. We assume (A,4). Put  cl = fe-F(x,y)p(dy) and  c2 = 

 fe-F(y,x)p(dy). From  ffe-F(x'y)p(dx)p(dy) =  cip(X) = c2p(X), it 

follows c1 =  c2. In case s = n = 1, u(x) = v(x) = p(X)-1 is a 

positive solution of  (*)1. In case s+n > 2, u(x) = v(x) 
    1  

 n+s-2 =  c1 is a positive solution of (*)'. 

     In order to look for positive solutions of (*)' under the 

assumptions (A,5) and (A,6), we apply theory of cones in a Banach 

space. In case s = n = 1,  (*)' is a system of linear equations 

with positive kernels. Such equations have positive eigenfunc-

tions, if the kernels are square-integrable ([7]), which follows 

from (A,5). Therefore, it is enough to investigate only a case 

s+n > 2. We first prove existence of positive solutions of (*)' 

under the assumptions (A,5) and sup F(x,y)  <-1-03 instead of  (A,6). 
 x,y 

     Let L be the set of pairs (u,v) of functions u and v such that 

  1 1 

 E  {flU(X)111"11  (dx)  }n"  <4-. and  'NTH E  filV(X)1  n+Sp(dX)}n"  <-1-°3* 

If we put  11(u,v)11 =  110 +  Ill/ for (u,v) E L,  (L,I1.11) becomes a 

Banach space. Put for (u,v)  E L 

 A1(u'v)(x) =  fe-F(x'y)u(y)sv(y)n-1p(dy), 

 A2(u'v)(x) =  fe-F(y'x)u(y)s-1v(y)np(dy), 

    A(u,v) =  (Al(u,v),  A2(u,v)). 

Lemma 5. (Theorem 3.2 in  Ch.l of Krasnosel'skii [6]). Under the 

assumption  (A,1), A is a completely continuous mapping from L 

into L.
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 put 

    K1 =  {u(x)=.re-F(x0)a(y)p(dy);  a(y)>0,11u11<+.1, 

    K2 =  {v(x)=.re-F(Y'x)13(y)p(dy);  b(y)>C1,1114<+°°/- 

Let K be the closure of K1 x  K2. We remark that K is a cone 

in  L,  i.e.,  K  is closed and  convex,tKcKift� 0, and (u,v) 

and (-u,-v) E K implies (u,v) = 0. It is clear that A(K) c K. 

Lemma 6. We assume  (A,5) and sup F(x,y)  <+c... Then, there exists 
 x,y 

a positive constant c such that  u(x)  >  clluil and  v(x)  >  414 for 

all (u,v)  e K and for almost all x  e X. 

Proof. Let u(x) =  fe-F(x'y)a(y)p(dy)  e K1. We have 

 u(x)> F(x,y)fa(y)p(dy). 

On the other hand, by Holder's inequality 

 n+s-1 1 
         u(x)  <  (fade) n"(n+s)F(x,y){fea(y)p(dy)111". 

Therefore, 

 Ours <  (fadp)n"-life  (n+s)F(x,y)a  (Y)P(dx)P(dY) 

                                  (n+s)F(xvl  <(fadp)n" sup fe- 

Consequently, 

        u(x)  >  e-r;  F(x,y)  fade 

 _  1 
              >  e  -sup  F(x,y){supfe (n+s)F(xvl                                           "'p(dx)1             =  x,y
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Thus, there is a constant c > 0 such that u(x) >  cHull and v(x)  � 

 cHATH for (u,v)  E K1  x K2. Take any (u,v)  E K. There exists a 

sequence  (un,vn)  E K1  x K2 such that  11(un,vn)  (u,v)11 0,  i.e.  , 

 Hu  -1111 and  Hv                      0. We can find a subsequence  {n.} such that 

un(x) u(x) and  v(x) v(x) for almost all x  E X. Since 
 3 

 1111  II  HuH             and  n.  H  OvH, we have  u(x)  >  clull and  v(x)  414. 

Lemma 7. (Rothe [10], Krasnosel'skii [6]) Let A = (A1,A2) be 

a completely continuous mapping from a cone K c L into itself. 

Assume inf HA(u> 0 and              1' inf IIA2(u'v)H> 0. Then 
 (uv)EK  (u  v)EK 

 iiuH=11v11=1  Huiliv11=1 

there exists  (uo,v0)  E K such that  HuoH  =  Hvoll = 1 and 

 A1(uo,v0) A2(uo'vo) 
      (u,v)-(              ooHA

1(uo,v0)11  'HA2(uo,v0)11/ 

Proof. Fix any  (110,iro)  E K with  to 0 and  iro 0. Put 

             A 

          l(u,v) =  A1(u,v) + (1-OulkIvH)uo, 

             A 

         A2(U,V) = A2(u,v) + (1-Hull.HvH)vo. 

Let  k  =  f(u,v)EK;  Hull<1,11vH<11, which is bounded, closed and 

conex. Our assumption implies inf                                   AA/(u,v)11 > 0 and                                   (u,v)EK- 

 inf HA(u,v)11 >  0. Put again 
(u,v)Ek2 

 1(u' v)  A2(u,v)      B (u
, v) ,   1liA

1(  B2(u,v)- A 

                                                                                                                                                                            • 

                   111V)11HA2(u,v)11 

B = (B1,B2) is a completely continuous mapping from k into  k . 
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By Schauder's fixed 

that  (uo'vo) =  B(u0 

Since=orH= 

         0 Proof of Theorem 2

 point theorem, 

 ,vo), i.e.,  uo 

     A 

 1,A(uo'vo) = 

under the assum

 there exists  (uo'vo)  E k such 

 A A 
 A1(u0'v0) 

andvan=A2(uo'vo) 
                      Ai  (uo  ,v0)A2 (uo ,v0) 

                   A A1(uo'vo) andA2(uo'vo) =  A2(uo'vo) 

ptions  (A,5) and sup F(x,y)
                                                          x,y 

By Lemma 6, we see that for (u,v)  E K 

    yu,v)(x) > cs+11-IIIuII5IlvnlFfxv-1fe1.1(dY) 

 A2(u,v)(x)  �  cs+n-1   IlullS-111v1In re -F  (dy)  . 

 Hence, inf  11A1(u,v)II > 0 and inf  IIA2(u,v)11 >  0. By Lemma  7, 
    (u,v)EK  (u,v)EK  I

luil=11v11=1  ilull=liv11=1 

there exists  (uo,v0)  E K with  11%11 =  II vo= 1 satisfying 

 u0 =  11A1(uo,v0)11-1A1(uo,v0), 

 v0 =  11A2(uo,v0)11-1A2(uo,v0). 

Positivity of  u0 and  vo follows from  (u0,v0)  E K. 

     On the other hand, we have 

    fusvodps-1v0rx,nu(x)p(dx)           fu(x)) 
 ooo' 

     =  HA
1(u0,v0)II-  lfuo(x)s-ivo  (x)nyuo,v0)(x)p(dx) 

                                                                           n-I      = HAl(u
o,v0)11-1 II-ivo (x)ne-F(x,y)uo(y)svo(y)  p(dx)p(dy) 

     sn   fuv= 
     00 

                                                     n-1)
p(dyj       = HA2(uo,v0)11 -1ffuo (y)s-lvo(y)ne-F(y,x)urxls                                               vo(x)p(dx                                                                o' 

Integrals above are finite, since 
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      s n 

     fusvndu < (fun+sdu)rivn+sdp)n+s<+.. 
  ooo'o 

Consequently,  Ilyuo,v0)  II = II A2(uo'vo•)11Put 

                              1  

    u(x) = 'IA(uv)I1- 
       1o's n-11 o                     (fus-1 vndp\uo(x) 

                                              n-1
>n+s-2 

                      fuv                    oodu 

                   )                              1  

                          1fussvn-1dq-1 n+s-2              oo   v(x) =  flIA2(uo'vo)11  s-1n vo(x).                         vdu)  fuoo 

It is easy to see that (u,v) is a positive solution of  (*)' 

Proof of Theorem 2 under the assumptions (A,5) and (A,6).

 Fk(x,y) =  min {F(x,y),  k} for k =  1,2,--. Let (uk,vk) be 

positive solution of  (*)! with the potential Fk. We have 

Lemma 8. Under the assumptions (A,5) and (A,6), there exist 

positive constants  cl and c2 such that  cl  < uk(x), vk(x)  < c2 

for all k and almost all x  E X. 

Proof. Remark that 

    sup  Lre-(n+s)Fk(x,y)p(dy),  fe-(n+s)Fk(y,x)p(dy)1 
     k,x 

     sup {fe (n+s)(n+s-2)F,(xv                         K')—p(dy),  fe  (n+s)(n+s-2)Fk(y,x)p(d.01 
     k,x 

The proof of Lemma 8 is essentially the same as that of Lemma 12.

Let
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     Since uks and v'ks are bounded, we can extract a subsequence 

              sn-s-n .{k
J}such that uk,vk,ukvk.1and uk.1vkare weakly conver-  J  J  )  J 

gent in L2 as j  °°. Put u = w-lim uk ., v = w-lim vk., and 

          sn- u= w-lim ukk .1. Remark  cl  < u(x), v(x)  < c2 for almost all 
 J  J 

x  E X. Take an arbitrary bounded measurable function  f on X. 

We have 

 ff(x)uk(x)p(dx) = iff(x)e- Fici(x,y)uk(y)syk(y)n-lp (dx)p (dy) 

         =  fff(x)e-  F(x,y)uk(y)sIrk(y)n-lp  (dx)p  (dy) 

           + iff(x){e-Fk. (x,y)_e-F(x,y)luk(y)svk(y)n-1                                                p(dx)p(dy). 

Since g(y) =  if(x)e-F(x'Y)p(dx) is a bounded function of y, the 

first term of the right-hand side converges to 

 ig(y)(.1(y)p(dy) =  fff(x)e-F(x°7)(.1(y)p(dx)p(dy)• 

As for the second term, we have 

 ifff(x){e-Fk.(x,y)_e-F(x,y)luk(y)sirk(y)n-lp  (dx)p(dy)I 

 <  II  f  Iii  crn-lffle-Fkj(X,Y)..e-F(X,y)  1p(dx)p(dy). 

The right-hand side converges to 0 as j  m, since 0   <  e-Fkj-e-F 

      - 

 < ek.). Therefore, we have 

 if(x)u(x)p(dx) =  lim  ff(x)uk(x)p(dx) 
 j±00 

                  =  iff(x)e-F(x'Y)ky)p(dx)p(dy) , 
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from which it follows 

         u(x) fe  F(x°7)111(Y)11(dY) a.e.x. 

Therefore, 

     Ilijx)-1100=fe-Fljx°r)uk(Y)svk(Y)n-1-1(dY) - re-F(x,Y)11,(y)p(dy) 

 J 

                     = fle-FICCX2Y)-e-F(X1Y)1-1SV(-111-111(dy)                                             JukPr)kP") 

                             fe-F(x,Y)r_r,S1n-1ky)111(dy).                                      lukPrivkY) 

The first integral converges to 0 as j  co for all x. The second 

integral also converges to 0, because  e-F(x'Y) belongs to 

 L(n+ s)c L22= L*as a function of y by the assumption (A,5). 

Consequently,  lim uk(x) = u(x) for almost all x. By the same 
 j-  co 

argument, we have  lim vk(x) = v(x). Letting j  co in 

 1.11J20=N-Fljx°r)uk(Y)svk(Y)n-11-1(dY), 
 3  J  J  3 

 vk(x) = fe-FklY'x)uk(y)s-ivk(y)np(dy), 

we conclude by Lebesgue's convergence theorem that 

    u(x) = fe-F(x y)sn-1                  u(Y)v(Y)P(dY), 

    v(x) =  fe-F(y'x)u(y)s-1v(y)np(dy). 

4. Reversibility of Markov chains. We say that p = p(x ,y) is 

reversible if p =  11, which means h(x)p(x,y) = h(y)p(y ,x). We 

prove the following 
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Theorem 3. 1) If there exists a reversible chain in M(F), the 

potential F is symmetrizable. 

2) Let F be a symmetric potential. Assume (A,3) in Lemma 4 and 

assumme 

    (A,5) sup fe-                   (n+s)F(x,Y)p(dy) <+'• 

Then, all chains in M(F) are reversible. 

Proof. 1) Let p be a reversible chain in M(F). By Theorem 1, 

we have p(x,y) =  X(s,n)u(x)-lu(y)sv(y)n-le-F(x,y) and h(x) = 

c  u(x)sv(x)n From  h(x)p(x,y) =  h(y)p(y,x), it follows 

        -l
e-F(x,y)v(y)u(y)-le-F(y,x), v(x)u(x)which means 

F(x,y) - F(y,x) = log  v(x)u(x)-1 - log  v(y)u(y)-1. By Lemma 2, 

F is symmetrizable. 

2) Let p = (u,v)  E M(F). Put K(x,y) e-F(x,y)u(y)s-lv(y)n-1. 

We have, by Theorem 1, 

         u(x) =  A(s,n)IK(x,y)u(y)p(dy), 

         v(x) = X(s,n)IK(x,y)v(y)p(dy). 

Since sup u(x) and sup v(x)  <+.0 as will be shown in the  fol-
 x x 

lowing Lemma 9, we have 

 ffK(x,y)2p(dx)p(dy) 

<  duL2(s-1)110 .2(n-l)fie-2F(x,y)  p(dx)p(dy) 

                                         2 n+s-2  

• 10 .2(s-1)04.2(n-1).11  (dx){fe-  (n+s)F(x,y)u(dy)ln+su(x)  n+s 

                                            2  2(n+s-1)  
 <  Ilu  L2  (s  -  1)  1142  (n-1){sup  le-  (n+s)F(x,y)u(dy)ln+su(x) n+s 
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The kernel K(x,y) being square-integrable, positive  eigenfunctions 

in L2 are unique up to a multiple of constants  [7]. Consequently, 

there is a constant c1 such that u(x) = c1v(x). From the equality 

 fuse = fvdp = 1 in case s = n = 1, or from fusvn-1dp = fus-1vndp 

in case  s+n > 2, it follows c1 = 1, i.e., u =  v- Therefore we 

have p(x,y) = A(s,n)u(x)  1u(y)s+n-1e-F(x,y) and h(x) = c  u(x)s+n 

 , which implies  h(x)p(x,y) =  h(y)p(y,x). 

Corollary. Assume that a symmetric potential F satisfies (A,3) 

and (A,5). Then, a transition density p = p(x,y) belongs to M(F), 

if and only if p(x,y) has the expression: 

          p(x,y)  =  X(s,n)u(x)1u(y)n+s-1e-F(x,y). 

 , where u is a positive measurable function satisfying 

          u(x) =  A(s,n)fe-F(x,y)u(y)s+n-1  11(dY), 

   (**)  fu(x)p(dx) = 1, if s = n = 1, 

{ 

           fu(x)s+np(dx)  <4-00. 

The invariant probability density h(x) has the form: 

 h(x) = c u(x)s+n 

                                              , where c is a normalizing constant. The expression is unique. 

Lemma 9. We assume (A,3) and (A,5). Then, sup u(x)  <+.0 and 

                                                   x sup v(x)  <+~ for each (u,v)  E M(F). 

 x
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                  rusvn-ldp = /us-lvn4 Proof. Put a =We have by  HOlder's 

inequality 

    u(x)=  le-F(x,y)u(y)sv(y)n-lp(dy) 

 n+s-i 1 

 <  Q n+s fie-(n+s)F(x'y)u(y)sv(y)n-1p(dy)}n+s 

Consequently, 

     fus+ndp <  an+s-life-(n+s)F(x,y)u(y)sv(y)n-111(dy)p(dy) 

                         (n+s)F(x,  < an+ssup fey)p(dy) <+. . 

                     x By the same argument, we have 

     ivs+ndp < on+ssup fe (n+s)F(Y,x)p(dY)  <+o. 

                      x We have, by Holder's inequality again, 

 u  (x) 
     1  s  n-1 

    <-(n+s)F(x,y)m(dy)ln+suu(y)n+sv(dy)ln+sifv(y)n+sp(dy) }n+s 

         1  s  n-1 

 < {sup fe (n+s)F(x'y)p(dy)}n+s(fun+sdp)n+s(firn+sdp) 

 x 

    As for reversibility of chains in M(F) with a symmetrizable 

potential F, we have the following 

Theorem 3'. We assume (A,3) and 

 (A,5)  supffe-  (n+s)F(x,y)p(dy),fe-(n+s)F(y,x)p(dy)1 

 x 

   (A,6)'  sup{fe  (n+s)(n+s-2)'F(x,y)p(dy),fe(n+s)(n+s-2)'F(y,x)p(dy)1  <— 

            x where  (n+s)(n+s-2)' = max  {(n+s)(n+s-2),11. Then the following three 
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statements are equivalent to each  other 

1) A potential F is uniformly symmetrizable. 

2) There exists a reversible chain in M(F). 

3) All chains in M(F) are reversible. 

     To prove this, we need the the following 

Lemma 10. We assume (A,3) and 

 (A,6)^ sup{feF(x'y)p(dy),IeF(y'x)p(dy)1 

Then, inf u(x) > 0 and inf v(x) > 0 for each (u,v)  E M(F). 
 x  x 

Proof. We have by Holder's inequality 

 n+s-1  

 du<-F(x'y)u(y)v(y)n-1'1(4)12n+s x  f(usvn)2n+s 

 x  (fus-lvndp)2n+screF(x,y)11(dy"  2n+s 

 <  u(x)2n+s(fus-1vndp)7547{sup  feF(x°r)p(dy)12n+s 

from which follows inf u(x) > 0. 

 x Proof of Theorem 3'. 2)   1). Let (u,v)  E M(F). By the proof 

of Theorem 3, F(x,y) - F(y,x) = log  v(x)u(x)  -1 - log v(y)u(y)  1. 

By Lemmas 9 and 10, the function log  v(x)u(x)-1 is bounded, hence, 

F is uniformly symmetrizable by Lemma 2. 

1)  >3)- Let F be a uniformly symmetrizable potential which 

satisfies (A,3) and (A,5). Then, the uniform symmetrization  P 

of F also satisfies (A,3) and (A,5). Therefore, by Theorem 3, 

all chains in M(F) =  MO) are reversible.
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3) >2) is trivial, since M(F)  (I) by Theorem 2. 

    We present an example in which M(F) contains infinitely many 

chains. Let X be the unit circle  S1 which we identify with the 

interval [0,1), and let  p be the Lebesgue measure on  SI. Let 

s+n = 3. Let  a0, a1 and a2 be positive numbers. Put, for k = 0,1 

        ak  
 Yk  - 2 

              j=-2 I 

and put 
              2 

        u(x) = E alkie2Trikx 
                 k=-2II 

               =  a
o+2a1cos2Trx+2a2cos4Trx, 

              2 
       r(x) =Eyikle2ffikx 

                 k=-2II 

              =  y
0+2y1cos2ffx+2y2cos4ffx. 

It is clear by the definition of that u(x) =  f or(x-y)u(y)2dy. 

If  y1-4y2 > 0, then  min r(x) =  r(x)I  cos2ffx=-1  =  10-211+212, since 

                             2 
                Yl Y1 

r(x) = 4y2(cos2nx+4--                     Y
2)2+y0-2y2-TY2--. We can see 

                    a12-6aoa2-8a22 
        Y1-4Y2 

                2(a0+a2)(a12+2a0a2) 

 a,2a2(a0+2a2)+4a22(a02+a22)+2(a03a2-a14) 
 10y12y2 =   

                                                                                                                                                                                   • 

                      (a02+2a12+2a22)(a0+a2)(a12+2aoa2) 
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Let a12 > 8a2(ao+a2)'1a4< ao3a2and let a1 and a2 be suffi 

       = ciently small in comparison with  a
cc Then, functions u and r 

are positive. 

     Put 

          F(x,y)  = -log  r(x-y), 

 u
a(x) =  u(x+a)  (a  E [0,1)), 

then  u's(0<a<l) are positive solutions of (**) in Corollary 

 = to Theorem 3, that are distinguished from each other-

    Dobrushin and  Shlosman [3] show that all Gibbs distributions 

in  Z2 with the state space S1, whose potential is of finite range, 

of C2-class and invariant under rotation of  S1 are also rotation-

invariant. On the contrary, Spitzer's Markov chains determined 

by u a are not rotation-invariant. But, M(F) contains also a 

rotation-invariant chain, which is determined by a constant solu- 

      A tionu = (fr(x)dx)-1 of (**). 

5. Uniqueness of Markov chains at high temparature. In the

following we consider potentials with the form  8F, where  8 > 0 

is the reciprocal temparature. We prove 

Theorem 4. Assume (A,3), as in Lemma 4, and assume 

(A,7) supffelF(x'Y)Iu(dy),felF(Y'x)I                                              111(dY)1  <4.w. 

If  8 is sufficiently small, then  M(OF) consists of one chain. 

Proof. If  8 is sufficiently small, the potential  OF satisfies 

(A,5) and (A,6). Therefore  M(3F)  cl) by Theorem 2. In case 

s = n = 1,  (*)1 in Theorem  1' takes the form 
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         u(x) =  Ale-aF(x'y)u(y)p(dy), 

         v(x) =  Ale-  F  (Y'x)v(Y)11(dY) 

 (*)? 

 fu(x)p(dx) =  fv(x)p(dx) =  1, 

 fu(x)v(x)p(dx) 

As is shown in Lemma 8, solutions u and v of (*)' are bounded 

from above if a <1since (A,5) is satisfied by  SF. Since the 

kernel  e-aF(x,y)                 is square-integrable if  a <  1, the normalized 
positive solutions of the Perron-Frobenius equation  (*)1 are 

unique ([7]). 

     To prove in case s+n > 2, we need several lemmas. 

Lemma 11. Assume  (A,7). Put 

 cl(a) =  sup{le±F(x°r)u(dy)-p(X)1,1fe±13F(Y'x)11(dY)-p(X)11. 

Then, we have  lim  c,(a) = 0. 
 a--0 

Proof. By Holder's inequality, we have 

 fe±0F(x  y)  gdy) <  tre±F(x,Y)gdyWp(x)l-a 

 < {sup feIF(x'y)Ip(dyW3p(X)1-a. 

 x The right-hand side converges to p(X) as  a 0. By Wilder's 

inequality again, we have 

                  v) TIF(xy) 
   PM2= Ile-2'e2gdY)/2 

 <  fie±aF(x,y)p(dy)  ijaF(x,y)p(dy)) 

            tJr,._-±aF(x,y)p(dy)}{sup felF(x,y)lp(dy)}p(X)1-a. 

                   e 
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Consequently, 

    le±aF(x,y)p(dy) {sup  felF(x,y)111(dy)1-1311(x)1+a, 

 x the right-hand side of which converges to p(X) as  a  -4- 0. 

Lemma 12. Assume (A,3) and (A,7). Put 

      1 1  
                                  211

.,117...p(x)n+s-2 c2°) = sup {ilu-p(X)n+s-        (
u,v)EM(F) 

c2'() = sup {Hu s-lvn-1_11(x) 111.,Husvn-2-1100 111.,lus-2vn_u(x)-1 
 (u,v)EM(F) 

where  110. = sup  If(x)I. Then, we have  lim  c2(6) =  lim  c2t() = 0. 
 XEX  f3÷0  13-4 

Proof. Take any (u,v)  E  M(F). Put a = fusvn-ldp = fus-ivndp. 

 10. lus+ndp,ivs+ndp as+n{p(x)+cims+n))1. 

     In fact, we have 

    u(x) = fe-F(x°r)u(y)sv(y)n-ip(dy) 

  s+n-1 1 

 < a s+n lie-0(s+n)F(x,y)u(y)sv(y)n-lu(dy)ln+s• 

Therefore, 

     fus+ndil =              < as+n-life-13(s+n)F(x,y)u(y)sv(y)n-1                                         p(dx)p(dy) 

                s+n-(3(s+n)F(x,y)  < asup fe11(dY) 

 x 

                   s+n  < a{p(X)+c1(3(s+n))}- 

        s+n-1 1 
0 s+ns+n 

2. Put  c3($) = {p(X)+c1(13(s+n))1{p(X)+clU(s+n)(s+n-2))1  -p( 

                           1  

Then, we have u(x),v(x){p(X)+c3(a)}s+n-2and  lim c (13) = 0.                                                 3 
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      To show this, put  pi  =s+n-1p2 =  (s+n)(s+n-1) , p3 =  s1p2, 

              1                                4 
                                                                                                        - and p4 =  (n-1)1p2. Remark that E pit=  1 and p

31+ p41 =                                       i=1 

 (s+n)-1. We have 

      a = fusvn-1dp 

                    1 44( x)1 

                                             — 

 < {fe-13F(x,y)u(y)sv(y)n-lp(dy)lpi  fie piy)                                              ,p(dy)1p2 x 

     1 1 

 (fus+nap)p3 (Ivs+nal)p4 

     1 13
ppI                                                      -1+p-11  <u(x)P1 {p(X)+c1(-
1-517 

                          2)12 a(s+n)ip34Jc
p(x).1.clu1P3(s+n))'P 

Hence, 
 p1  p1 

    u(x) ? ip(X)+ci(-42p2 2 ip(X)+c)U(s+n))1  s+n 

 _  1  
          = fu(X)+c

3(0/ s+n-2 

3  . Put c4(0=p(X)-p(X) -(s+n-2)1p(x)4_,_1/4 -(011-(n+s-3)fpc„,__                          3")2‘)`1Pil 

                                      1  
Then, we have a = f usvn-lapf us-lvnap  < {p(x)_c4(01 s+n-2 

and  lim  c4((3) =  0. 
 13+0 

     In fact, we have by 2  , 

       s+n-3  n-1 

 fu(x)4.c3(01  2(s+n-2) <  u(x)` v(x) 

 Therefore, 

    s+n-3  1 

 ip(X)4c3(0} 2(s+n-2)u(x) < {u(x)sv(x)n-1}2 

                                                                                           , 

     s+n-3 1 

 {u(X)+c3(0} 2(s+n-2)rudp < f(usvn-1)2dp 

                 1 1 

 <  a2p  (X) 
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On the other hand by Lemma 11, 

     fudv =ife-$F(x,y)u(y)sv(y)n11.1(dx)p(dy) 

 �  {p(X)-c1($)}6, 

hence, 
     s+n-3 1  1 

 (1.1(X)+c30)}2(s+n-2){1100-c1(S)}0  a711002. 

Thus, we have 

 s+n-3  

    a 5 p(X){11(X)+c3(3) }s+n-2{11(x)_c1(01-2 

                1  
 =  {11(X)-c

4(01  s+n-2. 
 s+n-1 

 4°. We have  u(x),v(x) 5 {p(X)-c4(0}I-77i7-2-{p(X)+ci($(s+n))1- 

       In fact, we have by Lemma 11,  1° and 3°, 

         u(x) = fe-$F(x,y)sn-1                        u(Y)v(Y)11(dY) 

           1  s  n-1 

                 ife-$(n+s)F(x,y)p(dy)ln+suus+ndion+s(rvs+ndp)s+n 

 5  {p(X)+c,($(s+n))las"-1 

 s+n-1  

 < ip(X)+c,($(s+n))}{-11(X)-c4(01s+n-2. 

The assertions in Lemma 12 follow from 2° and  4°. 

Lemma 13. 1) Put 

                    sn-1sn-1s-1n-1sn-2   R
i(x)E111(upvi;u2,v2;x)=u2v2-{uivi+suiviw1+(n-fluiviw2 

 s-1  n  s-1  n  s-2  n  s-1  n-1  R
2(x)ER2(ui,v1;u2,v2;x)=u2  v2-ful  vi+(s-1)ul  v/wi+nui vl w2 

where w1 = u2-u1 and w2 =  v2-v1. Then, there exists a constant 
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c > 0 such that 

 <  c.c2(8)-max(qu2-uill.,11v2-v1ll m) 

for all 0 <  8  < 1 and for all  (ui,v1) and (u
2,v2) E  M(8F). 

2) There exists a function  c5(8) with  lim  c5(8) = 0 such that 
                                        sio 

 If(u2-111)dp-f(v2-vi)dpi <  c5(8)max(11122-u1ll.,11v2-v111.) 

for all  (ul,v1) and (u2,v2)  E  M(8F) . 

Proof. 1) The assertion is clear, since 

     R1= (1114.wi)s(vi+w2)n-1           L"                                         1 1 1+(n-l)usvn-2w }  1  1 1  1  2 

 E s)(n-1s-jn-l-kjk       = 
j+k2(j k)u,viwiw2 

 j�s,k�n-1 

and since  supflluL,1114 .;(u,v)cM(8F),0<8�11  <+... and  Hwili.,1w211. 
 < 2c2(8) by Lemma 12. 

= 2) We have  p(X)-1f(wi-w2)dp = 

         =  f[s{p(X)-1-urvil-                            1}w1+(n-1){p(X)-1-uIvil-2}w2]dp 

     +  f[(s-1){u1-2v7-p(X)-  1}141+nful-lq-1_11(x)  11,42idp 

 s  n-2  s-2  n  sn-1     +fr{sul-'-1-1v7w1+(n-1)uivi  w21-1(s-1)ul  viwi+nui vi  w2}]dp. 

The first integral in the right-hand side is bounded in the 

absolute value by 

 {slip(X)  1-11I-1v7-1"  •  1114111.4.  (n-1)1!  p  (X)  -1-usivni-211.-11w2  (X)  , 

which is not less  than  (s+n-l)q(8)p(X)max(Hwill .,1w211.) by  Lemma 12. 
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The second integral is also bounded in the absolute value by 

 (s+n-1)q(O11(X)max(lw111.4w211.). The third integral is equal to 

f{(+1.21-1-ulv11-1-R1)-(u3111121-u1v11-1-R2)1dp= f(R2-111)dp, 

since  fuv1.1-1d11 =  (i=1,2). The absolute value of the 

right-hand side is not less than  (DR111.+11R211.)p(X) 

 <  2p(X).c-c2(0max(IIw1ll.,11w20.0). Therefore, we have 

 If(wl-w2)d111  21(s+n-1)c2(3)+c-c2(s)}11(X)max(Iw1ll.,1w2L0)• 

Proof of Theorem 4 in case s+n > 2. Take arbitrary  (ul,v1) and 

(u2,v2)  E  M(SF). Put  w1 = u2-u1 and w2 =  v2-v1.  From  ui(x) = 

 fe-13F(x,y)ui(y)svi(y)n-111(dy)  (im1,2), it follows that 

 wl(x) = 

 = 

 (  )  (n-l)u/(y)svi(y)n-2w2(y)+Ri(y)}p(d. 

=  (s+n-1)11(X)-11w
1dp+(n-1)11(X)-11(w2-wl)dp 

 +sp(X)-11(e-13F(xJ)  1)wl(y)p(dy)+(n-1)11(X)-1f(e-f3F(x°r)  1)w2(y)p(dy) 

 +sfe-  OF(x,y){u1(y)s-lvi(y)n-1_11(x)-11w2(y)p(dy) 

 +(n-l)fe-  U(x,y){11.1(y)svi(y)n-2_p(x)-11w2(y)p(dy) 

 +fe-f3F(x0r)R1(y)p(dy). 

We have 

 If(w2-w1)dp1 <  c5(3)max(Ow111.,1w211.) (by Lemma 13), 

 ife-f3F(x,y)lui(y)s-lvi(y)n-l_p(x)-11w1(y)p(dy)1
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    < {11(X)+cl(fi)llul- 1v11-1_11(x)-1L).wi                                   II0. (by Lemma 11) 

 <  fp(X)+cip)}qP)max(1w111.,1w2L0) (by Lemma 12), 

Ife-$F(xvl        '''121(y)P(dy)1  <  {P(X)+ci(R)1112111. (by Lemma 11) 

 III(X)+c3(01c•c2P)max(1w11 .,1w21.) (by Lemma 13). 

As for  f(e-f3F-1)widP, we have 

 If{e-f3F(x,y)  l}wi(y)p(dy)I 
          1 1 

    <  {f(e-f3F(x,y)  1)2p(dy)12(f14(11.)2 
 1 1 

     <  Dwil.'11(X)2{f(e-213F(x,y)-  2e-f3F(x,y)+1)p(dy)12. 

The last integral converges to 0 uniformly in x as  1 0 by Lemma 

Consequently,  wi(x) =  (s+n-1)11(X)  1fwiclu+R3(x), where  112311. 

 c6Mmax(IIw1ll.,111#2103) with  lim  c6(.) = 0. Hence, we have 

      fw1dp  = -s411 -2 /123d11, 

 Ifwid111 < s0211131., 

 1w1L  <  (s+n-1)P(X)-11.rwiclul+11231. 

           (ss++nn:12+1)c6 Mmax(Ilwi L'Ilw2 11.) 

By the same argument as above, we have 

    1w21103 (ss:111:1+1)c60)max(1w111.,1w21.), 

from which it follows

11.
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                        s+n-1 •     max (I! will. ,I1 w211.3) •• (s+n_2+1)c6(0)max(Ilwill.,1w2L). 

                                s+n-1 If  0 is so small that (s+11_2+1)c6(0) < 1, then max(11 will. ,Il w2IL) =  0, 

which means  ui = u2 and  v1 = v2. 

6. The number of chains at low temparature. An example. We

present an example, in which the number of chains in  M(0F) is 

exactly calculated for sufficiently large  0. Let X be a finite 

set and let  pi =  p(fil) > 0 for all  i  E X. We prove 

Theorem 5. Let F be a symmetric potential on X satisfying 

     (A,8)  F(i,i) >  FU,n+n_Es1_11F(i,i)-F(i,ill 

for all  i,j  E X. Then, the number of chains in  M(0F) is equal 

to 2#X 1 for sufficiently large  0, if n+s > 2. 

Proof. We look for positive solutions of 

      (**) u. = E e-0F(i,j)u.s+n-1  (iEX). 
 jEx3 

For simplicity we put p =  s+n-1. If we put 
 1  

 x. = {e-F(i,i)p-1                        P-)  ui, 

the equation (**) is transformed into 

   (**)' xi= (iEX), 
 j:j�i 1) ) 

       1 1  
   P-1 where a.. =11.p-111-

3exPf-PJF(i,j)-F(j,j)-p-1                                           1(F(j,j)-F(i,i))1].   3.) 

Under the assumption (A,8), we have  lim a.. = 0. Therefore, 
 0-+013 

Theorem 5 is a corollary to the following 
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Lemma 14. The number of non-trivial solutions of the equation 

     (***) x. = lx•IP + E a•ilx;113(1�i�N) 
       1  1  1�j5N 1JJ 

is equal to  2N-1, if p > 1 and positive coefficients aij(1�i#j�N) 

are sufficiently small. 

Proof. Put, for  x =  (xl,x2,•••,xN) and  a =  (a..:15iAj�N), 

     F.1(x, a) =lx.IP  x. + E a.;lx;
113(1�i�N),         -= 

 1<j<N 

 3F. 
 J(x,g) = det..                      3x=1�1,J�N 

where 

 3F; 

                                           ij)a.lx.IP-1.  ij ) 

10. The number of non-trivial solutions of (***) is not less 

than  2N  1, if  aiis are sufficiently small. 
     In fact, let  x =  (X1,X2,•••,XN)  A  0 with  Xi = 0 or 1. 

 AA 
We have F.(x,0) = 0 (1�i�N) and J(x,0) A 0, since 

   3Fi3F A  A n 

 Ti7(,2) =  pxi 1 and  ax  (x,O) = 0  (iAj). Consequently, there 
1  JA  A 

                              x - 
exist a constant A and an RN-valued continuous function  f= f(a) 

defined for  a with  Hall = max la.I  < A, such that 

 A 

 iAj1 j 

 x 

 f(0) =  2Ac, 

 A 

     ff-     Fi(a),a) = 0 for  a with  lI  a  Q  < A  (1�i5N). 

Since f(a) A0ifais sufficiently small,it is a non-trivial 
 A A 

solution of (***). Remark that if  x  A  x',  f  (g)  A  f  (a) for 

sufficiently small  a. The number of non-trivial solution of 

(***) is not less than  #01;XAO,Xi=0 or 1  (1�i�N)1 = 2N -  1. 
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 2°. If a is sufficiently small, then  J(x,a) 0 for any solution 

x =  (xi,x2,—,xN) of (***). 

     Infact,fromx.-lx.IP=Eailx1P>0,itfollows0�x.5.1. 
 jaijj 

From 0  <  xi-lxiIP =  E a.  Ix IP  < E ai<  (N-1)Ilal, it  follows 
 j�iijj =  jaij  = 

 3F. 
that  xi is close to 0 or 1 if  °all is small. Therefore,  laxl(x,a)I 

=  110q-1-11  >  1 for sufficiently small  a. On the other hand, for 

 i  j 

      F. 

  Ti7(x,g) = paiixp-1 

Hence,  J(x,a)  0 0 if  a is sufficiently small. 

  0 3. Let  a be sufficiently small and let  x =  (xl,x2,—,xN) be a 

solution of (***). There exist continuous functions  fl(t),f2(t), 

 — ,fN(t) defined on [0,1] such that 

 fi(1) =  x.  (1�i�N), 

 fi(t) =  If.(t)IP + E taiIf.(t)IP (1�i�N,O�t�1). 
 j�ij 

     Infact,putV.(x;t)=Ix.IP x.+ E ta.IxIP  (1�i5N) and        - joi ijj 

let Aobe the infimun of A such that there exists a continuous 

function f(t)  =  (fl(t),f2(t),••,fN(t)) on  [A,1] such that 

 f(1) =  x, 

 F1(f(t);t) = 0  (15i�N,A�t�1). 

                      aF. 
Put J(x,t) = det (Ti-.-(x,t))1<i,j<N. Since J(,1)  0 0 by 2 , such a 

                 3 

function f(t) exists in a neighbourhood of 1. Therefore,  Ao < 1. 
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     Suppose  Ao  > 0. Then there exists a sequence A
n',A0and                           no 

continuous functions  f(n)(t) on  [An,1] such that 

 f(n)(1) =  2c, 

 V.(f(n)(t),t) = 0  (15i5N,A
n5t51).  1 - 

Since  a(f(n)(t);t)  0 0 by  2°, uniqueness of implicit functions 

implies  f(n)(t) = f(m)(t) for m > n and  An  < t  < 1. Put 

 f(t) =  f(n)(t) for  An  5 t  5 1  (n=1,2,•••). 

The function f(t) satisfies 

 f(1) =  ?S, 

 Vi(f(t);t) = 0  (15i5N,  Ao<t<l). 

Remark that every component  fi(t) of f(t) satisfies 0  5  fi(t)  5 

Let  tn  Ao. There exists a subsequence ftn
k1 such that f(tn) 

converges as k  -4-  co. Put y =  lim f(t ). We have 
 1(4-.0  nk 

 Vi(y;A0) = 0  (15i5N), 

hence,  j(y;Ao)  0 0 by  2°. There exists a unique function  TM 

in some neighbourhood  (A0-E,A0-FE) of  Ao such that 

 i(A0) =  X, 

     V1.(f(t);t) = 0 (1�i5N,A0-c<t<A0+E). 

By uniqueness of implicit functions, we have  f(t) =  T(t) for 

t  e  (A0,A0+E). Therefore,  A0-E is not less than the infimum of 

such that there exists a continuous function f(t)  on[A,l] with 
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f(1) =  x and  Ti(f(t):t) = 0  (15i5N,A5t�1), which we have 

put  Ao. This is a contradiction. Hence  Ao < 0. 

 40. Let  a be sufficiently small. There is a one-to-one corres-

pondence between non-trivial solutions  x of (***) and  X = 

AAAA 

Oci,x2,—,x000withx.=0 or 1. 

     In fact, let  x be a non-trivial solution of (***). There 

is a continuous function f(t) on [0,1] such that 

 f(1) =  x, 

 f.(t) = If.(t)11) + E t a. If(t)113(15i�N,05t51). 
                     �i                          ijj                 j 

Since  f.  (0) =  If.(0)1P, we have  f.(0) = 0 or 1. If  f(0) =  p, 

then  f(t) = 0 for all 0 t  � 1 by uniqueness of implict 

functions. 
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