学达中皘諭文
学本宗豁

Spitzer＇s Markov chains with measurable potentials

By

京大附図

Munemi MIYAMOTO

1．Introduction and summary of results．Spitzer［10］has intro－ duce Markov chains，whose space of＂time parametres＂is an info－ nite tree T ，and whose state space is a set $\{1,+1\}$ ．He investi－ gates Gibbs distributions on T that are Markov chains of such construction．Several works［1］，［4］and［8］are made on Gibbs distributions on trees．

In a present paper，we generalize Spitzer＇s results to a case when the state space is a compact set．If the state space consists of two points as in a case of Spitzer，all Markov chains are reversible．So，in that case，the＂time parametre＂space T need not be equipped with a direction．But，since Markov chains may not be reversible in our case，we must introduce a direction into T．Thus，we consider Markov chains whose space of＂time parametres＂is an infinite directed tree T ，and whose state space is a compact measure space（ X, B, μ ）．

Let $F(x, y)$ be a measurable function on $X \times X$ ，boundedness or symmetry $F(x, y)=F(y, x)$ of which we do not assume．A Markov chain on T ，whose transition density we denote by $p(x, y)$ ，is a Gibbs distribution on T with the potential F ，if and only if

$$
p(x, y)=\lambda(s, n) u(x)^{l_{u}} u(y)^{s} v(y)^{n-1} e^{-F(x, y)},
$$

where u and v are positive solutions of integral equations of the Hammerstein type

$$
\left\{\begin{array}{l}
u(x)=\lambda(s, n) \delta_{X} e^{-F(x, y)} u(y)^{s} v(y)^{n-I_{\mu}(d y)} \\
v(x)=\lambda(s, n) \delta_{X^{\prime}} e^{-F(y, x)} u(y)^{s-1_{v}(y)^{n}{ }_{\mu(d y)}}
\end{array}\right.
$$

Numbers s, n and $\lambda(s, n)$ will be defined in the following sections. Let $M(F)$ be the set of Markov chains that are, at the same time, Gibbs distributions with the potential F. Under summability conditions on F, all or no chain in $M(F)$ is reversible. Roughly speaking, all chains in $M(F)$ are reversible if and only if F is nearly symmetric. In a symmetric case, the transition density $p(x, y)$ has the form;

$$
p(x, y)=\lambda(s, n) u(x)^{1} u(y)^{n+s-1} e^{-F(x, y)}
$$

where u is a positive solution of the integral equation;

$$
u(x)=\lambda(s, n) \int_{X^{e}} e^{-F(x, y)} u(y)^{s+n-1} \mu(d y)
$$

Existence of positive solutions of the integral equations is proved by applying theory of cones in a Banach space.

Dobrushin and Shlosman [3] proved that all Gibbs distributions in Z^{2} whose state space is the circle S^{1}, are invariant under rotation of the circle, if the potential is of finite range, of C^{2}-class and rotation-invariant. We present an example of chains in $M(F)$ that are not rotation-invariant although the potential F is rotation-invariant and of C^{∞}-class.

Next, we consider a potential β, where $\beta>0$ is the reciprocal temparature. We prove uniqueness of $M(\beta F)$ for sufficiently small β. We present an example in which the number of chains in $M(\beta F)$ is exactly calculated for sufficiently large β.
2. Potentials and Gibbs distributions. Let X be a compact metric space. Let B be the topological Borel field of X and let μ be a measure on (X, B). Let T be the infinite directed tree, in which s branches emanate from every vertex and n branches flow into every vertex. Two vertices $a \neq b$ in T are neighbours if they are connected by a branch, which we denote by $a-b$ or $b-a$. If a branch connecting a and b emanates from a, which is equivalent to that the branch flows into b, we write $a \rightarrow b$ or $b+a$. We remark $s, n \geqq 1$. For a subset V of T, let ∂V be the set of vertices in V^{c} that are neighbours of vertices in V. Let $\Omega=X^{T}$. For $\omega \in \Omega$ and $a \in T$, let $x_{a}(\omega)=\omega_{a}$. For $V \subset T$, let $x_{V}(\omega)$ be the restriction $\left.\omega\right|_{V}$ of ω on V, and let B_{V} be the σ-algebra of Ω generated by x_{V}. B_{Ω} is the σ-algebra generated by the cylinder sets.

A potential is a pair $F=\left(F_{1}, F_{2}\right)$ of real-valued measurable functions F_{1} and F_{2}, where F_{1} and F_{2} are defined on X and on $X \times X$, respectively. For a finite subset V of T and for $x \in \Omega$, put

$$
\left.\begin{array}{rl}
H_{V}(\underline{\underline{x}})= & H_{V}^{F}(\underline{\underline{x}})
\end{array}\right) \underset{\underset{a \in V}{ } \sum_{1} F_{1}\left(x_{a}\right)+\sum_{\substack{a, b \in V \\
a \rightarrow b}}^{\sum} F_{2}\left(x_{a}, x_{b}\right)}{ }+\underset{\substack{a \in V, b \in \partial V \\
a \rightarrow b}}{\sum} F_{2}\left(x_{a}, x_{b}\right)+\underset{\substack{a \in V, b \in \partial V \\
a \in b}}{\sum F_{2}\left(x_{b}, x_{a}\right) .}
$$

The family $\left\{\mathrm{H}_{\mathrm{V}}\right\}_{V}$ is called Hamiltonian.

Definition. Two potentials $F=\left(F_{1}, F_{2}\right)$ and $F^{\prime}=\left(F_{1}^{\prime}, F_{2}^{\prime}\right)$ are said to be equivalent, which we denote by $F \cong F^{\prime}$, if $H_{V}^{F}(\underline{x}) \quad H_{V}^{F^{\prime}}(\underline{x})$ does not depend on x_{V} for every finite subset V. We remark that it may depend on $x_{\partial V}$.

Lemma 1. Let $F=\left(F_{1}, F_{2}\right)$ be a potential and put

$$
F_{2}^{\prime}(x, y)=F_{2}(x, y)+\frac{1}{n+s}\left\{F_{1}(x)+F_{1}(y)\right\}
$$

then $\mathrm{F} \cong\left(0, \mathrm{~F}_{2}^{\prime}\right)$. If F_{2} is symmetric, F_{2}^{\prime} is also symmetric. Proof. Put $F_{2}^{\prime \prime}(x, y)=\frac{1}{n+s}\left\{F_{1}(x)+F_{1}(y)\right\}$. We have

$$
\begin{aligned}
& \sum_{\substack{a, b \in V \\
a \rightarrow b}}^{\sum F_{2}^{\prime \prime}\left(x_{a}, x_{b}\right)+\underset{\substack{a \in V, b \in \partial V \\
a \rightarrow b}}{\Sigma} F_{2}^{\prime \prime}\left(x_{a}, x_{b}\right)+\underset{\substack{a \in V, b \in \partial V \\
a \in b}}{\sum} F_{2}^{\prime \prime}\left(x_{b}, x_{a}\right)} \\
& =\sum_{a \in V} F_{1}\left(x_{a}\right)+\frac{1}{n^{+} S} \sum_{b \in \partial V} \#\{a \in V ; a-b\} F_{1}\left(x_{b}\right) .
\end{aligned}
$$

Therefore, $H_{V}\left(0, F_{2}^{\prime}\right)(\underline{\underline{x}}) \quad H_{V}^{F}(\underline{\underline{x}})=\frac{1}{n+s} \underset{b \in \partial V}{\sum} \#\{a \in V ; a-b\} F_{1}\left(x_{b}\right)$, which implies $F \cong\left(0, F_{2}^{\prime}\right)$.

In the following we assume always $\mathrm{F}_{1}=0$. We identify a potential ($0, F$) with the function F.

Definition. 1) A potential F is said to be symmetrizable if there exists a symmetric potential $\hat{\mathrm{F}}$ with $\mathrm{F} \cong \hat{\mathrm{F}}$. We call $\hat{\mathrm{F}}$ a symmetrization of F .
2) A potential F is said to be uniformly symmetrizable if there exists a symmetrization \hat{F} of F such that

$$
\sup _{x, y}|F(x, y)-\hat{F}(x, y)|<+\infty .
$$

We call \hat{F} a uniform symmetrization of F.

Lemma 2. 1) A potential F is symmetrizable if and only if there exists a measurable function f such that

$$
F(x, y)-F(y, x)=f(x)-f(y)
$$

2) A potential F is uniformly symmetrizable if and only if there exists a bounded measurable function f which satisfies the above equality.

Proof. Assume $F(x, y)-F(y, x)=f(x)-f(y)$. We have

$$
\begin{aligned}
F(x, y) & =\frac{1}{2}\{F(x, y)+F(y, x)\}+\frac{1}{2}\{F(x, y) \quad F(y, x)\} \\
& =\frac{1}{2}\{F(x, y)+F(y, x)\}+\frac{1}{2}\{f(x)-f(y)\}
\end{aligned}
$$

$\operatorname{Put} A(x, y)=\frac{1}{2}\{F(x, y)+F(y, x)\}+\frac{s-n}{2(n+s)}\{f(x)+f(y)\}$. Since

$$
\begin{aligned}
\sum_{\substack{a, b \in V \\
a \rightarrow b}}\left\{f\left(x_{a}\right)-f\left(x_{b}\right)\right\} & +\sum_{\substack{a \in V, b \in \partial V \\
a \rightarrow b}}^{\sum}\left\{f\left(x_{a}\right)-f\left(x_{b}\right)\right\} \\
& +\sum_{\substack{a \in V, b \in \partial V \\
a \leftarrow b}}^{\sum}\left\{f\left(x_{b}\right)-f\left(x_{a}\right)\right\} \\
=(s-n) \sum_{a \in V} f\left(x_{a}\right) & +\sum_{b \in \partial V}^{\sum}[\#\{a \in V ; a+b\}-\#\{a \in V ; a \rightarrow b\}] f\left(x_{b}\right),
\end{aligned}
$$

and since

$$
\begin{aligned}
& \sum_{\substack{a, b \in V \\
a \rightarrow b}}^{\sum}\left\{f\left(x_{a}\right)+f\left(x_{b}\right)\right\}+ \sum_{\substack{a \in V, b \in \partial V \\
a \rightarrow b}}^{\sum}\left\{f\left(x_{a}\right)+f\left(x_{b}\right)\right\} \\
&+\sum_{\substack{a \in V, b \in \partial V \\
a \in b}}^{\sum}\left\{f\left(x_{b}\right)+f\left(x_{a}\right)\right\} \\
&=(s+n) \sum_{a \in V} f\left(x_{a}\right)+\sum_{b \in \partial V}^{\sum} \#\{a \in V ; a-b\} f\left(x_{b}\right),
\end{aligned}
$$

we have $H_{V}^{\mathrm{F}}(\underline{\underline{x}})-H_{V}^{\hat{F}}(\underline{\underline{x}})=$

$$
=\frac{1}{2} \sum_{b \in \partial V}\left[\#\{a \in V ; a \leftarrow b\}-\#\{a \in V ; a \rightarrow b\}-\frac{s-n}{s+n} \#\{a \in V ; a-b\}\right] f\left(x_{b}\right),
$$

which implies $F \cong \hat{F}$. If f is bounded, from an equality

$$
F(x, y)-\hat{F}(x, y)=\frac{1}{n+s}\{n f(x)-s f(y)\},
$$

it follows $\sup _{x, y}|F(x, y)-\hat{F}(x, y)|<+\infty$.
Conversely, assume $\mathrm{F} \cong \hat{F}$, where $\hat{\mathrm{F}}$ is symmetric. Let $a_{i} \rightarrow a(1 \leq i \leq n)$ and $a_{j}^{\prime}+a(1 \leq j \leq s)$. By the equivalence of potentials, the difference $H_{\{a\}}^{\mathrm{F}}(\underline{x})-H_{\{a\}}^{\hat{F}}(\underline{\underline{x}})$ does not depend on x_{a}, which we denote by $\Delta\left(x_{a_{1}}, x_{a_{2}}, \cdots, x_{a_{n}}, x_{a_{1}}, x_{a_{2}^{\prime}}, \cdots, x_{a_{s}^{\prime}}\right)$. Fixing any $x_{0} \in X$, we take arbitrary x and y from X. Put $x_{a}=y$, $x_{a_{1}}=x, x_{a_{i}}=x_{o}(2 \leq i \leq n)$ and $x_{a_{j}^{\prime}}=x_{o}(1 \leq j \leq s)$. Put $\Delta(x)=$ $\Delta\left(x, x_{0}, \cdots, x_{0}\right)$. We have

$$
\begin{aligned}
& \Delta(x)=\Delta\left(x, x_{0}, \cdots, x_{0}\right) \\
& =H_{\{a\}}^{\mathrm{F}}(\underline{\underline{x}})-H_{\{a\}}^{\hat{F}}(\underline{\underline{x}}) \\
& =\sum_{i=1}^{n}\left\{F\left(x_{a_{i}}, x_{a}\right) \quad \hat{F}\left(x_{a_{i}}, x_{a}\right)\right\}+\sum_{j=1}^{s}\left\{F\left(x_{a}, x_{a_{j}}\right)-\hat{F}\left(x_{a}, x_{a_{j}}\right)\right\} \\
& =\{F(x, y)-\hat{F}(x, y)\}+(n-1)\left\{F\left(x_{0}, y\right)-\hat{F}\left(x_{0}, y\right)\right\} \\
& +\operatorname{s}\left\{F\left(y, x_{0}\right)-\hat{F}\left(y, x_{0}\right)\right\} .
\end{aligned}
$$

Consequently,

$$
F(x, y)=\hat{F}(x, y)-(n-1)\left\{F\left(x_{0}, y\right)-\hat{F}\left(x_{0}, y\right)\right\}-s\left\{F\left(y, x_{0}\right)-\hat{F}\left(y, x_{0}\right)\right\}+\Delta(x) .
$$

Exchanging x and y, we have

$$
F(y, x)=\hat{F}(x, y)-(n-1)\left\{F\left(x_{0}, x\right)-\hat{F}\left(x_{0}, x\right)\right\}-s\left\{F\left(x, x_{0}\right)-\hat{F}\left(x, x_{0}\right)\right\}+\Delta(y),
$$

from which follows an equality
$F(x, y)-F(y, x)=f(x)-f(y)$,
where $f(x)=\Delta(x)+(n-1)\left\{F\left(x_{0}, x\right)-\hat{F}\left(x_{0}, x\right)\right\}+s\left\{F\left(x, x_{0}\right)-\hat{F}\left(x, x_{0}\right)\right\}$.
If $\sup _{x, y}|F(x, y)-\hat{F}(x, y)|<+\infty$, then $\Delta(x)$ is bounded, therefore f is also bounded.

For a finite subset V of T, put $\mu_{V}\left(d x_{V}\right)=\prod_{a \in V} \mu\left(d x_{a}\right)$.
Definition. A potential F is said to be admissible if for any finite subset V of T

$$
\Xi\left(V, x_{\partial V}\right) \equiv \int_{X} \mathrm{~V}^{-H_{V}^{F}(\underline{\underline{x}})} \mu_{V}\left(d x_{V}\right)<+\infty \quad \text { a.e. }\left(\mu_{\partial V}\right)
$$

Lemma 3. A potential F is admissible, if
$(A, 1) \quad \iint e^{(n+s) F(x, y)} \mu(d x) \mu(d y)<+\infty$,
or if
$(A, 2) \quad \sup _{x}\left\{\int e^{-F(x, y)} \mu(d y), \int e^{-F(y, x)} \mu(d y)\right\}<+\infty$.

Proof. Admissiblity under ($\mathrm{A}, 1$) is a direct consequence of 1) in the following Lemma 3'. Under (A,2) we have $\int e^{-H_{V}^{F}(\underline{x})_{\mu_{V \cup \partial V}}\left(d x_{V \cup \partial V}\right)<+\infty}$ by 2) in Lemma 3^{\prime}, if we put $F_{a, b}=F$ for $a \quad b \in V \cup \partial V$ with $\{a, b\} \notin \partial V$, and if we put $F_{a, b}=0$ for $a-b \in \partial V$

Lemma 3'. Let be given a family $\left\{F_{a, b} ; a \rightarrow b \in T\right\}$ of functions $F_{a, b}$ $=F_{a, b}(x, y)$. For a finite subset V of T, put
$\tilde{H}_{V}(x)=\sum_{\substack{a, b \in V \\ a \rightarrow b}} F_{a, b}\left(x_{a}, x_{b}\right)+\sum_{\substack{a \in V, b \in \partial V \\ a \rightarrow b}}^{\sum} F_{a, b}\left(x_{a}, x_{b}\right)+\sum_{\substack{a \in V, b \in \partial V \\ a \in b}}^{\sum} F_{b, a}\left(x_{b}, x_{a}\right)$,
$\widetilde{H}_{V}(\underline{x})=\sum_{\substack{a, b \in V \\ a \rightarrow b}} F a, b\left(x_{a}, x_{b}\right)$.

1) If for each $a \rightarrow b \in T$,

$$
(A, 1)^{\prime} \quad \iint e^{(n+s)} F_{a, b}(x, y)_{\mu(d x) \mu(d y)<+\infty}
$$

2) If for each $a \rightarrow b \in T$,

$$
(A, 2)^{\prime} \quad \sup _{x}\left\{\int e^{-F} a, b^{(x, y)} \mu(d y), \int e^{-F} a, b(y, x) \mu(d y)\right\}<+\infty
$$

then it holds $\int \mathrm{e}^{-\widetilde{\widetilde{H}}_{V}(\underline{\underline{x}})} \mu_{V}\left(\mathrm{dx} \mathrm{V}_{\mathrm{V}}\right)<+\infty$.
Proof is carried out by induction in \#V.

1) Let V be a set consisting of a'single vertex a. Let $a_{i} \rightarrow a$ $(1 \leq i \leq n)$ and $a_{j}^{j}+a \quad(1 \leq j \leq s)$. We have

$$
\begin{aligned}
& \widetilde{H}_{\{a\}}(\underline{x})=\sum_{i=1}^{n} F_{a_{i}, a}\left(x_{a_{i}}, x_{a}\right)+\sum_{j=1}^{s} F_{a, a}\left(x_{a}, x_{a}\right), \\
& \int e^{-\tilde{H}_{\{a\}}(\underline{x})} \mu\left(d x_{a}\right)=\int_{i=1}^{n} e^{-F_{a_{i}}, a}\left(x_{a_{i}}, x_{a}\right) \prod_{j=1}^{s} e^{-F_{a}}, a_{j}^{\prime}\left(x_{a}, x_{a},\right)_{j}\left(d x_{a}\right) \\
& -8-
\end{aligned}
$$

$$
\begin{aligned}
& \left.\leqq \prod_{i=1}^{n} \int e^{-(n+s) F_{a_{i}}, a^{\prime}\left(x_{a_{i}}, x_{a}\right)} \mu\left(d x_{a}\right) \prod_{j=1}^{s} \int e^{-(n+s) F_{a, a}^{\prime}\left(x_{a}, x_{a}^{\prime}\right)} \mu\left(d x_{a}\right)\right\}^{\frac{1}{n+s}} \\
& \quad<+\infty \quad \text { a.e. }\left(\mu_{\partial\{a\}}\right) .
\end{aligned}
$$

We assume that the statement is true if $\# V \leqq k$. Let $\# V=k+1$. Fix any $a_{0} \in V$ and let $V_{0}=V \backslash\left\{a_{0}\right\}$ Put

$$
\begin{aligned}
& F_{a, a_{0}}^{\prime}(x)=-\frac{1}{n+s} \log \int e^{-(n+s) F_{a, a}(x, z)_{\mu}(d z), \text { if } a \rightarrow a_{0},} \\
& F_{a_{0}, a}^{\prime}(x)=-\frac{1}{n+s} \log \int e^{-(n+s) F_{a_{0}, a}(z, x)} \mu(d z), \text { if } a \leftarrow a_{0}, \\
& F_{a, b}^{\prime}(x, y)=F_{a, b}(x, y), \text { if otherwise. }
\end{aligned}
$$

It is clear that $\iint e^{-(n+s)} F_{a, b}^{\prime}(x, y) \mu(d x) \mu(d y)<+\infty$. We have

$$
\begin{aligned}
& \tilde{H}_{V}(\underline{\underline{x}})=\sum_{\substack{a \in V \\
a \rightarrow a_{0}}}^{\sum} \sum_{a, a_{0}}\left(x_{a}, x_{a_{0}}\right)+\sum_{\substack{a \in V \\
a \leftarrow a_{0}}}^{\sum} F^{F_{0}} a_{0}, a\left(x_{a_{0}}, x_{a}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\substack{a \in V_{0} \\
a \neq b}}^{\sum}, b \in \partial V_{o} \backslash\left\{a_{o}\right\} b, a\left(x_{b}, x_{a}\right) .
\end{aligned}
$$

Denote the sum of the first two terms and the sum of the last three terms by $\tilde{H}_{1}(\underline{x})$ and by $\tilde{H}_{2}(\underline{x})$, respectively. Remark that \# $\left\{a \in V_{o} u \partial V ; a-a_{o}\right\}=n+s$. We have by Hölder's inequality

$$
\begin{aligned}
& =\exp \left\{\underset{\substack{a \in V_{0} u \partial V \\
a \rightarrow a_{0}}}{\Sigma} F_{a, a_{o}}^{\prime}\left(x_{a}\right)-\underset{\substack{a \in V_{o} u \partial V \\
a \not a a_{0}}}{\sum} F_{a_{o}}^{\prime}, a\left(x_{a}\right)\right\} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \tilde{H}_{2}(\underline{\underline{x}})+\sum_{\substack{a \in V_{0} u \partial V \\
a \rightarrow a_{0}}}^{\sum F^{\prime}, a_{0}}\left(x_{a}\right)+\sum_{\substack{a \in V_{o} u \partial V \\
a \leftarrow a_{0}}}^{\sum} F_{a_{0}}^{\prime}, a\left(x_{a}\right) \\
& =\tilde{H}_{V_{0}}^{\prime}(\underline{x})+\sum_{\substack{a \in \partial V \\
a \rightarrow a_{0}}} F_{a, a_{0}}^{\prime}\left(x_{a}\right)+\sum_{\substack{a \in \partial V \\
a \not a a_{0}}} F_{a_{o}}^{\prime}, a\left(x_{a}\right),
\end{aligned}
$$

where $\tilde{H}_{V}^{\prime}(x)$ is the Hamiltonian determined by $\left\{F_{a, b}^{\prime}\right\}$, ice.,

$$
\begin{aligned}
& \tilde{H}_{V_{0}}^{\prime}(\underline{\underline{x}})=\sum_{\substack{a, b \in V_{o} \\
a \rightarrow b}}^{\sum} F_{a, b}^{\prime}\left(x_{a}, x_{b}\right)+\sum_{\substack{a \in V_{0} \\
a \rightarrow b}}^{\sum \sum_{b \in \partial V_{o}} F_{a, b}^{\prime}\left(x_{a}, x_{b}\right)} \\
& +\underset{\substack{a \in V_{0} \\
a+b}}{\Sigma, b \in \partial V_{o}} F_{b, a}\left(x_{b}, x_{a}\right) .
\end{aligned}
$$

Therefore, we have

$$
\int e^{\left.-\tilde{H}_{V}(\underline{\underline{x}})_{\mu_{V}}\left(d x_{V}\right)=\int e^{-\tilde{H}_{2}(\underline{\underline{x}})_{\mu_{V}}}\left(d x_{V}\right) \int e^{-\tilde{H}_{1}(\underline{\underline{x}}}\right)_{\mu}\left(d x_{a_{0}}\right)}
$$

$$
\leqq \underset{\substack{a \in \partial V \\ a \rightarrow a_{0}}}{\left.\sum F_{a, a_{0}}^{\prime}\left(x_{a}\right) \quad \sum_{\substack{a \in \partial V \\ a \in a_{0}}} F_{a_{0}}^{\prime}, a\left(x_{a}\right)\right\} \int e^{-\tilde{H}_{V}^{\prime}(\underline{x})^{\prime}} \mu_{V_{0}}\left(d x_{V_{0}}\right) .}
$$

The last integral is finite a.e. $\left(\mu_{\partial V_{0}}\right)$ by the assumption of induction.
2) If $\# V=1, \widetilde{\mathrm{H}}_{V}(\underline{\underline{x}})=0$. Consequently, $\int \mathrm{e}^{-\widetilde{\mathrm{H}}_{V}(\underline{\underline{x}})} \mu_{V}\left(\mathrm{dx}_{V}\right)<+\infty$ is trivial. We assume that the statement is true if $\# V \leqq k$. Let $\# V=k+1$. It is easy to see that there exists $a_{o} \in V$ such that $\#\left(V \cap \partial a_{0}\right)=0$ or 1. Put $V_{0}=V \backslash\left\{a_{0}\right\}$ If \# $\left(V n \partial a_{0}\right)=0$, $\widetilde{\mathrm{H}}_{\mathrm{V}}(\underline{\underline{x}})=\widetilde{\mathrm{H}}_{\mathrm{V}}(\underline{x})$. Therefore, by the assumption of induction:

$$
\begin{aligned}
\int e^{-\widetilde{\widetilde{H}}_{V}(\underline{x})} \mu_{V}\left(d x_{V}\right) & =\iint e^{-\widetilde{H}_{V}(\underline{x})} \mu_{V}\left(d x_{0}\right) \mu\left(d x_{a_{o}}\right) \\
& =\mu(x) \int e^{-\widetilde{ت}_{V}}{ }_{o}^{(\underline{x})} \mu_{V_{0}}\left(d x_{V_{0}}\right)<+\infty .
\end{aligned}
$$

If $V \cap \partial a_{o}=\{b\}$ and if, for example, $a_{o} \rightarrow b$, then

$$
\widetilde{H}_{V}(\underline{\underline{x}})=\widetilde{H}_{V_{0}}(\underline{\underline{x}})+F_{a_{0}, b}\left(x_{a_{o}}, x_{b}\right)
$$

Therefore,

$$
\begin{aligned}
& \int e^{\left.-\widetilde{\widetilde{H}}_{V}(\underline{x})_{\mu_{V}}\left(d x_{V}\right)=\iint e^{-\widetilde{\widetilde{H}}_{V}(\underline{x})}-F_{a_{o}}, b\left(x_{a_{o}}, x_{b}\right)_{\mu\left(d x_{a_{o}}\right)}\right) \mu_{V_{o}}\left(d_{x_{V}}\right)} \\
& \leqq \sup _{x} \int e^{-\mathrm{F}_{a_{0}}, b\left(x_{a_{0}}, x\right)} \mu\left(d x_{a_{0}}\right) \int e^{-\widetilde{\widetilde{H}}_{V}}{ }_{0}^{(\underline{x})} \mu_{V_{0}}\left(d x_{V_{0}}\right)<+\infty .
\end{aligned}
$$

In the following we consider only admissible potentials without mentioning.

Put

$$
q_{V, x_{\partial V}}^{F}\left(x_{V}\right)=E\left(V, x_{\partial V}\right)^{1} e^{-H_{V}^{F}(\underline{\underline{x}})}
$$

which is a probability density on $\left(X^{V}, \mu_{V}\right)$. We call $q_{V, x_{\partial V}}^{F}$ conditional Gibbs density. We remark that $q_{V, x_{\partial V}}^{F}=q_{V, x_{\partial V}}^{F^{\prime}}$ for all finite subset V and for a.a. $\left(\mu_{\partial V}\right) x_{\partial V}$, if and only if $F \cong F^{\prime}$. Definition ([2], [8]). A probability measure P on ($\Omega, \mathrm{B}_{\Omega}$) is called Gibbs distribution with a potential F, if for each finite subset V of T, conditional probability distribution $P\left(\mid B_{V} c\right)$ relative to $B_{V} c$ is absolutely continuous with respect to μ_{V} and

$$
\frac{\mathrm{dP}\left(\mid \mathrm{B}_{\mathrm{V}} \mathrm{c}\right)}{\mathrm{d} \mu_{V}}=\mathrm{q}_{V, x_{\partial V}}^{\mathrm{F}} \quad \text { a.e. }(\mathrm{P})
$$

Let $G(F)$ be the set of Gibbs distributions with the potential F.
3. Markov chains on the directed tree T. Let $p(x, y)$ be a positive transition density on (X, B, μ) and let $h(x)$ be the invariant probability density of $p(x, y)$. Put

$$
\hat{p}(x, y)=h(y) p(y, x) h(x)^{-1},
$$

which is called reversed transition density of p. We say that p is reversible if $\mathrm{p}=\hat{\mathrm{p}}$.

Let V be a connected finite subset of T. Let us introduce the second direction \mapsto in V. Fix any $a_{o} \epsilon V$. If $a-b$ and there exists a chain $a_{0} a_{1} \cdots a_{k} a \quad b$, we write $a \mapsto b$ or $b \nleftarrow a$. In particular, $a_{o}{ }^{\mapsto}$ a if $a_{o}-a$. We remark that if $a-b \in V$, either $a \not \leftrightarrow b$ or $a \nleftarrow b$. Put

$$
\begin{aligned}
& P_{V}\left\{\omega \in \Omega ; x_{V}(\omega) \in E\right\}=\int_{E} p_{V}\left(x_{V}\right) \mu_{V}\left(d x_{V}\right) \text { for } E \in B_{V} \text {. }
\end{aligned}
$$

It is easy to see that p_{V} does not depend on the choice of the centre a_{o} and that $\left\{P_{V}\right\}$ is a consistent cylinder measure. By Kolmogorov's extension theorem, $\left\{\mathrm{P}_{\mathrm{V}}\right\}$ extends to a measure p on $\left(\Omega, B_{\Omega}\right)$. We identify the measure p with its transition density $p(x, y)$.

Definition. A measure p constructed above is called Spitzer's Markov chain with a potential F if $p \in G(F)$. Denote by $M(F)$ the set of Spitzer's Markov chains with the potential F.

Theorem 1. A transition density $p=p(x, y)$ belongs to $M(F)$, if and only if $p(x, y)$ has the expression;

$$
p(x, y)=\lambda(s, n) u(x)^{-1} u(y)^{s} v(y)^{n-1} e^{-F(x, y)},
$$

where $\lambda(s, n)$ is the Perron-Frobenius eigenvalue of the kernel $e^{-F(x, y)}$ if $s=n=1$, and $\lambda(s, n)=1$ if otherwise, and u and v are positive measurable functions satisfying

$$
(*)\left\{\begin{array}{l}
u(x)=\lambda(s, n) \int_{X} e^{-F(x, y)} u(y)^{s} v(y)^{n-1} \mu(d y) \\
v(x)=\lambda(s, n) \int_{X} e^{-F(y, x)_{u(y)}^{s-1} v(y)^{n} \mu(d y)} \\
\int_{X} u(x)^{s} v(x)^{n}{ }_{\mu(d x)<+\infty}
\end{array}\right.
$$

The invariant probability density $h(x)$ has the form;

$$
h(x)=c u(x)^{s} v(x)^{n}
$$

where c is a normalizing constant.
Proof. 1°. Assume $p(x, y) \in M(F)$. Let $a_{i} \rightarrow a(1 \leq i \leq n)$ and $a_{j}^{\prime} \leftarrow a(1 \leq j \leq s)$ as before. Choose a as the centre of $\left\{a, a_{1}, a_{2}, \cdots\right.$, $\left.a_{n}, a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{s}^{\prime}\right\}$ in the definition of the direction \mapsto. We have

$$
\begin{aligned}
q_{a, x_{\partial a}}(x) & =\Xi\left(a, x_{\partial a}\right)^{-1} \exp \left\{\sum_{i=1}^{n} F\left(x_{a_{i}}, x\right)-\sum_{j=1}^{s} F\left(x, x_{a}\right)\right\} \\
& =Z\left(x_{\partial a}\right)^{-1} h(x) \prod_{i=1}^{n} \hat{p}\left(x, x_{a_{i}}\right) \prod_{j=1}^{s} p\left(x, x_{a_{j}}\right)
\end{aligned}
$$

where $Z\left(x_{\partial a}\right)=\operatorname{Sh}(x) \underset{i=1}{n} \hat{p}\left(x, x_{a_{i}}\right) \underset{j=1}{s} p\left(x, x_{a_{j}^{\prime}}\right) \mu(d x)$. Put $U(x, y)=$ $p(x, y) e^{F(x, y)}$. Then,

$$
\begin{aligned}
& Z\left(x_{\partial a}\right)^{-1} h(x) \underset{i=1}{n} \hat{p}\left(x, x_{a_{i}}\right) \underset{j=1}{\prod_{i=1}^{n} p}\left(x, x_{a}^{\prime}\right) \\
= & Z\left(x_{\partial a}\right)^{-1} \underset{i=1}{n} h\left(x_{a_{i}}\right) h(x)^{1-n} \underset{i=1}{n} U\left(x_{a_{i}}, x\right) \underset{j=1}{s} U\left(x, x_{a_{j}}\right) \times \\
& x \exp \left\{\quad \sum_{i=1}^{n} F\left(x_{a_{i}}, x\right) \quad \sum_{j=1}^{s} F\left(x, x_{a!}\right)\right\} .
\end{aligned}
$$

Consequently, $W \equiv h(x)^{1-n} \underset{\prod_{i=1}^{n}}{n} U\left(x_{a_{i}}, x\right) \underset{j=1}{s} U\left(x, x_{a_{j}^{\prime}}\right)$ does not depend on x .

Fix x_{0} in X and take arbitrary y from X. Let $x_{a_{i}}=x_{0}$ $(1 \leq i \leq n)$ and let $x_{a}^{\prime}=x_{j}$ or $y(1 \leq j \leq s)$. Put $v=\#\left\{j: x_{a_{j}^{\prime}}=y\right\}$.

We have

$$
\begin{aligned}
W & =h(x)^{1-n_{U}\left(x_{0}, x\right)^{n} U(x, y)^{\nu} U\left(x, x_{0}\right)^{s-v}} \\
& =h(x)^{1-n_{U}}\left(x_{0}, x\right)^{n_{U}\left(x, x_{0}\right)^{s}\left\{\frac{U(x, y)}{U\left(x, x_{0}\right)}\right\}^{\nu} .}
\end{aligned}
$$

Letting $v=0$, we see that $h(x)^{1-n_{U}}\left(x_{0}, x\right)^{n_{U}}\left(x, x_{0}\right)^{s}$ does not depend on x. Next, letting $v=1$, we see that $\frac{U(x, y)}{U\left(x, x_{0}\right)}$ does not depend on x, which we denote by $V(y)$. Putting $U(x)=U\left(x, x_{0}\right)$, we have $U(x, y)=U(x) V(y)$. Therefore, $p(x, y)=U(x) V(y) e^{-F(x, y)}$ and $c_{1} \equiv h(x)^{1-n} U(x)^{s} V(x)^{n}$ does not depend on x.
Case, $\mathrm{n}=1$. Put

$$
u(x)=\left\{\begin{array}{l}
U(x)^{-1}, \text { if } s=1, \\
\frac{1}{c_{1}-1} U(x)^{-1}, \text { if } s \geq 2
\end{array}\right.
$$

From $c_{1}=U(x)^{s} V(x)$, it follows that

$$
V(x)=c_{1} U(x)^{-s}=\left\{\begin{array}{l}
c_{1} u(x), \text { if } s=1 \\
c_{1} \frac{1}{s-1} u(x)^{s}, \text { if } s \geqq 2
\end{array}\right.
$$

We have

$$
\begin{aligned}
p(x, y) & =U(x) V(y) e^{-F(x, y)} \\
& =\left\{\begin{array}{l}
c_{1} u(x)^{1} u(y) e^{-F(x, y)}, \text { if } s=1 \\
u(x)^{-1} u(y)^{s} e^{-F(x, y)},
\end{array} \text { if } s \geqq 2\right.
\end{aligned}
$$

The equality $\int p(x, y) \mu(d y)=1$ implies that

$$
u(x)= \begin{cases}c_{1} \int e^{-F(x, y)} u(y) \mu(d y), & \text { if } s=1 \\ \int e^{-F(x, y)} u(y) s_{\mu}(d y), & \text { if } s \geqq 2\end{cases}
$$

Since $u(x)>0, c_{1}$ is the Perron-Frobenius eigenvalue $\lambda(1,1)$ of $e^{-F(x, y)}$. Thus we have

$$
\begin{aligned}
& p(x, y)=\lambda(s, 1) u(x)^{-1} u(y)^{s} e^{-F(x, y)} \\
& u(x)=\lambda(s, 1) \int e^{-F(x, y)} u(y)^{s} \mu(d y)
\end{aligned}
$$

Put $v(x)=u(x)^{-S} h(x)$. The equality $h(x)=\int h(y) p(y, x) \mu(d y)$ implies $v(x)=\lambda(s, 1) \int e^{-F(y, x)} u(y)^{s-1} v(y) \mu(d y)$.

From $\int h d \mu=1$, it follows $\int u^{s} v d \mu=1$. Thus, the proof is completed in case $\mathrm{n}=1$.
Cleted in case $n=1$. $n \geqq 2$. Put $u(x)=U(x) l_{\text {and }} \quad v(y)=\left\{U(y)^{s} V(y)\right\}^{\frac{1}{n-1}}$, i.e.,

$$
U(x)=u(x)^{1}, V(y)=u(y)^{s} v(y)^{n-1}
$$

Consequently, $p(x, y)=u(x)^{1} u(y)^{s} v(y)^{n-1} e^{-F(x, y)}$. The equality $\rho p(x, y) \mu(d y)=1$ means

$$
u(x)=\int e^{-F(x, y)} u(y)^{s} v(y)^{n-1} \mu(d y)
$$

On the other hand,

$$
\begin{aligned}
c_{1} & =h(x)^{1-n_{U(x)^{s}}^{s} v(x)^{n}} \\
& =\left\{h(x)^{1} u(x)^{s} v(x)^{n}\right\}^{n-1}
\end{aligned}
$$

which means $h(x)=c_{2} u(x)^{s} v(x)^{n}$ with a constant c_{2}. The equality $\int h d \mu=1$ implies $\int u^{s} v^{n} d \mu<+\infty$. From $h(x)=\int h(y) p(y, x) \mu(d y)$,

$$
v(x)=\int e^{F(y, x)} u(y)^{s-1} v(y)^{n} \mu(d y)
$$

The proof is completed in case $n \geqq 2$.
2°. Assume conversely that positive functions u and v satisfy (*). Put

$$
\begin{aligned}
& p(x, y)=\lambda(s, n) u(x)^{-1} u(y)^{s} u(y)^{n-1} e^{-F(x, y)} \\
& h(x)=c u(x)^{s} v(x)^{n} \quad \text { with } c=\left(\int u^{s} v^{n} d \mu\right)^{-1}
\end{aligned}
$$

The reversed transition density $\hat{p}(x, y)=h(y) p(y, x) h(x)^{1}$ is equal to

$$
\hat{p}(x, y)=\lambda(s, n) v(x)^{-1} v(y)^{n} u(y)^{s-1} e^{-F(y, x)} .
$$

Let V be a connected finite subset of T and $f i x a_{0} \in V$ as the centre of $V \mathcal{V}$ in the definition of the direction \mapsto. We have

$$
\begin{aligned}
& =c \lambda(s, n)^{\#\{a-b \in V \cup \partial V\}} \underset{=}{A}\left(V, x_{V u \partial V}\right)^{1} \exp \left\{-\underset{\substack{a, b \in V \cup \partial V \\
a \rightarrow b}}{\sum} F\left(x_{a}, x_{b}\right)\right\},
\end{aligned}
$$

where we put

$$
\begin{aligned}
& \triangleq\left(V, x_{V \cup \partial V}\right)^{-1}=u\left(x_{a_{0}}\right)^{s} v\left(x_{a_{0}}\right)^{n} \underset{\substack{a, b \in V \cup \partial V \\
a \not b b \\
a \rightarrow b}}{ }\left\{u\left(x_{a}\right)^{-1} u\left(x_{b}\right)^{s} v\left(x_{b}\right)^{n-1}\right\} \times \\
& \times \\
& \underset{\substack{a, b \in V u \partial V \\
a \mapsto b \\
a \leftarrow b}}{\prod_{a}}\left\{v\left(x_{a}\right)^{-1} v\left(x_{b}\right)^{n} u\left(x_{b}\right)^{s-1}\right\} .
\end{aligned}
$$

As usual, let $a_{i} \rightarrow a_{0}(1 \leq i \leq n)$ and $a_{j}+a_{o}(1 \leq j \leq s)$. Remark that
$\partial a_{0}=\left\{a_{1}, \ldots, a_{n}, a_{1}^{\prime}, \ldots, a_{s}^{\prime}\right\} \subset$ VuaV. We have

$$
\triangleq\left(v, x_{V \cup \partial V}\right)^{1}=u\left(x_{a_{0}}\right)^{s} v\left(x_{a_{0}}\right)^{n} \prod_{j=1}^{s}\left\{u\left(x_{a_{0}}\right)^{-1} u\left(x_{a_{j}^{\prime}}\right)^{s} v\left(x_{a_{j}^{\prime}}\right)^{n-1}\right\} \times
$$

$\times \prod_{i=1}^{n}\left\{v\left(x_{a_{0}}\right)^{\left.l_{v}\left(x_{a_{i}}\right)^{n} u\left(x_{a_{i}}\right)^{s-1}\right\}} \underset{\substack{a, b \in V \cup \partial V, a \neq a_{0} \\ a \mapsto b \\ a \rightarrow b}}{\prod}\left\{u\left(x_{a}\right)^{-1} u\left(x_{b}\right)^{s} v\left(x_{b}\right)^{n-1}\right\} \times\right.$
$\times \underset{\substack{a, b \in V \cup \partial V, a \neq a \\ a b b \\ a+b}}{\prod_{0}\left\{v\left(x_{a}\right)^{1} v\left(x_{b}\right)^{n_{u}} u\left(x_{b}\right)^{s-1}\right\}}$
$=\prod_{j=1}^{s}\left\{u\left(x_{a_{j}^{\prime}}\right)^{s} v\left(x_{a_{j}^{\prime}}\right)^{n-1}\right\} \underset{i=1}{n}\left\{v\left(x_{a_{i}}\right)^{n} u\left(x_{a_{i}}\right)^{s-1}\right\} \times$
$x \underset{\substack{a, b \in V \cup \partial U, a \neq a \\ a \mapsto b \\ a \rightarrow b}}{\pi}\left\{u\left(x_{a}\right)^{-1} u\left(x_{b}\right)^{s} v\left(x_{b}\right)^{n-1}\right\} \underset{\substack{a, b \in V U \partial V, a \neq a_{o} \\ a \vdash b \\ a \leftarrow b}}{I}\left\{v\left(x_{a}\right)^{-1} v\left(x_{b}\right)^{n} u\left(x_{b}\right)^{s-}\right.$

Therefore, $\triangleq\left(V, x_{V u \partial V}\right)^{-1}$ does not depend on x_{a}. Since $\triangleq\left(V, x_{V u \partial V}\right)^{-1}$ does not depend on the choice of the centre $a_{0} \epsilon V$ of the direction \mapsto, it does not depend on x_{V}. Thus, we have $p_{V \cup \partial V}\left(x_{V u \partial V}\right)=$ $=\hat{\hat{\Delta}}\left(V, x_{\partial V}\right)^{-1} \exp \left\{-\underset{\substack{a, b \in V U \partial V \\ a \rightarrow b}}{\sum} F\left(x_{a}, x_{b}\right)\right\}$, where $\hat{\hat{E}}\left(V, x_{\partial V}\right)$ depends only on $x_{\partial V}$. It is easy to see that the extension of the cylinder measure $\left\{p_{V U \partial V}\right\}$ belongs to $G(F)$. The proof of Theorem 1 is completed.

We remark that the expression of $p(x, y)$ in Theorem 1 is not unique. If u and v satisfy ($*$), then also $\hat{u}=c^{n-1} u$ and $\hat{v}=c^{-(s-1)} v$ satisfy (*) and determine the same $p(x, y)$ as u and v. In order to make the expression unique, we need summability of $u^{s} v^{n-1}$ and $u^{s-1} v^{n}$, which does not follow from $\int u^{s} v^{n} d \mu<+\infty$.

Lemma 4. Put $X(x, M)=\{y \in X ; F(x, y) \leqq M\}$ and $X^{*}(x, M)=\{y \in X ; F(y, x) \leqq M\}$. We assume that there exist M and an integer k such that $(A, 3)\left\{\begin{array}{l}\mu^{k}\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right) ; \mu\left(X \backslash \underset{i=1}{u} X\left(x_{i}, M\right)\right)=0\right\}>0, \\ \mu^{k}\left\{\left(x_{1}, x_{2}, \quad ., x_{k}\right) ; \mu\left(X \backslash \underset{i=1}{u} X^{*}\left(x_{i}, M\right)\right)=0\right\}>0 .\end{array}\right.$

If u and v satisfy (*) in Theorem 1 , it holds that

$$
\int \mathrm{u}^{\mathrm{s}} \mathrm{v}^{\mathrm{n}-1} \mathrm{~d} \mu<+\infty \quad \text { and } \int \mathrm{u}^{\mathrm{s}-1} \mathrm{v}^{\mathrm{n}} \mathrm{~d} \mu<+\infty
$$

Proof. Since $u(x)=\int e^{-F(x, y)} u(y)^{s} v(y)^{n-1} \mu(d y) \geqq e^{-M}{ }_{f} u(y)^{s} v(y)^{n-1} \mu(d y)$, $\left.\int u^{s} v^{n-1} d \mu \leqq \sum_{i=1}^{k} \int_{X} u^{s} v^{n-1} d \mu, M\right) \quad e^{M} \sum_{i=1}^{k} u\left(x_{i}\right)<+\infty$.

Theorem 1'. We assume that there exist M and an integer k such that ($\mathrm{A}, 3$) holds. A transition density $\mathrm{p}=\mathrm{p}(\mathrm{x}, \mathrm{y})$ belongs to $M(F)$, if and only if $p(x, y)$ has the expression:

$$
p(x, y)=\lambda(s, n) u(x)^{-1} u(y)^{s} v(y)^{n-1} e^{-F(x, y)}
$$

where u and v are positive measurable functions satisfying

$$
(*) \cdot\left\{\begin{array}{l}
u(x)=\lambda(s, n) \int e^{-F(x, y)} u(y)^{s} v(y)^{n-1} \mu(d y) \\
v(x)=\lambda(s, n) \int e^{-F(y, x)} u(y)^{s-1} v(y)^{n} \mu(d y) \\
\int u(x)^{s} v(x)^{n-1} \mu(d x)=\int u(x)^{s-1} v(x)^{n} \mu(d x) \\
\int u(x) \mu(d x)=\int v(x) \mu(d x)=1, \text { if } s=n=1 \\
\int u(x)^{s} v(x)^{n} \mu(d x)<+\infty .
\end{array}\right.
$$

The expression is unique.

Proof. By Theorem 1, a transition density $p(x, y) \in M(F)$ has the following expression with \hat{u} and \hat{v} satisfying (*)

$$
p(x, y)=\lambda(s, n) \hat{u}(x)^{l} \hat{u}(y)^{s \hat{v}}(y)^{n-1} e^{-F(x, y)} .
$$

In case $n=s=1$, functions $u=(f \hat{u} d \mu)^{-1} \hat{u}$ and $v=(\rho \hat{v} d \mu)^{-1} \hat{v}$ satisfy (*)', and in case $s+n>2$, functions $u=c^{n-1} \hat{u}$ and $v=c{ }^{(s-1)} \hat{v}$ with $c=\left\{\left(\int_{u^{s}-1} \hat{v}^{n} d \mu\right)\left(\int \hat{u}^{\mathrm{S}} \hat{\mathrm{v}}^{\mathrm{n}-1} d \mu\right)^{-1}\right\}^{\frac{1}{\mathrm{~s}+\mathrm{n}-2}}$ satisfy (*)'. In both cases, u and v determine the same $p(x, y)$ as \hat{u} and \hat{v}. Next, assume that

$$
\begin{aligned}
p(x, y) & =\lambda(s, n) u(x)^{1} u(y)^{s} v(y)^{n-1} e^{-F(x, y)} \\
& =\lambda(s, n) \tilde{u}(x)^{1} \tilde{u}(y)^{s} \tilde{v}(y)^{n-1} e^{-F(x, y)},
\end{aligned}
$$

where u, v and \tilde{u}, \tilde{v} satisfy (*)'. We have $\tilde{u}(x) u(x)^{-1}=$ $\tilde{u}(y)^{s} u(y)^{-s} \tilde{v}(y)^{n-1} v(y)^{-(n-1)}$, which implies $u(x)=c \tilde{u}(x)$ in case $n=1$, and implies $u(x)=c \tilde{u}(x)$ and $v(x)=c^{-\frac{s-1}{n-1}} \tilde{v}(x)$ in case $n \geq 2$. From $\int u d \mu=\int \tilde{u} d \mu=1$ in case $s=n=1$, or from $\int u^{s} v^{n-1} d \mu=\int u^{s-1} v^{n} d \mu$ and $\int \tilde{u}^{s} \tilde{v}^{n-1} d \mu=\int \tilde{u}^{s-1} \tilde{v}^{n} d \mu$ in case $s+n>2$, it follows that $c=1$. Therefore the expression is unique.

In the following, we indentify a transition density $p(x, y)$ $\epsilon \mathrm{M}(\mathrm{F})$ with a pair (u, v) of positive solutions of (*)'. The set of pairs of positive solutions of (*)' is denoted also by M(F).

Theorem 2. The set $M(F)$ is not empty, either if
$(A, 4) \int e^{-F(x, y)} \mu(d y)$ and $\int e^{-F(y, x)} \mu(d y)$ do not depend on x, or if
$(A, 5) \quad \sup _{x}\left\{\int e^{-(n+s) F(x, y)_{\mu}(d y)}, \int e^{-(n+s) F(y, x)} \mu(d y)\right\}<+\infty$
and

$$
(A, 6) \quad \sup _{x}\left\{\int e^{(n+s)(n+s-2) F(x, y)} \mu(d y), \int e^{(n+s)(n+s-2) F(y, x)} \mu(d y)\right\}<+\infty
$$

Proof. We assume $(A, 4)$. Put $c_{1}=\int \mathrm{e}^{-\mathrm{F}(\mathrm{x}, \mathrm{y})_{\mu}(\mathrm{dy}) \text { and } c_{2}=}$
 follows $c_{1}=c_{2}$. In case $s=n=1, u(x)=v(x)=\mu(X)^{-1}$ is a positive solution of (*)'. In case $s+n>2, u(x)=v(x)$ $=c_{1}{ }^{\frac{1}{n+s-2}}$ is a positive solution of (*)'.

In order to look for positive solutions of (*)' under the assumptions $(A, 5)$ and $(A, 6)$, we apply theory of cones in a Banach space. In case $s=n=1$, (*)' is a system of linear equations with positive kernels. Such equations have positive eigenfunctions, if the kernels are square-integrable ([7]), which follows from ($\mathrm{A}, 5$). Therefore, it is enough to investigate only a case $s+n>2$. We first prove existence of positive solutions of (*)' under the assumptions $(A, 5)$ and $\sup _{x, y} F(x, y)<+\infty$ instead of $(A, 6)$. Let L be the set of pairs (u, v) of functions u and v such that $\|u\| \equiv\left\{\int|u(x)|^{n+s} \mu(d x)\right\}^{\frac{1}{n+s}}<+\infty$ and $\|v\| \equiv\left\{\int|v(x)|^{\left.n+s_{\mu}(d x)\right\}^{\frac{1}{n+s}}<+\infty}\right.$. If we put $\|(u, v)\|=\|u\|+\|v\|$ for $(u, v) \in L,(L,\|\cdot\|)$ becomes a Banach space. Put for $(u, v) \in L$

$$
\begin{aligned}
& A_{1}(u, v)(x)=\int e^{-F(x, y)_{u}}(y)^{s} v(y)^{n-1}{ }_{\mu(d y)} \\
& A_{2}(u, v)(x)=\int e^{-F(y, x)} u(y)^{s-1} v(y)^{n} \mu(d y) \\
& A(u, v)=\left(A_{1}(u, v), A_{2}(u, v)\right)
\end{aligned}
$$

Lemma 5. (Theorem 3.2 in Ch. 1 of Krasnosel'skii [6]). Under the assumption ($\mathrm{A}, 1$), A is a completely continuous mapping from L inte L .
put

$$
\begin{aligned}
& K_{1}=\left\{u(x)=\int e^{-F(x, y)} a(y) \mu(d y) ; a(y) \geqq 0,\|u\|<+\infty\right\}, \\
& K_{2}=\left\{v(x)=\int e^{-F(y, x)} b(y) \mu(d y) ; b(y) \geqq 0,\|v\|<+\infty\right\} .
\end{aligned}
$$

Let K be the closure of $K_{1} \times K_{2}$. We remark that K is a cone in $L_{\text {i }}$, i.e., K is closed and convex, $t K \subset K$ if $t \geq 0$, and (u, v) and $(-u,-v) \in K$ implies $(u, v)=0$. It is clear that $A(K) \subset K$.

Lemma 6. We assume $(A, 5)$ and $\sup _{x, y} F(x, y)<+\infty$. Then, there exists a positive constant c such that $u(x) \geqq c\|u\|$ and $v(x) \geqq c\|v\|$ for all $(u, v) \in K$ and for almost all $x \in X$.

Proof. Let $u(x)=\int e^{-F(x, y)} a(y) \mu(d y) \in K_{1}$. We have

$$
u(x) \geqq e^{-\sup _{x, y} F(x, y)} \rho a(y) \mu(d y)
$$

On the other hand, by Hölder's inequality

$$
u(x) \leqq\left(\int a d \mu\right)^{\frac{n+s-1}{n+s}}\left\{\int e e^{(n+s) F(x, y)} a(y) \mu(d y)\right\}^{\frac{1}{n+s}}
$$

Therefore,

$$
\begin{aligned}
\|u\|^{n+s} & \leqq\left(\int a d \mu\right)^{n+s-1} \iint e^{(n+s) F(x, y)} a(y) \mu(d x) \mu(d y) \\
& \leqq\left(\int a d \mu\right)^{n+s} \sup _{y} \int e^{-(n+s) F(x, y)_{\mu(d x)}} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& u(x) \geqq e^{-\sup _{x, y}} F(x, y) \int \operatorname{ad\mu } \\
& \geqq e^{-\sup _{x, y} F(x, y)}\left\{\sup _{y} \int e^{\left.(n+s) F(x, y)_{\mu}(d x)\right\}^{-\frac{1}{n+s}}\|u\| . ~ . ~ . ~}\right.
\end{aligned}
$$

Thus, there is a constant $c>0$ such that $u(x) \geqq c\|u\|$ and $v(x) \geqq$ $c\|v\|$ for $(u, v) \in K_{1} \times K_{2}$. Take any $(u, v) \in K$. There exists a sequence $\left(u_{n}, v_{n}\right) \in K_{1} \times K_{2}$ such that $\left\|\left(u_{n}, v_{n}\right)(u, v)\right\| \rightarrow 0$, i.e., $\left\|u_{n}-u\right\|$ and $\left\|v_{n}-v\right\| \rightarrow 0$. We can find a subsequence $\left\{n_{j}\right\}$ such that $u_{n_{j}}(x) \rightarrow u(x)$ and $v_{n_{j}}(x) \rightarrow v(x)$ for almost all $x \in X$. Since $\left\|u_{n_{j}}\right\| \rightarrow\|u\|$ and $\left\|v_{n_{j}}\right\| \rightarrow\|v\|$, we have $u(x) \geqq c\|u\|$ and $v(x) \geqq c\|v\|$.

Lemma 7. (Rothe [10], Krasnosel'skii [6]) Let $A=\left(A_{1}, A_{2}\right)$ be a completely continuous mapping from a cone $K \subset L$ into itself.
 there exists $\left(u_{0}, v_{0}\right) \in K$ such that $\left\|u_{0}\right\|=\left\|v_{0}\right\|=1$ and

$$
\left(u_{0}, v_{0}\right)=\left(\frac{A_{1}\left(u_{0}, v_{0}\right)}{\left\|A_{1}\left(u_{0}, v_{0}\right)\right\|} \frac{A_{2}\left(u_{0}, v_{0}\right)}{\left\|A_{2}\left(u_{0}, v_{0}\right)\right\|}\right) .
$$

Proof. Fix any $\left(\hat{u}_{0}, \hat{v}_{0}\right) \in K$ with $\hat{u}_{0} \neq 0$ and $\hat{v}_{o} \neq 0$. Put

$$
\begin{aligned}
& \hat{A}_{1}(u, v)=A_{1}(u, v)+(1-\|u\| \cdot\|v\|) \hat{u}_{o}, \\
& \hat{A}_{2}(u, v)=A_{2}(u, v)+(1-\|u\| \cdot\|v\|) \hat{v}_{0} .
\end{aligned}
$$

Let $\hat{K}=\{(u, v) \in K ;\|u\| \leq 1,\|v\| \leq 1\}$, which is bounded, closed and conex. Our assumption implies $\underset{(u, v) \in \hat{K}}{\inf }\left\|A_{1}(u, v)\right\|>0$ and $\inf _{(u, v) \in \hat{K}}\left\|A_{2}(u, v)\right\|>0$. Put again

$$
B_{1}(u, v)=\frac{\hat{A}_{1}(u, v)}{\left\|\hat{A}_{1}(u, v)\right\|}, B_{2}(u, v)=\frac{\hat{A}_{2}(u, v)}{\left\|\hat{A}_{2}(u, v)\right\|} .
$$

$B=\left(B_{1}, B_{2}\right)$ is a completely continuous mapping from \hat{K} into \hat{K}.

By Schauder's fixed point theorem, there exists (u_{0}, v_{0}) $\epsilon \hat{K}$ such that $\left(u_{0}, v_{0}\right)=B\left(u_{0}, v_{0}\right)$, i.e., $u_{0}=\frac{\hat{A}_{1}\left(u_{0}, v_{0}\right)}{\left\|\hat{A}_{1}\left(U_{0}, v_{0}\right)\right\|}$ and $v_{0}=\frac{\hat{A}_{2}\left(u_{0}, v_{0}\right)}{\left\|\hat{A}_{2}\left(u_{0}, v_{0}\right)\right\|}$ Since $\left\|u_{0}\right\|=\left\|v_{0}\right\|=1, \hat{A}_{1}\left(u_{0}, v_{0}\right)=A_{1}\left(u_{0}, v_{0}\right)$ and $\hat{A}_{2}\left(u_{0}, v_{0}\right)=A_{2}\left(u_{0}, v_{0}\right)$ Proof of Theorem 2 under the assumptions (A,5) and $\sup _{x} F(x, y)<+\infty$. By Lemma 6, we see that for $(u, v) \in K$

$$
\begin{aligned}
& A_{1}(u, v)(x) \geqq c^{s+n-1}\|u\|^{s}\|v\|^{n-1} \rho e^{-F(x, y)_{\mu}(d y)} \\
& A_{2}(u, v)(x) \geqq c^{s+n-1}\|u\|^{s-1}\|v\|^{n} \rho e^{-F(y, x)}{ }_{\mu}(d y)
\end{aligned}
$$

Hence, $\underset{\substack{\inf \\ \| u, v) \in K \\\|u=\| v \|=1}}{\left\|A_{1}(u, v)\right\|>0} \begin{aligned} & \inf _{\substack{(u, v) \in K \\\|u\|=\|v\|=1}}\left\|A_{2}(u, v)\right\|>0 .\end{aligned}$ there exists $\left(u_{0}, v_{0}\right) \in K$ with $\left\|u_{0}\right\|=\left\|v_{0}\right\|=1$ satisfying

$$
\begin{aligned}
& u_{0}=\left\|A_{1}\left(u_{0}, v_{0}\right)\right\|^{-1} A_{1}\left(u_{0}, v_{0}\right), \\
& v_{0}=\left\|A_{2}\left(u_{0}, v_{0}\right)\right\|^{-1} A_{2}\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Positivity of u_{0} and v_{o} follows from $\left(u_{0}, v_{0}\right) \in K$.
On the other hand, we have

$$
\begin{aligned}
& \int u_{o}^{s} v_{o}^{n} d \mu=\int u_{o}(x)^{s-1} v_{o}(x)^{n} u_{o}(x) \mu(d x) \\
& =\left\|A_{1}\left(u_{0}, v_{0}\right)\right\|^{-1} f u_{0}(x)^{s-1} v_{0}(x)^{n} A_{1}\left(u_{0}, v_{0}\right)(x) \mu(d x) \\
& =\left\|A_{1}\left(u_{0}, v_{0}\right)\right\|^{-1} \iint u_{0}(x)^{s-1} v_{o}(x)^{n} e^{-F(x, y)_{u_{0}}(y)^{s} v_{o}(y)^{n-1} \mu(d x) \mu(d y)} \\
& \int u_{o}^{s} v_{o}^{n} d \mu= \\
& =\left\|A_{2}\left(u_{0}, v_{0}\right)\right\|^{-1} \iint u_{0}(y)^{s-1} v_{0}(y)^{n} e^{-F(y, x)} u_{0}(x)^{s} v_{o}(x)^{n-1}{ }_{\mu}(d x) \mu(d y)
\end{aligned}
$$

Integrals above are finite, since

$$
\int u_{o}^{s} v_{o}^{n} d \mu \leqq\left(\int u_{o}^{n+s} d \mu\right)^{\frac{s}{n+s}}\left(\int v_{o}^{n+s} d \mu\right)^{\frac{n}{n+s}}<+\infty .
$$

Consequently, $\left\|A_{1}\left(u_{o}, v_{o}\right)\right\|=\left\|A_{2}\left(u_{o}, v_{o}\right)\right\|$. Put

$$
\begin{aligned}
& u(x)=\left\{\left\|A_{1}\left(u_{0}, v\right)\right\|^{-1}\left(\frac{\rho u_{o}^{s-1} v_{o}^{n} d \mu}{\rho u_{0}^{s} v_{o}^{n-1} d \mu}\right)^{n-1}\right\}^{\frac{1}{n+s-2}} u_{o}(x), \\
& v(x)=\left\{\left\|A_{2}\left(u_{o}, v_{o}\right)\right\|^{1}\left(\frac{\int u_{0}^{s} v_{o}^{n-1} d \mu}{\rho u_{0}^{s-1} v_{o}^{n} d \mu}\right)^{s-1}\right\}^{\frac{1}{n+s-2}} v_{o}(x) .
\end{aligned}
$$

It is easy to see that (u, v) is a positive solution of (*)'. Proof of Theorem 2 under the assumptions $(A, 5)$ and $(A, 6)$. Let $F_{k}(x, y)=\min \{F(x, y), k\}$ for $k=1,2, \cdots$. Let $\left(u_{k}, v_{k}\right)$ be a positive solution of (*)' with the potential F_{k}. We have

Lemma 8. Under the assumptions ($\mathrm{A}, 5$) and (A,6), there exist positive constants c_{1} and c_{2} such that $c_{1} \leqq u_{k}(x), v_{k}(x) \leqq c_{2}$ for all k and almost all $\mathrm{x} \in \mathrm{X}$.

Proof. Remark that

$$
\begin{aligned}
& \sup _{k, x}\left\{\int e^{-(n+s) F_{k}(x, y)} \mu(d y), \int e^{-(n+s) F_{k}(y, x)} \mu(d y)\right\}<+\infty, \\
& \sup _{k, x}\left\{\int e^{(n+s)(n+s-2) F_{k}(x, y)} \mu(d y), \int e^{(n+s)(n+s-2) F_{k}(y, x)} \mu(d y)\right\}<+\infty
\end{aligned}
$$

The proof of Lemma 8 is essentially the same as that of Lemma 12.

Since $u_{k}^{\prime} s$ and $v_{k}^{\prime} s$ are bounded, we can extract a subsequence $\cdot\left\{k_{j}\right\}$ such that $u_{k_{j}}, v_{k_{j}}, u_{k_{j}}^{s} v_{k_{j}}^{n-1}$ and $u_{k_{j}}^{s-1} v_{k_{j}}^{n}$ are weakly convergent in L_{2} as $j \rightarrow \infty$. Put $u=w-\lim u_{k_{j}}, v=w-\lim v_{k_{j}}$, and $\hat{u}=w-1 i m u_{k_{j}}^{s} v_{k_{j}}^{n-1}$. Remark $c_{1} \leqq u(x), v(x) \leqq c_{2}$ for almost all $x \in X$. Take an arbitrary bounded measurable function f on X. We have

$$
\begin{aligned}
& \int f(x) u_{k_{j}}(x) \mu(d x)=\iint f(x) e^{-F_{k_{j}}(x, y)} u_{k_{j}(y)} \mathbf{s}_{v_{k}}(y)^{n-1_{\mu}(d x) \mu(d y)} \\
& =\iint f(x) e^{-F(x, y)} u_{k_{j}}(y)^{s} v_{k_{j}}(y)^{n-1}{ }_{\mu}(d x) \mu(d y) \\
& +\iint f(x)\left\{e^{-F_{k_{j}}(x, y)}-e^{-F(x, y)}\right\} u_{k_{j}}(y)^{s} v_{k_{j}}(y)^{n-1}{ }_{\mu}(d x) \mu(d y) .
\end{aligned}
$$

Since $g(y)=\int f(x) e^{-F(x, y)} \mu(d x)$ is a bounded function of y, the first term of the right-hand side converges to

$$
\int g(y) \hat{u}(y) \mu(d y)=\iint f(x) e^{-F(x, y) \hat{u}}(y) \mu(d x) \mu(d y)
$$

As for the second term, we have

$$
\begin{aligned}
& \left.\mid \iint f(x)\left\{e^{-F_{k_{j}}(x, y)}-e^{-F(x, y)}\right\}_{u_{k}(y)^{s} v_{k_{j}}(y)^{n-1} \mu(d x) \mu(d y) \mid}^{\leqq\|f\|_{\infty} c_{2}^{s+n-1} \iint\left\{e^{-F_{k_{j}}}(x, y)\right.}-e^{-F(x, y)}\right\} \mu(d x) \mu(d y) .
\end{aligned}
$$

The right-hand side converges to 0 as $j \rightarrow \infty$, since $0 \leqq e^{-F} k_{j}-e^{-F}$ $\leqq e^{-k} j$. Therefore, we have

$$
\begin{aligned}
\int f(x) u(x) \mu(d x) & =\lim _{j \rightarrow \infty} \int f(x) u_{k}(x) \mu(d x) \\
& =\iint f(x) e^{-F(x, y)} \hat{u}(y) \mu(d x) \mu(d y),
\end{aligned}
$$

from which it foilows

$$
u(x)=\int e^{F(x, y)} \hat{u}(y) \mu(d y) \quad \text { a.e. } x
$$

Therefore,

$$
\begin{aligned}
u_{k_{j}}(x)-u(x)= & \int e^{-F_{k}(x, y)} u_{j}(y)^{s} v_{k_{k}(y)^{n-1}}^{\mu(d y)}-\int e^{-F(x, y)} \hat{u}(y) \mu(d y) \\
= & \int\left\{e^{-F_{k_{j}}(x, y)}-e^{-F(x, y)}\right\}_{u_{k}(y)^{s} v_{k_{j}}(y)^{n-1}}^{\mu(d y)} \\
& +\int e^{-F(x, y)}\left\{u_{\left.k_{j}(y)^{s} v_{k_{j}}(y)^{n-1} \hat{u}(y)\right\} \mu(d y)} \quad\right.
\end{aligned}
$$

The first integral converges to 0 as $j \rightarrow \infty$ for all x . The second integral also converges to 0 , because $e^{-F(x, y)}$ belongs to $L_{(n+s)} \subset L_{2}=L_{2}^{*}$ as a function of y by the assumption ($A, 5$). Consequently, $\lim _{j \rightarrow \infty} u_{k}(x)=u(x)$ for almost all x. By the same argument, we have $\lim _{j \rightarrow \infty} v_{k_{j}}(x)=v(x)$. Letting $j \rightarrow \infty$ in

$$
\begin{aligned}
& u_{k_{j}}(x)=\int e^{-F_{k_{j}}^{(x, y)}} u_{k_{j}(y)^{s} v_{k_{j}}(y)^{n-1}}^{\mu(d y)}, \\
& v_{k_{j}}(x)=\int e^{-F_{k}(y, x)} u_{k_{j}(y)^{s-1}}^{v_{k}(y)^{n}}{ }_{\mu(d y)},
\end{aligned}
$$

we conclude by Lebesgue's convergence theorem that

$$
\begin{aligned}
& u(x)=\int e^{-F(x, y)} u(y)^{s} v(y)^{n-1} \mu(d y) \\
& v(x)=\int e^{-F(y, x)} u(y)^{s-1} v(y)^{n} \mu(d y)
\end{aligned}
$$

4. Reversibility of Markov chains. We say that $p=p(x, y)$ is reversible if $p=\hat{p}$, which means $h(x) p(x, y)=h(y) p(y, x)$. We prove the following

Theorem 3. 1) If there exists a reversible chain in $M(F)$, the potential F is symmetrizable.
2) Let F be a symmetric potential. Assume ($A, 3$) in Lemma 4 and assumme

$$
(A, 5) \sup _{x} \int e^{-(n+s) F(x, y)} \mu(d y)<+\infty
$$

Then, all chains in $M(F)$ are reversible.

Proof. 1) Let p be a reversible chain in M(F). By Theorem 1, we have $p(x, y)=\lambda(s, n) u(x)^{-1} u(y)^{s} v(y)^{n-1} e^{-F(x, y)}$ and $h(x)=$ $c u(x)^{s} v(x)^{n} \quad$ From $h(x) p(x, y)=h(y) p(y, x)$, it follows $v(x) u(x)^{-1} e^{-F(x, y)}=v(y) u(y)^{-1} e^{-F(y, x)}$, which means $F(x, y)-F(y, x)=\log v(x) u(x)^{-1}-\log v(y) u(y)^{-1}$. By Lemma 2, F is symmetrizable.
2) Let $p=(u, v) \in M(F)$. Put $K(x, y)=e^{-F(x, y)} u(y)^{s-1} v(y)^{n-1}$. We have, by Theorem 1 ,

$$
\begin{aligned}
& u(x)=\lambda(s, n) \int K(x, y) u(y) \mu(d y), \\
& v(x)=\lambda(s, n) \int K(x, y) v(y) \mu(d y)
\end{aligned}
$$

Since $\sup _{x} u(x)<+\infty$ and $\sup _{x} v(x)<+\infty$ as will be shown in the following Lemma 9, we have

$$
\begin{aligned}
& \iint K(x, y)^{2} \mu(d x) \mu(d y) \\
\leqq & \|u\|_{\infty}^{2(s-1)}\|v\|_{\infty}^{2(n-1)} \iint e^{-2 F(x, y)_{\mu}(d x) \mu(d y)} \\
\leqq & \|u\|_{\infty}^{2(s-1)}\|v\|_{\infty}^{2(n-1)} \int_{\mu}(d x)\left\{\int e^{-(n+s) F(x, y)} \mu(d y)\right\}^{\frac{2}{n+s}} \mu(x)^{\frac{n+s-2}{n+s}} \\
\leqq & \|u\|_{\infty}^{2(s-1)}\|v\|_{\infty}^{2(n-1)}\left\{\sup _{x} \int e^{-(n+s) F(x, y)} \mu(d y)\right\}^{\frac{2}{n+s}} \mu(x) \frac{2(n+s-1)}{n+s}
\end{aligned}<+\infty .
$$

The kernel $K(x, y)$ being square-integrable, positive eigenfunctions in L_{2} are unique up to a multiple of constants [7]. Consequently, there is a constant c_{1} such that $u(x)=c_{1} v(x)$. From the equality $\int u s \mu=\int v d \mu=1$ in case $s=n=1$, or from $\int u^{s} v^{n-1} d \mu=\int u^{s-1} v^{n} d \mu$ in case $s+n>2$, it follows $c_{1}=1$, i.e., $u=v$. Therefore we have $p(x, y)=\lambda(s, n) u(x)^{1} u(y)^{s+n-1} e^{-F(x, y)}$ and $h(x)=c u(x)^{s+n}$, which implies $h(x) p(x, y)=h(y) p(y, x)$.

Corollary. Assume that a symmetric potential F satisfies ($\mathrm{A}, 3$) and ($A, 5$). Then, a transition density $p=p(x, y)$ belongs to $M(F)$, if and only if $p(x, y)$ has the expression:

$$
p(x, y)=\lambda(s, n) u(x)^{1} u(y)^{n+s-1} e^{-F(x, y)} ;
$$

where u is a positive measurable function satisfying

$$
(* *)\left\{\begin{array}{l}
u(x)=\lambda(s, n) \int e^{-F(x, y)} u(y)^{s+n-1} \mu(d y) \\
\int u(x) \mu(d x)=1, \text { if } s=n=1 \\
\int u(x)^{s+n} \mu(d x)<+\infty
\end{array}\right.
$$

The invariant probability density $h(x)$ has the form:

$$
h(x)=c u(x)^{s+n}
$$

where c is a normalizing constant. The expression is unique.

Lemma 9. We assume $(A, 3)$ and ($A, 5$). Then, $\underset{x}{\sup } u(x)<+\infty$ and $\sup _{x} v(x)<+\infty$ for each $(u, v) \in M(F)$.

Proof. Put $\sigma=\int u^{s} v^{n-1} d \mu=\int u^{s-1} v^{n} d \mu<+\infty$. We have by Hölder's inequality

$$
\begin{aligned}
u(x) & =\int e^{-F(x, y)} u(y)^{s} v(y)^{n-1} l_{\mu(d y)} \\
& \leqq \sigma^{\frac{n+s-1}{n+s}}\left\{\int e^{-(n+s) F(x, y)} u(y)^{s} v(y)^{\left.n-1_{\mu}(d y)\right\}^{\frac{1}{n+s}}}\right.
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\int u^{s+n} d \mu & \leqq \sigma^{n+s-1} \iint e^{-(n+s) F(x, y)} u(y)^{s} v(y)^{n-1} \mu(d y) \mu(d y) \\
& \leqq \sigma^{n+s} \sup _{x} \int e^{(n+s) F(x, y)_{\mu}(d y)<+\infty} .
\end{aligned}
$$

By the same argument, we have

$$
\int v^{s+n} d \mu \leqq \sigma^{n+s} \sup _{x} \int e(n+s) F(y, x) \mu(d y)<+\infty
$$

We have, by Hölder's inequality again,

$$
\begin{aligned}
& u(x) \\
& \leqq\left\{\int e^{\left.-(n+s) F(x, y)_{\mu(d y)}\right\}^{\frac{1}{n+s}}\left\{\int u(y)^{n+s} \mu(d y)\right\}^{\frac{s}{n+s}}\left\{\int v(y)^{n+s} \mu(d y)\right\}^{\frac{n-1}{n+s}}}\right. \\
& \leqq\left\{\sup _{x} \int e^{\left.(n+s) F(x, y)_{\mu(d y)}\right\}^{\frac{1}{n+s}}\left(\int u^{n+s} d \mu\right)^{\frac{s}{n+s}}\left(\int v^{n+s} d \mu\right)^{\frac{n-1}{n+s}}}\right.
\end{aligned}
$$

As for reversibility of chains in $M(F)$ with a symmetrizable potential F , we have the following

Theorem 31. We assume $(A, 3)$ and

$$
\begin{aligned}
& (A, 5) \sup _{x}\left\{\int e^{\left.-(n+s) F(x, y)_{\mu}(d y), \int e^{-(n+s) F(y, x)} \mu(d y)\right\}<+\infty},\right. \\
& (A, 6)^{\prime} \sup _{x}\left\{\int e^{\left.(n+s)(n+s-2)^{\prime} F(x, y)_{\mu}(d y), f e^{(n+s)(n+s-2) \prime F(y, x)} \mu(d y)\right\}<-}\right.
\end{aligned}
$$

where $(n+s)(n+s-2)^{\prime}=\max \{(n+s)(n+s-2), 1\}$. Then the following three
statements are equivalent to each other

1) A potential F is uniformly symmetrizable.
2) There exists a reversible chain in M(F).
3) All chains in $M(F)$ are reversible.

To prove this, we need the the following

Lemma 10. We assume ($\mathrm{A}, 3$) and

$$
(A, 6)^{\prime \prime} \quad \sup _{x}\left\{\int e^{\left.F(x, y)_{\mu}(d y), \int e^{F(y, x)_{\mu}}(d y)\right\}<+\infty .}\right.
$$

Then, $\underset{x}{\inf } u(x)>0$ and $\inf _{x} v(x)>0$ for each $(u, v) \in M(F)$.

Proof. We have by Hölder's inequality

$$
\begin{aligned}
& \int\left(u^{s} v^{n}\right)^{\frac{n+s-1}{2 n+s}} d \mu \leqq\left\{\int e^{-F(x, y)} u(y)^{s} v(y)^{n-1} \mu(d y)\right\}^{\frac{n}{2 n+s}} \times \\
& \times\left(\int u^{s-1} v^{n} d \mu\right)^{\frac{s}{2 n+s}}\left\{\int e^{\left.F(x, y)_{\mu(d y)}\right\}^{\frac{n}{2 n+s}}}\right. \\
& \left.\quad \leqq u(x)^{\frac{n}{2 n+s}}\left(\int u^{s-1} v^{n} d \mu\right)^{\frac{s}{2 n+s}} \sup _{x} \int e^{F(x, y)} \mu(d y)\right\}^{\frac{n}{2 n+s}}
\end{aligned}
$$

from which follows $\underset{x}{\inf } u(x)>0$.
Proof of Theorem 3'. 2) $\Rightarrow 1$). Let $(u, v) \in M(F)$. By the proof of Theorem 3, $F(x, y)-F(y, x)=\log v(x) u(x)^{-1}-\log v(y) u(y)^{1}$. By Lemmas 9 and 10 , the function $\log v(x) u(x)^{-1}$ is bounded, hence, F is uniformly symmetrizable by Lemma 2.
$1) \Longrightarrow 3$). Let F be a uniformly symmetrizable potential which satisfies $(A, 3)$ and ($A, 5$). Then, the uniform symmetrization \hat{F} of F also satisfies $(A, 3)$ and $(A, 5)$. Therefore, by Theorem 3, all chains in $M(F)=M(\hat{F})$ are reversible.
$3) \Longrightarrow 2$) is trivial, since $M(F) \neq \phi$ by Theorem 2.

We present an example in which $M(F)$ contains infinitely many chains. Let X be the unit circle S^{1} which we identify with the interval $[0,1)$, and let μ be the Lebesgue measure on S^{1}. Let $\mathrm{s}+\mathrm{n}=3$. Let $\mathrm{a}_{\mathrm{o}}, \mathrm{a}_{1}$ and a_{2} be positive numbers. Put, for $\mathrm{k}=0,1,2$,

$$
\gamma_{k}=\frac{a_{k}}{\sum_{j=-2}^{\sum^{a}|k-j|^{a}|j|},}
$$

and put

$$
\begin{aligned}
u(x) & =\sum_{k=-2}^{2} a_{|k|^{2}} e^{2 \pi i k x} \\
& =a_{0}+2 a_{1} \cos 2 \pi x+2 a_{2} \cos 4 \pi x \\
\Gamma(x) & =\sum_{k=-2}^{2} \gamma_{k}|k|^{2 \pi i k x} \\
& =\gamma_{0}+2 \gamma_{1} \cos 2 \pi x+2 \gamma_{2} \cos 4 \pi x .
\end{aligned}
$$

It is clear by the definition of γ_{k} that $u(x)=\int_{0}^{1} \Gamma(x-y) u(y)^{2} d y$. If $\gamma_{1}-4 \gamma_{2}>0$, then $\underset{x}{\min } \Gamma(x)=\left.\Gamma(x)\right|_{\cos 2 \pi x=-1}=\gamma_{0}-2 \gamma_{1}+2 \gamma_{2}$, since $\Gamma(x)=4 \gamma_{2}\left(\cos 2 \pi x+\frac{\gamma_{1}}{4 \gamma_{2}}\right)^{2}+\gamma_{0}-2 \gamma_{2}-\frac{\gamma_{1}}{4 \gamma_{2}}$. We can see

$$
\begin{aligned}
& \gamma_{1}-4 \gamma_{2}=\frac{a_{1}{ }^{2}-6 a_{0} a_{2}-8 a_{2}{ }^{2}}{2\left(a_{0}+a_{2}\right)\left(a_{1}{ }^{2}+2 a_{o} a_{2}\right)}, \\
& \gamma_{0}^{-2 \gamma_{1}+2 \gamma_{2}}=\frac{a_{1}^{2} a_{2}\left(a_{0}+2 a_{2}\right)+4 a_{2}{ }^{2}\left(a_{o}{ }^{2}+a_{2}{ }^{2}\right)+2\left(a_{o}^{3} a_{2}-a_{1}{ }^{4}\right)}{\left(a_{0}{ }^{2}+2 a_{1}{ }^{2}+2 a_{2}{ }^{2}\right)\left(a_{0}+a_{2}\right)\left(a_{1}{ }^{2}+2 a_{0} a_{2}\right)}
\end{aligned}
$$

Let $a_{1}^{2}>8 a_{2}\left(a_{o}+a_{2}\right), a_{1}^{4} \leqq a_{o}^{3} a_{2}$ and let a_{1} and a_{2} be suffi ciently small in comparison with a_{o}. Then, functions u and Γ are positive.

Put

$$
\begin{aligned}
& F(x, y)=-\log \Gamma(x-y) \\
& u_{\alpha}(x)=u(x+\alpha) \quad(\alpha \in[0,1)),
\end{aligned}
$$

then $u_{\alpha}^{\prime} s(0 \leqq \alpha<1)$ are positive solutions of (**) in Corollary to Theorem 3, that are distinguished from each other.

Dobrushin and Shlosman [3] show that all Gibbs distributions in Z^{2} with the state space S^{1}, whose potential is of finite range, of C^{2}-class and invariant under rotation of S^{1}, are also rotationinvariant. On the contrary, Spitzer's Markov chains determined by u_{α} are not rotation-invariant. But, $M(F)$ contains also a rotation-invariant chain, which is determined by a constant solution $\hat{\mathfrak{t}}=(\rho \Gamma(x) d x)^{-1}$ of $(* *)$.
5. Uniqueness of Markov chains at high temparature. In the following we consider potentials with the form βF, where $\beta>0$ is the reciprocal temparature. We prove

Theorem 4. Assume (A,3), as in Lemma 4, and assume
$\left.(A, 7) \quad \sup _{x}\left\{\int e|F(x, y)|_{\mu(d y), \int e|F(y, x)|} \mid d y\right)\right\}<+\infty$.
If β is sufficiently small, then $M(\beta F)$ consists of one chain.

Proof. If β is sufficiently small, the potential βF satisfies ($\mathrm{A}, 5$) and $(A, 6)$. Therefore $M(\beta F) \neq \phi$ by Theorem 2. In case $\mathrm{s}=\mathrm{n}=1$, (*)' in Theorem l^{\prime} takes the form

$$
(*) \cdot\left\{\begin{array}{l}
u(x)=\lambda \int e^{-\beta F(x, y)} u(y) \mu(d y) \\
v(x)=\lambda \int e^{-\beta F(y, x)} v(y) \mu(d y) \\
\int u(x) \mu(d x)=\int v(x) \mu(d x)=1 \\
f u(x) v(x) \mu(d x)<+\infty
\end{array}\right.
$$

As is shown in Lemma 8, solutions u and v of (*)' are bounded from above if $\beta<\frac{1}{2}$, since $(A, 5)$ is satisfied by βF. Since the kernel $e^{-\beta F(x, y)}$ is square-integrable if $\beta<\frac{1}{2}$, the normalized positive solutions of the Perron-Frobenius equation (*)' are unique ([7]).

To prove in case $s+n>2$, we need several lemmas.

Lemma 11. Assume ($\mathrm{A}, 7$). Put

$$
c_{1}(\beta)=\sup _{x}\left\{\left|e^{ \pm \beta F(x, y)} \mu(d y)-\mu(x)\right|,\left|\int e^{ \pm \beta F(y, x)} \mu(d y)-\mu(x)\right|\right\}
$$

Then, we have $\lim _{\beta \rightarrow 0} c_{1}(\beta)=0$.
Proof. By Hölder's inequality, we have

$$
\begin{aligned}
\int \mathrm{e}^{ \pm \beta F(x, y)_{\mu(}(d y)} & \leqq\left\{\int \mathrm{e}^{\left. \pm F(x, y)_{\mu}(d y)\right\}_{\mu}^{\beta}(x)^{1-\beta}}\right. \\
& \leqq \sup _{x} \int e^{\left.|F(x, y)|_{\mu(d y)}\right\}_{\mu(x)^{1-\beta}}^{1-\beta}}
\end{aligned}
$$

The right-hand side converges to $\mu(X)$ as $\beta \rightarrow 0$. By Hölder's inequality again, we have

$$
\begin{aligned}
\mu(X)^{2} & =\left\{\int e^{ \pm \frac{\beta}{2} F(x, y)} e^{\mp \frac{\beta}{2} F(x, y)} \mu(d y)\right\}^{2} \\
& \leqq\left\{\int e^{ \pm \beta F(x, y)} \mu(d y)\right\}\left\{\int e^{\mp \beta F(x, y)} \mu(d y)\right\} \\
& \leqq\left\{\int e^{ \pm \beta F(x, y)} \mu(d y)\right\}\left\{\sup _{x} \int e^{\left.|F(x, y)|_{\mu(d y)}\right\}^{\beta} \mu(x)^{1-\beta} .}\right.
\end{aligned}
$$

Consequently,

$$
\int e^{ \pm \beta F(x, y)_{\mu}(d y)} \geqq\left\{\left.\sup _{x} \int e^{|F(x, y)|}\right|_{\mu(d y)\}^{-\beta}} ^{\mu(x)^{1+\beta}},\right.
$$

the right-hand side of which converges to $\mu(X)$ as $\beta \rightarrow 0$.

Lemma 12. Assume $(A, 3)$ and ($A, 7$). Put
$c_{2}(\beta)=\sup _{(u, v) \in M(\beta F)}\left\{\left\|u-\mu(X)^{-\frac{1}{n+s-2}}\right\|_{\infty},\left\|v-\mu(X)^{-\frac{1}{n+s-2}}\right\|_{\infty}\right\}$,
$c_{2}^{\prime}(\beta)=\sup _{(u, v) \in M(\beta F)}\left\{\left\|u^{s-1} v^{n-1}-\mu(X)^{1}\right\|_{\infty},\left\|u^{s} v^{n-2}-\mu(X)^{1}\right\|_{\infty}, \| u^{s-2} v^{n}-\mu(X)^{-1}\right.$
where $\|f\|_{\infty}=\sup _{x \in X}|f(x)|$. Then, we have $\lim _{\beta \rightarrow 0} c_{2}(\beta)=\lim _{\beta \rightarrow 0} c_{2}^{\prime}(\beta)=0$.
Proof. Take any $(u, v) \in M(\beta F)$. Put $\sigma=\int u^{s} v^{n-1} d \mu=\int u^{s-1} v^{n} d \mu$. $1^{\circ} . \int \mathrm{u}^{\mathrm{s}+\mathrm{n}} \mathrm{d} \mu, \int \mathrm{v}^{\mathrm{s}+\mathrm{n}} \mathrm{d} \mu \leqq \sigma^{\left.\mathrm{s}+\mathrm{n}_{\{\mu}(\mathrm{X})+\mathrm{c}_{1}(\beta(\mathrm{~s}+\mathrm{n}))\right\} .}$

In fact, we have

$$
\begin{aligned}
u(x) & =\int e^{-\beta F(x, y)} u(y)^{s} v(y)^{n-1}{ }_{\mu(d y)} \\
& \leqq \sigma^{\frac{s+n-1}{s+n}}\left\{\int e^{-\beta(s+n) F(x, y)} u(y)^{s} v(y)^{n-1}{ }_{\mu(d y)\}^{\frac{1}{n+s}}} .\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int u^{s+n} d \mu & \leqq \sigma^{s+n-1} \iint e^{-\beta(s+n) F(x, y)} u(y)^{s} v(y)^{n-1} \mu(d x) \mu(d y) \\
& \leqq \sigma^{s+n} \sup _{x} \int e^{-\beta(s+n) F(x, y)} \mu(d y) \\
& \leqq \sigma^{s+n}\left\{\mu(X)+c_{1}(\beta(s+n))\right\} .
\end{aligned}
$$

2°. Put $c_{3}(\beta)=\left\{\mu(X)+c_{1}(\beta(s+n))\right\}^{\frac{s+n-1}{s+n}}\left\{\mu(X)+c_{1}(\beta(s+n)(s+n-2))\right\}^{\frac{1}{s+n}}-\mu($
Then, we have $u(x), v(x) \geqq\left\{\mu(X)+c_{3}(\beta)\right\}^{-\frac{1}{s+n-2}}$ and $\lim _{\beta \rightarrow 0} c_{3}(\beta)=0$.

To show this, put $p_{1}=\frac{s+n-1}{s+n-2}, p_{2}=(s+n)(s+n-1), p_{3}=s{ }^{1} p_{2}$, and $p_{4}=(n-1)^{l} p_{2}$. Remark that $\sum_{i=1}^{4} p_{i}^{1}=1$ and $p_{3}^{1}+p_{4}^{-1}=$ $(s+n)^{-1}$. We have

$$
\begin{aligned}
\sigma= & \int u^{s} v^{n-1} d \mu \\
\leqq & \left\{\int e^{-\beta F(x, y)} u(y){ }^{s} v(y)^{n-1} \mu(d y)\right\}^{\frac{1}{p_{1}}}\left\{\int e^{\frac{\beta p_{2}}{p_{1}} F(x, y)} \mu(d y)\right\}^{\frac{1}{p_{2}}} \times \\
& \times\left(\int u^{s+n} d \mu\right)^{\frac{1}{p_{3}}}\left(\delta v^{s+n} d \mu\right)^{\frac{1}{p_{4}}} \\
\leqq & u(x)^{\frac{1}{p_{1}}}\left\{\mu(X)+c_{1}\left(\frac{\beta p_{2}}{p_{1}}\right)^{\frac{1}{p_{2}}}{ }_{\sigma}^{(s+n)\left(p_{3}^{-1}+p_{4}^{-1}\right)}\left\{\mu(x)+c_{1}(\beta(s+n))\right\}^{p_{3}^{-1}+p}\right.
\end{aligned}
$$

Hence,

$$
\begin{aligned}
u(x) & \geqq\left\{\mu(X)+c_{1}\left(\frac{\beta p_{2}}{p_{1}}\right)^{-\frac{p_{1}}{p_{2}}\left\{\mu(X)+c_{j}(\beta(s+n))\right\}^{-\frac{p_{1}}{s+n}}}\right. \\
& =\left\{\mu(X)+c_{3}(\beta)\right\}^{-\frac{1}{s+n-2}} .
\end{aligned}
$$

3. Put $c_{4}(\beta)=\mu(X)-\mu(X)^{-(s+n-2)}\left\{\mu(X)+c_{3}(\beta)\right\}^{-(n+s-3)}\left\{\mu(X)-c_{1}(\beta)\right\}^{2(s+n-}$ Then, we have $\sigma=\int u^{s} v^{n-1} d \mu=\int u^{s-1} v^{n} d \mu \leqq\left\{\mu(X)-c_{4}(\beta)\right\}^{-\frac{1}{s+n-2}}$ and $\lim _{\beta \rightarrow 0} c_{4}(\beta)=0$.

In fact, we have by 2 ,

$$
\left\{\mu(X)+c_{3}(\beta)\right\}^{-\frac{s+n-3}{2(s+n-2)}} \leqq u(x)^{\frac{s}{2}-1} v(x)^{\frac{n-1}{2}} .
$$

Therefore,

$$
\begin{aligned}
\left\{\mu(X)+c_{3}(\beta)\right\}^{-\frac{s+n-3}{2(s+n-2)}} u(x) & \leqq\left\{u(x)^{s} v(x)^{n-1}\right\}^{\frac{1}{2}} \\
\left\{\mu(X)+c_{3}(\beta)\right\}^{-\frac{s+n-3}{2(s+n-2)}} \Gamma u d \mu & \leqq \delta\left(u^{s} v^{n-1}\right)^{\frac{1}{2}} d \mu \\
& \leqq \sigma^{\frac{1}{2}} \mu(X)^{\frac{1}{2}} .
\end{aligned}
$$

On the other hand by Lemma 11,

$$
\begin{aligned}
\int u d \mu & =\iint e^{-\beta F(x, y)} u(y)^{s} v(y)^{n-1} \mu(d x) \mu(d y) \\
& \geqq\left\{\mu(X)-c_{1}(\beta)\right\} \sigma,
\end{aligned}
$$

hence,

$$
\left\{\mu(X)+c_{3}(\beta)\right\}^{-\frac{s+n-3}{2(s+n-2)}}\left\{\mu(X)-c_{1}(\beta)\right\} \sigma \leqq \sigma^{\frac{1}{2}} \mu(X)^{\frac{1}{2}} .
$$

Thus, we have

$$
\begin{aligned}
\sigma & \leqq \mu(X)\left\{\mu(X)+c_{3}(\beta)\right\}^{\frac{s+n-3}{s+n-2}}\left\{\mu(X)-c_{1}(\beta)\right\}^{-2} \\
& =\left\{\mu(X)-c_{4}(\beta)\right\}^{-\frac{1}{s+n-2}} .
\end{aligned}
$$

4°. We have $u(x), v(x) \leqq\left\{\mu(X)-c_{4}(\beta)\right\}^{-\frac{s+n-1}{s+n-2}}\left\{\mu(X)+c_{1}(\beta(s+n))\right\}$. In fact, we have by Lemma $11,1^{\circ}$ and 3°,

$$
\begin{aligned}
u(x) & =\int e^{-\beta F(x, y)} u(y)^{s} v(y)^{n-1} \mu(d y) \\
& \leqq\left\{\int e^{-\beta(n+s) F(x, y)} \mu(d y)\right\}^{\frac{1}{n+s}}\left(\int u^{s+n} d \mu\right)^{\frac{s}{n+s}}\left(\rho v^{s+n} d \mu\right)^{\frac{n-1}{s+n}} \\
& \leqq\left\{\mu(X)+c_{1}(\beta(s+n))\right\} \sigma^{s+n-1} \\
& \leqq\left\{\mu(X)+c_{1}(\beta(s+n))\right\}\left\{\mu(X)-c_{4}(\beta)\right\}^{-\frac{s+n-1}{s+n-2}} .
\end{aligned}
$$

The assertions in Lemma 12 follow from 2° and 4°.

Lemma 13. 1) Put

$$
\begin{aligned}
& R_{1}(x) \equiv R_{1}\left(u_{1}, v_{1} ; u_{2}, v_{2} ; x\right)=u_{2}^{s} v_{2}^{n-1}-\left\{u_{1}^{s} v_{1}^{n-1}+u_{1}^{s-1} v_{1}^{n-1} w_{1}+(n-1) u_{1}^{s} v_{1}^{n-2} w_{2}\right\}, \\
& R_{2}(x) \equiv R_{2}\left(u_{1}, v_{1} ; u_{2}, v_{2} ; x\right)=u_{2}^{s-1} v_{2}^{n}-\left\{u_{1}^{s-1} v_{1}^{n}+(s-1) u_{1}^{s-2} v_{1}^{n} w_{1}+n u_{1}^{s-1} v_{1}^{n-1} w_{2}\right\},
\end{aligned}
$$

where $w_{1}=u_{2}-u_{1}$ and $w_{2}=v_{2}-v_{1}$. Then, there exists a constant
c > 0 such that

$$
\left\|R_{1}\right\|_{\infty},\left\|R_{2}\right\|_{\infty} \leqq c \cdot c_{2}(\beta) \cdot \max \left(\left\|u_{2}-u_{1}\right\|_{\infty},\left\|v_{2}-v_{1}\right\|_{\infty}\right)
$$

for all $0<\beta \leqq 1$ and for all $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right) \in M(\beta F)$.
2) There exists a function $c_{5}(\beta)$ with $\lim _{\beta \rightarrow 0} c_{5}(\beta)=0$ such that

$$
\left|\int\left(u_{2}-u_{1}\right) d \mu-\int\left(v_{2}-v_{1}\right) d \mu\right| \leqq c_{5}(\beta) \max \left(\left\|u_{2}-u_{1}\right\|_{\infty},\left\|v_{2}-v_{1}\right\|_{\infty}\right)
$$

for all $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right) \in M(\beta F)$.

Proof. 1) The assertion is clear, since

$$
\begin{aligned}
R_{1} & =\left(u_{1}+w_{1}\right)^{s}\left(v_{1}+w_{2}\right)^{n-1} \quad\left\{u_{1}^{s} v_{1}^{n-1}+s u_{1}^{s-1} v_{1}^{n-1} w_{1}+(n-1) u_{1}^{s} v_{1}^{n-2} w_{2}\right\} \\
& =\underset{\substack{j+k \geq 2 \\
j \leq s, k \leq n-1}}{\sum}\binom{s}{j}\binom{n-1}{k} u_{1}^{s-j} v_{1}^{n-1-k_{w} j_{1} k}
\end{aligned}
$$

and since $\sup \left\{\|u\|_{\infty},\|v\|_{\infty} ;(u, v) \in M(\beta F), 0<\beta \leq 1\right\}<+\infty \quad$ and $\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}$ $\leqq 2 c_{2}(\beta)$ by Lemma 12 .
2) We have $\mu(X)^{-1} f\left(w_{1}-w_{2}\right) d \mu=$

$$
\begin{aligned}
& =\int\left[s\left\{\mu(X)^{-1}-u_{1}^{s-1} v_{1}^{n-1}\right\}_{w_{1}}+(n-1)\left\{\mu(X)^{-1}-u_{1}^{s} v_{1}^{n-2}\right\} w_{2}\right] d \mu \\
& +\int\left[(s-1)\left\{u_{1}^{s-2} v_{1}^{n}-\mu(X)^{-1}\right\}_{w_{1}}+n\left\{u_{1}^{s-1} v_{1}^{n-1}-\mu(X)^{1}\right\}_{w_{2}}\right] d \mu \\
& +\int\left[\left\{s u_{1}^{s-1} v_{1}^{n-1} w_{1}+(n-1) u_{1}^{s} v_{1}^{n-2} w_{2}\right\}-\left\{(s-1) u_{1}^{s-2} v_{1}^{n} w_{1}+n u_{1}^{s-1} v_{1}^{n-1} w_{2}\right\}\right] d \mu .
\end{aligned}
$$

The first integral in the right-hand side is bounded in the absolute value by

$$
\left\{s\left\|\mu(X)^{1}-u_{1}^{s-1} v_{1}^{n-1}\right\|_{\infty} \cdot\left\|w_{1}\right\|_{\infty}+(n-1)\left\|\mu(X)^{-1}-u_{1}^{s} v_{1}^{n-2}\right\|_{\infty} \cdot\left\|w_{2}\right\|_{\infty}\right\} \mu(X),
$$

which is not less than $(s+n-1) c_{2}^{\prime}(\beta) \mu(X) \max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right)$ by Lemma 12.

The second integral is also bounded in the absolute value by $(s+n-1) c_{2}^{\prime}(\beta) \mu(X) \max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right)$. The third integral is equal to $\int\left\{\left(\mathrm{u}_{2}^{\mathrm{s}} \mathrm{v}_{2}^{\mathrm{n}-1}-\mathrm{u}_{1}^{\mathrm{s}} v_{1}^{\mathrm{n}-1}-\mathrm{R}_{1}\right)-\left(\mathrm{u}_{2}^{\mathrm{s}-1} \mathrm{v}_{2}^{\mathrm{n}}-\mathrm{u}_{1}^{\mathrm{s}} v_{1}^{\mathrm{n}-1}-\mathrm{R}_{2}\right)\right\} \mathrm{d} \mu=\int\left(\mathrm{R}_{2}-\mathrm{R}_{1}\right) \mathrm{d} \mu$, since $\int u_{i}^{s} v_{i}^{n-1} d \mu=\int u_{i}^{s-1} v_{i}^{I} d \mu \quad(i=1,2)$. The absolute value of the right-hand side is not less than $\left(\left\|R_{1}\right\|_{\infty}+\left\|R_{2}\right\|_{\infty}\right) \mu(X)$ $\leqq 2 \mu(X) \cdot c \cdot c_{2}(\beta) \max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right)$. Therefore, we have $\left|S\left(w_{1}-w_{2}\right) d \mu\right| \leqq 2\left\{(s+n-1) c_{2}^{\prime}(\beta)+c \cdot c_{2}(\beta)\right\} \mu(X) \max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right)$.

Proof of Theorem 4 in case $s+n>2$. Take arbitrary $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right) \in M(B F)$. Put $w_{1}=u_{2}-u_{1}$ and $w_{2}=v_{2}-v_{1}$. From $u_{i}(x)=$ $\int e^{-\beta F(x, y)} u_{i}(y)^{s} v_{i}(y)^{n-1}{ }_{\mu(d y)} \quad(i=1,2)$, it follows that $w_{1}(x)=$

$$
=\int e^{-\beta F(x, y)}\left\{s_{1}(y)^{s-1} v_{1}(y)^{n-1} w_{1}(y)+(n-1) u_{1}(y)^{s} v_{1}(y)^{n-2} w_{2}(y)+R_{1}(y)\right\} \mu(d
$$

$$
=(s+n-1) \mu(X)^{-1} \int w_{1} d \mu+(n-1) \mu(X)^{-1} \rho\left(w_{2}-w_{1}\right) d \mu
$$

$$
+s \mu(X)^{-1} \rho\left(e^{-\beta F(x, y)} 1\right) w_{1}(y) \mu(d y)+(n-1) \mu(X)^{-1} \rho\left(e^{-\beta F(x, y)} 1\right) w_{2}(y) \mu(d y)
$$

$$
+s \int e^{-\beta F(x, y)}\left\{u_{1}(y)^{s-1} v_{1}(y)^{n-1}-\mu(X)^{-1}\right\}_{w_{2}}(y) \mu(d y)
$$

$$
+(n-1) \int e^{-\beta F(x, y)}\left\{u_{1}(y)^{s} v_{1}(y)^{n-2}-\mu(x)^{-1}\right\}_{w_{2}}(y) \mu(d y)
$$

$$
+\int e^{-\beta F(x, y)_{R_{1}}(y) \mu(d y)}
$$

We have

$$
\begin{aligned}
& \left|\int\left(w_{2}-w_{1}\right) d \mu\right| \leqq c_{5}(\beta) \max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right) \quad \text { (by Lemma 13), } \\
& \left|\int e^{-\beta F(x, y)}\left\{u_{1}(y)^{s-1} v_{1}(y)^{n-1}-\mu(x)^{-1}\right\}_{w_{1}}(y) \mu(d y)\right|
\end{aligned}
$$

$$
\begin{aligned}
\leqq\left\{\mu(X)+c_{1}(\beta)\right\}\left\|_{u_{1}}^{s-1} v_{1}^{n-1}-\mu(X)^{-1}\right\|_{\infty} \cdot\left\|w_{1}\right\|_{\infty} & \text { (by Lemma 11) } \\
\leqq\left\{\mu(X)+c_{1}(\beta)\right\}_{c_{2}^{\prime}}(\beta) \max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right) & \text { (by Lemma 12), } \\
\left|\int e^{-\beta F}(x, y)_{R_{1}}(y) \mu(d y)\right| \leqq\left\{\mu(X)+c_{1}(\beta)\right\}\left\|_{R_{1}}\right\|_{\infty} & \text { (by Lemma 11) } \\
\leqq\left\{\mu(X)+c_{1}(\beta)\right\} c^{\cdot} c_{2}(\beta) \max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right) & \text { (by Lemma 13). }
\end{aligned}
$$

As for $\int\left(e^{-\beta F}-1\right) w_{1} d \mu$, we have

$$
\begin{aligned}
& \left|\int\left\{e^{-\beta F(x, y)} 1\right\}_{w_{1}}(y) \mu(d y)\right| \\
& \leqq\left\{\int\left(e^{-\beta F(x, y)} 1\right)^{2} \mu(d y)\right\}^{\frac{1}{2}}\left(\delta_{w_{1}}^{2} d \mu\right)^{\frac{1}{2}} \\
& \leqq\left\|w_{1}\right\|_{\infty} \cdot \mu(x)^{\frac{1}{2}}\left\{\int\left(e^{-2 \beta F(x, y)}-2 e^{-\beta F(x, y)}+1\right) \mu(d y)\right\}^{\frac{1}{2}}
\end{aligned}
$$

The last integral converges to 0 uniformly in x as $\beta \rightarrow 0$ by Lemma 11 . Consequently, $\mathrm{w}_{1}(\mathrm{x})=(\mathrm{s}+\mathrm{n}-1) \mu(\mathrm{X})^{1} \int_{\mathrm{w}_{1}} \mathrm{~d} \mu+\mathrm{R}_{3}(\mathrm{x})$, where $\left\|\mathrm{R}_{3}\right\|_{\infty} \leqq$ $c_{6}(\beta) \max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right)$ with $\lim _{\beta \rightarrow 0} c_{6}(\beta)=0$. Hence, we have

$$
\begin{aligned}
\int_{w_{1}} d \mu & =-\frac{1}{s+n-2} \int_{R_{3}} d \mu \\
\left|\delta_{w_{1}} d \mu\right| & \leqq \frac{\mu(X)}{s+n-2}\left\|R_{3}\right\|_{\infty}, \\
\left|w_{1}\right|_{\infty} & \leqq(s+n-1) \mu(X)^{-1}\left|\delta_{w_{1}} d \mu\right|+\left\|R_{3}\right\|_{\infty} \\
& \leqq\left(\frac{s+n-1}{s+n-2}+1\right) c_{6}(\beta) \max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right) .
\end{aligned}
$$

By the same argument as above, we have

$$
\left\|w_{2}\right\|_{\infty} \leqq\left(\frac{s+n-1}{s+n-2}+1\right) c_{6}(\beta) \max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right),
$$

from which it follows
$\max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right) \leqq\left(\frac{s+n-1}{s+n-2}+1\right) c_{6}(\beta) \max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right)$.

If β is so small that $\left(\frac{s+n-1}{s+n-2}+1\right) c_{6}(\beta)<1$, then $\max \left(\left\|w_{1}\right\|_{\infty},\left\|w_{2}\right\|_{\infty}\right)=0$, which means $u_{1}=u_{2}$ and $v_{1}=v_{2}$.
6. The number of chains at low temparature. An example. We present an example, in which the number of chains in $M(\beta F)$ is exactly calculated for sufficiently large β. Let X be a finite set and let $\mu_{i}=\mu(\{i\})>0$ for all $i \in X$. We prove Theorem 5. Let F be a symmetric potential on X satisfying

$$
(A, 8) \quad F(i, j)>F(j, j)+\frac{1}{n+s-1}|F(i, i)-F(j, j)|
$$

for all $i \neq j \in X$. Then, the number of chains in $M(\beta F)$ is equal to $2^{\# X} 1$ for sufficiently large β, if $n+s>2$.

Proof. We look for positive solutions of

$$
(* *) \quad u_{i}=\sum_{j \in X} e^{-\beta F(i, j)} u_{j}^{S+n-1} \mu_{j} \quad(i \in X) .
$$

For simplicity we put $p=s+n-1$. If we put

$$
x_{i}=\left\{e^{\left.-\beta F(i, i)_{\mu_{i}}\right\}^{\frac{1}{p-1}} u_{i}, ~}\right.
$$

the equation (**) is transformed into

$$
(* *)^{\prime} x_{i}=x_{i}^{p}+\sum_{j: j \neq i} a_{i j} x_{j}^{p} \quad(i \in X)
$$

where $a_{i j}=\mu_{i} \frac{1}{p-1} \mu_{j}-\frac{1}{p-1} \exp \left[-\beta\left\{F(i, j)-F(j, j)-\frac{1}{p-1}(F(j, j)-F(i, i))\right\}\right]$.
Under the assumption $(A, 8)$, we have $\lim _{\beta \rightarrow 0} a_{i j}=0$. Therefore,
Theorem 5 is a corollary to the following

Lemma 14. The number of non-trivial solutions of the equation

$$
(* * *) \quad x_{i}=\left|x_{i}\right|^{p}+\underset{\substack{1 \leq j \leq N \\ j \neq i}}{\sum} a_{i j}\left|x_{j}\right|^{p} \quad(1 \leq i \leq N)
$$

is equal to $2^{N}-1$, if $p>1$ and positive coefficients $a_{i j}(1 \leq i \neq j \leq N)$ are sufficiently small.

Proof. Put, for $x=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ and $\underline{\underline{a}}=\left(a_{i j}: 1 \leq i \neq j \leq N\right)$,

$$
\begin{aligned}
& F_{i}(\underline{\underline{x}}, \underline{\underline{a}})=\left|x_{i}\right|^{p} \quad x_{i}+\underset{\substack{1 \leq j \leq N \\
j \neq i}}{\sum} a_{i j}\left|x_{j}\right|^{p} \quad(1 \leq i \leq N), \\
& J(\underline{\underline{x}}, \underline{\underline{a}})=\operatorname{det}\left(\frac{\partial F_{i}}{\partial x_{j}}(\underline{\underline{x}}, \underline{\underline{a}})\right)_{1 \leq i, j \leq N},
\end{aligned}
$$

where

$$
\frac{\partial F_{i}}{\partial x_{j}}(\underline{\underline{x}}, \underline{\underline{a}})=p \delta_{i j}\left|x_{i}\right|^{p-1}-\delta_{i j}+p\left(1-\delta_{i j}\right) a_{i j}\left|x_{j}\right|^{p-1}
$$

1°. The number of non-trivial solutions of (***) is not less than $2^{N}-1$, if $a_{i j}$ s are sufficiently small.

In fact, let $\hat{\underline{x}}=\left(\hat{x}_{1}, \hat{x}_{2}, \cdots, \hat{x}_{N}\right) \neq \underline{\underline{0}}$ with $\hat{\mathrm{x}}_{i}=0$ or 1 . We have $F_{i}(\underline{\underline{x}}, \underline{\underline{0}})=0(1 \leq i \leq N)$ and $J(\underline{\underline{x}}, \underline{\underline{0}}) \neq 0$, since $\frac{\partial F_{i}}{\partial x_{i}}(\hat{\underline{x}}, \underline{\underline{0}})=p \hat{x}_{i} \quad 1$ and $\frac{\partial F_{i}}{\partial x_{j}}(\underline{\underline{x}}, \underline{\underline{0}})=0(i \neq j)$. Consequently, there exist a constant A and an R^{N}-valued continuous function $\underline{\underline{f}}^{\underline{\underline{\underline{x}}}}=\underline{\underline{f}}^{\underline{\underline{\underline{x}}}}(\underline{\underline{a}})$ defined for $\underset{\underline{a}}{ }$ with $\|\underline{\underline{a}}\|=\max _{i \neq j}\left|a_{i j}\right| \leqq A$, such that

$$
\underline{\underline{f}}_{\underline{\underline{\underline{x}}}}(\underline{\underline{0}})=\underline{\hat{\underline{x}}}
$$

$$
F_{i}\left(\underline{\underline{f}}_{\underline{\underline{\hat{x}}}}^{\underline{\underline{\hat{a}}}}(\underline{\underline{a}}), \underline{\underline{a}}\right)=0 \quad \text { for } \underline{\underline{a}} \text { with }\|\underline{\underline{a}}\| \leqq A \quad(1 \leq i \leq N) .
$$

 solution of ($* * *$). Remark that if $\underset{\underline{x}}{ } \neq \underline{\underline{x}}^{\prime}, \underline{\underline{f}}^{\underline{\underline{\underline{x}}}}(\underline{\underline{a}}) \neq \underline{\underline{\underline{f}}}^{\underline{\underline{x}}}$ (a) for sufficiently small a. The number of non-trivial solution of (***) is not less than $\#\left\{\underline{\hat{x}} ; \hat{\underline{\hat{x}}} \neq \underline{\underline{0}}, \hat{x}_{i}=0\right.$ or $\left.1(1 \leq i \leq N)\right\}=2^{N}-1$.
2°. If $\underline{\underline{\underline{a}}}$ is sufficiently small, then $J(\underline{\underline{x}}, \underline{\underline{\underline{a}}}) \neq 0$ for any solution $\underline{x}=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ of (***).

In fact, from $x_{i}-\left|x_{i}\right|^{p}=\underset{j \neq i}{\sum a_{i j}}\left|x_{j}\right|^{p} \geqq 0$, it follows $0 \leq x_{i} \leq 1$. From $0 \leqq x_{i}-\left|x_{i}\right|^{p}=\underset{j \neq i}{\sum_{i j}}\left|x_{j}\right|^{p} \leqq \underset{j \neq i}{\sum} a_{i j} \leqq(N-1)\|a\|$, it follows that x_{i} is close to 0 or 1 if $\|\underline{\underline{a}}\|$ is small. Therefore, $\left|\frac{\partial F_{i}}{\partial x_{i}}(\underline{\underline{x}}, \underline{\underline{a}})\right|$ $=\left|p x_{i}^{p-1}-1\right| \geqq \frac{1}{2}$ for sufficiently small $\underline{\underline{a}}$. On the other hand, for $i \neq j$

$$
\frac{\partial F_{i}}{\partial x_{j}}(\underline{\underline{x}}, \underline{\underline{a}})=p a_{i j} x_{j}^{p-1} \leqq p\|\underline{\underline{a}}\| .
$$

Hence, $J(\underline{\underline{x}}, \underline{\underline{\underline{a}}}) \neq 0$ if $\underline{\underline{a}}$ is sufficiently small.
3°. Let $\underline{\underline{a}}$ be sufficiently small and let $\underline{\underline{x}}=\left(x_{1}, x_{2}, \cdots, x_{N}\right)$ be a solution of $(* * *)$. There exist continuous functions $f_{1}(t), f_{2}(t)$, $\cdots, f_{N}(t)$ defined on $[0,1]$ such that

$$
\begin{aligned}
& f_{i}(1)=x_{i} \quad(1 \leq i \leq N), \\
& f_{i}(t)=\left|f_{i}(t)\right|^{p}+\sum_{j \neq i} t a_{i j}\left|f_{j}(t)\right|^{p} \quad(1 \leq i \leq N, 0 \leq t \leq 1) \\
& \text { In fact, put } \quad \tilde{F}_{i}(x ; t)=\left|x_{i}\right|^{p} \quad x_{i}+\underset{j \neq i}{\sum t a}{ }_{i j}\left|x_{j}\right|^{p} \quad(1 \leq i \leq N) \quad \text { and }
\end{aligned}
$$

let A_{o} be the infimun of A such that there exists a continuous function $\underset{\underline{\underline{f}}}{ }(t)=\left(f_{1}(t), f_{2}(t), \cdots, f_{N}(t)\right)$ on $[A, 1]$ such that

$$
\begin{aligned}
& \underline{\underline{f}}(1)=\underline{\underline{x}} \\
& \widetilde{F}_{i}(\underline{\underline{f}}(t) ; t)=0 \quad(1 \leq i \leq N, A \leq t \leq 1) .
\end{aligned}
$$

Put $\tilde{J}(\underline{\underline{x}}, \mathrm{t})=\operatorname{det}\left(\frac{\partial \tilde{F}_{i}}{\partial \mathrm{x}_{j}}(\underline{\underline{x}}, \mathrm{t})\right)_{1 \leq i, j \leq N}$. Since $\tilde{J}(\underline{\underline{x}}, 1) \neq 0$ by 2°, such a function $\underset{\underline{f}}{f}(t)$ exists in a neighbourhood of 1 . Therefore, $A_{o}<1$.

Suppose $A_{0} \geqq 0$. Then there exists a sequence $A_{n}>A_{0}$ and continuous functions ${\underset{\underline{f}}{ }}^{(n)}(t)$ on $\left[A_{n}, l\right]$ such that

$$
\begin{aligned}
& \underline{\underline{f}}^{(n)}(1)=\underline{\underline{x}}, \\
& \widetilde{F}_{i}\left(\underline{\underline{f}}^{(n)}(t), t\right)=0 \quad\left(1 \leq i \leq N, A_{n} \leq t \leq 1\right) .
\end{aligned}
$$

Since $\tilde{J}\left(\underline{\underline{f}}^{(n)}(\mathrm{t}) ; \mathrm{t}\right) \neq 0$ by 2°, uniqueness of implicit functions implies ${\underset{\underline{f}}{ }}^{(n)}(t)={\underset{\underline{f}}{ }}^{(m)}(t)$ for $m>n$ and $A_{n} \leqq t \leq 1$. Put

$$
\underline{\underline{f}}(t)=\underline{\underline{f}}^{(n)}(t) \quad \text { for } A_{n} \leq t \leq 1 \quad(n=1,2, \cdots) .
$$

$$
\begin{aligned}
& \underline{\underline{f}}(1)=\underline{\underline{x}}, \\
& \widetilde{F}_{i}(\underline{\underline{f}}(t) ; t)=0 \quad\left(1 \leq i \leq N, A_{0}<t \leqq 1\right) .
\end{aligned}
$$

 Let $t_{n} \searrow A_{0}$. There exists a subsequence $\left\{t_{n_{k}}\right\}$ such that $\underset{\underline{I}}{f}\left(t_{n_{k}}\right)$ converges as $k \rightarrow \infty$. Put $\underline{y}=\lim _{k \rightarrow \infty} \underset{(}{f}\left(t_{n_{k}}\right)$. We have

$$
\tilde{F}_{i}\left(\underline{Z} ; A_{o}\right)=0 \quad(1 \leq i \leq N),
$$

hence, $\tilde{J}\left(\underline{\underline{x}} ; \mathrm{A}_{\mathrm{o}}\right) \neq 0$ by 2°. There exists a unique function $\underset{\underline{f}}{\underline{\tilde{f}}}(\mathrm{t})$ in some neighbourhood ($A_{0}-\varepsilon, A_{0}+\varepsilon$) of A_{0} such that

$$
\begin{aligned}
& \tilde{\underline{f}}\left(A_{0}\right)=\underline{y}, \\
& \tilde{F}_{i}(\tilde{\tilde{f}}(t) ; t)=0 \quad\left(1 \leq i \leq N, A_{0}-\varepsilon<t<A_{0}+\varepsilon\right) .
\end{aligned}
$$

 $t \in\left(A_{0}, A_{0}+\varepsilon\right)$. Therefore, $A_{0}-\varepsilon$ is not less than the infimum of A such that there exists a continuous function $\underline{\underline{f}}(t)$ on $[A, 1]$ with
$\underline{\underline{f}}(1)=\underline{\underline{x}}$ and $\widetilde{F}_{i}(\underline{\underline{f}}(t): t)=0 \quad(1 \leq i \leq N, A \leq t \leq 1)$, which we have put A_{0}. This is a contradiction. Hence $A_{0}<0$.
4°. Let a be sufficiently small. There is a one-to-one correspondence between non-trivial solutions $\underline{\underline{x}}$ of (***) and $\hat{\underline{x}}=$ $\left(\hat{x}_{1}, \hat{x}_{2}, \cdots, \hat{x}_{N}\right) \neq 0$ with $\quad \hat{x}_{i}=0$ or 1 .

In fact, let $\underset{\underline{x}}{ }$ be a non-trivial solution of (***). There

$$
\begin{aligned}
& \underline{\underline{f}}(1)=\underline{\underline{x}} \\
& f_{i}(t)=\left|f_{i}(t)\right|^{p}+\underset{j \neq i}{ } t a_{i j}\left|f_{j}(t)\right|^{p} \quad(1 \leq i \leq N, 0 \leq t \leq 1)
\end{aligned}
$$

Since $f_{i}(0)=\left|f_{i}(0)\right|^{p}$, we have $f_{i}(0)=0$ or 1 . If $\underset{\underline{\underline{f}}(0)=0 .}{\underline{0}}$. then $\underset{\underline{f}}{f}(t)=0$ for all $0 \leq t \leq 1$ by uniqueness of implict functions.

Institute of Mathematics
Yoshida College
Kyoto University

References

[1] A.Coniglio; Some cluster-size and percolation problems for interacting spins, Phys. Review B, 13 (1976), 21942207.
[2] Р.Л.Добрушин: Описание случайного поля при помощи условных вероятностей и условия его регурярности, Теория вероят. примен., 13 (1968), 201-229.
[3] R.L.Dobrushin and S.B.Shlosman; Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics, Commun. math. Phys. 42 (1975), 31-40.
[4] Y.Higuchi; Remarks on the limiting Gibbs states on a (d+1)tree, Publ. RIMS, Kyoto Univ. 13 (1977), 335-348.
[5] М.А.Красносельсний: Топологичесние методы в теории нелинейных интегральных уравнений (1956).
[6] М.Г.Крейн И М.А.РутМан: Линейные операторы, оставляющие инвариантным нонус в пространстве Банаха, Успехи матем. наук. 3(1948). 3-95.
[7] O.E.Lanford and D.Ruelle; Observables at infinity and states with short range correlations in statistical mechanics, Commun. math. Phys. 13 (1969), 194-215.
[8] C.J.Preston; Gibbs states on countable sets (1974).
[9] E.Rothe; On non-negative functional transformations, Amer. J. Math. 66 (1944), 245-254.
[10] F.Spitzer; Markov random fields on an infinite tree, Ann. of Prob. 3 (1975), 387-398.

