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Spitzer's Markov chains with measurable potentials

By

Munemi MIYAMOTO

1. Introduction and summary of results. Spitzer [10] has intro-

duced Markov chains, whose space of '"time parametres' is an infi-
nite tree T, and whose state space is a set { 1, +1}. He investi-
gates Gibbs distributions on T that are Markov chains of such
construction. Several works [1],[4] and [8] are made on Gibbs
distributions on trees.

In a present paper, we generalize Spitzer's results to a case
when the state space is a compact set., If the state space consists
of two points as in a case of Spitzer, all Markov chains are
reversible. So, in that case, the '"time parametre'" space T need
not be equipped with a direction. But, since Markov chains may
not be reversible in our case, we must introduce a direction
into T. Thus, we consider Markov chains whose space of "time
parametres' is an infinite directed tree T, and whose state space
is a compact measure space (X,B,u).

Let F(x,y) be a measurable function on X x X, boundedness or
symmetry F(x,y) = F(y,x) of which we do not assume. A Markov
chain on T, whose transition density we denote by p(x,y), is a

Gibbs distribution on T with the potential F, if and only if



p(x,y) = A(s,nm)u(x) luy)Svy)? e TGV

where u and v are positive solutions of integral equations of the

Hammerstein type

A(s,n) ree FOY Sy tucay),

u(x)

V() = (s, fxe T O um)® v ey,

Numbers s, n and A(s,n) will be defined in the following sections.
Let M(F) be the set of Markov chains that are, at the same time,
Gibbs distributions with the potential F. Under summability con-
ditions on F, all or no chain in M(F) is reversible. Roughly
speaking, all chains in M(F) are reversible if and only if F is
nearly symmetric. In a symmetric case, the transition density

p(x,y) has the form;

1 n+s-1_-F(x,y)
c b4

p(x,y) = A(s,n)u(x) “u(y)

where u is a positive solution of the integral equation;
u(x) = A(s,n)fye F VD) Sl (ay).

Existence of positive solutions of the integral equations is
proved by applying theory of cones in a Banach space.

Dobrushin and Shlesman [3] proved that all Gibbs distribu-
tions in Z2 whose state space is the circle Sl, are invariant
under rotation of the circle, if the potential is of finite range,
of Cz-class and rotation-invariant. We present an example of
chains in M(F) that are not rotation-invariant although the poten-

tial F is rotation-invariant and of Cm-class.



Next, we consider a potential BF, where 8 > 0 is the recipro-
cal temparature. We prove uniqueness of M(BF) for sufficiently
small B. We present an example in which the number of chains in

M(BF) is exactly calculated for sufficiently large B.

2. Potentials and Gibbs distributions. Let X be a compact

metric space. Let B be the topological Borel field of X and let u
be a measure on (X,B). Let T be the infinite directed tree, in
which s branches emanate from every vertex and n branches flow into
every vertex. Two vertices a # b in T are neighbours if they are
connected by a branch, which we denote by a-b or b-a. If a branch
connecting a and b emanates from a, which is equivalent to that the
branch flows into b, we write a + b or b « a. We remark s,n > 1.
For a subset V of T, let 3V be the set of vertices in V" that are

T

neighbours of vertices in V. Let @ = X°. For w e € and a € T,

let x_ (w) = For V < T, let xy(w) be the restriction le of

a-
w on V, and let BV be the o-algebra of @ generated by Xy - B, is
the o-algebra generated by the cylinder sets.

A potential is a pair F = (Fl, FZ) of real-valued measurable
functions F1 and FZ’ where Fy and F, are defined on X and on X x X,

respectively. For a finite subset V of T and for x ¢ @, put

F
H,(x) = Hy(x) = Z F,(x.)) + & F,(x_,x)
Vs Ve aev 18 a,beV 2°7a’"b

a~»b

+ X Fo(x_,x,) + z F,(x,.,x_).
acV,bedV 2 277D7 4y peay 2 P72
a-b a<b

The family {Hyl}, is called Hamiltonian.



Definition. Two potentials F = (F,, F,) and F' = (Fj, F5) are

said to be equivalent, which we denote by F = F', if

]
Hg(;) H$ (x) does not depend on xy for every finite subset V.

We remark that it may depend on Xyy

Lemma 1. Let F = (F Fz) be a potential and put

1’
Fy(x,y) = Fo(x,y) + mxslF (x) + F{ ()},

then F = (0, Fé). If F2 is symmetric, Fé is also symmetric.

1

Proof. Put F)(x,y) = 52

{Fl(x) + Fl(y)}. We have

T FU(x_.,x.) + T FU(x,_,Xx,.) + z FU(Xy ,X_)
a,beV 272’ aeV, bedV 2*7a’"b aeV,bedV 2¥"b>"a
a->b a»b a<b

= I Fl(xa) + ﬁ%g r #{aeV; a—b}Fl(xb).

acV bedV

1 L #{aeV; a-b}Fl(x

0,F! F
Therefore, HV( ’ 2)(§) Hv(g) = o¥s
bedV

)

which implies F = (0, F3).

In the following we assume always F1 0. We identify

a potential (0, F) with the function F.

Definition. 1) A potential F is said to be symmetrizable if

there exists a symmetric potential B with F S . We call £ a

symmetrization of F.

2) A potential F is said to be uniformly symmetrizable if there

exists a symmetrization £ of F such that

sup |F(x,y) - B(x,y)|<+.
X,y

We call £ a uniform symmetrization of F.




Lemma 2. 1) A potential F is symmetrizable if and only if there

exists a measurable function f such that

F(x,y) - F(y,x) = £(x) - £(y).

2) A potential F is uniformly symmetrizable if and only if
there exists a bounded measurable function f which satisfies the

above equality.

Proof. Assume F(x,y) - F(y,x) = £(x) - f£(y). We have

L}

F(x,y) = 7{F(x,y) + F(y,x)} + 3{F(x,y) F(y,%}

= %{F(x,y) + F(y,x)} + %{f(x) - £(y)}.
Put F(x,y) = —{F(x y) + F(y,x)} + —TEIET{f(x) + f(y)}. Since

T {f(x.) - f(x;)} + z {f(x.) - £(xp )}
a,beV a b aeV,bedV a b
a~b a»b

+ T {f(xb) - f(xa)}

aeV,bedV
a<b
= (s -n) I f(x,)+ E [#{aeV;a<b} - #{aeV;a+b}]f(xb),
aeV bedV
and since
T {f(x.) + f(x )} + z {f(x) + £(x)}
a,beV a b aeV,bedV a b
a-+b a-»b

£ HE(x) ¢ £(x,)
aecV,bedV
a<b

=(s+n) I f(x,) + I #{aeVj;a-blf(x;.)

acV be oV b°”



we have Hg(g) - H€(§) =

% bzav[#{aev;a+b}- #{aecV;a»b} - :;2 #{aeV;a-b}]£(xy),

which implies F = . 1f £ is bounded, from an equality

1

Ssinf(x) - sf(y)},

F(x,y) - B(x,y) =

it follows sup|F(x,y) - B(x,y)|<+e.
X,y

~

Conversely, assume F = ﬁ, where F is symmetric. Let

a; > a (1=is<n) and aj < a (1=jss). By the equivalence of poten-

tials, the difference H?a}(g) - H%a}(g) does not depend on X,

which we denote by A(x_ ,x_ , *** ,X_ ,X_,,X_,, **° ,Xx_,). Fixing
21 22 - ?1 #2 s

any X e X, we take arbitrary x and y from X. Put Xy =Y,
xal = X, Xai = X, (2<i<n) and xai = X, (1=j<s). Put A(x) =

A(x,xo, co ,xo). We have

A(x) = B(x,xy, == ,X])

< K ) - @)

i}

M0

n
L {F(x, »x,)  Flx, ,x)} +
1

i=1 i (Flxgxy1) - Blxgux,,))

j=1 3 J
(F(x,y) - BGoy)Y + (-DIF(x,,y) - Bix,,y)}

+ s{F(y,x)) - B(y,x 1.
Consequently,

F(x,y) = F(x,y)- (-1{F(xg,y)-F(xg ) -s{F(y,x ) -F(y,x ) }+a(x).



Exchanging x and y, we have

F(y,x) = ﬁ(x,y)-(n-l){F(xo,x)-?(xo,x)}-s{F(x,xo)-ﬁ(x,xo)}+A(y),
from which follcws an equality

F(x,y) - F(y,x) = £(x) - £(y),
where £(x) = A(x) + (n-1){F(x,,x)-F(x_ ,x)} + s{F(x,x)-F(x,x)}-

If sup|F(x,y)-f(x,y)| <+=, then A(x) is bounded, therefore

X,y

f is also bounded.

=1 u(dxa).

For a finite subset V of T, put n, (dxy,)
v v aeV

Definition. A potential F is said to be admissible if for any

finite subset V of T

F
= = -H ()=() o0
“(V’XBV) = ive Vv uV(de) <+ a.e.(uav).

Lemma 3. A potential F is admissible, if

(A,1) rre ¥SIFOGY)) caxyp(dy) <+,
or if
(A,2) sup{fe F Y ay), re FOX) ay)} <to.
X

Proof. Admissiblity under (A,1) is a direct consequence of 1)

in the following Lemma 3'. Under (A,2) we have
fe-Hs(é) (dx )<+ by 2) in Lemma 3', if we put F = F
Hyuavi®tvuav ’ p a,b -

for a b e Vu 3V with {a,b} ¢ 9V, and if we put F_ p = 0 for a-b e a1
b



Lemma 3'. Let be given a family {F_ ,; a»beT} of functions F_, o
Al a,b a,

= F, b(x,y). For a finite subset V of T, put
b

H,(x) = = F_ . (x.,x,) + I F (x.,x,.) + I F, (x.,X_),
v a,beV a,b*"a’"b aeV,bedV a,b*"a’"b aeV,bedV b,a*"b’"a
a-»b a-b a<b
H, (x) I F_ . ( )
X) = X ,X ).
VAL a,beV a,b*"a’"
a-=b
1) If for each a -+ b ¢ T,
(A, 1) rre (S)Fa pCGY) i (axyn(dy) <+,
then it holds fe—ﬁV(§)u (dx,,) <+ a.e. ()
A" V R L A
2) If for each a » b ¢ T,
A,2)"  supife Fa, bV u(ay), re Fa, b Xy (dy) ) <o,

X

then it holds fe'HV(§)uv(dxv) <+oo,

Proof is carried out by induction in #V,.
1) Let V be a set consisting of a'single vertex a. Let a; > a

(1<i<n) and a3 < a (1l<js<s). We have

n S
E F (x5, 2%a) * E Fa,a!(xa’xa!)’

a a
1 1 j j

H{a}(§) i i’ i j

1

-H (}_Q) = -F (X X ) -F (x X )
fe J L dx = [fT1e  "a.,a‘"a., i ,a! »X 1
{a u(dx,) I i ! j=1e a,a;"a as u(dxa)



1

S 1
re” (0¥S)F, Ak XDy cax ) 1 ore” (0*S)Fg a1 (XasXar)y (ax )3™*s
1 i i a1 J J a

n=es

<{
i

<+ a.e.(ua{a}).

We assume that the statement is true if #V < k. Let #V = k+1.

Fix any aj ¢ V and let V_ = V\{ao}~ Put

1 ~-(n+s)F X,Z .

Fé’ao(x) = -ﬁzg-log Je ( ) a,ag ? )u(dz), if a » a,,
_ 1 -(n+s)F (z,x) .

Féo,a(x) = “5is log fe ag,a **u(dz), if a « ag»

F;,b(X,Y) = Fa’b(x,y), if otherwise.

It is clear that ffe” (M*S)F; p(X¥)  (ax)u(dy) <+=. We have

A (x) = z F (x, x_. ) + r F (x x_)
v aevouav d,85 " 8, a4 aeVOUBV a8 ao, a
ara a<a
+ r F! . (x_.,x.) + z F' (x_,%xy)
a,beVo a,b*"a’"b aeVO,beaVo\{ao} a,b*"a’"b
a->b a~b
+ I F!'  (x.,x).
aeV_,bedV_\{a }b’a b’"a
a<b® 0 o

Denote the sum of the first two terms and the sum of the last
three terms by ﬁl(g) and by ﬁz(g), respectively. Remark that

#{aeVOUBV ; a-ao} =n + s. We have by H6lder's inequality



fe'HlQ—-c)u(dxa ) =/ 1 e_Fa,aO(Xa’xao) il e—Fao,a(xao’xa)u(dxa )
o] aeVOUBV aeVOUBV o
a+a a<a
o o
1
<{ 1 fe'(n+s)Fa,a§ a’*a Qu(dx,) I Jfe -(n+s)Fa,agxa’xa)u(dx ) s
aeVOUBV 0 aeV_udV o
a>a_ aca
= exp{ (x ) - z F! (x)}.
acV_uaV Ta, 3 acV_uav 20’2 2
a>a ava
On the other hand,
Hy(x) + I (x,) + I F! _(x,)
2 aeV_udv fa,a, acV_udv %022 2
ara_ a<a_
=H, (x)+ ¢ F' _ (x,)+ = F!' _(x)
Vo acay 223 2 acdv 2072 37’
a»a_ a<a

where ﬁ& (x) is the Hamiltonian determined by {F; b}’ i.e.,
o H
Hy (x) = r F!'  (x_.,x,) + ) (x_,xy)
Vo ' a,bev, 2PTETET O gey beav Fa,pa%
a~b a~>b°
+ z (xXy.,x_).
acV_,bedV_ "b,a%p %
a<b®
Therefore. we have
Se-HV(=)uV(de) = fe-HZ(é)uV(de )fe_H1(}=()u(dxa )
o o )



~t
-H, (x)
< exp{- I F! (x.) T F! (x_ )}fe "V =/u,(dxy ).
aedV "’%o aedv 2002 2 ° Vo Vo
a-a a+«a
) o
The last integral is finite a.e.(uBV ) by the assumption of
0

induction.

2) If #V =1, ﬁ}(x) = 0. Consequently, fe-HV(§)uV(de) <+w is

trivial. We assume that the statement is true if #V < k. Let
#V = k+1. It is easy to see that there exists a, € V such that

#(Vada ) = 0 or 1. Put V_ = V\{a }. If #(Vnda ) =0,

=~

ﬁb(§) = HV (x). Therefore, by the assumption of induction,
o}

= rre By (®)

-
o
<

N
1
j—
=
<
r~
[a N
»
<
| —
I

Uy (dXy, Ju(dx, )
VO VO aO

]
=
~
>~
N\’
-
[0}
[
jass
<
O~
1
—

If Vnda = {b} and if, for example, a, > b, then

—~ ~z

(x) = Hy(x) + F (x, ,x4).
Vv Vo— ao,b xa° b

11

Therefore,
- F
ao,b(xao’xb)u(dxa Ju

re My (®y (axy) = rre (@)
(o]

(dxy )
Vo Vo

el

< sup fe'Fao,b(xao’x)u(dxa )fe_vaé)uV(de ) <+oo,
X o o ‘o

In the following we consider only admissible potentials

without mentioning.



Put

F =
q (xy) = E(V,x,y) € ,
V,xaV Vv *aV

which is a probability density on (XV, uv). We call qg x
27V

]
conditional Gibbs density. We remark that qs x ... = qs x . for
14 2

oV A%

all finite subset V and for a.a.(u,y) Xy, if and only if F = F'.

Definition ([2], [8]). A probability measure P on (Q,B,) is

called Gibbs distribution with a potential F, if for each finite

subset V of T, conditional probability distribution P( IBVc)

relative to BVc is absolutely continuous with respect to Wy and

dp( |BVC) R:
—T——UV = quxav a.e. (P).

Let G(F) be the set of Gibbs distributions with the potential F.

3. Markov chains on the directed tree T. Let p(x,y) be a positive

transition density on (X,B,u) and let h(x) be the invariant proba-

bility density of p(x,y). Put

B(x,y) = h(y)p(y,x)h(x) L,

which is called reversed transition density of p. We say that

P is reversible if p = 6.

Let V be a connected finite subset of T. Let us introduce the
second direction » in V. Fix any a, € V. If a - b and there
exists a chain a, a;-v°°-a; a b, we write a» b or b « a.

In particular, a g " a if a, - a. We remark that if a-b e V,
either a » b or a <« b. Put

12 -



py(xy) = hix, ) T plx,,x) I Blx,,x.),

o a,beV a,beV
a»b ar»b
a-b a<b

Pv{weQ; xv(w)eE} = prV(xV)uV(de) for E ¢ By -

It is easy to see that Py does not depend on the choice of the
centre a_ and that {PV} is a consistent cylinder measure. By
Kolmogorov's extension theorem, {PV} extends to a measure p on

(2,B,). We identify the measure p with its transition density

p(x,y).

Definition. A measure p constructed above is called Spitzer's

Markov chain with a potential F if p ¢ G(F). Denote by M(F) the

set of Spitzer's Markov chains with the potential F.

Theorem 1. A transition density p = p(x,y) belongs to M(F), if

and only if p(x,y) has the expression;
p(x,y) = A(s,n)u(x) -1u(y)svcy)n—le_F(x,Y) ,

where A(s,n) is the Perron-Frobenius eigenvalue of the kernel

e F(XY) 48 s - - 1, and A(s,n) = 1 1if otherwise, and u and

v are positive measurable functions satisfying

u(x) = A(s,n)fe FYuy) Sy tuay),

(%) v (x)

A(s,n)fye FOXuy)S vy Mucay),

fxu(x)sv(x)nu(dx) <+,



The invariant probability density h(x) has the form;
h(x) = ¢ u(x)’v(x)",

where ¢ is a normalizing constant.

Proof. 1°. Assume p(x,y) € M(F). Let a; > a (1si<n) and

a5 < a (l<js<s) as before. Choose a as the centre of {a,al,az,---,

an,ai,aé,---,a;} in the definition of the direction ». We have

- -1 n >
= Z(a, L F - L F
Ga,x,, 00 = Expp) TRl L FO ) - T FGoxg )
-1 n s
= Z(xy,) "h(x) T p(x,x,; ) I p(x,x,,),
i=1 ij=1 j
n s
where Z(xaa) = fh(x) I p(x,xa ) T p(x,xa,)u(dx). Put U(x,y) =
i=1 ij=1 j
p(x,y)eF(x’y). Then,
-1 n , 3
Z(xy,) "h(x) T p(x,x, ) T p(x,x,,)

i=1 ij=1 J

172 1-n B 3
= Z(xaa) I h(xa Yh(x) I U(xa ,x) I U(x,xa,) x
i=1 i i=1 i j=1 j
n s
x exp{ pX F(xa ,X) X F(x,xa.)}-
i=1 i j=1 j
1-n 3 2
Consequently, W = h(x) I U(xa ,x) I U(x,xa,) does not depend
i=1 i j=1 j
on Xx.
Fix X, in X and take arbitrary y from X. Let X, = X,
i
(1<is<n) and let Xjy = X ory (1<j<s). Put v = #{j: X,y = y}.
j j

- 14 -



We have

=
]

h(x) 1 MU (x %) MU () VU G, x) ST

U(x,y) PV
U x,xo)

h(x) P PU(x,, %) U (x, x,) S

Letting v = 0, we see that h(x)l—nU(xo,x)nU(x,xo)s does not
. _ U(x,y)
depend on x. Next, letting v = 1, we see that UTE?%;) does not
depend on x, which we denote by V(y). Putting U(x) = U(x,xo),
= = 'F(X,}’)
we have U(x,y) U(x)V(y). Therefore, p(x,y) U(x)V(y)e

and ¢, = h(x)l_nU(x)sV(x)n does not depend on x.
Case, n = 1. Put
-1 . _
U(x) *, if s = 1,

u(x) =

1
s Tum)?, if s p 2.
From c, = U(X)SV(X), it follows that
clu(x), if s =1,
V(x) = clucx)“s = 1
cq s-1 u(x)s, if s 2 2.
We have

p(x,y) = U(X)V(y)e F(xY)

FOGY) ies =1,

XCIU(X) 1u(y)e

ux) tuy)Se FOOY) 5e 5y 2,

The equality /p(x,y)u(dy) = 1 implies that

- 15 -



cpre FEYugyuqay), if s = 1,
u(x) =

re Ty () Sucay), if s 2 2.

Since u(x) > 0, c, is the Perron-Frobenius eigenvalue A(1,1)

1

of e—F(X’Y). Thus we have

p(x,y) = A(s,1)u(x) tuqy)Se TG,

u(x) = A(s,1)re” FOYuy)Sucay).
Put v(x) = u(x)-sh(x). The equality h(x) = Sh(y)p(y,x)u(dy)

implies v(x) = A(s,1)/e F X)) lvyniay).
From fhdp = 1, it follows Sudvdyp = 1. Thus, the proof is com-
pleted in case n = 1, 1
Case, n 2 2. Put u(x) = U(x) Land v(y) = {U(y)sV(y)}n-l, i.e.,
- 1 _ s n-1
U(x) = u(x) 7, V(y) = u(y)v(y)" ~.

Consequently, p(x,y) = u(x) lu(y)sv(y)n—le-F(X’y). The equality

/p(x,y)u(dy) = 1 means
u(x) = re FOOYuyySvy) ™ hicay).
On the other hand,

h(x) 110 (x) SV (x) P

¢1

{h(x) 1u(x)sv(x)n}n ,

which means h(x) = czu(x)sv(x)n with a constant C,- The equality

Shdp = 1 implies fu®v™du <+=. From h(x) = Sh(y)p(y,x)u(dy),

- 16 -



it follows that
vx) = re FOX) 5 v () Muay).

The proof is completed in case n > 2.
2°. Assume conversely that positive functions u and v satisfy ().
Put
- -1 _-F
PC,y) = A(s,mu(x) tup)Sup)™ e FOOY),
h(x) = ¢ u(x)Sv(x)® with ¢ = (suSvay) 1.

The reversed transition density 6(x,y) = h(y)p(y,x)h(leis equal to

p(x,y) = A(s,n)v(x)'lv(y)nu(y)s'le-F(Y,x).

Let V be a connected finite subset of T and fix a, € V as the

centre of V u 3V in the definition of the direction ». We have

_ A
pVUBV(XVUSV) = h(Xa ) I p(Xa’xb) I P(Xa,xb)

o a,beVuaVv a,beVuaV
arb a»b
a-b a<b
#{a-beVuaVla =1
= ¢ A(s,n) =(V,x ) exp {- X F(x_,x.)}
’ Ve a,beVuaVv 2’7’
a»b

where we put

A [ n -1 s n-1
= (V,x u(x, ) v(x, ) I {u(x)) "ulx ) v(x.) ~} x
a 4 a,beVudV a b b
arb

a->b

-1
voav) T

-1 n s-1
I {v(x)) "vixy) u(xy) }-
a,beVuov @ b b
avrb

a<b

As usual, let a; > a, (1<i<n) and aé “ ag (1<j<s). Remark that

17 -



da_ = {al,--.,an,ai,...,a;} c VudV. We have

)
1 S -1 n-1
EVaxyypy) T = ulx, )5vix, )T T fulx, ) ulxg )%, )77 X
o o j=1 o j ]
n
- - -1

« I Avix, ) tvix, )Mu(x, )5TH n futx,) Tulx) Svix )™

i=1 o i i a,beVuBV,a#ao

a»b
a-b

X I {v(an 1v(xb)nu(xb)s-l}

a,beVuaV,a#a

a»b o

a<b

s n )

= I {u(xa,)sv(xa.)n-l} i {v(xa )nu(xa ) 1y «

j=1 j j i=1 i i
x 1 {u(xa)-lu(xb)sv(xb)n_l} 1 {v(xa)-lv(xb)nu(xb)s'

a,beVualU,a#a a,beVuav,a#ao

arb 0 arb

a+b a<b

1

. A -1
does not depend on xao. Since “(V’xVuaV)

Therefore, Q(V,XVUBV)_

does not depend on the choice of the centre a, € V of the direction »,

it does not depend on xy. Thus, we have Pyuav Xyuay) =

A -1 A
= 2(V,Xo) exp {- z F(x,,x;)}, where =(V,x,,) depends only
TV a,beVuaV a’"b v
a-b
on X,u. It is easy to see that the extension of the cylinder

measure {pVUBV} belongs to G(F). The proof of Theorem 1 is completed.

We remark that the expression of p(x,y) in Theorem 1 is not
unique. If u and v satisfy (x), then also 4 = Cn-lu and ¥ = C‘(S'l)v

satisfy (*) and determine the same p(x,y) as u and v. 1In order to

make the expression unique, we need summability of usvn-l and uS-lvn

which does not follow from fusvndu <+
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Lemma 4. Put X(x,M)={yeX;F(x,y)<M} and X* (x,M)={yeX;F(y,x)<M}.

We assume that there exist M and an integer k such that

k
k
(XX, - xy)s u(X\iilx(xi,M)) = 0} > 0,
(A,3)
K ko .
(XX, 45X )5 u(X\iglx (x;,M)) = 0} > 0.

If u and v satisfy (*) in Theorem 1, it holds that

fusvn'ldu <+ and fus-lvndu <+,

Proof. Since u(x)=re FVug)Sv(» P udy) 2 e Mum)Svo) ™ tuway),
X(x,M)

k

T fusvn'ldu eM

i=1 X(xi,M) i

fusvn_ldu

A
A

. <400,
u(xl) o

n o™

1

Theorem 1'. We assume that there exist M and an integer k such

that (A,3) holds. A transition density p = p(x,y) belongs to
M(F), if and only if p(x,y) has the expression:

p(x,y) = A(s,n)u(x) tu)Svy) e FGY)

where u and v are positive measurable functions satisfying

u(x) = A(s,n)ref Yy Sy ™ tuay),

v(x) = Als,m)fe F O u) S v Pucay),
(*)'</fu(x)sv(x)n-lu(dx) = fu(x)S v ()™ dx),
Su(x)u(dx) = [v(x)u(dx) =1, if s = n =1,

Ju(x)Sv(x) M (dx) <e.
The expression is unique.

Proof. By Theorem 1, a transition density p(x,y) ¢ M(F) has the

following expression with G and v satisfying (*)
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p(x,y) = A(s,mAx) SR le FOOY)

‘In case n = s = 1, functions u = (fﬁdu)'lﬁ and v = (fcdu)-lg

satisfy (x)', and in case s+n > 2, functions u = cn-lﬁ and
1
‘1}S+n'2

v=c D4 with ¢ = (A5 Yap) (0547 Lap) satisfy (x)'.

A A
In both cases, u and v determine the same p(x,y) as u and V.

Next, assume that

1u(y)sv(y)n—1e-F(x,y)

p(x,Y) A(s,n)u(x)

A(s,m)ax) o) STyt e F(xY)

where u, v and G, v satisfy (*)'. We have ﬁ(x)u(x).1 =

ﬁ(y)su(y)-s;(y)n'lv(y)'(n_l), which implies u(x) = c u(x) in
s-1
n-1 ~

case n = 1, and implies u(x) = c u(x) and v(x) = c v(x) in

case n 2 2. From fudu = fudy = 1 in case s = n = 1, or from

fusvn-ldu = o IvRay and S5V lay - /357134y in case s+n > 2,

it follows that ¢ = 1. Therefore the expression is unique.

In the following, we indentify a transition density p(x,y)
e M{(F) with a pair (u,v) of positive solutions of (*)'. The set

of pairs of positive solutions of (*)' is denoted also by M(F).
Theorem 2. The set M(F) is not empty,either if

(A, 4) Se-F(x’Y)u(dy) and fe—F(y’x)u(dy) do not depend on x,
or if

(A,5) sup{fe-(n+s)F(x’Y)u(dy), fe'(n+5)F(Y,X)u(dy)} <+
and *

(n+s) (n+s-2)F(X,¥) (gy), re (n¥s) (n+s-2)F (y,X)

(A,6) sup{/Se p(dy)} <+=

X



Proof. We assume (A,4). Put c, = fe_F(X’Y)u(dy) and c, =

re FOX)ay).  From rre FOOY)y axyuay) - c u(X) = c,u(X), it

follows c¢; = c,. In case s =n =1, u(x) = v(x) = u()()'l is a

positive solution of (*)'. 1In case s+n > 2, u(x) = v(x)

I S
- c n+s-2

1 is a positive solution of (*)'.

In order to look for positive solutions of (x)' under the
assumptions (A,5) and (A,6), we apply theory of cones in a Banach
space. In case s = n =1, (*)' is a system of linear equations
with positive kernels. Such equations have positive eigenfunc-
tions, if the kernels are square-integrable ([7]), which follows
from (A,5). Therefore, it is enough to investigate only a case
s+n > 2. We first prove existence of positive solutions of (x)'

under the assumptions (A,5) and sup F(x,y) <+~ instead of (A,6).
X,y
Let L be the set of pairs (u,v) of functions u and v such that

1 1
lull = (r]ue) M 5u@x) 1™ <+e and v = {£]v) M 5u(dx) 1M <se,
If we put || (u,v)| = [ull + ||vll for (u,v) ¢ L, (L,[-]]) becomes a

Banach space. Put for (u,v) € L

fe-F(X’Y)u(y)sv(y)n_lu(dY),

A; (u,v)(x)

Ay (u,v) (x) = e FOX)y(y)5 ly ()M ay),
ACe,v) = (A (u,v), Ay(u,v)).

Lemma 5. (Theorem 3.2 in Ch.l of Krasnosel'skii [6]). Under the
assumption (A,1), A is a completely continuous mapping from L

inte L.
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~
it

L = we)=re FEYagy)udy); a)0,)ufcs=l,

2 = ) =re FOXp () u(dy); by) 20, v]cs=).

~
1

Let K be the closure of K, x K We remark that K is a cone

1 2°
in L, i.e., K is closed and convex, t K< K if t 2 0, and (u,v)

and (-u,-v) ¢ K implies (u,v) = 0. It is clear that A(K) < K.

Lemma 6. We assume (A,5) and sup F(x,y) <+=. Then, there exists
X,y

a positive constant c¢ such that u(x) > cluf and v(x) > c|v] for

v

all (u,v) € K and for almost all x ¢ X.

Proof. Let u(x) = fe—F(X’y)a(y)u(dy) ¢ K. We have
u(x) 2 e 3 POV ragyyucay) .
On the other hand, by Holder's inequality
n+s-1 1
u(x) < (fadp) ™S (re (SIFGGY), (pyy ay)1*s.
Therefore,
lu™ < (radm)®*S Lrre (MSIFIGYI 4 (py 0 (ax)u (dy)
< (Lad)™S sup fe (M*SIFGGLY) (g,
y
Consequently,
-sup F(x,y)
u(x) 2 e X,y JSadn
1
> e'iug F(X’Y){supfe (n+5)F(X:Y)p(dx)} n+s“u“.
’ y
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Thus, there is a constant ¢ > 0 such that u(x) > cf|uf and v(x) 2

c|v]l for (u,v) ¢ K, x K Take any (u,v) ¢ K. There exists a

1 2°
sequence (un,vn) ¢ K, x K, such thatll(un,vn) (u,v)|| = 0, i.e.,
Hun'u” and an—vH +~ 0. We can find a subsequence {nj} such that

u, (x) > u(x) and v (x) » v(x) for almost all x ¢ X. Since

j ]
fu, I > lull and v || > |v|l, we have u(x) 2 cfuf and v(x) 2 cv].
J

Lemma 7. (Rothe [10], Krasnosel'skii [6]) Let A = (Al,AZ) be

a completely continuous mapping from a cone K ¢ L into itself.

Assume inf  |A;(u,v)] > 0 and 1nf IA,Cu,v) | > 0. Then
(u,v)ek (u,v)ek

Juli=lvi-1 luli=lvi=2
there exists (u,,v ) e K such that HuOH = v, =1 and
(u_.v.) =( Ay (ug,vy) Ay (ug,v,) )
0’'o A Cug, vl PlTA, (ug,v )]

Proof. Fix any (30,00) e K with ﬁo ¥ 0 and 90 ¥ 0. Put

A A
Ay (u,v) viDug,

A
R, u,v) = A, viDy,.

Let R = {(u,v)eK; |lull<1,]v|s1}, which is bounded, closed and

conex. Our assumption implies inf [|A;(u,v)|| > 0 and
(u,v) eﬁ

inf ”A (u,v) || > 0. Put again
(u,v) eﬁ

A (u,v) Az(u,v)

B,(u,v) = ———, B,(u,v) =

uﬁ )|’ 1A, v

B = (Bl,Bz) is a completely continuous mapping from R into R.

- 23 -



By Schauder's fixed point theorem, there exists (uo,vo) e R such

A A

A, (u_,v.) A,(u_,v_)
that (uo,vo) = B(uo,vo), i.e., u, = Al o' 0 and v, = AZ o ©°

A (U v )| TA, (uy v )l
N A A
Since Huo” = |lv,ll = 1, Ay (ug,v,) = A (u,,v,) and A, (ug,v,) = Ay(ug,v,)

Proof of Theorem 2 under the assumptions (A,5) and sup F(X,y) <+=.
X,y

By Lemma 6, we see that for (u,v) € K

AL,V () 2 S S v re F OOV qay),

[\

Ay (u,v) (x) 3 S ]S v iPre FOHX)y ay).

v

Hence, inf "Al(u,v)" > 0 and inf "Az(u,v)“ > 0. By Lemma 7,
u,v

(u,v)eK )
ufl=lv]=1 luli=lvi=1
there exists (uo,vo) € K with "uOH = “Vo” = 1 satisfying
u_ = A, (u_,v )”-1A (u_,v.)
o 170’0 1*70’ 07
v_o= A, u v )T A v )
o 2 70’0 2 70”07

Positivity of u, and v, follows from (uo,vo) € K.

On the other hand, we have

fus v oay = fuo(x)s’lvo(x)nuo(x)p(dx)

1A, Cog,v ) | Hruy 037y ()AL (ug v, ) () (dx)

1A, (g v ) 7 ruy (05 v o Yy () Sv_ ()™ wax)(ay)

s .n _
fuo v dy =
-1 -1 -F -
= 1Ay Cug,v )] " trru 605 v e T a0 Sv o™ L caxp ay)
Integrals above are finite, since
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S n

S n + +
fug vo du g (Supt® an™ (vETPan ™S <e,
Consequently, HAl(uo,vo)H = ”Az(uo,vo)H. Put
1
us—l w2 dy n-1| n+s-2
u(x) = llAl(uo,v)ll'l( e 9 ) ug (x),
Jul v du
o 0o
1
rus vn—l dy s-1l)n+s-2
1
vix) = [A,(ug,v )l ( T ) vy (x).
fu0 v, du

It is easy to see that (u,v) is a positive solution of (x)°'.

Proof of Theorem 2 under the assumptions (A,5) and (A,6). Let

Fk(x,y) = min {F(x,y), k} for k = 1,2,+++. Let (uk,vk) be a
positive solution of (x)' with the potential Fk' We have

Lemma 8. Under the assumptions (A,5) and (A,6), there exist

positive constants cq and c, such that cq £ uk(x), vk(x) 2

for all k and almost all x € X.

Proof. Remark that

sup {fe-(n+s)Fk(x’Y)u(dy), fe—(n+s)Fk(y,x)
k,x

u(dy)} <+w,

sup {fe(n+s)(n+s—2)Fk(x,y)u(dy)’ fe(n+s)(n+s'2)Fk(Y’x)

k,x

H(dy)} <+e,

The proof of Lemma 8 is essentially the same as that of Lemma 12.
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Since uis and v!s are bounded, we can extract a subsequence

k
-{kj} such that uy , vy , ui Vﬁ—l and ui_lvﬁ are weakly conver-
j j j I i 3
gent in L2 as j » o. Put u = w-lim w , V= w-1lim v s and
J j
N oo : s n-1
u = w-lim Up Vi - Remark cy g u(x), v(x) g ¢, for almost all
J )

x ¢ X. Take an arbitrary bounded measurable function f on X.

We have

FEu (Oudx) = SrEee Ty BV u 0% 00 e @ u@y)
J J )

= rrexye T OV u () Sy P @) uay)
) J

+ fff(x){e-ij(X’Y)-e'F(x’y)}ukgy)svkgy)n_lp(dx)u(dy).
J J

Since g(y) = If(x)e_F(x’Y)u(dx) is a bounded function of y, the

first term of the right-hand side converges to
fgEIudy) = rrEe)e TG y)n axuay) .

As for the second term, we have

|77 ) Lo TFiey 97 e F 0OV by ()% 0™ M (ax)u(ay) |
J J

< £l c§+n_lff{e'ij(X’y)-e-F(x’y)}u(dx)u(dy).

F -F

The right-hand side converges to 0 as j > «, since 0 < e kj-e

e—kj. Therefore, we have

A

[f(x)u(x)u(dx) lim ff(x)ukgx)u(dx)

jore j

rrex)e FOOYh iy uaxyu ay),
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from which it foilows

u(x) = fe F(X’Y)G(y)p(dy) a.e.X.

Therefore,

() - u) = 1o Ty (% (O™ ey - e T )nten)
J J J

e Tk V) - F Oy () Sy ™ ucay)
J J

+ 1 POV iy ()Sv ™ B hucay).
]

J

The first integral converges to 0 as j » « for all x. The second

“F(x,y) belongs to

integral also converges to 0, because e
* . .
L(n+s) c L2 = L2 as a function of y by the assumption (A,S5).

Consequently, 1lim uk(x) = u(x) for almost all x. By the same

jre 7
argument, we have lim vk(x) = v(x). Letting j » « in
joe 7]
u () = re Tk E Yy (1)Sv, (™ Lucayy,
ks j k: k.
J J 3
v () = s M 0 vy ) Muay),
j j j

we conclude by Lebesgue's convergence theorem that

fe_F(X’Y)u(y)SV(Y)n-lu(dY),

u(x)

vix) = fe FOX)y S lyy)Puay).

4. Reversibility of Markov chains. We say that p = p(x,y) is

reversible if p = ﬁ, which means h(x)p(x,y) = h(¥)p(y,x). We

prove the following



Theorem 3. 1) If there exists a reversible chain in M(F), the
potential F is symmetrizable.
2) Let F be a symmetric potential. Assume (A,3) in Lemma 4 and

assumme

(A,5) sup fe-(n+s)F(x’Y)u(dy) <+,
X

Then, all chains in M(F) are reversible.

Proof. 1) Let p be a reversible chain in M(F). By Theorem 1,

we have p(x,y) = A(s,n)u(x)'1u(y)sv(y)n_le-F(x’y) and h(x) =
c u(x)sv(x)n From h(x)p(x,y) = h(y)p(y,x), it follows

v(x)u(x)-le'F(x’y) = V(y)u(y)—le_F(y’x), which means

F(x,y) - F(y,x) = log v(x)u(x)"! - log viy)u(y)"l. By Lemma 2,
F is symmetrizable.
2) Let p = (u,v) € M(F). Put K(x,y) = e—F(X’y)u(y)s-lv(y)n'l.

We have, by Theorem 1,

u(x) = A(s,n)/K(x,y)u(y)u(dy),

v (x) A(s,n)/K(x,y)v(y)u(dy).

Since sup u(x) <+« and sup v(x) <+ as will be shown in the fol-
X X

lowing Lemma 9, we have

FIK(x,y) 2 (dx)u (dy)
< Jul 20Dy 201 rrem2F Gy (ax)u(dy)
2 n+s-2
< Ju 26Dy 21 r) ax) (re” MFSIFOGY)) (ay) 1078 (x) B¥S
2 2(n+s-1)
< Jul 26 D)y 20D gy o (¥SIFGY) | (gy)1¥S ) (x)  BFS

X
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The kernel K(x,y) being square-integrable, positive eigenfunctions
in L, are unique up to a multiple of constants [7]. Consequently,

there is a constant c, such that u(x) = clv(x). From the equality

1

1 in case s = n = 1, or from ruSv® tay = ru® " IvPap

]

Susuy = [fvdu
in case s+n > 2, it follows c; = 1, i.e., u=v.- Therefore we

1

have p(x,y) = A(s,n)u(x) u(y)5+n_le_F(X’y) and h(x) = c u(x)>"'",

which implies h(x)p(x,y) = h(y)p(y,x).

Corollary. Assume that a symmetric potential F satisfies (A,3)

and (A,5). Then, a transition density p = p(x,y) belongs to M(F),

if and only if p(x,y) has the expression:
p(x,y) = A(s,n)u(x) 1u(y)n+s-1e°F(x’Y);

where u is a positive measurable function satisfying
u(x) = A(s,m)re F Vs iy,

(x=) Ju(x)u(dx) =1, if s = n = 1,

fu(x)5+nu(dx) <4,

The invariant probability density h(x) has the form:
h(x) = ¢ u(x)5+n,

where ¢ is a normalizing constant. The expression is unique.

Lemma 9. We assume (A,3) and (A,5). Then, sup u(x) <+ and
X

sup v(x) <+~ for each (u,v) € M(F).

X



n

Proof. Put o = fusvn-ldp = fus—lv dp <+w. We have by Holder's

inequality

1l

u(x) = fe POV Sy ™ L cay)

n+s-1 1

o n+s {fe-(n+s)F(x,y)u(y)sv(y)n-lu(dy)}n+s.

A

Consequently,

s+ndu

fu On+s-1”e—(n+s)F(X,Y)u(y)5V(y)n‘1u(dy)u(dy)

A

n+
o} Ssup fe

X

(n+s)F(X’Y)p(dy) < 400

A

By the same argument, we have

fv5+nd n+s (n+s)F(y,x)

U g o Tsup Je
b

u(dy) <+e.

We have, by Holder's inequality again,

u(x)
1 S n-1

(re” (M*9IFCOY)y ay) 1S ru () ™ S (@) S v () ™ S (ay) 1P

A

1 S n-1
{sup fe (n+s)F(x,y)u(dy)}n+s(fun+sdu)n+s(fvn+sdp)n+s
X

A

As for reversibility of chains in M(F) with a symmetrizable

potential F, we have the following

Theorem 3'. We assume (A,3) and

(a,5) suptse” (W*SIFCOYy(ay), re” (MIFD Xy @y} oo,
X

(A,6)" sup{fe(n+s)(n+s-2)'F(x,y)u(dy),fe(n+5)(n+5'2)'F(Y,X)p(dy)} e
x

where (n+s)(n+s-2)' = max {(n+s)(n+s-2),1}. Then the following three
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statements are equivalent to each other.
1) A potential F is uniformly symmetrizable.
2) There exists a reversible chain in M(F).

3) All chains in M(F) are reversible.
To prove this, we need the the following
Lemma 10. We assume (A,3) and

(A,6)" sup{sef (oY) ay),reF V¥ (dy) ) <tw.
X

Then, inf u(x) > 0 and inf v(x) > 0 for each (u,v) ¢ M(F).
X X

Proof. We have by Holder's inequality

n+s-1 n
S gy g e T ) Sy tuay) TS

s n
(fus-lvndu)2n+s{feF(x’Y)p(dy)}2n+s

X

n s n
u(x)2n+s(fus'lvndu)2n+s{sup feF(X’Y)u(dy)}2n+s,
X

A

from which follows inf u(x) > 0.
X

Proof of Theorem 3'. 2)=>»1). Let (u,v) € M(F). By the proof
1

of Theorem 3, F(x,y) - F(y,x) = log v(x)u(x)-1 - log v(y)u(y)
By Lemmas 9 and 10, the function log V(X)U(X)-l is bounded, hence,
F is uniformly symmetrizable by Lemma 2.

1)=3). Let F be a uniformly symmetrizable potential which
satisfies (A,3) and (A,5). Then, the uniform symmetrization 3

of F also satisfies (A,3) and (A,5). Therefore, by Theorem 3,

all chains in M(F) = M(ﬁ) are reversible.



3)—2) is trivial, since M(F) # ¢ By Theorem 2.

We present an example in which M(F) contains infinitely many
chains. Let X be the unit circle S' which we identify with the
interval [0,1), and let u be the Lebesgue measure on Sl. Let

stn = 3. Let a, a; and a, be positive numbers. Put, for k = 0,1,2,

a
k
Yk = ‘Z N 3
Z a . .
j=-2 Ik'J|a|J|
and put
2 .
u(x) = I a|k|e2ﬂ1kx
k=-2
= ao+2a1c052ﬁx+2a2cos4nx,
2 .
r(x) = = Ylkle21r1kx
k=-2

I

Yo+t2YCOS2mX+2Y cos4mX.

1
It is clear by the definition of Yi that u(x) for(x-y)u(y)zdy.

If y;-4y, > 0, then min T(x) = T(x)]
X

cos2mx=-1 = Yo 2Y1*2Y,, since

2

Y12 !
) +Yo‘2Y2—E?E" We can see

r(x) = 4Y2(C052ﬂx+4Y2

2 2
a; -6aoa2-8a2

Y4y, =
1 2 2(a°+a2)(a12+230a2),

Y

2 2 2 2 3
_ ay az(ao+2a2)+4a2 (ao *ta, )+2(a0 a,-a,;
Yo 2Y1*2Y, = T I 2 2
(a0 +2a1 +2a_2 )(ao+a2)(a1 +2a0a2)

- 32 -



Let al2 > 8a2(ao+az), al4 < aosa2 and let a; and a, be suffi

ciently small in comparison with a,- Then, functions u and T
are positive.
Put

F(x,y) = -log T(x-y),
u (x) = ulxta) (o e [0,1)),

then u&s(0§a<1) are positive solutions of (xx) in Corollary
to Theorem 3, that are distinguished from each other-
Dobrushin and Shlosman [3] show that all Gibbs distributions

2 with the state space Sl, whose potential is of finite range,

in Z
of Cz—class and invariant under rotation of Sl, are also rotation-
invariant. On the contrary, Spitzer's Markov chains determined
by u,  are not rotation-invariant. But, M(F) contains also a
retation-invariant chain, which is determined by a constant solu-

1

tion 0 = (JT(x)dx) " of (x+).

5. Uniqueness of Markov chains at high temparature. In the

following we consider potentials with the form BF, where B > 0

is the reciprocal temparature. We prove
Theorem 4. Assume (A,3), as in Lemma 4, and assume

(A,7) sup{felF(x’Y)|u(dy),fe|F(y’x)|u(dy)} <+,
X

If B is sufficiently small, then M(BF) consists of one chain.

Proof. If B is sufficiently small, the potential BF satisfies
(A,5) and (A,6). Therefore M(BF) # ¢ by Theorem 2. In case

s =n=1, (*)' in Theorem 1' takes the form



u(x) Afe'BF(X’Y)u(y)u(dy),

v(x) = e BFOLX) gy (yynayy,
()
fu(xX)p(dx) = Sv(x)u(dx) = 1,

fu(x)v(x)u(dx) <+ew,

As is shown in Lemma 8, solutions u and v of (*)' are bounded

%, since (A,5) is satisfied by BF. Since the

is square-integrable if B < %, the normalized

from above if B <
kernel e BF(X:Y)
positive solutions of the Perron-Frobenius equation (*)' are

unique ([7]).

To prove in case s+n > 2, we need several lemmas.
Lemma 11. Assume (A,7). Put
+
¢ (8) = sup{|e*FFCY)yqayy-uxy |, e ™BF Oy ay) -uay 3.

X

Then, we have lim cl(B) = 0.
g0

Proof. By Holder's inequality, we have

fe:tBF(X,}’)u(dy) {feiF(X’y)U(dY)}BlJ(X)l-B

A

{sup feIF(X’Y)Iu(dy)}su(X)l-B.
X

A

The right-hand side converges to u(X) as B »~ 0. By Holder's
inequality again, we have

+EF cx,y)ei—%‘ﬁ(x,y)

w2 = {re 1 (dy)

(re*BF(Y) | (ay) e BF (YD (ay )y

nA

X

A
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Consequently,

retBF(x,y)

the right-hand

{sup relFOOYI ayyy By )18,
X

u(dy)

v

side of which converges to u(X) as B + 0.

Lemma 12. Assume (A,3) and (A,7). Put

1 1
c(B) = sup  {Ju-u ()™ Iv-n ™AL,
(u,v)eM(BF)
¢, (8 = sup (Sl YL peSv R Y S A e e Y
(u’V)EM(BF)
where ||f]|_ = sup |f(x)|. Then, we have lim c,(B) = lim c,'(B) = 0.
xeX B0 g0
Proof. Take any (u,v) ¢ M(BF). Put o = fusvn-ldu = fus-lvndu.
17, oS an, v ¢ 0¥ P u(X) +eq (B(s+n)) ).
In fact, we have
u(x) = fe BEOY)y Sy hucay)
s+n-1 1
<o s+n {fe'B(S+n)F(X’Y)u(y)sv(y)n'lp(dy)}n+5.
Therefore,
ruS*Ray < o3t Ly re BOSPRIFOGY) vy Sy ()™ Ly (ax) w cdy)
< oS sup fe_8(5+n)F(x’Y)u(dy)
X
< 0¥ M uX)+ey (B(s+n))}-
s+n-1 1
o s+n s+n
2°. Put cg(B) = {u(X)+cq(B(s+n))} {u(X)+c  (B(s+n) (s+n-2))} -1 (
1
Then, we have u(x),v(x) 2 (M(X)+cg(8)} 5*®7% and lim c,(8) = 0.
80



To show this, put py = 257, py = (s+n) (s+n-1), py = 5 Py,

~

and Py = (n-1) lpz. Remark that X pil = 1 and p31 + pil =
i=1
(s+n)—1. We have
o = fusvn'ldp
Bp
1 2. 1
- _ £ (X,Y) T
< e BFCOY)y 35y (p)™ Licdy) 1P1 (fe P1 u(@y)iPz
1 A1
x (SusMauw)P3 (svStau)Py
1 1
— Bp, —— -1, -1 -1
£ uP1 ) re; (5D 1P2 oM P3Py )y (x)ee, (B(s+n))IP3 P
1 ]
Hence,
P31 P1
u(x) > (u(x Bp, - P “S+n
> 1u( )+C1(_EI) 2 {H(X)+C1(B(5+n))}

1

o1
(n(X)+cy(8)} T2
3. Put C4(B)=U(X)-M(X)—(S+n_2){u(x)+c3(6)}_(n+s'3){u(x)-cl(g)}2(5+n-

1
Then, we have o = fuSv™ lay = rus 1yMay $ nX)-c,(8)} s*n-2

and lim c4(8) = 0.
g0
In fact, we have by 2 ,
s+n-3

+eg(8)} 26D < y?

A
c
—~
»
-
<
—~
o
~—

Thevefore,

—

s+n-3

WXre (8} 26 4o < fu)Sv™ 1z,

s+n-3 1

{u(X)+c3(B)}—2E5+n'2jfudp f(usvn'l)jdu

A

1 1
ozu(X)z.

A
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On the other hand by Lemma 11,

Sudy

hence,

rre” BE(SY )y 935y (v)™ Ly (ax) i (dy)

v

{tu(X)-c;(B)}o,

s+n-3

[
[

W 0+c5(8) 1 ((x)-cp (8) )0 5 02u (D)7

Thus, we

Q
A

have

s+n-3

s u(XJ{u(XJ+c3(s)}S*H‘Z{u(X)-clcs)}'z

= {u(X)- c4(8)} +n—
_s+n-1
4°. We have u(x),v(x) ¢ {(pX)- -Cy (B)} S*M° {u(X)+C1(B(S+n))}-

In fact, we have by Lemma 11, 1° and 3°,

u(x) = re BECOY)yy)Sy ™ Lucay)

1 S n-1
{re”B(*SIF(GY) () 30*S (1S Ray)B¥S (5y5*0gy) S*D

A

tn(X)+cq (B(s#n)) o> 71

A

_s+n-1
(XD *eg (B(s+n)) Hu(X) -, (8)} P2,

A

The assertions in Lemma 12 follow from 2  and 4°.

Lemma 13. 1) Put
n-1 1 s-1 1
R (x)=R (ul,vl,uz, 2,x) ugv2 -{ulvg +suj Vg +(n 1)uS ? 2wz},
- ) vev=,S-1lon o s-1 B s-2 . s-1 n-1
RZ(x)_Rz(ul,vl,uZ,vz,x)—u2 v, {u1 +(s l)u Viwitnuy vy wz},

where w1

u,-uy and Wy = VyoVy. Then, there exists a constant
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c > 0 such that

IR sl Ry Ml

A

c-czce)-max(Huz-uIHm,Hvz-vlﬂm)

for all 0 < B

A
b

and for all (u;,v;) and (u,,v,) € M(BF).

2) There exists a function c (B) with 1lim cs(B) = 0 such that
g0

A

[/ (uy-up)du-s (vy-vddul s g (BImax(fuy-uy f,lv,-vy )
for all (ul,vl) and (uz,vzj e M(BF).

Proof. 1) The assertion is clear, since

-1 -1
R1 = (u1+w1)s(vl+w2)n {uivg +sui v? +(n l)u wz}
-1-k j. k
= I ( )( k )uS JV? Wle2

j+k=2
j<s,ksn-1

and since sup{[ul,,lvl,; (u,v)eM(BF), 04851} <so and fuuy [, 1w, I,
< Zcz(B) by Lemma 12.
2) We have u(X)-lf(wl-wz)du =

= f[s{u(X) 1 -1 n Lyw 1+ (n- D{uX)” -1 uiv?-z}wz]du
+ [[(s- 1){us 2 ? 1 (X) l}w +n{u Vl- -u(X) l}wzldu

[ n 2 s-2.n s
+(n Dujv }-{(s-l)u1 ViWy+nuy

The first integral in the right-hand side is bounded in the

absolute value by

Wl (=) () - uSv 2wy e 00,

{sux) ! u vy

[o¢}

which is not less than (s+n—l)cé(B)u(X)max(leﬂw,“Wz”m) by Lemma 12.
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The second integral is also bounded in the absolute value by

(s+n-1)cé(8)u(X)max(“lew,"wznm). The third integral is equal to

s.n-1_ s n-1_ _(,S"1.n_ s n-1_ - .
I{(uzv2 -uyvy Rl) (u2 V,-ug vy Rz)}du = f(R2 Rl)du,

since fuzvg—ldu = fui-lvgdp (i=1,2). The absolute value of the

right-hand side is not less than (HR1“m+HR2Hm)u(X)

< Zu(X)-c-cZ(B)max(Mwlﬂm,szﬂm). Therefore, we have

=

|7 (wy-wpddu| g 2{(s+n-1)c)(B)+cec,(8) hu(XImax(fwy lonllwyl) -

Proof of Theorem 4 in case s+n > 2. Take arbitrary (ul,vl) and

(uz,vz) e M(BF). Put Wy = up-uy and Wy = Vy-Vy. From ui(x) =

fe'BF(x’Y)ui(y)svi(y)n'lp(dy) (i=1,2), it follows that
wilx) =

= s BFUOY) su ()5 v, 00 hey )+ (- Dy )3y 0™ P, () 4R, () e (@

(s+n-1)u(X)'lrwldu+(n-1)u(X)'1f(w2-w1)du

It

s (X)L (e PFCOY) 1w @)+ -1y e FECSY) 1w, (r)ucay)
+se BRSOV (y ()5 v )™ w0 ", () u(ay)

+(-1)7e B fu) (1) 3v) (0™ 20 00 T, ) w (@)

+re BFOOYIR, (r)uay).

We have

| £ (wy-wyddu] g o (B)max(fwyll,,lw,ll,)  (by Lemma 13),

|76 BFCOY) u) )5 vy 0P -u ) T ey () way) |
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_ll

*
oo

A

) +eq (8) M v huex)

(by Lemma 11)

1
< ey (B Yoy (Bymax (fwy s v,y 1) (by Lemma 12),
|7e PFCOYIR (yyutay) | g tuvey (BYHIR, I, (by Lemma 11)

< {U(X)+c1(8)}c'cz(B)max("wlﬂw,szﬂ@) (by Lemma 13).
-BF
As for [ (e -1)w1du, we have

| £Le™PFOSY) 1y (r)ucay) |
1 1
e PEOOY) 1y 2u(ay) 12 (rulan)?
1
"wln 'u(X)Z{f( ~2BF(x,Y) _,¢-BF(x,y), #1)1(dy) }2.

tA

1
Z

LAY

The last integral converges to 0 uniformly in x as B > 0 by Lemma 11.

Conseguently, wl(x) = (s+n-1)u(X) 1fw1du+R3(x), where HRSI]°° <

6(B)max(|w Hw,”w H ) with 1lim e (B) = 0. Hence, we have
B0

_ 1
fwldu " “s+n-2

u(X
|rwjaun] < 28R,

Wyl & (s+n-1)u(x) " swpdul+Rg ],

WA

SRl ) g (Bymax ((lwy I, I, L) -

By the same argument as above, we have

I, b & EER2241)cq (BYmax (gl W, 1) s

from which it follows
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max (wpl 0 v,l,) © (SR31)ce 8 )max (. w,l,)

s+n-1

If g is so small that (Z—5+1)c(B) < 1, then max(”wlﬂw,ﬂwzﬂw) =0,

which means u; = u, and v1 = V,.

6. The number of chains at low temparature. An example. We

present an example, in which the number of chains in M(BF) is
exactly calculated for sufficiently large g. Let X be a finite

set and let My = pi}) > 0 for all i e X. We prove

Theorem 5. Let F be a symmetric potential on X satisfying

(A,8)  F(i,j) > F(,i)*megl F(1,1)-F (G,

for all izj € X. Then, the number of chains in M(BF) is equal

#X

to 2 1 for sufficiently large B, if n+s > 2.

Proof. We look for positive solutions of

(xx) u. = z e BF(EJ)ys*a-bl — i0xy,
1 jeX J J
For simplicity we put p = -1. If we put
_i_
_ -BF (1, 1) -1
x; = le ujo

the equation (x*) is transformed into

(xx)' x. = X+ 5 a..xP (ieX),
T 5521 1)
R S
_ ,.p-1,  p-1 -F - F
where ;5 = w3 My exp[-B{F(i,])- (J,J) =7(F(J,3)-F(i,1))}].
Under the assumption (A,8), we have lim a;; = 0. Therefore,

gl

Theorem 5 is a corollary to the following
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Lemma 14. The number of non-trivial solutions of the equation

(*xx) xi = |xilp + 1j|lep (1<is<N)

1

I—'lA
Z

X
<j
J Jf

is equal to Zh—l, if p > 1 and positive coefficients a; (1<1#J<N)

are sufficiently small.

Proof. Put, for x = (xl,x2,~~-,xN) and a = (a;.:1<i#j=<N),

a ij

F.(x,a) = x p X. + T a..|x.|P (1<i<N)

O L S IEN :
j#i
BF

J(x,2) = det (3= ](x,_))1<1 5N »
where

oF.

1 = p-1 _ _ p-1

BXJ(§ »a) psijlxil Gij + p(1 Gij)aljlle .
1°. The number of non-trivial solutions of (**xx) is not 1less
than ZN—l, if a1J are sufficiently small.

(ky,%,,00 %) # 0 with %, = 0 or 1.

12>

In fact, let

We have P.(%,g) = 0 (1<isN) and J(g,g) # 0, since

i
BPi A A ChIFN
5——(; 0) = pPX; 1 and §§—(§ 0) = 0 (i#j). Consequently, there
) A A
N X D3
exist a constant A and an R -valued continuous function £ = f (a)

defined for a with [all = max |a,.| ¢ A, such that
i#j 1)
X
£(0 =%,
X
F.(f (a),2) = 0 for a with Jla] ¢ A (1sisN).

X
Since f (a) # 0 if a is sufficiently small, it is a non-trivial
- - - A A

X x'

solution of (**x)., Remark that if x # x', £ (a) # £ (a) for

sufficiently small a. The number of non-trivial solution of

(x*x) is not less than #{3;§¢Q,§i=o or 1 (1<isN)} = 2N -1,
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2 . If a is sufficiently small, then J(§,§) # 0 for any solution

X = (xlaxzy".:xN) of (x*x).
In fact, from xi—lxilp = jiiaijlx.lp >0, it follows 0 < x; < 1.
From 0 < x.-|x.|P = z a..|x.|P < £ a,. < (N-1)]al, it follows
ot L U R F'T Ht -

that x; is close to 0 or 1 if |all is small. Therefore, Igii(x,g)l
i

= |px€—l—1| > % for sufficiently small a. On the other hand, for
i#)

aFi p-1

g;;(§,§) = pa;;x5 < plal.

Hence, J(x,2) # 0 if g is sufficiently small.
3°. Let a be sufficiently small and let x = (xl,xz,"°,xN) be a
solution of (**x). There exist continuous functions fl(t),fz(t),

ses,f (t) defined on [0,1] such that

£.(1) = x; (1is<N),
= P P :
£, (1) |fi(t)| + .Z.taijlfj(t)l (1<isN,0s<t<1).
j#1
In fact, put ﬁi(é;t) = lxilp x. + I ta..|xj|p (1=isN) and

let Ao be the infimun of A such that there exists a continuous
function f(t) = (fl(t),fz(t),°°-,fN(t)) on [A,1] such that
£(1) = x,
F (£(t);t) = 0 (1<isN,Ast<1).
~ af:i . ~ )
Put J(x,t) = det (gig(é’t))lsi,jSN' Since J(x,1) # 0 by 2, such a

function £(t) exists in a neighbourhood of 1. Therefore, A, < 1.
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Suppose Aj > 0. Then there exists a sequence AN A, and

continuous functions g(“)(t) on [An,l] such that
£™ ) = g,
F g™ (0),t) =0 (1isN,A_stsl).

Since 3(£(n)(tJ;t) # 0 by 2°, uniqueness of implicit functions

implies g(n)(t) = g(m)(t) for m>n and An < ts<1. Put

f(t) g(n)(t) for An <t <1 (n=1,2,-¢°).

The function f(t) satisfies
£(1) = x,
Fi(g(t);t) =0 (1<isN, A <tgl).
Remark that every component fi(t) of f£(t) satisfies 0 < fi(t) < 1.

Let t_~, A . There exists a subsequence {t_ } such that f(t_ )
n o n, =g

converges as k > «. Put y = lim f(t ). We have
koo k
Fi(rsA,) = O (1=i=N),

hence, E(X;AO) # 0 by 2°. There exists a unique function z(t)

in some neighbourhood (Ao—e,Ao+e) of A0 such that
£(A,) = ¥
?i(f(t);t) =0 (1<isN,A_-e<t<A_+€).
By uniqueness of implicit functions, we have f(t) = z(t) for

t e (AO,A0+€). Therefore, Ao—e is not less than the infimum of A

such that there exists a continuous function f£(t) on[A,1] with



£(1) = x and isi(;f(t)it) = 0 (1<isN,A<t<1), which we have

put Ao. This is a contradiction. Hence A0 < 0.

4°. Let a be sufficiently small. There is a one-to-one corres-

114>

pondence between non-trivial solutions x of (x*x) and

(Xyo%,500,%) # 0 with %, = 0 or 1.

In fact, let x be a non-trivial solution of (xxx). There

is a continuous function £(t) on [0,1] such that
£(1) = x,
£.(t) = |fi(t)|p + It aijlfj(t)lp (1<isN,0s<t<1).
jF1
Since f;(0) = |fi(0)|P, we have £,(0) = 0 or 1. If £(0) = Q.
then £(t) = 0 for all 0 < t <1 by uniqueness of implict

functions.
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