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On quartic surfaces and sextic curves with singularities

of type EB' T2.3,?' E12

By Tohsuke Urabe
Tokyo Metropolitan University
Department of Mathematics

Fukazawa, Setagaya, Tokyo, 158, Japan

8§ 0. Introduction.

3

In this article we take up normal guartic surfaces in F and

reduced sextic curves in P2, Especially we would like to treat the
case wvhere they have a simple elliptic singularity EB’ a cusp sin-
gularity T2 3,7° or a unimodular exceptional singularity E12'
* ¥
{(Cf. Armold [ 11, Saito L[181) Ue show that when they have such s
singularity and other several singularities, the ceonfiguration of
singularities is subject to a certain law explained from the wview-—
point of Oynkin graphs. Indeed we will verify the following theo-—

rems. Now in this article we assume that every variety is definsd

over the complex number field €.

Definition 0.1. For a given mset of several connected Dynkin
graphs, the following procedure is called an elementary transforma-
tion of it.

(1) We replace each component by +the extended Dynkin graph of the

corresponding tyvpe.



(2) After that, we take away arbitrarily chosen one or more ver-—
tices and their connecting edges from each component.

(Cf. Bourbaki [ 31, Dynkin C 81)

Note that any Dynkin graph without multiple lines is associated

to a rational double peint on a surface. (CFf, Artin [ 23)

Theorem 0.2. Assume that a normal gquartic surface X (i.e. a sur-
face of degree 4 with only inolated singular pointws) in the projec—
tive space P°  of dimension 3 has a simple elliptic singularity
E.. Then the configuration of singularities on X is g Plus one
of the following.
(I) a configuration of ratiocnal double® points associated to a set
of Dynkin graphs which is obtained from the Dynkin graph B9 by ele-
mentary transformations repeated twice in such a way that the
resulting s=set of Dynkin graphs has no vertex corresponding to a
short root.
(II) a configuration on rational double points associated to a set
of Dynkin grapha obtained from the Oynkin graph EB by elementary
tranaformations repsated twice.
{111 another ga.

Conversely every configuration appearing in the above (1),
(11, CI11) plus Eé can be realized on a normal quartic surfacs in

Es as singularities,



Remark. 1. The singularity obtained by contracting a smooth
elliptic curve uith the self-intersection number -1 on a smcoth
surface is the singularity EB'

2. In case (III} two elliptic curves appearing on the resolution of
singularities on X are imomorphic. This is Y. Umezu’s result.
(Cf., Umezu C£217)

3. Note that the =lamentary transformation defined by Dynkin in
£7] and our elementary transformation is slightly different.

4. In particular consider the case where after the first elementary
transformation the unique vertex g in Bg corresponding to the
ahort root is left and howesver the connecting muitiple edge is
eraced, In thi= case in the first stage of the second elementary
transformation, # is replaced by the extended garaph Ki' Then
note that a= an agreement we regard both vertices of 31 as ones

corresponding to short reoots.

Theorem 0.2. <{resp. Theorem 0.4.) Consider a normal gquartic sur—
face in Ea with a8 cusp singularity T2 3,7* {resp. an exception-—
] ]

al singularity Eiz) The configuration of singularities an X is
T2,3,? {resp. E12 ) plu= one of the following.

(1> a configuration of rational double point= associated to a sub-
graph of the Dynkin graph Dg. (resp. a subgraph of the Dynkin
graph AS.)

(11} a configuration of rational double points associated to a prop—

er subgraph of the extended Dynkin graph EB' (resp. a subgraph of



the Dynkin graph ES')
Conversely every configuration in the above (I), (II) plus

T (resp. E } can be realized on a normal guartic surface in
2,3,7 12

E? as singularities.
Remark. 1. Note that two different objecta are called by the same
name En. One ims a surface singularity and the other is the extend-

ad Dynkin graph.

2. The singularity obtained by contractira an irreducible rational
curve with an ordinary deuble point (resp. an ordinary cusp) with
the self-intersection number -1 is T2’3’?. {reap, E12)

3. (I) is eguivalent to saying that " a set of graphs with no ver-
tex corresponding to a short root cbtained from the Dynkin graph 39
by one elementary transformation’. (resp. ' a s=ubgraph of the
Dynkin graph 39 with no vertex corresponding to a short root’ )
In section 5 we see that the Dynkin graph B9 ia the essential one.
4. Of course we can restate (I1) using the word "elementary trans-—
formation”, too.

5. We wili see that the number of extensions 2, I, 0 in Theorem 0.
2, Theorem 0.3, Theorem 0,4 respectively is the rank of the funde-
mental group xy of the exceptional curve in the minimal resalution

of the singularity EB' T2,3,?’ E12 respectively.

Now we call a plane curve singularity defined by fix, y) =0

at the origin by the same name as the surface singularity defined by



zz*F(x, ¥) =0 at the origin. {(Thus there is a rational double
point which is by no mean= a double paint a= a curwve singularity.

Dg» Eg» Es» Eg——-. Moreover it is known that the right-equiva-
lence class of fix, ¥y} =10 is uniguely determined by +that of

Z2=F(x, ¥) = 0.)

Theotrem 0.5, (i) Let B be a reduced sextic curve in the projec-—
tive space P? of dimension 2. (i.e., a plane curve of degree &
without multiple components) Assume that B has a simple elliptic
singularity EB' Then the configuration of singularities on B is
EB plus one of the following.

(A} a configuration of rational double points associated to a =et
of Dynkin graphs obtained from the Dynkin graph EB+A1 by elementa-
ry transformations repeated twice,

{(B) either another ES or anther EB plus one Al.

Conversely every configuration appearing in the abave (A), (B)
plus Eé can be realized on a reduced sextic curves as singul ar-
ities,

(ii} The set of reduced curves with any sne of the following config-
uration of singuralities has two or more connected components in the

space of all sextic curves E(Hgtfz, 0’2(6})}.
P

<1y E8+A? 2> E8+2A3 3> EB+A5+A1 <ay EB+A +24

37N
<5> Eg+aa, 6> Egrta+a, D> Egt2a,+A, <8> E8+A5+2A1

£9) ES+A3+3A1 10> E8+5ﬁ1



Theorem 0.6. (resp. Theorem G.7.) Consider a reduced sextic plane
curve B with a cusp singularity T2'3'?. {(resp. a unimodular
exceptional singularity E12‘} Then the configuration of singurali-
ties on B i= T2'3’? (resp. E 5> plus a configuration of ration-—
al double points associated to a proper subgraph of Eé+A1 which is
not equal to gﬂ' (resp. a subgraph of the Dynkin graph EB')

Conver=ely such configurations are realized on reduced sextic

CUrMas,

The study of projective varieties and their singularities has
long history and it has been done from variou= view—points. From
among them let us pick up some result= deeply connected with this
article. In 1234 Dy Val found out that configuration of singulari-
ties on cubic surfaces, plane quartic curves and sextic curves on a
singular gquadric smurface in E3 can be classified from the vieu-
point of so—called Coxeter groups and root systems of E-tyvpe. (Du
Val [22]) His result was rediscovered by modern mathematician=s from
a different point of view auring 1970°s. {(Pinkham €181, Looi jenga
C103, Mérindol 131, Naruki, Urabe C[15]1) In particular taking up
related +topics Looijenga established a Torelli-type theoram for
rational surfaces with effective anti-canonical divisors by the
mixed Hodge theory and integration of rational 2-formas. His theorem
is= a powerful tool +ta study them. (Locoijenga [101} On the other

lhand Shah classified singularities on quartic surfaces from the



view—point of the geomstric invariant theory. (Shah [20]1) An exam—
ple of non-ambient-isotopic mextic curves waa given in Zariski [247,

The reaults in this article will be mainly obtained by develop—
ing the above-mentioned lLooijenga’s method further.

The contents of thia article is like the following. Section 1
is the preliminary part. UWe explain that the satudy of sextic curves
B iz reduced to the astudy of branched double covering X of 22
branching along B and that such branched coverings and quartic
surtaces with anti-canonical divisors and ruled surfaces with posi-
tive irregularity- From section 2 to section S we study rational
surfaces, In mection 2 uwe explain a generalized ver=ion of Looi~
jenga’s Torelli-type theorem. Our version does not use integration
of 2-form= explicitly and it is easier to understand, we think. As
a result we have an algebraic group Hom(I', E) as a moduli space of
a certain class of rational surfaces, uhere TI' is a certain free Z
—module with a bilinear form and E is either an elliptic curue
Wwith a group law, a multiplicative group C*, or an additive group
. In addition the relation between our version, theory of integra-
tion and the mixed Hodge theory is explained. Section 3 is devoted
to study properties of linear systems on them. Section 4 is +he
Diophantine theoretic part. We determine +the class of the polari—
zation in +the Picard group. The action of the Weyl group on
Hom(I', E) is studied in section 5. The case of ruled surfaces with
positive irregilarity is taken up in section &.

I would like to express my heartily thanks to my teachers and



colleagues. In particular we thank Mr. T. Fukui for peointing out an
error in the first version of this article.

Now we gues= that our theorem is a small part of a big theorem
dominating all quartic surfaces and all sextic curves, of course.
There are two reasons wa take up only surfaces with EB’ T2,3,?' 512
here., One ie that since moat of them are rational, they have a
rather simple global structure. The other is that the fundamental
domain of the Coxeter group introduced in section 2 is easmier to
handle than that in other cases. Therefore the next problem should

be the next step of our study.

Problem. Find out the general law explaining which singularities

appear on quartic surfaces and sextic curves,

For line bundles L, M and divisora A, B on a smooth surface
Z, the intersection number. is dencted by L-M, LA, or A‘B in thi=

article., Sometimes we uwrite L2, Bz

ingtead of L'L, A-A. The
complete linear system associated to the line bundle L is denoted
by IL]. The complate linear system Iﬁi(A)l amsociated to a divi—
mor A i= denoted by |Al for brevity. If M is a dual line

bundle of L, we denote [IM|{ by [-L]I.



§ 1, Preliminaries.

In this section we explain that quartic surfaces and branched
double coverings of Ez branching along sextic curves are roughly
classified into 3 types; K3 surfaces, raticnal surfaces and ruled
surfaces with positive irregularity.

Let X be a quartic aurface (i.e. a surface of degree 4) in a
3-dimensional projective space 23 with the stryucture sheaf 8%.
Ve assume that X is normal. Normality is equivalent ta that X
has only isolated singularities in this case. {(Cf. Matsumura [123)
Every local ring of X is not only Cohen-Macaulay but al=o Goren-
stein. Thus we can define the dualizing invertible sheaf @y on

X. (Cf. Hartshorne [ 81)

Lemma 1.1, For a gquartic surface X, we have
(1) @y is a trivial invertible sheaf, i.e., @, = Oy -

2> Hiwey = 0.

%
Proof. (1) = N R T (y ARy (-4, = where
Dy wpd p3lX p3 p3 X X*
N 3 is the normal bundle of .
X/P

{(2) It follous easily from the exact sequence of sheavas

00— & o(~A)—— & — F—— O
b3 3 X
since Hi(@E 3 2 e E 4(-42) 2 0. g.c.0.
| 4 P

Let p: Z— X be the minimal resslution of singularities of

X, We have the Leray spectral sesguence



Psq _ Prpd pta

E é = H (R 9*021}==}H (IB’ZJ
Note that the support of Rlp*ﬁi is contained in the set of singu-
lar points of X. The geometric genus of a singilar point x€X is

defined by pg(X,x) = dimt(RP*G%) It is known that pg(X,x) is

xl

well-defined. {(Wagreich [23]) Moreover pg(X.x) =0 if and only if

x6X is either a smooth point or a rational double poit. (Artin
C 21)
Lemma  1.2. I(Bi)+ z p_(X,x) = (08 = 2

xeX:singular points

where X(F) is the Euler—Poincard characteristic of the sheaf F.

Proof. Since X i=s normal,; we have RGP*U% = B&. On the other
band I(Rlp*ﬁi) = Ebg(x.xi by definition. Thus by the lLeray spec-
tral seguence we get the first equality. As for the second one us

firet note that hziﬁk} = hn(mk) = ho(ﬁii =1 by the Serre-Grothen-

dieck duality. We have by Lemms 1.1 that 2(85) = h¥(85)-rl (e
+h2(0) = 1-0+1 =2. Here we denote hi(F) = dimcHi(F). Q.E.D.
Lemma 1.3. There exists an effective divisor D on Z with
¥ = B%(—D). Moreover
Supp D = L J ﬂ_i(x).
xeX:msingular point= with pg(K,x})O
Proof. Let x€X be the one of the singular points and UcX be
its sufficiently small neighbourhood. Set v = p_I{U). Let
n
p-itx) = lLJAi be the decomposition of the exceptional curve into
i=1



irreducible curves, Let ¢4F(U,wb) be a section not vanishing on

u. Then p*¢ defines a rational two form on V. Thus there exist

intagers a,€Z  with @ = Bb(ZaiAi). Now recall that the
i ; i . i i inite. I
intersection matrix (Ai Aj’igi,jﬁp is negative definite n
particul ar —A?)ﬂ. By adjunction formula we have
) = Y- *
Wy Ai = 2pa(ﬂi) 2 Ai. ")

I¥f +the arithmstic genus pa(ﬁi)zl, then the wvalue of (¥} is posi-

0, Af { -2 s=ince p 1(x) containes no

tive. In case of pa(Ai)
exceptional curve of the first kind by the minimziity of 2. Anyway
one sees that (*) is non—-negative. It follows easily from this fact
that aigp far every 1. Since pg(x.x) = dimmF(U—tJAi, wb)fF(U,
wu}. (Cf. Laufer Cl1]) the condition ay = a5 = =a =0 1is
equivalent to that pg(x,x) = 0. Assume that there exists i with
ai(ﬁ. We show that aj<0 for every i under this assumption. IF
for some |, aj = 0, then there exists k with a, = 0 and @ ﬁk

= -2(-a£}A£'ﬁk>0 since lJAi is connected, which i= a contradic-—

tion. Considering all singular peints on X we obtain the lTemma
=inl"e “lx = B'x- QoEoDv
Proposition 1.4. Let X be a normal quartic surface in 23.
Set P = 2 P (X, ).

xeEX:singular points
{1> I+ P =0, then the minimal resclution Z of X is a K3

ayrface.

{22 If P=1, then Z 1is a rational surface with an anti-canon-—

ical effective diviser DO.



3> If P22, then Z is birationally equivalent to a ruled sur-

face over a amooth irreducible curve of genus P-1.

Proof.  If P =0, w, 0 by Lenma 1.3 and Rlpul, = 0. By the
Leray =pectral sequence and Lemma 1.1 we have Hlfﬂ%) =0, Thus Z
is a K3 surface.

Assume P = 1. By Lemma 1.3 one sees that @ = U%(—mD) for
an effective diviser D ¥ 0. In particular the Kodaira dimension
x(Z) of 7 is ==, By the theory of classification of surfaces
(Cf. Shafarevich [19]) one sees that Z is birationaily equivalent
to 22 or a ruled surface over a curve with positive genus. 0On the
other hand we have I{BEJ =2-P by Lemma 1.2. Since the Euler-
Poincarg characteristic of the structure sheaf is a birational in-
variant, one see= that Z is rational.

In the case where P22, we have <(32> by the same irea=on.

QlElD.

2

Remark. In Umezu £21] Y. Umezu showed that if P32, then P

or 4 and she gave the clagsification of quartic surfaces with ng.

Next we consider sextic curves., Lat B be a reduced saxtic
curve {(i.e., A curve of degree & with no muitiple components ) in
the 2 dimensional proljective space Ez. We introduce the branched

double covering X of Pz branching alona B. Let F(zo,zl,z )

2
be the homogensous defining polynomial of B, Ue give weight 1, 1,



and 1 to Zgr 24 and z, respectively. Let 24 be another variable
with weight 3. Then 232—F(zﬂ,31,22) =0 defines a surface X 1in
the weighted projective space PF(1,1,1,3) not passing through the
point (0,0,0,1). ( The quotient of $4—{(0.0,0,0)} by the follow-
ing action of (" =(C-{0} is P(1,1,1,3). Action: t(zn,zi,zz,zal =
(tz,,tz),t25,t525)  where te€* and (zg,2,,25,25)9C"-((0,0,0,00).
P(1,1,1,3) ha=s a unique singular point at (0,0,0,1). ) The re-
striction to X of the projection x: P(1,1,1,3)-(¢0,0,0,1)} —=
Ez. (zn,zi,zz,za)———* (20’21’22} define=s a finite morphism of de-
gree 2. We denote it by the same letter x: X— Bz. The follow-

ing lemma is easily checked. (Cf. Arnold L 133

Lemma 1.5. A point x€X is smingular if and only if x(x)‘"ia a
singular point of B. Moreover the isomorphism claas of a surface
singularity (X, x) and that of a curve singularity (B, mi{x))
determine each other uniqugiy. Thus singular points on X and

those en B has one—to—one correspondence.

Lemma 1.6. For a branched double covering X branching along a

mpxtic curve B, we have)

(1) The dualizing sheaf @y is trivial, i.=., Oy E Bk‘
1 -

(2 H (0&) = {,

Proof- (1) Let L be a general line in 22. We have

~ 1 . = % - 2
wx = x u}zfﬁﬁ Ry = » 5;2( 3L)@ﬁ;2(3L) = B&.



(2) For every point pEEz, we have Fl@’2 asuch that
P ,p

EN AN N C21/(2%-F)
P E-sp
where z is an indeterminate. Thus we have an exact seguence

re—— I*ﬁ’x———) M=

Q-

B2

where M is a line bundle on PZ2. Since Hl(D;z) = ylemy = 0, one
sees that HICE*G&) = 0. By the Leray spectral seguence we have
Hi(ﬂ%) =0 since qu,e& =0 for add. 9.E.D.

Once we establish Lemma 1.6, by the very same reason as quartic

aurfaces, we can show the following proposition.

Proposition 1.7. Let X be a branched deouble covering of l:’:2
branching along a reduced sextic curve B. Let p: I— X be the

minimal resolution of singularities. Set

P = Z P (XOX)-

x€X!mingular points

<1> If P
2> If P

0, then 7 is a K3 surface,

i1, then Z is a rational surface with an anti-canoni-
cal effective divisor O.

<3> If P22, then Z is birationally equivalent to a ruled sur-
face over a smooth irreducible curve with genus P-1.

Remark. In section é we show that if P22, then P =2 or 3.

According to Lemma 1.5 we can study X instead of B, We take



up mainly in this article case <2> in Proposition 1.4 and case <22
in Proposition 1.7,

Let X be a normal quartic asurface or a branched double cover-
ing branching along a reduced sextic curve. Assume that X has
unique ES singularity plus several rational double points and no
other singularities. The minimal resclution Z of X is rational

with a non~zero affective anti-canonical diviser 0., Moreover in

this case [ is an irreducible smooth elliptic curve with self-
intersection number D2 = -1, If X has T2,3,7 instead of Ej.
then [ is an irreducible rational curve with one ordinary double
point with self-intersection number 02 = -1. If X has E;,

instead of E + then D is an irreducible rational curve with one

2 = 1,

ordinary cusp with [
Proposttian 1.8, As=ume that Z i= a smooth raticnal surface
with an effective irreducible anti-canonical divisor D. If Z is

not a relatively minimal model, then Z can be blown-down to P=2.

Proof. Since any relatively minimal rational surface is either
22, Elel or a Hirzebruch surface Zk with k22, Z can be blown-
down to one of them.

Case 1. Assume that there exists a birational morphism og:Z-——=

z Since Ek = E(ﬁ'ieﬁ'itk)}, there exist smooth rational curvesa

(4 F
4, F on Ek with A2 = -k, F2 =0 and F-A=1, First ue note

kt

that o(D) i= a member of the anti-canonical linear system I—w: i
k



of Ek since Oy = wik. By the adjunction formula we have

0 = p_(8) = (A%-g(D) 8)/2+41 = ~(k+a(D)-B)/2+1,
It implies a(D) # & and thus k = 2, o(0)-A = 0. Now since ZI is
not a relatively minimal model, ¢ is decomposed intoc two morphisms
¢ =0¢'°¢", where ¢°: I —— I, is a blowing-up of a poit p=E,

and o0 : I—— E° is a birational morphism. If pfo(D), then

U¢|‘wz|- Thus pec(D) and pfA since o(D)NA = ¢. Let Fp be a

amooth rational curve on 22 passing through p with sz = (.
Llet F° and A’ be the strict inverse image by ¢  of F, and &
respectively. F° is an exceptional curve of the first kind on
2. bet o043 I'— 32’ be the contraction of F'. Then 0,(A")
is an exceptional curve of the first kind on I‘?. Let oy
{2V, 537 pe itm contraction. Set & = 02010': z— 5437,
Since “&22 = 8, we have m£{3)2 = 9, which implies ‘37 = p2,
Thus @ defires a blowing-doun to EZ.
Figure 1.1
Cagse 2. Assume that there exists a birational morphism o: Z=———¥-

lefl. Now mince Z im not a relatively minima)l one, ¢ is decom-
posed inte two morphisms o = ¢ °¢°, where g'§ I —— Elel is a
blowing-up of a point p‘lePl and g°: Z—— I’ is a birational
morphism. We have a =mooth rational curve F  and G on Eixfl

2-6°= 0 and F-G=1. Let F- and

passing through p with F
G~ be the strict inverse image of F and G by ¢’ respective-

Ty. F° and BG° are the exceptional curves of the first kind and



they are mutually disjeint. Let g ,t I === I be the contraction

1
vg't Z— Z. Since @ 1 12 = 8,
B~ xP

of F° and G°. Set # = 0y
h 2 _ . . . v p2
we have op" = 9:; which implies that X 2 P~.
Consequently in any case there exists a birational morphism

g1 Z—— P2, Q.E.D.

Corollary 1.2. A non-zero irreducible anti-canonical effective
divisor on a smooth rational surface Z is either;

(a) an irreducible smooth elliptic curve

{b) an irreducible rational curve with one ordinary double
point.,

or {(¢) an irreducible rational curve with one ordinary cusp.

In particular examples taken up just before Proposition 1.8 ex—

haust all the possibilities.

Proof. First assume that Z is not a minimal model. By Propo—
sition 1.8, there exists a birational morphism ot Z—— Pz. Since
every birational morphism betueen surfaces i®« a composition of blow-
ing-up=, we can write o = a"a1 where gyt I/ X° is a blowing—
up of a point x €X’ on a smooth surface X° and g1 X —=w 22
is a birational morphism. By induction on +the number of blowing—
ups, we can assume that D' = aiﬁﬂ) is one of above {a}, (b}, (c)
since D el-ap. 1. IF x €0°, then we have D#l"wzi, a contradic—

tion. Thus x'eD’. Let m be the multiplicity of x° as a point



of D7, Since D+(m-1)01—1(x'}=|-wi|, one knows that m =1,
i.e.y, x° is a simple point of D’. Thus o, induces an isomor-
phiam 043 D—— D" and B i= one of (a),(b),{(c).

If Z i2 a minimal model, then by the proof of Proposition 1,
8, Z is isomorphic toc either P2, lefi or 22. Moreover ac-
cording to the proof of Proposition 1.8, there existe a birational

. 7. 2 . . . ,
mag gy 2 =+ P such that ita reastriction ¢'i0 to D i=s an

isomorphism. Thus we complete the proof- Q.E.D.



S 2, A theorem of Torelli type.

In this section, we would like to explain a theorem of Torelli
type for rational surfaces with an effective anti-canonical divisor.
Moat of the easential ideas of this theorem are due to Looijenga.
Howeuer the situation we treat here im a bit different from Looi-
jenga’s original one. {(Looijenga [101)

Because the proof of the theorem is the same as the one we gave
in £15], we omit it.

Though in C15] we used a lemma due to Uemazure which treats the
case where the self-intersection number w22 of the dualizing sheaf
is positive, our proof in [15]1 is valid without any change because
Looi jenga wverified in hia recent work [10] the same lemma for the
case wizgp. (To be precise the situation Looijenga treated is a
bit different from ocurs in thi= srticle. However his proof is valid
without any change.)}

Anyway we would like to begin this section by explaining sever-
al notions. — {ynkin graphs, Weyl groups, root=, etc.

let 7 be a smooth rational surface with irreducibls s=ffective
anti~canonical diwvisor DO. Moreover we assume in this section that
the self-intersection number of the dualizing sheaf w,° is less
than or equal to &6, Set +t = ?-wzz. We have <t23. Under this

assumption, Z is not & minimal model., Thu= by Proposition 1.8, we

have a seguence
o o

_ t £=1 Ly 22, .5 L 2
(2.1} Z= zt___" Zt__l-"—-" 22 ’ 21 ! 20 - P
where each @, is a blowing=up of a point z,€Z,_(+ Ue denote



B, =0, D,, =0,(D) (1gigt). UWe have z;€D;_,cZ, ;. We con-
sider the Picard group Pie(Z). Let ey be the class of the total
inverse image on Z of a line in Z, = 2. Let e, (i1} be

the class of the total inverse image on Z of the exceptional curve

0,71 (z). Elements egieys e ePic(I) defines a free Z-basis

with the following mutual intersection numbers;

2 _ 2

&y = +1, e,” = =1 (14istr, e; ei =0 (idj).

We say that (2.1) is the blowing-down seguence along eq. ey, ey

when each e, i= the above-mentioned class of effective divi=ors.
Here we note that
wy = ﬂi{—D) = —320+e1+' te, -
Let P = Esu+251+ +Ze, be a Z-module with a bilinear form
which is isomorphic to Pic(Z) with the intersection form, where

Eqe , etGP iz a basis with

eg” = *1, £,2 = -1 (4igk), e, &, = O Gikd).
e get x = -350+51+ +st. Let I’ be the orthogonal complement
of Zx in P. I'= { xeP | xx = 0 }. The restriction of the

bilinear form of P to I is described by the following graph.

T T T T Taoa T
u2 u3 Id U§_ I | ot
L&
Here we denote Ty T EpTE "Ep"Egy Tj = Ej—i_sj (2Lt} for sim-
plicity. Vertices o corresponding to Ti indicates a member of
a ba=is of T with the self-intersection -2. (It is easily
checked +that the above Tgs Too v Ty defines a basis of T and
2 7§ T;

that Ti = =2 if 1.'.;3-} Two vertices o OJ are connected



if Ty T < 1 and they are not connected if

Ti‘Tj = 0. In particular I is isomorphic to the root lattice

with an edge

(Cf. Bourbaki [ 3]) of type Asthg s Aps Ds» Eg+ E- or EB accord-

ing as t =3, 4, 5, 6, 7, 8., If 29, then I 1is not negative-

definite.

Let 7€P be an element with 72 = -2, Let s 1 P—— P be &
linear map defined by sT(x) = x+{x-1)7T Ffor xeP. It is easily
checked that s, ie an isomorphiasm of order 2 preserving the biline-
ar form. In addition if 7 x =0, then sT(xJ = K. 8 is called
the reflection associated to 7. The group generated by sri, Ty
sTt is called the UWeyl group of P and it is denoted by W or
UP. (For wel wix) = k) We call an element in L’;_)UTi (el ) a
root. i=1

Indeed =, define= the reflection with respect to the hyper—
plane orthogonal To 7 i.e., { xeP®R | x:7 =0 1} 1in P®R., (W,
{371. 572, » B, }? defines a Coxeter system. (Cf- Looijenga

C101, Bourbaki € ;j} Now let 72l be a root. UWriting 7 =
.g ny T, (ni¢2), then we have either nizp for any i or ni;p far
;ni i. IF nizp for any i, we say that 7 is a positive root.
Qtherwise it is called a negative rooct. Note that this notion de-
pends on the choice of the basis., Let R+(£D, €y s at) de—
note the set of peositive roots.

For roots in Pic(Z) we can distinguish the following proper=—

ty. A root rePic(i) is called a nodal root if the restriction

of r to D is a trivial line bundle. ( This terminoclogy is due



to Looi jenga.)

Lemma 2.1. Let rePic(Z) be a nodal root. Then either r or
-+ in effactive,.

Proof. Assume that r2 = =2, r-ll:l E Bb and Ho(-r) = 0. By Serre

duality we have HZ(r(-D)) = 0. Consider the exact seauence
0—— r(-0)—= r— rlg— 0.
One sees that hz(r) =0 and H(r)——s HlirID) =L is surjective.
Thus hi(r)>0. By Riemann—Roch formula
hO¢ry = (r240-ri/2+1+hl(r)00,

it&t’ r is E'F'Fectiue- QquDo

Let S, denote the set of effective nodal roots. § = 5 Y(-5))
is the set of nodal roots. Let US be the group generated by
{s 1reS ). Wy is a subgroup of W, 5y We call Uy the Wey]
group of £ associated to nodal roots.

The following theorem is due to Demazure when 34{t{% and it
is due to Looijenga when t210. ( Though the situation they treated
im= a bit different from ours, their proof is valid without any

change. )} (Demazure [ 5], Looi jenga [101)

Theorem 2.2. Let Z be a rational surface with an effencive irre-
ducible anti-canonical divisor D such that t = 9-0,733. Let e,
K ; etEPic(Z) be a basis such that there exists a blowing-down



sequence along e, ey, y € Let W be the Weyl group of

t.
Pic(Z) defined depending on ey €4 » e and let wel. Then
there exists a blowing-doun sequence along wl(egy), wle ), y wiel)

if and only if every effective nodal root is a positive root, i.a.,
SR, luley), wie, ), » wle )). Moreover for any two basis e,
&y » @ ¢Pic(2) and eU', ei'. o, et'EPic(Z) such that there
exist blowing—down sequences along both of them, there exists an

element wel with ei' = u(ei) for 0gilt.

Corollary 2.3. The set of roots R in Pic{Z) and the Weyl
groyp W of Pic(Z) do not depend on the choice of the blowing—

down sequence (2.1).

Note that the positive cone ({(xeP8R | x*x>0 } in P®R has two
connected component since the signature of the bilinaar form of P

is (1, t).

Definition 2.4. Let t be an integer with t23. Let E be a
one—dimensional algebraic group isomorphic to a =mooth elliptic
curve, €* = €-{0}, or €. We cal! the following object Z=1{(Z, D,
a, ¢) a marked rational asurface over E of degree 9—1i. !

(1) The first item Z is a smooth rational surface with w22 =
?-t,

(2) The second item D is an effective irreducible anti-canonical

divisor on Z uwhich has the following isomorphi=m :.



(3 The third one ai P— Pic(Z) is a linear isomorphism sat-
isfying the following conditions (i), (ii), (iii) and (iv), where
P ='ZEU+181+ +Zzt is an abstract free Z-module with a bilinear
form defined by £5% = +1, £,2 = -1 (1gigH), &, ¢, = 0 CiKki).
(i) « preserves the bilinear form, i.e., x'y = a{x)-aly)
for any x, yeP.
(ii) alx) = w; where x = -3ggte + ¢ +e, .
(iii) affl) =R uwhere N0 and R are the setm of roots in P
and Pic(Z) respectively.

(iv) alA) = C, where A (resp. C+) i= a connected compo—

+
nent of the positive cone in PR (reep, Pic{Z)®R ) con-
taining su. { resp. ®q 3

a

(4) The fourth ocne ¢: Pic (D)—— E i= an imomorphism as alge—
braic group=, where PicD(D) i= the connected component of Pice(D)

containing the zerc element.

Definition 2.5. Two marked rational surface over £ (Z, D, o,
) and (Z°, D', &', ¢°) are imomorphic if there exists an iso-
morphism of varietiems f: Z—— Z° satisfying the following condi-
tions (A), (B), and {(C}.
(A £(D) =D
(BY The composition
@ e’ £*
Pic({Z)e—— P—— Pic(Z ' )—— Pic(Z)

can be written as a composition of finite refleactions corresponding

to nodal roots on Z.



(C) The diagram P1c (D’ )-——# P1c (D)

N

Definition 2.4. Let @ < Pic{Z) be the orthogonal complemsnt of

is commutative.

Za&, i.e., Q= { xePic(Z) | X'y = 0 ). Note that the imags of Q
by the restriction map Pic(Z)—— Pic(D) is contained in Pic®(D).
The following composition of homomorphisms is called the character—

istic homomorphism ¢z of Z=4(Z, D, a, ¢,

r-2_, Q v-eatr-in::'t:in::nn__> Pico(D) i E

Here T is the orthogonal complement of Zx in P,
It is easy to check the next lemma.

Lemma 2.7. The characteristic homomorphism ¢Z dependa only on

the isomorphism class of (Z, O, o, ).

New we can atate the main theorem in this section. It gives »
powerful tool to study rational surfaces. Even though the situation
treated by Looiljenga i= a bit different from ocurs, this theorem is

due to Looijenga, we think.
Theorem 2.8. (A theorem of Torelli type.) The map induced by as—

gociating a marked rational surface (Z, D, &, ¢) to its character-

istic homomorphism



{((Z, D, @ ¢): a marked rational surface over £ of degree 9-t}
imomorphisms

a— Hom(r. E>

iz bijective.

Next we would like to explain why this theorem is called one of
Torelli type. 1t is explained by the Deligne’s mixed Hodge theory.
For =implicity we assume that D is an irreducible smooth elliptic
curve with D2 = -1, Consider an exact sequence of mixed Hodge
grructures (Cf., Deligne [ 43)

HO (D3 (-13— HZ(Z>— H2(z-0)— HL(DI(-1).
Note that W,HZ(Z) = HA(Z), WHA(D) = 0, FIWi) = W2y, FAH2 @) =0,
WCHYDI(-1)) -1 = 0, Frewtac-1y = v,
F2eatDr-1))
2.2

dimmF H({Z-D) = 1. Now by definition FEHZ(Z-D) is represented by

a logarithmic 2-form ¢ on Z with the pole along D, which is

wloy, w

2
HO(ay), and FOCHM(DI(-1)) = 0. Thus we know that

unique up to constant multiple. Since this situation is very simi-
lar to that of the second cohomology group of K3 surfaces, we can
consider the periods of . Here the periocds are nothing but the
1inear mapping

H2(Z—D)———* € A— f&¢ .

Note that there is a submodule Im CHicD}—E—» Hy(Z-D)). Since

!rlr)¢ = 2x¢—1fTRes(¢}, we have that
G/Im(Hl(D)-—# H2(Z—I:|ZJ'——-b €} =D, Let Q be a orthogonal complement
of Zai in Pic{Z). One sees easily that there exis=ts an exact

sequence



0—=— H, (0)— H (Z-0)— Q— 0.
Thus' we have an induced group homomorphism Q——— D. UWe can check
that this homomorphism is identified with the restriction of the
mapping Pic(Z)——= Pic(D). Thersfore the characteristic homo-
morphism ﬁz can be regarded as the pericds of Z-C. This i= the

reason why the aboue ‘theorem is called one of Torelli type.



S5 3. Properties of line bundles

This section is devoted to study properties of line bundies on
a smooth rational surface 7 with an effective irreducible anti-
canonical divisor D. We owe ideas in this =msection greatly to
Saint—-Donat [171].

Recall that a line bundle L (resp. a divisor C) on Z is

numerically effective if for any curve A on Z, the intersection

LA (regp. C-A} is non—-negative.

Definition 3.1. A line bundle L on Z with the following prop-
erties are called a polarization of Z.
(1) The self-intersection number L2 i= positive.

(2) L 1is numerically effective.

{3) The restriction of L to D is a trivial line bundle, i.e.,
o

LID - B,D.

(4) For every exceptional curve of +the first kind A, the inter-

saction L A i= strictly positive. (L-AX0)

The number L2 is called the degree of 1.

Lemma 3.2. {1) If Z has & polarization, then + = 9—m22;}0.

(2)  For any polarization L, hi<L) =1 and KI(LY = (L2/2)+2.

Moreover the linear system |L| has no fixed points on D.

Proof. (1> If (%, for every ¢lement MePic(Z) with M-w, = 0,

2

M2(0 holds. However L0 end L @y, = 0 for any polarization.



{(2) By the Kawamata-Ramanujam vani=hing theorem (Kawamata [ 91), we
have HYL(-D)) = W2(L(-D)) = 0. Thus the mapping HO(L)—
HO(L 1) = HO(B%) = € is surjective, and hitL) = hlcop = 1, K2y
= 0. Surjectivity impiies that (LI has no fixed points on D.

On the other hand by the Rismann—Roch formula we have

hOCLY = (L2-L wi)/2+x(ﬁi)+h1(L)-h2(L) = (L%/2)+2.,  Q.E.D.

If X i=ms a normal quartic surface in 23 and p3} Z—— X € E3

is ite minimal resolution of singularities, then L = P*B’Bii) is a
polarization of degree 4. Similarly for a branched douﬁ?e couvering
branching along a sextic curve we can define a palarization of de-
gree 2, However note that conversely the polarization L does not
necessarily defines a generically one—to—one morphism ¢Lt Z*—**.BN.
The linear system |L| may have fixed components, Even if it has
no fixed components, it may have isolated fixed points. Ewven if it
has no fixed points, it may define a morphi=m whose degree is great-
e than 1.

In this section we give a necesaary and sufficient condition in

order that L does not define a generically one-to-one morphism in

the case L2 =2 or i1,

Proposition 3.3. Let M be a line bundle on Z satisfying
a) HO(M) # O
{b> The linear system |M| has no fixed components. And

{c)} the intersection M:'D is zero.



(1) If the image of the rational map éﬁ amsgociated to M is a
curve, then H2 = 0.

{2) One of the following (i}, (ii) holds.

(i) M2>0, any generic member of [M| is an irreducible curve
with arithmetic genus (M°/2)+1 and h (M) = 1.

(ii) M2 = 0 and there exists a smooth irreducible elliptic curve

F and a positive integer k with M= Bi(kF). Moraover hi(M) =

ko Every member of IM| can be written a= F1+F2+ +Fk’ where
FitlFI.

Proof. Firstly assume that the image I'" of the rational map
¢M= Z '4.PN asmociated to M is a curve. Let vi [T  be
the normalization of ''s For a suitable choice of a birational

-~

morphism T: Z—— Z, there axists a morphism &: Z—— T with ¢M

T = wh.

T % &
zf’///- HN\“ r
¢H‘~3 r,z’/,"

If the genus of I' is positive, we have a non-zero global regular
1-form a on I'' Since d"a defines a non-zaro global regular
1-form on %, we have HU(Qﬂil # 0, which contradicts to that E
is rational. Thus [ is a imooth rational curve. It implies that

for every point p, p'€[, divisors T(® 1(p)) and (& 1 (p’)) are



e
-—

linearly equivalent. Choomse a general point g€ and set F

7(0-1(QJ)+ One sees that M = Gi(kF) for some integer k. I¥f

dimiF 122, then we have & member F,c[Fl such that for any point
pel, Fl # t(@_i(p}}. Choose points 9 = @, ag e a €T such
that rc&'1(q1>>+z<a‘1<q2);+ +7(87(q 1eIMl. Since (& lay»
= F~F;s wehave 6= F +7(3 1(ay))+ +1(® Na )e M| since
Ml is a complete iinear system. However, by the choice of F,

and the definition of D, we have GEIMI, a contradiction.
Therefore we have dim |F| = 1.

We have kD‘F =DM =0 and thua [0'F = 0. WUe can conclude

that DN F = ¢ . Consider the exact sequence
00— Di(—F—D} ’ Oi — U%BBb*——ﬂ Q.

It imelies h'(G5¢-F-0>) = 1. By the Serre duality, we have
hicuicr>) = 1. Moreover h2<aicF)) = hotei(—F—D)} = 0. It follows
from the Riemann-=Roch formula

2 = 1+dimiF| hU(U%(F))

= 105+ (FAF D) /2+h 1 (B5(F)) = F2/242
that F2 = 1 and H2 = k2F2 = 0. In particular the linear systam
IF | has no fixed pointa amnd F i= =mooth by the Bertini theorem.

By adjunction Fformula F is an 21liptic curve.

Next we would like to compute hl(H}. Let Fl’ F2, s chlFi
be general members. We can asasume that Fl’ ’ Fk and 0 are
mutually disjoint since D-F = 0 and F2 = 0. Using the exact
sequence

k
0~ O3(F = DI 05— & 0 805 0



and the Serre duality, one sees that hl{D%(F1+ +FkJ) = hI(M) =

k.

Secondly asmsume that the image of ¢M is not 2 curve. UWe heve
Az;P aince [M| has no fixed components, 1f A2 = M2 = 0, then
IMI  has no fixed points and the image of the morphism ¢, is a
curve, Thusa Az = M2>0. By the Bertini theorem A is irreucible,

2

Ve have pa(A) = A“/2+1 by the adjunction formula. It follous that

A"D=¢ from MD=4D=0, Thus

0 B&(-A-D) J G"z > B’HQO‘D-——P 0
is exact and one ssas that hliﬁ%(AJJ = 1, Q.E.D.
Lemma 3.4. let C be an effective divisor en I with SupplC 9

D=¢ and hD(GE} = 1. Then we have hl(ﬁi(C)) =1,

Proof. Con=ider the exact sequence

0—— 05(~C-D)—— B,—— G 80— 0.
Ue have hita%(—c—n)m = 1, By the Serre duality we have the con-—
clusion. R.E.D.
Lemma 3.53. Let A be a non—-zero effective divisor on 7 with
hO(8,(8)) = 1 and Supp & 7 D = ¢. We have h'(85(81)21 and 87 =
~2ht ey ca)5¢-2.
Proo¥f. Consider the sequence

B 05 (~A=D)—— O 0,80~ 0.



By assumption Supp A N D = ¢, it is exact. UWe have hifﬂifﬂ}}

hteoge-8-00) = h0cop31  since HOtm) = Ocop) = 1, hicep) = 0.

Note that hztﬁtfﬂ))

h°(e§c-a-n>a = 0. By the Riemann-Roch theo-

reh, we have

x(ﬁi>+taz+n-a>f2+h1<e§<a>)—hzcaican)

1+(52/2)+h1(ﬁi(ﬂ}). Q.E.O.

- .0
1=h (B%(ﬁ)}

Corollary 3.6. Let @ be an irreducible curve on Z with
h0(05(8)) =1 and €D =0. Ue have 6% = -2 and @ is a smooth

ratioal curve.

Proof. Since ©® and D are irreducible, &-0 =0 implies

@ N0 =¢. ODbvicusly h0

(Bé) =1, Thus by Lemma 3.4 and Lemma 3,
S, we obtain 92 = =2. Moreover by the adjunction formula, €@ i=s

amooth and rational. Q.E.D.

Proposition 3.7. L=t L be a polarization on Z. If Ll bas
a fixed component, then |L| contains a divisor with the following
form; kF+' uwhere F is an irreducible smooth elliptic curve on I
with F2 =0 and DF = 0, T is an irreducible smooth rational

curve with Fz = =2, D =0 and TF = & and k is an integer

with k>2. The divisor [' is the fixed part of IC|.

Proof- The proof is a bit complicated. By Lemma 3.2 the linear

system IL| is non-empty- Let CellLl be a general member. Let A



be the fixed part of the linear system |IL| = IC|. We set C = A+
where A is the moving part. By Lemma 3.2 one sees Suppd N D = ¢
and A-D = 0. UWe also have by Lemma 3.2, (2)

0 2

h (B’Z(C))gl-l-(c /2)2_2
and thus A # 0. One may assume that SuppA " 0 = ¢. Note that

ﬂzzp @ince A is the moving part.

Caze 1. A>0.

By Proposition 3.3 any general! member of |Al is an irreduci-
ble curve with arithmetic genus (A2/2)+1 and h1(B5(A)) = 1. One
has

hOtocar) = remg)+aZsn-arr2enlcoscar) = (A%/2)+2

by the Riemann~Roch formula. On the other hand one has als=oc
0 2

) (Gi(ﬁ+ﬁ)) = {(A+A)YT/234+2
since hl(ﬁ’iﬁ+ﬂ)} =1 by Lemma 3.2, (2). It implies that ﬁz =

i
(A+8)%  since h”(a&(nyn = hD(ﬁ%(A+&}). We have 2A-A+A% = 0. Now

recall that C is numerically effective. Thus

0LC-A = (A+A) A = -A-A .,

Howaver A-AX0 since A is the moving part of I[Cl. In conclusion
we have A-A =0 and &% =0,

I# & #0, then 4° = -2n'(55(8))¢0 by Lemma 3.5. Therefore
A=0, i.e., IC| has no fixed components.

Case 2. ﬁz = 0.

By Proposition 3.3, there exists a smooth irreducible eltliptic

curve F and a positive integer k with Gi(A) S G%(kF) and F-D



= 0. Let 61, 52. . . aN be connected components of 4.

We divide the rest of the proof into several lemmas.
Lemma 3.8. For avery i, F*&i>0.
Proof- If for aome. i, F-Ai = 0, +then by Lemma 3.5
. = - 2 . _~5u1
0gC ﬁi = (kF+Zﬂj} ﬁi = ﬁi 2h (B%(ﬁi))<0:

which is a contradiction. Q.E.D.

let Fi be an irreducible component of ﬁi with F'ri>0.

Lemma 3.9. kzg.
Proof. If k=1, then by the same reason as in case 1, we have
p-h =F & = 0. However we have just proved that F-4 = X F 8,50,
which is a contradiction. Thus k22. Q.E.D.
Lemma 3110: N = 1-
Proof - Assume N22. Choose general members Fi' ,FkilFI and
set P = F1+ +Fk+r1. Q= P+F2. Obviousiy SuppP M D = Supp@ N D
= ¢ and 0o = h0(By) = 1. Us have KNBL(P)) = hitogea) = 1
by Lemma 3.4. By the Riemann—Roch formula we have

hO(B(P)) = (PZ/23+2, hP(B5()) = (@%/23+2,

z
Since hotﬁi(P}) = hD(B%(Q}} by definition, it implies that



pe = @2 = (P+r2)2 = P2+2P'r2-2.

Here note that F22 = -2 by Coreollary 3.6. UWe have

1= P T, = (kF4ly) Ty = KF Tp2k2,

vhich is a contradiction., Thus N = 1. Q.E.D.

J

Set ﬂl = A = Z-aj@j where Ej is a mutuvally different irre-
i=t

ducible curve and a, ims a pomitive integer. UWe assume that @1 =

rl‘ By Corecllary 3.8 avery Bj is & smooth rational curve with

9, =-2 and 09, = 0.

Lemma 3.11. F-@l = 1.

Proof. First note that hofﬁi(kF)) = 1+k by Proposition 3.3 and

0

by the Riemann~Roch Fformula. Since hB(B%(P)) = h (Gi(kF)) for the

diviger P in the proof of Lemma 3.9, we have

2k+2 = {kF+& )2+d = 2kF-B

1 112
which impiies the lemma. Q.&.D.
Lemma 3.12. F Bi =0 if 1 ¥ 1,
Proof. Fix an integer i with i # 1., There exist= a subset &
of {1, 2, . J} with 1¢S5, i¢#S, such that ﬁs =z ej and
ies
.&S+®i are connected. Set P = kF-l-AS and Q = kF+aS+®i. By the

Riemanrn—Foch formula, we have

0

hU(B%(P}) = (P2/2)+2, heean) = (Q2/2)+2,



Ve have P% = @7 since KO(mPY) = R)(@(@). It implies
(KF+85)+®, = P:@, =-8.%/2 =1. By the choice of Bg, we have
ﬂs'ei>09 Thus F'ai = 0. Q.E.D.
Lemma 3.13. Assume that there is a subset S of {1, 2, s J)
with 1€S auch that 8g = 2@ is connected and ktig9,22. Then
J=S

3;1 = 1.
Proof. Set P = kF+A., Q = P+8, and N = 85(Q)|, + Note that

S 1 z 31
deg N = (kF+&S+81)-91 = k+ﬂs-@1—2;{] by assumption. One =ees easily

hl(B&(P)} =1, Conaider the a&xact sequence

Qre=—o @5 (P)— B5(Q)—— N—— 0,

z Fi
We have hi(ﬁi(ﬂi);} since hi(N) = 0. Consider the sequence

0— G5 (-Q-0) » 05 > 0®0p— 0.

It is exact since Suppd "0 = ¢. Thus hl(ﬂi(ﬂ)) = hl(ﬂ&(-Q—D))

0

h (Bb))zl. It follows that hi(B%(Q)) = 1, By Riemann—Roch

h°<o§(9)> = P2r242, hU(B%(QJ) = @2/2+2.

Assume that 312?. Then hD(BE(P)) = hu(B%(Q)). We have P2 = Qz =

P2+2p-8,-2. Thus P-8,

On the other hand by definition of P and by assumption

= 1,

P-8, = (kF+A

1 )-@1 = k+ﬂs 6122‘ Wa get a contradictien. G.E.D.

5

Lemma 3.14. If a; =1, then F-A =1 and %= -2,

Prootf. Aasume a = 1. Ue write A = 91+ﬂ’. Since A -‘F = 0 by



Lemma 3.12, we have F-A= F-8, =1. By Riemann—Roch we have

1
hD(B%(kF)) = 1+k and hD(Bi(kF+ﬂ)) = (kF+5)212+2. Since thess two
numbers are equal, ws have (kF+ﬁ}2 = 2k-2. It implies ﬁz = -2
since F2 =0 and F-4 = 1. Q.E.D.
Lemma 3.15, If k24, then A = 91.
Proof. We assume k24. Set S = {1}. The as=sumption of Lemma
3.13 is satisfied, Thus we have 8 ~ 1 and ﬂz = -2 by Lemma

3.12 and Lemma 3.14. Set A = &-91. The divisor A" does not
contain 91. Amsume A # 0. Then b’-91>0 since A is connected,

It follows from the equality

-2 = 8% = (8, +4")2 = —2+4" -0, +4- 8"
that A-A'<0. Howaver, since [ ims numerically effective and F-A°
=0 by Lemma 3.12, we have that 0§C-A" = (kF+A) A" = A+A", a con-

tradiction. Thus 4" = 0, Q.E.D.

Lemma 3.146. If k =3, then A = 91.

Proof. e assume k = 3, Moreover assume A" = ﬁ-aiﬂi # 0.
There exist=s & suffix 1 with ei-ei # 0. Set 5= {1, i}. Since
k+ns @1 = 3+9i 61—2. the amssumption of Lemma 3.13 is matisfied.
Thus we have & = 1 and Az = -2. By the same reasening a= in

Lemma 3.15, one obtains a contradiction., Thus A = alel.

By the same reasoning as in Lemma 3.14 one smeeg 4 = (BF+432 =



(3F+81@1)2 = 681—2512 since F‘Gl =1 and @12 = =2. We have

ag =1 or 2. If s =2, then C-® = (3F+28,)-8) = -1, that is,

C is not numerically effective. UWe have consequently 4 =8.
Q.E.D.

Lemma 3,17, If k=2, then A= 91'

Proof. We assume that k = 2. Moreover assume that a, = 1. Set

AT = &—91. Ve have A"Bizp since A" does not contain 91.
By Lemma 3.12 we hawve also A-A" = (2F+A) A" = C'A"20. On the other
hkand by Lemma 3.5 &2 =2, Ue have

~238% = (@, +4")% = -2+A" -0 +A- 07 3-2.
It implies that A -8, = A<A” =0, A% = -2, We have &% = A-a"-8,-A’
= 0. But ﬂ'2<0 if A” # 0 by Lemma 3.5. Thus A" =0,

Next assume that a, 22, Since 0gL-8, = (2F+a,8,):0,+
igiaiei-ei = 2-2a1+i§1aiei'91 there 1is an index i with i # 1,
91-91>n. If there are two indices isjs 1l # 1 d j 4 1 with
2,920, Bj-91>o » smetting 8= {1, i, j} we have a, =1 by
Lemma 3.13. Thus for some unigque index i2 ei2-91>n. By renumber—
ing if necessary we can assume i2 = 2. We have that 62 @1 = 1
since D)(®1+®2)2 = —4+291'62 by Lemma 3.5. We have the next in-
equality.

{3.1> a,~2a,+2 = L-€,20

In particular 523?. Now since 0;}-92 = al-2a2+i§2ai9i'ﬁz, there
is an index i>2 with ©, 0,51, Assume that for mutuaily different



thiree indices ia)z’ a=1, 2. 3, @i -@2>0 halds. Set P1 = 2F+
&

3
= pl
G, +8,+ 2 6. and Q = P,+0,. Since 0OL(Q I, = O and ©., P
and Ssince hO{BE(Pi)) = hD(Bi(QI)) it follows from the exact se-—
quence
f— B"Z(Pl}——b B':-,_(Ql)—-—-"-* 0’62——*' 0
that hl(ﬁi(ﬂl)) = 0. However by the exact seqguence

0—— 05(-Q,-7 » 85 » %1805——-' 0

we have hl

{02(01)) = hl(ﬂi(-ainD))zi, a contradiction. Thus re-—
numbering if necessary we can amsume that one of the following two
agssertiona helds for k = 3.

(1), 88 ;=1 and 6,9 _, =0 for idk.

(Z}k ek-ekui = Gh+1'9h_1 =1 and ai'@k*l = 0 Ffor i>k+l.

For a moment amsume that caze (1)3 taken place. Since

{3.2> L'Gz = 31—232+aazp

and by <3.1>, we have 3322{ Repeating the similar argument as just
the abowve one sees that we can assume that (1}ﬂ or (2)d holds, If
(1)4 takes place, inequalit.es

{3.k> L-& = a__,"2a *a 20

k =2, 3 and <3.1> implies that 3,22 and we can repeat the similar
>2

K+1=
and s=ince the number of irreducible components of A is finite, we

digscussion more. Since inequalities <3.k> 1$k£ﬁ implies

can consequently assume that (Z)K takes place for some K22. Set
5o 91+92+ +'9K. P2 = 2F+E+GK+1+®K+2’ and Qz = F‘2+E. We ecan see

casily that 65(Qy) 1y = 05, h2(05) = 1 and kL0 = 0. Now

- 40 -



0 .
1(05¢P,)) =1 by Lemma 3.4. and hO{B5(P,)) = h'(B5(Q,)) since

A is a sum of 22+9k+1*9k+2 and mome affective divisor. It fol-

h

lows from the exact sequence

that hlfﬁi(ﬂz)) =2 0, On the other hand =ince the sequence

Q- Gi(-Qz-D)—~—ﬂ Bi-——#-ﬁhzeﬂﬁ———ﬂ 0
1 A - - 0
(82( Q2 D) h

is exact, we have h'(B5(Q,)) = h (6g, 221, 8 con-

tradiction, Thus the case a, 2 never takes place. Q.E.D.

The aboue lemma completes the proof of Proposition 3.7.

Proposition 3.18. let C be an effective divisor on Z with C-D
= 0, Assume that the linaar aystem ICI has no fixed components
and that 02 =2 or 4. Then IC| ha=m no fixed pointa.

Proof- Agaume that |[C| has no Fixed components but it has iso-

lated fixed points.

By induction we dafine a sequence of blowing—ups,

N T T T T
_ L3 k—l Z i _
Z=Zuy Lk-1) * Ly Ly 2oy = 2
an inteper m; for 14i<k and a line bundle Lj on Z(j) for

0Ltk as follows. First of all set Z(ﬂ} =7 and L0 = ﬁi(C)-
Next assume that Z(i}, T.r My, Li have been constructed for

0{igi-1. If ILj-il has no fixed points, then setting k = j-1i

and i = I(j—l)’ we terminate the procedure. IFf ILj_1| has fixed

points, then let T.: Z .y~ ..,, be the blowing-up of one of



the fixed points zj!Z Set m, = min { mult_ (A) | ﬂG|Lj_1| 1,

(j-1)°
vhere mult Z(A) denotes the multiplicity of the curve A at 2.

; - (r.¥ em.z ] 253 for
We define L'j (tj Lj_l)aﬁi ( mjr {zj)J. We have LJ pl

(i)

every J since ILjI ¥ ¢ and leI has no fixed components.
Since sz = Lj_12~m12<Lj_12 this procedure terminates in finite
gteps.

Set L = Lk' If EZ =0, then the image of the rational map

¢L3 Z - EN associated to the line bundle L = Bi(C) has

dimensiongl. We have L2 = C2 = 0 by Proposition 3.3, which con-

tradicta to the assumption. Thus L2>0.

"~

Next we show that pa(ﬁ)$} for any general member A of |L].

Case 1. Cz = 2.

Note that hI(L) =1 by Proposition 3.3. UWe have hO{L} =

hO(L) = sz2+2 = 8 by Rismann=Roch. UWe have a morphism ¢a.: Z——
L
E2. On the other hand L2 =1 since 0O£LLLZ2 = C2. Thus any general
member A of LI has a morphism of degree 1 to a line in Ez.
Thus pa(A) = 0.
Casea 2, 02 = 4,
Ve have a morphism ®.: Z— P° since hO(L) = hO(L) = 4 by
L
. . 2,2 _ 2 _ ,
Riemann—-Roch. Since OKLXL“ = C= =4, one saes that d. im »a
L

generically one to one morphism whose image is an irreducible cubic
surface or an irreducible quadratic surface. Then any general mem-—
ber & of IL|l has a morphism of degree 1 to esither a2 plane irra-

ducible cubic curve or a plane irreducible quadratic curve. Thus



P (MY,

WUe know pa(ﬂ}gg in any camss,

~

Now tet E,, - » E, be the total inverse image on Z of the
curve rl-l(zi), ’ tkﬂl(zk). Ve have
= * - _ _ _ = " .
L=<«(t L(¢ m1E1 1II2E2 mkEk), wi (r WZ)(E1+E2+ +Ek)
where T = 1112 T Thus we have L-w; = C'w2+2mi = Zmi’ By the
i

ad junction formula

ﬂ2 o~ "~
Pa(ﬁ) = (L +wE'L)/2+1 = (L /2)+(Ehi/2)+122.
We obtain a contradiction. Thus |C] has no fixed points. Q.E.D.

Lemma 3.19. Let L be a polarization on Z.

€1) If an irreducible curve & on Z =matisfies LA=29, then
either A coincides with D or it is a smooth rational curve with
ﬁz = =2 and AN D = 9,

(2) Let E be the union ef irreducible curves A with L-A =20
and EO be a connected component of E. Let Al’ A2’ ' Ak be
all the irreducible curves contained in EG‘ Then the intersection
matrix (ﬁi-ﬁj}iii,jsk is negative definite.

(3 Unless= EU = D, EO is the support of the exceptional curves in

the minimal resolution of a rational double point.

Proof. We can assume that A # D. Under this assumption we have

A-D20. B8y the Hodge index theorem we have also A2<0. By the ad-

junction formula O0¢p_(A) = (A°-AD)/2+1. We have sither AZ = -1

2

and AD=1 or A = -2 and A‘D =0, In any case pa(A) = 0.



It is well-known that if pa(A) = 0, then A is a smooth rational
curve., If A2 = -1 and A-D=1, then A is an exceptional curve
of the firat kind. Since L is a polarization we have A'LD0,
which contradicts to the choice of A. Thus AZ = -2 and A-D = 0.
The last equality implies A N D = ¢. (2) is an easy consequence
of the Hodge index theorem. (3) follows from (1) and (2)., (CF.
Artin [ 2] ) Q.E.D.

By +the well-known Grauert’s thaorem, (Cf, Grauert [ 7]) we can
contract all the connected components of E to isolated normal
singular points, Let g; Z-—— X be the contraction morphism.
Here X is a normal surface with a unique singular point with
positive geometric genus at w = 2{(0) and mevaral rational double

points.

Proposition 3.20. Assume that a pelarization L on Z defines a
morphism ¢ = ¢L1 L—~— PN. Then we have a finite morphism @:

X—— PN Lith & = ¥°p.
7—2 "

———rrre————

p\dx/%

Proof. Set @(E) = §. Note that pIZ-E: Z-E—— X-$ is an iso-
morphism. Thus we can define a morphism @ = ¢'(pIZ—§)_1. Since
@R is a set of isolated points and X is normal, we canh extend

3 to whole X. Obuiously the resulting morphism X—== PN ig
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Proper - Assume that there exists a point ZEPN such that 5-1(2)
has dimension 1. Let A be an irreducible curve contained in
i, Let ; be the strict inverse image of A by e, Ue have
L'a =0, Thus ; < E and p(a} = A is a point, which is a contra-

diction. Thua & is a Finite motphism. R.E.D.

Proposition 3.21. Assume that a polarization L on Z defines a
morphism @ = ¢L= I— 93 of degree 2 whose image iz a quadratic
sur-face., We have a amooth irreducible elliptic ecurve F on Z

with L-F =2, FAD=¢ and F2 = 0.

Proof. Caze A, Assume the image of ¢ is a smooth quadratic
surface £, Let p: £ ———ﬁ,Bi be the composition of an isomorphism
E-——*.Plel and the projection to a facter flei-——ﬁ,Ei- Choose g
general point zeP! and set G = p*(z) and F = ¢*(G). F is ir-
reducible. Ue have F "D = ¢ aince @&(D) and pd(D) are jso-

lated points by assumption L. & 0.. UWe have L'F = 200 _(1)'G = 2
D D EB

and F2 = 26% = g, Obviousiy the linear system [F! has= no fixed
compoments. By Proposition 3.3, one =mees that F is a smooth
elliptic curve.

Case B. Assume that the image of ¢ is a quadratic aurface ZD

with a unigue singular point UGEO.

Lemma 3.22. If (DY = (¢}, then ¢-1(u) = O,

_ds —



Proof, Set {w} = p(D), weX, Mote that &(w) = (v} by assump=

tion. Let U be a sufficiently s=mall neighbourhood of wvelU < EO'
Let V be the connected component of 3-1(U) containg w. Let S
< V~{w}l be the discriminant of @IV-{w}-

Case 1. Assume that the closure of &(S) in U does not contain
v By choosing a smaller U, we can assume that @IV-{w} is un-
ramified. Note that 11{U—{u}) = Z/2Z since the Aj-sinoularity
(U,v>  is the quotient of (£2,0) by the action of E/2Z defined
by (x, )= (=%, -y}, Thus Iifu—{u}} is either a trivial group
(e} or Z/2Z., If xl(U-{u]) = {e}, then weX i=m a simple point by
a Mumford’s theorem. (Cf. Mumford [141) If it is Z/2Z, &lV-{w)
is an isomorphism. Since V and U are normal, it induces an iso-
morphism ¢Vt V—— U, Thus weX is a Hl—singular point. How-
ever by the construction we have pg(x, wi2i. Therefore one sees
that our Case 1 never takes place under our assumption.

Came 2, Next we assume that the closure of &(S) in U contains
U Since @ is a finite morphism of degres 2, the =et [ xeU |

#d “(x) =1} coincides with the closure of @&(8) in U. Thus

#31(0) = 1. Ue have (W) = F 1. It implies ¢ 1(v) = o i),
Under the assumption of the lemma D < ¢-1(u). However since
2 1e(D) = D by the definition of p, we have ¢ 1(u) = D. Q.E.O.
Lemma 3.23, Let G be a general member of the ruling Ei-Fami1y
of ZD and F be the strict inverse image of G by @. UWe have
dim IFl =1 and |IF|l has no fixed components.
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Proof. We define a linear system A on Z by A= {¢"P | P is
a plane in £3 with veP }. Let A be the fixed components of A,
Obviously we have Supp A C 0. Let Py be a general plane in
P> passing through v. Us set Py, M 5y =6 Y 6 where G and G’
are members of the ruling P -family of E£,. Let F (resp. F’)
be the strict inverse image of G ({(resp. G') by d. UWe haves
FHF*+A e A,

Moracver we define a l-dimen=ional linear system £ by

§= { ¢P-F'-4 | P is a plane in P> with P 3 6" }.
We have I[F| > B since FeS. Let Ae|F| be an arbitrary member.
A+F’+delL]  since F+F’+aciLl. Thus there is a plane P, in P°
with A+ +4 = ¢"P, because |L| is a complete linear system. P,
necessarily contains 87, It implies that AeZE, Thu= [FI = B,

which concludes the proof. R.E.D.
Lemma 3.24. d(DY % {v}.

Proof. Assume that &(D) = {v}. We will deduce a contradiction.
Let F be a diwisor as in Lemma 3.23. By the Riemann—Roch

formula and By Lemma 3.23, we have

2 = 1+dim IF| = (F2+F-D)/2+1+h1<0%{F}).

Lemma 3.23 also implies FZ;P. Since ¢_1(u} =0 by Lemma 3.22, we
have F-D>0. One sees that only one of the folloawing two choices

takesa place.
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(a) F2

=0, F-D=2 and hltﬁiCF}) =0
(b) F=1,F D=1 and hiiei(F}) =0
Now there exi=t integers Mys My such that F° = F+mlD, & = mZD

where F° and A are divisor= defined in the proof of Lemma 3.23.

Therefore |LI|»F+F +A.2F+mD with m = my+ms.

We consider case {(a). UWe have 4 = LZ = (2F+mD) = Y—
However the quadratic squation m2—8m+d = 0 has no integral =molu-—
tion, which is a contradiction.

Next we consider case (b). UWe have 4 = (2F+mD)2.= ¢+dm—m2.
Thus m =0 or 4, In both cases we have a line bundle M with
L =2M in Pie(Z). Since M belong= to the orthogonal complement
Q of Ia& and since @ i= an even lattice 4 = L2 = aMm? ie a

multiple of 8, which is a contradiction. Thuas &(D) # {v). Q.E.D.

Now we go back to the proof of Proposition 3.21, Case B. By
Lemma 3.24, we can choose a general member G of the ruling 21—

family of X with G M @D = ¢. Let F be the strict inverss

0
image of G by ¢. We have D&(F)ID = Bb. By Riemann-Roch 2 =

(F2f2)+1+h1(B%(F}}. One sees that only one of the following two

choices takas place.

(¢} F2 =2 and ht

0 and hitﬁitF)) = 1.

(B%(F}} =0

Now note that hZCGitF—D}} = hD(Bi(—F)) = 0 by the Serre

duslity. It implies that the map H (& (F)—— Hlo5(F)1 ) =



1

H {Ga) 2 ¢ is surjsctive. Thus hi

(Bi(F))g} and case (c) never
takes place. The equality L‘F = 2 is cbvious by definition. It

concludes the proof of Proposition 3.21. Q.E.C.

Theaorem 3.25. lLet L be & polarization of degree 4 on a rational
surface Z with an irreducible effective anti—canonical divisor D,
The following conditions are equivalent.
(1) The rational map ¢L amsaociated to L defines a birational
morphisam to a quartic surface in EB.
(2)  There exists no element MePic(Z) with M2 = 0, ML = 2 and
MID = 6.

Besides if one of the above equivalent conditions holds, then

the induced morphism @: X———*_Es by ¢L is an embedding.

Proof. First we show (2)=>(1). Assume that |L| has fixed com-
ponants. By Proposition 3.7 there exists a smooth irreducible

elliptiec curve F and a smooth irreducible rational curve ' with

F2 -0, F-D=0.T2=-2, D=0, T-F=1 and L = &,

line bundle M = Gi(F+F) satisTies the conditions in (2). Next

(3F+I'). The

assume that [L| has no fixed components. By Proposition 3.18 |IL|
has neo fixed points. Thus ¢ is a morphism. By Lemma 3.2 one
sees & maps Z to B°. Since L® =4, the image of &  is
gither a quadratic surface or a quartic surface, Asaume moreover

that Im ¢L is a quadratic surface. By Proposition 3.21 we have a

amooth elliptic curve F on Z with F2 =0, F-D=0 and LF =

— 49 -



2, The line bundle M = ﬁi(F) gatisfies (2). Thua (2) implies
(1).

Next we show (1)=»(2). Aasume that there is an element
MePic(Z) with M2 =0, ML =2, My 2 0y and that &_ is a bira-
tional morphism to a quartic surface in BS. We will deduce a con-—
tradiction. By Riemann-Roch we have hO(MM+h2(M)XL. If h2(M) =
hof-ﬁ*ai} # 0, we bhave (-H+wz)-sz since L is numerically
affective. However we have (—M+w2)°L = -2+0 = =2, a contradiction.
Thus  h2(M) = 0 and hO(M} # 0, i.e., M is effective. Let A be

an effective divisor with M & Gi(ﬁ). We set

k
A =mD+ Z n.A.+F
i=t *?
whera e, m, Ny » Ty are integers with k20, m20, ni=}
(1£ick), Ay s A, are mutually different irreducible curves

with Hi # D, Ai'D>0 for every 1 and F is an effective divisor
with Supp F " D = ¢. Let E be the union of exceptional curves of
pt Z——= X. Since O is a connected component of E and since
Ai'D>0, P(Ai) has dimension 1 for every t. Thus L'Ai>0 for every
i. Since

k.

2 =ML =mD-L+ Z niﬁi L+F-L =
i=1 i

il pX

1niPai'L'l'F'L
we have 4 cases,

1> k = 0.
{2> k21 and n, = 1 Ffor every i.

2, my1, A %30.

2, my1, A,%<0.

0 if and only 1f m = 0.,

3> k=1, ny

4> k 1, ng

( Note that k



Now we need two lemmas.

Lemma 3.28. Consider a diviser A = mD+_§ Ai+F satisfying the
following conditions., =

(i) k21, m)t

(ii) D'Ai>0, Ai' . , Ak are mutually different irreducible

divisors,
(1i1) Supp F "D = ¢ and F is an effective divisor.
{iv) B%(A)ID Z O

Then A is linearly equivalent to a divisor containing no D,

Proof. By induction we show that Hi(Bi( Z A )y =0, If j =20,
i=1
it is trivial. Conalder the axact segquence
J+1 +1
Q—— Bi( Z A }———t Z{ 2 A y—— B&( Z A )IA —
“1 i=1 ; il
. _ 2.n.
Since deg 03 Z A, = Aj+1 + 2 hi-Aj+1>ﬁj+1 DA
i=l i+l
1 +1
>2p (A, ,)-2, we have HY(OL( X ﬂ )l ) = 0, By the above
=g jl Fd .
— i=1 J"‘l
+1
sequence and by induction hypothesis we have Hitﬁi( z A 1y = Q.
i=1
1 k
Next by induction we show that H (0(nD+ 2 A)Y = 0 for
i=1
0¢n<m.  UWe have JUSt shown it when n = 0. Aasume n{m-2. Set
N = z((n+1)D+121A Yige Since deg N = deg & (~{m=n-12D2 |, =
~(m-n-1}02>0. UWe have HL(N) = 6. By the exact sequence of sheaves
k. k
Q—— Gi(nD+ 2 A )= 05({n+1)D+ 2 A )—— N—s
=1 i=1 !



k

we have inductively Hltﬁi((n+1)n+ 2 A2 = 0.
i=1
1 5 impli
Note that in particular H™(87((m-1)D+ 2 A;)) = 0. It implies
i=1

that HO(Ui(A')—*—ﬂ Ho(ﬂi(ﬁ')ln) = HU(DB) = is surjective where

k
A" = mD+ Z Ai' Surjectivity implies that there exists a divisor A°
i=1
linearly equiwvalent to A which contains no D. Since A-A"+F,
we have the desired result. Q.E.0D.
Lemms 3.27. Let A be an effective divisor with Bi(A)lD = Bb

and with A% 30, UWe have hO(85(A))22.

Proof. Note that hZ(BE(A-D)) = hu(ﬁi(-ﬁ)) = 0. It implies that

Hiﬁﬁitn})———a H1<Bi(n)tn} x Hl(Bb) = ¢ is surjective. Thus

hliﬁi(ﬁ)};}. By Riemann—-Roch, we have

0 1

oo (a)) = (AZ+a-D)/2+1+h1CO5CAY) 2. Q.E.D.
We comtinue the proof of Theorem 32.25,
Case <1, In thisa case Supp AN 0 =¢., Let A be tha fixed
components of the linear system |A|l. Set C = A-A. By Lemma 3.27,

we have L # 0 and ngp. We first consider the case C2 = 0. By
Proposition 3.3 we have a smooth irreducible alliptic curve BB with
GZ =0, G ND~=4¢ and an pesitive integer P with CelpGl. We
have A'L20 and G-L20 since L ia numerically effective, Since
the condition G-L =0 implie=s 62<U by the Hodge index theorem,

we have mareover G:L>}. Now since 2 = AL = pG'L+A'L, one sees



that G:'L = 1 or 2. Secondly we consider the case E2>0. By
Proposition 3.3 we can assume that C is an irreducible curve with
Pa(C) = (C2/2)+1. Since the condition C-L =0 implies Cz{ﬂs we
have C-L>0., Thus it followus from the equality C-L+A-L =2 that
C-L=1 or 2,

Anyway one sees that there exists an irrsducible curve Cl on

z with patci);}, C1 f D= ¢ and Cl'L = 1 or 2. Since
2 Z—-Q,Ea is genericailly one-to—one, and since dim |C1|2}- we
can assume that ¢IC : Ci——-4_23 is= a birational morphism. The
1
image of ¢|C is a 1line or a curve of degree 2 in 23 since
1

Ci'L =1 or 2. Because such curves have arithmetic genus 0, we have

patﬁi}gp, a cantradiction.

Casea {23, This case i= reduced to Case <1> by Lemma 3.26.
Came <3>. First we show Hl(ﬂiC£ﬁ1)) =0 for £=0, 1, 2 by
induction. Since Z is rational, the case 2= 0 1is trivial.

Assume £>0 and consider the exact sequence

0“~—ﬁ-ﬁi(ﬂﬁ Yot G, ((R+1)A, ) G’i((.ﬂ-l-l)ﬂi)lA - 0,

1 z i 1
We have Hlﬁei((£+1)A1)IA ) =0 because deg Bi({)?.i-i)Al)lA =

1 1
(2+138,%28, %58, %A, -0 = 2p_(A;)-2. By induction hypothesis we have

1

Hlto((2+134,0) = 0. Secondly we show H(B5(nD+28,)) = 0 for

1
0¢n<m by induction a= well. The case n = 0 has been verified.

Assume 0Ogp<m-1 and conmider the sequence

| P— Bi(nn+2nl}——-a Bi((n+1}n+2n1}-—4 ei((n+1)ﬂ+2A1)|D—-—q 0.
Note that 02 = w22= 9—t<0 by Lemma 3.2, (1) and that
Gﬁfﬂ)ln = Gb. Thus we have deg Gi((n+1)D+2A1)ID =



deg O5(—(m=n=1)0) | = —(m-n-1)D2>0 and HL(GZ((n+1)D+2A,)1 ) = 0.
Z D i 1’'p

By the last equality and by the induction hypothesis, we have

Hifﬁi((n+1)ﬂ+2ﬁ1)) = 0.

Now in particular Hiﬁﬂi((m-i)D+2A1}} = 0. This implies that

HO(Gi(mD+2A1))-*~ﬂ- Ho(ﬁi(mD+2A1)|D} =z {0

Thus there sxists a member A'eEmD+2A1| which contains no D. UWe

{ﬁbJ = g ig sur jective.

have a divisor A +F<|A| containing no D.

Case <45, This is the last case. Since A, K0 and A,-D>0,
A1 is an exceptional curve of the first kind. Since there are on
Z st most countably many divisors with the form mD+2E where E
ims an exceptional curve of the first kind, if mD+2A1 i= not con-—
tained in the Ffixed components of ial, then there is a divisor
A“e|Al with the form in cases <1», <2> and <3>.

Assume that mD+2ﬁ1 i= a part of the fixed components of 1Al.

Since A = D+2A+F, we have hD(Bi(F)) = h°<eicarugg by Lemma
3.27. However msince for a numerically effective line bundle L,

A-L =2, D-L =0 and Ai'L>0. we have F-:L = 0. It implias that
every component of a divisor linearly sguivalent to F is an excep—
tional curve of pt Z— X. Thus  h%(B5(F)) = 1, which is a con-
tradiction. Therefore this case {4 is reduced to other cases.

Here in all cases we have got a contradiction. Thus (1)
implies {2).

It remains to show that ¢ is an embedding.

Let Y be the image of &. By amsumption Y is a guartic

gurface. Assume that Y has the cne—dimensional singular lacus S.



Let H be a general hyperplane in Es. The intersection Y 0 H
has singularities at $ N H, The arithmetic genus of Y N H is
(4-1)(4-2)/2 =3, Now let C € Z be the strict inverse image of
Y A H, 3t C——> Y NH is a birational morphism. Ue have p, (L)
PY P H)Y =3 and the equality holds if and only if ¢l is an
isomorphiem. On the other hand since any general member of IL| is
irreducible by Proposition 3.3, we have CellLl. Moreover C is
smooth by the Bertini theorem. Thus él. is not an imomorphism and
we have P, (CI<3, However by the adjunction formula pa(CJ =
(L2~D'L)/2+1 = 3, which is a contradiction. One sees that the sin-
gular locus of ¥ i= O-dimensional.

Note that every local ring of Y is Cohen—Macaulay of dimen-
sion{Z since Y is a hypersurface. The singular locua of Y has
codimension22. Thus by the Serre’s criterion of naormality (CF.
Matsumura C1i2]1) the local ring B?’y i= npormal for every yeY.
The morphism X—— Y i= a birational finite one to a normal varie-

ty and therefore it i®= an izomorphizm. Q.E.D.

Theorem 3.28., Let L be a polarization of degree 2 on a rational
surface Z with an irreducible affective anti—canonical divisor 0.
The following conditions are equivalent.

(1) The rational map ¢L associated to L defines a surjective
morphism of degree 2 to Ez.

{2) The linear system |[L| bas no fixed compenents.

() There exists no element MePic(Z) with M2 = 0, M-L=1 and



=
Ml = 0.
Besides if one of the above equivalent conditions holds, then
with the induced morphism @¢;: ¥X—— Ez by ¢L’ X has the struc-
ture of the branched double covering of E2 branching along a re-

duced sextic curve B.

Praof- Firat we show (3)=(2). A=sume that |L| has fixed com-

ponents. Then |L| contains a divisor kF+ where k ia an posmi-

tive integer, F i= an irreducible smooth elliptic curve with F2 =
0, F'D=0,T iw an irreducible smooth rational curve with F2 =

-2, T0=0, TF =0, by Proposition 3.7. Since (kF+[)% = 2, we

have k =2, Set M= @®(F+'). This M =atisfies the conditions

Z
in (2). Thus (3) does not hold.

The implication (2)=(1} follows from Proposition 3.18.

Next we show (1)=(3). A=msume that there exists MePic(Z)
with M2 = 0, ML=1 and HID = O Ue will deduce a contradic-
tion wunder the assumption that ¢L is a morphism. By the =ame

reason as in  the proof of Theorem 3.25 one sees that the |iic=r

system M| is pot empty. Let A<IM]| and set

ke
A= mD+ X n,A.+F
i=t * 1
whera k, m, Ny » Ny are integers with k20, m20 and njil

(1{jck), F is an effective divisor with Supp F N O = ¢, and Ai,
, Ak are mutually different irreducible curves with Ai #D
and A D)0 for 1Lit¢k. Now we have A;'L.>0  for every i by the

same reason as in [heorem 3,25, Since



k
1 = ML = mD'L+ I n.A,L+-L
i=1 * !
only one of the following two cases takes place.

1> k=20
1 and F-L =0

2> k=1, n, = 1, L'A1

Note that condition k 0 is equivalent to that m = 0 because

0 = m02+.§ n;A;-D, Ai:D # 0 and D2 # 0. The case <2> is reduced
to (1> b;qlLemma 3.26. Thus we can assume that A = F, namely
Supp AN D =@, Let A be the fixed component of |Al and C =
A-A. By Lemma 3.27 C # 0 and C230 mince it is the moving part.
For the moment we assume C2 = 0., By Proposition 3.3 there is a
smooth elliptic curve 6 with G N D = ¢ and an integer p with
CelpGl. If G-L = 0, then GC0 by the Hodge index theorem. By the

adjunction foumula p_(6) = (62-G-D)/2+1 = (G2

/2)+1{0, which is a
contradiction since G is an elliptic curve. Thus G'L>0. We hawve
p=1, G-L=1 and 4L =0 since 1 =ML =pG-L+&-L. Thus ¢|G:
G— 22 is a generically one—to—one morphism and its image i=s a
line in f2. We have paCG}ép, a contradiction again. Next we
treat the case C2>D. By Proposition 3.3, we can assume that C is
an irreducible curve with p_(C) = (sz2}+12?. By the aame reason as
jumt the above, one Ras C-'L = 1., Thus ¢|C: C——— 92 ia a generi-
cally one—to—cne morphism to a line. We have pa(C)gp, a contra—
diction.
Thus conditions (1), (2} and (3) are equivalent.

Now we show the latter half of the theorem. By the Kawamata—

Ramanujam wvanishing theorem one sees easily that hlimL) =1 and



hZ(mL) 0 for any positive integer m. By Riemann-Roch we have

hd¢ml) = m2+42. Let

Uys Ups Ug be a basis of HO(L). Let § be

the subspace of HO ¢l ) generated by monomials of ui's of degree
me Since ¢L is a surjective morphism to 22, there is no non—
zero homogeneous polynomial P(Ul, U2, Us) with P(ul, Us s u3) = 0,
Thus  dimg S_ = (m+23(m#1)/2. One sees that HO(L) = S;, HO(2L) =

0

52 and that there is a non—zero siement weH (3L) such that

o

(3L? is a direct sum of Tw and S5. Let o I— P(1, &, 1,
3) be the morphism to the weighted projective space definad by
z— (ui(z). uz{z), ugiz), wiz)), Let ¥ be it=m image. Note that
since ui's do not vanish simultanecusly on Z, +the image Y does

not contain the point (0, 0, 0, 1), Thus the composition x¥¢ with

R2

]

the projection B(1, 1, i, 3)-{{0, 0, 0, 1)} —— R(1, 1, 1}
has the meaning and =x% = ¢L by definition. Moreover we can show
that $: Z— P(1, 1, 1, 3) Tactora through pt ZI— X by the
same reason a= in Proposition 3.20. Let ¥: X—— ¥ < B(1, 1, 1, 3

be the induced morphism.

Lemma 3.29 If P(ui. s s u3)+uQ(u1, Us s u3) = 0 for homogeneous
polynomials P(Ui, UZ' U3), Q{Ul, U2, U3) with deg P = deg Q+3,
then P =Q = 0.

Proof. First assume that P and Q@ ha= a common non—con=tant

divisor R, BSet P1 = P/R and Ql = W/R. They are homogeneous

polynomials with deg P1 = deg Ql+3. Moreover under the assumption



of the lemma we have Pl(ui’ Uns u3)+uQ1(u1, Un s US) = ) s=ince
R{uln Us u3) # 0., Thus one mesa that one® can as=ume that P and
Q has no non—constant common divimor and that one of P and Q |is
non-zero. Then the polynomial P(Uys Usy U3)+UQ(U1, Vo s Us) is
irreducible and non—zerc. Besides its zero-leocus Y = { {al. 2o

ﬂat b)eP(1, 1, 1, 33 | P(Gis ) +bQ<51y 32' 43) = 0} is

321- 33
irreducible, We have Y = Y  since Y «¢¥Y by definition. Howu-

ever we have (0, 0, 0, 1}eY = Y', which is a contradiction.

Q'IE.DI

By the above lemma and by dimenmional reasons one sees that

05y = Sc+uS, and HO(sLy = S +uSy. (Here +
2.0

denctes a direct sum.) HNow since w sH (&L), there are homogeneous

0 =
H™(4L = Sa+u81, H

polynomial P of degree 6 and @ of degree 3 such that
WHCUy, U, ug M4PCuy. use ug) = O,

By replacing w by u—Q(ui, Uy s u3)/2, we can assume moreaver that
@ =0, Here by construction Y agrees with the hypersurface in
P(1, 1, 1, 3) defined by Uz-P(Ui. Uss Usd = 0, which is nothing
but the branched double covering branching along the sextic curve B
H P(Ui, Uas U3> = 0.

It remains to show that %: X—— Y i3 an isomorphism. Note
that every local ring of Y ims Cohen—Macaulay since Y is a
hypersurface of a smooth manifold PB(1, 1, 1, 3)-{¢0, 0O, 0, 1))}.
Thus it suffices to show that the singular locus S of Y is 0-

dimansional by the same reason as in the proof of Theorem 3.25. It



is equivalent to that B is reduced by Lemma 1.5, MNow let H be a
general line in P2, The inverse image % L(H) by m: Y—— 82
has singularities st % L(H) 7 S, The arithmetic genus of 2 1(H)
is  (a*(H)%+0 x*(H)I/2 + 1 = 2, Let C cZ be the strict inverse
image of z_i(H) by 2. QIB! C— 2~ LeH) is a birational mor-
phism, UWe have pa(C)gpa{znl(H)) = 2 and the equality holds if and
only if @IC is an isomorphism. Howewer C<iL]! and C is smooth.
Thus pa(C)g} if dim S 1. On the other hand we have pa(C) =

(L2-L-D)/2+% = 2 and thus dim S = 0. Q.E.D.

Before concluding thi=s section we wouyld like to give one more
proposition and a Temma. The next lemma is due to Looi jenga. UWe

emit the proof here. (CFf. Looijenga C103)

Lemma 3.30- {(Looijenga) Let A be an irreducible curve an I with
A NpD=¢ and A2 = =2, Then ﬁi(AJGPic(Z) is an effactive nodal

root.

Remark. Since the conditions a2 = -2 and awy; = 0 for

atPic{Z) do not imply that @ is a root, this lemma is not a triu-

ial one.

Proposition 3.31. et 8§ © Pic(Z) be the set of nodal roots or-
thogonal to the polarization L. Then & is a root system. More-

over singularities on X are a unique point with positive geometric



genus at w = p{D)eX plus configuration of rational double points
consisted of Pic of Ak—points. a, of Dﬁ-points, and L of Em—Points
(k21, £24, m= &, 7, 8) if and only if § is isomorphic to the
direct sum of P ©f irreducible root systems of type A for svery
k, a of ones of type Dﬂ for every 2 and "o of ones of type Em
for m= &, 7, 8. Here pg: Z——+ X is +the contraction defined

just after Lemma 3.19.

Proof. Let R be the set of all roots in Pic{Z)., It is obvious
by definition that (5+8) n R c & and ¥ = -§. And the orthgonal
compiement of L in Pic(Z} is negative—definite. Thus the former
half of the proposition followse from the definition of the root sys-
tem. (Cf. Bourbaki [ 31)

Let us proceed to the latter half. Let E be the union of ex—
ceptional curves of p: I—+ X, Let |’ be the union of 0 and
the support of effective nodal roots orthogonal to L. In view of
Lemma 2.1, it suffices to show that E = E’.

let A be an irreducible curve on Z such that #(A) is a
point. If A=D, then A < E" by definition. Assume A # D. By
Lemma 3.19, we have A2 = -2 and A N D =d. By Lemma 3.30, we
have A <€E. Thus E < & . Conversely let A be an irreducible
component of E°. If A =D, then A< E by Lemma 3.19. Asmsume
A # 0. There exiats an effective diviseor EniAi (Q<n; €Z, A, is an
irreducible curve. ) containing A as a component such that

ﬁi(zniAi)GPic(Z) i= a nodal root orthogonal +to L. UWe may assume



since L is numerically effective. By Lemma 3.19 we have A = Al

1+ It follows that A.-L = 0 for every i from EniAi'L =

[~

Ec Thus g = E’. QoEoD-

Now according to Theorem 3.25 and Theorem 3.28 we can decide

whether 7
surface by
3.31 shous
tion about
fore if we

Pic{Z)—=

represents a reduced sextic curve or a normal guartic
studying the morphism Pic(Z)—= Pic(D). Proposition
that the morphism Pic(Z)—— Pic(D) contains informa-
singularities on the cbjects we are considering. There-
had a e¢riterion written with group—-thecretic words about

Pic{D) by which we can decide Le¢Pic(Z) is a polariza-—

tion or not, then classification of all singularities of objects

under consideration would be accomplished.

In the next ssction, we shou that thi= is the caszse when t =

9—«122 = 10.



§ 4. Determination of the polarization class (when t 10>

In section 1, 2 and 3, we only assumed that t 9‘”222§' In
section 4 restriction appeared; existence of polarization implies
t210. However in this section and following ones, we restrict our—
selves to the case t. = 10. There are two reasons to do so. First
if t = 10. we can easily determine all elements 1eP with 1-£=10
and A% =2 or 4 compared with the case t>11. Secondly we have

a group—theoretic criteria by which we can decide LePic(Z) with

L-wz =0 and L2 =2 or 4 ims a polarization or not.

In this section we always assume that t = 10 (i.,e, w22 = -1)
even if there is no mentioning.
Proposition 4.1. Assume that mzz = —-1. {i.e, t = 107 An ele-

ment LePic{Z) with LID = ﬂb and L2}0 is a polarization if and
only if LeVg N C, where C, is a connected component of the posi-
tive cone C = { xePic(Z)®R -| <230 } containing ample line bundles
and

Vg = | xePic(Z)8R | x @, = 0, xr20 for any effective nodal

root rePic(Z) },

Proof. "Only if' part is trivial since L is numerically sffec-
tive. To show "if" part, we have to check conditions in Definition
3.1, The condition= (1) and (3) are obvious by assumption. We show
{2), i.e., L is numerically affective. It suffices o =how that

for every irreducible curve A, the inequality L-820 holds,



Recall that the positive cone C ha=s just two connected compo-
nents. One is C_, The other is C_ = -C_.

If A2>0, the restriction to the orthogonal complement (Rﬂ)l
of A in Pic(Z)8R of the intersection form is negative definite
since the intersection form on Pic(Z) has signature (1, 10).
Thus (Eﬁ)l A= {0}, ( ~ denotes the closure.) It implies that
C lies in a half space bounded by the hyperplane (RHJL. Since

+
both L and any ample line bundle belongs to C we have L-AX).

4
Moreover by a similar argument we have L A0 for any curve A
with ﬁz = 0. Here note that we did not use that A is irreducible
until now. Assume that ﬁz(ﬁ. By the adjunction formula, one sees
that there are three cases.

(i) A = D.

(ii) A° = -2 and A N D = &,

(iii) AZ = -1 and A'D = 1.

It & =D, +then L-D'=0 by assumption L|D = Ub- In case

{ii), Bi(ﬁ} is an effective nodal root by Lemma 3.30. Thus it
follows from the assumption LEVS that AL = Bi(A)-LZp. In order
to manipulate case (iii), we nesd the assumption Dz =-1. Set C =
A+D.  We have €2 = —142-1 = 0. Thus by the above argument we have
L (A+D) = L-4A>0. We obtain not only numerical effectiveness but
alsc cendition (4) in Definition 3.1l. Q.E.D.

Next we determine elements 1eP = Iau+lai+ +2510 with 12

= 2 or 4 and 1 x =0 up to the action of the Weyl group W.



Here «x = —3£0+31+ v Let ' be the orthogonal complement

+5104
of Zx in P. We denote

23q )

U= ( xel'eR | x
U, = ( xe0 | x-g5>0 )

] { xeJ | x'sUCU 1.

It is easy tc mee that Ui are conected components of U and U =
U+ ¥ J_. Moreover we denote

V= xeleR | x 7,20 for 1£iZ10 )
where 71 = ggTE e, "EL, T, = & 4TE; for 2{if10. The following

lemma is due to Looijenga. (Looijenga L1031}

Lemma 4.2. U+ c wy.

The rest of this section is devoted to verify the fellowing.

Proposition 4.3. Amasume +t = 10, Any element IeF with 12 =4

and ilx=0 is conjugate to one of the following elements with

respect to the action of W,
t(960-381“382—383—38d—385'386‘38?—388—289-810)
i(?30—331-232-233-23a—255—256—23?-238—239—2310)

Proposition 4.4. Assume t = 10. Any element A€P with 12 = 2
and 2 x =0 is conjugate to one of the Following elements with
respact to the action of U.

i(680-2s1—232—253—25d—255—256—23?-238-39_310)



Proof of Proposition 4.3.

If 1 belongs to U_, then obviously -1 belongs to U+-
(-2)2 = 4 and (-1)-k = 0. Besides every element in U, i= conju
gate to an element in V by Lemma 4.3. Thus we have only to show

that the follouing system of equalities and inequalities hold for

integers x, Yy v ¥40 if and only if (x, Yy R ’10) = {9,
3! * 1 ] 3' 2’ 1) or (?’ 3. 2' [ ] 2)0
i 10
xz = 3 y.2+4
P 1
i=1
10
(4.1) 3x = 2 ¥,
. 1
i=1
X2y *yotya
| ¥12Y22032Y 42Y5LY 42 32Y52Y92Y 1)

We nead several steaps,

STEP 1.

Lemma 4.5, If (4.1) heolds, then x27 and yi)ﬂ for 1£i<10.

ProofF. By +the Schwartz inequality we have for 1$§§gﬂ
_ 2 _ 2 22 _ .3 2_ 9 2

(3x ya} = ( Z yi) £7(x Yo 4)., Thus 3{ya ic x) 50 X +1840.

i#dex
One sees that x # 0 and that ya>0 or <0 according as x> or

<0D. Assume x<0. We have Y149+ It impliea that nggcy1+y2+y3)

9 10
> Y v.> ¥ v, = 3x, a contradiection. Therefore x>J and y >  for
-j=1 J j--l J [+ 4

1{£10. Moreover by the Schwartz inequality we have 9x2 = (Y yi)z

Qs v, %) = 1067-8). Thus  x7. Q.E.D.



Lemma 4.6. If (4.1) holds and if x{10, then (x, ¥, s Y49
= (9’ 3’- L2 3, 2| .I.) ar (?’ 3’ 2’ !2)'

Proof. We can assume 7¢x{10 by Lemma 4.5. First assume x = 7.

2

By the Schuartz inequality we have (21-y,)%9(45-y,%). It implies

Sy,°-21y,+18¢0  and thus O0<y,<3. If y, = 3, then yy+ + ¥4q

=18 and y,%+ +y,02 = 36, Since 187 = 9x36, the eauality in

the Schwartz inequality ( % y-)zg?( z yiz) holds. Thus Yo =

iy2 ! i22
= Y49 = 2+ UWe have the solution (7, 3, 2, s 2). If ¥,82,
then 21 = y1+y2+ +y10220, which is a contradiction. Secondly
assume x = 8, UWe can show similarly that there ims no solution in

this case. Thirdly assume x = 9. By the Schwartz inequality we

have Sy, %-27y,+18¢0. Thus 0<y,¢4. Assume ¥, = 4. Ue have

2

(28-y )% = (yyr +y,00%8x 3 vy, 7 = 8(81-y,P), uhich implies

i23
¥283.  If  yo42, then 23 =3 y.£18, a contradiction. Thus
ix2

yy = 3. Since y1+y2+y3ix =9 we have moreover y3£2’ Ve have

20 = 2 ¥;816, a contradiction again. Thus 0<¥q£3+« Now we assume
i23 N

that k of [ Yys Yoo » Y4 } are 3, £ of them are 2 and m
of them are 1. We havae k+&+m = 10, 3k+28+m = 27 and Sk+48+m =

7. One sees easily that k =8, £ =1 and m=1. We have the
solution (%, 3, 3, s 2, 1), Lastly assume x = 10. Similarly
we sese that there is neo solution in this case. Q2.E.0.



STEP 2.
Next we met
x = 3z+e, y; = z+b, (1P, ¥y = 84q-
Equalitiem and inequalities (4.1) are equivalent to the next ones.
1> 828, +6,+64
(2> Glzﬁzg £ﬁ9
3> z+82844

(4.2} <d4> 610>0
5> 61+62+ +610 = 3& , ,
2 pa
{6 22(61+62+ +59)+(61 +62 + 69 J+r31U
= 6$z+82—d
Lemma 4.7. If g, 51, R 610 are 0 or +1, than the
molytion of (4.2) is z = 3, & = 0, 51 = 52 = = 53 = 3, 69 = -1,
510 = +1.
Proof. By <4> we have 610 = 1. Firat assume g =0, If 61 =
1, then by <1>. €27 we have only two cases} (al ﬁz = 0, 63 = =
69 = -1, (b} 62 = 63 = = 69 =z =1. In both cases {5 does not
hold. If 61 = 0, then by <2>. (5> 62 = = 68 =0, 69 = -1,

Substituting them to <67, we have =z = 3. Thus (3> ig also satisfi-
ed. We have the desired solution. If 51 = -1, by <2 52 = =
59 = -1, They do not satisfy <3>. Secondly assume e =+1. 1If
84£0. then by <2>, <3> 1 2 §,+4,%+ +6,5 = 3+ which i= a con-

tradiction. Thus 61 = 1. By <1>, <(2> we have only three cases.
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(c) 62 =1, 53 = *+ = &9 = -1, (d) 52 = 53 = Q, 5‘1! 65' - » O <=0

(e) 62 =0, 63 = = 59 = -1, in any case <5 does not hold.
Thirdly assume & = -1i. If 51 = 1, +then 62 = 63 = -1 by <1>.
By <2> we have moreover By = =85 = -1, In this case (5> does

not hold., IFf 61 = 0, then there are only two cases by 1>, <2,

() 62 =0, 63 = = 69 = -1 (g) 62 = 63 = = 69 = -1, Anyway
(9> does not heaid. If 61 = =1, +then we have 62 = = =1 by
{2> and <5 does not hold. Q.E.B.

Lemma 4.8. Assume one of ¢, 61, ' 610 is= +2, at most one

of them is 1i and the rest are 0. Then (4.2) has no solution.

Proof. Firat assume & = 12. By <{4> we have 510 = 1. By as—
sumption we have &, = = dg = 0. Then <35> does not hold.
Secondly assume 28 = *1. By <47 we have 510 = 2. By assumption
one sees 4§, = = b6g = 0. Then <355 doen not beld. Thirdly
assume € = 0. We have 3 cases:t (a) 61 = = 68 = 0, 59 = -2, 610
=1 (b) g, = =6 =0, 8 =-1, 8,5=2 (c) 8, = = 8g = &
=0, 610 = 2, In any case <{5)> is not satisfied, G.E.D.

By the next lemma we can complete the proof of Proposition 4.3.

Lemma 4.9. If an integral s=olution of (4.1) =atisfies x>11,
then there exist integer= z., &, 61, , 610 =atisfyving x =
3z+e, ¥ = z+Gi (1€i<%), Y19 = 510. equalities and inequalitias



> i0
(4.2) and e+ Z

2
Z8,%.

Since inequality 52+ z Eizgﬁ implies that one of the as—
sumptions in Lemma 4.7 and 4.8 is satisfied, it follows from Lemma
4.7, 4.8 and 4.9 that (4.1) has no solution with x211. Thus by

Lemma 4.6 we have Proposition 4.3. a.E.b,

STEP 3.

Now we have to show Lemma 4.9. Here we introduce an Euclidean
metric ( ., > on PER by (si, si} =1 (0£ig10) and (si. cj) =
0 for 1 ¥ j. By this metric we can define the distance dist(A,
B) of two subsets A, B c P®R. Let Pi denote the orthogonal com-
plement of the set (x, Tys Tps , rlﬂ) - {Ti} in Pef with
respect to the intersection form, i.e., Pi = { x¢P@R | x-x = 0,
xT; = 0 for 1£i810, j # i }., Set T, = { xsP&R | x*x = 0, x'x =
e, x 7,20 for 1£i10 } < eR, Hg = { x<P@R | X*£528 } where ¢,
9 are positive real numbers. We would like to show that Td N H11
lie= tooc near to F'10 to have jattice points on it. We need furthe-

several lemmas.

The following one treat= a general situation.

Lemma 4.10. Lat F be a three dimensional real wvector space
equipped with an intersection form < , > of signature (1, 2) and
with a positively definite imner product ( , . Let L be a line

in F passing through the origin. For a positive real number =



we set Q= { xe¢F | {x, x> = a }). Let E € F be a two-dimensional
linear subspace of F with ENQ # ¢. Then E N Q has tuwe con-
nected component each of which is diffeomorphic to R. Let &t
B—— E N Q bhe a diffeomorphism to one connected component. Then
for any closed interval (b, ¢] € R and for every Ai=lb, c1,

diat(@(1), L)max { dist(é(b), L), dist(e@lec), L) }.

Proof. Since the restriction of the intersection form < , > to
E has signature (1, 1>, E N Q is a hvperbolic curve, Therefore
E N Q is diffeomorphic to two copies of R. We divide the rest of
the proof into two cases.
Case 1. L <E.
For every non-negative real num-—
ber e<R, set D= { xst& |
dist(x, L){e }. D, is a closed con-
nected set bounded by two lines par-
allel te L. Note that De n &LCb,
cl? is always connected., Set dCI =
Figure 4.1, dist(@(1), L) and assume d0>max{
dist(@(b), L), dist(d(c), L) }. There
exists a sufficiently small poaitive
real number £>0 such that

Ddo_sa¢(b), d(c). Since Dy ~g" &b,

0
cl) is connected, Dd n ¢(tb, cl?

0“5
= ¢([b, ). It implies ¢(1JEDd _g* Ye have dy = dist{é(. L)
0 F -3



do—e, & contradiction.

Case 2. L&E.

Similarly we set for non—-negative real number

esR, D_ = { x*E | dist(x,L){e ). In this case

De is the interior and the boundary of an owval.

Since De N ¢{Cb, cl? is always connected, we Figurs 4.2,

get the desired inequality by the same reason as

in Case 1. Q.E.D,

We now return to our case. for every subset I < {1, 2, 3,
» 10 ), we set P, = ({:} Fo)on (Re>l uhere IS is the com-
plement of I, F; is the orthogonal complement of 7. in P8R, and
(Rx)l is the orthogonal complement of x. Note that P{i} = Pi'
Next we define linear functions u, Vs T PRR— R by
wix) = x-¢5 and vilx) = x-7. for 1£i€10. By direct calculation

we obtain}

Lemma 4.11. P, 0 T& is a unique point for 1£i{% and we have

ulx; <11 for {x;3 =P, N T,, 1Li9. P,y 0 T, is empty.
)

1
(Indeed max{ ulx;) | 1P ) = ulxg) = 6xv2.)

The next lemma is the key part of this saction.



Lemma 4.12. For every subgset 1 < {1, 2, , 10 } with #I23

and for every xEPI n Td nH there axist a submet J I with

11’
#J = #71-1 and a point yEPJ n Tﬂ. n Hil with
dist(y, Plu);gist(x. Pin).

Proot. First note that unless I = {10} or I = ¢, the restric-
tion of the intersection form of POR to the space spanned by Ti»
ie( 1., 2, s 10 } - 1 is negatively definite. Thus the inter—
gection Fform has signature (1, k—1) on PI unless 1 = {10} or I
= ¢ where k = #I, Assume k3. One sees easily that PI fi Tdn
H10 # ¢. Assume that there exists i€l with ui(x) =0 for x!PI
" Ty 0 Hyye Then xePy_y3 " Ty M Hyy and setting J=1I-{i), v =
x we get the Temma. Thu= in what follows we assume that ui(x) ¥ 0
for every i4l, Since xETa, we have vi(x)>0 for 1€l. UWe de—
note Q= { zcPQR | zrz =4 }, PI NQ jis a quadratic hypersurface
apanning FI' PI Q@ has tuwo connected component=. Let (PI n Q)U

be the connected component of PI N Q@ containing x. Set cq = min

[ uly) | ye(tP n D}U }. UWe have cU)O and c0<11 by l_emma 4.11.

IF —c0<g<c0, then PI ngn aHg = ¢, If g = ico, then PI ngn
aHg ia one point. I+ |9|>cu. then PI nQgan aHg is a smooth
{k—-2)-dimens=ional manifold. In particular PI n Qn aHu(x) is a

amooth (k-2)-dimensional manifeld. Let $S5° be the tangent space of

Py 7 QN 3H at  x. If 048", then 0e5° < §H and 0 =

uf x) ulx?

u(0) = ulx)11. It is a contradiction. Thus 0#S°. Let V = {

E.

zeP, i v (2320 for el }+ V is a convex cone in Py and x
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belongs to the interior of V. Since dim$°21, $° intersects some

wall of VY. i,e., S N (YN PI-{iD}} # ¢ for some iDEI. Note
that there exists ¥g* S’ n (Y n PI—{iu]} with yo-ya)ﬂ. Otherwise

57 n (G np. . ,)cP and morsover the tangent space S  of PI
I {10} 10

n @ n gH at x intersects PiU’ which is impossible. Thus

ul =)

such Yq aluways exists, let M° be the linear span of x and

Yo If 0eM’, then xsM° < PI—{iD} and we have v, (x) =0, a

0
contradictinn. Let M be the linear span of x, ¥y and 0. It
follows dimM = 2, Since «x€M and x-x = 4, the restriction of
the intersection form to M has signature (1, 1). Ve have the

following figure.
Next we would like to show (M N

Q)G c H i.m,, u(y)Zy(x) for eu-

ulx)’
ery y®#{M N Q)O, where (M 0 Q)D im
the connected component of M N Q
containing x. If M c aHu(x)’ we
have nothing to prove, Thus we assume

Figure 4.3. M #‘BHU(X). M0 aH

is a line con-
ulxl
taining x and Yo that 1, M N

aH = M. Recall that M is the

ulx)
tangent line of M N Q@ at x by def-
inition. SBince M N Q is a hyperbol-

ic curve, (M A0 Q)D lies on one side

of M. We have either uily)2uix) for every ye(M N Qg or



B<ul{y)uix) for every ya(M N Q),. Since obviously uly) is un—
bounded on (M M Q);, we have (M 0 @)y < H . Now MO Pr_ ey
is a line in M passing through the origin for every i€l since
PI_{iJ = Ker‘vi n PIix. One msees that M 0 Tﬂ- coincides with the

closure of the connected component of M N Q-L_JM 0 P;_,.y contain-—
ie]

. . . . n ‘ .

ing X« Since YD‘PI-{in} and g ¥g20, M PI-{xﬂ} intersects

with (M n Q)u. It implies that M 0 Td is a connected closed

proper subset of (M 0 Q)g. Thus we have Y = &(M " Ty 0 (L_{N n
19
PI-{i}J $ @, Pick yiiY. There exist= 1111 with yiﬁB(H n Td) n
PI_{il}o Set J = I-[ii}. Then yl*!F'J n Td and yie(M n Q)U <
H < H; . Moreover by Lemma 4.10, dist(y,, Pig}gﬂiat(X. Pig?*

QlElD.

ulx)

Lemma 4.13, For every subset I < {1, 2, 3, y 10 )} with #I1

2 and 10¢I, we have PI n H11 n Td = ¢,

Proof. Set I = {i, j}. Since i ¥

10, j # 10, we have Pi-[U], PjH{U] c

{ yiPl | v %> }. Thus if Tp 0 Py

is not empty, it is a compact con-—

nected arc contained in a hyperbol- Figure 4.4.
ic curve, However, for a point ¥ in

P. N T

i d
Lemma 4.11. Thus for every le4 n

and Pj n T&’ u{y)<{ll by

Prs uly)<11. It implies T, M P 0
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H11 = ¢, Q.E.D.

Lemma 4.14, For 2 subset I = { k, 10 } with 1£(k£%, the func-

tion PI n Td f H119x———é dist{x, PlOJ attaina its maximal value on

the set PI n T4 n aHil.
Proof. Since Py < (yeP; | vy =0 )
and Pk-{U} < { }‘EPI | w-¥>0 }, PI n

T is an arc as in the left figure.

A
and the origin lie on the same side

Figure 4.5. with respect to 3H11‘ It implies
that there are not two connected com—
ponents of T4 n PI n H11 but there
is only one. In view of the fact that

is the asymptotic line of

P.g AT

10 4
Td n PI n Hll' one s=es that the distance to Piﬂ attains the max-

imal value at Td n PI n &H11 by Lemma 4.10. a.E.D.

Lemma 4.15. The aet Td A P{k. 10} f 8H11 consists of a unique

point [yk} for 1<{k{9. Besides we have dist(yk, PlU)(l for
1{k<?-

Proof. The former half is trivial. By direct calculation we hauve
max distly,, Pyq) = distlyg, Pyq) = V70/%1, Q.E.D.



Corollary 4.16. For every point xer f H11, dist{x, Pin}<1.

Proof of Lemma 4.9.
o
First note that the set | 2(380- 2 si) | zeZ } exhausts the

i=1
lattice points (points whose coordinates are all integers) on PiD'

The minimum distance of lattice points on P10 is v18. Thus for

every point leiU there exist= a lattice point U‘PIU with

dist{x, u)gy58/2.

Let ETﬂ n H11 be an arbitrary lattice point. Let XUGPlﬂ

¥
0
be the point on P10 which attains the distance between Y0 and
Piog i-e-! dist(}rog Plo} = dist(}rug XU)- The ]ine paSSing thl"ough
Xq and ¥q i=s perpendicular to P10' Let u0¢P10 be the lattice
polnt with dist(xn, uﬂ}gleXZ. By the Pythagorean theorem and by
Corallary 4.16 dist(yu, u0)2{181d+1 = 5,3, Since di:t(yn, un}2

is an integer, we have dist(yo, un)ziﬁ. which is the desired re-

!u]t. QoEtDo

By the same method we can alsmo verify Proposition 4.4, Indeed

it is easy to check the following lTemmas.

Lemma 4.10. The system of eqﬁglities and inequalities
Xz = 2 }'i2+2
i=1
10
(4.3) 3x = 2 Yy
i=1
X2y *yptyg




l Y12¥a2¥g2 g0

is s=atisfied by integers x, Y1+ T 1 Y40 with x£10 if and only
if (Xp yil ’ Ylo) = (6, 2, 2, ¥ 2' 1. 1),
Lemma 4,11, (1) For every point yGTZ n H11, diat(y, P10)<1-
(2} If an integral s=olution of (5.3) satisfies x211, then there
exist integers =z, g, 61, , 610 gsatisfying
1> e28,+8,+8,
2> 8,26,2 - 28
3> z+8y26, 0
(4.4) <4z 610>D
£5> 61+62+ td,q = 3¢ , ,
2 2
{62 22(51+62+ +69)+(51 +62 + +59 }+610
= 632+$2‘
10
7> &2+ 5 6. %s
i=1

ﬂUCh thﬂt X = 32"’31 _Yi = Z+ﬁi (1<=i 9}D yiu = 5100

Lemma 4.12. If e. 61, + 610 are 0 or 1, <thazn the solu-
tion of (4.4) is z =2, ¢ = 0, 61 = = 68 =0, &9 = -1, 610 = 1.
Lemma 4.13. Assume that one of &, Gi’ ’ 610 im 12, at

moat one of them is 1, and the rest are 0, Then <(4.4) has no

solution.
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Here we compiete the proof of Proposition 4.3 and Proposition

4.4,



§ 5. The action of the Weyl group.

In this section we give the proof to the main part of our main
theorems.

Let X c P° be a normal guartic surface [ resp. Let xt X—
P2 be a branched double covering over P2 branching along a reduc-
ed sextic curve B. 1 with a singularity ES’ Ta 3,7 © E{n at
xg€X. We assume that other singularities on X  than xg9X are
rational double point;. Let p: Z—— X be the minimal resolution
of singularitiea, Let D = p_l(xo). Then for a suitably chosen «
and ¢y £=4(Z, D, a, ¢} ims a marked rational aurface of degree
-1. ( Cf. Lemma 1.3, Propomition 1.4, Definition 2.4. ) Moreasover

by exchanging a« by aw with a suitable uEUP, we can assyms that

either all,) =L or a(lz} =L holds, where 11 = 780—381-232—

1
— — p— — — - - y p— ®
2510, 12 = 930 331 353 239 &5 and L P §}3{1)' (CFf.
Proposition 4.3 )} [resp. we can assume that a(lS) = p*x*8’3{1) =
—_— P
L bolds where 13 = 660-251~2€2— —258-59-310. {Cf. Proposition

4.4 > 1 Since the restriction of L to D ia trivial, the charac-
teristic homomorphism ¢;: '—= E satisfies (1) = 0 and be-
Tengs to the subset HomE}/Zli. E} of Hom(I, E)_-uhere i=1 or
2 according as a(lli =L or a(lz} = L. [resp. the characteris-
tic homomorphism ¢Z: [+ E sgatisfies ¢Z(13) = 0 and belongs to
the subset Hom(rﬂil3, EY of Hom(F, E).—j (Cf. Definition 2.6 )
Furthermera the kernel Ker ¢z contains no element uel' with ﬂ2 =

0 and “'li =2, (i =1,2) (Cf. Theorem 3.25) CLresp. the kernel

Kear ¢z contains no element H€ with ﬂ2 =0 and “'13 = 1. {Cf.
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Theorem 3.28) ]

Conversely for a fixed i = 1 o 2 choose an element
peHom(I', E) such that
1) ¢(li) =0 and
(2} Ker ¢ contains no element & with 42 = 0 and u-d, = 2.
Cresp. Conversely choose an element @eHom{(T, E) such that
(1> ¢{131 =0 and
(2) Ker ¢ contains no element &4 with ﬂz =0 and u iy = 1. 1
Then by theorem 2.8 there exists a marked rational surface Z = (Z,
D, a«, ¢) with ¢ = ¢Z' Exchanging a by wa where UGUS is an
element of the Weyl g;;up asmociated to nodal roots, we can assume
that a(li)ius " C, Cresp. a(lalﬁus LI . and @ = ¢1: since

VS i C is= a fundamental domain of US. By Proposition 4.1 and

+
since it follows from the above condition that LID = Bb for L =
ald,)ePic(Z) Cresp. L = a(ly)#Pic(Z) 1, the line bundle L is a
polarization of Z. Moreover by the above condition (2) and by
Theorem 3.25, L defines a morphism ¢L: Z— X € BS  to a normal
quartic saurface [reap. Moreover by the above condition (2) and by
Theorem 3.28, L defines a morphism $: Z— X c BP(1, 1, 1, 3} to
a branched double covering over E2 branching along a reduced sex—
tic curve B 1 with aingularity Eé, T2,3,?’ or E12 according as
E is an elliptic curve, € or .

Note ‘that by Proposition 3.31, singularities on X are de—

scribad by II N Ker @2 n (Eli)l (i =1, 2, 3) where M is the set

of roots in P and (Zli)l is the orthogonal complement of li in



r= (Zx)l.

Thue classification of singularities of surfaces under consid-
eration is reduced to studying the abelian group Hom(I'/Zi., EJ. (i
=1, 2, 3)

Let A be the orthogonal complement of Ili in . Ue define
a homomorphiam

ui [=———r Hom(A, Z) = A*
by w(al(f) = a'¢ for aeT" and £LeA. It is easy to see that its
kernel is Al = Zli and it is surjective since [ i=s a unimodular
tattice. Thus it induces an isomorphism wu: I'/Z1,—= A", In uhat
follous we sometimes consider weHom(A*, E) instead of deHom(T', E)
with  #(1,) = 0. Since u is bijective they are equivalent. Note
that +the composition A—— [—= Flei—=—4 A* ims injective since
A NZA, = {0}, We regard A as a subset of A* by this injective
mapping. Conversely A* ia regarded as a aub=et of A®0. UWe can
define a bilinear form on A* with values in rational numbers by
extending that on A. For any element 0 # 9€A®l, the refrection
Sy with respect to the hyperplane orthogonal to & is defined by
sgix) = % - Z%g%%% 8@ Ffor xeA8Q. It is an automorphism of srder 2
preserving the linear form. ( In what follows an affine automor-—

phism of order 2 of an affine space whose set of fixed points has

codimension 1 is called a reflection. }

Now we would like to give a remark. Let A be an arbitrary
abelian greoup. MWhem a group G acts on A we define an action of

G  on Hom(A, A) by (aF2(&) = F(g 2£)) for g6, FaHom(A, A),



and §e€A. UWith this definition the inclusion A-—— A* is an equi-
valiant homomorphism if the action preserves the bilinear form,

Next we consider the case concerning 11 = 780"381-282-
~28,45- Set = =‘zrl+zraﬁzrd+275ﬁz76ﬁ217ﬁ118ﬁ279+2710. ( 75, does
not appear. ) It is eaay to s=ee that the orthogonal complement of
le in T is El Ci.evy A = Ei ) and that Ei is the rcot lat-
tice of type Bg.

T ' T Ti ¥ T T T
U3 Id us — W u8 ‘09 '-?10
L]
Let W be the group generated by s_. , 5_ , s o « It i=ms
=y Ty T3 T10
the Weyl group of +type D, W.. acts on B, and E,*. Set
s = 1 1
L L .1 1, .1, 1 .

0, = ITi ETB+ de + 276 + 278 + 2710. We can check that By
El+1w1. Set 31 = %71- %73’ One can see easily EliEi* and 912
= =1, Moreover 231'51* c Z since ﬂl'wi = - % and 81 El c Z.

Note <that it implies that the reflection Sg {x) = x+2{x'91)31 -
1
fines a homomorphi=m Ei* to El*. Let 61 be the subgroup of the

]

erthogonal aroup of 51 generated by 531. 573, =Td, 3?5’ ST6'
2, s = and = + The group 61 is the Weyl group of tvpe B

7 s 710 ?
gsince the mutual intersection numbers of 91, Tas s Tlﬂ give
the following Dynkin graph.

oty T o — O o O ——

Lemma 5.1. Every element EGEI* with §2 = -1 is conjugate to
91 with respect to the action of Gi‘ Moreover euvery element



fiEl* Wwith 52 = ~2 jis conjugate +to 73 with respect to the ac-

tion of Wo .
£

Proof. We first ahow that every element f€El* with 52 = =1 or
§2 = -2 belongs to the free submodule T~ generated by §&,, 73,
Tat » Tyg+ Otheruwise we have an slement yel" with x = yto,
since EEI* : I"J =2, It is easily checked that the restriction of
the intersection form to TI'° ha= values in Z. Thus yz and
2y'w1 are integers since 2w1EF'. It follows that wiz = £2_y2
~2y'w1 is an integer. However we have wiz = =-9/4, a contradic-
tion. Secondly we show that every element 5651* with 52 = -2
belongs +to El. We may assume that §e[", Assume moreover that
fﬂEI- Then we have an element =zeE, with § = z+91 aince [T

Elj = 2., It follows that 912 = 52-22-261-2 is an even integer-

However 912 = -1, which is a contradiction. Since " and Ei
are the root lattices of type Bg and 09 respectively one obtains
the desired claim by the theory of root systems. Q.E.D.

Corollary 5.2. (1) Every element Tﬁﬁi < I with T2 = =2 is a
root. (Recall that an element 7¢I conjugate to some T, (1£i<103
with respect to UP called a root. )

(2)  For every element 66E,* with 8% = -1, the reflection 2

belongs to Gl'
(3 For every element 9e51* with 912 = =~1, we have an element

5551* with 2£-6 = 1.
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(4> For every eslemant nlai* with ?2 = =2, we have an element
feg,* with &% = 1.
Proof. (1} Since G, < Y it is obvious.

(2) There is geB, with 8 = g(8,). Thus s, = gsgig-ieGlo

{3} Since 2(w1+T3)'81 =1, 29(w1+73) g =1 for &= 9(8;),

(4} UWe can assume that 7 = g(?gJ for g'Bi. Then 9(74) has the=

desired property. Q.E.D.

Let H1 be the set of all elesments f'Ei* with 52 = =1 or

-2, Hl i=s the root system of type Bg. 81 is identified with the

co-reot lattice Q(Hlv), i.e«,, the free module generated by co-

roots. El* is the weight lattice P(ﬂi). Moreover [ = o, =
v

P(H1 Y.

Let us procesd to the casme concerning to 12 = 9&0—351—352—
380-81-62-83-85-65-66-57-58-2£9+510. 52 is the root Jlattice of

type E8 and it is easy to mee that the orthogonal complement A

75 T3 Ty 7= 7 7o Tg
o™ o I L =1 L& ]

[ 18

T3
of 212 in T 1is tbhe ortheogenal direct sum of Iab and 52’ ..,
A = Zab+52. Thus we have A* = I(ab/d)+52*. Let Gé be the Weyl
group of tvype E generated by a_ , s_. , = s s s s
8 Ty TR Ty TTy T T T,

and s . Gé acts on Za, trivially. Let T be a cyclic group
8



of order 2 generated by the reflection ’(m2/2) acting on A% =

leﬁfd)+=2 . T act=s on Ez* trivially and acts on .Z(wz/d) am

the change of the sign; a— -a. We set G, = TXGé.

Lemma 5.3. (1) If 6% = -1 for OeZ(y/8)+E,*, then & =
iw2/2.
(2) If nz = -2 for qIZ(qud)+H2 ’ then HEEZ* and such an

element M is conjugate to each other with respect to the action of

G'

2.
Proof. (1} Set 8§ = (qu/ﬁ)+§ with msZ, fiEz*. We have =1 =
-{mzfﬂ)+£2 since w22 = -4, Since 82 is a negative integer un-—

leess § = 0, one sses that m = 2 and § = 0.
(2) We set 7 = (mwzfd)+f with meZ, 5582*. We have -2 =
-(mzfﬂ)+§2. Thus m =0 and ﬂeﬁz* since Ez is a non—positive

even integer and since 8 = 2x4 is not a square of an integer.

Every element ﬂdsz* with Wz = =2 is c¢onjugate with respect to
Gé since Ez* is the root lattice of type ES' Q.E.D.
Corollary 5S5.4. (1) Every element TEZ(w2f41+Ez* €T with 72 = =72

is a root.

(2) For every element Hﬁz(wzfd)+ 2 with 8 -1, the reflec-

ticon ng belongs to T.
2

(3 For every element felw f4)+"2* with @ -1, we have an

element Eez(wzfﬂ}+52* with 2§ & = 1.



(4) For every element an(m2f4)+Ez* with ﬂz = -2 we have an

element EEZ(w2f4)+E2* with &% =1,

Let N, be the set of elements EEI(w2fdJ+Ez* with #2 = -1
or =2, H2 is the root system of type A1+Ea. The irreducible
comoponent of type A; ix consisted of  { t0,/2 } and they are re-
garded as short roots compared with thome in the system of type ES'
Eaualities Q(I,Y) = Zuy+E,*, UN,) = PUL,Y) = Zw,/2)48,%, P(IL,) =
Zay/83+3,"  holds.

Lemma 5.9, Assume i =1 or 2. Let A be the orthogonal com—

plement of Zli in T. The following condition= are equivalent far

theHom(AY, E).
2

{a) There exists an element 2eT  with £ = 0, u*li = 2 and
dulw) = 0.

(b) There exists an element 6€A* with 82 = -1 and (4 = 0.
(c)  There exists an element 6<A* with 6 = -1 such that s,(@)
= ¢.

Proof. (a)=2(b). Recall +the definition of s Since

e Z(li/4)+ﬂ*. every element «ae[ can be written uniquely as o =
(mli/d)+a' with meZ, a’€A". Then a = ula). Thus set & = ulu).
Ue have 4 = (1,/2)+8 since u'd; = 2. \e have 2 =
((2;/2-w2 = 1-2+0 = -1 and @8 = duCw = 0.

(b)==(a). Since wu is surjective, there i= an elemnt z &l



with & = u(g’). Then there i= an integer meZ with & =
(md,/8)+8. e have (2 )2 = m2/4-1, which implies that m = 4n+2
2

for =ome integer n, since (') is an even integer. (I is an
even lattice. ) Set u = n'-nli. Then el , ﬂ2 = 0, #'li = 2 and
wulu) = 0.

(by==(c). If (b) i=s s=atisfied, then for  xeA¥, (sa(wl)(x) =
Psa(x)) = Gx+2(x-§18) = S(x)+2(x*§I(8) = d(x).

(c)=>(b). Note that there is an element feA* with 2¢ 8 = 1,
(Corollary 5.2, Corollary S5.4.) I+ (c) is satisfied, then @#(§) =

¢33(§J = @(£)+P(8). Thus @(8) = 0, Q.E.D.

The above lemma implies +that the c¢riterion for whether the
marked rational surface can be realized as a quartic surface or not
can be interpreted with group—theoretic words.

To help reader’s understanding we write doun one more lemma.

2

Lemma 5.6. For every element 7€A with 77 = -2, +the following
conditions are eguivalent.

{a) ¢ulr) = 0.

(b @&(r) = 0.

(c) 37(¢) = ¢

Proof. Here we only give the proof of (c)=>(b). The other

parts are trivial. Recall that there is an element §&§6A* with £ 7

= 1, (Corollary 5.2, Corollary 35.4) If (¢) is satisfied, then
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9(Ey = ¢=T(E) = QEY+P(Y)., Thus &(1) = 0. Q.E.D.
Summing up the aboue results we have the following proposition.

Proposition 5.7. Assume i =1 or 2. Let A be the orthogonal
complement of ZA, in T and w: T— A¥ be the canonical =ur-=
jection, Let Gi be the group ¢generated by all reflectiona L
corresponding to elements %S8AY with nz = =1 or =-2. The follow-
ing conditions are equivalent for @¢eHom(A¥, ED.
(A) There exists a marked rational surface Z = (Z, D, @, ¢) over
E of degree -1 such that
(i)} +the characteristic homomorphism éz of Z coincides with
T -
(ii) the line bundle L = a(li) defines a generically one—to-
one morphism ¢L: I—=m X < ES to a normal quartic suyrface X;
and
(iii)the configuration of singularities on X 1is & unique EB’
T2.3,?’ or 512( It depends on whether E is an elliptic curve,
C*, or £. ) plus a configuration of rational double points
associated to the set of Dynkin graphs EpkAk+ Zq£D£+ ErmEm.

(B> The kernel Ker ® contains no element &A™ with 82

2

= -1
and the gset of elements TMeEAY with 7° = -2, ) = 0 is the root
system of tyvpe Epkhk+ ZQEDE+ ZrmEm'

(C) The i=otropy group IG_(w) = { g‘Gi b gl = ¢} of ¢ with

1
respect to Gi contains no reflections associated <to any element



gap® with 82 = -1 and moreover the maximal subgroup of IG.(¢)
i

generated by reflections is the Weyl group of type ZPkAk+ Eqﬂng+
S E

Remark . The group G, is the Wey] grous of type By and G, is
the lWeyl group of type A1+EB‘ In the latter case the irreducibie

component of type A; corresponds to the elements f=A* with 82 =

—10

Now our classification is reduced to the classification of sub-
groups of Gi which can be realized as the maximal subgroup gener-—
ated by reflectiona of IGi(w) = { géG | g(u) = @} for some
geHom(A™, E).

Definition 35.8. The following procedure which associates a root

system R to its root subsystem R is called +the elementary

tran=formation of the root system.

(1> Ve divide R into the direct sum of irreducible root sy=atem,
say R=$Ri.

i
(2 We choose a fundamental system of roots for every i, say ﬂi S

R..
1 b |

{3) For every i, we choose a proper subset ni of the union ai u
{-ﬂi} where %, is the highest root associated to a,.

(4) We set R = @Ri where R; is the root system generated by
i

ﬁi-



Proposition 5.%. When E is an irreducible smooth elliptic curve
{resp. €*), the following conditions are equivalent for any sub-—
group H of the Weyl group W = W(R) associated to a fixed root
system R. Ue denote by @ the co-root lattice of R, i.e., the
free Z-module generated by co-roots { 7Y | 7eR },

(1) The group H coincides with the maximal subgroup generated by
reflections of the isotrepy group Iu(¢) for some (eQBE.

(2) The group H is generated by a set of reflections { s, |

neR" } where R’ is a root subsystem of R which is obtained by

elementary transformations repeated twice (resp. only once.) from

R.

Proof. Let 5 be the root ltattice of R. The vector space QAR
is regarded as the duai space of aﬁﬁ. We denote the canonical
pairing GBR x aﬁﬁ—*—* R by <, >.

We first assume that E is an elliptic curve. UWe have repre-
sentation E = C/Z+Z7 where t¢C and Im T >0, We fix smuch repre-
sentation. The covering mapping =t &—— C/Z+IT induces the cov-
ering mapping =®t Q®T—— QRE., Set W = WX (Q2Q) where K denot—
es the semi-direct product with respect to the diagonal action of U
to QeQ. (i.e., for geW, (&7, £)eQeQ, gl(&’, £") = (gf’, gf"). )
The group u acts on QaC by (g, &7, EX N +rd"y =
(gl )+E X+T7(g(P " }+E")Y  where osW, §°, £"¢Q and ¢, ¢ cQaR. Ua

have a canonical isomorphism of isotropy groups. Im{é) = IU{EEE))



for Pe00C. Thus we can conmider the action of W on Q8L instead
of that of W on 0Q6E.
Set W _=UK Q. The group W, is the affine Weyl group of

B:. We have a diagram

where pl(g’ £, £°) = (9, £, pz(gf £, §.) = (g, §'y and ui(gi
§7) =g (i=1, 2). Set ¢ = ¢ +10" with o, ¢"<QQR. Let (g,
§ el (97). We have g(¢ )+f" = ¢° and one seea that {§° is
a
uniquely determined by g and ¢ . Thus +the restriction
uillua(ﬁ'} of vy i= injective. Set J(¢7) = vl(Iua(ﬁ')). JCd7)
is isomorphic te I, (¢') and uz_lwa') = )¢’y X Q is ismomorphic
- a
to P1 11Ua(¢') via P+ Ue have
—fth - _1 4 _1 » = -
(5.1) 1u<w> oy Iuatw yn 2, (p") IJ(¢,) K Q(¢ Y.

We claim here that there is a root subsystem R° of R which
is obtained from R and Jip'y is the Werl group genserated by
( Sn | neR” } and that conversely for any root subsystem R ob=-
tained by one elementary transformation from R, there is a point
¢ QR =much that J(¢°) coincide= with the Weyl group generated by
{ =, | 7eR” }.

To see this recall that the action of W, on QBR has a fun-
damental domain CO' CU is called a =mall Weyl chamber. (Cf.

Bourbaki L[ 31 )} Since every small Weyl chamber is conjugate we can



assume that oel,. ( 7 denotes the closure. ) Now let =, denote
the reflection of QR in Ua whose set of fixed points coincides
with a hyperplane H, Let M be the set of ail hyperplanes H
with s *W,. The domain C is a connected component of
Qek- [ _JH. Set M

_D
HeM
set of walls of the small chamber CD' It is known that for every

0
= { Hem { dim (H 0 Cyp) = dimH ). M4 is the

H‘ﬂg there i= a unique root 7NeR perpendicular to H and such
that {x, >0 for xiCo. We denote it by ™W(H]. L=t R = ? Ri
be the decomposition into irreducible root systems. Then there is a
fundamental system of root= A, ©R; for each i such that the

union LA, V(-n.} coincides with the set { 7(H) | HeMy }  where

7, is t;e highest root of Ri associated to A,. Let ﬂoi¢') =
{ Hefy | @"eH }. It i=s the set of walls of C, passing through
o, Then it is alsc known that the isotropy group IU (") coin-
cides with the suboroup of U  generated by { sy 1aH¢ﬂ0(¢') 1,
the aget of reflectiona corresponding to walls of CO passing
through ¢, Since the intersection of all walls of the small Weyl
chamber of an irreducible root system i=s empty, for every 1, (&i v
{=2.1) & (n(H) | HeM (¢") } is a proper subset of a, v {-7.}.
Let R be the root system generated by ( n(H) | Hlﬂ0(¢') ), the
aset of roots perpendicular to some wall of CO passing through ¢
and directed to the inside of (4. By the construction R” is the
cne obtained by one elementary transformation from R and J{(¢’)
iz the Weyl group generated by { s_ | »4R" }.

n
Conversely let R° be & root subsystem of R =@ Ri obtained
i
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by one elementary transformation from R. Choosing the fundamental
system of &; < R, of the irreducible root system Ri is equal to
choosing a Weyl chamber Ci of U(Ri) in Qi@R where Qi is the
co—root Jattice of R, Let C;q be the amall Weyl chamber con-
tained in C, and such that 0<C.,, which is the fundamental do-
main of W (R;) = WR.) K Q,. Let Mg = { Hi hyperplane in Q,8R |
8 W, (R}, dim (H# C.0) =dimH }. M, is the set of walis of
C.n- Then the set { n(H) | HeM. o } coincides with &, VY {-ﬂi}
where 7, i= the highest root. For the specified proper subset Ei

of Ai u {—Wi} let ¢i' be a general point in the intersection

(Y{ H | HeM, -, n(H)eEi }. The isotropy group Iua(Ri}cwi’J coin—
cidea with the Weyl group gensrated by { 2, i ﬂGRi' }  whars Ri'
i= the root system generatad by Ei' Let ¢ be the image of $¢i'
by the inclusion Gﬁi@R c G2k, One knows <that the isotropy group
Iuafw'} is the Weyl group generated by { S i ﬂi?Ri' = R" J.
Thus we have the above claim.

In what follows we assume that ¢ €@ and R’ has the rela-
tion mentioned in the above claim.

Let @ be the co-root lattice associated to R°. Then
M) X Q7 is the affine Weyl group asscciated to R°. Thus apply-
ing the aboue claim to R° one =aemeas that subgroups H of W with
the property (23 in Proposition 5.9 coincide with subgroups which
can be written as I, 4. ) Qz(¢') for some ¢, 9 eQBR. Therefore
by the equality (5.1) and by the next lemma we conclude that (1) and

(2) are equivalent when E is an elliptic curve,
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Lemma 5.10. Any reflection in IJ(("') X Q((ﬁ") belongs to
IJ(&’} X uz(¢'). (Note that in general Q i Q.

Proof. Any reflection in W ¥ Q can be written as (sn. §)
where 7%&R  and f¢Q. Assume (5ﬂ’ E)EIJ{¢') K Q(¢'). We have
neR’ and ¢ - <n, ¢ ¥V+ £ =¢", Thus & = <7, @*>n?, Note that
we have an element wEP(R) s=uch that {w, 7Y> = 1. One sees that

{w, £2= <m, ¢ > 1is an integer since P(R) is the dual lattice of

Q. Thus we have £¢Q° and (sn, Eryel(p' ) ¥ Q7. Q.E.D,

Next assume E = C*, Let =r: (C— C* be the covering mapp-
ing. It induces the covering mapping =x: Q&L— Q&C*., If z(P) = ¢
then IU () = Iu(¢}. where Ua =W KQ, Thus the problem is re-
duced toathe classification of isoctropy groups &f the action by Ua
to QBL. However note that the answer never changes by replacing
by R since the condition ¢($) = ¢ for gel , @<QBC is written
with an &ffine equaﬁ}on whose coefficients are all real numbers.

Pick 1sQeR. | Let CU be a small Weyl chamber whose closure
contains I. Then a= mentioned above, IU (r) is the Weyl group
generated by reflections assgciated +to 33]13 of CIJ pamsing
through I and moreover the set of generating reflactions corre-
sponds to a root system R’ which is obtained by one elementary

transformation from R,

e conclude the proof of both cases in Proposition 5.9.



Q.E.D.

Proposition 5.11. Let W = W(R) be the Weyl group associsted to a
fixed root system R, Let @ be +the co-root lattice of R, Then
for any subgroup H c© W, the following conditions are equivalent.
(1> For aome ¢sQ®C,.H ="1,e),

(23 For some fundamental system of roots A € R and for some sub—
get A" © A, H is +the Weyl group generated by (= I neR” )

n
where R’ is the root system generated by A”.

Proof. For gel and ¢«Q®C, the condition g{®¥) = ¢ is describ-
ed by a linear eguation whose coefficienta are all real numbers.
Therefore we can replace ¢ by ®. Pick ysQaR. Let C he the
Weyl chamber of W =such that the closure of C contains ¥. Let
M be the set of hyperplanes H < Q8R such that for some reflection
in W ite fixed-point-set equals to H. A connected component of

@R - _JH is C, Let My be the set of walla of C, i.e., Mg =
HeM
{ HM | dimH = dim (H " C) )}, For HEI‘_'!_0 we have a unique root

neR perpendicular to H and <x, %>>0 for xeC. If we dencte it
by #(H), +the set { %m(H) | HeM, } iz a fundamental system of
roots of R. Moreover it is known +that choosing a Weyl chamber C
is eguivalent to choosing a fundamental system of root=. Set A’ =
{ 2¢(H) | HeMg, 2€H }. A" is the set of walls passing through 1.
it is also known that Iu(z} is the Wey! group generated by reflec-

tions { Sy | #»eR” }, where R" is the root system generated by
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A°, Thus (1) and (2) are equivalent. 0Q.E.D.

Now by Proposition 5.7, Remark just after Proposition 5.7, Pro-
position 5.9 and Proposition 5.11, the main part= of Theorem 0.2,
Theorem 0.3 and Theorem 0.4 are obvious.

Recall that the intersection numbers of elements in the union
of a fundamental system of an irreducible root system A and {(-1)
times its associated highest root are described by the extended
Dypkin graph. Thus the elementary transformation of root systems
corresponds to the elementary transformation of the Dynkin graphs.
The series (I) in Theorem 0,2, Theorem 0.3 and Theorem 0.4 corre-
sponds to 11 = ?&0— -2:10 and the series (II) corresponds to
lz = 980— = &4g- However we did not necessarily use the expres-
sion containing 39 or A1+E8 in those theorems. We used a simpler
expression to say the same contents.

The part left unproved is the following proposition.

Propogsition 5.12. {Umezu [21]) Assume that a normal quartic
aurface X has singularity EB’ TE,B,? or E12 and that

2 pg(X,x)g?. Then X has only 2 singular points and both of them
xEX

are of type EB' Conversely a normal guartic =surface with 2 =ingular

points of type Eé exints,

However thi= is Y. Umezu's result.

Let wus proceed further +to the case of branchad double couver—
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ings.

In this case it is obvious that the orthogonal complement A of
213 is the orthogonal direct sum of ITlO and EZ =-IT1+ZTZ+IT3+
Zrdﬁ275+176+2?7+2r8. (g = 6eg—2¢,~2e,-284=26,~285-28 ~28,-28g~Eg

-810.> 52 is the root lattice of type EB' Let HB be the set of
all elements f€2T10+52 with §2 = =2, H3 is the root system of
type A1+E8' The lattice 3710+Ez is its root lattice and

Z(Tlof2)+52 is its weight lattice. Moreover we have that Q(H3) =
v —_ o - v - o = 4

Q(ﬂ3 ) = 2?10+_2 and P(HS) = P(H3 Yy o= IIT10/2}+_2 A¥., Thus

Hom(FfIls, EY is identified with HOm(Z(T10/2)+EZ, E)., UWe dehote

by 63 the Werl group generated by Sy 0 Sp s Se s S, S, , S
1 2

37 Tp 75

8., 5 S. , 8 + (s does not appear.) The group G acts on
22 Tg Ty 79 3
zTin+Ez and ‘2(710/2)+52 and it is of type A1+E8.
T T 7 T T Fi T T
cgz___ua 1& _US _U6 U? 08 aiD

Ty

The next lemma is easily checked,

2

Lemma 5.13. (1) Every elemnt TEZT10+52 with ° = -2 is a
root.
(2)  For every TSH(7T,,/2)+8, with 12 = -2, we have
562(110/2)+Ez with 7§ =1,

Thus Lemma 3.4 holds even when 1 = 3,
Lemma 5.14. The following conditions are equivalent for
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¢EHom(Z(710/2}+52, E).

(a) There axinsta an element sel" with ”2 = 0, ”°13 =1 and
$alu) = 0,

(B = () =0 uhere x;: Hom(Z(7,,/2)+8,, E)=— Hom(Z(T,/2), E)

is the projection.

Proof. Let uel be an element with ﬂz = 0 and ﬂ'la =1,
Since I « 2(13/2)+I(710f2)+52. we have an  integer m and §E52
auch that & = (13/2)+(m710f2)+5. (The coefficient of 13 im 1/2
W2 = (1/2)-(m2/2)

n

since #'13 =1. ) It yvields the equality 0

+$2. Thus m = %1 and & = 0 since £2 is a negative integer
unless § =0, One knowas x4 = (13/2)1(?10X2). Since u{p) =
1710/2. we have the desired equivalence. Q.E.D.

We have the following propos=ition.

Proposition 5.15, The follewing conditions are eaquivalent for
weHom{I(T10!2)+EQ, E). Let z, ¢ Hom ( Z( 'rwfz}-l-az, E ) —imtres

Hnm(Z(TiOIZ), E} be the projection and 83 be the Weyl grous of
the root lattice 1710+52. (G be of type A1+E8.)
(A There exists a marked rational surface Z=4(Z, D, a, ¢) ouver
E of degree -1 =such that
(i) the characteristic homomorphism ¢Z of Z c¢oincides with
P s

(ii) the line bundle L = a(la) defines a generically one-to-—
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one morphism &: Z— X < P(1,1,1,3) toc a branched double
covering over P2 branching along a reduced sextic curve B;
and
(iiidthe configuration of singularities on X is a unique E.,
TZ.S,? or E12 (1t depends on whather E i= an elliptic curve,
€* or €. ) plus a configuration of rational double points
associated to the set of Dynkin graphs 2 PPt z dpDpt z FoEm®
(B) xl(¢) # 0 and the set of elementa ﬂEE(710f2)+Ez satisfying
ﬂz = -2 and (%) =0 is the root system of type Z Pkﬁk+ z q£D£+
2 " nEm®
(c 11(¢) # 0 and the maximal subgroup generated by reflection=s of

the imotropy group IG () i= the Weyl group of type z pkﬂk+
3

E q£D£+ Z I"'mEm.

Coreollary 5.16. (1) Assume that E is an elliptic curve or C*,
If 11<¢> = 0 for ¢€Hom(2(71012)+52. E), then we have another
element ¢ eHom(2U7,,/2)+8,, E) such that x,{¢") ¢ 0 and 163@’)
= Ig ().

3
(2) Assume E = €. Let GB’ be the subgroup of 63 generated by

=T1. sfz.r , STQ' If xlcw) #0 for ¢eHom{I{T1012)+Ez, £y,
then I. (@) = 1. ().

Gy Gy
Proof. Let T be the cyclic group of order 2 generated by =

T
10
and Kat Ham(2(710/2}+52. E)—— Hom(Ez, €£) be the projection.

Note that the equality IG () = IT(zl(ﬁ))le e(xziw)) holds,

3 3
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(1) Let IEHnmCEKT10/2)+EE, E) be the element with X(&;) = o,
1(710) =0 and I(TlOIEJ # 0, If E im an elliptic curve or L>,
such ¥ exists. The element @ = #+1 smatisfies the abowe condi-
tion.

(2) If E=E, +then the condition I(Tlo) =0 and I(T10/23 =0
are equivalent. Thus if x1(¢) # 0, then IT(11(¢)) is the trivi-

al group.

The important parts of Thearcem 0.5, Theorem 0.6 and Theorem 0.7
follow from Proposition 5.15, Corollary 5.16, Proposition 3.9 and
Proposition 5.11.

The parts left unproved are disconnectedness of strata in

il ?, o,
E
is treated in the last mection.

(6))) and the came 2 pg(x,x);;. The case 2 pgtx,x)zg
The bamia of disconnectedness is the following fact.

Fact 5.17. (Cf. Dynkin L 1) The root system R of type E with

8
the action of the Weyl group W(R) contains two non—conjugate root
aybaystems of the Tollowing types.

(1) A

(2Z) 2A (3) Ag+Ay (D ﬁ3+2ﬁi (5) 4a

7 3 1
Moreover bsosth of non—conjugate ones of esach type can be obtain-

ed by elementary transformations repeated twice from R.

According to this fact one knows For 10 cases in Theorem 0.5,

(ii) there are two root subsystem Rl’ R2 of H3 of the same type
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suﬁh that for any automorphism of lattices Bf: P—= P satisfyring
Bl(x) =x and B(a3) = 15, B(Ry) never coincides with R,. Indeed
if we have a homomorphism 8 with B(Ry) = Ry, then B{R1 ng5) =
RZ f Ez since the root subsystem ﬂs n 52 of H3 is the unique
one of type EB' However for type ES the Weyl group coincides with
the automorphiam grougm. Thus Ri h B, and R, " 82 are conjugate
with respect to U(Ez A HSI.

Let E be s fixed elliptic curve. By Proposition 5.15, there
are two marked rational surface of degree -1 over E, Zi = (21, Dls
@y ¢1) and ZQ = (22. 02. R ¢2) such that Li = ai(ls) defines
a morphism @i: Zi———ﬁ X; to a branched double covering =x. .1 Xi———*
B and Ker ¢; 0 Mg =R, (i= 1,2). Thus for any intersection

=i
preserving homomorphism B¢ Fic(Zi)-——* PicfzzJ =ati=fying B(wzli

w5 and B(al(lai) = aztla}. TG root subsvstems
2

B(Ker(Pic(Zl)-——# Pic(Di}}} n az(ﬂs) and Ker(Pic(Zz}-——ﬂ-Pic(D2J)

n aZ(HS} never coincide. Howewer if the set of sextic curves with

a configuration of singularities wunder consideration is connected,

we geat a contradiction by the Following Temma.

Lemma 5.18. Let B < UKE2 be a family of reduced sextic curves
over a connected analytic variety U, i.e., a subvariety of codimen-—

sion 1 of UxE2 such that for every tel, B, =B N [t}xgz i=s a

t
reduced sextic plane curve. UWe assume that B, has a unique Eé
singular peint and other several rational singular points. We as-—

sume moreover that the number of each type of rational aingular
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points is independent of tel., Let t° and t" be arbitrary points

on U. Ue define warietie= X°, X', Z', Z", D', D* and morphisms

L [ ]

. 2
, x', p, p° as followus. The branched double coverings over P

*

with the branch locus B" = By and B” =B_. are x': X'-——*.Bz

and x"s X'———*—Pz respectively. The minimal reasslution of =ingu-

F

larities are denoted by p°t Z'~— X° and e 3 I'—— X'. Let D
and D° be the exceptional curves of the =imple elliptic singulari-
ties in X° and X' respectively. We set I = { MePic(Z") | M2 =
=2, N.QZ' =0, M'ﬁ'*x'*ﬁ}z{l) =0 }. Then there is an intersec—
tion—form-preserving homomorphiam Bt Pic(Z’ )——= Pic(Z') aatisfy-
ing ﬂ(mzaJ = @y ﬂ(ﬁ'*!'*ﬂjz(l)) = P'*x'*ﬁ“z(i) and

B E
NN BKer{Pic(Z')=—— Pic(D"))) = I N Ker(Pic(Z")— Pic(D")).

Proof.- If U is connected, we can chocse finite points tys ts

» tafU with t = oy, t' o= t, and analytic morphisms ;3
T— U, 1£i<{q from the unit disc T = {( ze€ | |zI<1 } such that
ti and ti+1 belong to the image fi(T}. Considering the pull-
back of the family B by Fi instead of B itself, we can assume
that U is the unit disec T without loss of generality.

Let Xt c p#(1,1,1,3) be the branched double covering along Bt
c P?. Obviously the set X = L J{t)xX_  TxB¢1,1,1,3) is an ana-

teT
lytic variety. Let Zt be the minimal resolution of singularities

of X, The set Z = L_J{t}xzt al=o has the structure of analytic
teT
variety. The relative Picard group PicZ/T is a constant sheaf

over T of free #Z-modules equipped bilinear forms. Let a: PT“—H
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PicZ!T be an isomorphia from the constant sheaf with values in P.
Let B be the composition
Pic(Z®) = Pic(Z . )+—— (Picg, 7 t,_fE.Z, P E—(Piclﬁ}t-—"—w»
Pic(Zta} = Pie(Z7).

Note that for any 7ePic(Z.) with nz = =2 sauch that 7 is
orthogonal to the dualizing sheaf and the polarization, either 7
or 7 is effective if and only if 7 or -7 is the class of a
exceptional divisor of the resolution of Z —~— Xy By assumption
that the configuration of singularities on Bt and thus on Kt is

independent of t€T, one sees that the above 8 has the desired

property. Q.E.D.
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$ 5. The case of ruled surfaces.

Let = X—-—*.Ez be the branched covering branching along a
reduced sextic curve B. Assume P = 3 Pg¢Xsx) >2. Under this as-
aumption we study the structure of X x:ﬁ this section.

We owe ideas in this section greatly to Umezu [21].

Let p: Z—— X be the minimal resolution of singularities on
X and 0! Z—— 7 be a morphism to a relatively minimal model. By
Proposition 1.4, Z is a ruled surface over a smooth irreducible
curve G of genus P-1, Let p: Z—— G be the projection.

Let L be a general line in Pz. Since L intersects with B
at &6 points, the inverse image x-l(L) is a smooth curve of genus

1 1(L). which is also a smooth curve of genus 2.

2. Set H=p 'x”
Lemma &.1. P{3. Moreover if P = 3, then 6(H? is a =mooth curve

of genua 2 and plotH): g(H)=——— G is an isomorphism.

Proof . By the Hurwits formula for patyt H—— G  we have
22p{2(P-1)-2] for some positive integer m. Thus P{(3. If P = 3,
then m = 1 and the equality holds. It implies that p6 is an un—
ramified morphism of degree 1. Thus olH and plo(H) are iso-

morphizms. Q.E.DO.

We decompose ¢ into a composition of blowing-ups of points.
o c a
1 2
where o, ia the blowing=up of & point ziGZ

(6.1 Z = Zu

i+1° Note that Z has
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an anti-canonical effective divisor 0 by Lemma 1.3. Set DD =0

and D;,, =0.(D;) for 0Li<k. D, is an anti-canonical divisor of

Z,, i.e., D.!l*wi l. Since C. = .7 z.) is the exceptional curve
i i ; i i i

of the first kind, we have Di*Ci =1 and thus=s zi'Di+1' Next met

Hy =H eand H, . =g,(H) for 0gi<k. Obviously C; #H; for

every i, Assgyme Cf n Hi = ¢ for =ome i. We can assume morecover
Cj f Hj # ¢ for 0<i<i. Then the strict inverse image Ci’ c 7 of

Ci in Z 1is an exceptional curve of the first kind and Ci' nHyH=

P. However aince Z ims +the minimal resolution, every excepticnal
curve of the first kind necessarily intermects with H. Thu= one

knows that Ci n Hi # ¢ for 04i<k. Ue have!

nH=¢o

Lemma &.2. For 0£id<k, =.®D,
- i i+ 0

nH and D

1 i+l

Lemma &.3. Assume P =3, Then Z = 7 and the branching locus

B of = X-—-ﬂ,fz is= a union of & lines passing through one point.

Proof. Assume k2l. Let F = p-lp(zk_i) c Zk. Note that F-Hk =

1 since pl i= an isomorphi=m by Lemma é.1. Thus F° n Hk = ¢
Hk -1
where F7 im the strict inverse image of F by O Howewer F°

is an exceptional ¢urve of the first kind and s¢ 1= its strict in-

verae image F°' on 2Z. It contradicts +to that Z i= the minimal

resolution =ince F° N H = ¢, Therefore we have k = 0 and 7 = 7.

Sat Ft = p_l

junction formula for Ft = Pl. Thus Supp D N Ft consists of one

{t} for t€(G, Note that D*Ft = 2 by the ad-
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or two points for general t<G. Assume that it is twe points. Let
D’ be an irreducible component of D passing through one of these
two points and D° be an irreducible component of 0 passing
through another point. The peoints b, = x2(D") and b, = xe(D")
are singular ones on B, Now since Ft-H = 1, the morphism xp
maps Ft imomorphically onto a line in Pz. Thus b1 # b2' How-
ever it implies that zp(Ft) does not depend on t since it is a
line passing through by and bsy e We have a contradiction. Thus

Supp D M F is one point for general t¢G. One sees that there is

t
a w®mection =% G——Z such that =s(t} = Supp D P Ft for general
teG, Set G = s(G). Me have D = 26 since 26 is a component of
D and since (D-26G):H =0, (D-26)-F_= 0. Set x4 = 2(D) = p(B).
The point xGCX is the unique singular point of X with
pg(X, x)21.

Next we consider the line bundle 03(H-G). There is a line

bundle M on G such that ﬁi(H-ﬁ) Z p*M becayse (H-G) Ft =0

and thus B%(H-E}!F ig a trivial line bundle for every teG. UWe
t

have deg M = (H-G)-6 = 2, Moreover note that hD(B%(H-E)}g? since

the divisor H defines a morphizm =xp from Z to Ez and since

22{B) is a point. By the exact sequence
) — G’z(-G)———-} B:-,_(H—G)-——* B“L,_.
U(H) = hU(Bi(H—ﬁ}IH}gg. One sees that M iz the dualiz-

(H-G> 1, —— 0
we have h
ing sheaf &g of G by the Riemann-Roch theorem for curves. Let
Tyr oo s réeG be the Weiarstrass points on (5. Setting Fi =

p 1) we have 2F +BelHl (1£igé).
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Note that the last fact implies that Li = RP(Fi} is a compo-

nent of the branching locus B. Sinca B is of degree 6, Li is a

6
line in B? and B = | L,. By definition L, passes throush
i=1

I(XD} for avery i, Q.E.D.

In what follows we assume that X has a singularity of type
E * T2.3'7 or E12 and that P = 2, (G is a smooth irreducible el-
liptic curve in this case,

Lat xDEX be the point of type Eé. T2'3.? or E12. We have
another point xlex with pgix,xi) = 1. Let E be the connected
component of the anti-canonical divisor D contained in P_ifxo)
and A be the connected component of D contained in P-itxii. We
have E2 = -1 and E is a smooth elliptic curve, a rational curwve
with one ordinary doubles point or a rational curve with one ordinary
cusp according as xg is of type E., TE.S.? or E12'

We =eat E0 = E, AD = A, Ei+1 = ai(Ei) and Ai+1 = ai{Ai) for
0¢i<k.

Lemma 6.4. Ei and Ai are divisors on Zi with Supp Ei n

Supp Ai = ¢ for 0£ilk and Ei+Ai¢i‘wzi|.

Proaf. We use induction on i. The case i= 0 is trivial.

-1
o, (zi).

Amsume it helds for some 1 with 04i<k. Set Ci
Note that either (a) Ci n Supp Ei = ¢ or (b) Ci " Supp Ai =

@ holds, Indeed asaume both (a) and (b) do not hold., UWe deduce a
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contradiction. If C.-A.{0, then C, is a component of A, under
this assumption and we have Supp A, M Supp E; 2 C; " Supp E; # &
a contradiction. Thus C.;-A.>0. Similarly we have C.-E.20. On
the other hand 1 = -Ci-wz. = Ci-Ai+Ci‘Ei;;, which is a contradic-
tion again, Thus either (;) or (b) holds. If (a} helds, then o,
im an isomorphism on a neighbourhood of Supp Ei and thus Ei+1 isa
a divisor with Supp E, ., N Supp A,y = ¢. Then if A, is not a
divisor, Ai = mCi for some positive integer m. However we have
2

-1 = wzi'ci = —mCi = m, a contradiction. Thus=s Ai+1 is also a

divisor. Even under (b) we hauve tha same conclusion.

Moreovear since T wlds = wzi+1. one has that
Ei+1+Ai+1EI_wZa Io QOEOD‘
i+l
Lemma 6.5, For some section s.! G~—— Z of p (i=1%, 2y,
A= ai(G) and E = sz(G}-
PFroof. Let F = p_i(T} be the Ffibre over a general point Te{.
Note that F'(Ak+Ek} = -F wy = 2 holds since g = (F2+w§-F)!2+1

and F2 = 0. Assume F Ak = 4, then Ak = mFt for some positive
integer m and for some Ft = p_ltt} with teG. UWe have Ak Ek =
mFt'Ek = 2m>d, which contradicts +to Lemma 6.4. Thu=s F Ak>0.

Similarly we have F*Ek)D. One sees F'Ak = F-Ek = 1, MNota that

q
this equality implies that a = = (G)+ X F and E =
k. 1 =1 tj k
r —
52(3)+ 3 Ft' for some section Sy 323 G—=— Z of p and for
=1 J
some points s t'jEG. Since s,(6)-F >0 for i = 1, 2, teG,
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one can conclude that Ak = 51(6} and Ek = BZ(GJ by Lemma &.4.

Now since ¢ is a composition of blowing-ups of infinitely

near singular points on ﬁk Y Dks A and E are also smooth ellip-

tic curves, Q.E,D.

Corollary 6.6. Both €X and x1EX are simple elliptic sin-

*0
gularities of multiplicity 2.

Lemma 6.7. There exists a birational morphism to a relatively
minimal model @‘: Z——- 7’ such that o’ (E)2 = EZ = -1,
Proof. For a contraction ot Z—— Z to a relatively minimal

mode]l we set a(Z) = g(E)%- E2. It suffices to show that if a(Z)>0
then we hauve another contraction o' : Z~—— Z° to a relatively
minimal model such that a(Z’) = a(Z)-1.

Assiime a(Z)>0. By exchanging the order of blowing—ups we may
assume that the center zk_itzk of g .4 belongs to Ek' Set F =
p_1Cp(zk_1)). F is a smooth rational curve and the strict inverse

image F° of F by d.~4 1is an exceptional curve of the first

kind. Moreover F’ N Ek~1 = ¢ since Ek is a mection of p. Let
t: Z _,~— I’ be the contraction of F’, Then ocbviously ¢’ =
tak_z Ig ¢ Z—— Z° has the desired property. @.E.D.

By Lemma 6.7, we can assume that zi—leﬁi for 1<igk in (6.1).
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: 2,2
In what follows we set this assumption. Then we have k = o(A)™- A

= 1-A% since o(A)2 = —g(E)2 = 1.
Lemma &4.8. A2 = -1,

Proof. Since A is an exceptional curve of the remclution #3
I— X, we have Azi*l. If A2£T3' then the contracted singular
point x, is not a double point since A i=s a smooth elliptic
curve, {(CFf. Saito £181)

2

Assume A° = -2, Then k =3 and Zg= Z. tet m. be the

i
multiplicity of Hi at  z.. By Lemma é.2Z2, we have mi;} for
1{i<{3. 0n the other hand since H3 n E3 = ¢, H3 is numerically
aquivalent +to nﬁa for some integer n. Since H-A =0, we have
nAaz-mi-mz-m3 = 0. Moreover 2 = n2-m12-m22-m32 since H2 = 2.
They imply that m1m2+m2m3+mgm1 = 1. However the left-hand—-aide i=a

gr-reater than or equal to 3 asaince mi21, uwhiich i= a contradiction.

Thus one sees A2 = -1, Q.E.D.
Corollary &.9. The point x, = P(A) is also of type EB'
Proposition 6.10. Assume that the branched double couvering X

over P2 branching along & reduced sextic curve has a singularity

of type EB, T2’3’? or E;5 and that z pg(X, x} = 2, Then the con-

xEX

figuration of singurarities on X is either 2€B or 2E8+A1.
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Proof. Firat of all we note the following fact. Let Pi-—* z
be an arbitrary morphiam from Pl. Then the composition pof is a
morphism from Pi to an elliptic curve. Thus its image is a point.
Namely one mees that any rational curve in Z is either a strict

inverse image of Ft = p"i(t) for gome tel or an exceptional

curve of g,

Note moreover that k = 2 since Az = -1.

If ai(za) # Zy there is ne smooth irreducible rational curwve
with the self-intersection number -2 on Z and thus the configura-—
tion im ZEB.

Asaume altzo) = zq. Llet F, = p_itp{zlJ) and Fl' be the
strict inverse image of F1 by 0y Since F1 and Az intersect

transversally at Z,5 Zg doe= not lie on Fi'. Thus= (Fl')2 = ~]

L] -

where F1 is the strict inverse image of F1 by Tg- Next note

that the strict inverse image Ci’ of Ci = 01-1{21) is a smooth

irreducible rational curve with 01'2 = -2, We have of courge 022

= =1 faor CU = Un_i{zu). Ve mee that the configuration for X is

2Eé or 223 A, . Q.E.D.

Lemma &A.11. There exista a reduced plane sextic curve whose c¢on-

figuration of singularities is ZEB. (resp, 2§B+a1.]

Proof- The following figures give the exampla=,

- 112 -



Figure &.1.

Ve now complete all the proof of our main theorems,
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