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Measure of Integrity

    A Measure of Integrity for Local Analytic Algebras 

                           By 

                         Shuzo IZUMI* 

 §0 Introduction 

     We will complete the study  [Ii], [I2] on orders of 

elements of a local analytic algebra. Let (X, ®X) be a 

comlpex space and (0, m):=(6X
,, m ) its local algebra at 

E X. 0 can be expressed as O = C{x}/I for some ideal 

I of the algebra C{x} of convergent power series in 

x = (x1, , xm) We define three kinds of orders for 

f EO. 

   algebraic order: v(f) = v,(f) sup{p: f Emil)} = sup{the 

degree of the lowest non-zero homogeneous term of f: f is 

a representative of f in C{x}} 

   reduced order ([I,-T], cf. [S]) : v (f) := lim v (fk) /k 
k4-co 

   analytic order along A C IX : uA, (f) := supfp: there 

exist a >0, neighbourhood U of and representative 

of f over U such that l f (x) 1< a l x - OP (x E U n A) 

We can easily verify the following.
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inequality for the reduced order: 

   (10)  v(f) > v(f)(f E O) 

inequality for products: 

(I1)v(fg) > v(f) + v(g)(f, g O) 

inequality for pullbacks: If 0: X is a morphism such 

that 0(n) = E, 

(I2)v(foci)) > v (f)(f E 6) 

inequality for the analytic order: 

(I3)A
,(f) >(f)(f E 0) 

      We are interested in linear complementary inequalities 

(LCI) of these (Ii). By the strong valuation theorem of 

Rees [Re3] on Noetherian rings, we see the following: 

      If X is reduced at E, there exists b0= b0(0)> 0 

such that 

    (CI0)v(f) < v(f) + b0(fE 0). 

We prove the following LCI as our main theorem, (3.4), 

assuming that X is reduced and irreducible at E i.e.



is an integral domain. 

(1) There exist a1 =  a1(0) > 1, b1 = b1(0) > 0 such that 

(CI1) v(fg) < a1(v(f) + v(g)) + b1(f, gE O) 

(2) For any morphism 0: (Y, n)-> (X, ) with dim X = 

grnk (see below), there exist a2 = a2(0) > 1,b2= b2(0) > 0 

such that 

(Cl2) vn (f00) < a2v (f) + b2(f E O) 

(3) For any open subanalytic set A CIX1 adherent to E, there 

exist a3 = a3(A) > 1, b3 = b3(A) > 0 such that 

(CI3) uA
, E (f) < a3v (f) + b3(f E 0) . 

     In the above grnk0 denotes the generic rank defined 

for a morphism of germs of analytic spaces over k = C or ,.. 

grnk0 = e•inf{topological dimension of 0(U): U is a 

     neighbourhood of n} (E = 1/2if k = C; s = 1 if k = N) 

This has been used to study properties of a ring homomorphism 

induced by a morphism between spaces (see [Be]) 

The constants a. (or b.) in the above LCI measure some 

intrinsic properties of 0, and A as follows If 0 is not



an integral  domain, a1 does not exist (a1 = co) So we 

may consider inf a1 = inf{a1: there exists b1such that 

(CI1) holds} as a measure of integrity of the algebra 

(or l/inf a1 as a distance of ® from non-integral 

domains) inf a2 can be considered as a kind of order of 

the morphism 0. Indeed, in case (X, ) = (cC, 0), we see 

that inf a2 coincides with the reduced order, v(0),of the 

function 0. inf a3 seems to have a relation with the 

size of the germ A Of course, if A C B, inf a3(A) 

> inf a3 (B) 

     We have already proved that (1) and (2) of the main 

theorem are equivalent ([I11, (1.2)) So we prove (1) 

by induction on n := dim Xc (The proof of (3) is 

postponed till the end of §4 ) In §1 we recall the 

valuation theorem in a special form we need later It 

implies the case n = 1 of (1) immediately The case 

n = 2 can not be reduced to the case n = 1. We can 

L



manage to prove this case by the use of the intersection 

matrix of Du Val-Mumford for a normal surface  02). In 

§3 we reduce the case n (> 3) to the case n - 1 using a 

Bertini type theorem of Flenner, completing the proof of (1) 

In §4 we show a real analytic version of the main theorem. 

There we remark that Risler's criterion for real ideal (= real 

radical) gives an affirmative answer to Malgrange's conjecture 

([Ma], p. 124) on the real analytic set associated to 

a complex analytic set. In §5, as an application of the 

main theorem, we treat"near solutions" of the algebraic equation 

fpu - gP = 0 in C[[x]] for a given u E C{x} and a prime 

number p. This yields an intrinsic measure of nearness of 

u to p-th powers in C{x}. In Appendix we calculate the 

explicit values of inf al and inf bl for some singularities. 

      The author wishes to thank Mr M. Tomari for many 

helpful advices and Professor K. Saito for pointing out a 

mistake in the formulation of (4.5) in the provisional 

manuscript.



                   §1 The Valuation Theorem 

      Here we introduce the most basic result on orders on an 

analytic algebra, restricting ourselves to the case of the 

orders with respect to the maximal ideal Let X be 

a positive dimensional complex 

space reduced at  C and let M denote the set of all morphisms 

II: Y—H›- X such that Y are normal, IT induce proper morphisms 

onto neighbourhoods of and the ideal sheaves defining l-1(S) 

(with the canonical structure) are invertible. lit is not empty; 

the composition of the normalization after the blowing-up with 

center C belongs to Al If RE A, the exceptional fiber E 

over C (= the reduction of fl-1(E)) has a finite number of 

irreducible components {E.}i€ A(n)Let I and Ii denote 

the sheaves of ideals defining E and Ei respectively By 

the normality and the Hauptidealsatz (cf [G-P], p.129, p. 223), 

there exists an complex analytic set S CIYI of codimension 

at least 2 such that Y - S (- YIIYI -S) is a smooth manifold 

and E - S and Ei - S are submanifolds of Y - S of 

codimension 1. For f E F(U, 6X), we put



    vi(f)sup{p: (foil)
yE Ipfor all (some) yElEJ-S} 

If fE6 :_ G
X, we  define  vi  (f) using its representative. 

It is obvious that vi (fg) = vi (f) + vi (g) (f, g E 6) 

(1 1) Lemma ([L-T] , (4.1.8)) If we put vi (m) = inf{vi (g) : 

g E m } (m := m ) , we have 

inf{v.(f)/v.(m): ieA(II) } = sup{p/q: (fOfl)gE P (U, 113) 1. 

(1.2) Lemma (EL-T], (4.1.6) , (5.5) , (7 2) cf. (1 12)) Let 

X be a positive dimensional complex space reduced at E. 

Then, for any f EF(X, 6X), v(f) is a rational number and the 

following conditions are equivalent for any p, q EN. 

(r) v(f) > p/q_ 

(i) There exist aiE 6 (1 < i < k) such that v(ai) > ip/q and 

fk - 61fk-162fk-2 -+ 6k= 0 in G. 

(c) Let D denote the unit open disc in the complex plane C. 

Then for any morphism D—~ X with 4)(0) = , we have 

0 (f of) > (p/q) inf{v0 (go(D) : gem} 

                                        (m) For any II: Y-4 X in JK , 

     inf{vi(f)/vi(m) : iE A(II) } > p/q_



 (m`) There exists H: Y-->X in J'{ such that 

inf(v. (f)/vi(m) : i E A(1-01 > p/q 

(a) ulXl ,E(f) > p/q 

(1 3) Remark. This theorem was proved in an algebraic form by 

Rees [Re1], [Re2] and Nagata [N1] independently, developing 

Samuel's paper [S] They treated more general rings. The 

conditions (c) and (d) were considered first by Lejeune and 

Teissier They stated the result for general coherent sheaves 

on complex spaces. 

(1.4) Remark. By (m) and (m') we see that v(f) = 

inf(vi (f) /vi (m) : iE A(I[) } for any HE l`'(. 

                    §2 LCI for normal surfaces 

     Here we use the notation in §1. 

(2 1) Theorem. If X is a 2-dimensional complex space normal 

at , H: Y-3 X a morphism in FYI and if Y is nonsingular, 

we have the following. 

(i) There exist cij > 0 (c 1) such that c. .v. (f) > 

v. (f) (i, j E A(I[) ) 

i (ii) If we put a1 = (1 + max c . . vj(m)/vi(m))/2, we have 
                           i,j 

v(fg) < a1(v(f) + v(g)) and hence v(fg) < a1(v(f) + v(g) ) 

               3



+ 2b0(f,g E(9) by (CIO) 

Proof (i) Let  A(II) = {E
1 , , Ek} and let Sf denote the 

strict transform of , the divisor (f) of f€ 6 with respect 

to H. Then no E. appears in S f and (foil) = 

Sf + E miEi (mi = v.(f)) Taking intersection number 

with E. around E (cf [Mu]), we have 

E m
iei= (foil) •E.- S-E= -S E.< 0                                        i  ijf E.f= 

(j = 1, , k; eij = Ei-E.) 

Hence the vector (m1,, mk) is contained in the convex 

cone KCttk defined by 

(*)E xiei.< 0,xj> 0 (j = 1, , k) 

We have only to prove that K\{0} is included in the 

strictly positive quadrant. Assume the contrary By 

a rearrangement of the coordinates, we may assume that 

(x1 , ., x , 0,..., 0)E K (x1 , , xp> 0, 1 < p < k) 

Since eij > 0 (i j), (*) implies eij = 0 (i < p, 

>p) This contradicts to the fact that E is connected. 

(ii) We may assume that va(f)/va(m) = ^(f) < v(g)



 =  v(g)/v(m) (see (1 .4)) Then we have 

     v(fg)= min (vi(f) + v(g))/v(m) < (vs(f) + vQ(g)) /v~(m) 

< cs
a(va(m) /vs(m)) va(f) /va(m) + v~(g) /v~(m) 

< (2a
1- 1)v(f) + v(g) < a1(v(f) + v(g)) .0 

(2.2) Remark. cij are obviously determined by (eij) 

We can show that a1is also majorized by a constant 

determied by (eij) Indeed there exists fE OXsuch 

that vi(f) = vi(m) (i = 1, ,k) Then v)(m) < 

cjiv.(m) and al< (1 + max cijcji)/2. 
i,j

10



                    §3 LCI in General Case 

     We borrow an important result, a Bertini type theorem 

of Flenner: 

(3.1) Lemma ([F], (4.10)) Let  (O, m) be a local k-algebra 

over a field k of characteristic 0 and let'
m 

E m. Suppose that the completion O is an integral domain 

and dim O
p> 3, Prof 0p> 2 for any prime ideal p that 

contains 5°1 ' m (O: the localization) Then for 

any e = (el , , em) in a nonempty Zariski open subset of 

km, E ei5°i is a prime element of O (even of 0) 

(3.2) Lemma. Let B be an infinite set of complex hyperplanes 

m (linear subspaces of codimension 1) through 0 in C 

Then v0(f) = min v0(f11-1) (f E C{x}) 
               HEB 

Proof. The inequality v0(f) < v0(f1H) is a special case of 

the inequality for pullbacks (I2) The case f = 0 is 

trivial. If f 0 and if H is not contained in the 

tangent cone of the hypersurface defined by f, then the initial 

11



form (the non-zero homogeneous term of the lowest degree) sur-

vives after restriction to H and v0(f) = v0WH) Since 

B is an infinite set, such an H really exists in B.  0 

(3.3) Lemma  ([I1], Added in proof) Let 0: (Y, n)---> (X, E) 

be the normalization of a reduced and irreducible germ of a 

complex space. If (Y, TO satisfies (CI1) in (3 4), 

(X, E) also satifies it. 

Proof Since I) is finite (Cl2) holds ( [I1] , (2 3) or (4.1)) : 

v
n (fo(D). < av, (f) + b (f E OX,) for some a > 1 and b > 0. 

Then we have 

v (fg) < v
p((foci)) (god)) < al(v (foci)) + v~(go(D)) + b1 

     < a1a(v(f) +v(g)) + 2alb + b1(f,gE ©X
~) 0 

(3.4) Main Theorem. Let X be a complex space reduced and 

irreducible at E (i.e. 0 :=OX
,is an integral domain) 

such that n := dim X > 1. Then it has the following 

three properties 

(1) There exist al = a1(0) > 1, bi = bl(0) > 0 such that 

(CI1)v (fg) < al(v (f) +v(g) ) + b1(f, g E O)



(2) For any morphism  0: (Y, n)--3 (X, E) with grnk 0 In 

= dim X (see §0 for the symbol grnk) , there exist a1 

= a
1(0) > 1,b1= b1(0) > 0 such that 

(Cl2) vn(foc) < a2v (f) + b2(f E 6) 

(3) For any open subanalytic set AC X adherent to E, 

there exist a3 = a3(A) > 1,b3= b3(A) > 0 such that 

(CI3) uA,(f) < a3v (f) + b3(f E e) 

Proof The proof of (3) is postponed to (4.8)Since (1) 

and (2) are equivalent ([11], (1.2)), we have only to prove 

one of them. The case n = 1 of (1) follows from (1.4), 

since vi(fg) = vi(f) + vi(g) The case n = 2 follows 

from (2.1) and (3 3) As to the case n > 3, we prove (1) 

by induction on n. 

     Suppose that the case n - 1 (n > 3) has been proved 

already_ We may assume that X is normal by (3.3) 

We may also assume that E = 0ECm and X is a closed 

complex subspace of a product open neighbourhood U = V x W 

(VC Cn, WC Cm-n) of 0 such that the projection II: X--). V 

3



is finite proper open and locally biholomorphic on X -  I[-1(D) 

for some proper analytic subset D C V (local parametrization 

theorem) If we choose a sufficiently small U and such 

a coordinate space Cm-n that intersects the tangent cone of 

X0only at 0,then11(x)< I x 1 < c11(x) 1 (x E X) for 

some c >0.Let P denote the complex projective space of 

hyperplanes of Cn through 0 and, if H E P, let X(H) denote 

the subspace II-1(H) of X with the canonical complex 

structure. Let us put 

     B :_ {HE P: X(H) is reduced and irreducible at 0} 

Since Prof m > 2 by normality (cf [G-R], III, 1, Satz 11) 

and since the completion 0 is also an integral domain by 

Nagata's theorem (cf [Ma], 1), we may apply (3.1) to 6 and 

its parameter system induced from the affine coordinates of Cn: 

B includes a nonempty Zariski open subset of P If H E B, 

there exist a(H) > 1, b(H) > 0 such that 

  a(H) (v(u) + v(v)) + b(H) > v (uv) (u,v E 6)      X (H)X (H)= X(H)                                                               X (H) , 0 

by the inductive hypothesis (v( ), vH( ) and vX(H)( ) 

denote the algebraic orders respectively on X, H and X(H) 

1 4



at 0 ) If we put Bh =  fH: a(H) < h, b(H) < h}, we have 

B = U B Therefore there exists k EN such that B
k    l<h<00 h 

is an infinite set. 

     Now suppose that f,g E 6 and v(fg) = p. Since 

vX (H)(fg I X (H)) > v (fg) by the pullback inequality (I
2) , we have 

k (vX (H) (f I X (H)) + vX (H) (g I X (H)) ) + k > p (HE Bk) 

Then , we may assume that kvX(H)(fIX(H)) + k/2 > p/2 

(HE B') for some infinite subsetB' C Bk without loss of 

generality Let s denote the order of the covering 

X - H1(D) --> V - D and let ai (y) (1 < i < s) denote the 

i-th elementary symmetric polynomial of values of f on the 

fiber H' (y) = fx1, ,x
s} for y EV- D.ci(y) has a 

holomorphic extension over V If H E B', 

    uIX(H) I .0(fIX(H)) > vX(H)(f1X(H)) > (p - k)/2k 

by (I3) Hence there exist EH > 0 and cH > 0 such that 

      f(x)I<cHIx I(p-k) /2k(x E I X (H) I, Ix I < EH;HE B')' 

Then there exists EH > 0 such that 

IGi(Y)1 If(xa)1 If(xa .)1 
------------------------------------- <E 1 i  

 (ci (p-k) /2k =a< <a 1-=i Y )i x (p-k) /2k x(p-k) /2k 
        alai



 f i,cH(yE IHI \D, IYI < EH;HEB'). 
Since {H: IHIC D} is a finite set, by a choice of B' , we 

may assume that D(1IHI is thin in IHI for HE B' Then 

if HEB', wehave I6i(y)I < dHilyli(p-k)/2k(y EIHI, 

IyI < EH) for some dHi>0This proves that 

vH(aiIH) =lHI
,O(cIH) > i(p - k)/2k (HEB') 

(The left equality follows from the regularity of H.) 

Thus we have v(6i011) > v n(6i) > i(p - k)/2k by (I2) and 
                        C 

(3.2)Since fs - (a10f)fs-1+. -+a oil= 0 on XO , 

v(f) > (p - k)/2k by (1.2) , (i)------> (r) . Then we obtain 

(CI1) for the case n, using (CI0): v(f) < v(f) + b0 0 

(3.5) Corollary- Let X be a reduced complex space and let 

E CIXI be an exceptional set such that the set of regular 

points of X is connected in an arbitrarily small 

neighbourhood of E. Then for any E there exist 

a > 1, b > 0 such that v(f) <av,(f) + b for any 

fEF(U, OX) defined in a neighbourhood U of E. 

                         I_ 6



Proof. By the definition of exceptional set ([G],  p.339), 

there exists a proper surjective morphism X-- Y such 

that cD(E) = {n}, (I) is biholomorphic on IXI - E and, if 

V is a neighbourhood of 1-1, any f E F(q)-1(V), GX) can be 

expressed as f = go for some g E F(V, Gy) Since U 

can be expressed as-1(V), we may apply this to given f 

Obviously Y is reduced and irreducible and grnk
xm = dim Y7 

(x EE) Then v (f) and v ,(f) are linearly comparable 

to v
fl(g) by (I2) and (Cl2) of the theorem. Hence v(f) 

and v
n,(f) are also linearly comparable.0 

(3.6) Corollary Let A be a ring finitely generated over C 

and m one of its maximal ideal. Let us put vm(f) = 

sup{p: f E mp} for f E A. Then the following conditions 

are equivalent. 

(i) There exist al > 1, b1 > 0 such that vm(fg) < 

a1(vm(f) + vm(g)) + b1 (f, g E A) 

(ii) The completion (Am)" of the localization Am is an 

integral domain. 

                        1 r~ 

r



Proof. We may assume that A =  C[x]/I (x = (xl ,x
m)) 

Since C is algebraically closed we may assume that 

IC m0:= (x1 , ,x m)C [x],m = m0A without loss of 

generality Then A = C{x}/IC{x}is an analytic local 

algebra with the maximal ideal mA such that Am C A. (Am) 

is the completion of both A and Am and hence faithfully 

flat over them. Then A is faithfully flat over A
m and 

mpAm = mpAflAm On the other hand symbolic powers 

m(p) .= mpAm(A coincide with mp by the maximality of m. 

These prove that vm (f ) = vmA ( f ) = v(f) (f E A) Then 

(i) follows from (ii) by (CIy) for the integral domain A. 

     Conversely suppose that (ii) is false. Then there 

exist f, g E(Am)" such that fg = 0, f 0, g 0.We 

can identify (Am) - with C [ [x] ] /IC [ [x] ] Take 

representatives f, g E C[[x]] of f, g respectively such that 

 m,(f)=vm(f),vm,(g) = vm(g) (m' = m0(C[ [x] ] , m = m(Am) ̂ ) 

Let f (resp. g) be the polynomial which consists of the



homogeneous terms of 

If p >  max{vm(f)  , vm 

v
m(gpmod I) = v-(g) 

> p + 1. Hence

 f (resp. a) of degree less 

(g)1, then vm(fpmod I) = 

< °°.On the other hand v 

i) does not hold.

 than 

v^ (f) 

m m(fpg

  p + 1. 

 < °° , 

p mod I ) 

0

a ~



                  §4 Real Analytic Algebras 

     Let  O be a local real analytic algebra. It can 

be considered as the local ring 6X
,of a germ X of 

a real analytic space. We define the 

dimension of X by the Krull dimension of G: dim XE:= 

dim O. In general dim XE > dim 1XIE We call C ®„6 

 the complexification of G. It determines a germ XC of a 

complex space called the complexification of XE Since 

R6 is integral over O, 

     dim XC = dim CO ,„O = dim G = dim X 

by a theorem of Krull-Cohen-Seidenberg. 

(4.1) Theorem. Let 6 be a local real analytic algebra of 

positive dimension whose complexification is an integral 

domain. Then 6 satisfies the real versions of (1), (2), 

(3) of the main theorem (3.4) 

Proof (1) Obvious by (3 4), (1) 

      C C (2) L
et, f be the complexifications of and f



respectively. Since  v(fC) = v (f), v
n(fCo$C) = v (fob), 

grnk(DC = grnk(I) (cf. [Ii],p.461, P.465 (correction: 

paracompact } a-compact)), our assertion follows from (3.4),(2) 

(3) This follows from (3.4) , (1) and [I11, (3.1)El 

     If S is a germ of a real analytic set at 0 E mn, I(S) 

denotes the ideal of elements of R{x} vanishing on S.If 

J is an ideal of R{x}, V(J) denotes the maximal germ of a 

real analytic set at 0 on which all elements of J vanish. 

(4 2) Lemma ([Ri],(4.l)) The following conditions are 

equivalent for an ideal J of R{x} 

(C) fi+• •+ fPE J implies fl , , fpE J 

 (Z) J = I(S) for some germS of a real analytic set. 

      J is called real if it satisfies the conditions in (4 2) 

 (4.3) Lemma. Let J be a prime ideal of R{x} 

 (i) J is real if and only if dim R{x}/J = dim V(J) ([Ri], 

(4.3)) . 

 (ii) If J is real, C ®RJ is prime in C{x} ([G-T], p.371; 

[Ri],(6.l)) 
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(4.4) Remark. Let S be an irreducible germ of a real analytic 

set at  0E  Rn. Then (4.1) is applicable to the integral 

domain R{x}/I(S) by (4.3) , (ii) There exists, however, 

a non-real ideal J with a prime complexification C ®RJ 

                     2 (e.g J = (x2+ y2 + z )R{x, y, z}) In such a case 

dim IX I < dim XE , grnk n(1) < dim X and hence (2) and (3) of 

(4.1) is meaningless. Note also that in such a case the 

complexifications of X and IX' are not compatible. 

     For f (z) = E akzkE C{ z } (z=(z1,..,zm)) , we put 

f* (z):=E akzkE C{z}, 

     Re f (x + iy) :_ (f (x + iy) + f* (x - iy)) /2 E R{x, y} , 

     Im f (x + iy) := (f (x + iy) - f* (x - iy)) /2 E R{x, y} 

If I is an ideal of C{z}, Ir denote the ideal of R{x, y} 

generated by {Re f(x + iy): f EI} (or, equivalently, by 

{Im f (x + iy) : f E I })We put 

0:= C{z}/I, Or:= R{x, y}/Ir, I:= C ©RIr, 

0:= C{x, y}/I = C OROr 

Further we put



 J:= {f (u) : f(z) ET}, J* := {f* (v) : f(z) E I}, 

     K:= (J®l)C{u, v} + (1 ®J*)C{u, v} 

C C{u} ® C{v} = C{u, v} 

0, analytic tensor product, see[G-R]) Let us define 

an isomorphism 6: C{u, v}-3 C{x, y} by 6 (f (u, v) ) 

f(x + iy, x - iy) 

 (4.5) Lemma (cf. [Ma], §3, which treats analytic sets) 

      I = 6(K) i.e. O = P © O* ((g* = C{v}/J*) 

Proof Obvious by the following implication. 

     f E (K) 

= 3g E K s.t. f(x, y) = g(x + iy, X - iy) 

Rau , 3 0 E C{u, v}; 3h , 3 kuE J (p = 1, , p) 

      s.t. f(x, y) = E{a(x + iy, x - iy)h(x + iy) 
u 

                        + 6(x + iy, X - iy)k*(x - iy) 

---- fFI 

 (4.6) Proposition. If G is an integral domain in the above, 

we have the following 
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 (i) ® is an integral domain. 

(ii) Ir is a real ideal. 

      (ii) is just the affirmative answer to Malgrange's 

conjecture [Ma], p.124. 

Proof. (1) By (4.5) we have only to prove that ® ® P* is an 

integral domain. Since O* is isomorphic to G as a ring, 

it is an integral domain. Then ® ®* is also so by 

Nagata's theorem [N2], (47.5) 

(ii) Since ® is an integral domain and since 

     dim Or = dim ® = dim ®()®* = 2 dim ® = dim V(Ir), 

we have the assertion by (4.3), (i). 

(4 7) Remark. If ® is an integral domain, we may well call 

®r the real analytic algebra associated to G. But, if 

not, ®r is not fit to be called so. For example, consider 

the case I = I1(~I2Ii=ziC{z1 , z2} (i = 1, 2) 

Since K = (u1u2 , v1v2)C{u, v}, V(I) = V(K) has four 

components at 0EC4.Therefore V(I) is bigger than 
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the join of  V(I1) and V(I2) Returning to the algebras 

of the real parts, we see that 6r is too big to be called 

the real analytic space associated to G. 

(4.8) Remark. If fu(u = 1, , p) generate I, 

Re f
u(x + iy),Im fu(x + iy) generate Ir Then, for 

any complex space X, we can construct the real analytic space 

Xr (defined by a coherent sheaf of ideals) and its 

complexification X in the sense of [H] 

Proof of (3.4), (3)  . Let XE be a reduced and irreducible 

germ of a complex space. Then Xr has a reduced and 

irreducible complexification X by (4.6) Hence (4.1) 

holds for Xr If f E GX
,, we have only to apply 

(4.1), (3) for Xr to the real and the imaginary part of 

f. (If we consider the proof of (4.1), (3), we see 

that (3 4), (3) for n-dimensional X results from (3.4), 

(2) for 2n-dimensional X .)0



      §5 Nearness to p-th Power in  C{xl , , x
m} 

     In this section we put A =~
m,0= C{x1 , , xm}, 

A = C [ [x1 ,x m] ] , v( ) = v0( ) Let p be a prime 

number and u not a p-th power in A. The functional 

equation fpu - gP = 0 has unique solution (f, g) = (0, 0) 

If v(fpu - gP) is large, (f, g) is a "near solution" We 

claim that a near solution is near to the unique solution: 

(5.1) Proposition. If u E A is not a p-th power in A, there 

exist a > p, b > v(u), b' > 0 depending only on n, p, u 

such that av(f) + b > v(fpu - gP), av(g) + b' > v(fpu - gP) 

for any f, g E A. 

(5.2) Remark. By Artin's strong approximation theorem [A2], 

(6.1), we see that, if u is a polynomial, there exists a 

function e: N-->N1 such that v(f) , v(g) > e[v(fpu - gP) ] 

(5.1) asserts that we can choose a linear e. 

Proof. Let us put F = v(f), G = v(g), K = v(fpu - gP), 

U = v(u) and T = max{F, G, K} + 1. We have to prove that 

(*)aF + b > K, aG + b' > K. 

On



Considering the cases g = 0 and f = 0 we have necessary 

conditions 

(i) a >  p, b > v (u) , b' > 0 

This assures (*) if T = co. Thus we have only to treat 

the case T < co. If f - f', g - g' E mT then v(f') = F, 

v(g') = G, v(f'pu - g'p) = K. Hence we may assume that 

f, g E A. If the initial form (the homogeneous term of 

the lowest degree) In u is not a p-th power, K = min(pF + U, 

pG) and (*) is obvious (a = p). So we may assume that 

U = pV (V E N) 

     Let us introduce a new variable z and consider 

             := C{x1 , , x
m , z}, em+1,0 

O := m+l 0/(u - (-z)p)Om+1 0 

Letv and vO denote the algebraic order of 6m+1 ,0 and 

G with respect to the respective maximal ideals (these 

are extensions of the original v) h E p has a unique 

                                    p-1 
representative of the form E hizi E" Om+l0 (hi E A) 

i=0'



 vG(h)  =  min  (v(hi)  + i) by the assumption U = pV > p. 

If we put 

      h := (fgp-2zp-1 - gp-1zp-2) + (fp-lUzp-3 - fp-2guzp-4 

            +- -+ f3(-g)p-4uz + f2(-g)p-311) 

                                           (if p = 2, h:= fz - g) 

we have 

      (fz + g)h a (fpu - gp)zp-2 mod u - (-z)p (f,g E A) 

Then, applying (3 4), (1) to the integral domain G, we have 

(ii) a1(v(fz + g) + v(h)) + b1> v((fpu - gp)zp-2) = K+p 

                                                     (f,g E A) 

If pG pF + U, we can directly prove (*) using (i)So 

we have only to treat the case pG = pF + U. Then, since 

v(gp-lzp-2) - v(fgp-2zp-1)=V - 1, 

      v (fp-lUzp-3) - v (fgp-2zp-1) = 2(V - 1) , 

     v (fp-2guzp-4) - v (fgp-2zp-1) = 3(V - 1), 

                                              • 

      v (f2gp-3u) - v (fgp-2zp-1) _ (p - 1)(V - 1), 
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we have 

(iii)  v(h) = v(fg13-2zp-1) = (p - 1)F + (p - 2)V + p - 1 

                 =(p - l)G - V + p - 1 . 

Since G - (F + 1) = V - 1 > 0, 

(iv) v (fz + g) = F + 1 = G - V + 1. 

Combining (ii) , (iii) and (iv) , we have 

a1(pF + (p - 2) V + p) + b1 - p + 2 > K, 

a1(pG - 2V + p) + b1 - p + 2 > K. 

Hence (*) holds by a suitable choice of a and b (a = a1p) 0 

(5.3) Definition. (flp, u) := inf a/p (a: in (5.1)) 

      This can be regarded as a measure of nearness to p-th 

power In view of the proof above, we have an estimate 

1 < 0(p, u) < a1 

(5.4) Example. If In u is not a p-th power, 0(p, u) = 1. 

This means that u is very far from p-th powers . 

(5.5) Example. Suppose that u := vp - w is not a p-th power 

                                                                           4.4 
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in A and k :=  v(w) > pv(v) + 1. Using Tailor expansion 

P/1+t+2 +. = 1 + c1t + c2t2 +, we have 

     (1 + c1 + c2t2 +_ _+ cntn) P (1 - t) - 1 

    = d to+l + dtnT2 ++ dtnp+1 
   n+1n+2np+l 

for suitable do+l ' ", dnp+l E C. Hence 

(vnP + c1v(n-1)Pw + c2v(n-2)pw2 +. .+ cnwn)P(vP - w) 

     - v(np + 1)p 

      d
o+1v(np-n)pwn+1 + do+2v(np-n-1)pwn+2 ++ dnp+lwnp+l 

If we put fn = vnp + clv(n-1)pw +- + cnwn, gn = vnP+1, 

we have 

           v(fPu -gP)= v(v(np-n)pwn+l) = n(p - 1)ph + (n + 1)k 

n 

                                             (h := v (v) ) 

Hence 0(P, u) >(p2h - ph + k) /p2h = 1 + (k - hp) /hp2 (> 1) 

(5.6) Example. If u = xp - x (k > p, k 0 mod p), al 

for P in the proof of (5.1) is estimated as al < k/p 

by the proof of [Ii], (1.5) Hence we have 

1 - 1/p + k/p2 < 0(p, u) < k/p. 
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Appendix: inf a1 and inf b1 for Some Elementary Singularities 

     Let a1denote the infimum of a1 in (3.4) for a 

given local complex analytic integral domain  O  = OX
, 

In case a1is attained,bldenotes the infimum of b1 

that satisfies (3.4), (1) with a1 = a1The author does 

not know whether a1is always attained and whether a1is 

a rational number. Here we exhibit the explicit values of 

a1and b1for some elementary singularities a1in (i), 

(iii), (iv) and b1 in (i) were first taught by Tomari. 

 (i) v(fg) = v(f) + v(g) (f, g E e) (i.e. a1 and b1 are 

w attained and a1= 1,bl= 0) iff GrmOE mp/mp+l is 

p=0 

an integral domain. The proof is standard. 

 (ii) If dim O = 1, the exceptional fiber of the normalization 

of the blowing-up of X with center m is irreducible. 

Then a1is attained and a1= 1 by (1 4) 

3I



(iii) Let (X, 0) be a hypersurface singularity in C3 

defined by z2 -  Y'(x, y) = 0 (P(0, 0) = 0) . Let v 

and vOdenote the algebraic orders on C{x, y, z} and 

on O := C{x, y, z}/(z2 - P)C{x, y, z} respectively_ 

Further we assume that r := v(P) is an odd number greater 

than 2. Here we claim about O that a1= 1 and 

b1= r - 2 and that they are attained. Obviously every 

f E G has a unique representative of the form f = f1(x, y)z 

+ f2(x, y) E C{x, y, z} such that vO(f) = v(f) = 

min (v (f1) + 1, v (f2))Suppose that 

(*) v(fg) > ve) + vO(g) + r - 2 

for some f, g E G. This implies that 

^ (f1g2 + f2g1) > v(f) + v(g) + r - 3, 

      ^(f g + f2g2) > v(f) + v(g) + r - 2          1 
1 

By a standard calculation we have 

^(f2P - f2) > 2v(f) + r - 2. 12 

On the other hand, since r is odd, 

v (f2~ - f2) = min (2v (f )+ r,2v (f )) < 2v (f) + r - 2, 1 212 = 
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a contradiction. Thus (*) never holds and we may put 

a1 = 1, b1 = r - 2 Since 

 v®(z2) = r = (v@(z) + v@(z)) + r - 2, 

bl can never be smaller than r - 2 Hence we have 

proved the assertion. 

     In the case 0 is an isolated singularity of X (i.e. 

X is normal at 0), we can prove that the exceptional 

fiber of the normalization of the blowing-up of X with 

center m0is irreducible,which again implies that a1is 

attained and a1= 1 This case includes the 

rational singularities of types Dk (k > 4), E6 , E7 , E8 

(cf. [Br] ) 

(iv) The remaining two dimensional rational singularity of 

multiplicity 2 is Ak (k > I) defined by the equation 

x2+ y2+ zk+l = 0 in C3 By the proof of [Il], (1.5), 
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we see that  (3.  4)  , (1) holds for a1 = (k + 1)/2, b1= 0 

On the other hand 

   a1> {v((x + iy)p(x - iy)p) - b1}/{v((x + iy)P)+ v((x - iy)p)} 

= { (k + 1) p - b1}/2p (p E N) 

Hence a1> (k + 1)/2. Thus we have proved al = (k + 1)/2, 

bl= 0 and they are attained.
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