A Measure of Integrity for Local Analytic Algebras

泉 偣藏

学 位 審 査 報 告

（論文内容の要旨）
申請者は，複素数体 C 上の解析的集合 X の一点 ξ におうる解析函数の芽 の環 θ を考え，θ の各元に対する次の三つのものを考察している。
（1）algebraic order $\nu_{\xi}(f)$ ：©の極大イデアルをmで表すとき，

$$
f \in \mathrm{mp}, f \notin \mathrm{mp}+1 \text { となる } \mathrm{p} \text { が } \nu_{\xi}(f)
$$

（2）reduced order $\bar{\nu}_{\xi}(f)=\lim _{\mathrm{k} \rightarrow \infty} \nu_{\xi}\left(f^{\mathrm{k}}\right) / \mathrm{k}$
（3）analytic order $\mu_{\mathrm{A}, \xi^{(f)}}$ along $\mathrm{A}[\mathrm{A} \subseteq \mathrm{X}$ ，（ A の閉包） 5$]$ ： $\mu_{\mathrm{A}, \xi^{\prime}}(f)=\sup \left\{\left.\mathrm{p}\right|^{\exists} \alpha>0,{ }^{\exists} \mathrm{U}=\mathrm{U}(\xi)\right.$（近傍）， $\mathrm{U} \cap \mathrm{A}$ において，つねに $\left.|f(\mathrm{x})| \leqq \alpha|\mathrm{x}-\xi|^{\mathrm{P}}\right\}$
明らかに $\mu_{\mathrm{A}, \xi^{(f)}}$ ® $\bar{\nu}_{\xi}(f) \geqq \nu_{\xi}(f)$ であり，また解析集合の射 $\Phi: \mathrm{Y} \rightarrow \mathrm{X}$ （ $\Phi(\eta)=\xi)$ について，$\nu_{\eta}(f \circ \Phi) \geqq \nu_{\xi}(f)$ である。
D．Rees によって θ がベキ零元をあたないときには，fを動かしたとき， $\bar{\nu}_{\xi}(f)-\nu_{\xi}(f)$ が有界であるととが示された。
申請者は Θ が整域である場合について，次の三種の不等式を証明すると ともに，実解析的である場合へのとの不等式の一般化をも与えている。
（ CI_{1} ）適当な $\mathrm{a}_{1} \geqq 1, \mathrm{~b}_{1} \geqq 0$ をえらべば，

$$
\nu_{\xi}(f g) \leqq a_{1}\left(\nu_{\xi}(f)+\nu_{\xi}(g)\right)+b_{1}
$$

が，すべての $f, \mathrm{~g} \in \boldsymbol{\theta}$ について成り立つ。
$\left(\mathrm{CI}_{2}\right)$ 解析空間の射 $\Phi:(\mathrm{Y}, \eta) \rightarrow(\mathrm{X}, \xi)$ に扔いて，
$\operatorname{dim} X_{\xi}=\inf \{\operatorname{dim} \Phi(v) \mid V=V(\eta)\}$ であれば，適当な $\mathrm{a}_{2} \geqq 1$ ， $\mathrm{b}_{2} \geqq 0$ により

$$
\nu_{\eta}(f \circ \Phi) \leqq \mathrm{a}_{2} \nu_{\xi}(f)+\mathrm{b}_{2}
$$

が，すべての $f \in$ © について成り立つ。
$\left(\mathrm{CI}_{3}\right)$ 解析的開集合 A の閉包が ξ を含めば， A に依存する定数 $\mathrm{a}_{3} \geqq 1$ ，

$$
\mathrm{b}_{3} \geqq 0 \text { によよって, }
$$

$$
\mu_{\mathrm{A}, \xi}(f) \leqq \mathrm{a}_{3} \nu_{\xi}(f)+\mathrm{b}_{3}
$$

が，すべての $f \in$ ○について成り立つ。
これらの不等式において，$a_{1}, ~ a_{2}, ~ a_{3}$ はそれぞれなるべく小さい方が不等式として強いものといえるから，inf a_{1} ，inf a_{3} は環 ○の構造の反映として注目されるあのであり，またinf a_{2} は写像 Φ の性質の反映の一 つである。

申請者は，乙れらの不等式の応用として，
（1）C上の収束べキ級数環 $C\left\{x_{1}, \cdots, x_{m}\right\}$ において，u がp乗根（p は素数）に開けない元であるとき，$f, ~ \mathrm{~g} \in \mathrm{C}\left\{\mathrm{x}_{1}, \cdots, \mathrm{x}_{m}\right\}$ によっ て，$\nu_{0}\left(f^{\mathrm{P}} \mathrm{u}-\mathrm{g}^{\mathrm{p}}\right) ~(た た ゙ し 0 は$ は原点）を大きくしょうとすれば，必然的に $\nu_{0}(f), \nu_{0}(g)$ あ大きくなることを示し，
（2） $\mathrm{C}\left\{\mathrm{x}_{1}, \cdots, \mathrm{x}_{m}\right\}$ の元uが。 p 乗根に開ける元にどの程度近いかを示す数値を与え，
（3）1963年に Malgrange が発表した予想［Bull．Soc．Math．France， Tom． 91 〕を肯定的に解決した。

| 氏 名 | 泉 藏 |
| :--- | :--- | :--- | :--- | :--- |

（論文審査の結果の要旨）
申請者の研究は解析的集合の局所的性質を研究するために有効な結果を多 く含んでおり，特に主論文において，三種類の不等式を証明するとと屯に， それらの有効性を示すいくつかの新しい結果およびMalgrange 予想の肯定的解決を与えた。

また，扱われた話題に盛り込まれた着想はすぐれており，今後のとの方面 の研究に大きく寄与するものと思われる。

以上により，本論文は理学博士の学位を授与するに値すると認める。
なお，主論文及び参考論文に報告されている研究業績を中心とし，とれに関連した研究分野について試問した結果，合格と認めた。

A Measure of Integrity for Local Analytic Algebras By

Shuzo IZUMI*
§0 Introduction

We will complete the study [$\left.I_{1}\right],\left[I_{2}\right]$ on orders of elements of a local analytic algebra. Let $\left(X, \mathcal{O}_{X}\right)$ be a comlpex space and $(0, m):=\left(\theta_{X, \xi}, m_{\xi}\right)$ its local algebra at $\xi \in X . \quad \theta$ can be expressed as $\theta=\mathbb{C}\{x\} / I$ for some ideal I of the algebra $\mathbb{C}\{x\}$ of convergent power series in $x=\left(x_{1}, x_{m}\right)$ We define three kinds of orders for $f \in \theta$.
algebraic order: $v(f)=v_{\xi}(f):=\sup \left\{p: f \in m^{p}\right\}=\sup \{$ the degree of the lowest non-zero homogeneous term of $\hat{f}: \hat{\mathcal{E}}$ is a representative of f in $\mathbb{C}\{x\}\}$
reduced order $([L-T], \operatorname{cf.}[S]): \bar{v}(f):=\lim _{k \rightarrow \infty} v\left(f^{k}\right) / k$ analytic order along $A \subset|X|: \mu_{A, \xi}(f):=\sup \{p: t h e r e$ exist $\alpha>0$, neighbourhood U of ξ and representative \tilde{f} of f over U such that $\left.|\tilde{f}(x)| \leq \alpha|x-\xi|^{P} \quad(x \in U \cap A)\right\}$ We can easily verify the following.

Communicated by H. Hironaka, June 20, 1984 Reviced October 9, 1984. * Faculty of Science and Technology, Kinki-University, Higashi-Osaka 577, Japan.
inequality for the reduced order:

$$
\left(I_{0}\right) \quad \bar{v}(f) \geqq v(f) \quad(f \in \theta)
$$

inequality for products:

$$
\left(I_{1}\right) \quad v(f g) \geqq \quad v(f)+v(g) \quad(f, g \in \theta)
$$

inequality for pullbacks: If $\Phi: Y \rightarrow X$ is a morphism such that $\Phi(n)=\xi$,

$$
\left(I_{2}\right) \quad v_{n}(f \circ \Phi) \geqq v_{\xi}(f) \quad(f \in \theta)
$$

inequality for the analytic order:

$$
\left(I_{3}\right) \quad \mu_{A, \xi}(f) \geqq V(f) \quad(f \in \theta)
$$

We are interested in linear complementary inequalities
(LCI) of these (I_{i}). By the strong valuation theorem of Rees $\left[\mathrm{Re}_{3}\right]$ on Noetherian rings, we see the following:

If X is reduced at ξ, there exists $\mathrm{b}_{0}=\mathrm{b}_{0}(0) \geqq 0$
such that

$$
\left(C I_{0}\right) \quad \bar{\nu}(f) \leqq \nu(f)+b_{0}
$$

We prove the following LCI as our main theorem, (3.4),
assuming that X is reduced and irreducible at ξ i.e. ©
is an integral domain.
(1) There exist $a_{1}=a_{1}(\theta) \geqq 1, b_{1}=b_{1}(\theta) \geqq 0$ such that

$$
\left(C I_{1}\right) v(f g) \leqq a_{1}(v(f)+v(g))+b_{1} \quad(f, g \in \theta)
$$

(2) For any morphism $\Phi:(Y, \eta) \rightarrow(X, \xi)$ with $\operatorname{dim} X_{\xi}=$ grnk ${ }_{\eta}{ }^{\Phi}$ (see below), there exist $a_{2}=a_{2}(\Phi) \geqq 1, b_{2}=b_{2}(\Phi) \geqq 0$ such that

$$
\left(C I_{2}\right) \quad \nu_{n}(f \circ \Phi) \leqq a_{2} \nu_{\xi}(f)+b_{2}
$$

(3) For any open subanalytic set $A \subset|X|$ adherent to ξ, there exist $a_{3}=a_{3}(A) \geqq 1, b_{3}=b_{3}(A) \geqq 0$ such that

$$
\left(C I_{3}\right) \mu_{A, \xi}(f) \leqq a_{3} \cup(f)+b_{3}
$$

In the above grnk $_{n}{ }^{\Phi}$ denotes the generic rank defined for a morphism of germs of analytic spaces over $k=\mathbb{C}$ or $\mathbb{R}:$

$$
\begin{aligned}
& \text { grnk }{ }_{\eta} \Phi=\varepsilon \cdot \inf \{\text { topological dimension of } \Phi(U): U \text { is a } \\
& \text { neighbourhood of } n\}(\varepsilon=1 / 2 \text { if } k=\mathbb{C} ; \varepsilon=1 \text { if } k=\mathbb{R})
\end{aligned}
$$

This has been used to study properties of a ring homomorphism induced by a morphism between spaces (see [Be])

The constants a_{i} (or b_{i}) in the above LCI measure some intrinsic properties of Θ, Φ and A as follows If θ is not

```
an integral domain, a}\mp@subsup{a}{1}{}\mathrm{ does not exist (a
may consider inf a }\mp@subsup{a}{1}{}=\operatorname{inf{}\mp@subsup{{}{1}{\prime}\mathrm{ : there exists }\mp@subsup{b}{1}{}\mathrm{ such that
(CI_) holds} as a measure of integrity of the algebra }
(or l/inf a as a distance of © from non-integral
domains) inf a can be considered as a kind of order of
the morphism \Phi. Indeed, in case (X, \xi) = (\mathbb{C},0), we see
that inf a coincides with the reduced order, }\overline{v}(\Phi)\mathrm{ , of the
function \Phi. inf a seems to have a relation with the
size of the germ A}\mp@subsup{A}{\xi}{}\quad\mathrm{ Of course, if ACB, inf a (A)
\inf a (B)
    We have already proved that (1) and (2) of the main
theorem are equivalent ([I_], (1.2)) So we prove (1)
by induction on n := dim X X (The proof of (3) is
postponed till the end of §4) In §l we recall the
valuation theorem in a special form we need later It
implies the case n = l of (l) immediately The case
n=2 can not be reduced to the case n = 1. We can
```

manage to prove this case by the use of the intersection matrix of Du Val-Mumford for a normal surface (§2). In $\S 3$ we reduce the case $n(\geq 3)$ to the case $n-1$ using a Bertini type theorem of Flenner, completing the proof of (l) In $\S 4$ we show a real analytic version of the main theorem. There we remark that Risler's criterion for real ideal (= real radical) gives an affirmative answer to Malgrange's conjecture ([Ma], p. 124) on the real analytic set associated to a complex analytic set. In §5, as an application of the main theorem, we treat"near solutions" of the algebraic equation $f^{P} u-g^{P}=0$ in $C[[x]]$ for a given $u \in \mathbb{C}\{x\}$ and a prime number p. This yields an intrinsic measure of nearness of u to p-th powers in $\mathbb{C}\{x\}$. In Appendix we calculate the explicit values of inf a_{1} and inf b_{1} for some singularities. The author wishes to thank Mr M . Tomari for many
helpful advices and professor K. Saito for pointing out a
mistake in the formulation of (4.5) in the provisional manuscript.

Here we introduce the most basic result on orders on an analytic algebra, restricting ourselves to the case of the orders with respect to the maximal ideal Let X be a positive dimensional complex space reduced at ξ and let \mathcal{M} denote the set of all morphisms $\Pi: Y \rightarrow X$ such that Y are normal, Π induce proper morphisms onto neighbourhoods of ξ and the ideal sheaves defining $\pi^{-1}(\xi)$ (with the canonical structure) are invertible. \mathcal{M} is not empty; the composition of the normalization after the blowing-up with center ξ belongs to $\mathcal{M} \quad \Pi \in \mathcal{M}$, the exceptional fiber E over $\xi\left(=\right.$ the reduction of $\left.\pi^{-1}(\xi)\right)$ has a finite number of irreducible components $\quad\left\{E_{i}\right\}_{i \in A(I)} \quad$ Let I and I_{i} denote the sheaves of ideals defining E and E_{i} respectively By the normality and the Hauptidealsatz (cf [G-R], p.l29, p. 223), there exists an complex analytic set $S \subset|Y|$ of codimension at least 2 such that $Y-S(=Y|Y|-S)$ is a smooth manifold and $E-S$ and $E_{i}-S$ are submanifolds of $Y-S$ of codimension $1 . \quad$ For $f \in \Gamma\left(U, \theta_{X}\right)$, we put

$$
v_{i}(f):=\sup \left\{p:(f \circ \Pi)_{Y} \in I_{i}^{P} \text { for all (some) } y \in\left|E_{i}\right|-S\right\}
$$

If $f \in \theta:=\theta_{X, \xi}$, we define $v_{i}(f)$ using its representative.

It is obvious that $v_{i}(f g)=v_{i}(f)+v_{i}(g) \quad(f, g \in \theta)$
(1 1) Lemma ([L-T], (4.l.8)) If we put $v_{i}(m)=\inf \left\{v_{i}(g):\right.$
$g \in m\} \quad\left(m:=m_{\xi}\right)$, we have

$$
\inf \left\{v_{i}(f) / v_{i}(m): i \in A(\Pi)\right\}=\sup \left\{p / q:(f \circ \Pi)^{q} \in \Gamma\left(U, I^{p}\right)\right\}
$$

(1.2) Lemma ([L-T], (4.1.6), (5.5), (7 2) cf. (1 12)) Let

X be a positive dimensional complex space reduced at ξ.

Then, for any $f \in \Gamma\left(X, \mathcal{O}_{X}\right), \bar{v}(f)$ is a rational number and the following conditions are equivalent for any $p, q \in \mathbb{N}$.
(r) $\bar{v}(f) \geqq p / q$.
(i) There exist $\sigma_{i} \in \theta(l \leqq i \leqq k)$ such that $v\left(\sigma_{i}\right) \geqq i p / q$ and

$$
f^{k}-\sigma_{1} f^{k-1}+\sigma_{2} f^{k-2}-\cdot \pm \sigma_{k}=0 \quad \text { in } \theta .
$$

(c) Let D denote the unit open disc in the complex plane \mathbb{C}. Then for any morphism $\Phi: D \longrightarrow X$ with $\Phi(0)=\xi$, we have

$$
\nu_{0}(f \circ \Phi) \geqq(p / q) \inf \left\{\nu_{0}(g \circ \Phi): g \in m\right\}
$$

(m) For any $\Pi: Y \rightarrow X$ in \mathcal{M},

$$
\inf \left\{v_{i}(f) / v_{i}(m): i \in A(\Pi)\right\} \geqq p / q
$$

(m?) There exists $\Pi: Y \longrightarrow X$ in \mathcal{M} such that

```
inf{vi
```

(a) $\mu|x|, \xi^{(f)} \geqq \mathrm{P} / \mathrm{q}$
(1 3) Remark. This theorem was proved in an algebraic form by Rees $\left[\mathrm{Re}_{1}\right],\left[\mathrm{Re}_{2}\right]$ and Nagata $\left[\mathrm{N}_{1}\right]$ independently, developing Samuel's paper [S] They treated more general rings. The conditions (c) and (d) were considered first by Lejeune and Teissier They stated the result for general coherent sheaves on complex spaces.
(1.4) Remark. By (m) and (m^{\prime}) we see that $\bar{v}(f)=$ $\inf \left\{v_{i}(f) / v_{i}(m): i \in A(\pi)\right\}$ for any $\pi \in \mathcal{M}$.
§2 LCI for normal surfaces

Here we use the notation in §l.
(2 1) Theorem. If X is a 2-dimensional complex space normal at $\xi, \Pi: Y \longrightarrow X$ a morphism in M and if Y is nonsingular, we have the following.
(i) There exist $c_{i j}>0\left(c_{i j}=l\right)$ such that $c_{i j} v_{j}(f) \geqq$ $v_{i}(f) \quad(i, j \in A(I))$
(ii) If we put $a_{l}=\left(1+\max _{i, j} c_{i j} v_{j}(m) / v_{i}(m)\right) / 2$, we have $\bar{\nu}(f g) \leqq a_{1}(\bar{v}(f)+\bar{v}(g))$ and hence $\nu(f g) \leqq a_{1}(\nu(f)+\nu(g))$
$+2 b_{0} \quad(f, g \in \theta)$ by $\left(C I_{0}\right)$
Proof (i) Let $A(I)=\left\{E_{1}, \quad, E_{k}\right\}$ and let S_{f} denote the strict transform of the divisor (f) of $f \in \theta$ with respect
to Π. Then no E_{i} appears in S_{f} and (foll)=
$S_{f}+\sum m_{i} E_{i}\left(m_{i}=v_{i}(f)\right) \quad$ Taking intersection number
with E_{j} around $E(c f \quad[M u])$, we have

$$
\begin{aligned}
\sum_{i} m_{i} e_{i j}=(f \circ \Pi) \cdot E_{j}-S_{f}: E_{j} & =-S_{f} \cdot E_{j} \leqq 0 \\
& \left(j=1, \quad k ; e_{i j}=E_{i} \cdot E_{j}\right)
\end{aligned}
$$

Hence the vector $\left(m_{1}, \quad, m_{k}\right)$ is contained in the convex cone $K \subset \mathbf{R}^{k}$ defined by
(*) $\quad \sum_{i} x_{i} e_{i j} \leqq 0, \quad x_{j} \geqq 0 \quad(j=1, \quad, k)$
We have only to prove that $K \backslash\{0\}$ is included in the
strictly positive quadrant. Assume the contrary By
a rearrangement of the coordinates, we may assume that
$\left(x_{1}, ., x_{p}, 0, \ldots, 0\right) \in K\left(x_{1}, \quad, x_{p}>0, l \leqq p<k\right)$
Since $e_{i j} \geqq 0 \quad(i \neq j),(*)$ implies $e_{i j}=0 \quad(i \leqq p$,
$j>p) \quad$ This contradicts to the fact that E is connected.
(ii) We may assume that $v_{\alpha}(f) / v_{\alpha}(m)=\bar{v}(f) \leqq \bar{v}(g)$

$$
\begin{aligned}
& =v_{\beta}(g) / v_{\beta}(m) \quad(\text { see }(1.4)) \quad \text { Then we have } \\
& \bar{v}(f g)=\min \left(v_{i}(f)+v_{i}(g)\right) / v_{i}(m) \leqq\left(v_{\beta}(f)+v_{\beta}(g)\right) / v_{\beta}(m) \\
& \leqq C_{\beta \alpha}\left(v_{\alpha}(m) / v_{\beta}(m)\right) v_{\alpha}(f) / v_{\alpha}(m)+v_{\beta}(g) / v_{\beta}(m) \\
& \leqq\left(2 a_{l}-I\right) \bar{v}(f)+\bar{v}(g) \leqq a_{l}(\bar{v}(f)+\bar{v}(g)) . \\
& \text { (2.2) Remark. } c_{i j} \text { are obviously determined by (} e_{i j} \text {) } \\
& \text { We can show that } a_{1} \text { is also majorized by a constant } \\
& \text { determied by (} e_{i j} \text {) Indeed there exists } f \in O_{X, \xi} \text { such } \\
& \text { that } v_{i}(f)=v_{i}(m) \quad\left(i=1, \quad \text { Then } \quad v_{j}(m) \leqq\right. \\
& c_{j i} V_{i}(m) \text { and } a_{l} \leqq\left(1+\max _{i, j} c_{i j} c_{j i}\right) / 2 .
\end{aligned}
$$

§3 LCI in General Case

We borrow an important result, a Bertini type theorem
of Flenner:
(3.1) Lemma ([F], (4.10)) Let ($0, \mathrm{~m}$) be a local k-algebra over a field k of characteristic 0 and let $\varphi_{1}, \quad \varphi_{m}$ $\in m$. Suppose that the completion $\hat{\theta}$ is an integral domain and $\operatorname{dim} \theta_{p} \geqq 3$, Frof $\Theta_{p} \geqq 2$ for any prime ideal p that contains $\varphi_{1}, \quad \varphi_{m}\left(\theta_{p}\right.$: the localization) Then for any $e=\left(e_{1}, \quad, e_{m}\right)$ in a nonempty Zariski open subset of $k^{m}, \sum e_{i} \varphi_{i}$ is a prime element of \mathcal{O} (even of $\hat{\mathcal{G}}$)
(3.2) Lemma. Let B be an infinite set of complex hyperplanes (linear subspaces of codimension 1) through 0 in c^{m} Then $\nu_{0}(f)=\min _{H \in B} \nu_{0}(f \mid H) \quad(f \in \mathbb{C}\{x\})$. Proof. The inequality $\nu_{0}(f) \leqq \nu_{0}(f \mid H)$ is a special case of the inequality for pullbacks (I_{2}) The case $f=0$ is trivial. If $f \neq 0$ and if H is not contained in the tangent cone of the hypersurface defined by f, then the initial
form (the non-zero homogeneous term of the lowest degree) survives after restriction to H and $\nu_{0}(f)=\nu_{0}(f \mid H)$ since B is an infinite set, such an H really exists in B. $]$
(3.3) Lemma ([$\left.I_{1}\right]$, Added in proof) Let $\Phi:(Y, \eta) \rightarrow(X, \xi)$ be the normalization of a reduced and irreducible germ of a complex space. If (Y, n) satisfies (CI_{1}) in (3 4), (X, ξ) also satifies it.

Proof Since Φ is finite $\left(\mathrm{CI}_{2}\right)$ holds ([$\left.I_{1}\right],(23)$ or (4.1)): $\nu_{\eta}(f \circ \Phi) \leqq a v_{\xi}(f)+b \quad\left(f \in \Theta_{X, \xi}\right)$ for some $a \geqq l$ and $b \geqq 0$. Then we have

$$
\begin{align*}
& \nu_{\xi}(f g) \leqq \nu_{\eta}((f \circ \Phi)(g \circ \Phi)) \leqq a_{1}\left(\nu_{\eta}(f \circ \Phi)+v_{\eta}(g \circ \Phi)\right)+b_{1} \\
& \leqq a_{1} a\left(\nu_{\xi}(f)+\nu_{\xi}(g)\right)+2 a_{1} b+b_{1} \quad\left(f, g \in \Theta_{X, \xi}\right)
\end{align*}
$$

(3.4) Main Theorem. Let X be a complex space reduced and irreducible at ξ (i.e. $\theta:=\theta_{X, \xi}$ is an integral domain) such that $n:=\operatorname{dim} X_{\xi} \geqq 1 . \quad$ Then it has the following three properties
(1) There exist $a_{1}=a_{1}(\theta) \geqq 1, b_{1}=b_{1}(\theta) \geqq 0$ such that

$$
\left(C I_{1}\right) \quad v(f g) \leqq a_{1}(v(f)+v(g))+b_{1} \quad(f, g \in \mathbb{\theta})
$$

(2) For any morphism $\Phi:(Y, \eta) \rightarrow(X, \xi)$ with grnk $_{\eta} \Phi$ $=\operatorname{dim} X_{\xi}$ (see $\S 0$ for the symbol grnk), there exist a_{1} $=a_{1}(\theta) \geqq 1, b_{1}=b_{1}(\theta) \geqq 0$ such that

$$
\left(C I_{2}\right) \quad v_{\eta}(f \circ \Phi) \leqq a_{2} v_{\xi}(f)+b_{2}
$$

(3) For any open subanalytic set $A \subset X$ adherent to ξ,
there exist $a_{3}=a_{3}(A) \geqq 1, b_{3}=b_{3}(A) \geqq 0$ such that

$$
\left(C I_{3}\right) \quad \mu_{A, \xi}(f) \leqq a_{3} \nu(f)+b_{3}
$$

Proof The proof of (3) is postponed to (4.8)
and (2) are equivalent ([$\left.I_{1}\right]$, (1.2)), we have only to prove one of them. The case $n=1$ of (1) follows from (1.4), since $v_{i}(f g)=v_{i}(f)+v_{i}(g) \quad$ The case $n=2$ follows from (2.1) and (3 3) As to the case $n \geqq 3$, we prove (1) by induction on n.

Suppose that the case $n-1(n \geqq 3)$ has been proved already. We may assume that X is normal by (3.3) We may also assume that $\xi=0 \in \mathbb{C}^{m}$ and X is a closed complex subspace of a product open neighbourhood $U=V \times W$ $\left(V \subset \mathbb{C}^{n}, W \subset \mathbb{C}^{m-n}\right)$ of 0 such that the projection $\pi: x \rightarrow V$
is finite proper open and locally biholomorphic on $x-\pi^{-1}(D)$ for some proper analytic subset $D \subset V$ (local parametrization theorem) If we choose a sufficiently small U and such a coordinate space \mathbb{c}^{m-n} that intersects the tangent cone of x_{0} only at 0 , then $|\pi(x)| \leqq|x| \leqq c|\Pi(x)| \quad(x \in X)$ for some $c>0 . \quad$ Let P denote the complex projective space of hyperplanes of \mathbf{C}^{n} through 0 and, if $H \in P$, let $X(H)$ denote the subspace $\Pi^{-1}(H)$ of X with the canonical complex structure. Let us put

```
B := {H\inP: X(H) is reduced and irreducible at 0}
```

Since Prof $\theta \geqq 2$ by normality (cf [G-R], III, l, Satz ll) and since the completion $\hat{\theta}$ is also an integral domain by Nagata's theorem (cf [Ma], l), we may apply (3.1) to θ and its parameter system induced from the affine coordinates of \mathbb{C}^{n} : B includes a nonempty Zariski open subset of P If $H \in B$, there exist $a(H) \geqq 1, b(H) \geqq 0$ such that

$$
a(H)\left(\nu_{X(H)}(u)+\nu_{X(H)}(v)\right)+b(H) \geqq \nu_{X(H)}(u v) \quad\left(u, v \in \theta_{X(H), 0}\right)
$$

by the inductive hypothesis $\left(\nu(), \nu_{H}()\right.$ and $v_{X(H)}()$
denote the algebraic orders respectively on X, H and $X(H)$
at 0) If we put $B_{h}=\{H: a(H) \leqq h, b(H) \leqq h\}$, we have $B=\underset{l \leqq h<\infty}{\bigcup} B_{h} \quad$ Therefore there exists $k \in \mathbb{N}$ such that B_{k} is an infinite set.

```
Now suppose that f,g\in\mathcal{O}\mathrm{ and }v(fg)=p. Since
```

$\nu_{X(H)}(f g \mid X(H)) \geqq V(f g)$ by the pullback inequality $\left(I_{2}\right)$, we have

$$
k\left(\nu_{X(H)}(f \mid X(H))+\nu_{X(H)}(g \mid X(H))\right)+k \geqq p \quad\left(H \in B_{k}\right)
$$

Then, we may assume that $k v_{X(H)}(f \mid X(H))+k / 2 \geqq p / 2$
$\left(H \in B^{\prime}\right)$ for some infinite subset $B^{\prime} \subset B_{k}$ without loss of generality Let s denote the order of the covering $X-\pi^{-1}(D) \rightarrow V-D$ and let $\sigma_{i}(y) \quad(1 \leqq i \leqq s)$ denote the i-th elementary symmetric polynomial of values of f on the fiber $\Pi^{-1}(y)=\left\{x_{1}, \quad, x_{s}\right\}$ for $y \in V-D . \quad \sigma_{i}(y)$ has a holomorphic extension over V If $H \in B^{\prime}$,

$$
{ }^{\mu}|X(H)| .0(f \mid X(H)) \geqq V_{X(H)}(f \mid X(H)) \geqq(p-k) / 2 k
$$

by (I_{3}) Hence there exist $\varepsilon_{H}>0$ and $C_{H}>0$ such that

$$
|f(x)| \leqq c_{H}|x|^{(p-k) / 2 k} \quad\left(x \in|x(H)|,|x|<\varepsilon_{H} ; H \in B^{\prime}\right)
$$

Then there exists $\varepsilon_{H}^{\prime}>0$ such that
$\frac{\left|\sigma_{i}(y)\right|}{(c|y|)^{i(p-k) / 2 k} \leqq \alpha_{1} \leqq} \sum_{\leqq \alpha_{i}}^{\left|x_{\alpha_{1}}\right|^{(p-k) / 2 k}} \cdot \frac{\left|f\left(x_{\alpha_{1}}\right)\right|}{\left|x_{\alpha_{i}}\right|^{(p-k) / 2 k}}$
$=\binom{s}{i} c_{H}^{i} \quad\left(y \in|H| \backslash D, \quad|y|<\varepsilon_{H}^{\prime} ; H \in B^{\prime}\right)$.
Since $\{H:|H| \subset D\}$ is a finite set, by a choice of B^{\prime}, we may assume that $D \cap|H|$ is thin in $|H|$ for $H \in B^{\prime}$ Then, if $H \in B^{\prime}$, we have $\left|\sigma_{i}(y)\right| \leqq d_{H, i}|y|^{i(p-k) / 2 k} \quad(y \in|H|$, $|y|<\varepsilon_{H}^{\prime}$) for some $d_{H, i}>0 \quad$ This proves that

$$
\nu_{H}\left(\sigma_{i} \mid H\right)=\mu|H|, 0\left(\sigma_{i} \mid H\right) \geqq i(p-k) / 2 k \quad\left(H \in B^{\prime}\right)
$$

(The left equality follows from the regularity of H.)

Thus we have $v\left(\sigma_{i} \circ \pi\right) \geqq{ }_{\mathbb{C}}{ }^{n}\left(\sigma_{i}\right) \geqq i(p-k) / 2 k \quad$ by $\left(I_{2}\right)$ and Since $f^{S}-\left(\sigma_{1} \circ \Pi\right) f^{S-1}+\cdot \pm \sigma_{S} \circ \Pi=0$ on X_{0}, $\bar{v}(f) \geqq(p-k) / 2 k$ by (l.2), (i) $\Rightarrow(r) . \quad$ Then we obtain $\left(C I_{1}\right)$ for the case n, using $\left(C I_{0}\right): \bar{v}(f) \leqq v(f)+b_{0} \quad[$ (3.5) Corollary. Let X be a reduced complex space and let $E \subset|X|$ be an exceptional set such that the set of regular points of X is connected in an arbitrarily small neighbourhood of E. Then for any $\xi, \xi^{\prime} \in E$ there exist $a \geqq 1, b \geqq 0$ such that $v_{\xi}(f) \leqq a v_{\xi}(f)+b$ for $a n y$ $f \in \Gamma\left(U, \theta_{X}\right)$ defined in a neighbourhood U of E.

Proof. By the definition of exceptional set ([G], p.339),
there exists a proper surjective morphism $\Phi: X \rightarrow Y$ such
that $\Phi(E)=\{n\}, \Phi$ is biholomorphic on $|X|-E$ and, if V is a neighbourhood of n, any $f \in \Gamma\left(\Phi^{-l}(V), \Theta_{X}\right)$ can be expressed as $f=g \circ \Phi$ for some $g \in \Gamma\left(V, \Theta_{Y}\right)$ Since U can be expressed as $\Phi^{-1}(V)$, we may apoly this to given f Obviously Y_{η} is reduced and irreducible and $\operatorname{grnk}_{x}{ }^{\Phi}=\operatorname{dim} Y_{n}$ $(x \in E) \quad$ Then $\nu_{\xi}(f)$ and $\nu_{\xi^{\prime}}(f)$ are linearly comparable to $v_{n}(g)$ by $\left(I_{2}\right)$ and $\left(C I_{2}\right)$ of the theorem. Hence $v_{\xi}(f)$ and $v_{n^{\prime}}(f)$ are also linearly comparable. I
(3.6) Corollary Let A be a ring finitely generated over \mathbb{C} and m one of its maximal ideal. Let us put $v_{m}(f)=$ sup $\left\{p: f \in m^{p}\right\}$ for $f \in A$. Then the following conditions are equivalent.
(i) There exist $a_{1} \geqq 1, b_{1} \geqq 0$ such that $\nu_{m}(f g) \leqq$ $a_{1}\left(\nu_{m}(f)+\nu_{m}(g)\right)+b_{1} \quad(f, g \in A)$
(ii) The completion $\left(A_{m}\right)$ " of the localization A_{m} is an integral domain.

Proof. We may assume that $A=\mathbb{C}[x] / I \quad\left(x=\left(x_{1}, \quad, x_{m}\right)\right)$

Since \mathbf{C} is algebraically closed we may assume that
$I \subset m_{0}:=\left(x_{1}, \quad, x_{m}\right) \mathbb{C}[x], m=m_{0} A$ without loss of
generality Then $\tilde{A}=\mathbb{C}\{x\} / \mathbb{C}\{x\}$ is an analytic local
algebra with the maximal ideal $m \tilde{A}$ such that $A_{m} \subset \tilde{A} . \quad\left(A_{m}\right)$ ~ is the completion of both \tilde{A} and A_{m} and hence faithfully flat over them. Then \tilde{A} is faithfully flat over A_{m} and $m^{P} A_{m}=m^{P} \tilde{A} \cap A_{m} \quad$ On the other hand symbolic powers $m(p):=m^{p} A_{m} \cap A$ coincide with m^{p} by the maximality of m. These prove that $\nu_{m}(f)=\nu_{m A}(f)=v_{m A}(f) \quad(f \in A) \quad$ Then (i) follows from (ii) by $\left(C I_{1}\right)$ for the integral domain \tilde{A}. Conversely suppose that (ii) is false. Then there exist $\hat{\mathrm{f}}, \hat{g} \in\left(\mathrm{~A}_{\mathrm{m}}\right)^{\wedge}$ such that $\hat{\mathrm{f}} \hat{\mathrm{g}}=0, \hat{\mathrm{f}} \neq 0, \hat{g} \neq 0$. We can identify $\left(A_{m}\right)^{\wedge}$ with $\mathbb{C}[[x]] / I \mathbb{C}[[x]] \quad$ Take representatives $f, g \in C[[x]]$ of \hat{f}, \hat{g} respectively such that $v_{m},(f)=v_{\hat{m}}(\hat{f}), \quad v_{m},(g)=v_{\hat{m}}(\hat{g}) \quad\left(m^{\prime}=m_{0} \mathbb{C}[[x]], \hat{m}=m\left(A_{m}\right)^{\wedge}\right)$ Let $f_{p}\left(r e s p . g_{p}\right)$ be the polynomial which consists of the
homogeneous terms of f (resp. g) of degree less than $p+1$. If $p \geqq \max \left\{v_{\hat{m}}(\hat{f}), v_{\hat{m}}(\hat{g})\right\}$, then $v_{m}\left(f_{p} \bmod I\right)=v_{\hat{m}}(\hat{f})<\infty$, $v_{m}\left(g_{p} \bmod I\right)=v_{m}(\hat{g})<\infty$. On the other hand $v_{m}\left(f_{p} g_{p} \bmod I\right)$ $\geqq p+1$. Hence (i) does not hold. \square

Let θ be a local real analytic algebra. It can be considered as the local ring $\mathcal{\theta}_{X, \xi}$ of a germ X_{ξ} of a real analytic space. We define the dimension of X_{ξ} by the Krull dimension of θ : dim $X_{\xi}:=$ $\operatorname{dim} \theta$. In general $\operatorname{dim} X_{\xi} \geq \operatorname{dim}|X|_{\xi} \quad$ We call $\mathbb{C}_{\mathbb{R}^{\theta}}$ the complexification of θ. It determines a germ X_{ξ}^{C} of a complex space called the complexification of X_{ξ} Since $\mathbb{C}^{\otimes} \mathbf{R}^{\ominus}$ is integral over θ, $\operatorname{dim} x_{\xi}^{\mathbb{C}}=\operatorname{dim} \mathbb{C} \otimes_{\mathbb{R}^{\theta}}=\operatorname{dim} \theta=\operatorname{dim} X_{\xi}$
by a theorem of Krull-Cohen-Seidenberg.
(4.1) Theorem. Let θ be a local real analytic algebra of positive dimension whose complexification is an integral domain. Then θ satisfies the real versions of (1), (2), (3) of the main theorem (3.4) Proof (1) Obvious by (3 4), (1)
(2) Let $\Phi^{\mathbf{C}}, \mathbb{f}^{\mathbb{C}}$ be the complexifications of Φ and f

```
respectively. Since }\mp@subsup{v}{\xi}{}(\mp@subsup{f}{}{\mathbf{C}})=\mp@subsup{v}{\xi}{}(f),\mp@subsup{v}{\eta}{}(\mp@subsup{f}{}{\mathbf{C}
```



```
paracompact -> \sigma-compact)), our assertion follows from (3.4),(2)
(3) This follows from (3.4), (1) and [I I], (3.1)
    If S is a germ of a real analytic set at 0\in舟, I(S)
denotes the ideal of elements of R{x} vanishing on S. If
J is an ideal of }\mathbb{R}{x},V(J) denotes the maximal germ of a
real analytic set at 0 on which all elements of J vanish.
(4 2) Lemma ([Ri],(4.l)) The following conditions are
equivalent for an ideal J of R{x}
(C) \(f_{l}^{2}+\cdot+f_{p}^{2} \in J\) implies \(f_{l}, \quad, f_{p} \in J\)
\((Z) J=I(S)\) for some germ \(S\) of a real analytic set.
        J is called real if it satisfies the conditions in (4 2)
(4.3) Lemma. Let }J\mathrm{ be a prime ideal of }\mathbb{R}{x
(i) J is real if and only if }\operatorname{dim}\mathbb{R}{x}/J=\operatorname{dim}V(J) ([Ri]
(4.3)).
```

(ii) If J is real, $\mathbf{C} \otimes_{\mathbf{R}^{J}}$ is prime in $\mathbb{C}\{\mathrm{X}\}$ ([G-T], p.371; [Ri],(6.1))
(4.4) Remark. Let S be an irreducible germ of a real analytic set at $0 \in \mathbf{R}^{n}$. Then (4.1) is applicable to the integral domain $\mathbf{R}\{\mathrm{x}\} / \mathrm{I}(\mathrm{S})$ by (4.3), (ii) There exists, however, a non-real ideal J with a prime complexification $\mathbf{C} \otimes_{\mathbf{R}} J$ (e.g $\left.J=\left(x^{2}+y^{2}+z^{2}\right) \mathbb{R}\{x, y, z\}\right) \quad$ In such a case $\operatorname{dim}|X|_{\xi}<\operatorname{dim} X_{\xi}, \operatorname{grnk} \Phi<\operatorname{dim}_{\eta} \quad$ and hence (2) and (3) of (4.l) is meaningless. Note also that in such a case the complexifications of X_{ξ} and $|X|_{\xi}$ are not compatible.

$$
\begin{aligned}
& \text { For } f(z)=\Sigma \alpha_{k} z^{k} \in \mathbf{C}\{z\} \quad\left(z=\left(z_{1}, \ldots, z_{m}\right)\right) \text {, we put } \\
& f *(z):=\Sigma \bar{\alpha}_{k} z^{k} \in \mathbb{C}\{z\}
\end{aligned}
$$

$$
\operatorname{Re} f(x+i y):=(f(x+i y)+f *(x-i y)) / 2 \in R\{x, y\}
$$

$$
\operatorname{Im} f(x+i y):=(f(x+i y)-f *(x-i y)) / 2 \in R\{x, y\}
$$

If I is an ideal of $C\{z\}, I^{r}$ denote the ideal of $\mathbb{R}\{x, y\}$ generated by $\{\operatorname{Re} f(x+i y): f \in I\} \quad$ (or, equivalently, by $\{\operatorname{Im} f(x+i y): f \in I\}) \quad$ We put

$$
\begin{aligned}
& \mathcal{O}:=\mathbb{C}\{z\} / I, \quad \mathcal{Q}^{r}:=\mathbb{R}\{x, Y\} / I^{r}, \tilde{I}:=\mathbf{C} \otimes_{\mathbb{R}^{1}} I^{r}, \\
& \tilde{\mathcal{C}}:=\mathbf{C}\{x, y\} / \tilde{I}=\mathbb{C} \otimes_{\left.\mathbb{R}^{(}\right)} \mathcal{O}^{r}
\end{aligned}
$$

Further we put

$$
\begin{aligned}
J & :=\{f(u): f(z) \in I\}, \quad J *:=\{f *(v): f(z) \in I\}, \\
K & :=(J \otimes l) C\{u, v\}+(I \otimes J *) \mathbb{C}\{u, v\} \\
& \subset \mathbb{C}\{u\} \hat{\otimes} \mathbb{C}\{v\}=\mathbb{C}\{u, v\}
\end{aligned}
$$

$(\otimes, \hat{\otimes}$: analytic tensor product, see $[G-R])$ Let us define an isomorphism $\theta: \mathbb{C}\{u, v\} \longrightarrow \mathbb{C}\{x, y\}$ by $\theta(f(u, v))$:= f(x + iy, x - iy)
(4.5) Lemma (cf. [Ma], §3, which treats analytic sets)

$$
\tilde{I}=\theta(\mathrm{K}) \quad \text { i.e. } \quad \tilde{\theta} \cong \theta \hat{\otimes} \theta^{*} \quad\left(\theta^{*}=\mathbb{C}\{\mathrm{v}\} / \mathrm{J}^{*}\right)
$$

Proof Obvious by the following implication.

$$
f \in \theta(K)
$$

$\Longleftrightarrow \exists g \in K$ s.t. $f(x, y)=g(x+i y, x-i y)$
$\Longleftrightarrow \exists \alpha_{\mu}, \exists \beta_{\mu} \in \mathbb{C}\{u, v\} ; \exists h_{\mu}, \exists k_{\mu} \in J \quad(\mu=1, \quad, p)$

$$
\begin{align*}
\text { s.t. } \quad f(x, y)= & \sum\left\{\alpha_{\mu}(x+i y, x-i y) h_{\mu}(x+i y)\right. \\
& +\beta_{\mu}(x+i y, x-i y) k_{\mu}^{*}(x-i y)
\end{align*}
$$

$\Longleftrightarrow f \in \tilde{I}$
(4.6) Proposition. If © is an integral domain in the above, we have the following
(i) $\tilde{\theta}$ is an integral domain.
(ii) I^{r} is a real ideal.
(ii) is just the affirmative answer to Malgrange's
conjecture [Ma], p.124.

Proof. (i) By (4.5) we have only to prove that $\theta \widehat{\otimes} \theta^{*}$ is an integral domain. Since 0^{*} is isomorphic to $\mathcal{\theta}$ as a ring, it is an integral domain. Then $\otimes \otimes \otimes^{*}$ is also so by Nagata's theorem $\left[\mathrm{N}_{2}\right]$, (47.5)
(ii) Since $\tilde{\mathscr{Q}}$ is an integral domain and since

$$
\operatorname{dim} \theta^{r}=\operatorname{dim} \tilde{\mathscr{\theta}}=\operatorname{dim} \theta \hat{\otimes} \theta^{*}=2 \operatorname{dim} \theta=\operatorname{dim} V\left(I^{r}\right),
$$

we have the assertion by (4.3), (i).
(4 7) Remark. If $\mathcal{\theta}$ is an integral domain, we may well call
\mathcal{Q}^{r} the real analytic algebra associated to Θ. But, if not, \mathscr{Q}^{r} is not fit to be called so. For example, consider
the case $I=I_{1} \cap I_{2}, \quad I_{i}=z_{i} \mathbb{C}\left\{z_{I}, z_{2}\right\} \quad(i=1,2)$
Since $K=\left(u_{1} u_{2}, v_{1} v_{2}\right) c\{u, v\}, V(\tilde{I}) \cong V(K)$ has four
components at $0 \in \mathbb{C}^{4}$. Therefore $V(\tilde{I})$ is bigger than
the join of $V\left(\tilde{I}_{1}\right)$ and $V\left(\tilde{I}_{2}\right)$ Returning to the algebras of the real parts, we see that θ^{r} is too big to be called the real analytic space associated to θ.
(4.8) Remark. If $f_{\mu}(\mu=1, \quad$ p) generate I, $\operatorname{Re} f_{\mu}(x+i y), \operatorname{Im} f_{\mu}(x+i y)$ generate $I^{r} \quad$ Then, for any complex space X, we can construct the real analytic space X^{r} (defined by a coherent sheaf of ideals) and its
complexification \tilde{X} in the sense of [H]

Proof of (3.4), (3). Let X_{ξ} be a reduced and irreducible germ of a complex space. Then X_{ξ}^{r} has a reduced and irreducible complexification \tilde{X}_{ξ} by (4.6) Hence (4.1) holds for $X_{\xi}^{r} \quad$ If $f \in \Theta_{X, \xi}$, we have only to apply (4.1), (3) for X_{ξ}^{r} to the real and the imaginary part of f. (If we consider the proof of (4.1), (3), we see that (3 4), (3) for n-dimensional X_{ξ} results from (3.4), (2) for 2 n-dimensional $\tilde{\mathrm{X}}_{\xi}$.) [

$$
\begin{aligned}
& \text { §5 Nearness to } p \text {-th Power in } \mathbb{C}\left\{x_{1}, \quad, x_{m}\right\} \\
& \text { In this section we put } A=\oplus_{m, 0}=\mathbb{C}\left\{x_{1}, \quad, x_{m}\right\} \text {, } \\
& \hat{A}=\mathbf{C}\left[\left[x_{1}, \quad, x_{m}\right]\right], v()=\nu_{0}() \quad \text { Let } p \text { be a prime } \\
& \text { number and } u \text { not a } p \text {-th power in } A \text {. The functional } \\
& \text { equation } f^{P} u-g^{P}=0 \text { has unique solution }(f, g)=(0,0) \\
& \text { If } v\left(f^{P} u-g^{p}\right) \text { is large, (} f, g \text {) is a "near solution" We } \\
& \text { claim that a near solution is near to the unique solution: } \\
& \text { (5.l) Proposition. If } u \in A \text { is not a } p \text {-th power in } A \text {, there } \\
& \text { exist } a \geqq p, b \geqq \nu(u), b^{\prime} \geqq 0 \text { depending only on } n, p, u \\
& \text { such that } a v(f)+b \geqq v\left(f^{p} u-g^{p}\right), a v(g)+b{ }^{\prime} \geqq v\left(f^{p} u-g^{p}\right) \\
& \text { for any } f, g \in \hat{A} \text {. } \\
& \text { (5.2) Remark. By Artin's strong approximation theorem }\left[A_{2}\right] \text {, } \\
& \text { (6.1), we see that, if } u \text { is a polynomial, there exists a } \\
& \text { function } e: \mathbb{N} \longrightarrow \mathbb{N} \text { such that } v(f), v(g) \geqq e\left[v\left(f^{p} u-g^{p}\right)\right] \\
& \text { (5.1) asserts that we can choose a linear } e \text {. } \\
& \text { Proof. Let us put } F=v(f), G=v(g), K=v\left(f^{p} u-g^{p}\right) \text {, } \\
& U=v(u) \text { and } T=\max \{F, G, K\}+1 \text {. We have to prove that } \\
& \text { (*) } \quad \mathrm{aF}+\mathrm{b} \geqq \mathrm{~K}, \quad \mathrm{aG}+\mathrm{b}^{\prime} \geqq \mathrm{K} \text {. }
\end{aligned}
$$

Considering the cases $g=0$ and $f=0$ we have necessary conditions
(i) $a \geqq p, b \geqq v(u), b^{\prime} \geqq 0$

This assures (*) if $T=\infty$. Thus we have only to treat the case $T<\infty . \quad$ If $f-f^{\prime}, g-g^{\prime} \in m^{T}$ then $v\left(f^{\prime}\right)=F$, $v\left(g^{\prime}\right)=G, \quad v\left(f^{\prime} P_{u}-g^{\prime P}\right)=K . \quad$ Hence we may assume that f, $g \in A . \quad$ If the initial form (the homogeneous term of the lowest degree) In u is not a p-th power, $K=m i n(p F+U$, pG) and (*) is obvious ($\mathrm{a}=\mathrm{p}$). So we may assume that $\mathrm{U}=\mathrm{pV} \quad(\mathrm{V} \in \mathbf{N})$

Let us introduce a new variable z and consider

$$
\begin{aligned}
& \theta_{m+1}, 0:=C\left\{x_{1}, \quad, x_{m}, z\right\} \\
& \theta:=\theta_{m+1,0} /\left(u-(-z)^{p}\right) \theta_{m+1}, 0
\end{aligned}
$$

Let v and v_{θ} denote the algebraic order of $\mathcal{O}_{m+1,0}$ and (c) with respect to the respective maximal ideals (these are extensions of the original $v) \quad h \in \Theta$ has a unique representative of the form $\sum_{i=0}^{p-1} h_{i} z^{i} \in \theta_{m+l}, 0 \quad\left(h_{i} \in A\right)$
$v_{\theta}(h)=\min \left(v\left(h_{i}\right)+i\right)$ by the assumption $U=p V \geqq p$.

If we put

$$
\begin{aligned}
h:= & \left(f g^{p-2} z^{p-1}-g^{p-1} z^{p-2}\right)+\left(f^{p-1} u z^{p-3}-f^{p-2} g u z^{p-4}\right. \\
& \left.+\ldots+f^{3}(-g)^{p-4} u z+f^{2}(-g)^{p-3} u\right) \\
& (i f \quad p=2, h:=f z-g),
\end{aligned}
$$

we have

$$
(f z+g) h \equiv\left(f^{p} u-g^{p}\right) z^{p-2} \quad \bmod u-(-z)^{p} \quad(f, g \in A)
$$

Then, applying (3 4), (1) to the integral domain θ, we have
(ii) $\quad a_{1}(\dot{v}(f z+g)+v(h))+b_{1} \geqq v\left(\left(f^{P} u-g^{p}\right) z^{p-2}\right)=K+p-2$
$(f, g \in A)$

If $\mathrm{pG} \neq \mathrm{pF}+\mathrm{U}$, we can directly prove (*) using (i) So
we have only to treat the case $\mathrm{pG}=\mathrm{pF}+\mathrm{U}$. Then, since

$$
\begin{aligned}
& v\left(g^{p-1} z^{p-2}\right)-v\left(f g^{p-2} z^{p-1}\right)=v-1, \\
& v\left(f^{p-1} u z^{p-3}\right)-v\left(f_{g}^{p-2} z^{p-1}\right)=2(v-1), \\
& v\left(f^{p-2} g u z^{p-4}\right)-v\left(f^{p-2} z^{p-1}\right)=3(v-1), \\
& \cdot \\
& v\left(f^{2} g^{p-3} u\right)-v\left(f_{g}^{p-2} z^{p-1}\right)=(p-1)(v-1),
\end{aligned}
$$

we have
(iii)

$$
\begin{aligned}
v(h) & =v\left(f g^{p-2} z^{p-1}\right)=(p-l) F+(p-2) v+p-1 \\
& =(p-l) G-V+p-1
\end{aligned}
$$

Since $G-(F+1)=V-I \geq 0$,
(iv) $v(f z+g)=F+1=G-V+1$.

Combining (ii), (iii) and (iv), we have

$$
\begin{aligned}
& a_{1}(p F+(p-2) V+p)+b_{1}-p+2 \geq K \\
& a_{1}(p G-2 V+p)+b_{1}-p+2 \geqq K
\end{aligned}
$$

Hence (*) holds by a suitable choice of a and $b\left(a=a_{1} p\right) \quad[$ (5.3) Definition. $\theta(p, u):=\inf a / p$ (a: in (5.1))

This can be regarded as a measure of nearness to p-th
power
In view of the proof above, we have an estimate
$1 \leqq \theta(p, u) \leqq a_{1}$
(5.4) Example. If In u is not a p-th power, $\theta(p, u)=1$.

This means that u is very far from p-th powers.
(5.5) Example. Suppose that $u:=v^{P}-w$ is not a p-th power
in A and $k:=V(w) \geqq p v(v)+1$ Using Tailor expansion

$$
\begin{gathered}
\sqrt[p]{1+t+t^{2}+.}=1+c_{1} t+c_{2} t^{2}+. \quad \text {, we have } \\
\left(1+c_{1} t+c_{2} t^{2}+\ldots+c_{n} t^{n}\right)^{p}(1-t)-1 \\
\quad=d_{n+1} t^{n+1}+d_{n+2} t^{n+2}+\ldots+d_{n p+1} t^{n p+1}
\end{gathered}
$$

for suitable $d_{n+1}, \ldots, d_{n p+1} \in \mathbb{C}$. Hence

$$
\begin{aligned}
& \left(v^{n p}+c_{1} v^{\left.(n-1) p_{w}+c_{2} v^{(n-2)} p_{w}^{2}+\ldots+c_{n} w^{n}\right)^{p}\left(v^{p}-w\right)}\right. \\
& \left.-v^{(n p}+1\right) p \\
= & d_{n+1} v^{(n p-n) p_{w} n+1}+d_{n+2} v^{(n p-n-1) p_{w} n+2}+\ldots+d_{n p+1} w^{n p+1}
\end{aligned}
$$

If we put $f_{n}=v^{n p}+c_{l} v^{(n-1)} p_{w}+\ldots+c_{n} w^{n}, \quad g_{n}=v^{n p+1}$,
we have

$$
\begin{gathered}
v\left(f_{n}^{p_{u}}-g_{n}^{p}\right)=v\left(v(n p-n) p_{w}^{n+l}\right)=n(p-l) p h+(n+l) k \\
(h:=v(v))
\end{gathered}
$$

Hence $\theta(p, u) \geqq\left(p^{2} h-p h+k\right) / p^{2} h=1+(k-h p) / h p^{2} \quad(>1)$ (5.6) Example. If $u=x_{1}^{p}-x_{2}^{k}(k>p, k \neq 0 \bmod p), a_{1}$ for θ in the proof of (5.1) is estimated as $a_{1} \equiv k / p$ by the proof of $\left[I_{1}\right]$, (1.5) Hence we have

$$
l-l / p+k / p^{2} \leqq \theta(p, u) \leqq k / p
$$

```
Appendix: inf al and inf b fl for Some Elementary Singularities
```

Let a_{1} denote the infimum of a_{1} in (3.4) for a given local complex analytic integral domain $\theta=\theta_{X}, \xi$ In case \underline{a}_{1} is attained, \underline{b}_{1} denotes the infimum of b_{1} that satisfies (3.4), (1) with $a_{1}=\underline{a}_{1} \quad$ The author does not know whether \underline{a}_{1} is always attained and whether ${\underset{a}{1}}$ is a rational number. Here we exhibit the explicit values of \underline{a}_{1} and \underline{b}_{1} for some elementary singularities $\quad a_{1}$ in (i), (iii), (iv) and \underline{b}_{1} in (i) were first taught by Tomari. (i) $\quad v(f g)=v(f)+v(g)\left(f . g \in(0)\right.$ (i.e. \underline{a}_{1} and \underline{b}_{1} are attained and $\underline{a}_{1}=1, \underline{b}_{1}=0$) iff $\mathrm{Gr}_{\mathrm{m}} \mathcal{\theta}:=\sum_{\mathrm{p}=0}^{\infty} \mathrm{m}^{\mathrm{p}} / \mathrm{m}^{\mathrm{p}+1}$ is an integral domain. The proof is standard.
(ii) If $\operatorname{dim} \mathbb{O}=1$, the exceptional fiber of the normalization of the blowing-up of X with center m_{ξ} is irreducible. Then \underline{a}_{1} is attained and $\underline{a}_{1}=1$ by (14)
(iii) Let $(X, 0)$ be a hypersurface singularity in \mathbb{C}^{3} defined by $z^{2}-\varphi(x, y)=0 \quad(\varphi(0,0)=0) . \quad$ Let v and v_{0} denote the algebraic orders on $\mathbf{c}\{x, y, z\}$ and on $\theta:=\boldsymbol{C}\{x, y, z\} /\left(z^{2}-\varphi\right) \mathbb{C}\{x, y, z\}$ respectively.

Further we assume that $r:=v(\varphi)$ is an odd number greater than 2. Here we claim about θ that $\underline{a}_{1}=1$ and $\underline{b}_{1}=r-2$ and that they are attained. Obviously every $\bar{f} \in \mathcal{O}$ has a unique representative of the form $f=f_{f}(x, y) z$ $+f_{2}(x, y) \in \mathbf{C}\{x, y, z\}$ such that $\nu_{\theta}(\bar{f})=\nu(f)=$ $\min \left(v\left(f_{1}\right)+1, v\left(f_{2}\right)\right) \quad$ Suppose that
(*) $\quad \nu_{\Theta}(\bar{f} \bar{g})>\nu_{\Theta}(\bar{f})+\nu_{\Theta}(\bar{g})+r-2$
for some $\overline{\mathrm{f}}, \overline{\mathrm{g}} \in \mathbb{O}$. This implies that

$$
\begin{aligned}
& v\left(f_{1} g_{2}+f_{2} g_{1}\right)>v(f)+v(g)+r-3, \\
& v\left(f_{1} g_{1} \varphi+f_{2} g_{2}\right)>v(f)+v(g)+r-2
\end{aligned}
$$

By a standard calculation we have

$$
v\left(f_{1}^{2} \varphi-f_{2}^{2}\right)>2 v(f)+r-2 .
$$

On the other hand, since r is odd,

$$
v\left(f_{1}^{2} \varphi-f_{2}^{2}\right)=\min \left(2 v\left(f_{1}\right)+r, 2 v\left(f_{2}\right)\right) \leqq 2 v(f)+r-2,
$$

a contradiction. Thus (*) never holds and we may put

$$
\begin{aligned}
& a_{1}=1, b_{1}=r-2 \quad \text { Since } \\
& \quad v_{\theta}\left(z^{2}\right)=r=\left(v_{\theta}(z)+v_{\theta}(z)\right)+r-2,
\end{aligned}
$$

b_{1} can never be smaller than $r-2$ Hence we have proved the assertion.

In the case 0 is an isolated singularity of X (i.e. X is normal at 0), we can prove that the exceptional fiber of the normalization of the blowing-up of X with center m_{0} is irreducible, which again implies that a_{1} is attained and $\underline{a}_{1}=1 \quad$ This case includes the rational singularities of types $D_{k}(k \geqq 4), E_{6}, E_{7}, E_{8}$ (cf. [Br])
(iv) The remaining two dimensional rational singularity of multiplicity 2 is $A_{k}(k \geqslant l)$ defined by the equation $x^{2}+y^{2}+z^{k+1}=0$ in $c^{3} \quad$ By the proof of $\left[I_{1}\right],(1.5)$,
we see that (3.4), (1) holds for $a_{1}=(k+1) / 2, b_{1}=0$

On the other hand

$$
\begin{aligned}
a_{1} & \geqq\left\{v\left((x+i y)^{p}(x-i y)^{p}\right)-b_{1}\right\} /\left\{v\left((x+i y)^{p}\right)+v\left((x-i y)^{p}\right)\right\} \\
& =\left\{(k+l) p-b_{1}\right\} / 2 p \quad(p \in \mathbb{N})
\end{aligned}
$$

Hence $a_{1} \geqq(k+1) / 2 . \quad$ Thus we have proved $\underline{a}_{1}=(k+1) / 2$, $\underline{b}_{1}=0$ and they are attained.

References

[A] Artin, M.: Algebraic approximation of structures over complete local rings Publ. Math. IHES 36, 23-58 (1969)
[Be] Becker, J : On the composition of power series. In: Commutative algebra (analytic methods) (LN in pure \& ap. math. 68), (159-172) New York: Marcel Dekker 1982.
[Br] Brieskorn, E.: Uber die Auflösung gewisser Singularitäten von holomorphen Abbildungen. Math. Ann. 166, 76-102 (1966)
[F] Flenner, H.: Die Sätze von Bertini für lokale Ringe. Math. Ann. 229, 97-111 (1977)
[G] Grauert, H.: Uber Modifikationen und exceptionelle analytische Mengen. Math. Ann. 146, 331-368 (1962)
[G-R] Grauert, H., Remmert, R.: Analytische Stellenalgebren (GMN 176) Berlin-Heiaelberg-New York: Springer 1971.
[G-T] Galbiati, M., Tognoli, A.: Alcune proprietà delle varietà algebriche reali. Ann. Scuola Norm. Sup. Pisa 27, 359-404 (1973)
[H] Hironaka, H.: Subanalytic sets.: In: Number theory, algebraic geometry and commutative algebra, in honor of Y Akizuki, (453-493) Tokyo: Kinokuniya 1973.
[I_] Izumi, S.: Linear complementary inequalities for orders of germs of analytic functions. Invent. Math. 65, 459-471 (1982)
[$\left.I_{2}\right]$ Izumi, S.: Inequalities for orders on a rational singularitiy of a surface. J Math. Kyoto Univ 24. 239-241 (1984)
[L-T] Lejeune-Jalabert, M., Teissier, B.: Clôture intégrale des idéaux et équisingularite. École Polytechnique 1974.
[Ma] Malgrange, B.: Sur les fonctions différentiables et les ensenbles analytiques. Bull. Soc. Math. France 91, 113-127 (1963)
[Mu] Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity Pub. Math. IHES 11, 229-246 (1961)
[N_{1}] Nagata, M.: Note on a paper of Samuel concerning asymptotic properties of ideals. Mem. Coll. Sci Univ Kyoto, Ser. A, 30, 165-175 (1957)
$\left[N_{2}\right]$ Nagata, M.: Local rings (Interscience tracts in Pure \& applied Math. 13) New York-London: Interscience Publishers 1962.
[Re_{1}] Rees, D.: Valuations associated with a local ring (I). Proc. London Math. Soc 5. 107-128 (1955)
$\left[\mathrm{Re}_{2}\right]$ Rees, D.: Valuations associated with ideals (II) J London Math. Soc. 31, 221-228 (1956)
[Re_{3}] Rees, D.: Valuations associated with a local ring (II) J London Math. Soc. 31, 228-235 (1956)
[Ri] Risler, J-J.: Le théorèm des zéros en géométries algébraique et analytique réelles. Bull. Soc. Math. France l04. 113-127 (1976)
[S] Samuel, P.: Some asymptotic properties of powers of ideals, Ann. of Math. 56, ll-2l (1952)

