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Measure of Integrity

A Measure of Integrity for Local Analytic Algebras

By

Shuzo IZUMI*
§0 Introduction

We will complete the study [Il], [Iz] on orders of

elements of a local analytic algebra. Let (X, @X) be a
comlpex space and (0, m):=(©X £ mg) its local algebra at
Ee€eX. © can be expressed as © = C{x}/I for some ideal

I of the algebra C{x} of convergent power series in
X ) We define three kinds of orders for
f€o.

algebraic order: v(f) = vg(f) := sup{p: fem®} = suplthe

degree of the lowest non-zero homogeneous term of f: £ is

a representative of £ in C{x}}

reduced order ([L-T], cf. [S)]): v(f) := lim v(fk)/k
k>0
analytic order along AC |X]| : My g(f) := sup{p: there

~

exist a > 0, neighbourhood U of & and representative £

~

of f over U such that [£f(x)] alx - ¢fP (x € UNA)}

A

We can easily verify the following.
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inequality for the reduced order:

(I,) v(£) 2 v(f) (f € 0)
inequality for products:

(1,) v(fg) > v(f) + v(g) (£, g€0)
inequality for pullbacks: If &: Y—> X 1is a morphism such
that ¢(n) = &,

(I,) vn(fo®) > vg(f) (f € ©)

inequality for the analytic order:

(I5) u (£) > v(f) (f €0).

We are interested in linear complementary inequalities

(ICI) of these (Ii)’ By the strong valuation theorem of

Rees [Re3] on Noetherian rings, we see the following:

If X is reduced at £, there exists b, = b.(0)

such that

(CIy) V(E) < v(f) + by (f€ 0).

We prove the following LCI as our main theorem, (3.4),

assuming that X is reduced and irreducible at & 1i.e. O

w



is an integral domain.

(1) There exist a; = al(©) > 1, bl = bl(©) > 0 such that

(CIl) v (fqg) < a(v(f) + v(g)) + b (£, g€ )

1 1

(2) For any morphism ¢: (Y, n)—> (X, &) with dim X, =

3
grnkn® (see below), there exist a, = a,(¢) > 1, b, =b,(¢) 20
such that
(CI,) vn(fo@) < a2v£(f) + b, (feo)

(3) For any open subanalytic set AC|X| adherent to £, there

exist a. = a,(Ad) > 1, b, = b3(A) > 0 such that

<

h
+
o}

(CI9) 1y () < ag (£€0).

In the above grnkn® denotes the generic rank defined

for a morphism of germs of analytic spaces over k C or R:
grnkn® = eg-inf{topological dimension of ®(U): U 1is a
neighbourhood of n} (e = 1/2 if k =¢C; € =1 if k = R)

This has been used to study properties of a ring homomorphism

induced by a morphism between spaces (see [Be])

The constants a; (or bi) in the above LCI measure some

intrinsic properties of ©, & and A as follows If © 1is not

cH



an integral domain, ay does not exist (al = ) S0 we

may consider inf a; = inf{al: there exists bl such that

(CIl) holds} as a measure of integrity of the algebra
(or 1/inf a; as a distance of ® from non-integral

domains) inf a, can be considered as a kind of order of

the morphism &. Indeed, in case (X, &) = (C, 0), we see

that inf a, coincides with the reduced order, v (®), of the

function ©&. inf a3 seems to have a relation with the

size of the germ A Of course, if ACB, inf a, (A)

£ 3

> inf a3(B)

We have already proved that (1) and (2) of the main
theorem are equivalent ([Il]’ (1.2)) So we prove (1)
by induction on n := dim Xg (The proof of (3) is
postponed till the end of §4 ) In §1 we recall the
valuation theorem in a special form we need later It

implies the case n =1 of (1) immediately The case

n = 2 can not be reduced to the case n = 1. We can



manage to prove this case by the use of the intersection

matrix of Du VvVal-Mumford for a normal surface (§2). In

§3 we reduce the case n (> 3) to the case n -1 using a

Bertini type theorem of Flenner, completing the proof of (1)

In §4 we show a real analytic version of the main theorem.

There we remark that Risler's criterion for real ideal (= real

radical) gives an affirmative answer to Malgrange's conjecture

([Mal, p. 124) on the real analytic set associated to

a complex analytic set. In §5, as an application of the

main theorem, we treat"near solutions" of the algebraic equation

Py - gp =0 in C[[x]] for a given u€ C{x} and a prime

number o This yields an intrinsic measure of nearness of

u to p-th powers in C{x}. In Appendix we calculate the

explicit values of inf a; and 1inf bl for some singularities.
The author wishes to thank Mr M. Tomari for many

helpful advices and Professor K. Saito for pointing out a

mistake in the formulation of (4.5) in the provisional

manuscript.



§1 The Valuation Theorem

Here we introduce the most basic result on orders on an

analytic algebra, restricting ourselves to the case of the

orders with respect to the maximal ideal Let X Dbe

a positive dimensional complex

space reduced at ¢ and let M denote the set of all morphisms

Il: Y—>X such that Y are normal, I induce proper morphisms

onto neighbourhoods of £ and the ideal sheaves defining I (&)

(with the canonical structure) are invertible. M 1is not empty;

the composition of the normalization after the blowing-up with

center & belongs to M If N€M, the exceptional fiber E
over ¢§& (= the reduction of H—l(g)) has a finite number of

irreducible components {Ei}ie AT Let I and I, denote
the sheaves of ideals defining E and Ei respectively By

the normality and the Hauptidealsatz (cf [(G-R], p.1l29, p. 223),
there exists an complex analytic set SC|Y| of codimension

at least 2 such that Y - S (= Y‘\Y]—S) is a smooth manifold
and E - S and E; - S are submanifolds of Y - S of

codimension 1. For feTl(U, ©,), we put

X

9]



_ g p }
v. (f) := sup{p: (£ H)yé 1y for all (some) ye|E/] - S}

If f€0 := ©X,€ , we define Vi(f) using its representative.
It is obvious that vi(fg) = vi(f) + vi(g) (f, g€ 0)

(1 1) Lemma ([L-T], (4.1.8)) If we put vi(m) = inf{vi(g):
g€ m} (m == mg), we have

inf{v, (£) /v, (m): i€a(M)} = suplp/q: (femTer(u, 17},
(1.2) Lemma ([L-T], (4.1.6), (5.5), (7 2) cf. (1 12)) Let
X Dbe a positive dimensional complex space reduced at ¢£.
Then, for any f €T (X, @X), v(f) is a rational number and the
following conditions are equivalent for any p, g€ N.
(r) v(f) > p/q.
(1) There exist oiE © (1 < i < k) such that v(oi) > ip/qg and
f7 - o, f + o,f -+ *+ 0, =0 in O.
(c) Let D denote the unit open disc in the complex plane C.

Then for any morphism ¢: D—> X with ¢(0) = &, we have

(£00)

v

Vo (p/q)inf{vo(gocb): g€ m}

(m) For any 1II: Y— X in M,

inf{v, (f)/v,(m): i€ A(M} > p/q.



(m') There exists INI: Y—>X in M such that
inf{vi(f)/vi(m): i€ A(M} > p/q.

(a) u|X],£(f) > p/4q

(1 3) Remark. This theorem was proved in an algebraic form by

] independently, developing

Rees [Rel], [Re and Nagata [N

2] 1
Samuel's paper ([S] They treated more general rings. The
conditions (c¢) and (d) were considered first by Lejeune and
Teissier They stated the result for general coherent sheaves
on complex spaces.

(1.4) Remark. By (m) and (m') we see that v(f) =

inf{vi(f)/vi(m): i€na(ll)} for any TNeM.

§2 LCI for normal surfaces
Here we use the notation in §1.
(2 1) Theorem. If X 1is a 2-dimensional complex space normal
at £, IN: Y~ X a morphism in M and if Y is nonsingular,

we have the following.

(i) There exist cij >0 (cii = 1) such that Cijvj(f) >
Vi(f) (i, je€A(m))

(1i) If we put al = (1 + ?aT cijvj(m)/vi(m))/2, we have
C(fg) < al(G(f) + G(g)) and hence v(fqg) < al(v(f) + vi(g))

3



+ 2b (f, ge®) by (CI

0 )

0

Proof (i) Let A(m) = {E, , , E.} and let s denote the

k £

strict transform of the divisor (f) of f€® with respect
to 1. Then no Ei appears in Sf and (foll) =

Sf + I m.lEi (m, = v, (£f)) Taking intersection number

with Ej around E (cf [Mu]), we have

Hence the vector (ml, , mk) is contained in the convex
k .
cone KCR defined by
* 1 =
(*) ; Xieij <0, Xj >0 (3 1, , k)
i
We have only to prove that K\O0} is included in the

strictly positive quadrant. Assume the contrary By

a rearrangement of the coordinates, we may assume that

(Xl 14 14 xp 14 OI ! O)e K (Xl 14 7 xp> OI l é p<k)

Since eij >0 (1 # 3j), (*) implies eij =0 (1 < py

i >p) This contradicts to the fact that E 1s connected.
(ii) We may assume that v (f)/v_(m) = V(f) < V(g)



I

VB(g)/VB(m) (see (1.4)) Then we have

v(fg) = min (v, (£) + v.(g)) /v, (m)

A
<
G
+
<

8 B(g))/vs(m)

A

cBa(va(m)/vs(m))va(f)/vu(m) + VB(g)/V (m)

A

(22, = DV(E) + v(g) < a; (V) + V(g)). 0

(2.2) Remark. cij are obviously determined by (e..)

1]
We can show that a is also majorized by a constant
determied by (eij) Indeed there exists fEEOX,g such
that Vi(f) = vi(m) (i =1, , k) Then Vj(m) <
Cjivi(m) and ay < (1 + ?é? Cijcji)/z'

i0



§3 ICI in General Case

We borrow an important result, a Bertini type theorem

of Flenner:

(3.1) Lemma ([F], (4.10)) Let (©®, m) be a local k-algebra

over a field k of characteristic 0 and let ¥ »

1’ " m
€ m. Suppose that the completion ® is an integral domain

and dim ©_ > 3, Prof ©_ > 2 for any prime ideal p that

P p
contains “i ’ ’ Yﬁ (®p: the localization) Then for
any e = (el ’ , em) in a nonempty Zariski open subset of
k", t eiYa is a prime element of ® (even of &)

(3.2) Lemma. Let B be an infinite set of complex hyperplanes

m
(linear subspaces of codimension 1) through 0 in C

(f) = min (f£|H) (f € €{x}).

HeB

Then Vv

0 Yo

Proof. The inequality vo(f)

A

vo(fIH) is a special case of
the inequality for pullbacks (12) The case f£ = 0 1is

trivial. If £ # 0 and if H 1is not contained in the

tangent cone of the hypersurface defined by £, then the initial

i1



form (the non-zero homogeneous term of the lowest degree) sur-

vives after restriction to H and v,(f) = (f|H) Since

Yo
B is an infinite set, such an H really exists in B. 0
(3.3) Lemma ([Il], Added in proof) Let ¢: (Y, n)—> (X, &)
be the normalization of a reduced and irreducible germ of a
complex space. If (Y, n) satisfies (CIl) in (3 4),

(X, £€) also satifies it.

Proof Since ¢ is finite (CI.,) holds ([Il], (2 3) or (4.1)):

2

vn(fo¢) < avg(f) + b (fE1©X E) for some a > 1l and b > 0.

Then we have

vg(fg) < vn((foé)(g°®)) < al(vn(fOQ) + vn(g°®)) + by

< a a(v, (£f) + v_(g)) + 2alb + b

1 £ £ (£, g€©x ) I}

1 X3

(3.4) Main Theorem. Let X Dbe a complex space reduced and
irreducible at £ (i.e. ©@ := O is an integral domain)

X, €

such that n := dim X_ > 1. Then it has the following
three properties
(1) There exist a, = al(©) >1, b =b.(0) > 0 such that

(CI;) v(fg) ¢ a; (v(f) +v(g)) + b (£, g€ 0)



(2) For any morphism &: (Y, n)—> (X, &) with grnkn¢

dim X (see §0 for the symbol grnk), there exist a

€ 1

= a. (09) > 1, b, = b, (®) > 0 such that

(CI,) v (£02) < ayv . (f) + Db (f €0)

(3) For any open subanalytic set AC X adherent to &g,

there exist a; = a3(A) > 1, b3 = b3(A) > 0 such that

(CI3) UA:E(f) < a3v(f) + b3 (f € 0)
Proof The proof of (3) is postponed to (4.8) Since (1)
and (2) are equivalent ([Il]’ (1.2)), we have only to prove
one of them. The case n =1 of (1) follows from (l1.4),
since vi(fg) = vi(f) + vi(g) The case n = 2 follows
from (2.1) and (3 3) As to the case n > 3, we prove (1)

by induction on n.

Suppose that the case n - 1 (n > 3) has been proved

already- We may assume that X 1is normal by (3.3)
We may also assume that §& = oec™ and X 1is a closed

complex subspace of a product open neighbourhood U = V x W

m—-n

(VCZCn, W C ) of 0 such that the projection I: X—> V

)
o



is finite proper open and locally biholomorphic on X - H_l(D)

for some proper analytic subset DCV (local parametrization
theorem) If we choose a sufficiently small U and such
a coordinate space ™™ that intersects the tangent cone of
X, only at 0, then IM(x)| < [x] < cll(x)| (x€X) for
some c >0. Let P denote the complex projective space of

hyperplanes of ch through 0 and, if He€P, let X(H) denote

the subspace I "(H) of X with the canonical complex
structure. Let us put
B := {H€ P: X(H) 1is reduced and irreducible at 0}

Since Prof ©

v

2 by normality (cf [G-R], III, 1, Satz 11)

~

and since the completion © 1is also an integral domain by
Nagata's theorem (cf [Ma], 1), we may apply (3.1) to © and
its parameter system induced from the affine coordinates of c:
B includes a nonempty Zariski open subset of P If HE€B,
there exist a(H) > 1, b(H) > 0 such that

a (H) ( (u) + v

VX (H)

by the inductive hypothesis (v(), v, () and ()

VX (H)

denote the algebraic orders respectively on X, H and X(H)

14



at 0 ) If we put B, = {H: a(H) < h, b(H) < h}, we have

B = U By Therefore there exists k&N such that B
is an infinite set.

Now suppose that f,g€® and v(fg) = p. Since

VX(H)(fg\X(H)); v(fg) by the pullback ineguality (I.), we have

2

K (Vg gy (EIX(H)) + v H)(g|X(H))) +k >p (HE B, )

(H) X(

Then , we may assume that kvX(H)(f|X(H)) + k/2 > p/2

(He B'") for some infinite subset B'C:Bk without loss of

generality Let s denote the order of the covering

X - H—l(D)—e-V - D and let oi(y) (1

A

i < s) denote the

i-th elementary symmetric polynomial of values of £ on the

fiber H_l(y) = {xl , ,XS} for ye€v - D. Gi(y) has a
holomorphic extension over V If HEB',
“lx(H)l.o(fIX(H)) 2 Ve gy (EIXHE)) 2 (p - K)/2k
by (I3) Hence there exist €y > 0 and Cy > 0 such that
| £(x) | < cHlxl(p—k)/2k (x€ |xm)|, |x]| < €yi HEB')
Then there exists %&> 0 such that
o, () | £y )| [ £0e, )|
(cly] L BRI/ = o< Z <o, (p-k) /2K




_ o is] i
= 11l (y € |EH|\ D, IYI<€£'I ; HEB').
Since {H: |H|< D} 1is a finite set, by a choice of B', we

may assume that DN [H| is thin in |H| for HEB' Then,

. , i(p-k)/2k
if HEB', we have |ci(y)l < d |y | (p=k)/ (v €|H|,

H,i
|y]<ieé) for some 4, . >0 This proves that
vy oy [H) = “lH\,o(Oi|H) >i(p - k)/2k (H€B')

(The left equality follows from the regularity of H.)

Thus we have v(o.,ell) > v _(o0.) > i(p - k)/2k by (I,) and
i = Cn i’ = 2
(3.2) Since f° - (g,oMf Y 4. .f g eT =0 on x. ,
1 - s 0
V(f) > (p - k)/2k by (1.2), (i)=> (r). Then we obtain
(CIl) for the case n, using (CI;): v (£f) < V(f) + by 0

(3.5) Corollary- Let X Dbe a reduced complex space and let
EICIX] be an exceptional set such that the set of regular
points of X is connected in an arbitrarily small
neighbourhood of E. Then for any &, E§'€ E there exist

a>1,0b 0 such that v

g

v

(f) < av.,(f) + b for any

2

fel (U, @X) defined in a neighbourhood U of E.



By the definition of exceptional set ([G], p.339),

Proof.
®: X— Y such

there exists a proper surjective morphism

that ¢(E) = {n}, & 4is biholomorphic on |X| - E and, if
V 1is a neighbourhood of n, any fe€& F(Q—l(V), @X) can be
expressed as f = go® for some ge€T(V, ©Y) Since U
can be expressed as ®_l(V), we may apply this to given £
= dim Yn

is reduced and irreducible and grnkx®

Cbviously Yn
Then vg(f) and vg,(f) are linearly comparable

(x €E)
v, (f)

to vn(g) by (12) and (CIZ) of the theorem. Hence £
and vn,(f) are also linearly comparable. 0
(3.6) Corollary Let A be a ring finitely generated over C
Let us put n

one of its maximal ideal.

and m
Then the following conditions

sup{p: fem’} for fEA.

are equivalent.

(i) There exist a; 2 1, bl > 0 such that vm(fg) <
al(vm(f) + vm(g)) + bl (£, gean)
(ii) The completion (Am)“ of the localization Am is an

integral domain.

17



Proof. We may assume that A =C[x]/I (x = (xl ; ;X))

Since € 1s algebraically closed we may assume that

ICm, := (Xl , , xm)C[x], m = mOA without loss of
generality Then A = C{x}/IC{x} is an analytic local
algebra with the maximal ideal mA such that AmC:ﬁ. (A )"

is the completion of both A and Am and hence faithfully

flat over them. Then A is faithfully flat over Am and
mpAm = mpﬁ(WAm On the other hand symbolic powers

m(p) 1= mpAmf\A coincide with mP by the maximality of m.
These prove that vm(f) = vam(f) = vmi(f) (f €n) Then

(i) follows from (ii) by (CI,) for the intecral domain A.

1
Conversely suppose that (ii) is false. Then there
exist £, a'é(pﬁgA such that %a =0, £ # 0, § # 0. We
can identify (Am)“ with CIl[x]]/IC[[x]] Take
representatives £, ge€C[([x]] of %, 5 respectively such that
v (£) = va(B), v (9) = va @ (o= m@l(x]], mo=m@)")

Let fp (resp. gp) be the polynomial which consists of the

parot,

Cd



homogeneous terms of f (resp. g) of degree less than p + 1.
If p > max{vﬁ(f), vﬁ(g)}, then vm(fp mod I) = vﬁ(f) < o,

\)m(gp mod I) = v%(g) < o, On the other hand vm(fpgp mod I)

> p + 1. Hence (i) does not hold. i



§4 Real Analytic Algebras
Let © be a local real analytic algebra. It can

be considered as the local ring @X of a germ Xg of

3

a real analytic space. We define the

dimension of Xg by the Krull dimension of ©0: dim X, :=

3
dim ©. In general dim Xa > dim IXIg We call CQ@RG
the complexification of O. It determines a germ X% of a
complex space called the complexification of X Since

3

C<>R© is integral over @,

dim x€ = dim C®g0 = dim © = dinm X

3 g

by a theorem of Krull-Cohen-Seidenberg.

(4.1) Theorem. Let © be a local real analytic algebra of
positive dimension whose complexification is an integral
domain. Then ® satisfies the real versions of (1), (2),
(3) of the main theorem (3.4)

Proof (1) Obvious by (3 4), (1)

C

(2) Let @C, £ be the complexifications of & and f

AW
-



respectively. Since vg(fc) = vg(f), vn(fcoﬁc) = v (fod),
n

grnknCDC = grnk ® (cf. [I;], p.461, P.465 (correction:

paracompact -+ o-compact)), our assertion follows from (3.4),(2)

(3) This follows from (3.4), (1) and [Il], (3.1) g

If S 1is a germ of a real analytic set at OG]Rn, I(S)
denotes the ideal of elements of R{x} wvanishing on S. 1f
J is an ideal of R{x}, V(J) denotes the maximal germ of a
real analytic set at 0 on which all elements of J vanish.
(4 2) Lemma ([Ri],(4.1)) The following conditions are
equivalent for an ideal J of R{x}

(C) f2 +- -+ f2€.J implies £ f €3

1 p L &

(z) J = I(S) for some germ S of a real analytic set.

J is called real if it satisfies the conditions in (4 2)

(4.3) Lemma. Let J be a prime ideal of R{x}

(i) J is real if and only if dim R{x}/J = dim V(J) ([Ri],
(4.3)).

(ii) If J 1is real, CGDRJ is prime in «C{x} ([G-T], p.371;

[Ri),(6.1))

&
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(4.4) Remark. Let S Dbe an irreducible germ of a real analytic

set at 0€R". Then (4.1) is applicable to the integral
domain R{x}/I(S) by (4.3), (ii) There exists, however,

a non-real ideal J with a prime complexification C19RJ

(e.g J = (x2 + y2 + 22)R{x, v, z1}) In such a case
dim |x[g < dim Xg grnk ¢ < dim Xg  and hence (2) and (3) of
(4.1) is meaningless. Note also that in such a case the

complexifications of Xg and |X\(g are not compatible.

_ k _
For f£(z) = I a2 ecl{z} (z= (zy v oey zm)), we put

fx(z):= L &kzk€<c{z},

(f(x + iy) + f*(x - iy))/2 € rR{x, v},

Re f(x + 1iy):

1l

Im f(x + iy):= (f(x + iy) - £*(x - iy))/2 € R{x, vy}

If I is an ideal of c{z}, I" denote the ideal of R{x, y}

generated by {Re f(x + iy): f£€1I} (or, equivalently, by

{Im f(x + iy): £€1}) We put
0:= c{z}/I, 0 := Rix, y}/I", T:= COLI",
®:= cix, y}/I = CQuo0"

Further we put

A
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1l

{£(u): £(z) €1}, J*:= {f*(v): f(z)e 1},

~
1l

(J®1)Cc{u, v} + (L®JI*)Cc{u, v}
<ciu} ® civ} = clu, v}
(@Lt@: analytic tensor product, see{G-R]) Let us define
an isomorphism ©6: C{u, v}— C{x, y} by 6(f(u, v))
= f(x + iy, x - 1iy)

(4.5) Lemma (cf. [Ma], §3, which treats analytic sets)

I = 6(K) ie. 0= 00Q o* (0* = c{v}/J*)

Proof Obvious by the following implication.

f € 6 (K)
< IgEK s.t. £f(x, y) = g(x + iy, X - 1iy)
= , 38 € c{u, v}; 3h , Tk €37 =1, ,
3o, Bu {u, v " " (M p)
s.t. fi(x, y) = Z{au(x + iy, x - iy)hu(x + 1iy)
u
+ B (x + iy, X - iy)k*(x - 1iy)
H H
<> f€I 0

(4.6) Proposition. If ® 1is an integral domain in the above,

we have the following



(i) ® 1is an integral domain.
(ii) I is a real ideal.

(ii1) is just the affirmative answer to Malgrange's
conjecture [Ma], p.l1l24.
Proof. (i) By (4.5) we have only toprove that © @ ©* 1is an
integral domain. Since ©* is isomorphic to ® as a ring,
it is an integral domain. Then © ® ©* is also so by

Nagata's theorem [N,], (47.5)

2

(ii) Since @ 1is an integral domain and since
dim ©° = dim © = dim @®0* = 2 dim ® = dim V(I"),
we have the assertion by (4.3), (i). 0

(4 7) Remark. If © 1is an integral domain, we may well call

oF the real analytic algebra associated to 0. But, if

not, ©° is not - fit to be called so. For example, consider

the case I = IlF\I2 , Ii = ZfC{Zl , z .} (1i=1, 2)

Since K = (ulu2 , V1V2)C{u, v}, V(I) = V(XK) has four

4
components at 0€C . Therefore V(

H

is bigger than



the join of V(fl) and V(fz) Returning to the algebras

of the real parts, we see that ©° is too big to be called
the real analytic space associated to 0.

(4.8) Remark. If fU (u =1, , P) generate I,

Re fu(x + iy), Im fu(x + 1y) generate pid Then, for

any complex space X, we can construct the real analytic space

X (defined by a coherent sheaf of ideals) and its

complexification X in the sense of [H]

Proof of (3.4), (3). Let Xy be a reduced and irreducible
germ of a complex space. Then Xg has a reduced and
irreducible complexification ig by (4.6) Hence (4.1)
holds for XE If f € GX,E , we have only to apply
(4.1), (3) for Xz to the real and the imaginary part of
f. (If we consider the proof of (4.1), (3), we see

that (3 4), (3) for n-dimensional Xg results from (3.4),

(2) for 2n-dimensional X .) 1]

£
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§5 Mearness to p-th Power in C{xl , , xm}

In this section we put A = ©m,0 = C{xl , , X1,
A = C[[xl , , xm]], v ) = vo( ) Let p be a prime
numpber and u not a p-th power in A. The functional
equation Py - gp = 0 has unique solution (£, g) = (0, 0)
If v(fpu - gp) is large, (£, g) is a "near solution"” We

claim that a near solution is near to the unique solution:
(5.1) Proposition. If wu€A 1is not a p-th power in A, there
exist a > p, b > v(u), b' > 0 depending only on n, p, u

such that av(f) + b > v(fpu - gp), av(g) + b' > v(fpu - gp)

~

for any £, gé€A.
(5.2) Remark. By Artin's strong approximation theorem [A2],
(6.1), we see that, if u 1is a polynomial, there exists a

function e: N—» N such that v(f), v(g) Py - gp)]

1RV

efv(
(5.1) asserts that we can choose a linear e.
Proof. Let us put F = v(f), G = v(g), K = v(fpu - gp),

U = v(u) and T = max{F, G, K} + 1. We have to prove that

(%) aF + b > K, aGc + b'!

v
=



Considering the cases g = 0 and f = 0 we have necessary

conditions

(1) a2p, b2 v(w, b >0

This assures (*) if T = o, Thus we have only to treat
the case T < o, If £~ £f', g - g' € mT then Vv(f') = F,
vig') = G, v(f'pu - g'p) = K. Hence we may assume that
f, g € A. If the initial form (the homogeneous term of

the lowest degree) In u 1s not a p-th power, K = min(pF + U,

pG) and (*) is obvious (a = p). So we may assume that

U =pV (V €N)

Let us introduce a new variable 2z and consider

@m+l,0 = C{Xl ! r ¥n 2z},
.= - (=P
© = 0,0/ =28 g
Let v and v@ denote the algebraic order of ©m+l,0 and

© with respect to the respective maximal ideals (these

are extensions of the original V) h € ® has a unique
. p-1 i
representative of the fornliiokhg < ©m+l,0 (hi € A)

0O
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vg(h) = min (v(hi) + 1) by the assumption U = pV > p.

If we put

we have

(fz + @)h = (fPu - ¢®)2P7% mod u - (-2)P (f,g € a)

(1) to the integral domain ©, we have

Then, applying (3 4),

(1)  a, (v(fz + g + v(h)) + b > v((fPu - P)zP7%) =k + p - 2
(f,9 € A)
(1) So

If pG # pF + U, we can directly prove (*) using

we have only to treat the case pG = pF + U. Then, since

v(gp_lzp_z) - v(fgp_zzp—l) =V -1,

V(P huzPT3) v (egP TP = 2(v - 1y,

V(P 2quzP™) - v(egPT2 P = 3w - 1),

V(£2gP T30y - v(EgP %P = (o - (Vv - 1),
23



we have

(iii) v(h) = V(fgp—z p—l) (p - LF + (p-2)V+p-1
=(p - 1)G -V +p -1

Since G - (F + 1) =V - 1 20,

(iv) v(fz + g) = F + 1 =G -V + 1

Combining (ii), (iii) and (iv), we have

(pF + (p - 2)V + p) + bl - p + 2

I v
=

a4

(pG - 2V + p) + b, - p + 22K

41
Hence (*) holds by a suitable choice of a and b (a = alp)

(5.3) Definition. 8(p, u) := inf a/p (a: in (5.1))

This can be regarded as a measure of nearness to p-th

power In view of the proof above, we have an estimate

I—-l
A

6(p, w) < a;

(5.4) Example. If In u 1is not a p-th power, 6(p, u) = 1.

This means that u 1is very far from p-th powers.

(5.5) Example. Suppose that u := vP - w is not a p-th power



in A and k := v(w) > pv(v) + 1. Using Tailor expansion

%ﬁ + t + t2 +. =1 + clt + c2t2 + . , we have
(1 + clt-+c2t2 oot tHPL - -
_ dn+ltn+l + dn+2tn+2 + 4 dnp+ltnp+l
for suitable dn+l ;e dnp+l € C. Hence
(vnp + Clv(n—l)pw + sz(n—2)pw2 +. .+ cw )p(vp - w)

B v(np + 1)p

_ (np-n)p n+l (np-n-1)p n+2 np+1
h dn+lv W * dn+2 W oot np+1
If we put £ = v'P + ¢ S s w', g_ = vnp+l'
n 1 n n
we have
v(£Pu - g) = y(v (MPTRIPothy i h - 1)ph + (n o+ L)k

2 2
Hence 6(p, u) 2> (pzhw—ph + k)/ph =1+ (k - hp)/hp™ (> 1)

(5.6) Example. If u = x? - xk

5 (k >p, k #0 mod p), a

1

for ® in the proof of (5.1) is estimated as = < k/p

by the proof of [Il]’ (1.5) Hence we have

1 - 1/p + k/p2 < 8(p, u) < k/p.

o
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Appendix: inf a; and inf bl for Some Elementary Singularities

Let él denote the infimum of al in (3.4) for a

given local complex analytic integral domain ® = ©

X, 8
In case a is attained, ?l denotes the infimum of bl
that satisfies (3.4), (1) with al = él The author does
not know whether a is always attained and whether ay is
a rational number. Here we exhibit the explicit values of
a and 91 for some elementary singularities ay in (i),
(1ii), (iv) and bl in (i) were first taught by Tomari.
(i) V(fg) = Vv(f) + v(g) (f, g € ®) (i.e. 2, and pl are
. _ . _ © P, ptl .
attained and a, =1, b, = 0) iff Gr 0 := I m"/m is
-1 -1 m _
p=0
an integral domain. The proof is standard.
(ii) If dim © = 1, the exceptional fiber of the normalization

of the blowing-up of X with center me is irreducible.

Then a is attained and a, = 1 by (1 4)

o
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(iii) Let (X, 0) be a hypersurface singularity in C3

defined by 2z~ - P(x, y)

l
o
A
o

0) = 0). Let v

and Vo denote the algebraic orders on C{x, y, z} and

on 0 :=cC{x, vy, z}/(z2 - 9)c{x, vy, z} respectively.
Further we assume that r := v(¥) 1is an odd number greater
than 2. Here we claim about © that a; = 1 and

b, = r - 2 and that they are attained. Obviously every

f € ®© has a unique representative of the form f = fl{x, y)z

+ f2(x, y) € C{x, y, z} such that vg(f) = v(f) =

) + 1, V(fz)) Suppose that

for some £, g € @. This implies that
v(flg2 + fzgl) > v(f) + v(g) + r - 3,
+ —
v(flgl?f + f2g2) > v(f) + v(g) r 2

By a standard calculation we have

2

2) > 2v(f) + r - 2.

2
v(flP £
On the other hand, since r 1is odd,

v(fi? - f;) = min (2v(f,)+ r, 2v(f2)) < 2v(f) + r - 2,

1



a contradiction. Thus (*) never holds and we may put

a; = 1, bl =xr - 2 Since
v(z?) =1 = (v (z) +v (2)) + 1 - 2
© © © !
bl can never be smaller than r - 2 Hence we have

proved the assertion.

In the case 0 1s an isolated singularity of X (i.e.

X 1s normal at 0), we can prove that the exceptional

fiber of the normalization of the blowing-up of X with

center m, is irreducible, which again implies that a, is
attained and a; = 1 This case includes the

rational singularities of types Dk (k > 4), E6 , E7 , E8
(cf. [Br])

(iv) The remaining two dimensional rational singularity of

multiplicity 2 is Ak (k > 1) defined by the equation

X2 n Y2 + zk+l = 0 in c3 By the proof of [I.], (1.5),

1

33



we see that (3.4), (1) holds for a; = (k + 1Y/2, b, =0

On the other hand

a, 2 (ix + i) Px - iy = b I/ Ivlx + iv)P+ vix - ip)®)}
= {(k + 1)p - bl}/2p (p € N)
Hence a; 2 (k + 1)/2. Thus we have proved a; = (k + 1)/2,

pl = 0 and they are attained.
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