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Lyapunov-like functions and geodesic flows

By

Nobukazu 6tsuki

Introduction.

As is well known, Anosov systems ( or hyperbolic systems )
play important roles in the theory of dynamical systems.
Once a given system is proved to be Anosov, one knows that
it is both structurally stable and topologically stable, and it
has many ergodic properties ( See, for instance, Anosov[1]
and Walters[19].) Moreover small deviation from Anosov systems
gives wider classes of interesting systems. Therefore, in
this paper, we are interested mainly in obtaining good criteria
for a given system to be Anosov.

Here, we shall give general comments for Anosov systems.
Already at the starting point of the investigation, Anosov

systems were considered analogous to hyperbolic ordinary linear



differential equations with constant coefficients We explain
this more exactly. Let A Dbe an n-square matrix over R
and let us consider an ordinary differential equation:-%%-: Ax
The fixed point x = 0 1is called hyperbolic if there exists
an invariant hyperbolic splitting of r™ . R = ESGB ok
This corresponds to the definition of Anosov systems. There
are several equivalent criteria for this as follows
(A) The real partg of every eigenvalueg of A -are non-zero.
(B) There exists no non-zero bounded orbit

(C) There exists a non-degenerate quadratic form Q(x)

d
dt

such that Q(x) > 0 for any non-zero solution x

The criterion (A) corresponds to the spectral theory of

/
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vector bundle systems. This point of view goes bacK at least
to the work of Mather[13], and important results have been
obtained by many other authors. ( See Chicone-Swanson [3] ,
(4] , Churchill-Franke-Selgrade [5] , Hirsch-Pugh-Shub ([8]
and Otsuki (147 , [15] . ) The criterion (B) corresponds to
the theory of quasi-hyperbolic systems. We cite the

contributions of Mafié[12], Sacker-Sell[16] and Selgrade[18]



which are especially important for our present work. The
criterion (C) corresponds to the work of Lewowicz [10] , [11]
He proved that the hyperboclicity of a vector bundle system is
equivalent to the existence of a non-degenerate quadratic form
with adequate properties.

In the present article, we prove first a proposition
which gives a criterion for vector bundle homeomorphisms to be
quasi-hyperbolic. By applying this result to geodesic flows,
we give a sufficient condition for geodesic flows to be Anosov.
This criterion may be applied to Riemannian manifolds with
small paches of small positive curvatures. Our method enables
us also to obtgin a generalization of Chiconé’criterion in [2]
for geodesic flows to be Anosov.

The contents of this paper 1s devided into five sections.
In §1, we define notations of vector bundle systems and prove
Theorem 1 which gives a criterion for vector bundle homeomorphisms
to be quasi-hyperbolic In §2, applying Theorem 1 to
diffeomorphisms, we get Proposition 2 which states that the

quasi-hyperbolicity is stable in a certain sense



In §3, we prove one of our main results (Theorem 4 ) in
this paper, which gives a sufficient condition for geodesic
flows to be Anosov. The key point of the proof of this theoerem
lies in finding an appropriate quadratic form used in Theorem 1
for geodesic flows. This theorem may be meaningful in geometry;
that is, Theorem 4 seems to us to suggest relations between
geodesic flows of Anosov type and indices of geodesic curves
It may be also interesting to compare Theorem 4 with the work
of Eberlein(7]. As a consequence of Theorem 4, Proposition 5
is obtained in §4 In the 2-dimensional case, this proposition
is known ( Lewowicz [11] ), but it seems to us that it is new
for general case. In this section, we define " asymptotic
curvature " and prove some result (Proposition 6) We shall
not discuss it in detailé@)in this paper.

In §5, we prove Theorem 9 which gives a generalization

-~

C
of ¢hicone s criterion. This theorem is another main result
in this paper- Our proof is different from Chicone s one,

and is based on two key ideas, that is, on Lemma 8 which



is suggested by our Theorem 1 and on finding the quadratic
form in L2-setting which is analogous to that used in Theorem 4.
In this paper, we denote the sets of integers, real

numbers and complex numbers by Z , R and C respectively.



§1. Lyapunov-1like functions and quasi-hyperbolicity of

vector bundle homeomorphisms

We begin with notations of vector bundle systems
Let M be a compact metric space and E a real or complex
vector bundle on M with an inner product. We call a pair
(¢,¢6) a vector bundle homeomorphism if ¢ dis a homeomorphism
on M and ¢ 1is a bundle automorphism which intertwines
with ¢ . A vector bundle homeomorphism (®,¢) is called
guasi-hyperbolic if there exists no non-zero v &€ E such that
{ le™vil: n€ Z } is bounded. Here -1l denotes the norm
induced from the inner product on E Further (0¢,¢) is
called hyperbolic if there exists a &é-invariant hyperbolic
splitting E = E°@® EY , where E° and E” are the stable
and unstable subbundles of E respectively, namely there
exist constants C > 0 and o < A < 1 such that

he"vll < cA™wvy for v €E® , n 2 0 and

v

o "vll < cA™ivik for v €EY , n =20

A real valued function Q on E 1is called a quadratic



form on E if @ 1is continuous and QX = Q|EX is a quadratic
form on the fibre space Ex for every x € M
The following theorem is essentially due to J.Lewowicz,

but we prove it here for convenience of readers.

Theorem 1. A vector bundle homeomorphism (%,¢) is
quasi~hyperbolic if and only if there exists a quadratic form

Q on E such that Q(%v) - Q(v) > 0 for every non-zero vV € E.

Proof (i) Necessity If (%,¢) 1is quasi-hyperbolic,
then there exists a positive integer N such that for every
non-zero v € E , there exists at least an integer n , |n| £ N ,
for which lo"vll > 2jvll holds. We prove this by contradiction.
Assume, for every positive integer n , there exists Vn'e E

with an” = 1 such that

(=i
IA
o}
-
A
n

m
max{ || & Vn”

Then by taking a subsequence of {vn} , 1f necessary, we may
assume that {vn} converges to some v € E as n——+o

So we obtain that max{ f]le"vll : me€ Z } <2 and vl =1,



which contradicts the quasi-hyperbolicity of (2,¢)

By the technique of Lewowicz [10,Lemma 2.3], combined
with above fact, we see that there exists a positive integer
m such that o™l > 2yvi or Jo ™Il > 2)vll , for every
non-zero v & E

Define Q(v) as follows
m-1 . .
Qv) = Y (1™ ul? < Jletvll® 3,
i=0
Then Q(v) is obiously a quadratic form on E , and we have

162ml2 - 2fe™vll? + fivi®

Q(ev) - Q(v)

20812 > 0

v

for non-zero v € E , Dbecause of

No2™ell2 + vl > 4flo™vll?

(ii) Sufficiency Conversely, let Q be a quadratic
form on E such that Q(év) - Q(v) > 0 for every non-zero
veE. Then the compactness of M and the continuity of Q

imply that there exist positive constants C1 and 02

such that



law)] s ¢ ivl® L atev) - a(v) 2 Clvl®  (veE)

Assume that there exists non-zero v &€ E such that
{fle"vll : n €2} 1is bounded. Then { Q(¢"v) : n€ z } is
bounded because |Q(v)| < 01NV”2

On the other hand, for every positive integer n ,

we have

[\
«Q
o

S el
i=0

L o-iop2
C E llfb lv"
2 &—

i=1

n-1 . .
Qo™ - a(v) = 2 {ate?*y) - qretn)]
i=0

[AY4

n . .
av) - ae™™v) = 2 {ae™ ) - qeTin) ]
i=1

Since { Q(¢™v) : n€Z } is bounded, we see that

le"vl— 0 as n —> e

Therefore Q(¢"v)——>0 as n-—>*x because [Q(v)‘ < CluV”2

Note that for positive integer n ,
Q(ey) > e vy > . -5 grev) > alv)
then we must have Q(v) < Q(¢v) £ 0 Dbecause Q(@nv)————90

as n-— +® Similarly we get Q(v) > O because

n

Qv) > Qe Tv) > v > Qe ™ ) > Qe ™)

n

for positive integer n and Q(d "v)——> 0 as n —>+o



This is a contradiction. Hence there exists no non-zero v € E

such that { 1e™vll : n € 2 } 1is bounded. This completes

the proof.

Remark 1. Theorem 1 remains to be true even if Q@ is
a continuous homogeneous function of degree 2, not necessary

a quadratic form. This can be seen directly from the above

proof of Theorem 1.

/C



§2. An application for diffeomorphisms

Let us now consider the case where ¢ 1ia a diffeomorphism f
of a manifold M , @ its differential Tf and E the
tangent bundle TM of M

Let f be a Cl—diffeomorphism on a compact c¥-manifold M
(r 2 1). The diffeomorphism f is called quasi-Anosov
(resp. Anosov) if the vector bundle homeomorphism (Tf,f) on
E = TM 1is quasi-hyperbolic (resp hyperbolic) on E
By definition of quasi-Anosov diffeomorphisms, one can apply
Theorem 1 directly to diffeomorphisms.

By the way, we give the definition of Anosov flows here.
Let ft be a flow on M and X the vector field on M
generating ft The flow ft is called Anosov if there
exists a Tft-invariant continuous splitting of TM
™ = XD E°@® EY s where X is one dimensional subbundle
of TM defined by the vector field X and E° is exponentially

contracted by Tf in positive time while EY  is exponentially

t
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contracted by Tf‘t in negative time, for some Riemannian
metric on M
We can prove the following proposition by the same argument

in the proof of Corollary 2.2 in [10]

Proposition 2. Let f be a Cl-quasi—Anosov diffeomorphism

I\

on a compact cP-manifold M (r 2 1) Then there exists a
Cl—neighbourhood U of f, in the space of diffeomorphisms
of M, such that any finite composition of elements of U 1is

quasi-Anosov

such that Q(Tfv) - Q(v) > 0 for every non-zero v & TM
Let U be the set of Cl—diffeomorphism g of M such that
Q(Tgv) - Q(v) > 0 for every non-zero Vv &€ TM Then U 1is a
Cl-neighbourhood of f Dbecause M 1is compact.
Take g , h €U and a non-zero v & TM , then we have
Q(T(heg)v) - Q(v)
= { Q(Th(Tgv)) - Q(Tgv) } + { Q(Tgv) - Q(v) } > 0 ,

which completes the proof by Theorem 1.
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§3. Geodesic flows of Anosov type

In this section, we consider geodesic flows. General
references for geodesic flows are [1] , [7] , [9] and [14]
Let Y be an n-dimensional compact connected Riemannian

c¥-manifold (r 2 2) without boundary, and TY the tangent

bundle of Y . We can naturally interpret the double tangent
bundle T(TY) = T2Y as the vector bundle on Y as follows

Let K : T°Y —>TY be the Riemannian connector (cf [6] P.74),
and let 7, : TY—>Y and 7 : T2Y ——>TY be natural

Y TY

projections for tangent bundles on Y and TY vrespectively.
Further let 7w, be the differential of Ty Then WTY@ T, D K
maps °Y to TY @ TY @ TY isomorphically as vector bundle
on Y (About this fact, see [6] and [17] for details.)
From now on, we identify a tangent vector £ on TY with
a pair (N*E,KE) of tangent vectors on Y

It is well known that the tangent bundle is a Riemannian

manifold with Sasakian metric: <€’n>TY = <7r*g,n*n>Y + <Kg,Kn>Y A

where < , >Y is the Riemannian metric on Y We will omit
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the suffices Y and TY of < , >y and < s Oy in the
following.

Let M =SY be the sphere bundle of Y and E the vector
bundle on M defined as follows : For v &€ M, the fibre EV
is given by

E =1{ €& TVM s Lmg,v) =<Kg,v> = 0}

v

Let ¢ M ——>M be the geodesic flow on Y and @t = T¢t

t
the tangent cocycle of o - We proved in [14, Lemma 3] that

(@t,¢t) is a vector bundle flow on E and obtained the following

result which enables us to apply Theorem 1 for geodesic flows.

Proposition 3 [14, Theorem 1]
The geodesic flow ¢t is Anosov if and only if for some
T >0 ( and hence for all T > 0 ), the vector bundle

homeomorphism (@T,¢T) on E 1s hyperbolic.

Remark 2. Actually we gave there the criterion with

T=1. But the above generalization can be obtained easily.

Now we define a bundle map A : E——>E covering the



identity map of M as follows : for £ € E, »

To(AE) = m AE = -R(v,m,E)v ,
(3.1)

K(AE) = KAE = K& ,
where R 1s the curvature tensor of the Riemannian metric
on Y . It is easy to check that <Ag,n> =<E,An) , for
E.n€E;
From Theorem 1 and Proposition 3, we obtain the following

sufficient condition for a geodesic flow to be Anosov, which

is one of our main results.

Theorem 4. Let Y be a compact connected c'-Riemannian

manifold (r 2 2) without boundary Let ¢t be the geodesic

flow on Y and ¢ its differential, and let M

. SY , E

and A be as above. Assume that there exists T > 0 such that

T
S Lag(t),e(t)) dat > 0,
0

for every non-zero £ & EV and v &€ M, where ¢£(t) = @tg

Then the geodesic flow ¢t is Anosov

Proof. Define a quadratic form Q on E as

AS



Q(g) = m,E,KEY, and put £&(t) = ¢t£ , v(t) = ¢ v for

veM, £ E, - In [14, Lemma 2] , we gave the following

equations :
Dome(e) = kE(H)
(3.2)
_g_t KE(t) = -R(v(t),m,&(t))v(t)

D . . . . . .
where 'EE 1s the covariant derivative for Rilemannian

connection on Y

By (3.1) and (3.2), we have

(3.3) S5 QE(e)) =2 mE(s),ke(e)y + {m,E(e), 2 KE())

= (RE(E),KE(E)) = {r,E(t),R(v(t),m,e(£))v(E))
= {BE(),8(8))

Hence

T
Q(egE) - Q(E) = Q(E(T)) - Q&) = go LAE(E),E(8)) at

which is positive for every non-zero £ & EV by assumption.
Therefore it follows from Theorem 1 that the vector bundle
homeomorphism (@T,¢T) on E 1s quasi-hyperbolic

On the other hand, since the geodesic flow preserves

/&



the Riemannian measure induced on M , the homeomorphism ¢T
is chain recurrent on M . Hence we see from the theory of
Selgrade[18] and Sacker-Sell([16] that the quasi-hyperbolic
vector bundle homeomorphism (@T,¢T) is hyperbolic.

Then Proposition 3, combining with this fact, dimplies that

the geodesic flow is Anosov.

Remark 3. We can not yet prove the converse of Theorem 4

But it is likely to be true under a certain appropriate condition.
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§4. Simple consequences of Theorem U

From Theorem 4, we obtain the following proposition
which enables us to prove easily the familiar fact that
geodesic flows on Riemannian manifolds with negative curvature

are Anosov.-

Proposition 5 Let Y be a compact connected Riemannian
manifold without boundary and with non-positive sectional
curvatures. Let A Dbe the set of points at which every
sectional curvatures are zero. If A contains no full geodesic

curve, then the geodesic flow on Y 1s Anosov

Proof Note that A 1is compact, Dbeing a closed
set in the compact set Y . The compactness of A implies
that there exists T > 0 such that the geodesic curve with
the length T 1is not completely contained in A
Therefore for every v &€ M and non-zero § é,EV ( M and EV

being the same as in §3 ), we have

T
g CAE(L),E(t)) dt
0
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T
: S {Ixe)® - R, E(8) ROV (E),m,E(6))v(6) D Y dt > 0,
0

because LT, E(t),R(v(t),m,E(t))v(t)> £ 0 , and for some ¢t
(0 st sT), {m&(t),R(v(t),nE(t))v(t) )y < 0 , Dby assumption.

This completes the proof

We define K(v) as follows and call it the asymptotic

curvature of the direction v : for ve&eM,
Ve . 1 T
(4.1) K(v) = lim sup { sup — |\ -nE(t),E(t)) at },
T—+» | E€E ,JEl=1 T Jo

where E&(t) = th
Untill now we do not know exactly what K(v) means
However Theorem 4 combining with the familiar technique of

analysis induces the following.

Proposition 6. Assume that

1 T
_S C-RE(E),E(8) dt
T JO

converges uniformly in £ , JJ&|l= 1, as T——o+x

If K(v) < 0 for every v & M , then the geodesic flow is Anosov



20

Proof. The assertion follows easily from the following lemma.
Lemma. Let X and Y Dbe compact metric spaces and
f : XXYXR—>R a continuous function. Put g(x,t) =

max{ f(x,y,t) : ye& Y },and assume f(x,y,t) converges uniformly
in x , vy, as t——s+x . If 1im sup g(x,t) < 0 for
L—> +o

every x & X , then there exists T > 0 such that g(x,T) < 0

for every x & X

Remark 4. In [11] , Lewowicz has proven Theorem 4 and

Proposition 5 in the case of 2-dimensional manifolds.
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§5. Generalization of Chicone s criterion

We keep the same notations as in §3. Let C(E) denote
the real Banach space of continuous sections of E with the
1
supremum norm  [|E|| = sup{C&(x),E(x)>* : x € M }
On the other hand, as is well known the geodesic flow ¢t
preserves the Riemannian measure u on M . The space C(E)

is equipped with the inner product
(g,n) = g <g(x),n(x)p du(x) , for & , n € C(E)
M

Let L2(E) denote the completion of C(E) with L2-norm
induced from this inner product LE(E) is a Hilbert space
over R We denote the complexifications of C(E) and L2(E)
by Tr(E) and FZ(E) respectively. We extend w, , K , A
and @t so as to commute with complex conjugation.
And we also extend inner products < , > and ( , ) to Hermitian
inner products.

For a fixed t € R, the vector bundle homeomorphism

(@t,¢t) induces a bounded linear operator @ﬁ , So called the



No
N

adjoint representation of (@t,¢t) , on TI(E) (resp. T2(E))
as follows:
# 2
@tg = @to£o¢_t for € € T(E) (resp. T7(E))

It is easily checked that the vector bundle map A : E——E

also induces a bounded linear operator A# on T(E) (resp. F2(E)),

in particular, the operator A# on F2(E) is selfadjoint.

Let T be a bounded linear operator on a Banach space H
over C . We denote by o(T:H) and Oap(T:H) the sets of
spectra and approximate point spectra of T on H respectively

J.N.Mather [13] has already proven that for a fixed ¢t &€ R,

the vector bundle homeomorphism (@t.¢ ) 1s hyperbolic if and

-
only if G(@ﬁ:F(E)) is disjoint from the unit circle

( Mather has proven this theorem in some restricted situation.

For a proof in general setting as above. see [15] , for instance )

Recently, C.Chicone and R.C.Swanson proved the following

powerful result.

Proposition 7 [3, Proposition 1.4 and Theorem 1 5].

There hold the following equalities for any ¢t & R ,



#

2 ) # .2
£:TS(E)) = o(8]:T°(E))

o(@ﬁ:r(E)) - oap(@ﬁ:r(E)) = 0,0

Proposition 7 combining with the following lemma enables

us to obtain a theorem corresponding to Theorem 4.

Lemma 8. Let H Dbe a Hilbert space over C , T
a bounded linear operator on H , and Q a quadratic form
on H : Q(&) = (Sg,g) , &€ H , where S 1is a bounded
selfadjoint operator. If inf{ Q(TE) - Q(&) g =11%1>0,

then oap(T:H) is disjoint from the unit circle.

Proof Let A € C with [A[ =1 and & € H with
e ll = 1, and assume J(T - xz)gnu-———eo as n—-—p+
Then (S(T - kI)En,Tin)-———eO as n ——+% , Dbecause

| (S(T = AT)e ,Te )| € ASH-I(T - AI)g - Tl

On the other hand, we have

(5.1)  (S(T = AI)E_,TE ) = (T S(T - AD)E ,E )

* *
(T STE,,€) - A(T SE_,E.)

* —_—
(T STE ,€.) - (SE ,E.) + AX(Sg ,& ) - A(SE ,TE )

1]
t

*
(T STE _,E.) - (SE_,E.) = A(SE (T - AT)E)



By assumption, there exists C > 0 such that
*
- = - >
(5.2) (T STEH,EH) (SEn,En) Q(TEn) Q(En) 2 C>0
The above equalities (5.1) and (5.2) contradict that
(s(T - AI)in,Tan), (Sgn,(T - AI)En)-———ao as n——>+®

Thus we have shown that X\ & 0 op(THH)

Theorem 9. Let ¢t be the geodesic flow on a compact
connected Riemannian manifold. Assume that there exists
T > 0 such that

T 4 2
inf g (A"g(t),E(t)) dt : £ &€ T°(E), hel = 1

0
is positive, where §&(t) = @ii Then the geodesic flow
is Anosov.
Proof Let us define a quadratic form Q on the Hilbert

space F2(E) as

Q(g) = ( Lmee(x),Ke(x) p dulx) ( £ €T°(E) )
M

We see easily that Q(g) gives actually a quadratic form
on the Hilbert space.

Since ¢t preserves the measure uwu , we have

#
(e &) = SM< My (d_px) ,KOnE (¢_nx) > du(x)



= §M<ﬂ*¢TE(X),K¢TE(X)> du(x)
Therefore, from (3.3) and Fubini s theorem, we have

(5.3)  a(ele) - a(e)

<n O n (x),KO0E (%)) - {m,E(x), KE(X)}\ du(x)

M

H

{ g CADLE(O_ x),0 E(0_ X)) du(x)} at

bt
g { g LA E(x),0, E(x)D dt} du (%)
!
|

0
T #
= (A E(t),g(t)) dt , where E&E(t) = oL
0
By using (5.3) and Lemma 8, we see that oap<©§:F2(E))

is disjoint from the unit circle, and hence, so is 0(®§:F(E))

because of Proposition 7.

By Proposition 3, combined with Mather s theorem, we

conclude that the geodesic flow or is Anosov.

C.Chicone [2] defined KO(Y) , the so-called Ho—curvature

of Y , as
_ # ) 2 -
Ko(Y) = sup{ (-A"g,8) : £ € T7(E), el =1},
in our notation. We can obtain the Chicone s criterion as

a corollary of Theorem 9.
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Corollary 10 [2, Corollary 5.9]

If KO(Y) < 0, then the geodesic flow on Y 1is Anosov

Proof.

oo |

T
0

Assume KO(Y) < 0 . Then we can get

for any T > 0

In fact

]

(A#£<t),£<t)> dt : £ € FZ(E), el = 1 X > 0

, where g(t) = ¢

#
£ &

Put KO(Y) = -C <0, then

inf{ (a¥g,6) 1 qen=131r=¢c>0,

whence (A#E,g)

. #_# #
Since (A @tg,étg)

(A#®ﬁg,¢#g) 2 C inf n@ﬁguz

because

CHE“2 for every ¢ €& F2(E)

v

v

C”@i&"g we have

"

v

chof 172,
hen=1

L=lel= ot ofell s ot enefey .

Since

{9

#
t

} is a strongly continuous group of bounded

linear operators, there are k > 0 and a > 0 such that

Jef )

k

eat

for ¢t

v
(@)
[
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27

le? §7* 2 e %"

Therefore
T T
inf {g (a%E(8),£(1)) dt&g(c:/kz)g e™2% gt
nen=11)o 0

= (c/2k%a)(1-e > 0

So we can apply Theorem 9 and get the assertion.

We can consider the object analogous to ﬁ?§3 in (4 1)

P

in L2—setting. We call the following KO(Y) the asymptotic

Ho—curvature of Y:

~—— _ . 1 T #
Ko(Y) = lim sup SUp 5 T (-A"E(t),E(t)) at s
T——+x EeT(E), lgl=1 0
where £(t) = @ig We suspect whether it has some relations

with the ergodic properties of the geodesic flow ¢t on a

Riemannian manifold Y

Department of Mathematics,
Faculty of Science and Technology,

Science University of Tokyo.
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