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§0. Introduction.

Let G be a connected semisimple Lie group with finite
center and (§} its Lie algebra. In the preceeding paper ([16]),
we defined a Weyl group action on virtual character modules with
regular infinitesimal characters (recall that a virtual character
is by definition a linear combination of irreducible characters
on G). There, the representations of Weyl groups were
completely decomposed by means of induced representations.
However, in the case of singular infinitesimal character,
representations of Weyl groups cannot be canonically realized on
virtual character modules.

In this paper, we will define representations of Hecke
algebras on virtual character modules with singular infinitesimal
characters. These representations are natural ones and can be
considered as the "limits" of the representations of Weyl groups.

The irreducible admissible representations of G were

classified by R.Langlands ([11]) modulo tempered representations.



Since irreducible tempered representations were classified by
A.W.Knapp and G.J.Zuckerman ([10]), the classification of
irreducible admissible representations of G is now complete.
However, their parameters attached to each irreducible
representation are very complicated, and do not make
unitarizability or primitive ideal or its Gel'fand-Kirillov
dimension etc. clear. We want to classify the irreducible
representations of G into some different classes which make the
invariants of representations as listed above much clearer. To
achieve this, it is convenient to consider the Weyl group actions
or Hecke algebra actions on virtual characters mentioned above.

Let us explain our definition of representations of Hecke
algebras, The definition has three diferent
interpretations which are interrelated each other.

Let H be a Cartan subgroup of G and )\é-@é an
infinitesimal character not necessarily regular. We make some

assumption on A (see Assumption 2.1). This assumption is not



essential, since it is satisfied for appropriate multiple of A
by a positive integer. Let 7\06@6 be a dominant regular
infinitesimal character which satisfies: (1) Q= }\O—}\ belongs to
the root lattice of (@C,@C) - (2) p satisfies Assumption 5.3.
Such a 7\0 always exists. Then the representations of the Hecke
algebras have three different constructions explained below.
Construction 1. Let T be the representation of the
integral Weyl group WH(AO) on VH()\O) defined in [(16]. Here,
WH(AO) is a certain subgroup of the complex Weyl group W=
W(@C,@C) , and VH()\O) is a subspace of the virtual character

module V(/\o) with infinitesimal character )\0 . We have

Vid)= 2° Vo(N)
0 " larecar(ey B

where Car(G) is the set of all the conjugacy classes of Cartan

subgroups of G and [H] denotes the class of H . Put W/\=

{wewl w):A}, the fixed subgroup of A in W . Then W}\ is a

subgroup of WH(}\)=WH(}\O) and we can define a Hecke algebra



H(WH(A)'WA) (see §3 for precise definition). Since H(WH(A),WA)

is isomorphic to a subalgebra eaC[WH(A)]eA (where e,
(#w,\)-1 Z\/SEW7\ s ) of the group ring CIW (A)] , H(W (X))

has natural action on VH(AO) . We can prove

Theorem A (Theorem 4.2). The vector space VH(A) is
isomorphic to the vector space I(eA)VH(AO) and we can define
the representation of H(WH(A)'W%) on the space VH(A)=

C(e%)VH(AO) naturally.

Construction 2. The above space VH(A) is isomorphic to a
certain subspace of analytic functions on H . We denote this
space by (©€IH;)\) . For a canonical basis of (C(H;)) , we can
define an action of H(WH(A):WA) analogous to the definition of
the representation T of WH(A) (Theorem 4.2). This is the
second construction of the representations.

. A Ao
Construction 3. Let C,0=(P7b and (/J=be be Zuckerman's

translation functors (see §5.1 for precise definition). These



functors play an important role in representation theory

([10]1,[18]). We define an action ¢ of eAweAééH(WH(A),WA) on

Vg(A) by
G (epwe, )v= (#W)\)'1YJ~ Tle,we, ) P(v) '

where we consider T as a representation of the group ring
ClW,(A) 1= ClW;(Ap)] . This action turns out to be a
representation of H(WH(A)'WA) (Theorem 5.6).

Since ¢ 1is considered to be a "limiting" functor which

sends a regular parameter to singular one, we can characterize ¢«

as the "limit" of T .

Theorem B. The representations of H(WH(A),WA) constructed

in the above three ways coincide with each other-
We denote this representation by ¢ .

Theorem C. If the infinitesimal character A is integral,

we have WH(A)=W for each Cartan subgroup H . Therefore we can
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define a representation 6 of a Hecke algebra H(W,W}) on the

whole virtual character module V(A) .

Using the equivalence of three definitions of ¢ , we can
reproduce some results of D.Vogan about T-invariants (see [191),
and get some new results. We think our representation o« will
clarify Gel'fand-Kirillov dimensions of irreducible
representations of G and some other invariants associated with

primitive ideals of UQ@C) (see [9]). These subjects are to be

treated in future papers.

Now we explain the contents of this paper briefly. After
scme preparations in §1, we review the definition of the
representation T of integral Weyl groups WH(x) shortly in §2
(see [16]). §3 is devoted to a general theory of Hecke algebras
H(W,D) , where W is a finite group acting on R"™ faithfully
and D 1is a subgroup of W . The algebraic part of the proof of
Theorem A is contained in this section. 1In §4, we give the

definition of the representation ¢ of H(WH(%)'WA) . Main



theorem, Theorem 4.2, says Constructions 1 and 2 are equivalent.
We study the commutativity of Zuckerman's functors and Hirai's
method T of constructing invariant eigendistributions in the
first half of §5 (Propositions 5.1 and 5.2). These results take
an important part in the following theory. The main theorem in
§5 is Theorem 5.6 which states Construction 3 is egquivalent to
Construction 2 (and hence to 1). Thus we establish Theorems B
and C in this section. 1In §6, we apply our reults to study
T -invariants and get several results . Some of them are alrgady
obtained by D.Vogan ([19]). 1In the final section §7, we give an
example of the representations of Hecke algebras in case of G=
U(3,1) . Essentially, G= U(n,1) (n22) can be treated in the
same way,

Hirai's method T 1is explained in Appendix A because it is
an important tool for our theory. And, in Appendix B, we discuss
Assumptions 2.1 and 5.3. One can conclude these assumptions are

not essential.

0-7
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§1. Notations and preliminaries.

1.1. Let G be a connected semisimple Lie group with
finite centre. We always assume G is acceptable(see below).
Let Q@- be the Lie algebra of G and U«gb) its enveloping
algebra. In the following, we denote Lie groups by Roman capital
letters and its Lie algebras by corresponding German small
letters. The complexification of a Lie algebra will be denoted
with the subscript C . Let H be a Cartan subgroup of G .

Then the complexification of has a root space
C P

decomposition with respect to Gi: :

@c=@cgz @ -

€A

where /A is the set of roots of (@C,®c) and @@y is the root
space corresponding to & . We fix a positive system Df and
put p:Zu/z (d€A+) . Define an analytic function %o( (LeA)

on H by Ad(h)X,=5,h)Xy (heH) , where X, is a non-zero

root vector for & . We call G acceptable if there exists a
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connected complex semisimple Lie gorup GC with Lie algebra (§%
which has the following two properties. (1) The canonical
injection from Q@‘ into (@C can be lifted up to a homomorphism
of G 1into GC . (2) Let Hc be the analytic subgroup of GC
corresponding to @i:. Then gP(exp x)= exp P(x) (xé@%ﬁ
defines a character of Hc into C* .

We denote the Weyl group of A by W=W(A) and call it the
complex Weyl group. Let B be a subgroup of G and D be a
subset of G (or of @;: ). Then we define W(B;D):NB(D)/ZB(D) ,
where NB(D) denotes the normalizer of D in B and ZB(D) the
centralizer. We call W(B;D) a Weyl group of D in B .

Let 7\6@6 be a linear form on @C . The complex Weyl

group W acts on @E and consequently acts on @C in a contra-

gredient manner. Let WA be a fixed subgroup of A in W :

W}‘={w€W[w}\=7\} .

We call A regular if WA={e} and otherwise call it singular.

1-2



We introduce an "integral Weyl group" W.(A) for H and A

after [16]. Let W;;(}\) be a subset of W defined by

WE(A):{WGWI ;wz(exp X)= exp wA(x) (xe@) defines

a character of Ho} ’

where H0 denotes the connected component of H containing the
identity element e . Then WH(K) is by definition the largest
subgroup of W which leaves W;I'(}\) stable under the right
multiplication (cf. [16,Prop.1.51). Let H1 be a connected
component of H . Then an element weW(G;HI) normalizes @.
Therefore wéEW(G;H,) determines an element W of wicg;hecw .
Similarly, for wEW(G;H) , the element WwWEW(G;B) can be
defined. We remark that W;()\) is stable under the left
multiplication by the elements of W(G;@) . For sc¢& W(G;H1) (or
SEW(G;H)) and tEW,(A) , we write st€WL(\) instead of 5t

for simplicity.

1.2. Invariant eigendistributions. We review the facts

1-3



about invariant eigendistributions (IEDs) and characters on G
briefly.

Let (mr,H) be an irreducible representation of G on a
Hilbert space H . We assume TU be admissible, i.e.,
K-multiplicities are finite. Then Tt has a character (Eht which

is a distribution on G :
®1\:(f) = Trace S f(g)T(g) dg (fGCBO(G)) '
G

where C:(G) is the space of C“qunctions with compact
supports. The irreducible character ®x has the following
remarkable properties.
(1) It is invariant under the inner automorphisms of G .
(2) It is a simultaneous eigendistribution of two-sided
invariant differential operators (Lapalace operators) on G .
(3) Essentially, it coincides with a locally summable

function fx on G which is analytic on the open dence subset

G' of regular elements of G .

1-4



Definition 1.1. We call a distribution ® on G invariant
eigendistribution(IED) if it satisfies the properties (1)-(2)

above.

The property (3) follows from (1) and (2) (see [3,Th.2])-
Take an IED ® . Then ® is an eigendistribution of

Laplace operators:

z@= X(z2)® (ze®) ,

where C) is the centre of U(@%) (identified with the space of
Laplace operators). The algebra homomorphism X of C) into C
is called the inifinitesimal character of ® .

Let H be a Cartan subgroup of G . We give a local
expression of ® on H . By the Harish-Chandra map Y we can
identify C} and U(@E)w, the space of W-invariant polynomials on

. ; W o~ @ .
@c . Then % defines an element of Homalg(U(@c) ,c)——@g/w s



W

@ T U(Be)
x=h\1 /E@E
C

Corresponding element 7\6@’5 is also called an infinitesimal

character of ® and we denote this by %= 'XA . Remark that

'X}\=XWA for any wE€W .
Let h€HNG' be a regular element. Then we have for a

sufficiently small x e@ '

D&(h exp x)= 2. c(w,h;x) exp wA(x) .
wew

Here,

D(h)=E,(h) ‘D’A+(1-§;1(h))
[+ 4

is called the Weyl denominator. The coefficients c(w,h;x) are
polynomials in x . 1If all the coefficients can be taken as

constants in x for any ‘w , h and any Cartan subgroup H , we
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call ® a constant coefficient IED.

1.3. Virtual characters and IEDs. A virtual character
is by definition a linear combination of irreducible characters.
The space of all the virtual characters with infinitesimal
character A is denoted by V(A) . We proved the following in

[14,15].

Proposition 1.2. The space V()) of virtual characters
coincides with the space of constant coefficient IEDs with

infinitesimal character A .

By this proposition, virtual characters and constant
coefficient IEDs are identified. Let us introduce the results on
IEDs obtained by T.Hirai([5,6]). Let H be a Cartan subgroup of

G and take an infinitasimal character A E@é . Define a family

of analytic functions on H as

@(H;A):{;l 5 is analytic on H , satisfying the following

conditions (1) and (2)} .



(1) T is an eigenfunction of U(@c)W with eigenvalue A

(2) § is £-symmetric under W(G;H) , i.e.,
g ("h)= &(h;w)G(h)  (hEH, WEW(GH)),
where ¢&(h;w) is defined as follows:

gthiw)=(-1N T sgnig o)),
X ER(W) w oo

N(w)=#{o(eA+‘ ® 1is imaginary and w Tl <0 } ‘

R(w)={o(eA+\o( is real and w-1o(<0} .

We say a root A«LeA is real (or imaginary) if it takes real
(respectively, purely imaginary) values on @. The function
g€(h;w) is locally constant on H , with wvalues in {I1]’ .

Each element ge@(H;M can be written as
g(h exp x)= 2! aw(h;x) exp wA(x) (xe@, h¢EH) ,

WEW

where aw(h;x) is a polynomial function in x depending on h

1-8



and w . 1If aw(h;x) can be taken as constant in x for each

h and w , we call ;, of constant coefficients. Put
@.(H;)\):{Qé@(H;)\)\ g is of constant coefficients} .

Theorem 1.3(T.Hirai). (1) There is a canonical linear
isomorphism T of @(H;A) into the space of IEDs @(A) with

infinitesimal character ) . Let @H()\)=T(@(H;)\)) . Then

@m)=%°@ﬂm

is a direct sum, where H runs through all the representatives
of conjugacy classes of Cartan subgroups of G .

(2) Let Vg (A)=T(@(H;A)) . Then
via) =2 ¢ vy
H

gives a direct sum decomposition of the space of constant

coefficient IEDs (or the space of virtual characters).

The definition of the linear map T 1is described in
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[6,§3]. We explain the construction of T in Appendix A for

later use.



§2. The representations of integral Weyl groups WH(A) .

2.1. Let Car(G) be the set of all the conjugacy classes
of Cartan subgroups of G . Take [H]E Car(G), where [H]
denotes the conjugacy class of H .

At first, we describe generators of the space (@XH;A) . Let
{Hi| 05is2} be a complete system of representatives of connected
components of H under the inner automorphisms of G (we take
Ho as the connected component ocf e). For téiwg(A) , 05ist

and aie Hi , we define an analytic function ;(ai,tk;h) on H

as follows. Define ;(ai,tA;h) first on Hi . Put for héiHi '

-1
(2.1) (a.,tA;h)= 2 €(a.;s)E.  (a. " '(sh)) ,
523 sewW(G;H) Pertas

where ét% is an analytic function on Ho defined by
?tA(eXP x)= exp tA(x) h(E()). On W(G;H)-orbit of H, , we put

Sla; ,tA;h) as

Zla;,th;"h)= E(hjwig(a;,tA;h)  (h€H; , WEW(G;H)) ,



and for h€H outside of W(G;H)-orbit of Hi , put ;(ai,t)\;h)=0°
Easy calculations tell us that Q(ai,t)\;*)e@(H;}\) .
Moreover, one knows that {;(ai,tA;*)\ 0sis, tE~W§YA)} spans
©H;A) for a fixed set {a,| a,€H; , 0si&l } .
In the following of this paper, we assume that {ai} can be'@gﬁ
taken nicely for A . More precisely, we put the following

assumption on A .

Assumption 2.1. For each Cartan subgroup H o¢f G , there
exists {ai} such that

(0) a.,€H, (0£i5Q) and a

i i 0= -

(1) §tA(ai‘1(sai))=1 for any tewg(;\) and séW(G;Hi) .

Remark 2.2. For a special G , Assumption 2.1 is satisfied
for any A . For example, G=SL(n,R), Sp(2n,R), SOo(p,q) (p+g=
2n) or a complex Lie group, then the assumption is satisfied. In
general, if we replace A by mA for some positive integer m

4

the assumption above is satisfied. More detailed discussion is



given in Appendix B.

2.2. In the following of this section, we assume that A is
regular. Then it is known that @(H;}\)=Q(H;}\) and V(A)=®(7\) .
We recall the definition of the representations of integral Weyl
group WH(A) on VH(A) (see [16,831]).

Since @(H;A){\,(H;)\h(;(ai,t)\;*)| 0gis ¢ , tewgo\p (linear
span over C) and VH(A)=T(@XH;A)) , we may identify (@(H;A) and

VH()\) by T . Then wEWH()\) acts on ;(ai,t/\;*) as
R(WIG(a,, tA;%) = §la,,tw A;%) .

An element wEWH()\) acts on Tg(ai,t}\;*) as
T(w)(Tq(a;,tA;*)) = T(R(w)G(a,,tA;*)) .

Assumption 2.1 assures that this definition of T is
well-defined. We can decompose the representation (C,VH(K)) of
WH()) completely in terms of induced representations. Let us

explain this. Let ]"iCWZI’(}\) be a complete system of



representatives of a coset space W(Giﬁi)\WEYA)/WH(A) and put
. -1 .
Wi, ¥)= W (A)NT WGH, )T (YeT,) .
8(1,X;w)=8(ai;b’w¥“1) (aiEHi, wew(i,x)) .
Then &(i,¥;*) is a character of the group w(i,Y) .

Theorem 2.3([{16,Th.5.1]). The representation T of WH(})
on VH(A) given above is decomposed into a direct sum of induced
representations:

L e <] . .

(T,Vg(A)) = 227 27 Ind (E(1,¥;%) WL, W 00)

i=0 Yer,

where 1Ind (g;A1B)= Indi&, .

Now we remark the connection between our representations and

the representations of Weyl groups which Zuckerman defined

([10,Appendix]]). In the case that A is integral for G
, Seealso [1]

WH(A)=W for any H , our representation of W is defined on the

, 1.e.,

whole space of virtual characters V(A):};i Vg(X) . This



representation is equivalent (under Assumption 2.1) to
Zuckerman's one. But for general A , his definition is only

applied to a subgroup

Wo={wew| wh-2a€oarar}

of W , while our definition can be applied to a larger subgroup

than WO . Remark that Zuckerman's representation of W0 and

ours restricted to W0 are almost equivalent (in fact, replacing

A by mA for some integer m>0 , we can prove they are

equivalent).



§3. Generalities on Hecke algebras.

This section is devoted to explain general properties of
Hecke algebras and their representations. We use notations

independent of the other sections here.
3.1. Hecke algebras. Let W be a group (infinite or

finite) and D its subgroup. We assume that
(3.1) [D;Df\x'1Dx] <00 for any xXéw .

Let M={DXD]}(€W} be the set of double cosets, and we denote by
HZ(W,D) a free abelian group generated by M . For A,B,CEM ,

put }AA?B = #(D\A-1C/\B) 0o and define the product AeB by

The algebra HZ(W,D) with the above product ¢ is called the
Hecke algebra of (W,D) over 2 ([7,8]). We simply call H(W,D)=
HZ(W,D)®ZC the Hecke algebra of (W,D) in this paper.

Now we assume that W is a finite group. Remark that (3.1)



is always satisfied. 1In this case we have more convenient
interpretation of H(W,D) . Let C[W] be a group ring of W

and put

e =—— 2 4 e c[wl .

D" 4p 4€D

Then the subalgebra eDC[W]eD of C[W] is isomorphic to H(W,D)
as an algebra. As a consequence, H(W,D) is a semisimple

élgebra. Since e is idempotent, H(W,D)::eDC[W]eD has a unit

D

element e In the following, we always regard H(W,D) as

D °
the subalgebra eDC[W]eD of C[W] .

Take a representation JU of W on a finite dimensional
vector space V . Then there corresponds a representation of the
group ring C[W] naturally. We denote it also by Tt. Since
H(W,D) 1is a subalgebra, we can get a homomorphism

TC

7

H(W,D): H(W,D) ——> End(V) .

But it does not send the unit element ep to the unit element



1v of End(V) . To aboid this situation, we decompose V as

V=V0€DV.l (direct sum of D-modules) ,

where V1=VD={vevl‘(t(d)v=v for any d €D} and V, is the

complement of V1 . Since T('_(eD)V=V1 , we have

H(W,D)

TEH(W,D): > End(Vl)CEnd(V) '

and ‘n(eD)=1v . Therefore we get a representation of H(W,D)
1

on V1 from a representation (,V) of W . We call this
representation of H(W,D) the reduction of (T,V) to H(W,D)
and denote it by Redth . The representation space of RedgTE

is v, = V/V0 as described above.

Lemma3.1. If T is irreducible, then Redth is

irreducible.

Proof. It is easy to see that every vector of vV, except

0 is cyclic, and consequently Redg’n: is irreducible. Q.E.D.
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3.2. The rep;esentations of the Hecke algebra H(W,Wp) .
Let us consider the following case. Take a finite group W'
acting on R" faithfully.

(*) For a subset W™ of W' , let A and W be subgroups
such that AC{aeWw'| aw™=w™~} and W={b6W'| Wb=W~Y} . Then
there exists A& R" such that W;\={w€W'l wA:)\} is a subgroup
of W.

Now we treat the Hecke algebra H(W,W,) and their
representations. Take a character X of A . Define an element

of the group ring of R" by
l;(t.}\o)= 2 X (a) exp at)\0 (tew™) ,
aea

and put @(7\0)=<§(t,)\0)| teéwWY> (linear span over C), where ?\0

€R" is a regular element, i.e., W;\ ={wew'| W)\0=A0} ={e} .
0

Lemma 3.2. Linear transformations T(w) (w&W) on (}\o)

defined by



Tz G () —> G(tw ' Ag)
give a representation ('C,@(?\O)) of W .

As described in 3.1, we get a representation Redgg)\'c of
H(W,W}\) from (t,@()\o)) . In the following, we will give another"ﬁ
interpretation of Redzlt in the above situation. This is
achieved by "translating”" regular parameter }\0 to singular one.
Returning to A€ R® in (*), we define Z(t,\) (t EWY) and
@(7\) as ;(t,7\0) and ®(Ao) , using )\ instead of }\0 .

Define a linear map P of (B:z‘()\o) to @)(}\) by

PI(t,Ag)= 5(t,A) .

Remark that P is onto but not injective in general.

We construct a representation ¢ of H(W,WA) on the space

@(}\) as follows. Recall that H(W,W,\)=eAC[W]eA , Where eA

ZSGW;\S - For e;we,€ H(W,W,) , we put



(3.2) GTeAweA)g(t,k):P(t(ezweA);(t,AO)) .

Lemma 3.3. The linear operators G(ekweA) (we W) define a

representation of the Hecke algebra H(W,WA) .

Proof. At first we prove G(ekweA) is well-defined. That

is to say, we prove that if

2 S 5,0 =0,
tEW

then it holds
(3.3) P(T(epwep) 2 Cy G(t.Ao)) =0
tEW™

for any we W . We use the following lemma.

Lemma 3.4. Let (ERAO)1 be the space of all the Wj-fixed
vectors and @(7\0)0 the complement in @(7\0) as Wy-module.

Then we have Ker P =®()\0)0 .

We will prove this lemma after the proof of Lemma 3.3.
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Now apply Lemma 3.4 to the element 'Z,ct ;(t,}\o) . Since it
belongs to Ker P by assumption, it generates a WA—module that

contains no non-zero fixed vector. So we have

Tle))( > c (t,AL)) =0
A tew"’tz" 0

and we have proved (3.3).
To verify that O defines a representation is now an easy

task. Take w1,w2€W . Then we have

6(eAw1e%)f(ekw2eA)§(t,A)=6(exw1eA)P(T(eAW2e;)§(t,ko))
=P(C(e}\w1e;)t(e}‘w2e)‘)§(t,}\o))

=GTeAw1eAw2eA)§(t,A) . Q.E.D.

Proof of Lemma 3.3. At first we show that Ker P contains

CB:(}\O)O . For any s€Wp , we have

P(T(s™)T(t,Ag)) = B(T(Es,Ay))



= ;(tsr)\) = ;(tl>\) = P(;(t:)\o)) .
Therefore, for any vG@()\O)O , we have T(ep)v=0 and

0= B(T(ea)v)=(#Wa) " 2 B(T(s)v)=(#Wy)"" 2 P(v)=R(v).
s €Wy SGW}\

Thus we have P(v)=0 .

Now we prove the reversed inclusion. Assume that P(v)=0 .
Decompose v=v0®v1 along the direct sum ®(AO)@XAO)0®(AO)1 o
Since P(v)=P(vo)+P(v1)=P(v1) from the above, we can assume that
v=v, e@)(Ao)1 . Let {ti\ i GI} be a complete system of

representatives of A\W™ . Clearly. {;(ti,Ao)l ie I} is a basis

of @(}\0) . So we can write

v=i%lI c; Gt Ay (c,€EC) .

Using this expression for v , we rewrite the equality T(s)v=v

for any s€W) . We have

-1, _
T(s )v-jglI ci§(tis,)\o) i%lci a.zelA X(a) exp atisA0 .



If we write tis=a(i,s)ti(s)6 A{ti}=W"’, then the above formula

becomes
21, cy %’)(,(a) exp aa(i,s)ti(s))\o

= Z_l‘, cix(a(i,s)'1) %x(a) exp ati(s)A'O

. -1
=’2;, ci‘)(,(a(l,s) );(ti(s),ﬂo) .

This is equal to V=Z‘ci§(ti,A0) . Therefore we have <y

Xla(i,s))c,

i(s) for any s€W, .

Now, since

0= P(v)= D, c,Q(t.,N)= 2 <, >, (a) exp at, A ,
igr 71 i€rI laEAX .

the coefficients of exp ati?\ must be zero. Remark that a1ti)\=
aztj’)\ (a.‘,aZE;A) is equivalent to that there exists an sE€ W)
such that a1ti=a2tjs . Therefore the coefficients of exp ati7\

is equal to
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) hn
2, C...\Xlaa(i,s))= 2, c.Xla)=(#Wy)c.X(a) .,
s €y i(s) s € Wy 17(‘ A 17(’

where we used ci'=c )7(,(a(i,s)) . Now we proved that P(v)=0

i(s

and v€®(7\0)1 give c¢;=0 , and therefore v=0 . Q.E.D.

Proposition 3.5. The representation (0',@()\)) of H(W,Wy)

. . W
is equivalent to Redw;\(t,®(}\o)) .

Proof. By Lemma 3.4, we have Ker P = @()\O)o . Therefore

P defines a linear map of the representation space of Redg)\t
. . . w

to (7\) . It is easy to see that P intertwines Redwkt and

. Q.E.D.



§4. Representations of Hecke algebras on virtual

character modules.

4.1. After the general theory in §3, we now return to the
notations and subjects in §§1 and 2. Let H be a Cartan
subgroup of G and {Hil Oéiél} a system of representatives of
conjugacy classes of connected components of H under the inner
automorphisms of G . Let 7\6@6 be an infinitesimal character
not necessarily regular, and W; its fixed subgroup in W . We
choose A to be dominant with respect to A" in the sense that
Re <A,0> 2 0 for O(EA+ . As is mentioned in §2, the virtual
character module V()) with infinitesimal character N\ is

decomposed as a vector space over C

vip) = 2 ® V(A -
[H] € Car(G)

Each VH(A) is isomorphic to the vector space (@(H;A) of

E-symmetric A-eigenfunctions on H which are of constant

coefficients. Put (@i(H;X)=<§(ai,tA;*)| te W;(A)> and Vé(%)=



T(@i(H;}\)) . Then clearly it holds that

@uM= Z %@ mn . voo= 2 2vion .
ogise * B ogiee H

Take a P\é@é such that (i) P belongs to the root lattice

Q[A]l and (ii) 7\0=}\+H is dominant regular  Then we have the

following lemma.

Lemma 4.1. (1) The subset WH(7\) coincides with WH(AO).
(2) The integral Weyl group WH(A) coincides with WH(KO),

(3) The subgroup W, 1is contained in WH(}\) .

The proof is easy. So we omit it.
4.2. Now we apply the results of §3 to this case. Take a

character E,(ai;*) of W(G;Hi) and form an analytic function

g(ai,t)\o;*) (aieHi, tew;o\)) on Hi as

(a.,tA.;a; exp x)= >, €(a.;s) exp stA,(x) .
; i 0’71 sGW(G;Hi) i 0

Then @i(H;}‘o)= <§(ai,t)\0-;*)| tew;’()\p is a WH(A)—module as



described in §2 (under the Assumption 2.1). Define a linear

operator P:@i(H;AO) > @a(H;A) by P(;(ai,tAo;*))=
;(ai,tA;*). Then we come to the situation of §3.2, if we
replace W', W, A, WY, Wy and X in §3.2 by W, We(A), W(G;H,),

W;?A), Wy and S(ai;*) in this section respectively. We get

the following.
Theorem 4.2. (1) For e,we) € H(W,(A),Wy) , put

O'(e)we)\)T;(ai,t)\;hh(#WA)_1 ?W Tl(a,,tsw A;h)  (h€H) .
s €Wy

Then § 1is a representation of H(WH(A),WA) which carries the
unit element of H(W5(A),W)) to the unit element of End Vé(A) .
Denote again by ¢ this representation of H(WH(A)’WA) on the
virtual character module VH(A)=§L@V§(A) (0gisl) .

(2) The representation (G,VH(A)) of the Hecke algebra
H(WH(A)'WX) is equivalent to the reduction (with respect to the
subgroup W}) of the representation (T,VH(AO)) of WH(x0)=

WH(A) + the integral Weyl group:
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Wy (Ag)
(6, Vy(N)) = Redwl (T/Vg(Ag)) .

Using Theorem 2.3, we can decompose (GQVH(A)) into direct

sum of "induced" representations. Namely, if we write
. _ B B
RI (g;A1ByC)= RedC IndA g ’

we have the following.

2

Corollary 4.3. The representation (G,Vy(A)) of

H(WH(A),W%) defined in the above is decomposed as follows:

L
(6, V(A = 2% BRI (E(L,45%) WL, ETW (ANWA)
i=0 IETY

where T, , W(i,¥) and &(i,¥;*) 1is given as in §2.2.
Let
@
(4.1) TV (Ay)) = 2 m
H'0 ')GWH()\)A ,)Y)

be the decomposition into irreducible components, where my is



the multiplicity of q . Remark that we can gef (4.1) from

Theorem 2.3 easily for explicit cases. We put
F(A)= {Y)e WH(A)A | 9 has non-trivial fixed vector for WA}
= fyew, (N | timnd (1 TH () 140 T .
Then we have

Corollary 4.4. The representation (G,VH(A)) of

H(WH(A),WA) has the decomposition into irreducible components:

Wy (Ag)

e
CAMINPEEIDY my Redy

N EF(A)

Proof. This is clear from Lemma 3.1 and the fact that

RedY) #(0) 1is egquivalent to DGF(/\) . Q.E.D.

In the case where )\ 1is integral, i.e., WH(A)zw for each

Cartan subgroup H of G , we have the representation

(6, va= 3© (5, V(M)
[H]€ Car(G)

4-5



of H(W,Wp) . Then Corollary 4.3 reduced to the following (see

[16,Th.5.21]).

Corollary 4.5. If ) is integral, the representation

(6, V(A)) of H(W,W)) is decomposed as follows:

0
(e,vin)) = 2 ° > @R (E(ay %) sW(G;H TWIH,) .
[H] € Car(G) i=0

Theorem 4.2 says that "if we know WH(AO)—module structures
completely for arbitrary regular infinitesimal character %0 ’
then we know the H(WH(A),WX)-module structure for singular
infinitesimal character A ", by translating the regular
parameter )0 to the singular one A . This theorem is useful to
study the properties of the virtual characters (or irreducible
representations of G) at singular parameters. For example, we

have the following result about the dimension of V() .

Corollary 4.6. Let A and )O=A+H be as before. For a

Cartan subgroup H , put
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n(H; Ay, A)= dim {Vé Vi(Ay) | TUs)v=v for any sew;‘} .
Then we have

dim V(A) = Py n(H;idg,A) .
[H] € Car(G)

Remark. Recall that dim V()) is equal to the number of
(eguivalence classes of) irreducible admissible representations

which have infinitesimal character A .



§5. Relation to Zuckerman's translation functors:

another interpretdtion of the representation ¢ .

5.1. Zuckerman's functors. We use the notations of §4
(and, of course, we suppose Assumption 2.1). Let (P=?ab and Y=
¢§? be Zuckerman's translation functors (see [20]). Here we
explain the properties of ¢ and lP briefly for later uses.
Originally. Zuckerman defined them using the tensor products with
finite dimensional representations of G . Functors { and ¢

are defined as

(P:Proj(Ao)e(F“Q(-))"PrOj(A) '

4’=Proj(A)°(ﬂ:&(-))'PrOj(AO) '

where Fh is the irreducible finite dimensional representation
of G with highest weight f* , and F; is its contragredient.
Notations Proj(ﬂ) and Proj()o) mean "projections" to the

components with infinitesimal character ) and %0

respectively. So ¥ and ¢' are by definition the functors of



categories of (@C,K)—modules. Since both of them are exact
functors, they induce linear maps between the virtual character
modules V()\) and V(7\o) . Here we denote these linear maps by

the same letters ( and LP :

SVIA) &

P: VA—VA) . ¢ VA

Take ®0€V()\o) and [H]g Car(G) . Then @o has a local
expression arround a regular element hEH'=HNG' as explained

in 1.2 :

D@O(h exp x)= 2, c. (h) exp WA, (x) (x eh) ,
WEW w 0

where cw(h) is a locally constant function on H' . By (3.8)

in [20], we have

D((P®0)(h exp X)= 2 §

wEW _w})‘(h)cw(h) exp WA(X) (XE®) .

Similarly, if we express @EV()) as

D =
®(h exp x) w}é:w a,(h) exp wA(x) (xe@) ’



then by (3.7) in [20], we have

D@ (h exp x)= T D E  (h)a,(h) exp wtlg(x)
LEW), wew ‘wtp

for h€H' and x@@.

5.2. Relation to Hirai's method T . Let P be a linear

v

map from @(H;AO)=©(H;_7\O) to €(H;)\) defined as follows. For

0¢i¢€ and t€W(Ay) , put
Plla;,tAyih)= §_tp‘ai’$‘ai'tmh’ (h €H) ,
where r&=A0—X is an element of Q[A] .

Proposition 5.1. For any ;E@(H;Ao)r.@(H;)\o) , we have
¢(T§)=T(E(§)) , where the notation T means Hirai's method T

(see [6] and Appendix A).

Proof. It is sufficient to show the proposition for

;=§(ai,tAo;*). Let D be the Weyl denominator as in §i. Then

for a; exp xGHi (xe@) , we have

5-3



& D Y(TZ)(a, exp X)= 2 (a.)E(a,;s) exp (tA,sx)
R pers * s€W(G;Hi)§—s_1tp\ . .

-
= (a,) 2, €(a,;s) exp (tA,sx) ,
g'ti* YseweH) *

by the results of [20] and the definition of T . Here we used

(a,)= (a.) for any sEW(G;H,) .
E-S-ltp i g—tﬁ i i

This follows from Assumption 2.1. On the other hand, we have
&RDT(E}Q))(ai exp x)=£};)(ai exp X)

=§—tp\(a') 2 E(ai;S) exp (tA,sx) .

l L3
S E W(G,Hi)

Thus we proved

PTo) [y = TR [y .

Since W(T;) and T(P(L)) are extremal IEDs of height H , we
can prove ¢“T;)IJ=T(£!;))IJ for another Cartan subgroup J

inductively on the order on Car(G) as given below. The proof



depends fully on the construction of T . We explain about T
in Appendix A.

At first, we prepare notations. Let J1 be a connected
component of J and F a connected component of J{(R):{hE:J1|
?«‘h)’“ for o(eAR'} . Denote by 3= Z(J.I) the root system
consisting of all the real roots o(GA(@C,@C) for which 'é«(h)>0
on J1 . Let S=S(J1) be the subgroup of W(G;J1) generated by

s, (x€Y), where s denotes the reflection with respect to « .

ol
Put P(F):{oce Z,I ’gK(F)H } . Then P(F) 1is a positive system in
' and we denote by TT=W(F)=&X1, ceny dr} the simple system in

P(F). Let B" (1€msr) be a Cartan subgroup obtained from J by

the Cayley transform Vd = Vm with respect to the real simple
m

root cimGTT . Then [Bm]>[J] holds. By the induction

hypothesis, we have

(5.1) QD(TQ)IBm= T(P())| . (1Smr) .

Put fm=D¢(T;)le= DT(P(Z))| . - We devide the proof for (.U(T;),J



=T(f(§))lJ into two steps as in the proof of Theorem 4.3 in

[16].

Step R. Put
2 =th& J (h)=1 ’
ar(ne 3] 5, a1}
zé:{hezml ?a‘(h);ﬁ for any root o(;éio(m} .
Then for aezl;ln J, and xe@ , we define

(Rdmfm] (a exp x)=fM(a exp Vm(x)) .

On the other hand, if we write gm=D(T§) e
B

g™(a exp x)= 2, c, €Xp WAO(X) (c_€C) ,
WEW w

then, by (5.1) and the results of [20], we have

(5.2) fM(a exp x)= 3, ¢ (a) exp wA(x) .
WZ Su 73] exe

For a function g on J of the form:



gla exp x)= E C.. exp WA, (x) (a€J', xe&f) ,
WEW \% 0 J

we define an operation ¢J by

$1(g)(a exp X)=wEQW'CW §_wp(a) exp wA(x) .

Then, by (5.2) clearly it holds that
(5.3) ¢ (R, g") =R, £" (1smEr) .
m

Step S. For a function g on J1 and s€S , we define sg

as sg(h):g(s-1h) (he J1) . For each Sp=S (1¢mér), we put

(.4
m
m, (1 m
‘éif ,sm)-(T Sm)(Ra £f7) .
m
Each element s €S can be written in the form s=s. s. ...s. .
SR 1k

Then we put

f1

=

; sees fr;s)ig(f is; ) +s, A(f isy ) + ...



It can be proved A(f‘, ceey fr;s) is independent of a choice of

expressions for s€S8 . Finally, we put

B(£', ..., £5) =) T A, ..., £5s) .

Similarly, _§ﬁg1, ceey gr) can be defined. Then, we have
DT(P(3)) [p=B(£', ..., £5) and DT(Z)|p=B(g', ..., g¥) . Since
D¢NT;),F=¢S(g(g1, ..., g5)) holds, it is enough to show that

1 r 1 r . .
%&(gjg ; +eer 9 ))=B(f, ..., £7) . But this is reduced to_the

fact that

¢(S(R g"))= s(R, £%) .
J dm dm

Let us prove this. Taking (5.3) into consideration, it's enough

to show

(5.4) $1tsg)r= s(Pr(a))

for an analytic function g on J1 of the following type: for

a€FNJ' and xe@, g has an expression



gla exp x)= c, exp w)o(x) (c,ecC) .
WEW

Put b=sa . Since

sg(b exp x)=g(a exp s'1x)= > c,, exp sw)\o(x) ,

WEW
We have for xeﬁl '
G915 exp x) = b A
;(sg) (b exp x) = Zu c, ;_Swp( ) exXp sw (x)

=W§JW c, g_wp(a) exp swA(x) .

In the equality (*), </’J is applied to the expansion of sg at
bEFNJ' . On the other hand, we have for the right hand side

for (5.4),

S(‘{/J(g))(b exp x) = Sl’J(g)(a exp s°1x)

(*) p
= 2, c (a) exp wA(s™ 'x)
WEW w?—w‘u

=2 c

wew

(a) exp swA(x) .

v Soup
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Here, in the equality (*), SbJ is applied to the expansion of g
at the regular point agFN J' . Thus we proved T(_-P;(;))IF=
prd) g -

Now, since F is arbitrary, we proved T(}:,(Z?))lJz VJ(T;)[J

and the induction step is completed. Q.E.D.

Let Q be a linear map of [C(H;A) into @'(H;AO) (from

singular A to regular 7\0) defined by

%(ai,tk;hhw};_,wi (a;) Q(ai,tW)\o;h)

th\

-1
= 3 (a,) R(w ) C(a,,tA,;h) .
WGWA%th i g i 0

Then we can prove the following, similarly as in the proof of the

preceeding proposition.

Proposition5.2. For any ge@(H;A) , we have @(T)=

T(Q()) .



We omit the proof to avoid the repetition of the same
sentences.

5.3. Representations of Hecke algebras. To consider
relations between Zuckerman's translation functors and our
representation O , there appears always the trifling constants

{gtrﬂai)} . In the following, we want to consider the case where

these constants are all reduced to 1 . We assume:

Assumption 5.3. For any téwg(}\) and 08isl , ;tp(ai)ﬂ

holds.

This assumption is not essential. 1In fact, we can take
and {ai} so that Assumption 5.3 holds (see Lemma B.4 in

Appendix B).
Corollary 5.4. Under Assumptions 2.1 and 5.3, we have

A
Ker(,bk0 = Ker Tley) on V(Ao) .



Proof. By Proposition 5.1, we have Ker‘¢ = T(Ker ?) N

Since P in §3 is equal to P by Assumption 5.3, we have

Ker P = Z;@ C(H;)\o)o
= [H] & Car(G)

from Lemma 3.4. The subspace (§(H;Ao)0 is given by
. ~
CtHirg) o=15 €CiHiAy)| R(ep)3=0 }

where R 1is defined as in 2.2. Clearly, it holds that
'TQE(H;AO)O)z Ker T(ey) (in VH(RO)) and, summing up through

[H] € Car(G) , we have the corollary. Q.E.D.

One can prove the following lemma similarly as in the proof

of Theorem C.2 in [10].

Lemma 5.5. For @EV()\O) , we have

PP@O = T TUSIO = (#W;) T(ep))® .
SGW}‘

Using Lemma 5.5, we introduce another interpretation of the



representation & of the Hecke algebra H(WH(?\):W)\) in §4.

Theorem 5.6. For ejwejp€ H(W,(A),W,) and @EV,(A) , put

(5.5)  o'(eyue)@=(#1y) 7 (Potleyuen)e ) @) .

Then (o' ,VH(}\)) defines a representation of the Hecke algebra

H(WH(A),W)‘) , and moreover ¢' is equal to o .

Proof. ©8Since TeP=TeP 1is surjective, there exists

;06-@(H;A0) such that T(g(;o))=@ . Then we have
(#93) T PeT (e we e P (T(RT))

=(#W}\)-1¢ot(e;\we;\)°¢<//(T§0) (by Proposition 5.1)

=(#W) T PeT e wey ) o (#0)) Tlex) (TZ,) (by Lemma 5.5)

:(P.‘C(e)‘weA)(T;O) -

The last formula and Proposition 5.1 tell us that this is equal

to O/(e)we))(T(Pgo))=6(exwek)@ - Q.E.D-



§6. T-invariants for admissible representations.

In this section, we show some applications of
representations of Weyl groups or Hecke algebras to study
admissible representations of G . Our representations T and O
are closely related to so-called U-invariants of an irreducible
admissible representation of G .

Let (m,®) be an irreducible admissible representations of
G on a Hilbert space @) . We denote by (K,@%) the
corresponding irreducible (@E,K)—module on the K-finite vectors
of @ . Then we can define a grobal character ®(Tw) of (Tt,@K)
as in §1. Here we suppose that @(7t) has a dominant regular

infinitesimal character XOG(BE .

Definition 6.1. Let TT be the simple system in A*. Then

T-invariants S(m) of (‘Tt,@) is a subset of TI defined as

<d,k0>
sm)={we M| ——2—€2z and Tis«) ®m)=-@(m) } ,

o, k>



where <,> 1is an inner product on (Eé invariant under the
action of W . Remark that if <“,Ao>/<d:d> is an integer,

then qu,WH(AO) holds for any H .

Remark. Our definition of T-invariants may slightly differ
from that of Vogan's (see [19]). The difference between our
representations of Weyl groups and Vogan's ([1,19]) is the cause
of the difference of T-invariants. However, most of the results
obtained by D.Vogan are valid in our situation {for example, see

Propositions 6.2 and 6.4).

Put }A=(<d,ko>/<d,d>)0(. Let p be a positive integer such

that ;p for any i on each Cartan subgroup H

l"‘(ai)=1

({HI€ Car(G)) . The existence of such a p 1is assured for a

special choice of {ai} (see Appendix B).

Proposition 6.2(D.Vogan). Take an o €Tl such that
<, Ag>/<d,%> €EpZ . Put A=Ag-H . P=(<d,Ag>/ ¢, 0>)X . Then

WA={e,s«} and the following two conditions are equivalent.



(1) 4’7;(@(715)#0 .

(2) «€s(m .

Proof. This proposition is essentially known (see
[(19,Prop.3.2]). But here we give a proof because it shows
usefulness of our theory. The proof is very short, if we use the
results of preceeding sections.

We know from Corollary 5.6, Ker (P = {VGV()\O)l T(ep)v =0 } .
The equation T (eyp)v=0 means T(syg)Vv=-v because e\= (e+sy)/2.

Q.E.D.

Example 6.3. (1) 1If 'ﬁf is a finite dimensional
representation, then S(Rf):TT .

(2) 1If 'Ha is a discrete series representation with
Harish-Chandra parameter 7\06@6 , Where @ is a compact Cartan
subalgebra of C). Remark that G has discrete series
representations if and only if G has a compact Cartan subgroup.

Choose a positive system 'Af so that AO is dominant regular



with respect to Af . Then we have
S(?cd)={o(e7r | X is a compact simple root} .
This is-the deep result of W.Schmid ([17,Th.9.41]).

Take a regular dominant infinitesimal character AOE{EE . If

necessary, replacing )0 by a multiple of XO by some positive

integer, we can assume:

(1) For suitable choice of {ai} , AO satisfies Assumption

(2) If <A, pp>/<d,2> €2 for an €T , then p=
(<d,AO>/<d;&>)q satisfies Assumption 5.3.

This is clear from the argument given in Appendix B.

Let {@J.[ jEJ} be the set of all the irreducible
characters of G with infinitesimal character KO . Take an
€Tl such that <o<,)\0>/<o(,o(>€z . We put s=sy€W , the
reflection with respect to o« and A(X)= AO - (<d,)0>/<d,qp)a_.

Then W)(x)={e’s“}C:wH(A0) and A(K) satisfies Assumption 2.1



for the same {ai} . Let J(s) , s=sy , be the subset of J

defined as
J(s) = {J€T]| Ts)Oy = -9} - {1€sl ses@)} .
Proposition 6.4(D.Vogan). (1) For k EJ\J(s) , we have

r(s)® =® + ZI Z-@- ’
k" 5ga(s) 373

where zj (j€ J(s)) 1is a non-negative integer. Conseguently,
TTS)G% is a true character.
(2) If we put VZ()\O)=ZjeJ Z®j , then T(s) preserves

v, (Ag) -

Proof. The proof is carried out similarly as in the proof

of Lemma 3.11 in [19]. So we omit it.

Now we return to the situation in §5, i.e., start from a
dominant A not necessarily regular and put A0=X+V dominant

regular. Of course, we assume Assumptions 2.1 and 5.3. Put



Tr(}\)={o(€-|T| <A,>=0} . Then W, is generated by {s,,(l

LeTN) Y
Theorem 6.5. (1) Put
VZ(AOPTT()\))= <®jl JE J(sg) for some X E€TT(N)>/2Z

generated as a Z-module. Then VZ()\O;n'()\)) is stable under the

action of Wy and VI(AHiTMA))= V(A T(A)®,C is the kernel of

'C(e)\): V(7\0) >V(7\0) .
(2) For an irreducible character @ , it holds that

<P§\°(®)=o if and only if TUsyx)®=-® for some X € TT(A) .

Proof. (1) At first, we show that Vz(;\o;‘n'(,\)') is stable
under the action of W}\ . It is enough to show that, for any

']GJ(?\)=U°(6TI-(>\)J(S°() and any &€ TI(A) , it holds that
'C(Sx)@j € V,(ALiTAN .

This is trivial, if Jj€J(sx) . Suppose Jj &J(sy) . Then we
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have from Proposition 6.4,

T(sa)@. =@. + 2. z (z, €2) .
3 I kEa(sy) B K

The second term of the right hand side of the above equation is
contained in V, (A ;M(A)) by definition. Since @J. is
originally taken from V2(AgiTA)) , we proved ‘C(so(@j €
VZ(7‘077T(/\)) , hence VZ(AO;TF()\)) is W,-invariant.

Now we prove that VZ(?\O;'IT()\)) contains no non-zero fixed

vector for W)\ . Put ‘
V1 (K) = (1+'C(Sa<))V()\o) ’
Vol)= (1-T(sx))V(Ay) -

Then V()O)=vo(a()@v1 (X) 1is a direct sum decomposition. From
Proposition 6.4, V,(X) has a basis {®j| JE€EI(sq)} . 1If
@éV(}\O) is a fixed vector for WK , ® is contained in V1 ()

for every K€TT(A) , that is to say



@e N v .
A eTT(A)

Therefore, if we denote by (,) a Wy -invariant inner product on
V()\o) , we have (@,Vo(o())=0 for any «€T[(A) . Consequently,
(®,®j)=o holds for any j€ J(A) and we have (B,V(Ay;M(A))=0 .
From the above, we see that V(Ao;'ﬂ'(}\)) C Ker T(ep). Remark
that dim V(')\O;TT()\))=#J()\) . From Proposition 6.4, we have for

jFEIJ\J(A) and XETT(A) ,
Tls«)®; = O mod V(A,;M(A)) .

Since {®j] jE J\J()\)} is linearly "independen-t modulo
V(AgiT(A)) , the dimension of the space of Wp-fixed vectors is
#(J\J(A)) . Now, since the complement of Ker T(e)) is
precisely the space of Wa-fixed vectors, we have dim V(7\0;T]‘(A))
= #J(A) = #J - #(J\J(A)) = dim Ker T(ep) . Thus we proved
V(AgiTT(A) )= Ker T(ey) .

(2) is clear from (1) and Corollary 5.4. Q.E.D,
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From this theorem, we know that the subspace Ker't(e)) of
V(AO) (or equivalently, the direct sum of all the non-trivial
representations of Wa in V(AO)) has a basis consisting of
irreducible characters. This is a remarkable fact and maybe is
useful for picking up irreducible characters from the space of

IEDs.



§7- The case of U(3,1) .

In this section, we give some examples of representations of
Hecke algebras on the virtual character modules of G=U(3,1) (cf.
[16,§6]). The results of this section is valid (with appropriate
modifications) for U(n,1) (n22), however, we restrict ourselves
to the case n=3 for simplicity of notations.

7.1. Irreducible representations of U(3,1) . Let G=U(3,1)
be the group of "unitary" matrix with respect to the Hermitian

form X.X.+X, X,+X,X,-X,X That is to say, we put

1717727277373 7474

t

G={geGL(4,C)( gl g=J} ,
15 0
J= ’
0 -1

where 13 denotes the identity matrix of size 3 . All the
irreducible admissible representations of G are classified by

T.Hirai ([4]). We follow after his notations. Irreducible

representations of G are



a) Irreducible principal series representations:
(@ux;c1,c2), where (X=(91,92) (Q1>Q2) is a row of integers and
(C1,c2) a pair of complex numbers such that Cq+Cy= an integer,
and neither c¢, nor c, are equal to an integer, or else, both
<, and ¢, are equal to some of integers Q1,12 . The
infinitesimal character of D(d;c1,c2) is (Q1,Q2,c1,c2) o

b) Irreducible subguatients of reducible principal series

representations: thj , where ok:(Qo,Q1,Q2,Q3) is a row of

&
-

integers such that ¢ o>q1>92>93 and (i,j) is a pair of
integers such that 0£i<jg4 . The infinitesimal character of

ngj is o . The representations Di{l+1 (0¢ic3) are discrete

series representations and D2:4

is a finite dimensional
representation.

c) The limit representations of the representations of type
b). We denote these representations by the same letters as in

b), while the parameters are degenerate.

The representations with regular integral infinitesimal



character belongs to the class b) and, in the following, we

consider this class of irreducible representations. Of course,

irreducible representations of type c) and some of type a)

naturally appear when we consider the representations of Hecke

algebras.

1 2 4
0 p?7 p92 03 p04
1 pl2 13 D14
2 23 p24
3 p34
Figure A.

7.2. Representations of the Weyl group.

Let W be the

complex Weyl group, then Wﬁ:@z{ (symmetric group of degree 4).

Take a regular integral infinitesimal character uo=(Q

0ry:92:93),

Q0>q1>92>13 . Then its integral Weyl group is precisely W ,

and we realize the action of W-ﬁ-’@4 on C4@E by the
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permutation of coordinates. Simple reflections, which make do

dominant, are transpositions:

{s1=00,1) , s,=(1,2) , s3=(2,3) } .

Since we only consider the virtual characters, we denote by the
same letters D! the corresponding irreducible characters. We

have, from 7.1,

Viy) = > epid |
0¢i<jsd

and the action of T(sk) on V(do) is given by

Tis)ptd = ¢ _pd if k#i,3

1 pi-1r3,pidpi+ted 4wy

Lot 3-Tpidptadtt e gy,

where D' is considered to be 0 . This action of t(sk)

defines a representation of W . The decomposition of T into

the irreducible components is given in (16,861 V(a0)=



11410212:131013-12] (for notations see [131).

Remark. The above formula of ‘C1sk) is valid for U(n,1)

(n22) without modifications for regular|infinitesimal character
®y - In this case, simple reflections are {si=(i—1,i)| 1§i§n}
and the irreducible representations of G with infinitesimal
character ®, are {D'J| 0Si<jgn+1} (see [41). The
decomposition of T is given by (t,V(do)) o~

(1%*110212.17 1 1013-1772]  ([16,§61).

By the formula of T(Sk) , we know the T-invariants of p*J

1 2 3 4
0 S, S3 S, s3 S, 52 S, 52 s3
1 S3 S, S, s3
2 S, s, S3
3 S, S,

Figure B.



We explain how to read Figure B. For example, S(D02)={§1,53}
is the T-invariants of p02 (we identify the simple system with
simple reflections by usual manner). From Figure B and Theorem
6.5, we know the irreducible characters with infinitesimal
character (Qa,ﬂi,QZ,Q3) , Qé:Q{>Q2>Q3 , are {¢(Dij)| i=1 or
j=1} . The other singular infinitesimal characters can be
treated similarly.

From Proposition 6.5, we know

(i) The space ZPCDij (i#1, 3#1) 1is invariant under the
action of W1={1,sl} . This space is a multiple of the sign
representations of W1 .

(ii) The space ZLQCDij ((i,3)#(1,2)) 4is invariant under
the action of W12=<s1,52>21623 . This space is decomposed as
3[13]®3[2-1] (for notations, see [13]). The decomposition is
calculated from [16,Lemma6.2].

(iii) The space ZLOCDIJ ((i,3)#(1,3)) is invariant under

the action of w13=<s1,s3>::@% x(gé . This space is decomposed
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as 3(sgn@sgn)®3(sgn@l)@®3(1®sgn) .
7.3. Representations of the Hecke algebras. Essentially we

have three different types of Hecke algebras for G=U(3,1) .

(i) At first, we consider the case where the singular

9,2

infinitesimal character is of the form (X1=(Q 20 3),

09
Q0=Q1>QZ>Q3 . In this case, the irreducible characters with
infinitesimal character <¥1 is given by {¢KDij)\ i=1 or j=1}

as commented in 7.2. We denote also by the same letters

"degenerate" characters. Then we have V(d1)=<DO1,D12,D13,D14>/C

01 12

where D and D are limits of discrete series
representations. The fixed subgroup W1 of d1 is given by
W1={1,s1} and we put e1=(1+s1)/2 . Then a Hecke algebra
H(W,W1)=e1C[W]e1 is of dimension 7 and for the generators of

H(W,W,) we can take {h2=e152e1, h3=e153e1} . The relations of

generators are given as follows:

h2- $(1+h,) , h

(93]
1]
-
-
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2 1 _
(h,hy) %= hyhshy+3(hghy-hihoha)

2_ 1 -
(h3h2) = h2h3h2+2(h2h3 h3h2h3) .

The actions of generators on V(d1) are given as below:

,
_1/2 1/2 o 0 )
016152e1)= 0 1 0 0 ’
0 1 -1/2 o0
0 - 0 0 -1/2
\. y,
(1 0 0 0 )
d(e1s3e1)= 0 -1 1 0 ,
0 0 1 0
L.o 0 1 -1
/

where the matrix is expressed with respect to the basis
{001,D12,D13,D14 in this order. This representation is
reducible and has three irreducible components. Invariant

subspaces are precisely,
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/e, 0'/c, 0242y /2, D13 (0% 30" %) /45 /C .

Corresponding to this basis, operators are diagonarized as

(172 )

6(e1sze1)= 1 0

1 -1/2

-1/2

6(615381)= -1 1

. -1
(ii) Next, consider the case where the singular

infinitesimal character is of the form d12=(Q0,Q1,QZ,Q3) , QO

=91=Qz>93 . In this case, the only irreducible character with

infinitesimal character u12 is ¢KD12) . This is a

"degenerate" principal series representation (type a) of 7.1)
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and, in the same time, is a limit of discrete series
representations. We write this irreducible chgracter by the same
letter D12 . Since the fixed subgroup W12 of d12 is
generated by S, and Sy the Hecke algebra H(W,W12) has
dimension 2. A generator of H(W,W12) is h3=e1253e12 , where

e..= (1/6)2 s . The relation of the generator is given by
12 s€W12

2 -
31 - 2hy -1 =0 .

12

Non-trivial element e1253e12€;H(W,W acts on D as

12)

12 _ 1 12
6(e1zs3e12)D =-30D .

(iii) This case treats the singular infinitesimal character
of the form 0(13=(Q0,Q1,Q2,Q3) , QO=Q1>Q2=Q3 . The only
irreducible character with infinitesimal character d13 is

13 . " " .. . .
¢(D ) . This is a "degenerate” principal series representation
of type a) in 7.1. We write this character by the same letter

13

D . The fixed subgroup of 0(13 is W, 3=¢<s ;s> z@z X @wz and



the Hecke algebra H(W,W,.) has dimension 3. Put e, _=

13 13

(1/4)ESGW13 s . Then the action of the generator €,355e:3 of

H(W,W13) is given by

13

In this case, the relation of the generator h2=e1352e13 is
given by
3 2
2h2 - h2 - h2 =0 .
Therefore one dimensional representations of H(W,W13) consist

of three equivalent classes. The other two classes are given by

d'(e1352e13) = -’;" or 1

respectively, and do not appear in the virtual character modules.
The above three types (i), (ii) and (iii) corresponds to

(i), (ii) and (iii) in 7.2.

Remark. For G=U(n,1) (n22), one can calculate out the



representations of Hecke algebras using the formula of T in

7.2. The details will be discussed elsewhere.



Appendix A.

This appendix is devoted to describe Hirai's method T for
the usage in §5. For detailed arguments see [6,§3].

A.1. Let (&(A) (AG@E) be the space of all the IEDs with

infinitesimal character A . Since @6@(7\) is essentially a
locally summable function on G which is analytic on G' , it is
determined by the values on the set of regqlar elements G' .
Moreover, ® is determined by the values on the finite system of
Cartan subgroups {HI [H]GCar(G)} because ® is invariant
under the inner automorphisms of G .

To understand Hirai's method T , it is essential to
consider some kind of order on Car(G) . Let us explain this
order on Car(G) (see [5,§3]). Take [A]l&Car(G) , where [A]
means the conjugacy class of a Cartan subgroup A . For °(€AR=
AR(@C,QC) , let H be the element of <§C for which o&(X)=

B(Hy,X) , where B(,) denotes the Killing form on Qﬂ: . Take

root vectors Xy , X_, from <> in such a way that [Xd,x_“]=Hd
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and we put

Let V=Vy be the automorphism of @b defined by
V=Y= exp {-ST F ad(x} + x')}

so-called Cayley transform with respect to & . Then (b=

V(@C)n@ is a Cartan subalgebra of @ not conjugate to @ur}der

any automorphism of @ , and §=\)(o() is a singular imaginary

root of @ . We have
@= Do + RHY, B=2 -+ ,/:‘TRH"S ,

where 73 is the hyperplane of @ defined by &« =0 and
Hp = V(Hy) = J-T (xy - xty .

This relation between @) and (&) is denoted by (@, %)—> (@,g)

or simply by @—)‘5_\ - We introduce the order < on Car(G) by
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defining [A]<[B] when (gf—>E} for an appropriate choice of a
representative B of the class [B] , and extend it
transitively.

For ®€A(A) , we put

supp(@ ={[H]€car(G)]| @[, %0 } ,

tht(@):{[H]G Supp(@)l [H] is maximal in Supp(®) } .

and call [H]€ Hght(®) a height of & . If ® has the unique
height [H] , then C) is called an extremal IED of height [H]
(or simply, H).

For a Cartan subgroup H , put

H _ _ -1
p¥(h) = gP(h)o(-IGTN (1-B(h) ™) (heH) ,
pEh) = T, (1-3.m”™")  (hem) .

sk eAp

For a given IED ® on G we put

Cy(® (h) = DY (h) @ (h) (hed') ,
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i (@) (h) = €2(1)D" (h) @ (h) (he ') ,

where 8g(h)= sgn (Dg(h)) (heH') .
Define a family of analytic functions (EYH;A) as in §1.3.

Then we have

Theorem A.1(Hirai [5,Th.1]). Let ® be an IED on G with
eigenvalue A . If ® has a height [H]€&€ Car(G) , then Cé(@)
can be extended to an analytic function on the whole group H .

Moreover, it belongs to @(H;A) .

A.2. Hirai's method T 1is the method to construct an
extremal IED with height H from an elemer;t 'QE‘@(H;)\) . This
is done by induction on the order on Car(G) , and has two
different steps R and S. Roughly speaking, the step R
corresponds to boundary conditions to be satisfied by IEDs, and
the step S corresponds to Weyl group symmetry which assures the

invariance of IEDs. As is mentioned above, an IED ® is
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determined by the system of functions CJ(®) ([J)E€ Car(G)). So,
in order to give an IED T; for ge@?ua;x) , it is sufficient to
give functions CJ(Tg) for every [J)JECar(G) . T.Hirai gave
necessary and sufficient conditions for the system of functions
C;(® ([J1€Car(G)) obtained from an IED @ in his works

([5,6]). Using his results one can verify that constructed
functions CJ(T;) ([J]€ Car(G)) really determine an IED Tg .

Let us explain the construction in detail. Take an element

56@(}1;)\) . We put

CH(T;) =6§-; for H itself,

C;(T7) = 0 for [J]1 & [H] .

Let A be a Cartan subgroup of G and assume that we have

already constructed CB(T;) for [B]>[A] . Let A1 be a

connected component of A and F a connected component of
Aj(R)=A;NA'(R) , where A'(R)= {h€A]| Eh)#1 for any xely} .

Denote by Z=2(A1) the set of all the real roots & €A, for
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which gu(h)>0 on A, . Then 3, is a root system. Let
S=S(A1) be the subgroup of W(G;A1) generated by wy a

(x€3) , where wa is the conjugation by an element g, = exp
3TUXg-X',) EG . We put “’“IAfS« . Let P(F) be the set of
0452 for which ?m(F)H . Then P(F) is the set of all the
positive roots of 2, with respect to a certain order of roots.
Let TT=TT(F)={O(1, ""O(r} be the simple system in P(F) .

Step R. Denote by Q@n a Cartan subalgebra obtained from

@9 by the Cayley transform vu =vm with respect to the real root

m

dm (1€m€r) . By assumption, the functions C m(Tg) have been
B

already determined. We write Cm instead of C m(T;)
B

for

brevity.

We put

Zo=fhea| g, m=1}
m
Zp = {h€Z;| 8«(m)#1 for any root wira } .

Then for aezx;lﬂA.l and x€@ , we put
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(Ro(mcm)(a exp X)= Cm(a exp \)m(x)) .

Here \)m(x) may not be contained in Cbm , but Cm is locally a
linear combination of the form exp P\(x) (Pe(@rcn)*) (or its
multiple by a certain polynomial function), so Cm(a exp \)m(x))
has natural meaning.

Step S. For a function £f on A1 and s€S , we define

sf as (sf)(h)=f(s_1h) (h€A1) . For each Sm=Sx (1€m&r) ,
m

we put

ésm=(1—sm) (Rd»mcm) *

Each element s €S can be written in the form s=s. s. ...s.
1 i, i,
(see, for example, [2]). Then we put
és-g + s, A + ... + 5, S, ...S5; Al .
= —511 11‘512 1 %2 k=151,

It can be proved that -és is independent of a choice of

expressions for s&€S . Finally we put
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-1
(C,,C,, oe-, C )= (#8) E A -
1772 m seS's

N
1]
nw

Denote by EA the union of wA1 over wWEW(G;A) . Define
1

CA(Tg) on EA1r\A'(R) by
Cp(TZ) (wh)= det(w)B(h) (WEW(G;A), heF) .

be a complete system of representatives of

Let A A

10 Byr ee

connected components of A under the conjugation of W(G;A) .

Then A 1is the disjoint union of EA ' EA , -.-- - Repeating the
1 2
same construction for every Ai , we get CA(TQ) on the whole

A . Thus we can define CJ(T;) ([JleCar(G)) inductively. We
see that they altogether define an IED T; by Hirai's arguments.

Our proof of Proposition 5.1 is carried out along the above
construction of T . Steps R and S there correspond to the same

parts of this appendix.
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Appendix B.

Here we remark about the Assumptions 2.1 and 5.3.

At first we prepare some notations. Let H be a Cartan
subgroup of G . We can choose a §-stable Cartan subgroup from
[H] , where © 1is the Cartan involution with respect to a
maximal compact subgroup K . So, we may assume H is O-stable.
Then the Lie algebra <§§ of H is also D-stable and we define

{(h*=((+1)-eigenspace of 6) and C@‘:((-I)-eigenspace of 6). Put
+

H'= HnNkK , H =exp @ .

Then H=H*H™ (direct product) and H~ is connected. Denote the

adjoint representation of G by Ad: G———>IntQ§) . The kernel

of Ad is the centre of G . Put
T=Ty=ad" (ad(K)Nexp (V=T .

Then we have the following lemma (see, for example, [12]).
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Lemma B.1. (1) T is a finite group and commutes with
ZG(H-)0 , identity component of the centralizer of H in G .
(2) It holds that H=TH =H T and TC HY .

(3) T is stable under the action of W(G;H) .

Put M= N{Ker [X]] X:2g5(H) >R* , a continuous
homomorphi$n}. Then M 1is a reductive subgroup of G

containing a compact Cartan subgroup HY .

Lemma B.2. Let TO=TV\H0 . Then we have
(1) The finite group Tb is contained in the centre of
Mo , the connected component of M containing e

(2) For o<eA/_—1RUAR and aePo , gx(a)=1 holds.

Proof. (1) is clear from Lemma B.1(1). Let us prove (2).
For (xeAﬁR » take a non-zero root vector X, . By the
definition of T , Ad(a) (a€el') has the form exp(J-1 ad x)

hcé(jﬁ. We have Ad(a)X«= exp(J-1 ad x)Xy= exp(J/-1 X(x))Xy=X o ,

since (x)=0 . So Ex(a)=1 holds. The proof of gu‘a)=1
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(O(EAR) is carried out similarly, since aéHa' . Q.E.D.

Lemma B.3. For }\G@E and te W;I'(?\) , there exists a

positive integer m such that

Sempla) =1 (a€Ty) .

The integer m can be taken as mg#fb .

Proof. Since Tb is a finite group, there exists an m

such that a™= M) = =
e for any aeT“O . Then §t7\(a )—?tm)\(a)J

holds. Q.E.D.

Let {Hi] iG:I} be a complete system of representatives of
the conjugacy classes of connected components of H , under the

action of W(G;H) . As for Assumptions 2.1 and 5.3, we have the

following lemma.

Lemma B.4. There exists a subset {ail i.éI} for each

Cartan subgroup H ([H]€ Car(G)) satisfying the following
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conditions.
(1) It holds that aiEHi for i€1 .
(2) For an arbitrary infinitesimal character X=X ) (Ae-@é),

there exists a positive integer m such that

-1 ~ . .
Semy 3y saj)=l (tE€W(mA), 1€T, sEW(G;H,)) .

(3) There exists a positive integer p depending only on

G , such that

gpp(ai) = 1 for any MEQIA] .

Proof. It follows from Lemma B.3 and its proof that there
exist a positive integer p depending only on G , and {ail
i€ I} a subset of H such that

(a) It holds that aie H, for ierl

(b) For any Ae@é , we have

-1

gtp}\(ai sai)=1 (tGWH(A), i1€1I, s&W(G;Hi)) .
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(c) For any M€ QIA] , it holds that §pp(ai)=1 .
In fact, we can take p= T #, and {a.[ ier}
H 1
[H] € Car(G)

can be taken from T} .

By the definition of WE}A) , it is clear that Wﬁ?p%):D
WEYA) . Therefore, for some positive integer r , WaﬁprA)=

s,

WH(pr-1A) holds. Put A':prk . By the above argument, we have

-1 ~ r-1 .
e (2; sa5)=T (t€W (P 'A), i€I, SEW(G;H)).

Since’ W;?pr_1x)=wg(x') , we have
-1

Fepr (@ sag)= (t€WI(A"), 1€I, sEW(GH,)) .

Remark B.5. An integer m in Lemma B.4 (2) can be taken as
m§pr (r=fW and p as in the proof). This is clear from the

above.

For an arbitrary 7\6@6 , 1f necessary, take mA instead of
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A . Then Assumption 2.1 is satisfied.

Also, we can take pegé which satisfies Assumption 5.3 as
follows. It is clear that there exists a f‘\' € Q[A] such that

7\0=7\+P\' is dominant regular. Then it holds that
§t(«\(ai)=1 (te WH(M, ieI1) ,

where p\=pp'€Q[A] . Clearly A0=A+p is dominant regular and

Assumption 5.3 is satisfied for this A .

rd
-
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