
ジ

脚d幽

占



学 位 審 査 報 告

氏 名

学 位 の 種 類

学 位 記 番 号

学 位 授 与 の 日 付

学 位 授 与 の 要 件

研 究 科 ・専 攻

西 山 享

理 学 博 士

理 博 第 号

昭 和 年 月 日

学 位 規 則 第5条 第1項 該 当

理 学 研 究 科 数 学 専 攻

(学 位 論 文 題 目)

RepresentationsofWeylgroupsandtheirHeckealgebrasonvirtual

charactermodulesofasemisimpleLiegroup

(半 単 純 リ ー 群 の 指 標 加 群 上 のWeyl群 と そ のHecke環 の 表 現)

論 文 調 査 委 員

主 査 吉 沢 尚 明

土 方 弘 明,戸 田 宏

理 学 研 究 科



氏 名 西 山 享

(論 文内容 の要 旨)

本 申請論 文の 目的 は,半 単 純 リー群 の既 約表 現 を,Weyl群 また はHecke環

の作 用 によ って分 類 し記述 す る ことで あ る。本 論 文の 主要 な内容 は,従 来の

結 果 との 関連 を含 め て,以 下の とお りで あ る。

1.申 請者 が考 察 して い る群 は,半 単 純 リー群 で,中 心 有 限の もので あ る。

この よ うな群Gの 既約 表 現 で次 の条件(イ),回 を満 たす もの を,既 約 認 容表 現

(admissible表 現)と 定 義す る。

{イ}バ ナ ッハ 空 間上 の 強連 続表 現。

回Kを 群Gの 極 大 コ ンパ ク ト部分 群 とす る とき、K有 限 なベ ク トルの な

す 部 分空 間 に制 限 した表 現 は,Kの 表 現 として,各 既 約成 分 が有 限 の 重復度

を もつ。

この よ うな既 約 認容 表 現 は重要 で あ って,こ れ まで も研 究 され て い る。特

に ■anglands,Knapp-Zuckerman等 が その 分類 を行 ったが,彼 等 の用 いたパ

ラ メー タは非常 に 複雑 で あ る。 別 に,零 化 イデ ア ルを用 い る分類 も考 察 され

て い るが,こ れ は分類 と しては粗 い もの で あ る。

2.申 請者 は,既 約 認容 表 現(以 下・ 単 に 「既 約表 現 」と称 す る)の うち

非退 化 表現 につ い ては,既 に参 考論 文 に お いて研究 して い る。 これ は本 申請

論 文の結 果 の 基礎 とな るもの であ るか ら,こ こに併 せ て述 べ る。

表 現 が非退 化 とは,群Gに 付 属 す る展 開 環(す な わ ち,群 の リー環 の複 素

化 の 展開 環)の 中 心の 作用 が,非 縮退 固有 値 を持 つ ことで あ る。 この よ うな

非退 化既 約表 現 の 作 る加群 をGrothendieck加 群 と称 す るが,こ の 上 にWeyI

群 の表 現 を定 義 して,表 現 の構 造 を明 らか に した。 こ こで は,こ の加 群 が 群

Gの 指 標 の なす加 群 と同型 で あ る こ とに よ って,指 標 に つ いての 詳 しい結 果

が 用 い られ て い る。

3.本 論 文 で は,退 化 した既約 表 現 の場 合 に,W6yl群 に代 ってHecke環 が

主 要 な役割 りを果 た す こ とを示 して い る。 す な わ ち群Gの 退 化 した既 約表 現



の 作 るGrothendieck加 群 の 上 に,Hecke環 の作 用 を定 義 で き る こ とが 示 され

てい る。 これ は,非 退 化 表現 の 場 合のWeyl群 の表 現の極限 と考 え る こ とが で

き る こ とが,Zuckermanのtranslationfunctorを 用 い て示 され る。

4.特 にGが 群U(3,1)の 場 合 に,前 述 のHecke環 の 表現が具体 的 に構 成'

され てい る。

5.上 述 のWeyl群 また は そのHecke環 の表 現 を応 用 して,Gの 退 化既 約 表

現 の 個 数が,代 数 的 に記述 され て い る。

6.非 退 化 表現 の 中 で退 化 度 を表 す1つ の不 変量 が 知 られ てい るが,そ の

不 変量 を代 数 的に 記述 す る こ と.及 び そ こか ら既 約 表 現 の性 質 を導 くこ とに

つ いて,広 い結 果 が得 られ てい る。



氏 名 西 山 享

(論 文 審査 の結 果 の要 旨)

本 申 請論 文の 内 容 は,特 に以 下 の諸 点 に おい て評価 され る。

{1)1に 述 べ た よ うに,認 容 表 現 の分類 は,こ れ ま でLanglandsやKnapp-

Zuckermann等 に よ って考 察 され てい るが,そ れ に比 べ て,申 請者 の 得 た結

果 は,統 一 的か つ 明瞭 であ り,こ れ か ら種 々の結 果,特 に4,5,6に 述 べ たよ

うな こ とを導 く こ とが で き る。表 現の 分類 は,表 現論 にお いて 基本 的 な 問題

で あ るが,申 請 者 の 結 果 は,表 現 論 の今 後 の 発 展 に と って 重 要 な もの で あ

る。

12}前 項 と関 連 して,申 請者 自身 が,今 後 の 課題 とな る もの を幾 つか指 摘

して い るが,こ の よ うな発 展 が 予想 され,ま たこれは本論文の方法と結果の妥当

性 と重要 性 を示 して い る。指 摘 され て い る課 題 に は次 の よ うな ものが あ る。

{イ}零 化 イデ アルか らき ま る或 種の 多項 式 とWeyl群 の表現 を決定 す るこ と。

卜1㍉回 表現 あ
るい は零 化抵 イデ ア ル とGelfand-Kirillov次 元 との 関連 を調べる

こと・ 納

←→ 既巖 現に対応 する指標加群の要素 を,代 数的に特徴づけ場 こと。

(3}3に お い て 退 化 既 約 表 現 が 非 退 化 既 約 表 現 の 極 限 と 考 え ら れ る こ と が

指 摘 さ れ て い る が,こ の こ と は 興 味 の あ る こ と で あ り,ま た 表 現 論 に お い て

一 般 的 な 重 要 性 を も っ て い る
。 申 請 者 の 考 察 し た 操 作 は 次 の と お り で あ る 。

V{λ}を 退 化 パ ラ メ ー タ λ を も つ 指 標 加 群 と し ・V(λO)を 非 退 化7NOラ メ ー

タ λOを も つ 指 標 加 群 と す る ・ こ こ で λ と λOは と も にdominantで あ り ・ ま た

λO-Rはdominantintegra1と す る 。 さ ら に 対 応V〔 λ}→V(λO)及 びV(ZO)

→V{λ}を そ れ ぞ れZuckermanのtranslationfunctorq,ψ と す る 。 こ の と き

Hecke環 の 表 現 は,Weyl群 の 表 現 か ら,g及 び ψ(及 び あ る 定 数)を 用 いて 表

さ れ る 。

こ の 操 作 に よ っ て.Weyl群,Hecke環 の 表 現 が 具 体 性 を も っ て 記 述 さ れ る 。

こ の こ と は 重 要 で あ る 。



以上の ように,本 申請論 文の結果は,表 現論に対 し,ま た表現論が関連す

る分野に対 して,重 要な寄与 をなすものである。参考論文に含 まれ る諸結果

と併せて,理 学博士の学位 を授与 され るのに充分の価 値を もつ もの と判断 さ

れ る。

また,申 請論 文及び参考論文 に含まれている研究結果及び これに関連す る

分野について試問 した結果,合 格 と判定 された。



Representations of Weyl groups and their Hecke algebras 

on virtual character modules of a semisimple Lie group 

                   By Kyo NISHIYAMA 

     Department of Mathematics, Faculty of Science 

                      Kyoto Unversity



                           §0. Introduction. 

     Let G be a connected semisimple Lie group with finite 

center and  (4-1 its Lie algebra. In the preceeding paper ([16]), 

we defined a Weyl group action on virtual character modules with 

regular infinitesimal characters (recall that a virtual character 

 as by definition a linear combination of irreducible characters 

on G). There, the representations of Weyl groups were 

completely decomposed by means of induced representations. 

However, in the case of singular infinitesimal character, 

representations of Weyl groups cannot be canonically realized on 

virtual character modules. 

      In this paper, we will define representations of Hecke 

algebras on virtual character modules with singular infinitesimal 

characters. These representations are natural ones and can be 

considered as the "limits" of the representations of Weyl groups. 

     The irreducible admissible representations of G were 

classified by R.Langlands ([11]) modulo tempered representations. 
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Since irreducible tempered representations were classified by 

 A.W.Knapp and  G.J.Zuckerman ([10]), the classification of 

irreducible admissible representations of G is now complete. 

However, their parameters attached to each irreducible 

representation are very complicated, and do not make 

unitarizability or primitive ideal or its  Gel'fand-Kirillov 

dimension etc. clear. We want to classify the irreducible 

representations of G into some different classes which make the 

invariants of representations as listed above much clearer. To 

achieve this, it is convenient to consider the Weyl group actions 

or Hecke algebra actions on virtual characters mentioned above. 

     Let us explain our definition of representations of Hecke 

 algebras. The definition has three diferent 

interpretations which are interrelated each other. 

     Let H be a Cartan subgroup of G and NE.:"Pr' an 

infinitesimal character not necessarily regular. We make some 

assumption on  A (see Assumption 2.1). This assumption is not 
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essential, since it is satisfied for appropriate multiple of A 

by a positive integer. Let0CGg*be a dominant regular 

infinitesimal character which satisfies: (1)  IA=  A0-X belongs to 

the root lattice of (g.
C'61C) . (2)ptsatisfies Assumption 5.3.              L- 

Such a  2k0 always exists . Then the representations of the Hecke 

algebras have three different constructions explained below. 

     Construction 1. Let t be the representation of the 

integral  Weyl group  WH(A
0) on  VH(A0) defined in  [16]. Here, 

 WH(A0) is a certain subgroup of the complex  Weyl group W= 

wqC' --L)C) and VH(i^0) is a subspace of the virtual character 

                 ' module V(A0) with infinitesimal character A0.We have 

         V(A).        0 Z®  VH(A0) 
 [H]  E  Car(G) 

where Car(G) is the set of all the conjugacy classes of Cartan 

subgroups of G and [H] denotes the class of H . Put  WA. 

 {w€W  1  wA=A}, the fixed subgroup of  2k in W . Then WA is a 

subgroup of  WHOO.WH(A0) and we can define a Hecke algebra 
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H(WH(A),Wx) (see §3 for precise definition). Since H(WH(A),WA) 

is isomorphic to a subalgebra  exC[WH(A)]ex (where  ex= 

(#wA)-1z          seW
xs ) of the group ring  C[WH(A)] ,  H(WH(A),W,) 

has natural action on  VH(A0) . We can prove 

     Theorem A (Theorem 4.2). The vector space VH(A) is 

isomorphic to the vector space  T(eA)vH(A0) and we can define 

the representation of  H(WH(A),Wx) on the space  VH(A)= 

 r(e)VH(A0) naturally. 

     Construction 2. The above space VH(A) is isomorphic to a 

certain subspace of analytic functions on H . We denote this 

space by  ©H;A) . For a canonical basis of  ©H;A) , we can 

define an action of H(WH(A),WA) analogous to the definition of 

the representation  7 of  WH(A) (Theorem 4.2). This is the 

second construction of the representations. 

                                               ,,,W      C
onstruction  3. Let cp=Tand (1,=,/,,X0 be  Zuckerman's 

                                     110 

translation functors (see §5.1 for precise definition). These 
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functors play an important role in representation theory 

 ([10],[18]). We define an action  6 of  eAweA&H(WH(A),WA)  on 

 VH(A) by 

 Cr(exwex)v=  (#141)  r'VeAweA).50(v) 

where we consider  -C as a representation of the group ring 

 C[WH(A)].  C[WH(A0)] . This action turns out to be a 

representation of  H(WH(A),Wx) (Theorem 5.6). 

     Since  p is considered to be a "limiting" functor which 

sends a regular parameter to singular one, we can characterize  0- 

as the "limit" of  Z  . 

     Theorem B. The representations of  H(WH(X),WA) constructed 

in the above three ways coincide with each  other_ 

     We denote this representation by  Cr. 

     Theorem C. If the infinitesimal character  A is integral, 

we have  WH(7).141 for each Cartan subgroup H . Therefore we can 
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define a representation  6 of a Hecke algebra  H(W,W2,) on the 

whole virtual character module V(A)  . 

     Using the equivalence of three definitions of  cr , we can 

reproduce some results of D.Vogan about  T-invariants (see [19]), 

and get some new results. We think our representation  cr will 

clarify Gel'fand-Kirillov dimensions of irreducible 

representations of G and some other invariants associated with 

                     •• 

primitive ideals of  U(Dc) (see  [9]). These  subjects are to be 

treated in future papers. 

     Now we explain the contents of this paper briefly . After 

some preparations in §1, we review the definition of the 

representation  t of integral Weyl groups  W
H(1) shortly in §2 

(see  [16])- §3 is devoted to a general theory of Hecke algebras 

H(W,D) , where W is a finite group acting on  Rn faithfully 

and D is a subgroup of W . The algebraic part of the proof of 

Theorem A is contained in this section. In §4, we give the 

definition of the representation  0" of  H(W  (x)
,wx) . Main 
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theorem, Theorem 4.2, says Constructions 1 and 2 are equivalent. 

We study the commutativity of Zuckerman's functors and  Hirai's 

method T of constructing invariant eigendistributions in the 

first half of  §5 (Propositions 5.1 and 5.2). These results take 

an important part in the following theory. The main theorem in 

§5 is Theorem 5.6 which states Construction 3 is equivalent to 

Construction 2 (and hence to 1). Thus we establish Theorems B 

and C in this section. In §6, we apply our reults to study 

 r-invariants and get several results . Some of them are already 

obtained by D.Vogan  ([19)). In the final section §7, we give an 

example of the representations of Hecke algebras in case of  G. 

U(3,1) . Essentially,  G. U(n,1)  (n22) can be treated in the 

same  way. 

     Hirai's method T is explained in Appendix A because it is 

an important tool for our theory. And, in Appendix B, we discuss 

Assumptions 2.1 and 5.3. One can conclude these assumptions are 

not essential. 
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 §1. Notations and preliminaries. 

     1.1. Let G be a connected semisimple Lie group with 

finite centre. We always assume G is  acceptable( see  below). 

Let  (7i be the Lie algebra of G and uvaC) its enveloping 
                                                                ^7 

algebra. In the following, we denote Lie groups by Roman capital 

letters and its Lie algebras by corresponding German small 

letters. The complexification of a Lie algebra will be denoted 

with the subscript C . Let H be a Cartan subgroup of G 

Then the complexification  @c of  9 has a root space 

decomposition with respect to  •  C 

    GC = @tx ' 
                    c<EA 

where  Q is the set of roots of (rig')CAC) andiG1(is the root                                                          \-7s-- 

space corresponding to  CC  . We fix a positive system  8,1- and 

put  p  =  E  a/2  (oc  E  ) . Define an analytic function  c"(  (ck  6  A  ) 

on H by  Ad(h)X04(h)Xcg .  (h  C  H) , where  Xot is a non-zero 

root vector for  0(  . We call G acceptable if there exists a 
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connected complex semisimple Lie gorup  Gc with Lie algebra  (g)c 

which has the following two properties. (1) The canonical 

injection from  q into  (qb can be lifted up to a homomorphism 

of G into  Gc  . (2) Let  HC be the analytic subgroup of  Gc 

corresponding to  gc . Then  p(exp  x)= exp  P(x)  (xE9c) 

defines a character of  HC into  C*  . 

     We denote the Weyl group of  LS, by  W=W(A) and call it the 

complex Weyl group. Let B be a subgroup of G and D be a 

subset of G (or of  qc ). Then we define W(B;D)=N
B(D)/ZB(D) 

where NB(D) denotes the normalizer of D in B and Z
B(D) the 

centralizer. We call W(B;D) a Weyl group of D in B  . 

     Let  2^E@* be a linear form on  k . The complex Weyl 

group W acts on (Z'' and consequently acts on in a contra-

gredient manner. Let WA be a fixed subgroup of  X in W : 

 WT=  iwE  WI  =  X  . 

We call A regular if  Wv={e) and otherwise call it singular. 
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     We introduce an  "integral Weyl group"  WH(A) for H and A 

after [16]. Let  W--(A) be a subset of W defined by 

 WH(A).[wG  WI EwA(exp  x). exp  wA(x) (xe,13) defines 

                                   a character of  Ho)  , 

where H0denotes the connected component of H containing the 

identity element e . Then  WH(A) is by definition the largest 

subgroup of W which leaves  WDA) stable under the right 

multiplication (cf. [16,Prop.1.5]). Let H1 be a connected 

component of H . Then an element  weW(G;111)  normalizes  0 

Therefore  wEW(G;H/  ) determines an element  W of  W(G;5)C:W 

Similarly, for  weW(G;H) , the element  WEW(GgD) can be 

defined. We remark that W(A) is stable under the left 

multiplication by the elements of  W(G;111) . For  sEiW(G;111) (or 

 sEW(G;H)) and  tE1C(A) , we write  stEICX) instead of  it 

for simplicity. 

     1.2. Invariant eigendistributions. We review the facts 
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about invariant eigendistributions (IEDs) and characters on G 

 briefly  - 

      Let  (7T,H) be an irreducible representation of G on a 

 Hilbert space H  . We assume  It be admissible, i.e., 

K-multiplicities are finite. Then  It has a character  gm which 

is a  distribution  on  G 

 e  (f)  Trace  1  f(grM(g) dg (fEcw(G)) , 
 JG                                     0 

where e(G) is the space ofe)-functions with compact 

       0 supports. The irreducible character  am has the following 

remarkable properties. 

     (1) It is invariant under the inner automorphisms of G  . 

     (2) It is a simultaneous eigendistribution of two-sided 

invariant differential operators (Lapalace operators) on G  
. 

     (3) Essentially, it coincides with a  loCally summable 

function  fit on G which is analytic on the open dence 
subset 

G' of regular elements of G  . 
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      Definition 1.1. We call a distribution  c on G invariant 

eigendistribution(IED) if it satisfies the properties  (1)-(2) 

above. 

     The property (3) follows from (1) and (2) (see  (3,Th.21)- 

     Take an  IED  ED. Then  ED is an eigendistribution of 

Laplace operators: 

 ze=  9C(z)e  (zeg)  , 

where  g is the centre of  U(gE) (identified with the space of 

Laplace operators). The algebra homomorphism of (2D into C 

is called the inifinitesimal character of  E) 

     Let H be a Cartan subgroup of G . We give a local 

expression of  ED on H . By the Harish-Chandra map  1 we can 

identify(2and t(eC)W'the space of W-invariant polynomials on 

CC . Then%defines an element of Homalg(U(01C)wC)c°6*/W
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  U(Bc)W 
            1  9c_, 2(\  /x.E.E*                                             \-c 

Corresponding element  Aegt is also called an infinitesimal 

character of  ED and we denote this by  %=%A. Remark that 

 X?,=XwA for any  wE  W 

     Let  hEHnG. be a regular element. Then we have for a 

sufficiently small x6C1 

     De(h exp  x)= c(w,h;x) exp  wX(x)  . 
 w  E  W 

Here, 

 D(h)=  P(h)  (1  (h)) 

 tx  E 

is called the Weyl denominator. The coefficients c(w ,h;x) are 

polynomials in x . If all the coefficients can be taken as 

constants in x for any  -w , h and any Cartan subgroup H 
, we 
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call  ED a constant coefficient  IED. 

      1.3. Virtual characters and IEDs. A virtual character 

is by definition a linear combination of irreducible characters. 

The space of all the virtual characters with infinitesimal 

character is denoted by  V(7) . We proved the following in 

[14,15]. 

     Proposition 1.2. The space V(A) of virtual characters 

coincides with the space of constant coefficient IEDs  with 

infinitesimal character  A 

     By this proposition, virtual characters and constant 

coefficient IEDs are identified. Let us introduce the results on 

 IEDs obtained by T.Hirai([5,6]). Let H be a Cartan subgroup of 

G and take an infinitasimal character A €(1116 . Define a family 

of analytic functions on H as 

 e(H;A)=151  5 is analytic on H , satisfying the following 

                                conditions (1) and (2)) 
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     (1)  t is an eigenfunction of  U((fi'c)W with eigenvalue  7 

     (2)  5 is  a-symmetric under W(G;H) , i.e., 

 (wh). a(h;w)5(h)  (hEH,  weW(G;H)), 

where  E(h;w) is defined as follows: 

 E(h;w)=(-1)")  Tr  sgn(5 (h)) 
 cX w 

 N(w)=#tole  a+I  a is imaginary and  w-1oe<0 

 R(w)=[0(EL+l  (X is real and  w-1c<<0 

We say a root  deb is real (or imaginary) if it takes real 

(respectively, purely imaginary) values on The The function 

 a(h;w) is locally constant on H , with values  in  ±1I  . 

    Each element  ;  eq,(H;  X) can be written as 

 ;(h exp x)=  aw(h;x) exp wA(x) (xer,1,  h  EH)  , 
 w  EW 

where  aw(h;x) is a polynomial function in x depending on h 
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and w . If  a
w(h;x) can be taken as constant in x for each 

h and w , we call of constant coefficients. Put 

    C.C:'(H;A)=[CEg(H;A)1  ; is of constant  coefficients)  . 

     Theorem  1.3(T.Hirai). (1) There is a canonical linear 

isomorphism T of  @(H;A) into the space of IEDs  &A) with 

infinitesimal character  A . Let  Gii(A).T('  '(H;)0) . Then 

 S(A)  9(3H(X) 

is a direct sum, where H runs through all the representatives 

of conjugacy classes of Cartan subgroups of G  . 

    (2) Let  VH(A)=T(g(H;M) . Then 

 V(A)2,In@VH(X) 
                    H 

gives a direct sum decomposition of the space of constant 

coefficient IEDs (or the space of virtual  characters). 

     The definition of the linear map T is described in 
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 [6,§3]. We explain the 

later use.

construction of T in Appendix A for
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     §2. The representations of integral Weyl groups WH(A)  . 

 2.1. Let Car(G) be the set of all the conjugacy classes 

of Cartan subgroups of G . Take  [H]  E  Car(G)  , where [H] 

denotes the conjugacy class of H  . 

     At first, we describe generators of the space  @(H;A) . Let 

 {Hid 0.-lig2.} be a complete system of representatives of connected 

components of H under the inner automorphisms of G (we take 

 H0 as the connected component of e). For  t  E(A) , 

and tnd aie, we define an analytic function (a.,A;h) on H 

as follows. Define  ;(ai,t2t;h) first on  Hi . Put for  h  E  Hi , 

 (2.1) ;(ta. ,20h).  Z E(ai;s)tA(ai-1 (sh))  , 
 sE  W(G;Hi) 

 where is an analytic function on  H0 defined  by 

   (exp  x)= exp  tA(x) (x EC)) . On W(G;H)-orbit of  Hi , we put 

 5(ai,tA;h) as 

 5(ai,tiowh)=  a(h;w)C(ai,tA;h)  (he  Hi ,  w  E  W(G;H)) 
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and for  hE  H outside of W(G;H)-orbit of  Hi , put  5(ai,tA;h)=0. 

     Easy calculations tell us that  S(ai,t).;*)E0(1-10)  • 

Moreover, one knows that  15(ai,tX;*)1  te  WZ(),)-} spans 

 @(H;A) for a fixed set  tail  aiE  Hi ,  . 

     In the following of this paper, we assume that  tail can  be  ,e41 

taken nicely for  A . More precisely, we put the following 

assumption on  2k 

     Assumption 2.1. For each Cartan subgroup H of  G , there 

exists  tail such that 

     (0) aiEH.(0�igQ) and a0. 

     (1) tA(ai-1 (sai)).1 for any  tE  WH(%) and  sEW(G;Hi)  . 

     Remark 2.2. For a special G , Assumption 2.1 is satisfied 

for any A . For example,  G.SL(n,R), Sp(2n,R),  S00(p,q)  (p+q= 

2n) or a complex Lie group, then the assumption is satisfied. In 

general, if we replace  A by mA for some positive integer m 

the assumption above is satisfied. More detailed discussion is 
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given in Appendix B. 

      2.2. In the following of this section, we assume that  A is 

regular. Then it is known that ®(H;A)=C-C)(H;A) and  V(A)4(A) 

We recall the definition of the representations of integral Weyl 

group WH(A) on VH(A) (see  [16,§3]). 

    Since  e(H;A)4)(H;A)=<5(ai,tA;*)1  °5igQ ,  tewDx)> (linear 

span over C) and  VH(A)=T(g(H;A)) , we may identify @(H;A) and 

 VH(A) by T . Then  we  WH(M acts on  5(ai,tA;*) as 

 R(w)5(ai,tA;*)  =  5(ai,tw-1A0*)  . 

An element  w€WH(N) acts on  T;(ai,tA;*) as 

 r(w)(TS(ai,tA;*)) =  T(R(w);(ai,tA;*))  . 

Assumption 2.1 assures that this definition of  "C is 

well-defined. We can decompose the representation  (r,v1/0)) of 

 WH(A) completely in terms of induced representations. Let us 

explain this. Let  riCW/700 be a complete system of 
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representatives of a coset space  W(G;Hi)\6(A)/WH(A) and put 

         W(i,Y)=WH(WIW-1W(G;1-1.)r  (YEri) 

 E(i,/f;w)=  8  (ai;Nr1) (aiEH., w e) • 

Then  E(i,r;*) is a character of the group W(i,r)  . 

     Theorem  2.3([16,Th.5.1]). The representation  °C of  WH(7) 

on  VH(21/4) given above is decomposed into a direct sum of induced 

representations: 

              t  
  (r,VH(A)) = mrm  Ind  (E(i,f;*);W(l,i)tWH(A)) 

 i=0  yEri 

where  Ind  (E;AtB). IndBAE  . 

      Now we remark the connection between our representations and 

the representations of Weyl groups which Zuckerman defined 

 ((10,Appendixr. In the case that  X is integral for G , i.e., 
 C,  see  also  E13) 

WH(A)=W for any H , our representation of W is defined on the 

whole space of virtual characters  V(X)=21  VH(A) . This 
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representation is equivalent (under Assumption 2.1) to 

Zuckerman's one. But for general , his definition is 

applied to a subgroup 

            WO-                   wÀ--eQ[b]l 

of W , while our definition can be applied to a larger 

than W0Remark that Zuckerman's representation of W 

ours restricted to W0are almost equivalent  (in fact, 

 7% by  mN for some integer  m>0 , we can prove they are 

equivalent).

only

subgroup 

 0and 

replacing
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               §3. Generalities on Hecke algebras. 

     This section is devoted to explain general properties of 

Hecke algebras and their representations. We use notations 

independent of the other sections here. 

     3.1. Hecke algebras. Let W be a group (infinite or 

finite) and D its subgroup. We assume that 

(3.1) [D;Dnx-1Dx]  <00  for any  xe  W  . 

Let  M=1DxD1  x  E  WI be the set of double cosets, and we denote by 

 HZ(W,D) a free abelian group generated by M . For  A,B,CEM , 

put  FlACB =  #(D\A-1C(1B)  <00 and define the product  AGE by 

 A0B  =  Z  1-4ACB  C  . 
                CEM  ' 

The algebra HZ(W,D) with the above product  o is called the 

Hecke algebra of (W,D) over Z ([7,8]). We simply call H(W ,D)= 

 HZ(W,D)®ZC the Hecke algebra of (W,D) in this paper . 

     Now we assume that W is a finite group. Remark that (3 .1) 
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is always satisfied. In this case we have more convenient 

interpretation of H(W,D) . Let C[W] be a group ring of W 

and put 

          eD ----1--2 d E C[W] . 
             #D  d  ED 

Then the subalgebra  eDC[W]eD of C[W] is isomorphic to H(W,D) 

as an algebra. As a consequence, H(W,D) is a semisimple 

algebra. Since  eD is idempotent,  H(W,D)==epC[W]ero has a unit 

element eD  . In the following, we always regard H(W,D) as 

the subalgebra  eDC[W]eD of C[W]  . 

     Take a representation  "It of W on a finite dimensional 

vector space V . Then there corresponds a representation of the 

group ring  C[W] naturally. We denote it also by  IX. Since 

H(W,D) is a subalgebra, we can get a homomorphism 

 7CIH(W,D): H(W,D)  > End(V)  . 

But it does not send the unit element  eD to the unit element 
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 1v of End(V) . To aboid this situation, we decompose V as 

 V.V0@V1 (direct sum of D-modules) , 

                ( where Vi.VD=iv E V I  R.(d)v.v for any  del)} and  V0 is the 

complement of V1 . Since  MJeD)V.V1 , we have 

 TrIH(W,D):  H(W,D)  > End(V1)CEnd(V) , 

and Ideo)=1. Therefore we get a representation of H(W,D)             v
1 

on V1from a representation  (TE,V) of W . We call this 

representation of H(W,D) the reduction of  (7L,V) to H(W,D) 

and denote it by  Re411M . The representation space of  Red/gT: 

is V17,7V/V0as described above. 

     Lemma3.1. If  TC is irreducible, then  Red/git is 

irreducible. 

     Proof. It is easy to see that every vector of  V
1 except 

0 is cyclic, and consequently  Red/g  'M. is irreducible.  Q.E.D. 
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      3.2. The representations of the Hecke algebra  H(W,WA) 

Let us consider the following case. Take a finite group  W° 

acting on  Rn faithfully. 

     (*) For a subset  W' of  W' , let A and W be subgroups 

such that  A  C  fa  E  W°I  aW—=-W^'} and  W={b  EW°1  irb.W"-}  . Then 

there exists  A  E  Rn such that  WA=  tw  E  W'  I  wjk=  X1 is a subgroup 

of  W  . 

     Now we treat the Hecke algebra  H(W,WA) and their 

representations. Take a character  % of A . Define an element 

of the group ring of  Rn by 

 ;(t,A0)=  2  %(a) exp atA0  (tEW-n 
 a  E A 

and put  g(x0).<;(t.,x0  )  I  t  G  ( linear span over  C)  , where  Ao 

 E  Rn is a regular element,  i.e.,  Wa  .tw  wA0=A0  =fel 

 0 

     Lemma 3.2. Linear transformations  TM  (wE  W) on  0(\0) 

defined by 
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                                                                                        .1           "CM:(t ,A0)  >'C(tw-1,A0) 

give a representation  (t,  '0,0)) of W  . 

      As described in 3.1, we get a representation Red/144
)C of 

H(W,WA) from  (t,g(A0)) . In the following, we will give  another-Z 

interpretation of Redwt.in the above situation. This is                       W
A 

achieved by "translating" regular parameter  Ao to singular one. 

Returning to  AE  Rn in  (*), we define  C(t,A)  (te.141n and 

 C3(X) as  ;(t,A0) and  ®(A0) , using  2 instead of  A0 

Define a linear map P of al,;(X0) to  (DA) by 

 P;(t,A0).  S(t,)  . 

Remark that P is onto but not injective in general. 

      We construct a representation  6 of H(W,WA) on the space 

 Q(?k) as follows. Recall that  H(W,WA)=exC[W]eA , where 

(#WX)-1  sew
xs  . For  eAwexE  H(W,WA) , we put
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(3.2)  6(eAweA)sctdo=Pc-t(eAweA)5  (t,x0)  . 

     Lemma 3.3. The linear operators  T(eAweA)  (wEW) define a 

representation of the Hecke algebra H(W,WA)  . 

      Proof. At first we prove  6(eAweA) is well-defined. That 

is to say, we prove that if 

 ct =0  , 
 t  G  W's" 

then it holds 

(3.3)  pmexweA)  2:  ct  5(t,A0))  0 
 t  w— 

for any  v./6W . We use the following lemma. 

     Lemma 3.4. Let  q(A0)1 be the space of all the  WA-fixed 

vectors and 1G(A0)0 the complement in  @(A0) as  WA-module. 

Then we have Ker  P  =@(A0)0 

     We will prove this lemma after the proof of Lemma 3.3. 
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      Now apply Lemma 3.4 to the element lct't(tX0) . Since it 

 belongs to Ker P by assumption, it generates a  WA-module that 

 contains no non-zero fixed vector. So we have 

         1:(ex)(
tW'c, ;(t,X0))0 

                           and we have proved (3.3). 

      To verify that  6 defines a representation is now an easy 

task. Take  w1w2  w . Then we have 

 6(eAw1ex)(1-(exw2ex);(t,A)=6(exwiex)P(TleAw2e);(t,X0)) 

 .P(t(e? ,wie7)-C(e072ex);(t,A0)) 

          .1)(veAwleAw2eX);(t'X )) 

 =6(e-Awiew2e? ,);(t,X) . Q.E.D. 

      Proof of Lemma 3.3. At first we show that Ker P contains 

 C3(20)0  . For any  s  E  WA , we have 

     P(r(s-1)C(t,k))) =  F(;(ts,X0)) 
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         =  ;(ts,A) =  5(t,X) =  P(;(t,X0))  . 

     Therefore, for any  veg(A0)0 , we have  T(eA)v=0 and 

     0=  P(z(eA)v)=(#117,)-1  P(r(s)v)=(#WA)-1  P(v)=P(v). 
 s  EWA  se  WA 

Thus we have P(v)=0  . 

     Now we prove the reversed inclusion. Assume that P(v)=0 

Decompose  v=vevi along the direct sum  @(A0)4EX110)0dg(210)1 

Since  P(v)=P(v0)+P(v1)=P(v1) from the above, we can assume that 

 v.v1EWA0)1 . Let  VI  jell be a complete system of 

representatives of  Clearly.  C(ti,A0)  ie is a basis 

of  31(A0)  . So we can write 

                  Z.
1 

             Zc(t.'A0)(c.6C) .           Z. 
 e1 

Using this expression for v , we rewrite the equality  1:(s)v=v 

for any  s  E  WA . We have 

 T(s-1 )v=  Z c.C(t.s,A)=c.X(a) expat.sA 
 jei 01613.aeA1 0 ° 
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If we write tii(s)s=a(i,^)tE Ait .1 =W', then the above formula 

                                          1 becomes 

 2, ci2,%,(a) exp  aa(i,^)ti(s)70 
       i a 

         =  Z, c.X(a(i,^)-1)Z,C(a) exp ati(s)X0 
   i1 a 

          =Ic.%(a(i,^)-1)r(t.d                           ,i( s)'o)•  i 

This is equal to  v=Eci;(ti,Ao) . Therefore we have  ci= 

 'i(a(i,^))ci(s) for any  s  EWA  . 

      Now, since 

    0=  P(v)=.  2 cic(ti1,m= 2, c.3,%(a) exp  at.  X  , 
 i  E  I i  E  Ia E A 1 

the coefficients of exp atiX must be zero. Remark that  a1tiX= 

 a2ti'X  (al  ,a2  E  A) is equivalent to that there exists an  s  E  WA 

such that a1ti=a2t.sTherefore the coefficients of expati21/4. 

 . is equal to
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 Z, c.,%(aa(i,^)).  ciX(a)=(#WA)ciX(a) 
  seWN1(s'SE WA 

where we used  ci=ci(s)Xja(i,^))  . Now we proved that  P(v)=0 

and  ve101(a0)1 give  ci=0 , and therefore  v=0 .  Q.E.D. 

     Proposition 3.5. The representation  (64(T)) of H(W,WA) 

is equivalent to Redww
x(t,((No))  . 

     Proof. By Lemma 3.4, we have Ker P =  gA0)0 . Therefore 

P defines a linear map of the representation space of  RedwW):L. 

to  OM . It is easy to see that P  intertwines Red%C and 

 cr. Q.E.D.

 3-10



        §4. Representations of Hecke algebras on virtual 

                            character modules. 

     4.1. After the general theory in §3, we now return to the 

notations and subjects in  §§1 and 2. Let H be a Cartan 

subgroup of G and  {Hip  05.i..1 a system of representatives of 

conjugacy classes of connected components of H under the inner 

automorphisms of G . Let Aell*Cbe an infinitesimal character 
                                                                                                -, 

not necessarily regular, and WA its fixed subgroup in W . We 

choose  a to be dominant with respect to  A' in the sense that 

Re (A,a>.... 0 for  o(EA+ . As is mentioned in §2, the virtual 

character module V(A) with infinitesimal character X is 

decomposed as a vector space over C 

 V(7)  .  2,  ® Vu(X)  . 
                 [H]G.Car(G)' 

Each VH(A) is isomorphic to the vector space  (C:(H;),) of 

 E-symmetric  A-eigenfunctions on H which are of constant 

coefficients. Put @oi(H;A).</1(a.,tA;*)1 tEie'H(A)> and ViH(A). 
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T((C,3..(H;A) ) . Then clearly it holds that 

 @(H;A)=  Z,  6  (H;),) , N.7H(A). /, Vi(A)  . 
           0<isQ 1 

     Take a  I.A6T such that  (i)  tA belongs to the root lattice 

 Q[/1.] and (ii)  Ao.x+FA is dominant  regular- Then we have the 

following lemma. 

     Lemma 4.1.  (1) The subset  WHIT) coincides with W(X). 
                                                                          H,s0 

     (2) The integral Weyl group  WH(A  ) coincides with  WH(A0). 

     (3) The subgroup  Wx is contained in  WH(A  )  . 

     The proof is  easy- So we omit it. 

     4.2. Now we apply the results of §3 to this case. Take a 

character  E,(a.  •*) of  W(G;H.  ) and form an analytic function 

 5(avtA0;*)  (ai  EHi,  tCW(X)) on  H. as 

    5(avtA0;ai exp  x)=  E(ai;s) exp stA0(x)  seW(G;Hi) 

Then  ei(H;)0)=  <(ai,tAo.;*)  I  tew"„(A)> is a  WH(A  )-module as 
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described in §2 (under the Assumption  2.1). Define a linear 

operator  P:Zi(H;A0)  ---->gi(H;A) by  P(S(ai,tA0;*)).= 

 ;(ai,tA;*). Then we come to the situation of §3.2, if we 

replace  W', W, A,  W^',  WA and  %, in §3.2 by W,  WH(A),  W(G;Hi), 

WH(A),  WA and  E(ai;*) in this section respectively. We get 

the following. 

     Theorem 4.2. (1) For  eAweA€H(WH(A),WA) , put 

                                                                       -7.%     Cr( exweA)Tai,tioh)=(#WA)-1 ,  T9ai,tsw 1A;h)  (he  H) 
                                 s E  141), 

Then  p" is a representation of H(WH(A),WA) which carries the 

unit element of  H(WH(A),WA) to the unit element of End  V
H(A)  . 

Denote again by  cr this representation of  H(W
H(A),WA) on the 

                                   (1) virtual character module VH(A)=2, VH(N)  (105is9.)  . 

     (2) The representation  (cr,VH(A)) of the Hecke algebra 

 H(WH(A),WA) is equivalent to the reduction (with respect to the 

subgroup  Wx) of the representation  (T ,VH(A0)) of  WH(A0). 

WH(A) , the integral Weyl group: 
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                     WH(A) 
 (6,VH(7) )r.=Redw (V,VH(A0)) 

                  X 

      Using Theorem 2.3, we can decompose  (6',VH(X)) into direct 

sum of  "induced" representations. Namely, if we write 

          RI  (e;1014C).  Red  IndAB  E.  , 

we have the following. 

     Corollary 4.3. The representation  (6,VH(A)) of 

 H(WH(A),Wx) defined in the above is decomposed as follows: 

             I nn 
 (6,VH(7)) =w® RI  (E(i^1S;*);W(i,WWH(WWx) 

 i=43  WETli 

where  Ti  ,  W(i,S) and  E(ia;*) is given as in §2.2. 

     Let 

(4.1)  (C,VH(Ä0)  ) =                                    ml 
                           wH(X)A 

be the decomposition into irreducible components, where  m1 is 
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the multiplicity of  1) . Remark that we can get (4.1) from 

Theorem 2.3 easily for explicit cases. We put 

 E(A)=EVA('has non-trivial fixed vector for  WA  ) 

 ti  ewll(MA  I  ['J;Ind  (1;WATWHOO)]AO 

Then we have 

     Corollary 4.4. The representation  (6,VH(N)) of 

 H(WH(A),WA) has the decomposition into irreducible components: 

                              W(A) 
          ((5,vH(70) =7.,(4)m„RedW 

                                           " 

                 EF(A)1A 

     Proof. This is clear from Lemma 3.1 and the fact that 

 Red  (()) is equivalent to  €  F(A) Q.E.D. 

     In the case where  A is integral, i.e.,  WH(A)=W for each 

Cartan subgroup H of G , we have the representation 

 (6,V(?)  )= (aWH(A)) 
 [F]G  Car(G) 
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of H(W,WA) . Then Corollary 4.3 reduced to the following (see 

 [16,Th.5.2]). 

     Corollary 4.5. If A is integral, the representation 

 (or,V(X)) of  H(W,14x) is decomposed as follows: 

 Oir,V00) =  Z  ® RI (8(a.1voc1;1#(3“-1.1)1N4WA)  . 
 [H]eCar(G)  i=0 

      Theorem 4.2 says that "if we know  WH(A0)-module structures 

completely for arbitrary regular infinitesimal character  7k0 

then we know the  H(WH(A),Wx)-module structure for singular 

infinitesimal character  A ", by translating the regular 

parameter  20 to the singular one A . This theorem is useful to 

study the properties of the virtual characters (or irreducible 

representations of G) at singular parameters. For example, we 

have the following result about the dimension of V(A) 

     Corollary 4.6. Let  A and0=Ai+ be as before. For a 

Cartan subgroup H , put 
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 n(H;10,X)--: dim  {v6  Vii(A0)  I t(s)v=v for any  s  e  WA  )  . 

Then we have 

        dim V(A)  . I  n(H;Ao,N) 
 [H]  E  Car(G) 

     Remark. Recall that dim V(A) is equal to the number of 

(equivalence classes of) irreducible admissible representations 

which have infinitesimal character  X  .
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        §5. Relation to Zuckerman's translation functors: 

         another interpretation of the representation  0"  . 

      5.1. Zuckerman's functors. We use the notations of §4 

(and, of course, we suppose Assumption 2.1)- Let 90=Aandy).- 
                                                                  '10 

Pkbe  Zuckerman's translation functors (see [20]). Here we 

 X explain the properties of  (i) and  (/) briefly for later uses. 

Originally. Zuckerman defined them using the tensor products with 

finite dimensional representations of G . Functors  y and sr) 

are defined as 

 92=Proj(A0)0(W)(.))0Proj(A)  , 

 (1)=Proj(A)0(F*0(_))-Proj(A0) 

where  F is the irreducible finite dimensional representation 

of G with highest weight , and  FA is its contragredient. 

Notations  Proj(A) and  Proj(A0) mean "projections" to the 

components with infinitesimal character  A and  A 

 respectively- So and  (fr are by definition the functors of 
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categories of  (Cc,K)-modules. Since both of them are exact 

functors, they induce linear maps between the virtual character 

modules  V(2) and  V(A0) . Here we denote these linear maps by 

the same letters  I7 and  (/) 

   LP:  v(A)-->v(2,0) ,  v(Ao)—>v(A) 

     Take 001EV(A0) and  [H]eCar(G) . Then  00 has a local 

expression arround a regular element  her-C.-H/1G' as explained 

in 1.2  : 

 D)  (h exp x)= cw(h) expwA(x)                  p0 (x E.&                wE w 

where  c
w(h) is a locally constant function on H' . By (3.8) 

in [20], we have 

 DODO)  (h exp  x)=E(h)c(h) exp  wk(x) (xe®). 
                    wE                   w-wfAw 

Similarly, if we express  pev(x) as 

 De(h exp x)=  -E a(h) exp wA(x) (xeo 
 weWw 
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then by (3.7) in [20], we have 

 D(pe)  (h exp  x)= (h)a(h) exp  wt70(x)  , 
             t EWx w  e  ww 

for  h  G.  H and  x  . 

     5.2. Relation to  Hirai's method T . Let P be a linear 

map from g--.(H;A0).t(H;A0) to  (H;N) defined as follows. For 

       and  te  WH—(A0) , put 

 PC(ai,tA0;h)=  _..tv,(ai)9(ai,tA;h)  (h  EH)  , 

where t.A..-.A0-)% is an element of  Q[A]  . 

     Proposition  5.1. For any  CES(H;2^0)=-CE(11;X0)  , we have 

 (P(T;)=T(?(C))  , where the notation T means Hirai's method T 

(see [6] and Appendix A). 

     Proof. It is sufficient to show the proposition  for 

 .--(ai,tAo;*). Let D be the Weyl denominator as in §1. Then 

        exp ai ep  xE  H.  (x , we have 
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    ERD(p(TS)(aiexpx)= _1(ai)6(ai;s) exp (tA,sx) 
                        s E W(G;Hi) -stp 

         = -tiA(a' E(a.;s) exp  (t),sx)                  ,IseW(G01.)1 

by the results of  [20] and the definition of T . Here we used 

             _1(ai)=-tr(ai) for any  seW(G;Hi) 
          -st 

This follows from Assumption 2.1. On the other hand, we have 

 ERDT(P(;))(ai  exp  x)=P(;)(ai exp x) 

                       ).             f-tp,(a1e(a..1;s) exp (tA,sx)  . 
                    sEW(G;H.) 

                                   1 Thus we proved 

 (IP(T;)!H =  T(P(S))IH 

Since  On) and  T(P(;)) are extremal IEDs of height H , we 

can prove  OTN,I=T(P(;))1.3 for another Cartan subgroup J 

inductively on the order on Car(G) as given below . The proof 

                                       5-4



depends fully on the construction of T . We explain about T 

in Appendix A. 

     At first, we prepare notations. Let  JI be a connected 

component of J and F a connected component of  J.,'  (R).theJil 

 50(h)A1 for  c(EAR/ . Denote by  Z=  Z(J1) the root system 

consisting of all the real roots  olE,6,(gc,09c) for which  ,x(h)>0 

on  Jl . Let  S=S(J1) be the subgroup of  W(G;J1) generated by 

 sa  (0(E2,), where  sot denotes the reflection with respect to  0(  . 

Put  P(F)=1ixe  El  a(F)>1) Then P(F) is a positive system in 

 21 and we denote  by  IT=TRF)+1,  ...,c(r1 the simple system in 

P(F). Let Bm  (1mgr) be a Cartan subgroup obtained from J by 

the Cayley transform  Vu  =Vm with respect to the real simple 

root  c4mE1T . Then  (Bm)>[J] holds. By the induction 

hypothesis, we have 

(5.1) OTOIBm T(P(;))I m  (1mir) 

Put  fm=DOT;)1  m=  DT(P(W1  m  . We devide the proof for  OT01 

                                        5-5



 =T(P(

 

)  )    into two steps as in the proof of Theorem 4.3 in

[16].

Step R. Put

 =  th  e J (3( (h)=1},

 z  1;1=1  h  Zm  h  )  A1 for any root  c:‹  Atom}

Then for  aE  Z
 mn  J1

and  x  E , we define

(Ramfm) (aexp x)=fm(a exp  V
in (x))

On the other hand, if we write gm=D(T;)Im as 

         B

gm  ( a exp
w

 C X)=  2, 
 wEW

exp  0,0(x)

 

(  cw  E  C)  ,

then, by (5.1) and the results of  [20], we have

(5.2)  fm( a exp  X)=  Z 
 wGW

 c  w  5-wp,  (a) exp  wA(  x  )

For a function g on J of the form:
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     g(a exp  x)= c exp wA0(x)  (aEJ',  x  E3)  , 
 wEW 

we define an operation  'P  by 

 J 

    Pj(g)(a exp x)= cw LtA(a) exp wA(x) 
 we  W 

Then, by (5.2) clearly it holds that 

(5.3)     51)j(Rgm) = Rgfm (1Imsr) • 

                          m 

     Step S. For a function g on  JI and  sES , we define sg 

as sg(h)=g(s-1h)  (hE  Ji) . For each  sesa  (11mgr), we put 

          A(fm;sm).(1-sm)(Rafm)  . 

                              m Each element  sE  S can be written in the form  s=s.  s. 
 1  12 

Then we put 

 A(f1,  1  *** 

 11  1— 

                                           ik 
                                   +s.s...s.A(f)                          i

1 S.ik-1  —ik
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 It can be proved A(f1, fr;s) is independent of a choice of 

 expressions for  s  ES . Finally, we put 

          B(f1,  fr)  =(#s)-1  21,  A(f1,  fr;s) 
 se  s  — 

 Similarly,  B(g  , gr) can be defined. Then, we have 

 DT(P())6=B(f1,  .•., fr) and DT()IF=B(g1,gr)  . Since 

 Dql(T)114/0.(B(g1,  gr)) holds, it is enough to show that 

       1 

 (/)..i(B(g,  gr))=B(f1, fr)  . But this is reduced to-the 

 fact that 

                 J(Ratgm))= s(Rafm) . 
     mm 

 Let us prove this. Taking (5.3) into consideration, it's enough 

 to show 

 (5.4)  Sbj(sg)=  s(Pj(g)) 

 for an analytic function g on  JI of the following type: for 

 a  EFAJ' and  xe0, g has an expression 
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     g(a exp  x)=  cw exp  w2^10(x)  (cwe  C)  . 
 wEW 

Put b=sa . Since 

     sg(b exp x)=g(a exp  s-lx)=  5 c exp sw,A0(x) 
                               wEW 

We have for x  , 

                   (*) 

 Yysg)(b exp x)  =  cw exp swA(x) 
 wEW 

    = c  w/-wfx(a) exp  swA(x)  .  wEW 

In the equality (*),  (Pj. is applied to the expansion 

 bE  F(1,71 . On the other hand, we have for the right 

for (5.4), 

 s(0,j(g))(b exp x)  =  0'..j(g)(a exp  s-lx) 

 (*) 
 =  2, c  E (a) exp  wA(s-lx) 

 wEWw 

 =  I, c L
ija) exp swA(x) .           wE W 
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Here, in the equality (*),  Sbj. is applied to the expansion of g 

at the regular point  ae  F(1,7' . Thus we proved  T(P(0)1F. 

 OTC)IF  ' 

    Now, since F is arbitrary, we proved  T(P(;))1J.00(n)ij 

and the induction step is completed. Q.E.D. 

    Let Q be a linear map of  CE(H;A) into  (H;A0) (from 

singular  A to regular A0) defined by 

 427(ai,t)oh)=  -2-1 5tw,,(ai)yai,twAo;h) 
 w WAr 

                 .t;g(ai)  R(w-1)  C(ai,tAo;h) . 
           wE WA 

Then we can prove the following, similarly as in the proof of the 

preceeding proposition. 

     Proposition5.2. For any  SE@(H;A) , we have  cp(To. 

 T(Q(C))  . 
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     We omit the proof to avoid the repetition of the same 

sentences. 

      5.3. Representations of Hecke algebras. To consider 

relations between Zuckerman's translation functors and our 

representation  05" , there appears always the trifling constants 

 tr(ai)1 . In the following, we want to consider the case where 

these constants are all reduced to 1 . We assume: 

     Assumption  5.3. For any  tE.WH(X) and  05,ia ,tp(a.)=1 

holds. 

      This assumption is not essential. In fact, we can take  FN 

and  {a} so that Assumption 5.3 holds (see Lemma B.4 in 

Appendix B). 

      Corollary 5.4. Under Assumptions 2.1 and 5.3, we have 

 KeryA =  KerT(eA) on V(A0) . 
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     Proof. By Proposition  5.1  , we have  Ker = T(Ker 

Since P in §3 is equal to P by Assumption 5.3, we have 

      Ker P =  Z.9 C(H)                               ' 00 
 [H]e  Car(G) 

from Lemma 3.4. The subspace  Cd(H;A0  )0 is given by 

 Cd(H;A0)0=  {C  E.Z(H;A0)1  R(eA)=0  

where R is defined as in 2.2. Clearly, it holds that 

 TCg(H;A0  )0  ). Ker  V(  ) (in  VH(A0))  and, summing up through 

 [H]E  Car  (G) , we have the  corollary_ Q.E.D. 

     One can prove the following lemma similarly as in the proof 

of Theorem C.2 in [10]. 

     Lemma  5.5. For  eEv(Ao) , we have  

(  oe)  =  r(s)e  =  z(ea)l  . 
 s  E 

     Using Lemma 5.5, we introduce another interpretation of the 
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representation  6 of the Hecke algebra  H(WH(2),WA) in §4. 

     Theorem 5.6. For  exwexe  H(147H(2),W2 1/4) and  6)EVH(2) , put 

(5.5)  (11(exweA)G).(#WA)-TPet(eAweA)49(e) 

Then  (crI,VH(N)) defines a representation of the Hecke algebra 

 H(WH(A),142)  , and moreover  e is equal to  Cr  . 

      Proof. Since ToP=ToP is surjective, there exists 

 Co  ECC:(H;A0) such that T(P(C0))431. Then we have 

 (WA)-15b.I(eAweA).T(T(P50)) 

 =(  #14A  )  t(  eRweA  )0  (P  (/)  (TY (by Proposition  5.1) 

 =(#147.x)-1g)er(exweA)e(#WA)T(eA)(T0)  (by  Lemma  5.5) 

 44t(exweA)(TC0)  . 

The last formula and Proposition 5.1 tell us that this is equal 

to  Clexwe0T(P50))=6(exwex)CD  • Q.E.D. 
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        §6.  17-invariants for admissible representations. 

      In this section, we show some applications of 

representations of Weyl groups or Hecke algebras to study 

admissible representations of G . Our representations  z and  cr 

are closely related to so-called  t-invariants of an irreducible 

admissible representation of G  . 

     Let  (1r,e) be an irreducible admissible representations of 

G on a  Hilbert space ID. We denote by  (1r,g0 the 

corresponding irreducible  (gc,K)-module on the K-finite vectors 

of  c. Then we can define a grobal character  181(7r) of  (7,1k) 

as in §1. Here we suppose that  &X) has a dominant regular 

infinitesimal character  A  era*  0  \---c 

     Definition 6.1. Let  77- be the simple system in  A+. Then 

 r-invariants  S(n) of  (1t,g) is a subset of  IT defined as 

 <oc,X  > 
 st7o-4E  TT  I    EZ and  r(s00(7)=-6(70  , 

 <  ,a>  > 
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where <,> is an inner product on (5,\1 invariant under the 

action of W . Remark that if <ad,0>i<d,d> is an integer, 

then  s  E  WH(A0) holds for any H  . 

     Remark. Our definition of  t-invariants may slightly differ 

from that of Vogan's (see [19]). The difference between our 

representations of Weyl groups and Vogan's ([1,19]) is the cause 

of the difference of t-invariants. However, most of the results 

obtained by D.Vogan are valid in our situation (for example, see 

Propositions 6.2 and 6.4). 

     Put  p=(<ci,A0>/<d,c(>)0< . Let p be a positive integer such 

that 
pp,(a.).1 for any i on each Cartan subgroup H 

 ([1-1]ECar(G)) . The existence of such a p is assured for a 

special choice  of (see Appendix B). 

     Proposition 6.2(D.Vogan). Take an  otE71- such that 

 <oc,A0>Roc,0()  e  pZ  . Put  A=  ,  1.,\=(<0(,A0>i<cc,0(>)0( . Then 

 wA=  fe,sc<1 and the following two conditions are  equivalent . 
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           ,70 

                    %  

(  1  )((g)(7C) )=0  .          A 

 ( 2)  0(  G  S(7r)  . 

     Proof. This proposition is essentially known (see 

[19,Prop.3.2]). But here we give a proof because it shows 

usefulness of our  theory. The proof is very short, if we use the 

results of preceeding sections. 

     We know from  Corollary  5.6, Ker  (/) = tvev(A0"C(eA)v =0. 

The equation  t(eA)v=0 means  7-(sg)v=-v because eA=  (e+s0/2. 

                                                                  Q.E.D. 

     Example 6.3. (1) If  11f is a finite dimensional 

representation, then  S(R7f)=11- 

     (2) If  ltd is a discrete series representation with 

Harish-Chandra parameter A0CE@* ,where is is a compact Cartan 

subalgebra of  6D. Remark that G has discrete series 

representations if and only if G has a compact Cartan subgroup. 

 Choose apositivesystemA+ so that0is dominant regular 
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with respect to  ii+ . Then we have 

 s(7rd).[0(6Tr  1  0(  is a compact simple  root  1  . 

This  is-the deep result of W.Schmid  ([  1  7,Th.9.4]). 

     Take a regular dominant infinitesimal characterAoeCrit. If 

necessary, replacing  2ko by a multiple of  Ao by some positive 

integer, we can assume: 

      (1) For suitable choice of talA0satisfies Assumption 
                     11 

2.1. 

     (2) If  <0(,A0>/«:1,o0EZ for an  o;  E1T , then  p= 

 (<000>/<cl,e(>)o( satisfies Assumption 5.3. 

     This is clear from the argument given in Appendix B. 

     Let  lel j  E  i.T1 be the set of all the irreducible 

characters of G with infinitesimal character  Ao . Take an 

 o(ETT such that  <0<,?^0>/<0(,ok>  E  Z . We put  s=s0(E.  W , the 

reflection with respect to  c:( and  A(00=  Ao -  (<c(,)0>/«4,0(?)0(. 

Then  W.x(co=fe,s4CWH(A0) and  (c<.) satisfies Assumption 2.1 
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for the same  [ail . Let  J(  s  ) ,  s=s,,( , be the subset of J 

defined as 

    J(s)  =  ijEJ1  r(s)ej =  -CO  =  tjeJ1  sES(®)  3.  . 

     Proposition  6.4  (  D  .Vogan  )  .  (1) For  k  E  J\J(  s  ) , we have 

 "C  (  s  )0
k = (a),_+ Z,  z  .0.  ,                    '`  jEJ( s)  3  3 

where zi (j€  J(s  )  ) is a  non-negative integer. Consequently, 

 -C(  s  )61
( is a true character. 

 (2) If we put  Vz  (A0  )=zie  j  Zej , then  "c(  s  ) preserves 

VZ0) . 

 Proof. The proof is carried out similarly as in the proof 

of Lemma 3.11 in  [19]  . So we omit it. 

      Now we return to the situation in  §5,  i  .e.  , start from a 

dominant  A not necessarily regular and put  A  0=X+1A dominant 

 regular. Of course, we assume Assumptions 2.1 and 5.3. Put 
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 Tr(  X)  =Eck  Eft  <A,b0=0  }  . Then  WA is generated by  tsi4 

0(eitoo . 

      Theorem 6.5. (1) Put 

       (VZjA0'-1T(A)). <033.1J(sot) for some o(eir(A)>/Z 

generated as a Z-module. Then  Vz(A0;7r(A)) is stable under the 

action of  WA and  V(A0;W(A))=  Vz(Aogr(A))0zC is the kernel of 

 VeA):  V(70)->V(X0)  . 

      (2) For an irreducible character  ® , it holds that 

 (1).A° (0)=0 if and only if  V(  sc()C1=-0 for some  0:  E  Tr(A)  . 

     proof. (1) At first, we show that VZ(A0'•Tr(A)) is stable 

under the action of  WA . It is enough to show that, for any 

 E  J(A)=  UaETRA)J(soc) and any  META) , it holds that 

                 VT( scapi  E(AINA). 
                      z0' 

This is trivial, if  j€J(sx)  . Suppose j  4J(sx)  . Then we 
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have from Proposition 6.4, 

         T(sec)©• i= ei+ Z, zkOk  ( zke  z)  . 
                        -'  keJ(s ,x) 

The second term of the right hand side of the above equation is 

 contained  is  Z  0'by  definition.  
3 

originally taken from  Vz  (A0  ;TRA  )  ) , we proved  T  (  sec  ei  6 

 vz(2,00-(A)) , hence  Vz(Ao;TRA)) is  WA-invariant . 

     Now we prove that  Vz(Ao;Tr(A)) contains no non-zero fixed 

vector for  WT . Put 

 V/  (c()=  (1+Z(sg))V(it0)  , 

 Vo(o()=  (1-Vs,;())V()l
0)  . 

Then  V(A0)=Vo(c()@V1 ((X) is a direct sum decomposition . From 

Proposition 6.4, Vo(Kj 
                                36 

                    ) has a basis.16 J(sc01 . If 

 0EV(A0) is a fixed vector for  WA ,  6 is contained in  V
1(0) 

for every  cKETT(X) , that is to say
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       HOE  n  vl  (co  - 
 otelT(X) 

Therefore, if we denote by (,) a  WA-invariant inner product on 

 V(?^0) , we have  (3,V0(tX)).0 for any  o:G1T(A) . Consequently, 

 (0,19j).0 holds for any  jE  J(A) and we have  (6,v(Aon-r(A))=0  . 

     From the above, we see that  V(A00.00)c: Ker  r(eA) . Remark 

that dim  Va0MA)).#J(A) . From Proposition 6.4, we have for 

 j  E  J\J(2t) and  c<ETTM  , 

 T(  )0i  E- modv(X0-TRA))             '  • 

Sincefej.1 je J\J(X)} is linearly independent modulo 

 V(\0;1f(A)) , the dimension of the space of  WA-fixed vectors is 

 #(J\J(A)) . Now, since the complement of Ker  T(e,A) is 

precisely the space of  WA-fixed vectors, we have dim voko;(T(A)) 

 #J(2)  =  #J - #(J\J(A)) = dim  Ker-C(eA) . Thus we proved 

 v(Aojr(A))= Ker  t(eA)  . 

     (2) is clear from (1) and Corollary 5.4.  Q.E.D. 

                                      6-8



     From this theorem, we know that the subspace Ker  "r7(e) of 

VO‘0) (or equivalently, the direct sum of all the non-trivial 

representations of  WA in  V(A0)) has a basis consisting of 

irreducible characters. This is a remarkable fact and maybe is 

useful for picking up irreducible characters from the space of 

 IEDs.
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 §7- The case of U(3,1)  . 

      In this section, we give some examples of representations of 

Hecke algebras on the virtual character modules of G=U(3,1)  (cf. 

 [16,§6]). The results of this section is valid (with appropriate 

modifications) for U(n,1)  (n22), however, we restrict ourselves 

to the case n=3 for simplicity of notations. 

     7.1. Irreducible representations of  U(3,1) . Let G=U(3,1) 

be the group of "unitary" matrix with respect to the Hermitian 

form  x11+x22+x33-x4R4 That is to say, we put 

         G=IgEGL(4,C)i gJt-                            g =  J 1 

        13 0] 
                  J=          [0 -1 

where 13 denotes the identity matrix of size 3  . All the 

irreducible admissible representations of G are classified by 

T.Hirai ([4]). We follow after his notations. Irreducible 

representations of G are 
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      a) Irreducible principal series  representations: 

CY(0(;ci,c2), where  0(=(91,22)  (LI>9.2) is a row of integers and 

 (c1,c2) a pair of complex numbers such that  c1l-c2. an integer, 

 and neither c1 nor c2 are equal to an integer, or else, both 

 c1 and c2 are equal to some of integers  Q2 . The 

 infinitesimal character of &X;c11c2) is (q12'c1'c2) 

      b) Irreducible subquatients of reducible principal series 

 representations:  D'j ,where0(=(90'1'2'Q3) is  a  row of 

                                              integers such that  20>41>g2>23 and (i,j) is a pair of 

 integers such that  05.i<j4 . The infinitesimal character of 

 Di'j isa .The representations Di'i+1  (06i63) are discrete 

                                            series representations and D°,4                                      is a finite dimensional 

 representation. 

      c) The limit representations of the representations of type 

 b). We denote these representations by the same letters as in 

 b), while the parameters are degenerate. 

      The representations with regular integral infinitesimal 
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character belongs to the class b) and, in the following, we 

consider this class of irreducible representations. Of course, 

irreducible representations of type c) and some  of type a) 

naturally appear when we consider the representations of Hecke 

algebras. 

     1 2 3 4 

              D01    0D02  D03                                 D04 

    1 D12                          D13                                D14 

  2 D23                                 D24 

  3  D34 

           Figure A. 

     7.2. Representations of the Weyl group. Let W be the 

complex Weyl group, then  W-^=-@4 (symmetric group of degree 4) . 

Take a regular integral infinitesimal character  0(0.(Q0,Q1,92,Q3) 

 40>g142>13  . Then its integral Weyl group is precisely  W , 

and we realize the action of161=-@4 on C4C                                                -Iv*by the                                                                          -N
- 
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permutation of coordinates. Simple reflections, which make 

dominant, are transpositions: 

 I•1=(0,1)  ,  s2=(1,2) ,  s3=(2,3) )  . 

Since we only consider the virtual characters, we denote by 

same letters  Dij the corresponding irreducible  characters. 

have, from 7.1, 

        v(x)  . E°  CDij 
 0 °  0�i

<jS4 

and the action of  T(sk) on  V0(0) is given by 

 t  (sk)Dij =  -Dij                                       i 

 Di-1,j+Dij+Di+1'jifki'1                     k:i, 
 ,. '-' 

                         ,i,j-1+Diji .pi,j+1 if  k=j 

where  D11 is considered to be 0  . This action of  r(s
k) 

defines a representation of W . The decomposition of  1: 

the irreducible components is given in  [16,§6]:  V(N
o). 
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the 

  We

 into



 [14]®2[2.13]G[3.12]  (for  notations see [13]). 

     Remark. The above formula of  r(sk) is valid for U(n,1) 

(na2) without modifications for regular infinitesimal character 

                                          1 nil';ytkl. 

No  . In this case, simple reflections are  {si.(i-1,i)1 1gi.5-.,nj 

and the irreducible representations of G with infinitesimal 

character N0are  [D131  C4i<j�n+11 (see  [4]). The 

decomposition of  "C is given by  (t,V(o(0))  == 

 [1n+1]02[2.1n-1]0[3.1n-2]  ([16,§6]). 

     By the formula of  T(sk) , we know the  t-invariants of  Dij. 

    1 2 3 4

0

1

2 

3

 S2  S3  S1  s3

 s3

 s1  52 ss  12  53

 s2
 I

 S1

ss33

 S1  s3

Sis2    2

Figure B.
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We explain how to read Figure B. For example,  S(D02)=Is1,s3 

is the r-invariants of  D02 (we identify the simple system with 

simple reflections by usual manner). From Figure B and Theorem 

6.5, we know the irreducible characters with infinitesimal 

character  (2;,g,l,i2,q3)  ,  q=21>9.2>Q3 , are  11(D13)1 i=1 or 

 j=1.1 . The other singular infinitesimal characters can be 

treated similarly. 

      From Proposition 6.5, we know 

 (i) The space  eCDij  (i41,  jA1) is invariant under the 

action of  W1={1,s1'5 . This space is a multiple of the sign 

representations of W1  . 

     (ii) The space  21,°CDij  ((i,j)4(1,2)) is invariant under 

the action of  W12=<s1's2)=6D This space is decomposed as 

 3[13]@3[2.1] (for notations, see [13]) . The decomposition is 

calculated from  [16,Lemma6.2]. 

     (iii) The space  /1,4)cDij  ((i,j)4(1,3)) is invariant under 

the action of  W13=<s1,s3>  =et  Xe2 . This space is decomposed 
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as  3(sgnesgn)03(sgn01)@3(10sgn) 

     7.3. Representations of the Hecke algebras. Essentially we 

have three different types of Hecke algebras for G=U(3,1) 

     (i) At first, we consider the case where the singular 

infinitesimal character is of the form  oy(e0,91,g2,4.3), 

 q0=Q1>Q2>Q3 . In this case, the irreducible characters with 

infinitesimal character  0/1 is given by  topii,1 i=1 or  j=11 

as commented in 7.2. We denote also by the same letters 

"degenerate" characters . Thenwe have V(U1).<01,D12,1313,1314>/c 

where  D01             and  D12                         are limits of discrete series 

representations. The fixed subgroup W1 of  al is given by 

 W1=t1,s1) and we put  e1.(1+s1)/2 . Then a Hecke algebra 

 H(W,141)=e1C[W]e1 is of dimension 7 and for the generators of 

H(W,W1) we can take  {h2=e1s2el, h3=e1s3e1) . The relations of 

generators are given as follows: 

         h2-1(1+h)h2- 1        2-22'3- 
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         (h2h3)2=  h2h3h2+1(h3h2-h3h2h3)  , 

         (h3h2)2=  h2h3h24-1(h2h3-h3h2h3) 

The actions of generators on  V(0(1) are given as below: 

   t 8. 
                -1/2 1/2 0 0 

 </(e1s2e1). 0 1 0 0  . 

 0 1  -1/2 0 

 0  '  0 0  -1/2    ^  
./ 

   t* . 
         -1 0 0 0 

       (1(e1s3e1). 0 -1 1 0 

 I 

 0  0 1 0 

 0  0 1  -1 
    ... J 

where the matrix is expressed with respect to the basis 

tD01,D12,D13,D14)                      in this order. This representation is 

reducible and has three irreducible components. Invariant 

subspaces are precisely, 
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 <D01)/c  <D14>/c  (13124.(301-1314)/2, D13-(301___14                                                  Ju)/4>/C 

Corresponding to this basis, operators are diagonarized as 

 -1/2 

 cr(e1s2e1)= 1 0 

                            1 -1/2 

                                            -1/2 

 / 
                                    -1 

 Ci(e1s3e1)= -1 1 

             0 1 

                                                              -1 

     (ii) Next, consider the case where the singular 

infinitesimal character is of the form  N12.(1/0,21,02,Q3)  Q0 

 .91.Q2>Q3  • In this case, the only irreducible character with 

infinitesimal character N                         -12 is P(D12)  . This is a 

"degenerate" principal series representation (type a) of  7
,1) 
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and, in the same time, is a limit of discrete series 

representations. We write this irreducible character by the same 

letter  D12 . Since the fixed subgroup W12 of  0(12 is 

generated by  sl and  s2  , the Hecke algebra  H(W,W12) has 

dimension 2. A generator of  H(W,W12) is h3=e12s3e12 , where 

e12= (1/6)2sE W
12 s . The relation of the generator is given by 

 3h2  -  2h3  -  1  =  0  . 

Non-trivial element  e12s3e12  EH(W,W12) acts on D12                                                                    as 

                          1          Cr(e
12s3e12°',n12n12 -T-  . 

     (iii) This case treats the singular infinitesimal character 

of the form  0(13=(Q0,Q1,q2,q3)  ,  q0.21q2.2 .3 . The only 

irreducible character with infinitesimal character  0(13 is 

 (P(D13) . This is a "degenerate" principal series representation 

of type a) in 7.1. We write this character by the same letter 

D13 . The fixed subgroup of  0(13 is W.<ss>=0xAD,and 
                        131°322 
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the Hecke algebra H(W,W13) has dimension 3. Put  e13= 

               s . Then the action of the generator e13s2e13 of (1/4)2s eW
13 

 H(W,W13) is given by 

 ne13s2e13)D13 = 0  . 

In this case, the relation of the generator h2=e13s2e13 is 

given by 

 2h3 - h2- h2 = 0  22 

Therefore one dimensional representations of H(W,W13) consist 

of three equivalent classes. The other two classes are given by 

 d'(e13s2e13) =  -1 or 1 

respectively, and do not appear in the virtual character modules. 

     The above three types (i), (ii) and (iii) corresponds to 

(i), (ii) and (iii) in 7.2. 

     Remark. For  *G=U(n,l)  (nZ2), one can calculate out the 
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representations of 

7.2. The details

 Hecke 

will be

algebras using the formula of  1: in 

 discussed elsewhere.

7-12



                             Appendix A. 

      This appendix is devoted to describe Hirai's method T for 

the usage in §5. For detailed arguments see  [6,§3]. 

 A.1. Let  07)  (Ae6*) be the space of all the IEDs with 

infinitesimal character  A. Since  ©e  2(A) is essentially a 

locally summable function on G which is analytic on G' , it is 

determined by the values on the set of regular elements G'  . 

Moreover,  ED is determined by the values on the finite system of 

Cartan subgroups {HI  [H]eCar(G)) because  ED is invariant 

under the inner automorphisms of G  . 

      To understand Hirai's method T , it is essential to 

consider some kind of order on Car(G) . Let us explain this 

order on Car(G) (see  [5,§3]). Take  [A]  eCar(G) , where [A] 

means the conjugacy class of a Cartan subgroup A . For  aepR. 

ARoiC'gC)  , let H be the element of  ac for whicho((X)= 

 B(Hcc,X) , where B(,) denotes the Killing form on  (Ric  . Take 

root vectors  Xc4 ,  X_0( from  e in such a way that  [XcoX...0].Ha 
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and we put 

         2 
        ,Vtct =. 

                    Ic(1 

Let  V=Vok be the automorphism of defined by 

 V=V4= exp  {-,FT  4ad(X'oc +  va)}  , 

so-called Cayley transform with respect to  a . Then  & 

 V  (),,,,,0 is a Cartan subalgebra of  47) not conjugate to  (i;under 

any automorphism of and  VV(o() is a singular imaginary 

root of  c. We have 

 (3= +  RH'  c< 1G.= z +  1:7  RH. 
 P ' 

where  10( is the hyperplane of  e defined by  U=0 and 

 HI = V(1.1.1x) =  (X:( -  Xia)  . 

This relation between  ® and  G is denoted by Ki),(x)-->(W) 

or simply by We introduce the order < on Car(G) by 
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defining  [A]  <  [B] when for an appropriate choice of a 

representative B of the class [B] , and extend it 

transitively. 

     For  OE  A(X) , we put 

 Supp(e)=1[11] E  Car  (G)  I  Obi  0 } 

 Hght(9)=1.(11]  G  Supp(C))  I  [H] is maximal in  Supp(0) 

and call  [11]E  Hght(0)) a height of  0 . If  0 has the unique 

height [H] , then  e is called an extremal  IED of height  [H] 

(or simply,  H)  . 

     For a Cartan subgroup H , put 

    DH(h)  =  (h)  11  (1-50e(h)-1)  (he H) 
 P  otEL 

 DH(h) =  (110((h)-1  )  (h  EH)  . 
            e AR+ 

For a given  IED  P on G we put 

 CH(e)(h) =  DH(h)C)(h)  (he  HI) 
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 C'(9) (h) =  ER(h)DH(h)e(h) (he  H'  )  , 

where  &(h). sgn  (DH(h))  (hell')  . 

     Define a family of analytic functions  Ci(H;A) as in §1.3. 

Then we have 

     Theorem A.1(Hirai [5,Th.1]). LetNQbe an  IED on G with 

eigenvalue  A . If  0 has a height  [H]e  Car(G) , then  c
ivi(()) 

can be extended to an analytic function on the whole group H  . 

Moreover, it belongs to  q(H;A)  . 

     A.2. Hirai's method T is the method to construct an 

extremal  IED with height H from an element  ;E:Iii(H;A) . This 

is done by induction on the order on Car(G) , and has two 

different steps R and S. Roughly speaking , the step R 

corresponds to boundary conditions to be satisfied by IEDs
, and 

the step S corresponds to Weyl group symmetry which assures the 

invariance of IEDs. As is mentioned above , an  IED  8 is 

                                   appa-4



determined by the system of functions  Cj(0)  ([J]  Car(G)). So, 

in order to give an  IED  71; for  ;€113-(H;X) , it is sufficient to 

give functions  CJ(TS) for every  [J]  E  Car  (G) . T.Hirai gave 

necessary and sufficient conditions for the system of functions 

 C  (a)  ([J]e  Car(G)) obtained from an  IED  a in his works 

([5,6]). Using his results one can verify that constructed 

functions  C.J.  (  TS  )  (  [J]  6  Car  (G)  ) really determine an  IED  T; 

     Let us explain the construction in detail. Take an element 

 5et(li;A) . We put 

 Cii(TC)  .E RH.; for H itself, 

 Cj(TC)  E. 0 for  [J] [H]  . 

Let A be a Cartan subgroup of G and assume that we have 

already constructed  CB(T5) for  [B]>[A] . Let  Al be a 

connected component of A and F a connected component of 

 Ai(R).A1(1A1(R)  , where  A'  (R)=  IhEA  h  )  41 for any  oce6R} 

Denote by  I=Z(Ai  ) the set of all the real roots  oCEAR for 
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which  5,x(h)>0 on  Al  . Then  Z is a root system. Let 

 S=S(A1) be the subgroup of  W(G;Ai  ) generated by  WalA 

 1 

 (a€Z) , where  (00( is the conjugation by an element  go(= exp 

 ITC(Xelc-X'  EG . We put Wod,,=so(. Let  P(F) be the set of 
                                     1'11 

 oc€T, for which 0c(F) >1  . Then P(F) is the set of all the 

positive roots of  2, with respect to a certain order of roots. 

Let  1T  =7T(F  )=  {OH  ,  .  .  ,  0(11 be the simple system in P(F) 

     Step R. Denote by  ;brn a Cartan subalgebra obtained from 

   by the Cayley transform  ya  =Vm with respect to the real root 

 (1r) . By assumption, the functions C m (TS) have been 

already determined. We write Cm instead of C m(TS) for 

                                              B 

 brevity. 

     We put 

 Zm=thEA  5„ (h)=1  , 

             =  thEZrn  1  ce,(h)A1 for any root  c( 

Then for  aEZ mVIA1 and  xeZ  , we put 
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 (RC)(a exp  x)=  C
m(a  expvm(x))  . 

Here  Vin(x) may not be contained in  e , but Cm is locally a 

linear combination of the form exp  A(x)  (tx6(i52)*) (or its 

multiple by a certain polynomial function), so C
m(a exp  Vm(x)) 

has natural meaning. 

     Step S. For a function f  on  Al and  sES , we define 

sf as  (sf)(h).f(s-1h)  (he  A1) . For each  s
m=so(  (1�m6r)  , 

we put 

                A.(1-s
m)(RCm)   .                  =Sm 

Each element  s  E  S can be written in the form s=s. s...s                                                 1
1i2.ik 

(see, for example, [2]). Then we put 

    A=s...A+sA++ sisi...siASs          S,i1=si 
     11212k-1i 

It can be proved that  As is independent of a choice of 

expressions for  sES . Finally we put 
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 B.  B(C1,C2,  ...,  Cm). (#S)-1  2,  As  . 
 s6S 

Denote by EAthe union of wA1 over wEW(G;A) . Define 
            1 

                                                         CA(TC) on EA
1()Al(R) by 

 CA(TC)(wh)= det(w)B(h)  (w€  W(G;A),  he F) 

     Let A1,A2, ... be a complete system of representatives of 

connected components of A under the conjugation of W(G;A)  . 

Then A is the disjoint union of EA  ,  EA  ,  . Repeating the 
 1  2 

same construction for every  Ai , we get  CA(T;) on the whole 

A  . Thus we can define  Co.(T)  ([J]eCar(G)) inductively. We 

see that they altogether define an  IED  T; by  Hirai's  arguments. 

     Our proof of Proposition 5.1 is carried out along the above 

construction of T . Steps R and S there correspond to the same 

parts of this appendix. 
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                             Appendix B. 

      Here we remark about the Assumptions 2.1 and 5.3. 

      At first we prepare some notations. Let H be a Cartan 

subgroup of G . We can choose a e-stable Cartan subgroup from 

[H] , where  e is the Cartan involution with respect to a 

maximal compact subgroup K . So, we may assume H is 9-stable. 

Then the Lie algebra  C' H is also  9-stable and we define 

 1+=((+1)-eigenspace of  e) and  617=((-1)-eigenspace of  e). Put 

 H+=  Hf1K ,  H  = exp  6- 

Then  H=H+H (direct product) and  H is connected. Denote the 

adjoint representation of G by Ad:  G--->int(a) . The kernel 

of Ad is the centre of G . Put 

 r=r  =Ad-1  (Ad(K)r)  exp (T7T(ET))  . 

Then we have the following lemma (see, for example, [12]). 
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     Lemma  B.1.  (1  ) is a finite group and commutes with 

Z(H )0identity component of the centralizer of  Hin G 

 (2  ) It holds that H=  rH0=H0r and  rc  . 

     (3)  11 is stable under the action of W(G;H)  . 

     Put  M=  ntKer  x:ZG(Ii)—>R* , a continuous 

 homomorphism  ) . Then M is a reductive subgroup of G 

containing a compact Cartan subgroup H+  . 

     Lemma  B.2. Let  ro=pn  Ho . Then we have 

 (1) The finite group  T'o is contained in the centre of 

M0the connected component of M containing e . 

 (2) For  o(E  LV_TRUAR and  a  e  Po ,  a  )=1  holds. 

 Proof.  (1) is clear from Lemma  B.1  (1  )  . Let us prove  (  2  )  . 

For CX e
,/ 1R, take a non-zero root vector Xck. By the 

definition of  P ,  Ad(a  )  (a  EP) has the form  exp(fT ad x) 

      ) . We have  Ad  (  a  )X0(=  exp  (J-1 ad  x)Xot=  exp  CPT  o((  )Xot,=X  oc 

since  04  (  x  )  =0 . So  (x(  a  )  =1  holds . The proof of 
a(a)=1 
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 (C(eAR) is carried out similarly, since ae-H1-. Q.E.D. 

                                          0 

     Lemma  B.3. For  2Eli and  te  W;(2) , there exists a 

positive integer m such that 

 ft.A(a)=1 (a EPD) 0 

The integer m can be taken as  

     Proof. Since P0is a finite group, there exists an m 

such that  am.e for any  aer
o . Then  tx(ain)=,tin(a)=1 

holds. Q.E.D. 

     Let  [11.1  i  EI be a complete system of representatives of 

 the conjugacy classes of connected components of H , under the 

action of W(G;H) . As for Assumptions 2.1 and 5.3, we have the 

following lemma. 

    Lemma B.4. There exists a subset  tail for each 

Cartan subgroup H  ([H]E  Car(G)) satisfying the following 
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conditions. 

 (1  ) It holds that  a  .  E  H. for  i  . 

     (2) For an arbitrary infinitesimal character  X=  2C  A  (  , 

there exists a positive integer m such  that 

                           -1 
            sai)=1 ()tEe-H(mA), i E I, s 6 W(G;H. ) . 

 (3) There exists a positive integer p depending only on 

G , such that 

          PIA1              (a.) = 1 for anylAE QUI]  . 

                 Proof. It follows from Lemma B.3 and its proof that there 

exist a positive integer p depending only on G , and  [ail 

 iE a subset of H such that 

     (a) It holds that  a  .  E  H. for  i  I  . 

     (b) For any  AE(13.- , we have 

               =t
pA(asa)1 ()tEWH(A), ie. I, se W(G;H.) 
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     (c) For any  pE  QM] , it holds that  E (a.).1  .                                                  /pp3 . 

    In fact, we can take p=  #  rH and  fail  i  &I 
 [H]e  Car(G) 

can be taken from rH  . 

     By the definition of  WH(A) , it is clear that  Wr'ilp7‘) 

 14.%'(A)  . Therefore, for some positive integer r ,  W--(prA)= 

 A) holds. Put  A'  =prA . By the above argument, we have 

               (ai-1sai)=1t(WHi%'(pr-1A ),  ie  1,  sGw(Goi.) 

Since WH(pr-1A ).w""( A' ) , we have 

 -1  sai)=1)E1A9A1),iEI, seW(G;H.) . 

                                                                          Q.E.D. 

     Remark B.5. An integer m in Lemma B.4 (2) can be taken as 

 mSpr (r=#W and p as in the proof). This is clear from the 

above. 

     For an arbitrary  A , if necessary, take  mX instead of 
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 . Then Assumption 2.1 is satisfied. 

     Also, we can take  plE  ,tic which satisfies Assumption 5.3 as 

follows. It is clear that there exists a  p'  eQ[A] such that 

 A000-IA' is dominant regular. Then it holds that 

        5tiA(ai)=1 tE la'%"H( A )Jen 

where  I.A=p1A'  E  Q[A] . Clearly  A0=A+IA is dominant regular and 

Assumption 5.3 is satisfied for this  fA
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