

学位申請論文

芦野隆一

On Nagumo's H^S-stability in Singular Perturbations

Dedicated to Professor Shigetake Matsuura on the sixtieth aniversary of his birthday

Ву

Ryuichi ASHINO*

*Research Institute for Mathematical Sciences Kyoto University, Kyoto, Japan

1. Introduction

In [5], Nagumo defined the H^S -stability in singular perturbations. Here $H^S = H^S(R_{X'}^{n-1})$ is the global Sobolev space with the norm

$$\|\mathbf{u}(\mathbf{x}')\|_{s} = \left((2\pi)^{-n+1} \int |\hat{\mathbf{u}}(\xi')|^{2} (1+|\xi'|^{2})^{s} d\xi' \right)^{1/2}.$$

We shall generalize the notion of H^S -stability in some sense.

Let us consider the following linear partial differential operator with constant coefficients containing small positive parameter ε (0 $\leq \varepsilon < 1$):

$$L_{\varepsilon}(D) = \varepsilon P_{1}(D) + P_{2}(D)$$

Denote by m the order of $P_1(D)$ with respect to D_1 and by m' that of $P_2(D)$. Put m"=m-m' and assume that m>m'>0 Then the order of L_0 is less than that of L_{ε} for $\varepsilon \neq 0$. Such an operator as L_{ε} is called a singularly perturbed operator.

We shall study the folowing so-called singulary perturbed Cauchy problem for $L_{e}(D)$:

(CP)
$$\begin{cases} L_{\epsilon}(D)u(x) = f_{\epsilon}(x), \text{ in } [0,T]_{x}R_{x}^{n-1}; \\ D_{1}^{j-1}u(0,x') = \phi_{\epsilon,j}(x'), j=1, ..., m, \end{cases}$$

and the following so-called reduced Cauchy problem for (CP):

(RCP)
$$\begin{cases} L_0(D)u(x) = f_0(x), \text{ in } [0,T]_X R_X^{n-1}; \\ \\ D_1^{j-1}u(0,x^*) = \phi_{0,j}(x^*), j=1, , m^* \end{cases}$$

The following assumption on P_1 and P_2 will be required.

- 1 -

Assumption 1.

(A1): The symbols of $P_1(D)$ and $P_2(D)$ are represented as

$$P_{1}(\xi) = \sum_{j=0}^{m} P_{1,j}(\xi')\xi_{1}^{m-j},$$
$$P_{2}(\xi) = \sum_{j=0}^{m'} P_{2,j}(\xi')\xi_{1}^{m'-j},$$

where p_{1,0} and p_{2,0} are non-zero constants.
(A2): (m"=2 and p_{2,0}/p_{1,0} is negative real number) or
(m"=1 and the imaginary part of p_{2,0}/p_{1,0} is non-positive)

The following assumption on the Cauchy data and on the solvability of (CP) and (RCP) will be required.

Assumption 2.

There exist real numbers s and s' such that (CP) is uniquely solvable in $C([0,T];H^S)$ and (RCP) is uniquely solvable in $C([0,T];H^S)$ for the Cauchy data $\phi_{\varepsilon,j}(x')$ and $\phi_{0,j}(x')$ belong to H^S' and $f_{\varepsilon}(x)$ and $f_{0}(x)$ belong to $C([0,T];H^S')$

Nagumo defined the H^S -stability of (CP) with respect to a particular solution u₀ of (RCP) in [5] as follows:

Definition 1. Let Assumption 2 be satisfied for s'=s.

The Cauchy problem (CP) is said to be \underline{H}^{S} -stable in $0 \leq x_{1} \leq T$ for $\varepsilon \neq 0$ with respect to a particular solution $u_{0}(x)$ of the reduced Cauchy problem (RCP) in $C^{m}(\{0,T\}; H^{S})$ if

- 2 -

(D1)
$$\sup_{\substack{0 \leq x_1 \leq T \\ 0 \leq x_1 \leq x}} \| u_{\varepsilon}(x_1, \cdot) - u_{0}(x_1, \cdot) \|_{s} \to 0$$

whenever $u_{\epsilon}(x)$ are solutions of (CP) in $C^{m}([0,T];H^{S})$ satisfying the following three conditions:

(D2)
$$\sup_{\substack{0 \leq x_1 \leq T \\ 0 \leq x_1 \leq T}} \|f_{\varepsilon}(x_1, \cdot) - f_{0}(x_1, \cdot)\|_{s} \neq 0;$$

(D3)
$$\|\phi_{\epsilon,j} - \phi_{0,j}\|_{s} \to 0, j=1,.,m';$$

(D4)
$$\|\phi_{\varepsilon,j}(\cdot) - D_1^{j-1}u_0(0,\cdot)|_{s} \to 0, j=m'+1,...,m.$$

If $f_0(x)$ belongs to $C^{m-m'}(\{0,T\};H^{s'})$ then the initial values $D_1^{j-1}u_0(0,x')$, j=m'+1, ,m are uniquely determined and represented as a sum of derivatives of $f_0(x)$ and $\phi_{0,j}(x')$, j=1, .,m'. When (D4) is required, then the Cauchy data $\phi_{\varepsilon,j}(x')$, j=m'+1, ,m are very restricted. For example, when $f_0=0$ and $\phi_{0,j}=0$, j=1, ,m', (D4) implies that $\phi_{\varepsilon,j} \neq 0$, j=1, ,m. Hence another definition of the stability whose convergence on the Cauchy data $\phi_{\varepsilon,j}(x')$, j=m'+1, ,m are different from Nagumo's is needed.

Definition 2. Let Assumption 2 be satisfied.

The Cauchy problem (CP) is said to be (s,s')-stable in $0 \le x_1 \le T$ for $\varepsilon + 0$ with respect to a particular solution $u_0(x)$ of the reduced Cauchy problem (RCP) in $C^m([0,T];H^{max{s,s'}})$ if

(D1)
$$\sup_{\substack{0 \leq x_1 \leq T \\ 0 \leq x_1 \leq T}} \left\| u_{\varepsilon}(x_1, \cdot) - u_{0}(x_1, \cdot) \right\|_{s} \neq 0,$$

- 3 -

whenever $u_{\epsilon}(x)$ are solutions of (CP) in $C^{m}([0,T];H^{max{s,s'}})$ satisfying the following three conditions:

(D5)
$$\sup_{\substack{0 \leq x_1 \leq T}} \|f_{\varepsilon}(x_1, \cdot) - f_{0}(x_1, \cdot)\|_{s'} + 0;$$

(D6)
$$\|\phi_{\epsilon,j} - \phi_{0,j}\|_{s'} \to 0, j=1,...,m';$$

(D7): There exists a positive number M, which may depend on the choice of the initial data $\phi_{\epsilon,j}$, $\phi_{0,j}$, and f_0 such that

$$\|\phi_{\varepsilon,j}(\cdot) - D_1^{j-1}u_0(0,\cdot)\|_{s^1} \le M, j=m'+1,.,m.$$

The Cauchy problem (CP) is said to be (s,s'+0)-stable in $0 \le x_1 \le T$ for $\varepsilon + 0$ with respect to a particular solution $u_0(x)$ of (RCP) in $C^m([0,T];H^{max\{s,s'\}})$ if (D1) whenever $u_{\varepsilon}(x)$ are solutions of (CP) in $C^m([0,T];H^{max\{s,s'\}})$ satisfying (D5), (D6), and

(D8): There exist positive numbers δ and M, which may depend on the choice of the initial data $\phi_{\epsilon,j}$, $\phi_{0,j}$, and f_0 such that

$$\|\phi_{\varepsilon,j}(\cdot) - D_1^{j-1}u_0(0,\cdot)\|_{s'+\delta} \leq M, j=m'+1, ,m.$$

<u>Remark.</u> For every positive number δ , the (s,s')-stability implies the (s,s'+0)-stability, the (s,s'+0)-stability implies the (s,s'+ δ)-stability, and the (s,s')-stability implies the (s- δ ,s')-stability

It will be shown that requiring (A2) is natural when we deal with the (s,s')-stability with respect to solutions of (RCP) for various Cauchy data. Following to the definition of the

- 4 -

C-admissibility of (CP) with respect to (RCP) in [4], we shall define the $C([0,T];H^S)$ -admissibility of (CP) with respect to (RCP)

<u>Definition 3.</u> Let Assumption 2 be satisfied. The Cauchy problem (CP) is said to be $C([0,T];H^S)$ -admissible in $[0,T]_{X}R^{n-1}$ with the Cauchy data space $(H^{S'})^{m}$ with respect to (RCP) if for every Cauchy datum (ψ_1, \ldots, ψ_m) $(H^{S'})^{m}$, the solutions u_{ε} of (CP) with $\phi_{\varepsilon,j}=\psi_j$, $j=1,\ldots,m$ and $f_{\varepsilon}=0$ converge in $C([0,T];H^S)$ to the solution u_0 of (RCP) with $\phi_{0,j}=\psi_j$, j=1, ...,m' and $f_0=0$.

By looking into the proof of Theorem in [2] and §2 and §3 in [3], we can prove that (A2) remains a necessary condition for the $C([0,T];H^S)$ -admissibility with the Cauchy data space $(H^{\infty})^m$ when P_1 and P_2 satisfy (A1) We do not give the proof in this paper.

In [5], Nagumo gave a necessary and sufficient condition for the H^S-stability for more general system in the form of inequalities which must be satisfied by the solutions of (CP) with the initial conditions:

$$D_{1}^{j-1}u(0,x') = \delta_{i,j} \cdot \delta(x'), \ i,j=1, , m,$$

where $\delta_{i,j}$ is Kronecker's delta and $\delta(x')$ is the Dirac measure. We have succeeded in seeking a necessary and sufficient condition for the (s,s'+0)-stability but a necessary and sufficient condition for the (s,s')-stability is open. Our condition for

- 5 -

the (s,s'+0)-stability which will be found in §2 is Nagumo type. As a corollary, we can show that Nagumo's H^S-stability implies the (s,s+0)-stability In [6], Kumano-go applied Nagumo's result to the following operator:

$$\varepsilon \cdot D_1^2 + q \cdot D_1 + Q(D'),$$

where q is a complex number and Q(D') is a polynomial of D' Kumano-go deduced conditions for the H^S-stability on the complex constant q and on the structure of the polynomial $Q(\xi')$ In §3, we shall give another example for the H^S-stability.

<u>Ackowledgement.</u> The author expresses his deep gratitude to Professor Shigetake Matsuura for his encouragement and helpful comments.

2. The (s,s'+0)-stability

We shall use the notation and the result in Appendix. Denote the roots of $L_{\epsilon}(\xi) = 0$ with respect to ξ_1 by $\tau_j(\epsilon, \xi')$, j=1, ,m and those of $L_0(\xi) = P_2(\xi) = 0$ with respect to ξ_1 by $\sigma_j(\xi')$, $j=1, \ldots, m'$, respectively. It is well known that $\tau_j(\epsilon, \xi')$, j=1, ..., m are continuous in (ϵ, ξ') for $\epsilon \neq 0$ and $\sigma_j(\xi')$, $j=1, \ldots, m'$ are continuous in ξ' Put

 $b(\tau) = (\tau^{j-1}; j+1, .., m) \text{ and } c_j = (\delta_{j,k}, k+1, .., m),$ where $\delta_{j,k}$ is Kronecker's delta. Other notation can be found in Appendix. Denote by $Y_j(\varepsilon, x_1, \xi'), j=1$, , m the fundamental solutions of the following ordinary differential equation with parameter $(\varepsilon, \xi'):$

$$L_{\varepsilon}(D_{1},\xi')Y(\varepsilon,x_{1},\xi') = 0$$

with initial conditions:

$$D_1^{k-1}Y(\varepsilon, 0, \xi') = \delta_{j,k}, j, k=1, ..., m,$$

Then Cramer's formula implies that if $\tau_i \neq \tau_j$, $1 \leq i \leq j \leq m$ then

$$Y_{j}(\varepsilon, x_{1}, \xi')$$

$$= \sum_{k=1}^{m} \exp i\tau_{k} x_{1} \cdot \frac{\det\{b(\tau_{1}), \dots, b(\tau_{k-1}), c_{j}, b(\tau_{k+1}), \dots, b(\tau_{m})\}}{\det\{b(\tau_{1}), \dots, b(\tau_{m})\}}$$

$$= \frac{\det^{t}(t_{a}(0), t_{a}(1), \dots, t_{a}(j-2), t_{e}, t_{a}(j), \dots, t_{a}(m-1))}{A(0, 1, \dots, m-1)}$$

$$= (-1)^{j-1} \cdot D(0, 1, \dots, j-2, j, \dots, m-1)(\tau_{1}, \dots, \tau_{m}, x_{1}), j=1, \dots, m.$$

But the last representations remain valid without any restriction

- 7 -

on τ_j , j=1, ,m. Denote by l the maximum of the polynomial orders of the coefficients $p_{1,j}(\xi')$, j=0, ,m in the symbol $P_1(\xi)$ and put

$$\langle \xi' \rangle = (1 + |\xi'|^2)^{1/2}$$

Then we have the following theorem whose proof will be found at the end of this section.

Theorem 1. Let Assumption 1 and 2 be satisfied. Then the following four conditions are equivalent: (C1) The Cauchy problem (CP) is (s,s'+0)-stable in [0,T] for

 $\varepsilon \downarrow 0$ with respect to a particular solution $u_0(x)$ of (RCP)

belonging to
$$C^{m}([0,T];H^{max{s,s'}+\ell})$$

(C2) The Cauchy problem (CP) is (s,s'+0)-stable in [0,T] for $\varepsilon+0$ with respect to every solution $u_0(x)$ of (RCP) belonging to $C^m([0,T];H^{max\{s,s'\}+l})$

(C3) There exist positive numbers ε_0 and C_0 such that

(E1)
$$\sup_{0 < \varepsilon \leq \varepsilon_0, \xi' \in \mathbb{R}^{n-1}} \int_0^T \frac{1}{\varepsilon} |Y_m(\varepsilon, x_1, \xi') < \xi' > s-s'| dx_1 \leq C_0,$$

(E2)
$$\sup_{1 \leq j \leq m', 0 \leq \epsilon \leq \epsilon_0, 0 \leq x_1 \leq T, \xi' \in \mathbb{R}^{n-1}} |Y_j(\epsilon, x_1, \xi') < \xi' >^{s-s'}| \leq C_0,$$

and for every positive number δ there exist positive numbers $\epsilon_{\hat{\delta}}$ and $C_{\hat{\delta}}$ such that

(E3) $\sup_{\substack{m'+1 \leq j \leq m, \\ \delta}} 0 < \epsilon \leq \epsilon_{\delta}, 0 \leq x_{1} \leq T, \xi' \in \mathbb{R}^{n-1} |Y_{j}(\epsilon, x_{1}, \xi') < \xi' > s-s'-\delta|$

(C4) There exist positive numbers ε_0^{\prime} , R_0^{\prime} , and C_0^{\prime} such that

- 8 -

(E4)
$$\sup_{0 < \varepsilon \leq \varepsilon_0', R_0 \leq |\xi'|} \int_0^T \frac{1}{\varepsilon} |Y_m(\varepsilon, x_1, \xi') < \xi' > S^{-S'}| dx_1 \leq C_0',$$

(E5) $\sup_{1 \leq j \leq m', 0 \leq \epsilon \leq \epsilon_0', 0 \leq x_1 \leq T, R_0 \leq |\xi'|} |Y_j(\epsilon, x_1, \xi') \langle \xi' \rangle^{s-s'}| \leq C_0',$

and for every positive number δ there exist positive numbers $\epsilon_\delta',$ $R_\delta',$ and C_δ' such that

<u>Remark.</u> Nagumo studied the H^S-stability in the following general situation:

$$\mathbf{L}_{\varepsilon} = \sum_{j=0}^{m} \mathbf{L}_{j}(\varepsilon, D') D_{1}^{m-j},$$

where the symbols $L_j(\varepsilon, \xi')$ are matrices of polynomials in ξ' with constant coefficients which depend continuously on the parameter $\varepsilon \ge 0$. He proved the equivalence between the following two conditions:

(C5) The Cauchy problem (CP) is H^{S} -stable in [0,T] for $\varepsilon + 0$ with respect to a particular solution $u_{0}(x)$ of (RCP) belonging to $C^{m}([0,T];H^{S+\ell})$.

(C6) There exist positive numbers ε_0 and C_0 such that

(E7)
$$\sup_{0 \le \epsilon \le \epsilon_0, \xi' \in \mathbb{R}^{n-1}} \int_0^T \frac{1}{\epsilon} \left[Y_m(\epsilon, x_1, \xi') \right] dx_1 \le C_0;$$

(E8)
$$\sup_{\substack{1 \leq j \leq m, \ 0 \leq \epsilon \leq \epsilon_0, \ 0 \leq x_1 \leq T, \ \xi' \in \mathbb{R}^{n-1}} |Y_j(\epsilon, x_1, \xi')| \leq C_0.$$

- 9 -

<u>Corollary 1.</u> Let Assumption 1 and 2 be satisfied and $u_0(x)$ be a solution of (RCP) belonging to $C^{m}([0,T];H^{s+\ell})$ If the Cauchy problem (CP) is H^{s} -stable in [0,T] for $\epsilon+0$ with respect to a particular solution u_0 , then the Cauchy problem (CP) is (s,s+0)-stable in [0,T] for $\epsilon+0$ with respect to a particular solution u_0 .

<u>Proof.</u> Since Nagumo's theorem can be applied to our problem and obviously (E8) implies (E2) for s=s' and (E3) for s=s' [Q.E.D.]

To prove Theorem 1 we need several steps. For the solution u_0 of the reduced Cauchy problem (RCP), we shall consider the following singulary perturbed Cauchy problem:

(CP1)
$$\begin{pmatrix} L_{\varepsilon}(D)u(x) = f_{\varepsilon}(x), \text{ in } [0,T]_{x}R^{n-1}; \\ D_{1}^{j-1}u(0,x') = \phi_{\varepsilon,j}(x'), j=1, \dots, m' \\ D_{1}^{j-1}u(0,x') = D_{1}^{j-1}u_{0}(0,x'), j=m'+1, \dots, m. \end{pmatrix}$$

Here the initial values $D_1^{j-1}u(0,x')$, j=m'+1, ,m are fixed. The reduced Cauchy problem for (CP1) is (RCP) Denote by $u_{\epsilon,1}(x)$ the solution of (CP1)

Lemma 1. (due to Nagumo) Let (A1) and Assumption 2 be satisfied. Then the following two conditions are equivalent:

- 10 -

(C7) The Cauchy problem (CP1) is (s,s')-stable in [0,T] for $\varepsilon \neq 0$ with respect to a particular solution $u_0(x)$ of (RCP) belonging to $C^m([0,T];H^{max{s,s'}+l})$

(C8) There exist positive numbers ε_0 and C_0 such that

(E1)
$$\sup_{0 < \varepsilon \leq \varepsilon_0, \xi' \in \mathbb{R}^{n-1}} \int_0^T \frac{1}{\varepsilon} |Y_m(\varepsilon, x_1, \xi') < \xi' > s-s'| dx_1 \leq C_0.$$

(E2)
$$\sup_{\substack{1 \leq j \leq m', \ 0 < \epsilon \leq \epsilon_0, \ 0 \leq x_1 \leq T, \ \xi' \in \mathbb{R}^{n-1}} |Y_j(\epsilon, x_1, \xi') < \xi' > \frac{s-s'}{s}| \leq C_0.$$

Proof. First we shall show (C8) implies (C7) Put

$$v_{\varepsilon}(x) = u_{\varepsilon,1}(x) - u_{0}(x),$$
$$g_{\varepsilon}(x) = L_{0}(D)u_{0}(x) - L_{\varepsilon}(D)u_{0}(x) + f_{\varepsilon}(x) - f_{0}(x)$$

Denote by $\hat{u}(x_1,\xi')$ the Fourier transform of u(x) with respect to x' and by $F_{\xi' \to x'}^{-1}$ the inverse Fourier transformation. Then $v_{\epsilon}(x)$ is given by

$$\mathbf{v}_{\varepsilon}(\mathbf{x}) = \mathbf{F}_{\xi^{\prime} \to \mathbf{x}^{\prime}}^{-1} \left\{ \sum_{j=1}^{m^{\prime}} \mathbf{Y}_{j}(\varepsilon, \mathbf{x}_{1}, \xi^{\prime}) \left(\hat{\phi}_{\varepsilon, j}(\xi^{\prime}) - \hat{\phi}_{0, j}(\xi^{\prime}) \right) \right\}$$

$$+ \mathbf{F}_{\xi^{\prime} \to \mathbf{x}^{\prime}}^{-1} \left\{ \int_{0}^{\mathbf{X}_{1}} \frac{1}{\mathbf{P}_{1, 0}^{\ast \varepsilon}} \mathbf{Y}_{m}(\varepsilon, \mathbf{x}_{1} - t, \xi^{\prime}) \hat{g}_{\varepsilon}(t, \xi^{\prime}) dt \right\}$$

Since

$$\begin{aligned} &|\hat{\mathbf{v}}_{\varepsilon}(\mathbf{x}_{1},\xi')| < \xi' >^{\mathsf{S}} \\ &\leq \sum_{j=1}^{m'} |\mathbf{Y}_{j}(\varepsilon,\mathbf{x}_{1},\xi') < \xi' >^{\mathsf{S}-\mathsf{S}'}||\hat{\phi}_{\varepsilon,j}(\xi')| - \hat{\phi}_{0,j}(\xi')| < \xi' >^{\mathsf{S}'} \\ &+ \int_{0}^{\mathbf{x}_{1}} \frac{1}{|\mathbf{P}_{1,0}| \cdot \varepsilon} \cdot |\mathbf{Y}_{m}(\varepsilon,\mathbf{x}_{1}-\mathsf{t},\xi') < \xi' >^{\mathsf{S}-\mathsf{S}'}||\hat{g}_{\varepsilon}(\mathsf{t},\xi')| < \xi' >^{\mathsf{S}'}d\mathsf{t}, \end{aligned}$$

it implies that

 $\|\mathbf{v}_{\varepsilon}(\mathbf{x}_{1},\cdot)\|_{s}$

$$\leq C_{0} \sum_{j=1}^{m'} \|\phi_{\varepsilon,j} - \phi_{0,j}\|_{s'} + \frac{C_{0}}{\|P_{1,0}\|} \int_{0}^{x_{1}} \|g_{\varepsilon}(t, \cdot)\|_{s}, dt.$$

By (D6), we have $\begin{bmatrix} m' \\ j=1 \end{bmatrix} \phi_{\epsilon,j} - \phi_{0,j} |_{s'} \rightarrow 0$. Since u_0 belongs to $C^m([0,T];H^{max\{s,s'\}+\ell})$, it implies that

$$\sup_{0 \leq x_1 \leq T} \left\| L_0(D) u_0(x_1, \cdot) - L_{\varepsilon}(D) u_0(x_1, \cdot) \right\|_{s^*} \to 0.$$

Hence (D5) implies that $\sup_{0 \le x_1 \le T} \|g_{\varepsilon}(x_1, \cdot)\|_{s} \to 0$. Thus we have

$$\sup_{\substack{0 \leq x_1 \leq T}} \|v_{\varepsilon}(x_1, \cdot)\|_{s} \to 0.$$

Next we shall show (C7) implies (C8) Assume that (E2) is not satisfied. Then, for a certain j with $l \le j \le m$, there exist sequences $\{\varepsilon_n\}$ with $\varepsilon_n \neq 0$ and $\{t_n\}$ with $0 \le t_n \le T$ and a sequence of open balls $\{S_n\}$, $S_n = \{|\xi' - \xi_n'| < r_n\}$ such that

(2.1)
$$|Y_j(\varepsilon_n, t_n, \xi') < \xi' > s^{-s'}| > n \quad \text{for } \xi' \text{ in } S_n,$$

(2.2)
$$2^{-1} < (\langle \xi' \rangle / \langle \xi'_n \rangle)^{s'} < 2 \text{ for } \xi' \text{ in } S_n$$

Put

$$\mathbf{u}_{n}(\mathbf{x}) = \mathbf{c}_{n} \cdot \mathbf{F}_{\xi' \rightarrow \mathbf{x}}^{-1} \left(\mathbf{Y}_{j}(\mathbf{c}_{n}, \mathbf{x}_{1}, \xi') \cdot \chi(\xi'; \mathbf{s}_{n}) \right),$$

where $c_n = n^{-1} |S_n|^{-1/2} \langle \xi_n' \rangle^{-s}$ Then $u_n(x)$ satisfies $L_{\varepsilon_n}(D)u(x) = 0$. Since $\hat{u}(t_n,\xi')| \langle \xi' \rangle^s$

$$= n^{-1} \cdot |s_{n}|^{-1/2} \langle \xi_{n}^{\dagger} \rangle^{-s^{\dagger}} |Y_{j}(\varepsilon_{n}, t_{n}, \xi^{\dagger})| \chi(\xi^{\dagger}; s_{n}) \langle \xi^{\dagger} \rangle^{s}$$

$$= n^{-1} \cdot |s_{n}|^{-1/2} (\langle \xi^{\dagger} \rangle / \langle \xi_{n}^{\dagger} \rangle)^{s^{\dagger}} |Y_{j}(\varepsilon_{n}, t_{n}, \xi^{\dagger}) \langle \xi^{\dagger} \rangle^{s-s^{\dagger}} |\chi(\xi^{\dagger}; s_{n})|$$

(2.1) and (2.2) imply that

- 12 -

$$\sup_{\substack{0 \leq x_1 \leq T}} \|u_n(x_1, \cdot)\|_s \geq \|u_n(t_n, \cdot)\|_s \geq 1/2$$

Since

$$\begin{aligned} |D_1^{j-1}\hat{u}_n(0,\xi')| &<\xi'>^{s'} = c_n \cdot \chi(\xi';s_n) <\xi'>^{s'} \\ &= n^{-1} \cdot |s_n|^{-1/2} \cdot \chi(\xi';s_n) (<\xi'>/<\xi_n'>)^{s'}, \end{aligned}$$

(2.2) implies that $|D_1^{j-1}u_n(0,\cdot)|_s \le 2/n \ne 0$. For $k \ne j$, we have $|D_1^{k-1}u_n(0,\cdot)|_s = 0$. Put $u_{\varepsilon_n}(x) = u_n(x) + u_0(x)$ Then we have a contradiction to (D1), (D5), (D6), and (D7)

Assume that (E1) is not satisfied. Then there exist a sequence $\{\varepsilon_n\}$ with $\varepsilon_n \neq 0$ and a sequence of open balls $\{s_n\}$, $s_n = \{\xi' \in \mathbb{R}^{n-1}; |\xi' - \xi_n'| < r_n\}$ such that

(2.3)
$$\int_0^T \frac{1}{|P_{1,0}| \cdot \varepsilon_n} \cdot |Y_m(\varepsilon_n, T-x_1, \xi') \langle \xi' \rangle^{s-s'} | dx_1 \rangle n,$$

for ξ' in S_n . We choose $\phi_{\epsilon,j}(x') = D_1^{j-1}u_0(0,x')$, j=1, ..., m'Then the solutions of (CP1) for $\{\epsilon_n\}$ are given by

$$u_{n}(x) = u_{0}(x) + F_{\xi' \neq x'}^{-1} \left(\int_{0}^{x_{1}} \frac{1}{p_{1,0} \cdot \epsilon_{n}} \cdot Y_{m}(\epsilon_{n}, x_{1} - t, \xi') \hat{g}_{\epsilon_{n}}(t, \xi') dt \right)$$

Put

$$y_n(x_1,\xi') = \frac{1}{p_{1,0} \cdot \varepsilon_n} \cdot Y_m(\varepsilon_n, T-x_1,\xi')$$

As we shall show later by (2.5) in the proof of Lemma 3 that $Y_m(\varepsilon, x_1, \xi')$ is continuous in (x_1, ξ') for fixed ε , it implies that $y_n(x_1, \xi')$ is continuous in (x_1, ξ') for every positive integer n. For $E = \{(x_1, \xi'); y_n(x_1, \xi') \neq 0\}$, denote by $\chi((x_1, \xi'); E)$ the characteristic function of the set E. Put

$$H_{n}(x_{1},\xi') = \chi((x_{1},\xi');E) \cdot \overline{y_{n}(x_{1},\xi')} / |y_{n}(x_{1},\xi')| - 13 -$$

Then $|H_n(x_1,\xi')| \leq 1$ and (2.3) implies

$$\left| \int_{0}^{T} y_{n}(x_{1},\xi') < \xi' > s-s' H_{n}(x_{1},\xi') dx_{1} \right| > n,$$

for ξ' in S_n Approximate $H_n(x_1,\xi')$ in the sense of $L^1([0,T])$ valued in bounded functions in ξ' by the mollifier $\rho_{\delta}(x_1)_*$ with respect to x_1 Put

$$h_{\delta,n}(x_1,\xi') = \int_{R} \rho_{\delta}(x_1-t)H_n(t,\xi') dt.$$

Then $h_{\delta,n}(x_1,\xi')$ are continuous functions with respect to x_1 in [0,T] satisfying $|h_{\delta,n}(x_1,\xi')| \leq 1$. Since

$$\left| \int_{0}^{T} Y_{n}(x_{1},\xi') < \xi' > S^{-S'} H_{n}(x_{1},\xi') dx_{1} \right|$$

-
$$\left| \int_{0}^{T} Y_{n}(x_{1},\xi') < \xi' > S^{-S'} h_{\delta,n}(x_{1},\xi') dx_{1} \right|$$

$$\leq \sup_{0 \leq \mathbf{x}_1 \leq \mathbf{T}} |\mathbf{y}_n(\mathbf{x}_1, \xi')| \cdot \langle \xi' \rangle^{s-s'} \cdot \int_0^{\mathbf{T}} |\mathbf{h}_{\delta, n}(\mathbf{x}_1, \xi') - \mathbf{H}_n(\mathbf{x}_1, \xi')| d\mathbf{x}_1,$$

it implies that for ξ' in S there exist positive numbers $\delta_n^{}(\xi')$ such that

$$\left| \int_{0}^{T} y_{n}(x_{1},\xi') \langle \xi' \rangle^{s-s'} h_{\delta_{n}}(\xi'), n^{(x_{1},\xi')} dx_{1} \right| > n,$$

for ξ' in S_n Put

$$\begin{split} h_{n}(x_{1},\xi') &= h_{\delta_{n}}(\xi'), n^{(x_{1},\xi')}, \\ g_{\varepsilon_{n}}(x) &= F_{\xi' \to x}^{-1}, \left(n^{-1} |s_{n}|^{-1/2} h_{n}(x_{1},\xi') < \xi' > -s' \chi(\xi';s_{n})\right), \end{split}$$

where $|S_n|$ denotes the measure of S_n and $\chi(\xi';S_n)$ is the characteristic function of the ball S_n We set $f_{\epsilon_n} = f_0 + g_{\epsilon_n}$ Then

$$\|g_{\varepsilon_n}(\mathbf{x}_1,\cdot)\|_{\mathbf{s}^+} \leq \frac{1}{n} \neq 0.$$

Since

$$\begin{aligned} & (\hat{u}_{n}(T,\xi^{*}) - \hat{u}_{0}(T,\xi^{*})) < \xi^{*} > s \\ &= \int_{0}^{T} Y_{n}(x_{1},\xi^{*}) < \xi^{*} > s^{-s^{*}} \cdot \hat{g}_{\varepsilon_{n}}(x_{1},\xi^{*}) < \xi^{*} > s^{*} dx_{1} \\ &= \int_{0}^{T} Y_{n}(x_{1},\xi^{*}) < \xi^{*} > s^{-s^{*}} \cdot h_{n}(x_{1},\xi^{*}) dx_{1} \cdot n^{-1} |s_{n}|^{-1/2} \chi(\xi^{*};s_{n}), \\ &\text{implies that } \|u_{n}(T,\cdot) - u_{0}(T,\cdot)\|_{s} \ge 1. \quad \text{This contradicts (D1)} \end{aligned}$$

it implies that $\|u_n(T,\cdot)-u_0(T,\cdot)\|_s \ge 1$. This contradicts (D1), (D5), (D6), and (D7)

[Q.E.D.]

Put

$$B_R = \{ |\xi'| \le R \}, p = p_{2,0}/p_{1,0}, \theta = \arg -p, \theta = \exp i\theta/m'', \zeta = \exp 2\pi i/m'', and \tau_j^i = \zeta^{j-m'-1}, j=m'+1, ,m.$$

By the same argument as in Lemma 2.2 in [3], it implies the following lemma whose proof is omitted.

Lemma 2. Let (A1) in Assumption 1 be satisfied. Then, for every positive number R, there exist a positive number ε_R with $\varepsilon_R < 1$ and continuous functions $\tau_{j,1}(\varepsilon,\xi')$, j=1, ,m on $\{0,\varepsilon_R\}_{x}B_R$ satisfying

$$\limsup_{\varepsilon \neq 0} \frac{|\tau_{j,1}(\varepsilon,\xi')| = 0, \text{ for } j=1, , m}{\varepsilon \neq 0} \xi' \in B_R$$

such that for m'+1 \leq i<j \leq m and for 1 \leq i \leq m', m'+1 \leq j \leq m

$$\tau_{i}(\varepsilon,\xi') \neq \tau_{j}(\varepsilon,\xi') \text{ on } (0,\varepsilon_{R}] *B_{R}$$

and

- 15 -

$$\tau_{j}(\epsilon,\xi') = \sigma_{j}(\xi') + \tau_{j,1}(\epsilon,\xi'), \text{ for } j=1, , m';$$

$$\epsilon^{1/m''} \cdot \tau_{j}(\epsilon,\xi') = \Theta \tau_{j}' \cdot |p|^{1/m''} + \tau_{j,1}(\epsilon,\xi'), \text{ for } j=m'+1, , m.$$

Lemma 3. Let Assumption 1 be satisfied and ε_R be the same as in Lemma 2. For every positive number R, there exists a positive number $C_{1,R}$ such that

(2.4)
$$\sup_{\substack{0 < \varepsilon \leq \varepsilon_{R}, \ 0 \leq x_{1} \leq T, \ |\xi'| \leq R}} \varepsilon^{-\max\{(j-m'), 0\}/m''} |Y_{j}(\varepsilon, x_{1}, \xi')|$$
$$\leq C_{1, R'} \text{ for } j=1, \dots, m.$$

<u>Proof.</u> Fix an arbitrary positive number R and assume that $0 < \epsilon \leq \epsilon_R$ For arbitrary roots $\tau_j = \tau_j(\epsilon, \xi')$, j=1, ..., m, which do not need to be distinct,

(2.5) $Y_{j}(\varepsilon, x_{1}, \xi')$ = (-1)^{j-1}·D(0,1, ...j-2,j, ,m-1)(τ_{1} , , τ_{m}, x_{1}), j=1, ,m. As we have already shown in Theorem in [2], (A2) in Assumption 1 implies that the imaginary parts of $\Theta \tau'_{j}$, j=m'+1, ,m are non-negative. Put $\eta = \varepsilon^{1/m''}$, $\eta_{R} = \varepsilon_{R}^{1/m''}$, $z_{j} = \tau_{j}(\varepsilon, \xi')$, j=1, ,m, and $w_{j} = \varepsilon^{1/m''} \cdot \tau_{j}(\varepsilon, \xi')$, j=1, ,m. Then Assumption 1 implies that for every positive number R, there exist positive numbers M_{R} , M'_{R} , and c_{R} such that (A.8) in Lemma A.3 in Appendix is satisfied for $M=M_{R}$, $M'=M'_{R}$, $c=c_{R}$, and $\eta_{0}=\eta_{R}$. Hence Lemma A.3 can be applied to (2.5) Since $D(\rho(1), \rho(2), \rho(m'-1))(z', x_{1})$, ρ in S_{2} are entire in z' and continuous in x_{1} for $0 \leq x_{1} \leq T$, it implies that there exists a positive number $C_{2,R}$ such that

- 16 -

$$\max_{\rho \in S_2} |D(\rho(1), \rho(2), ..., \rho(m'-1))(\tau_1, ..., \tau_{m'}, x_1)| \leq C_{2,R'}$$

on $[0, \varepsilon_R] \times [0, T] \times B_R$. Since E(w) is holomorphic for $w_i \neq w_j$, $1 \leq i \leq m'$ and $m'+1 \leq j \leq m$, Lemma 2 implies that there exists a positive number $C_{3,R}$ such that for $j=1, \ldots, m'$

$$|D(0,1, \ldots j-2, j, \ldots, m'-1)(\tau_1, \ldots, \tau_{m'}, x_1)|$$

$$\times ((\varepsilon^{1/m''} \cdot \tau_{m'+1}) \cdot \ldots \cdot (\varepsilon^{1/m''} \cdot \tau_m))^{m'} \cdot E(\varepsilon^{1/m''} \cdot \tau_1, \ldots, \varepsilon^{1/m''} \cdot \tau_m)|$$

$$\leq C_{3,R'}$$

on $[0,\varepsilon_R] \times [0,T] \times B_R$. Then

$$|D(0,1, ,j-2,j, ,m-1)(\tau_1, \cdot, \tau_m, x_1)|$$

$$\leq C_{3,R} + (C_1 + C_2 \cdot C_{2,R}) \cdot \varepsilon^{1/m''},$$

for j=1, .,m' and

$$|D(0,1, ..., j-2, j, ..., m-1)(\tau_1, ..., \tau_m, x_1)|$$

$$\leq (C_1 + C_2 \cdot C_{2,R}) \cdot \epsilon^{(j-m')/m''},$$

for j=m'+1, ..., m. Put $C_{1,R} = C_{3,R} + C_1 + C_2 \cdot C_{2,R}$, then we have (2.4)

[Q.E.D.]

Denote by $y_j(x_1,\xi')$, j=1, ,m' the fundamental solutions of the following ordinary differential equation with parameter ξ' : $L_0(D_1,\xi')y(x_1,\xi') = 0$

with initial conditions:

$$D_1^{k-1}y(0,\xi') = \delta_{j,k}, j,k=1, ,m',$$

where $\boldsymbol{\delta}_{j,k}$ is Kronecker's delta. As we have already shown

(2.6) $y_{i}(x_{1},\xi')$

 $= (-1)^{j-1} \cdot D(0,1, ., j-2, j, , m'-1) (\sigma_1, .., \sigma_{m'}, x_1), j=1, , m',$ where $\sigma_j = \sigma_j(\xi'), j=1, , m'$ are roots appearing in Lemma 2.

Lemma 4. Let Assumption 1 be satisfied and ε_R be the same as in Lemma 2. Then (2.7) $Y_j(\varepsilon, x_1, \xi') + Y_j(x_1, \xi'), j=1.$, m'; (2.8) $Y_j(\varepsilon, x_1, \xi') + 0, j=m'+1.$, m, uniformly on $[0,T]_x B_R$ when $\varepsilon + 0$. Moreover, $Y_j(\varepsilon, x_1, \xi'), j=1.$, m satisfy (E8) $\sup_{1 \le j \le m}, 0 < \varepsilon \le \varepsilon_0, 0 \le x_1 \le T, \xi' \in R^{n-1} |Y_j(\varepsilon, x_1, \xi')| \le C_0$ then $Y_j(x_1, \xi'), j=1, ..., m'$ satisfy (E9) $\sup_{1 \le j \le m', 0 \le x_1 \le T, \xi' \in R^{n-1} |Y_j(x_1, \xi')| \le C_0$

<u>Proof.</u> By Lemma 3, (2.8) is obvious and it suffices to show that for j=1, m'

$$(-1)^{j-1} \cdot D(0,1, , j-2,j, , m'-1)(\tau_1, , \tau_{m'}, x_1)$$

$$\times ((\epsilon^{1/m''} \cdot \tau_{m'+1}) \cdot (\epsilon^{1/m''} \cdot \tau_m))^{m'} \cdot E(\epsilon^{1/m''} \cdot \tau_1, , \epsilon^{1/m''} \cdot \tau_m)$$

$$\to y_j(x_1, \xi')$$

Since $\tau_j(\varepsilon,\xi') \neq \sigma_j(\xi')$, j=1, ,m' uniformly on B_R when $\varepsilon \neq 0$ by Lemma 2, it implies that for j=1, ,m'

$$(-1)^{j-1} \cdot D(0,1, , j-2, j, , m'-1)(\tau_1, , \tau_{m'}, x_1) \neq y_j(x_1, \xi')$$

On the other hand,

$$((\varepsilon^{1/m''} \cdot \tau_{m'+1}) \cdot \cdots (\varepsilon^{1/m''} \cdot \tau_{m}))^{m'} + ((\Theta \cdot \tau_{m'+1}' \cdot |p|^{1/m''}) \cdot \cdots (\Theta \cdot \tau_{m'}' \cdot |p|^{1/m''}))^{m'}$$

 \mathtt{and}

$$E(\varepsilon^{1/m''} \cdot \tau_{1}, \cdot, \varepsilon^{1/m''} \cdot \tau_{m})$$

$$\neq E(0, ..., 0, (\Theta \cdot \tau_{m'+1}^{*} \cdot |p|^{1/m''}), ..., (\Theta \cdot \tau_{m'}^{*} \cdot |p|^{1/m''}))$$

$$= 1/((\Theta \cdot \tau_{m'+1}^{*} \cdot |p|^{1/m''}) \cdot ... \cdot (\Theta \cdot \tau_{m'}^{*} \cdot |p|^{1/m''}))^{m'}$$

Thus we have (2.7)

Let us consider the following singulary perturbed Cauchy problem:

(CP2)
$$\begin{pmatrix} L_{\varepsilon}(D)u(x) = 0, \text{ in } [0,T]_{x}R_{x'}^{n-1}; \\ D_{1}^{j-1}u(0,x') = 0, j=1, , m' \\ D_{1}^{j-1}u(0,x') = \phi_{\varepsilon,j}(x'), j=m'+1, ..., m, \end{pmatrix}$$

and its reduced Cauchy problem:

(RCP2)

$$\begin{pmatrix}
L_0(D)u(x) = 0, \text{ in } [0,T]_x R_{x'}^{n-1}; \\
D_1^{j-1}u(0,x') = 0, j=1, , m'
\end{cases}$$

Denote by $u_{\epsilon,2}(x)$ the solution of (CP2) and by $u_{0,2}(x)$ the solution of (RCP2) Then $u_{0,2}(x) = 0$.

<u>Lemma 5.</u> Let Assumption 1 be satisfied and ε_{R} be the same as in Lemma 2 Assume that every support of the datum $\hat{\phi}_{\varepsilon,j}(\xi')$, j = m'+1, .,m in (CP2) is contained in the closed ball B_R . Then, for arbitrary real numbers s and s' there exists a positive number K_R which is independent of ϵ such that for $0 < \epsilon \leq \epsilon_R$,

(2.9)
$$\sup_{\substack{0 \leq x_1 \leq T}} \|u_{\varepsilon,2}(x_1, \cdot)\|_{s} \leq K_{R} \cdot \sum_{\ell=m'+1}^{m} \varepsilon^{(\ell-m')/m''} \cdot \|\phi_{\varepsilon,\ell}\|_{s}.$$

<u>Remark.</u> Here we do not use any conditions on the fundamental solutions Y_j but use (A2) in Assumption 1 Lemma 4 shows that (A2) ensures the boundedness of Y_j on $[0,T]_{xB_{R}}$ when $\epsilon \neq 0$

<u>Proof of Lemma 5.</u> It is well known that the solution $u_{r,2}(x)$ of (CP2) satisfies

$$\hat{\mathbf{u}}_{\varepsilon,2}(\mathbf{x}_1,\xi') = \sum_{j=m'+1}^{m} \mathbf{Y}_j(\varepsilon,\mathbf{x}_1,\xi') \cdot \hat{\boldsymbol{\phi}}_{\varepsilon,j}(\xi').$$

Lemma 3 implies

$$|\hat{u}_{\varepsilon,2}(x_1,\xi')| \leq C_{1,R} \cdot \sum_{\ell=m'+1}^{m} \varepsilon^{(\ell-m')/m''} \cdot |\hat{\phi}_{\varepsilon,\ell}|,$$

on [0,T] B_R. Thus

$$(2\pi)^{-n+1} \int_{\substack{|\xi'| \leq R \\ \leq C_{1,R}}} \hat{|u_{\varepsilon,2}(x_{1},\xi') < \xi' > s|^2} d\xi'$$

$$\sum_{\ell=m'+1}^{m} (2\pi)^{-n+1} \int_{|\xi'| \leq \mathbb{R}} |\varepsilon^{(\ell-m')/m''} \cdot \hat{\phi}_{\varepsilon,\ell}(\xi') \langle \xi' \rangle^{s}|^{2} d\xi'$$

Put $K_R = C_{1,R} \cdot m^{n'1/2} \cdot \sup_{\substack{\xi' \\ \xi' \\ \leq R}} \langle \xi' \rangle^{S-S'}$ Then we have (2.9)

[Q.E.D.]

The following corllary shows us that the stability is very strong when the Cauchy problem is admissible.

<u>Corollary 2.</u> Let Assumption 1 be satisfied and ϵ_R be the same as in Lemma 2. Then, for every positive number ϵ with $\epsilon \leq \epsilon_R$, there exist Cauchy data $\phi_{\epsilon,j}$, j=m'+1, ,m belonging to H^{∞} such that for arbitrary real numbers s and s',

$$\begin{aligned} \left\| \phi_{\varepsilon,j} \right\|_{s^{1}} &\to \infty, \ j=m'+1, \ \dots; \\ \sup_{0 \leq x_{1} \leq T} \left\| u_{\varepsilon,2}(x_{1}, \cdot) \right\|_{s} &\neq 0, \end{aligned}$$

where $u_{\epsilon,2}$ are the solutions of (CP2) for these data $\phi_{\epsilon,j}$, j=m'+1, ,m.

<u>Proof.</u> Choose non-trivial $C_0^{\infty}(B_R)$ -functions $\psi_j(\xi')$, j=m'+1,.., m and a positive number α with $\alpha < 1/m^*$ Put

$$\phi_{\varepsilon,j}(\mathbf{x}') = \varepsilon^{-\alpha} \cdot \mathbf{F}_{\xi^{1} \to \mathbf{x}'}^{-1} \left(\psi_{j}(\xi') \right), \ j=m'+1, \dots, m,$$

which are rapidly decreasing functions. If s'<0, then

$$\|\phi_{\varepsilon,j}\|_{s'} \geq \varepsilon^{-\alpha} \cdot \langle R \rangle^{s'} \|F^{-1}(\psi_j)\|_0 + \infty.$$

when $\varepsilon \neq 0$. If s'>0, then

$$\|\phi_{\varepsilon,j}\|_{\mathbf{s}'} \geq \|\phi_{\varepsilon,j}\|_{-\mathbf{s}'} \geq \varepsilon^{-\alpha} \cdot \langle \mathbf{R} \rangle^{-\mathbf{s}'} \|\mathbf{F}^{-1}(\psi_j)\|_0 + \infty,$$

when $\varepsilon \neq 0$. By (2.9),

$$\sup_{\substack{0 \leq x_1 \leq T \\ 0 \leq x_1 \leq T}} \|u_{\varepsilon,2}(x_1, \cdot)\|_{s} \leq \varepsilon^{1/m'-\alpha} \cdot \kappa_{R'} \sum_{j=m'+1}^{m} \|F^{-1}(\psi_j)\|_{s'}, \quad \forall \quad 0,$$

when $\epsilon \neq 0$.

[Q.E.D.]

Lemma 6. Let the same assumption as in Theorem 1 be satisfied. Consider the singulary perturbed Cauchy problem (CP2) and the reduced Cauchy problem (RCP2) for (CP2) Assume that for the Cauchy data $\phi_{\epsilon,j}$, j=1, ,m there exist positive numbers δ and M such that $\sup_{\substack{1 \leq j \leq m \\ 1 \leq j \leq m \\ l \leq j \leq j \leq j \\ l \leq j \\ l \leq j \leq j \\ l \leq j \\ l$

(E3) $\sup_{\substack{m'+1 \leq j \leq m, \ 0 < \epsilon \leq \epsilon_{\delta}, \ 0 \leq x_{1} \leq T, \ \xi' \in \mathbb{R}^{n-1}} |Y_{j}(\epsilon, x_{1}, \xi') < \xi' >^{s-s'-\delta}|$ $\leq C_{\delta}$

<u>Proof.</u> First we shall show (Cl0) implies (C9) We have only to show that if $\sup_{1 \le j \le m} \|\phi_{\varepsilon,j}\|_{s'+\delta} \le M$ then

 $\sup_{\substack{0 \leq x_1 \leq T}} \|u_{\varepsilon,2}(x_1, \cdot)\|_s \neq 0.$ As we have already shown in the proof of Lemma 1, the solution $u_{\varepsilon,2}(x)$ of (CP2) satisfies

$$\hat{\mathbf{u}}_{\epsilon,2}(\mathbf{x}_{1},\xi') = \sum_{j=m'+1}^{m} \mathbf{Y}_{j}(\epsilon,\mathbf{x}_{1},\xi') \cdot \hat{\boldsymbol{\phi}}_{\epsilon,j}(\xi')$$

Denote by $\chi\left(\xi^{\,\prime}\,;B_{R}^{\,\prime}\right)$ the characteristic function of the ball $B_{R}^{\,\prime}.$ Put

$$\hat{\mathbf{v}}_{\varepsilon,2}(\mathbf{x}_{1},\xi') = \hat{\mathbf{u}}_{\varepsilon,2}(\mathbf{x}_{1},\xi') \cdot \chi(\xi';\mathbf{B}_{R}),$$
$$\hat{\mathbf{w}}_{\varepsilon,2}(\mathbf{x}_{1},\xi') = \hat{\mathbf{u}}_{\varepsilon,2}(\mathbf{x}_{1},\xi') \cdot (1 - \chi(\xi';\mathbf{B}_{R}))$$

Then $v_{\varepsilon,2}(x) = F_{\xi'+x'}^{-1}(v_{\varepsilon,2}(x_1,\xi'))$ is the solution of (CP2) with

the initial conditions:

$$D_1^{j-1}u(0,x') = 0, j=1, ...,m';$$

$$D_{1}^{j-1}u(0,x') = F_{\xi'+x'}^{-1}(\hat{\phi}_{\epsilon,j}(\xi') \cdot \chi(\xi';B_{R})), j=m'+1, ..., m.$$

Since the supports of the Fourier transforms of these Cauchy data are contained in the ball B_R , we can apply Lemma 5 to $v_{\epsilon,2}(x)$ Obviously

$$\|\mathbf{F}_{\boldsymbol{\xi}' \rightarrow \mathbf{X}}^{-1}(\hat{\boldsymbol{\phi}}_{\varepsilon,\boldsymbol{\ell}}(\boldsymbol{\xi}') \cdot \boldsymbol{\chi}(\boldsymbol{\xi}'; \mathbf{B}_{\mathbf{R}}))\|_{\mathbf{s}'} \leq \|\boldsymbol{\phi}_{\varepsilon,\boldsymbol{\ell}}\|_{\mathbf{s}'},$$

(2.9) and $0 \le \le e_R \le 1$ imply that

(2.10)

$$\sup_{\substack{0 \leq x_{1} \leq T}} \| \mathbf{v}_{\varepsilon,2}(\mathbf{x}_{1}, \cdot) \|_{s}$$

$$\leq K_{R} \cdot \varepsilon^{1/m''} \cdot \sum_{\substack{\ell=m'+1 \\ \xi' \to x'}}^{m} \| \mathbf{F}_{\xi' \to x'}^{-1}(\hat{\phi}_{\varepsilon,\ell}(\xi') \cdot \chi(\xi'; \mathbf{B}_{R})) \|_{s},$$

$$\leq K_{R} \cdot \varepsilon^{1/m''} \cdot \sum_{\substack{\ell=m'+1 \\ \ell=m'+1}}^{m} \| \phi_{\varepsilon,\ell} \|_{s},$$

Choose a positive number δ' satisfying $\delta' < \delta$ and put $\delta'' = \delta - \delta'$ Since

$$\begin{aligned} & |\widehat{w}_{\varepsilon,2}(x_{1},\xi')\cdot\langle\xi'\rangle^{s}| \\ & \leq \sum_{j=m'+1}^{m} |Y_{j}(\varepsilon,x_{1},\xi')\cdot\langle\xi'\rangle^{s-s'-\delta'}| \\ & \cdot |\widehat{\phi}_{\varepsilon,j}(\xi')\cdot\langle\xi'\rangle^{s'+\delta}|\cdot|1 - \chi(\xi';B_{R})|\cdot\langle\xi'\rangle^{-\delta''}, \end{aligned}$$

the estimate (E3) for $\delta = \delta'$ implies that

$$\leq \sum_{j=m'+1}^{m} c_{\delta'} \cdot |\hat{\phi}_{\varepsilon,j}(\xi') \cdot \langle \xi' \rangle^{s'+\delta} |\cdot|1 - \chi(\xi';B_R)| \cdot R^{-\delta''}$$

Hence

(2.11)
$$\sup_{\substack{0 \leq x_1 \leq T \\ 0 \leq x_1 \leq T}} \|w_{\varepsilon,2}(x_1, \cdot)\|_s \leq C_{\delta} \cdot R^{-\delta''} \cdot \sum_{j=m'+1}^{m} \|\phi_{\varepsilon,j}\|_{s'+\delta}$$

Thus

(2.12)
$$\sup_{\substack{0 \leq x_1 \leq T \\ 0 \leq x_1 \leq T}} \|u_{\varepsilon,2}(x_1, \cdot)\|_{s} \leq (K_R \cdot \varepsilon^{1/m''} + C_{\delta}, \cdot R^{-\delta''}) \cdot M \cdot m''$$

First take the upper limit of ε in (2.12) and next let $R\uparrow\infty$, then

$$\begin{array}{ccc} \overline{\lim} & \sup_{\varepsilon \neq 0} & \|u_{\varepsilon,2}(x_1, \cdot)\|_{\varepsilon} = 0. \\ \varepsilon \neq 0 & 0 \leq x_1 \leq T \end{array}$$

Next we must show (C9) implies (C10) Assume that (C10) is not satisfied. Then there exists a positive number δ such that (E3) is not satisfied. Replacing s' by s'+ δ in (2.2) and (2.3) in the proof of Lemma 1, we have a sequence of solutions $u_n(x)$ of (CP2) such that

$$\sup_{\substack{0 \le x_1 \le T \\ \| \mathfrak{D}_1^{j-1} u_n(0, \cdot) \|_{S'+\delta} \neq 0, j=1, \dots, m} \| u_n(0, \cdot) \|_{S'+\delta} \neq 0, j=1, \dots, m$$

This contradicts (D1), (D5), (D6), and (D7)

[Q.E.D.]

<u>Proof of Theorem 1.</u> First we shall show the equivalence between (C1) and (C3) Denote by $u_{\epsilon,1}(x)$ the solution of (CP1) and by $u_{\epsilon,2}(x)$ the solution of (CP2) with the initial conditions:

$$D_1^{j-1}u(0,x') = 0, j=1, ,m';$$

$$D_1^{j-1}u(0,x') = \phi_{\varepsilon,j}(x') - D_1^{j-1}u_0(0,\xi'), j=m'+1, ,m.$$
Then the solution $u_{\varepsilon}(x)$ of (CP) is given by $u_{\varepsilon,1}(x) + u_{\varepsilon,2}(x)$
Apply Lemma 1 and Lemma 6. The condition (C3) is equivalent to the (s,s') -stability of (CP1) with respect to a particular solution u_0 of (RCP) and the $(s,s'+0)$ -stability of (CP2) with respect to a particular solution $u_{0,2} = 0$ of (RCP2) By the definition, the (s,s') -stability implies the $(s,s'+0)$ -stability

- 24 -

Hence we can easily show that (C3) is equivalent to the (s,s'+0)-stability of (CP) with respect to a particular solution u_0 of (RCP)

Since (C3) is independent of the choice of a particular solution u_0 of (RCP), it implies that (C2) is equivalent to (C1)

Finally we shall show the equivalence between (C3) and (C4) We have only to show that (C4) implies (C3) Apply Lemma 3 for $R=R_0$. Then we have (E1) and (E2) for $\varepsilon_0 = \min\{\varepsilon'_0, \varepsilon_{R_0}\}$ and

$$C_0 = \max\{1, T\} \cdot \max\{C_0, C_{1, R_0} \cdot (1 + R_0^2)^{\max\{(s-s'), 0\}/2}\}$$

Apply Lemma 3 for $R=R_{\delta}$ Then we have (E6) for $\varepsilon_{\delta} = \min\{\varepsilon_{\delta}^{\prime}, \varepsilon_{R_{\delta}}^{\prime}\}$ and

$$C_{\delta} = \max\{C_{\delta}^{1}, C_{1,R_{\delta}}^{1} \cdot (1+R_{\delta}^{2})^{\max\{(s-s'-\delta), 0\}/2}\}$$

By the same argument as Theorem 1 we have the following theorem whose proof is omitted.

<u>Theorem 2.</u> Let Assumption 1 and 2 be satisfied for s'=s. Then the following three conditions are equivalent: (C5) The Cauchy problem (CP) is H^S -stable in [0,T] for $\varepsilon \downarrow 0$ with respect to a particular solution $u_n(x)$ of (RCP) belonging to

$$C^{m}([0,T]; H^{s+l})$$

(C11) The Cauchy problem (CP) is H^S -stable in [0,T] for $\varepsilon \neq 0$ with respect to every solution $u_0(x)$ of (RCP) belonging to

- 25 -

(C12) There exist positive numbers ε'_0 , R_0 , and C'_0 such that

(E10)
$$\sup_{\substack{0 < \epsilon \leq \epsilon_0, R_0 \leq |\xi'|}} \int_0^T \frac{1}{\epsilon} \cdot |Y_m(\epsilon, x_1, \xi')| dx_1 \leq C_0',$$

3. An example for Nagumo's H^S-stability

Let $P_1(\xi)$ and $P_2(\xi)$ satisfy Assumption 1 and

ord $p_{1,j}(\xi') \leq j, j=0, ..., m;$ ord $p_{2,j}(\xi') \leq j, j=0, ..., m'$ Then $P_1(D)$ and $P_2(D)$ are kowalewskian operators. Put

$$L(\xi,\lambda) = P_{1}(\xi) + \lambda^{m^{n}} P_{2}(\xi),$$

$$N^{*}=(1,0) \text{ in } R_{\xi_{1}}^{*} R_{\xi}^{n-1}, \text{ and } N=(N^{*},0) \text{ in } R_{\xi}^{n} R_{\lambda} \text{ Denote by } \mathring{L}(\xi,\lambda)$$
the principal symbol of $L(\xi,\lambda)$ with respect to (ξ,λ) and by
$$\mathring{P}_{i}(\xi), i=1,2 \text{ those of } P_{i}(\xi), i=1,2, \text{ respectively. Then}$$

$$\mathring{L}(\xi,\lambda) = \mathring{P}_{1}(\xi) + \lambda^{m^{*}} \cdot \mathring{P}_{2}(\xi)$$

)

It must be remarked that $\mathring{L}(N) = p_{1,0} \neq 0$ and $\mathring{P}_2(N') = p_{2,0} \neq 0$. Kevorkian and Cole's suggestive example in §4.1 2 in [7] is as follows.

Example 1 (Kevorkian and Cole).

N

Let $P_1(\xi_1,\xi_2) = \xi_1^2 - \xi_2^2$, which is the simple wave operator, and $P_2(\xi_1,\xi_2) = \sqrt{-1} \cdot (a \cdot \xi_1 + b \cdot \xi_2)$, where a and b are real numbers. Let us consider the solutions $u_{\varepsilon}(x_1, x_2)$ through a fixed point $P(x_1^0, x_2^0)$ of the following equation:

$$\epsilon \cdot (P_1(D_1, D_2) + P_2(D_1, D_2)) u(x_1, x_2) = 0.$$

If there exists a convergent sequence of $u_{\varepsilon}(x_1, x_2)$, then the limit $u_0(x_1,x_2)$ must satisfy the reduced equation

$$P_2(D_1, D_2)u(x_1, x_2) = 0.$$

Since the general solution of the reduced equation has the form:

- 27 -

 $u_0(x_1,x_2) = f(b \cdot x_1 - a \cdot x_2)$ and the subcharacteristic of the reduced equation has the form: $b \cdot x_1 - a \cdot x_2 = constant$, if |a/b| > 1 then the subcharacteristic to P lies outside the usual domain of dependence of P for the simple wave operator Hence $u_0(x_1,x_2)$ can not be approximated by $u_r(x_1,x_2)$ when |a/b| > 1.

Thus even when \mathring{P}_1 and \mathring{P}_2 are strictly hyperbolic, we need some additional assumption on the propagation speeds. Therefore we require the following assumption.

Assumption 3.

(A3): The polynomial $\mathring{L}(\xi_1 + \tau, \xi', \lambda)$ has only simple real zero for every (ξ, λ) in $\mathbb{R}^{\Pi}_{\chi}\mathbb{R}-\{(0, 0)\}$ That is, $\mathbb{L}(\xi, \lambda)$ is a strictly hyperbolic polymonial in (ξ, λ) with respect to N.

(A4): There exists a positive number T_1 such that if $\text{Im } \tau < -T_1$ then $P_2(\xi_1 + \tau, \xi') \neq 0$ for all ξ in \mathbb{R}^n That is, $P_2(\xi)$ is a hyperbolic polymonial in ξ with respect to N' in the sense of Garding

Remark. Since

$$\hat{\mathbf{L}}(0+\tau,0,\lambda) = \mathbf{p}_{1,0} \cdot \tau^{m} + \lambda^{m''} \cdot \mathbf{p}_{2,0} \cdot \tau^{m''}$$
$$= \tau^{m'}(\mathbf{p}_{1,0} \cdot \tau^{m''} + \lambda^{m''} \cdot \mathbf{p}_{2,0}),$$

(A.3) implies that m'≤1

Theorem 3. Let Assumption 1 and 3 be satisfied and s be an

arbitrary real number Then the Cauchy problem (CP) is H^{S} -stable (and therefore (s,s+0)-stable) in $0 \le x_{1} \le T$ for $\varepsilon + 0$ with respect to every solution u_{0} of (RCP) belonging to $C^{m}([0,T]; H^{S+m})$

<u>Proof.</u> By Theorem 2, it suffices to show that Assumption 2, which is the assumption on the unique solvability, and (Cl2) are satisfied. First we shall show (Cl2) Denote by $t_j(\xi',\lambda)$, j=1, .,m the roots of $L(\xi,\lambda) = 0$ with respect to ξ_1 When $\varepsilon^{-1} = \lambda^{m''}$, we may write (3.1) $t_j(\xi',\lambda) = \tau_j(\varepsilon,\xi')$, j=1, ,m for $\varepsilon=0$ by choosing the suffixes (j) of $t_j(\xi',\lambda)$ properly. The strict hyperbolicity of $L(\xi,\lambda)$ implies that there exist positive numbers R_1 , c_1 , and M_1 such that (3.2) $\inf_{j=k, 1 \le j, k \le m, |(\xi',\lambda)| \ge R_1} |t_j(\xi',\lambda) - t_k(\xi',\lambda)|/|(\xi',\lambda)|$

$$(3.3) \qquad \sup_{\substack{1 \leq j \leq m, \\ 1 \leq m, \\$$

 $\geq c_1;$

(For example, if we look carefully into the proof of Theorem 4.10 in [8], we can find this fact easily.) Hence the roots $\tau_j(\varepsilon,\xi')$, j=1, ,m of $L_{\varepsilon}(\xi) = 0$ with respect to ξ_1 are distinct for $\varepsilon \neq 0$ and $R_1 \leq |\xi'|$ The hyperbolicity of $L(\xi,\lambda)$ implies that there exists a positive number C_3 such that

(3.4)
$$\sup_{\substack{1 \leq j \leq m, \\ k \in \mathbb{R}^{n-1} \times \mathbb{R}}} |\operatorname{Im} t_j(\xi', \lambda)| \leq C_3$$

Put $\rho = |(\xi', \lambda)|$ Then (A.4) in Appendix implies that for $\epsilon \neq 0$,

- 29 -

 $\mathbb{R}_{1} \leq |\xi'|, 0 \leq x_{1} \leq T$, and j=1, ,m,

$$|Y_{j}(\varepsilon, x_{1}, \xi')|$$

$$= |(-1)^{j-1} \cdot D(0, 1, \dots, j-2, j, \dots, m-1)(t_{1}, \dots, t_{m}, x_{1})|$$

$$\leq M(0, 1, \dots, j-2, j, \dots, m-1) \cdot |(t_{1}, \dots, t_{m})|^{m-j}$$

$$\times \sum_{\ell=1}^{m} \exp(-\operatorname{Im} t_{\ell} x_{1}) / \pi_{k \neq \ell}, 1 \leq k \leq m} |t_{\ell} - t_{k}|$$

$$\leq \rho^{1-j} \cdot M(0, 1, \dots, j-2, j, \dots, m-1) \cdot |(t_{1}/\rho, \dots, t_{m}/\rho)|^{m-j}$$

$$\times \sum_{\ell=1}^{m} \exp(-\operatorname{Im} t_{\ell} x_{1}) / \pi_{k \neq \ell}, 1 \leq k \leq m} |t_{\ell}/\rho - t_{k}/\rho|$$

$$\leq \rho^{1-j} \cdot C_{4},$$

where

$$\begin{split} \mathbf{C}_{4} &= \mathbf{M}(\mathbf{0},\mathbf{1},\ldots,\mathbf{j}-2,\mathbf{j},\ldots,\mathbf{m}-1) \cdot \mathbf{m}^{(\mathbf{m}-\mathbf{j})/2} \cdot \mathbf{M}_{1}^{\mathbf{m}-\mathbf{j}} \cdot \mathbf{m} \cdot (\exp \mathbf{C}_{3}\mathbf{T}) \cdot \mathbf{c}_{1}^{\mathbf{1}-\mathbf{m}} \\ &\text{Since } \mathbf{R}_{1} \leq |\xi'| \leq \rho \text{ and } \lambda \leq \rho \text{. it implies that } \rho^{1-\mathbf{j}} \leq \mathbf{R}_{1}^{\mathbf{1}-\mathbf{j}}, \\ &\mathbf{j}=1,\ldots,\mathbf{m} \text{ and } \varepsilon^{-1} \cdot \rho^{1-\mathbf{m}} = \lambda^{\mathbf{m}''} \cdot \rho^{1-\mathbf{m}} \leq \lambda^{\mathbf{m}''+1-\mathbf{m}} \quad \text{Hence} \\ &\sup_{\substack{0 \leq \varepsilon \leq \varepsilon_{\mathbf{R}_{1}}}, \ 0 \leq \mathbf{x}_{1} \leq \mathbf{T}, \ \mathbf{R}_{1} \leq |\xi'| } |Y_{\mathbf{j}}(\varepsilon,\mathbf{x}_{1},\xi')| \leq C_{4}, \ \mathbf{j}=1,\ldots,\mathbf{m}; \\ &\sup_{\substack{0 \leq \varepsilon \leq \varepsilon_{\mathbf{R}_{1}}}, \ 0 \leq \mathbf{x}_{1} \leq \mathbf{T}, \ \mathbf{R}_{1} \leq |\xi'| } \frac{1}{\varepsilon} \cdot |Y_{\mathbf{j}}(\varepsilon,\mathbf{x}_{1},\xi')| \leq C_{4} \end{split}$$

Next we shall show that the unique solvability Since (C12) and Lemma 3 imply (C6), Lemma 4 can be applied. It is well known that (E8) and (E9) imply the unique solvability.

[Q.E.D.]

<u>Remark.</u> If $\phi_{\varepsilon,j}$, j=1, ,m and $\phi_{0,j}$, j=1, ,m' belong to $H^{\infty}(\mathbb{R}^{n-1})$ and f_{ε} and f_{0} belong to $H^{\infty}(\mathbb{R}^{n})$ then u_{ε} belong to $C^{m}([0,T];H^{S})$ and u_{0} belongs to $C^{m}([0,T];H^{S+m})$

- 30 -

Appendix

Let $z = (z_1, z_2, ..., z_n)$ be complex variables. For a non-negative integer l, denote

$$a(l)(z) = \{(z_j)^{l}; j \neq 1, ..., n\}$$

and for non-negative integers l_1, l_2, \ldots, l_n satisfying $0 \le l_1 < l_2 < \ldots < l_n$, denote

$$A(l_1, l_2, ..., l_n)(z) = det(a(l_i)(z); i+1, ..., n).$$

In particular, A(0,1, ,n-1)(z) is the Vandermonde determinant and represented as the difference product $\Pi_{1 \le i < j \le n} (z_j - z_i)$ Let $i = \sqrt{-1}$ and x_1 be a real parameter. Denote

$$e(z,x_1) = (exp iz_jx_1; j+1, , n)$$

and for non-negative integers l_1, l_2, \dots, l_{n-1} satisfying $0 \le l_1 < l_2 < \dots < l_{n-1}$, denote

$$= \det t(t_{e(z,x_{1})}, t_{a(\ell_{1})}(z), , t_{a(\ell_{n-1})}(z))$$

Expand the determinant $B(l_1, l_2, ..., l_{n-1})(z, x_1)$ with respect to the first row. Then

(A.1)
$$B(\ell_1, \ell_2, \dots, \ell_{n-1})(z, x_1)$$

$$= \sum_{j=1}^{n} (-1)^{1+j} \cdot A(\ell_1, \ell_2, \dots, \ell_{n-1})(z(j)) \cdot \exp i z_j x_1,$$

where $z(j) = (z_1, z_2, ..., z_{j-1}, z_{j+1}, ..., z_n)$ Denote $C(\ell_1, \ell_2, ..., \ell_n)(z)$ $= A(\ell_1, \ell_2, ..., \ell_n)(z)/A(0, 1, ..., n-1)(z)$

- 31 -

anđ

$$= B(\ell_1, \ell_2, \dots, \ell_{n-1})(z, x_1)$$

$$= B(\ell_1, \ell_2, \dots, \ell_{n-1})(z, x_1) / A(0, 1, \dots, n-1)(z)$$

Then $C(l_1, l_2, .., l_n)(z)$ is a homogeneous symmetric polynomial in Z[z] of order $l_1+l_2+..+l_n-(n-1)n/2$, which is called a Schur function. Since $B(l_1, l_2, .., l_{n-1})(z, x_1)$ is an entire function of z and vanishes on the zeros of irreducible polynomials $z_j = z_i, 1 \le i \le j \le n$, Nullstellensatz implies that $B(l_1, l_2, .., l_{n-1})(z, x_1)$ is divided by A(0, 1, .., n-1)(z) in the ring of entire functions. Hence $D(l_1, l_2, .., l_{n-1})(z, x_1)$ is an entire function. If $z_1 \neq z_j, 1 \le i \le j \le n$, then (A.1) implies that (A.2) $D(l_1, l_2, ..., l_{n-1})(z, x_1)$

$$= \sum_{j=1}^{n} (-1)^{1+j} \cdot C(\ell_1, \ell_2, \dots, \ell_{n-1})(z(j)) \cdot \exp i z_j x_1 \cdot E_j(z),$$

where $E_j(z) = 1/\{(-1)^{n-j} \cdot \Pi_{k\neq j}, 1 \le k \le n \ (z_j - z_k)\}$

Put

$$M(\ell_1, \ell_2, \dots, \ell_n) = \max_{\substack{|z|=1}} |C(\ell_1, \ell_2, \dots, \ell_n)(z)|$$

Then

(A.3)
$$|C(\ell_1, \ell_2, \ldots, \ell_n)(z)| \leq M(\ell_1, \ell_2, \ldots, \ell_n) \cdot |z|^L$$
,

where $L = l_1 + l_2 + ... + l_n - (n-1)n/2$ and

(A.4)
$$|D(\ell_1, \ell_2, ..., \ell_{n-1})(z, x_1)|$$

$$\leq M(\ell_{1}, \ell_{2}, \dots, \ell_{n-1}) |z|^{L'} \cdot \sum_{j=1}^{n} \exp(-\operatorname{Im} z_{j} x_{1}) / \pi_{k \neq j}, 1 \leq k \leq n} |z_{j} - z_{k}|,$$
where L' = $\ell_{1} + \ell_{2} + \dots + \ell_{n-1} - (n-2) (n-1) / 2.$

- 32 -

Let m, m', and m" be positive integers such that m = m'+m"Denote $z' = (z_1, z_2, \dots, z_m'), z'' = (z_{m'+1}, z_{m'+2}, \dots, z_m),$ and z = (z', z'') Let $\ell_1, \ell_2, \dots, \ell_{m-1}$ be non-negative integers satisfying $0 \le \ell_1 \le \ell_2 \le \dots \le \ell_{m-1}$ Let S_1 be the set of all bijections ρ from $\{1, 2, \dots, m-1\}$ onto $\{\ell_1, \ell_2, \dots, \ell_{m-1}\}$ satisfying $\rho(1) \le \rho(2) \le \dots \le \rho(m');$ $\rho(m'+1) \le \rho(m'+2) \le \dots \le \rho(m-1)$

and S₂ be the set of all bijections ρ from {1,2, ,m-1} onto { $l_1, l_2, , l_{m-1}$ } satisfying

$$\rho(1) < \rho(2) < . . < \rho(m'-1);$$

 $\rho(m') < \rho(m'+1) < . < \rho(m-1).$

There are one-to-one correspondence between the bijections in S_1 and the selections of m-1 objects taken m^{*} at a time and between the bijections in S_2 and the selections of m-1 objects taken m^{*}-1 at a time, respectively. Define the bijection π from $\{l_1, l_2, \dots, l_{m-1}\}$ onto $\{2, 3, \dots, m\}$ as

$$\pi(\ell_{j}) = j+1, j=1, ..., m-1.$$

Denote

$$I(\rho) = \sum_{j=1}^{m'} \pi(\rho(j)) + m'(m'+1)/2$$

and

$$J(\rho) = 1 + \sum_{j=1}^{m'-1} \pi(\rho(j)) + m'(m'+1)/2.$$

For $z_i \neq z_j$, $1 \leq i \leq m'$, $m'+1 \leq j \leq m$, denote

$$E(z) = 1/\Pi_{1 \le i \le m}, m' + 1 \le j \le m \quad (z_j - z_i)$$

$$\underline{\text{Lemma A.l.}} \quad \text{For } z_{1} \neq z_{j}, \ 1 \leq i \leq m', \ m'+1 \leq j \leq m,$$
(A.5)

$$D(\ell_{1}, \ell_{2}, \dots, \ell_{m-1})(z, x_{1})$$

$$= \sum_{\rho \in S_{1}} (-1)^{I(\rho)} \cdot C(\rho(1), \rho(2), \dots, \rho(m'))(z')$$

$$x D(\rho(m'+1), \rho(m'+2), \dots, \rho(m-1))(z'', x_{1}) \cdot E(z)$$

$$+ \sum_{\rho \in S_{2}} (-1)^{J(\rho)} \cdot D(\rho(1), \rho(2), \dots, \rho(m'-1))(z'', x_{1})$$

$$x C(\rho(m'), \rho(m'+1), \dots, \rho(m-1))(z'') \cdot E(z)$$

<u>Proof.</u> Apply the Laplace expansion theorem to $B(\ell_1, \ell_2, ..., \ell_{m-1})(z, x_1)$ The minors of order m' of the original matrix $t(te(z, x_1), ta(\ell_1)(z), , ta(\ell_{m-1})(z))$ of order m are $A(\rho(1), \rho(2), ..., \rho(m'))(z')$, for ρ in S_1 , $B(\rho(1), \rho(2), ..., \rho(m'-1))(z'', x_1)$, for ρ in S_2 ,

and those cofactors of order m" are

$$(-1)^{J(\rho)} \cdot B(\rho(m'+1), \rho(m'+2), , \rho(m-1))(z', x_1), \text{ for } \rho \text{ in } S_1,$$
$$(-1)^{J(\rho)} \cdot A(\rho(m'), \rho(m'+1), ., \rho(m-1))(z''), \text{ for } \rho \text{ in } S_2,$$

respectively Hence (A.6) $B(\ell_{1}, \ell_{2}, \dots, \ell_{m-1})(z, x_{1})$ $= \int_{\rho \in S_{1}} (-1)^{I(\rho)} \cdot A(\rho(1), \rho(2), \dots, \rho(m^{*}))(z^{*})$ $\times B(\rho(m^{*}+1), \rho(m^{*}+2), \dots, \rho(m-1))(z^{*}, x_{1})$ $+ \int_{\rho \in S_{2}} (-1)^{J(\rho)} \cdot B(\rho(1), \rho(2), \dots, \rho(m^{*}-1))(z^{*}, x_{1})$ $\times A(\rho(m^{*}), \rho(m^{*}+1), \dots, \rho(m-1))(z^{*})$

Divide (A.6) by

(A.7)
$$A(0,1, ,m-1)(z)$$

 $= A(0,1,...,m^{1}-1)(z^{1}) \cdot A(0,1,...,m^{n}-1)(z^{n})/E(z),$ we have (A.5).

Denote

$$\mathbf{L}'(\rho) = \begin{cases} \rho(1) + \rho(2) + \dots + \rho(m') - (m'-1)m'/2, \text{ for } \rho \text{ in } S_1 \\ \rho(1) + \rho(2) + \dots + \rho(m'-1) - (m'-1)m'/2, \text{ for } \rho \text{ in } S_2, \end{cases}$$

 and

$$\mathbf{L}^{n}(\rho) = \begin{cases} \rho(m'+1) + \rho(m'+2) + \dots + \rho(m-1) - (m'-1)m'/2, \text{ for } \rho \text{ in } S_{1} \\ \rho(m') + \rho(m'+1) + \dots + \rho(m-1) - (m''-1)m''/2, \text{ for } \rho \text{ in } S_{2} \end{cases}$$

Put

$$\widetilde{M}(\ell_{1}, \ell_{2}, , \ell_{m-1})$$
= max {max $M(\rho(1), \rho(2), , \rho(m')), \rho \in S_{1}$
max $M(\rho(m'+1), \rho(m'+2), \dots, \rho(m-1)), \rho \in S_{1}$
max $M(\rho(m'), \rho(m'+1), , \rho(m-1))$ }
 $\rho \in S_{2}$

For a positive parameter η , put $w_j = \eta \cdot z_j$, j=1, ,m.

<u>Lemma A.2.</u> Assume that $z_i \neq z_j$, for $1 \le i \le m'$, $m'+1 \le j \le m$ and for $m'+1 \le i \le j \le m$. Then

$$|C(\rho(1),\rho(2), \rho(m'))(z')|_{xD(\rho(m'+1),\rho(m'+2), \rho(m-1))(z'',x_1) - E(z)|}$$

$$\leq \tilde{M}(\hat{x}_{1}, \hat{x}_{2}, \dots, \hat{x}_{m-1})^{2} \cdot |z'|^{L'(\rho)} \cdot |w''|^{L''(\rho) + (m''-1)} \cdot |E(w)|$$

- 35 -

$$x\eta^{m'm'-L''(\rho)} \cdot \left(\sum_{j=m'+1}^{m} \exp\left(-\operatorname{Im} w_{j}x_{1}/\eta\right)/\pi_{k\neq j,m'+1 \leq k \leq m} |w_{j} - w_{k}| \right),$$

for ρ in S₁ and

$$\begin{split} |D(\rho(1),\rho(2), ,\rho(m'-1))(z',x_{1}) \\ \times C(\rho(m'),\rho(m'+1), ,\rho(m-1))(z') \cdot E(z) | \\ &\leq |D(\rho(1),\rho(2), ,\rho(m'-1))(z',x_{1})| \\ \times \tilde{M}(\ell_{1},\ell_{2}, ,\ell_{m-1}) \cdot |w''|^{L''(\rho)} \cdot |E(w)| \cdot n^{m'm''-L''(\rho)}, \end{split}$$

for ρ in S₂

<u>Proof.</u> Since

$$C(\ell_{1}, \ell_{2}, ..., \ell_{n})(z) = \eta^{-L} \cdot C(\ell_{1}, \ell_{2}, ..., \ell_{n})(\eta \cdot z),$$

$$L = \ell_{1} + \ell_{2} + ... + \ell_{n} - (n-1)n/2,$$

where $L = \ell_1 + \ell_2 + \dots + \ell_n - (n-1)n/2$,

$$D(\ell_{1}, \ell_{2}, \dots, \ell_{n-1})(z, x_{1}) = n^{-L^{*}} \cdot D(\ell_{1}, \ell_{2}, \dots, \ell_{n-1})(n \cdot z, x_{1}/n),$$

where L" = $\ell_{1} + \ell_{2} + \dots + \ell_{n-1} - (n-1)n/2$, and E(z) = $n^{m^{*}m^{*}} \cdot E(w)$, it
implies that

$$C \{ \rho(1), \rho(2), \rho(m') \} (z')$$

$$x D (\rho(m'+1), \rho(m'+2), \rho(m-1)) (z'', x_1) \cdot E(z)$$

$$= C (\rho(1), \rho(2), \rho(m')) (z')$$

$$w''''' - L''(\rho)$$

 $xD(\rho(m+1),\rho(m+2), ,\rho(m-1))(w^{*},x_{1}/\eta) \cdot E(w) \cdot \eta^{m^{*}m^{*}-L^{*}(\rho)},$

for ρ in S₁ and

$$D(\rho(1), \rho(2), , \rho(m'-1))(z', x_1)$$

$$xC(\rho(m'), \rho(m'+1), , \rho(m-1))(z'') - E(z)$$

$$= D(\rho(1), \rho(2), , \rho(m'-1))(z', x_1)$$

$$_{x}C(\rho(m^{*}),\rho(m^{*}+1), \rho(m-1))(w^{*}) \cdot E(w) \cdot \eta^{m^{*}m^{*}-L^{*}}(\rho),$$

for ρ in S₂. By using (A.3) and (A.4), we come to the conclusion.

<u>Lemma A.3.</u> Assume that $z_i \neq z_j$, for $l \leq i \leq m'$, $m'+l \leq j \leq m$ and for $m'+l \leq i < j \leq m$. Let

$$\{\ell_1, \ell_2, \ldots, \ell_{m-1}\} = \{0, 1, \ldots, k-1, k+1, \ldots, m-1\}.$$

Assume that there exist positive numbers M, M', c, and n_0 with $n_0 \leq 1$ such that for every n satisfying $0 < n \leq n_0$, the following estimates are satisfied:

$$(A.8) |z'| \leq M; |w''| \leq M;$$

$$\sum_{j=m'+1}^{m} \exp(-\operatorname{Im} w_j x_1/n) \leq M';$$

$$\inf_{m'+1 \leq i \leq j \leq m} |w_i - w_j| \geq c; \quad \inf_{\substack{1 \leq i \leq m', m'+1 \leq j \leq m}} |w_i - w_j| \geq c.$$

Denote

$$\tilde{M} = \max \tilde{M}(0,1, ,k-1,k+1, ,m-1),$$

 $0 \le k \le m-1$

$$C_{1} = \frac{(m-1)!}{m!!(m''-1)!} \cdot \tilde{M}^{2} \cdot M^{m'm''-k+m''-1} \cdot c^{-m'm''-m''+1} \cdot M',$$

and

$$C_{2} = \frac{(m-1)!}{(m'-1)!m''!} \cdot M \cdot M'''' \cdot c^{-m'm''}$$

Then

(A.9)
$$D(0,1, ,k-1,k+1, ,m-1)(z,x_1)$$

- $D(0,1, ,k-1,k+1, ,m'-1)(z',x_1)$

- 37 -

$$x \left(w_{m'+1} \cdot w_{m'+2} \cdot \cdots \cdot w_{m} \right)^{m'} \cdot E(w) |$$

$$\leq \left(C_{1} + C_{2} \cdot \max_{\rho \in S_{2}} | D(\rho(1), \rho(2), \dots, \rho(m'-1))(z', x_{1}) | \right) \cdot \eta,$$
for k=0,...,m'-1 and
$$(A.10) \qquad | D(0,1, \dots, k-1, k+1, \dots, m-1)(z, x_{1}) |$$

$$\leq \left(C_{1} + C_{2} \cdot \max_{\rho \in S_{2}} | D(\rho(1), \rho(2), \dots, \rho(m'-1))(z', x_{1}) | \right) \cdot \eta^{k-m'+1},$$
for k=m',...,m-1 Here ρ in S_{2} are bijections from
$$\{ 1, 2, \dots, m-1 \} \text{ onto } \{ 0, 1, \dots, k-1, k+1, \dots, m-1 \} \text{ satisfying}$$

$$\rho(1) < \rho(2) < \dots < \rho(m'-1);$$

$$\rho(m') < \rho(m'+1) < \dots < \rho(m-1).$$

<u>Proof.</u> First it must be remarked that

$$m^{m}-L^{m}(\rho) \geq m^{m}-m^{n}-(m^{1}+1)-\ldots-(m-1)+(m^{n}-1)m^{n}/2 = 0$$

where the equality holds if and only if (A.11) $k=0,1, ,m'-1, \\ \rho \in S_2, \\ \rho(j) = \begin{cases} j-1, j=1, ,k; \\ j, j=k+1, ,m-1 \end{cases}$

Since

$$C(m',m'+1, ,m-1)(z'') = (z_{m'+1} \cdot z_{m'+2} \cdot \cdot z_m)^{m'},$$

it implies that for ρ satisfying (A.11),

$$(-1)^{J(\rho)} \cdot D(\rho(1), \rho(2), \rho(m'-1))(z', x_1)$$
$$xC(\rho(m'), \rho(m'+1), \rho(m-1))(z'') \cdot E(z)$$
$$= (-1)^{m'(m'+1)} \cdot D(0, 1, \rho(m-1), k-1, k+1, \rho(m'-1)(z', x_1))$$

- 38 -

$$(\mathbf{w}_{m'+1} \cdot \mathbf{w}_{m'+2} \cdot \ldots \cdot \mathbf{w}_{m})^{m'} \cdot \mathbf{E}(\mathbf{w})$$

For p not satisfying (A.11), Lemma A.2 implies that $|C(p(1),p(2), ...,p(m'))(z')|_{\chi D(p(m'+1),p(m'+2), ...,p(m-1))(z'',x_1) - E(z)||_{\chi D(p(m'+1),p(m'+2), ...,p(m-1))(z'',x_1) - E(z)||_{\chi D(p(m'+1),p(m'+1),p(m'+1))(z'',x_1) - E(z)||_{\chi D(p(m'+1),p(m'+1))(z'',x_1) - E(z)||_{\chi D(p(m'+1),p(m'+1))(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)(z'',x_1)(z'',x_1)}|_{\chi D(p(m'+1))(z'',x_1)(z''',x_1)(z'',x_1)($

for ρ in S_1 and

$$|D(\rho(1), \rho(2), , \rho(m^{*}-1))(z^{*}, x_{1})|$$

$$xC(\rho(m^{*}), \rho(m^{*}+1), , \rho(m-1))(z^{*}) \cdot E(z)|$$

$$\leq |D(\rho(1), \rho(2), , \rho(m^{*}-1))(z^{*}, x_{1})|$$

$$\tilde{x}_{M} \cdot M^{L^{*}}(\rho) \cdot |E(w)| \cdot \eta^{m^{*}m^{*}-L^{*}}(\rho),$$

for ρ in S₂. If (A.11) is not satisfied, then $m'm''-L(\rho) \ge 1$. If k = m', . , m-1, then $m'm''-L''(\rho) \ge m'm''-(m'-1)-m'-. -(m-1)+k+(m''-1)m''/2 = k-m'+1$. Since $|E(w)| \le c^{-m'm''}$ and $L'(\rho)+L''(\rho) = m'm''-k$, for ρ in S₁, Lemma A.1 implies the conclusion.

[Q.E.D.]

References

 [1] R. Ashino: The reducibility of the boundary conditions in the one-parameter family of elliptic linear boundary value problems
 I, Osaka J. Math., 25 (1988), 737-757.

[2] R. Ashino: On the admissibility of singular perturbations in Cauchy problems, Osaka J. Math., 26 (1989), 387-398.

[3] R. Ashino: The reducibility of the boundary conditions in the one-parameter family of elliptic linear boundary value problemsII, Osaka J. Math., 26 (1989), 535-556.

[4] R. Ashino: On the weak admissibility of singular perturbations in Cauchy problems, Publ. Res. Inst. Math. Sci., 25

(1989),

[5] M. Nagumo: On singular perturbation of linear partial differential equations with constant coefficients I, Proc. Japan Acad. 35 (1959), 449-454

[6] H. Kumano-go: On singular perturbation of linear partial differential equations with constant coefficients II, Proc. Japan Acad. 35 (1959), 541-546.

[7] J Kevorkian and J. D. Cole: Perturbation Methods in AppliedMathematics, Springer-Verlag (1981)

[8] S. Mizohata: The Theory of Partial Differential Equations, Cambridge (1973)

[9] S. Mizohata: On the Cauchy Problem, Vol. 3 in Notes and Reports in Mathematics in Science and Engineering, Academic Press (1985)

- 40 -