学位申請論文

芦野隆一

On Nagumo＇s $H^{\text {s }}$－stability in Singular Perturbations

Dedicated to Professor Shigetake Matsuura on the sixtieth aniversary of his birthday

By

Ryuichi ASHINO＊

＊Research Institute for Mathematical Sciences Kyoto University，Kyoto，Japan

1. Introduction

In [5], Nagumo defined the H^{5}-stability in singular perturbations. Here $H^{s}=H^{s}\left(R_{X}^{n-1}\right)$ is the global Sobolev space with the norm

$$
\left\|u\left(x^{\prime}\right)\right\|_{s}=\left((2 \pi)^{-n+1} \int\left|\hat{u}\left(\xi^{\prime}\right)\right|^{2}\left(1+\left|\xi^{\prime}\right|^{2}\right)^{s} d \xi^{\prime}\right)^{1 / 2}
$$

We shall generalize the notion of H^{3}-stability in some sense.
Let us consider the following linear partial differential operator with constant coefficients containing small positive parameter $\varepsilon(0 \leqq \varepsilon<1):$

$$
L_{\varepsilon}(D)=\varepsilon^{\prime} P_{1}(D)+P_{2}(D)
$$

Denote by m the order of $P_{1}(D)$ with respect to D_{1} and by m that of $P_{2}(D)$. Put $m "=m-m^{\prime}$ and assume that $m>m^{\prime}>0 \quad$ Then the order of L_{0} is less than that of L_{ε} for $\varepsilon \neq 0$. Such an operator as L_{ε} is called a singularly perturbed operator.

We shall study the folowing so-called singulary perturbed Cauchy problem for $L_{E}(\mathrm{D})$:
(CP)

$$
\begin{aligned}
& L_{\varepsilon}(D) u(x)=f_{\varepsilon}(x), \text { in }[0, T] \times R_{x}^{n-1} ; \\
& D_{1}^{j-1} u\left(0, x^{\prime}\right)=\phi_{\varepsilon_{r}}\left(x^{\prime}\right), j=1, \quad, m,
\end{aligned}
$$

and the following so-called reduced Cauchy problem for (CP):
$(R C P) \quad\left\{\begin{array}{l}L_{0}(D) u(x)=f_{0}(x), \text { in }[0, T] \times R_{x^{\prime}}^{n-1} ; \\ D_{1}^{j-1} u\left(0, x^{\prime}\right)=\phi_{0, j}\left(x^{\prime}\right), j=1, \quad, m^{\prime}\end{array}\right.$
The following assumption on P_{1} and P_{2} will be required.

Assumption 1.

(Al): The symbols of $P_{1}(D)$ and $P_{2}(D)$ are represented as

$$
\begin{aligned}
& P_{1}(\xi)=\sum_{j=0}^{m} p_{1, j}\left(\xi^{\prime}\right) \xi_{1}^{m-j}, \\
& P_{2}(\xi)=\sum_{j=0}^{m^{\prime}} P_{2, j}\left(\xi^{\prime}\right) \xi_{1}^{m '-j},
\end{aligned}
$$

where $\mathrm{P}_{1,0}$ and $\mathrm{P}_{2,0}$ are non-zero constants.
(A2): ($\mathrm{m}^{\prime \prime}=2$ and $\mathrm{P}_{2,0} / \mathrm{P}_{1,0}$ is negative real number) or
($\mathrm{m}^{\prime \prime}=1$ and the imaginary part of $\mathrm{P}_{2,0} / \mathrm{P}_{1,0}$ is non-positive)

The following assumption on the Cauchy data and on the solvability of (CP) and (RCP) will be required.

Assumption 2.

There exist real numbers s and s ' such that (CP) is uniquely solvable in $C\left([0, T] ; H^{S}\right)$ and (RCP) is uniquely solvable in $C\left([0, T] ; H^{s}\right)$ for the Cauchy data $\phi_{E, j}\left(x^{\prime}\right)$ and $\phi_{0, j}\left(x^{\prime}\right)$ belong to $H^{S^{\prime}}$ and $f_{\varepsilon}(x)$ and $f_{0}(x)$ belong to $C\left([0, T] ; H^{\prime}\right)$

Nagumo defined the H^{5}-stability of (CP) with respect to a particular solution u_{0} of (RCP) in [5] as follows:

Definition 1. Let Assumption 2 be satisfied for $s^{\prime}=s$.
The Cauchy problem (CP) is said to be H^{s}-stable in $0 \leq x_{1} \leq T$ for $\varepsilon \downarrow 0$ with respect to a particular solution $u_{0}(x)$ of the reduced Cauchy problem (RCP) in $\mathrm{C}^{\mathrm{m}}\left((0 . \mathrm{T}] ; \mathrm{H}^{\mathrm{s}}\right)$ if
(D1)

$$
\sup _{0 \leqq x_{1 \leqq T} T}\left\|u_{\varepsilon}\left(x_{1}, \cdot\right)-u_{0}\left(x_{1}, \cdot\right)\right\|_{S} \rightarrow 0
$$

whenever $u_{\varepsilon}(x)$ are solutions of (CP) in $C^{m}\left([0, T] ; H^{s}\right)$ satisfying the following three conditions:

$$
\begin{equation*}
\sup _{0 \leqq x_{1} \leqq T}\left\|f_{\varepsilon}\left(x_{1}, \cdot\right)-f_{0}\left(x_{1}, \cdot\right)\right\|_{S} \rightarrow 0 ; \tag{D2}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\phi_{\varepsilon, j}-\phi_{0, j}\right\|_{s} \rightarrow 0, j=1, . \quad, m^{\prime} ; \tag{D3}
\end{equation*}
$$

(D4)

$$
\| \phi_{\varepsilon, j}(\cdot)-\left.D_{1}^{j-1} u_{0}(0, \cdot)\right|_{s} \rightarrow 0, j=m^{\prime}+1, \ldots, m .
$$

If $f_{0}(x)$ belongs to $c^{m-m^{\prime}}\left([0, T] ; H^{s}\right)$ then the initial values $D_{1}^{j-1} u_{0}\left(0, x^{\prime}\right), j=m^{\prime}+1, \quad, m$ are uniquely determined and represented as a sum of derivatives of $f_{0}(x)$ and $\phi_{0, j}\left(x^{\prime}\right)$, $j=1$, .,m'. When (D4) is required, then the Cauchy data $\phi_{\varepsilon, j}\left(x^{\prime}\right), j=m \cdot+1, \quad, m$ are very restricted. For example, when $f_{0}=0$ and $\phi_{0, j}=0, j=1, \quad m^{\prime}$, (D4) implies that $\phi_{\varepsilon, j} \rightarrow 0$, $j=1$, m . Hence another definition of the stability whose convergence on the Cauchy data $\phi_{\varepsilon, j}\left(x^{\prime}\right), j=m{ }^{\prime}+1, \quad, m$ are different from Nagumo's is needed.

Definition 2. Let Assumption 2 be satisfied.
The Cauchy problem (CP) is said to be $\left(s, s^{\prime}\right)$-stable in $0 \leqq x_{1} \leqq T$ for $\varepsilon \nmid 0$ with respect to a particular solution $u_{0}(x)$ of the reduced Cauchy problem (RCP) in $\left.C^{m}\left\{[0, T] ; H^{\max \{s, s}\right\}\right)$ if

$$
\begin{equation*}
\sup _{0 \leqq x_{1} \leqq T} \mid u_{\varepsilon}\left(x_{1}, \cdot\right)-u_{0}\left(x_{1}, \cdot\right) \|_{s}+0 . \tag{D1}
\end{equation*}
$$

whenever $u_{\varepsilon}(x)$ are solutions of (CP) in $C^{m}\left(\{0, T] ; H^{\max \left\{s, s^{\prime}\right\}}\right)$ satisfying the following three conditions:

$$
\begin{equation*}
\sup _{0 \leqq x_{1} \leq T}\left\|f_{E}\left(x_{1}, \cdot\right)-f_{0}\left(x_{1}, \cdot\right)\right\|_{S^{\prime}}+0 ; \tag{D5}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\phi_{E, j}-\phi_{0, j}\right\|_{s^{\prime}} \rightarrow 0, j=1, \ldots, m^{\prime} ; \tag{D6}
\end{equation*}
$$

(D7): There exists a positive number M, which may depend on the choice of the initial data $\phi_{\varepsilon_{r}}, \phi_{0, j}$, and f_{0} such that

$$
\left\|\phi_{\varepsilon, j}(\cdot)-\mathrm{D}_{1}^{j-1} u_{0}(0, \cdot)\right\|_{s^{\prime}} \leqq M, \quad j=m^{\prime}+1, \quad, m
$$

The Cauchy problem (CP) is said to be ($s, s^{\prime}+0$)-stable in $0 \leqq X_{1} \leqq T$ for $\varepsilon+0$ with respect to a particulax solution $u_{0}(x)$ of (RCP) in $C^{m}\left\{[0, T] ; H^{\max \left\{s, s^{\prime}\right\}}\right\}$ if (D1) whenever $u_{\varepsilon}(x)$ are solutions of (CP) in $C^{m}\left\{[0, T] ; H^{\max \left\{s, s^{\prime}\right\}}\right\}$ satisfying (D5), (D6), and
(D8): There exist positive numbers δ and M, which may depend on the choice of the initial data $\phi_{\varepsilon_{,}}, \phi_{0, j}$, and f_{0} such that

$$
\| \phi_{\varepsilon, j}(\cdot)-\left.D_{1}^{j-1} u_{0}(0, \cdot)\right|_{s^{\prime}+\delta} \leqq M_{r} \quad j=m \cdot+1, \quad, m
$$

Remark. For every positive number δ, the (s,s')-stability implies the (s,s'+0)-stability, the (s,s'+0)-stability implies the ($s, s^{\prime}+\delta$)-stability, and the (s, s^{\prime})-stability implies the (s- $\left.\delta, s^{\prime}\right)-s t a b i l i t y$

It will be shown that requiring (A2) is natural when we deal with the (s, s^{\prime})-stability with respect to solutions of (RCP) for various Cauchy data. Following to the definition of the

C-admissibility of (CP) with respect to (RCP) in [4], we shall define the $C\left([0, T] ; H^{s}\right)$-admissibility of (CP) with respect to (RCP)

Definition 3. Let Assumption 2 be satisfied. The Cauchy problem (CP) is said to be $C\left([0, T] ; H^{s}\right)$-admissible in $[0, T] \times R^{n-1}$ with the cauchy data space ($\left.\mathrm{H}^{\mathbf{s}^{\prime}}\right)^{\mathrm{m}}$ with respect to (RCP) if for every Cauchy datum $\left(\psi_{1}, \ldots \psi_{m}\right)\left(H^{s}\right)^{m}$, the solutions u_{e} of (CP) with $\phi_{\varepsilon, j}=\psi_{j}, j=1, \ldots, m$ and $f_{E}=0$ converge in $C\left([0, T] ; H^{s}\right)$ to the solution u_{0} of ($R C P$) with $\phi_{0, j}=\psi_{j}, j=1, \quad, m$ and $f_{0}=0$.

By looking into the proof of Theorem in [2] and $\S 2$ and $\S 3$ in [3], we can prove that (A2) remains a necessary condition for the $C\left([0 . T] ; H^{s}\right)$-admissibility with the Cauchy data space $\left(H^{\infty}\right)^{m}$ when P_{1} and P_{2} satisfy (A1) We do not give the proof in this paper.

In [5], Nagumo gave a necessary and sufficient condition for the H^{5}-stability for more general system in the form of inequalities which must be satisfied by the solutions of (CP) with the initial conditions:

$$
D_{1}{ }^{j-1} u\left(0, x^{\prime}\right)=\delta_{i, j} \cdot \delta\left(x^{\prime}\right), i, j=1, \quad, m,
$$

where $\delta_{i, j}$ is Kronecker's delta and $\delta\left(x^{\prime}\right)$ is the Dirac measure. We have succeeded in seeking a necessary and sufficient condition for the (s,s'+0)-stability but a necessary and sufficient condition for the (s, s) -stability is open. Our condition for
the $\left(s, s^{\prime}+0\right)-s t a b i l i t y$ which will be found in $\$ 2$ is Nagumo type. As a corollary, we can show that Nagumo's H^{s}-stability implies the $(s, s+0)$-stability In [6], Kumano-go applied Nagumo's result to the following operator:

$$
\varepsilon \cdot D_{1}^{2}+q \cdot D_{1}+Q\left(D^{\prime}\right)
$$

where g is a complex number and $Q\left(D^{\prime}\right)$ is a polynomial of D^{\prime} Kumano-go deduced conditions for the $H^{s}-s t a b i l i t y$ on the complex constant q and on the structure of the polynomial $Q\left(\xi^{\prime}\right)$ In $\S 3$, we shall give another example for the H^{s}-stability.

Ackowledgement. The author expresses his deep gratitude to Professor Shigetake Matsuura for his encouragement and helpful comments.

2. The $\left(s, s^{\prime}+0\right)$-stability

We shall use the notation and the result in Appendix. Denote the roots of $L_{\varepsilon}(\xi)=0$ with respect to ξ_{1} by $\tau_{j}\left(\varepsilon, \xi^{\prime}\right)$, $j=1, \quad, m$ and those of $L_{0}(\xi)=P_{2}(\xi)=0$ with respect to ξ_{1} by $\sigma_{j}\left(\xi^{\prime}\right), j=1, \ldots, m^{\prime}$, respectively. It is well known that $\tau_{j}\left(\varepsilon, \xi^{\prime}\right), j=1, \ldots m$ are continuous in $\left(\varepsilon, \xi^{\prime}\right)$ for $\varepsilon \neq 0$ and $\sigma_{j}\left(\xi^{\prime}\right)$, $j=1, ., m^{\prime}$ are continuous in $\xi^{\prime} \quad$ Put

$$
b(\tau)=\left(\tau^{j-1} ; j \neq 1, \quad, m\right) \text { and } c_{j}=\left(\delta_{j, k}, k \neq 1, \quad, m\right)
$$

where $\delta_{j, k}$ is Kronecker's delta. Other notation can be found in Appendix. Denote by $\mathrm{Y}_{\mathrm{j}}\left(\varepsilon, \mathrm{x}_{1}, \xi^{\prime}\right), \mathrm{j}=1$. m the fundamental solutions of the following ordinary differential equation with parameter ($\varepsilon, \xi^{\prime}$):

$$
L_{\varepsilon}\left(D_{1}, \xi^{\prime}\right) Y\left(\varepsilon, x_{1}, \xi^{\prime}\right)=0
$$

with initial conditions:

$$
D_{1}^{k-1} Y\left(\varepsilon, 0, \xi^{\prime}\right)=\delta_{j, k} . j, k=1, \quad ., m,
$$

Then Cramer's formula implies that if $T_{i} \neq \tau_{j}, 1 \leqq i<j \leqq m$ then

$$
\begin{gathered}
=\sum_{k=1}^{m} \exp i \tau_{k} x_{1}\left(\varepsilon_{,} x_{1}, \xi^{\prime}\right) \\
=\frac{\operatorname{det}\left(b\left(\tau_{1}\right), \quad, b\left(\tau_{k-1}\right), c_{j}, b\left(\tau_{k+1}\right), \quad, b\left(\tau_{m}\right)\right)}{\operatorname{det}\left(b\left(\tau_{1}\right), b\left(\tau_{m}\right)\right\}} \\
=(-1)^{j-1}\left(D(0,1, \quad, j-2, j, \quad, m-1)\left(\tau_{1}, \quad, \tau_{m}, x_{1}\right), j=1, \quad, m ., t_{\left.a(j-2), t_{e}, t_{a(j)}, \ldots, t_{a(m-1)}\right)}^{A(0,1, \ldots, m-1)}\right.
\end{gathered}
$$

But the last representations remain valid without any restriction
on $\tau_{j}, j=1$, m. Denote by ℓ the maximum of the polynomial orders of the coefficients $p_{1, j}\left(\xi^{\prime}\right), j=0, \quad, m$ in the symbol $P_{1}(\xi)$ and put

$$
\left\langle\xi^{\prime}\right\rangle=\left(1+\left|\xi^{\prime}\right|^{2}\right)^{1 / 2}
$$

Then we have the following theorem whose proof will be found at the end of this section.

Theorem 1. Let Assumption 1 and 2 be satisfied. Then the following four conditions are equivalent:
(C1) The Cauchy problem (CP) is ($\mathrm{s}, \mathrm{s}^{\top}+0$)-stable in $[0, T]$ for $\varepsilon \nless 0$ with respect to a particular solution $u_{0}(x)$ of (RCP) belonging to $\mathrm{C}^{\mathrm{m}}\left([0, T] ; \mathrm{H}^{\max \left\{\mathrm{s}, \mathrm{s}^{\prime}\right\}+\ell}\right)$
(C2) The Cauchy problem (CP) is ($\left.s, s^{\prime}+0\right)-$ stable in $[0, T]$ for عto with respect to every solution $u_{0}(x)$ of (RCP) belonging to $C^{m}\left([0, T] ; H^{\max \left[s, s^{\prime}\right\}+\ell}\right)$
(C3) There exist positive numbers ε_{0} and C_{0} such that
(E1) $\sup _{0<\varepsilon \subseteq \varepsilon_{0}}, \xi^{\prime} \in R^{n-1} \int_{0}^{T} \frac{1}{\varepsilon} \cdot\left|Y_{m}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}}\right| \mathrm{dx} x_{1} \leqq C_{0}$,
(E2) $\sup _{1 \leqq j \leqq m^{\prime}}, 0<\varepsilon \leqq \varepsilon_{0}, 0 \leq x_{1} \leqq T, \xi^{\prime} \in R^{n-1} \mid Y_{j}\left(\varepsilon_{1} x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}>^{s-s^{\prime}}\right| \leqq C_{0}$. and for every positive number δ there exist positive numbers ε_{δ} and c_{δ} such that
(E3)

$$
\begin{aligned}
& \sup _{m^{\prime}+1 \leqq j \leqq m, \quad 0<\varepsilon \leqq \varepsilon_{\delta}, \quad 0 \leqq x_{1} \leqq T, \quad \xi^{\prime} \in R^{n-1}\left|Y_{j}\left(\varepsilon_{r} x_{1}, \xi^{\prime}\right)<\xi^{\prime}>^{s-s^{\prime}-\delta}\right|} \begin{array}{l}
\leqq C_{\delta}
\end{array}
\end{aligned}
$$

(C4) There exist positive numbers $\varepsilon_{0}^{\prime}, R_{0}$, and C_{0}^{\prime} such that
(EA) $\sup _{0<\varepsilon \leq \varepsilon_{0}^{\prime}}, \left.R_{0 \leq\left|\xi^{\prime}\right|} \int_{0}^{T} \frac{1}{\varepsilon} \cdot \right\rvert\, Y_{m}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}>s^{\prime-s^{\prime}}\right| d x_{1} \leqq c_{0}^{\prime}$,
(ES) $\sup _{1 \leqq j \leqq m^{\prime},} \quad 0<\varepsilon \leqq \varepsilon_{0}^{\prime}, \quad 0 \leqq x_{1} \leqq T, R_{0} \leqq\left|\xi^{\prime}\right| \mid Y_{j}\left(\varepsilon, x_{1^{\prime}} \xi^{\prime}\right)\left\langle\xi^{\prime}>^{s-s^{\prime}}\right| \leqq C_{0}^{\prime}$, and for every positive number δ there exist positive numbers $\varepsilon_{\delta}^{\prime}$, R_{δ}, and C_{δ}^{\prime} such that
(EG) $\quad \sup _{m^{\prime}+1 \leqq j \leqq m, \quad 0<\varepsilon \leqq \varepsilon_{\delta}^{\prime}, \quad 0 \leq x_{1} \leq T, R_{\delta} \leqq\left|\xi^{\prime}\right|} \mid Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}>^{s^{-s} s^{\prime}-\delta}\right|$ $\leqq \mathrm{C}_{\mathrm{\delta}}^{\prime}$.

Remark. Nagumo studied the $H^{\text {s }}$-stability in the following general situation:

$$
L_{\varepsilon}=\sum_{j=0}^{m} L_{j}\left(\varepsilon, D^{\prime}\right) D_{l}^{m-j}
$$

where the symbols $L_{j}\left(\varepsilon, \xi^{1}\right)$ are matrices of polynomials in ξ^{\prime} with constant coefficients which depend continuously on the parameter $\varepsilon \geq 0$. He proved the equivalence between the following two conditions:
(C5) The Cauchy problem (CP) is H^{5}-stable in [$0, T$] for $\varepsilon \nmid 0$ with respect to a particular solution $u_{0}(x)$ of (RCP) belonging to $C^{m}\left([0, T] ; H^{s+\ell}\right)$.
(C6) There exist positive numbers ε_{0} and C_{0} such that
(ET)

$$
\sup _{0<\varepsilon \leqq \varepsilon_{0}} \quad \xi^{\prime} \in \mathrm{R}^{\mathrm{n}-1} \int_{0}^{T} \frac{1}{\varepsilon} \cdot\left|\mathrm{y}_{\mathrm{m}}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\right| \mathrm{d} x_{1} \leqq C_{0} ;
$$

(ER)

$$
\sup _{1 \leqq j \leqq m, \quad 0<\varepsilon \leqq \varepsilon_{0}}, \quad 0 \leqq x_{I} \leqq T, \xi^{\prime} \in R^{n-1}\left|Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\right| \leqq C_{0} .
$$

Corollary 1. Let Assumption 1 and 2 be satisfied and $u_{0}(x)$ be a solution of (RCP) belonging to $C^{m}\left([0, T] ; H^{s+l}\right)$ If the Cauchy problem (CP) is H^{s}-stable in $[0, T]$ for $\varepsilon \neq 0$ with respect to a particular solution u_{0}, then the Cauchy problem (CP) is (s,s+0)-stable in $\{0, T]$ for $\varepsilon \neq 0$ with respect to a particular solution u_{0}.

Proof. Since Nagumo's theorem can be applied to our problem and obviously (E8) implies (E2) for $s=s^{\prime}$ and (E3) for $s=s^{\prime}$
[Q.E.D.]

To prove Theorem 1 we need several steps. For the solution u_{0} of the reduced Cauchy problem ($R C P$), we shall consider the following singulary perturbed Cauchy problem:
(CP1)

$$
\left\{\begin{array}{l}
L_{\varepsilon}(D) u(x)=f_{\varepsilon}(x), \text { in }[0, T] \times R^{n-1} ; \\
D_{1}^{j-1} u\left(0, x^{\prime}\right)=\Phi_{\varepsilon, j}\left(x^{\prime}\right), j=1, \ldots, m \\
D_{1}^{j-1} u\left(0, x^{\prime}\right)=D_{1}{ }^{j-1} u_{0}\left(0, x^{\prime}\right), j=m^{\prime}+1, \quad, m .
\end{array}\right.
$$

Here the initial values $D_{1}{ }^{j-1} u\left(0, x^{\prime}\right\}, j=m \cdot+1, \quad m$ are fixed. The reduced Cauchy problem for (CR1) is (RCP) Denote by $u_{\varepsilon_{,}}(x)$ the solution of (CP1)

Lemma l. (due to Nagumo) Let (Al) and Assumption 2 be satisfied. Then the following two conditions are equivalent:
(C7) The Cauchy problem (CP1) is (s, s^{\prime})-stable in [0,T] for $\varepsilon \neq 0$ with respect to a particular solution $u_{0}(x)$ of (RCP) belonging to $C^{5 m}\left([0, T] ; H^{\max \left\{s, s^{\prime}\right\}+\ell}\right)$
(C8) There exist positive numbers ε_{0} and C_{0} such that
(E1) $\sup _{0<\varepsilon \leqq \varepsilon_{0}}, \xi^{\prime} \in R^{n-1} \int_{0}^{T} \frac{1}{\varepsilon} \cdot\left|Y_{m}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}}\right| d x_{1} \leqq C_{0}$.
(E2)

$$
\sup _{1 \leqq j \leqq m^{\prime}}, \quad 0<\varepsilon \leqq \varepsilon_{0}, \quad 0 \leqq x_{1} \leqq T, \quad \xi^{\prime} \in R^{n-1} \mid Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}>^{s-s}\right| \leqq C_{0} .
$$

Proof. First we shall show (C8) implies (C7) Put

$$
\begin{gathered}
v_{\varepsilon}(x)=u_{\varepsilon, 1}(x)-u_{0}(x), \\
g_{\varepsilon}(x)=L_{0}(D) u_{0}(x)-L_{\varepsilon}(D) u_{0}(x)+f_{\varepsilon}(x)-f_{0}(x)
\end{gathered}
$$

Denote by $\hat{u}\left(x_{1}, \xi^{\prime}\right)$ the Fourier transform of $u(x)$ with respect to x^{\prime} and by $F_{\xi^{1}+x^{\prime}}^{-1}$, the inverse Fourier transformation. Then $v_{\varepsilon}(x)$ is given by

$$
\begin{aligned}
& v_{\varepsilon}(x)=F_{\xi^{\prime}+x}^{-1}\left(\sum_{j=1}^{m^{\prime}} y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\left(\hat{\phi}_{\varepsilon, j}\left(\xi^{\prime}\right)-\hat{\phi}_{0, j}\left(\xi^{\prime}\right)\right)\right) \\
& \quad+F_{\xi^{\prime} \rightarrow x}^{-1} \cdot\left(\int_{0}^{x_{1}} \frac{1}{p_{1,0^{*}} \cdot} \cdot Y_{m}\left(\varepsilon, x_{1}-t, \xi^{\prime}\right) \hat{g}_{\varepsilon}\left(t, \xi^{\prime}\right) d t\right)
\end{aligned}
$$

Since

$$
\begin{gathered}
\left|\hat{v}_{\varepsilon}\left(x_{1}, \xi^{\prime}\right)\right|\left\langle\xi^{\prime}\right\rangle^{s} \\
\leqq \sum_{j=1}^{m}\left|Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}}\right|\left|\hat{\phi}_{\varepsilon, j}\left(\xi^{\prime}\right)-\hat{\phi}_{0, j}\left(\xi^{\prime}\right)\right|\left\langle\xi^{\prime}\right\rangle^{\prime} \\
+\int_{0}^{x_{1}} \frac{1}{T P_{1,0} \mid \cdot \varepsilon} \cdot\left|Y_{m}\left(\varepsilon, x_{1}-t, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}}\right|\left|\hat{g}_{\varepsilon}\left(t, \xi^{\prime}\right)\right|\left\langle\xi^{\prime}\right\rangle^{\prime} d t,
\end{gathered}
$$

it implies that

$$
\begin{gathered}
\left\|v_{\varepsilon}\left(x_{1},-\right)\right\|_{s} \\
\leqq C_{0} \cdot \sum_{j=1}^{m^{\prime}}\left\|\phi_{\varepsilon, j}-\phi_{0, j}\right\|_{s^{\prime}}+\frac{C_{0}}{\mid P_{1,0}} \int_{0}^{x_{1}}\left\|g_{\varepsilon}(t,-)\right\|_{s^{\prime}} d t .
\end{gathered}
$$

By (D6), we have $\left.\sum_{j=1}^{\mathrm{m}^{\top}}\right|_{\phi_{E, j}}-\phi_{0, j} \|_{s^{\prime}} \rightarrow 0$. since u_{0} belongs to $C^{m}\left([0, T] ; H^{\max \left\{s, s^{\prime}\right\}+\ell}\right)$, it implies that

$$
\sup _{0 \leqq x_{1} \leqq T}\left\|L_{0}(D) u_{0}\left(x_{1}, \cdot\right)-L_{E}(D) u_{0}\left(x_{1} \cdot \cdot\right)\right\|_{S^{\prime}} \rightarrow 0
$$

Hence (D5) implies that $\sup _{0 \leqq x_{1} \leqq T}\left\|g_{E}\left(x_{1}, \cdot\right)\right\|_{S}, \rightarrow 0$. Thus we have

$$
\sup _{0 \leqq x_{1} \leqq T}\left\|v_{E}\left(x_{1},-\right)\right\|_{s} \rightarrow 0 .
$$

Next we shall show (C7) implies (C8) Assume that (E2) is not satisfied. Then, for a certain j with $l \leqq j \leqq m \cdot$, there exist sequences $\left\{\varepsilon_{n}\right\}$ with $\varepsilon_{n} \neq 0$ and $\left\{t_{n}\right\}$ with $0 \leq t_{n} \leqq T$ and a sequence of open balls $\left\{S_{n}\right\}, S_{n}=\left\{\left|\xi^{\prime}-\xi_{n}^{\prime}\right|<x_{n}\right\}$ such that

$$
\begin{align*}
& \left|y_{j}\left(\varepsilon_{n}, t_{n^{\prime}} \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}}\right|>n \quad \text { for } \xi^{\prime} \text { in } S_{n^{\prime}} \tag{2.1}\\
& 2^{-1}<\left(\left\langle\xi^{\prime}\right\rangle /\left\langle\xi_{n}^{\prime}\right\rangle\right)^{s^{\prime}}<2 \text { for } \xi^{\prime} \text { in } S_{n} \tag{2,2}
\end{align*}
$$

Put

$$
u_{n}(x)=c_{n} \cdot F_{\xi^{\prime} \rightarrow x}^{-1} \cdot\left(Y_{j}\left(\varepsilon_{n}, x_{1}, \xi^{\prime}\right) \cdot x\left(\xi^{\prime} ; s_{n}\right)\right)
$$

where $c_{n}=n^{-1} \cdot\left|S_{n}\right|^{-1 / 2}\left\langle\xi_{n}^{\prime}\right\rangle^{-s} \quad$ Then $u_{n}(x)$ satisfies $L_{\varepsilon_{n}}(D) u(x)=0 . \quad$ Since

$$
\begin{gathered}
\left|\hat{u}_{n}\left(t_{n^{\prime}} \xi^{\prime}\right)\right|\left\langle\xi^{\prime}\right\rangle^{s} \\
\left.=n^{-1}-\left|s_{n}\right|^{-1 / 2}\left\langle\xi_{n}^{\prime}\right\rangle^{-s^{\prime}}\left|Y_{j}\left(\varepsilon_{n}, t_{n}, \xi^{\prime}\right)\right| x\left(\xi^{\prime} ; s_{n}\right)<\xi^{\prime}\right\rangle^{s} \\
=\left.n^{-1} \cdot\left|s_{n}\right|^{-1 / 2}\left(\left\langle\xi^{\prime}\right\rangle /\left\langle\xi_{n}^{\prime}\right\rangle\right)^{\prime}\right|_{j}\left(\varepsilon_{n}, t_{n}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}} \mid x\left(\xi^{\prime} ; s_{n}\right) .
\end{gathered}
$$

(2.1) and (2.2) imply that

$$
\sup _{0 \leqq x_{1} \leqq T}\left\|u_{n}\left(x_{1}, \cdot\right)\right\|_{s} \geqq\left\|u_{n}\left(t_{n}, \cdot\right)\right\|_{s} \geqq 1 / 2
$$

Since

$$
\begin{aligned}
& \left|D_{1}{ }^{j-1} \hat{u}_{n}\left(0, \xi^{\prime}\right)\right|\left\langle\xi^{\prime}\right\rangle s^{\prime}=c_{n} \cdot \chi\left(\xi^{\prime} ; s_{n}\right)\left\langle\xi^{\prime}\right\rangle s^{\prime} \\
& =n^{-1} \cdot\left|s_{n}\right|^{-1 / 2} \cdot \chi\left(\xi^{\prime} ; s_{n}\right)\left(\left\langle\xi^{\prime}\right\rangle /\left\langle\xi_{n}^{\prime}\right\rangle\right)^{s^{\prime}}
\end{aligned}
$$

(2,2) implies that $\left|D_{1}{ }^{j-1} u_{n}(0, \cdot)\right|_{s}, \leqq 2 / n+0$. For $k \neq j$, we have $\left|D_{1}{ }^{k-1} u_{n}(0, \cdot)\right|_{s},=0 . \quad$ Put $u_{\varepsilon_{n}}(x)=u_{n}(x)+u_{0}(x) \quad$ Then we have a contradiction to (D1), (D5), (D6), and (D7)

Assume that (El) is not satisfied. Then there exist a sequence $\left\{\varepsilon_{n}\right\}$ with $\varepsilon_{n} \neq 0$ and a sequence of open balls $\left\{s_{n}\right\}$, $S_{n}=\left\{\xi^{\prime} \in R^{n-1} ;\left|\xi^{\prime}-\xi_{n}^{\prime}\right|<r_{n}\right\}$ such that

$$
\begin{equation*}
\left.\int_{0}^{T} \frac{1}{\left|P_{1,0}\right| \cdot \varepsilon_{n}} \cdot\left|Y_{m}\left(\varepsilon_{n}, T-x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}}\right| d x_{1}\right\rangle n, \tag{2.3}
\end{equation*}
$$

for ξ^{\prime} in S_{n}. We choose $\phi_{\varepsilon, j}\left(x^{\prime}\right)=D_{1}{ }^{j-1} u_{0}\left(0, x^{\prime}\right), j=1$. , m^{\prime} Then the solutions of (CPI) for $\left\{\varepsilon_{n}\right\}$ are given by $u_{n}(x)=u_{0}(x)+F_{\xi^{\prime}+x^{\prime}}^{-1}\left(\int_{0}^{x_{1}} \frac{1}{P_{1,0} \cdot \varepsilon_{n}} \cdot y_{m}\left(\varepsilon_{n}, x_{1}-t, \xi^{\prime}\right) \hat{g}_{\varepsilon_{n}}\left(t, \xi^{\prime}\right) d t\right)$ Put

$$
y_{n}\left(x_{1}, \xi^{\prime}\right)=\frac{1}{p_{1,0^{*} \varepsilon_{n}}} \cdot Y_{m}\left(\varepsilon_{n}, T-x_{1}, \xi^{\prime}\right)
$$

As we shall show later by (2.5) in the proof of Lemma 3 that $Y_{m}\left(\varepsilon, x_{1}, \xi^{\prime}\right)$ is continuous in $\left(x_{1}, \xi^{\prime}\right)$ for fixed $E_{\text {, }}$ it implies that $y_{n}\left(x_{1}, \xi^{\prime}\right)$ is continuous in $\left(x_{1}, \xi^{\prime}\right)$ for every positive integer n. For $E=\left\{\left(x_{1}, \xi^{\prime}\right) ; y_{n}\left(x_{1}, \xi^{\prime}\right) \neq 0\right\}$, denote by $x\left(\left(x_{1}, \xi^{\prime}\right) ; E\right)$ the characteristic function of the set E. Put

$$
H_{n}\left(x_{1}, \xi^{\prime}\right)=x\left(\left(x_{1}, \xi^{\prime}\right) ; E\right) \cdot \overline{y_{n}\left(x_{1}, \xi^{\prime}\right)} /\left|y_{n}\left(x_{1}, \xi^{\prime}\right)\right|
$$

Then $\left|H_{n}\left(x_{1}, \xi^{\prime}\right)\right| \leqq 1$ and (2.3) implies

$$
\left|\int_{0}^{T} y_{n}\left(x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}} H_{n}\left(x_{1}, \xi^{\prime}\right) d x_{1}\right|>n
$$

for ξ^{\prime} in S_{n} Approximate $H_{n}\left(x_{1}, \xi^{\prime}\right)$ in the sense of $L^{1}([0, T])$ valued in bounded functions in ξ^{\prime} by the mollifier $\rho_{\delta}\left(x_{1}\right)$ with respect to x_{1} Put

$$
h_{\delta, n}\left(x_{1}, \xi^{\prime}\right)=\int_{R} \rho_{\delta}\left(x_{1}-t\right) H_{n}\left(t, \xi^{\prime}\right) d t
$$

Then $h_{\delta, n}\left(x_{1}, \xi^{\prime}\right)$ are continuous functions with respect to x_{1} in $[0, T]$ satisfying $\left|h_{\delta_{, ~}}\left(x_{1}, \xi^{\prime}\right)\right| \leqq 1$. Since

$$
\begin{aligned}
&\left|\left|\int_{0}^{T} y_{n}\left(x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}}{ }_{H_{n}}\left(x_{1}, \xi^{\prime}\right) d x_{1}\right|\right. \\
&-\left|\int_{0}^{T} y_{n}\left(x_{1}, \xi^{\prime}\right)<\xi^{\prime}\right\rangle^{s-s^{\prime}} h_{\delta, n}\left(x_{1}, \xi^{\prime}\right) d x_{1}| | \\
& \leqq \sup _{0 \leqq x_{1} \leqq T}\left|y_{n}\left(x_{1}, \xi^{\prime}\right)\right| \cdot\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}} \cdot \int_{0}^{T}\left|h_{\delta, n}\left(x_{1}, \xi^{\prime}\right)-H_{n}\left(x_{1}, \xi^{\prime}\right)\right| d x_{1},
\end{aligned}
$$

it implies that for ξ^{\prime} in S_{n} there exist positive numbers $\delta_{n}\left(\xi^{\prime}\right)$ such that

$$
\left|\int_{0}^{T} y_{n}\left(x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}} h_{\delta_{n}}\left(\xi^{\prime}\right), n\left(x_{1}, \xi^{\prime}\right) d x_{1}\right|>n
$$

for ξ^{\prime} in $S_{n} \quad$ Put

$$
\begin{gathered}
h_{n}\left(x_{1}, \xi^{\prime}\right)=h_{\delta_{n}}\left(\xi^{\prime}\right), n^{\left(x_{1}, \xi^{\prime}\right)} \\
g_{\varepsilon_{n}}(x)=F_{\xi^{\prime} \rightarrow x}^{-1}\left(n^{-1}\left|s_{n}\right|^{-1 / 2} h_{n}\left(x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{-s^{\prime}} \chi\left(\xi^{\prime} ; s_{n}\right)\right),
\end{gathered}
$$

where $\left|S_{n}\right|$ denotes the measure of S_{n} and $X\left(\xi^{\prime} ; S_{n}\right)$ is the characteristic function of the ball S_{n} We set $f_{E_{n}}=f_{0}+g_{E_{n}}$ Then

$$
\left\|g_{\varepsilon_{n}}\left(x_{1}, \cdot\right)\right\|_{s^{\prime}} \leqq \frac{1}{n} \rightarrow 0
$$

Since

$$
\begin{gathered}
\left(\hat{u}_{n}\left(T, \xi^{\prime}\right)-\hat{u}_{0}\left(T, \xi^{\prime}\right)\right)\left\langle\xi^{\prime}\right\rangle^{s} \\
\left.=\int_{0}^{T} Y_{n}\left(x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}} \cdot \hat{g}_{\varepsilon_{n}}\left(x_{1}, \xi^{\prime}\right)<\xi^{\prime}\right\rangle^{\prime} d x_{1} \\
=\int_{0}^{T} y_{n}\left(x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}} \cdot h_{n}\left(x_{1}, \xi^{\prime}\right) d x_{1} \cdot n^{-1}\left|s_{n}\right|^{-1 / 2} x\left(\xi^{\prime} ; s_{n}\right),
\end{gathered}
$$

it implies that $\left\|u_{n}(T, \cdot)-u_{0}(T, \cdot)\right\|_{s} \geqq$. This contradicts (D1), (D5), (D6), and (D7)
[Q.E.D.]

Put

$$
\begin{gathered}
B_{R}=\left\{\left|\xi^{\prime}\right| \leqq R\right\}, p=p_{2,0} / p_{1,0}, \theta=\arg -p, \theta=\exp i \theta / m^{\prime \prime}, \\
\zeta=\exp 2 \pi i / m^{\prime \prime}, \text { and } \tau j=\zeta^{j-m^{\prime}-1}, j=m^{\prime}+1, \quad, m .
\end{gathered}
$$

By the same argument as in Lemma 2.2 in [3], it implies the following lemma whose proof is omitted.

Lemma 2. Let (A1) in Assumption 1 be satisfied. Then, for every positive number R, there exist a positive number ε_{R} with $\varepsilon_{R}<1$ and continuous functions $\tau_{j, 1}\left(\varepsilon, \xi^{\prime}\right), j=1$, min on $\left[0, \varepsilon_{R}\right] \times B_{R}$ satisfying

$$
\lim _{\varepsilon \nmid 0} \sup _{\xi^{\prime} \in B_{R}}\left|\tau_{j, 1}\left(\varepsilon, \xi^{\prime}\right)\right|=0 \text {, for } j=1 \text {, }, m
$$

such that for $m^{\prime}+1 \leqq i<j \leqq m$ and for $1 \leqq i \leqq m^{\prime}, m^{\prime}+1 \leqq j \leqq m$

$$
\tau_{i}\left(\varepsilon, \xi^{\prime}\right) \neq \tau_{j}\left(\varepsilon, \xi^{\prime}\right) \text { on }\left(0, \varepsilon_{R}\right] \times B_{R} .
$$

and

$$
\begin{aligned}
& \tau_{j}\left(\varepsilon, \xi^{\prime}\right)=\sigma_{j}\left(\xi^{\prime}\right)+\tau_{j, 1}\left(\varepsilon, \xi^{\prime}\right), \text { for } j=1, \quad, m^{\prime} ; \\
& \varepsilon^{1 / m^{\prime \prime}} \cdot \tau_{j}\left(\varepsilon, \xi^{\prime}\right)=\theta_{j}^{\prime} \cdot|p|^{1 / m^{\prime \prime}}+\tau_{j, 1}\left(\varepsilon, \xi^{\prime}\right), \text { for } j=m^{\prime}+1, \quad, m .
\end{aligned}
$$

Lemma 3. Let Assumption 1 be satisfied and ε_{R} be the same as in Lemma 2. For every positive number R, there exists a positive number $C_{1, R}$ such that
(2.4) $\sup _{0<\varepsilon \leqq \varepsilon_{R^{\prime}}} \quad 0 \leqq x_{1 \leqq T},\left|\xi^{\prime}\right| \leqq R \varepsilon^{-\max \left(\left(j-m^{\prime}\right), 0\right\} / m^{\prime \prime}}\left|Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\right|$

$$
\leqq C_{1, R}, \text { for } j=1, \quad, m
$$

Proof. Fix an arbitrary positive number R and asuume that $0<\varepsilon \leqq \varepsilon_{R} \quad$ For arbitrary roots $\tau_{j}=\tau_{j}\left(\varepsilon, \xi^{\prime}\right), j=1$,.,$m$, which do not need to be distinct,

$$
\begin{equation*}
Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right) \tag{2.5}
\end{equation*}
$$

$=(-1)^{j-1} \cdot D(0,1, \ldots j-2, j, \quad, m-1)\left(\tau_{1}, \quad, \tau_{m}, x_{1}\right), j=1, \quad, m$.
As we have already shown in Theorem in [2], (A2) in Assumption 1 implies that the imaginary parts of $\theta_{i}^{\prime}, j=m^{\prime}+1, \quad, m$ are non-negative. Put $\eta=\varepsilon^{1 / m^{\prime \prime}}, \eta_{R}=\varepsilon_{R} 1 / \mathrm{m}^{\prime \prime}, z_{j}=\tau_{j}\left(\varepsilon, \xi^{\prime}\right)$, $j=1, \quad, m_{r}$ and $w_{j}=\varepsilon^{1 / m^{\prime \prime}} \cdot \tau_{j}\left(\varepsilon, \xi^{\prime}\right), j=1, \quad$, m. Then Assumption 1 implies that for every positive number R, there exist positive numbers M_{R}, M_{R}^{\prime}, and C_{R} such that (A.8) in Lemma A. 3 in Appendix is satisfied for $M=M_{R^{\prime}}, M^{\prime}=M_{R^{\prime}}^{\prime}, c=c_{R^{\prime}}$ and $\eta_{0}=\eta_{R}$. Hence Lemma A. 3 can be applied to (2.5) Since $D\left(\rho(1), \rho(2), \quad \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime}, x_{1}\right)$, ρ in S_{2} are entire in z^{\prime} and continuous in x_{1} for $0 \leqq x_{1} \leqq T$, it implies that there exists a positive number $C_{2, R}$ such that

$$
\max _{\rho \in s_{2}}\left|D\left(\rho(1), \rho(2), \quad ., \rho\left(m^{\prime}-1\right)\right)\left(\tau_{1}, \ldots, \tau_{m}, x_{1}\right)\right| \leqq C_{2, R}
$$

on $\left[0, \varepsilon_{R}\right] \times[0, T] \times B_{R}$. Since $E(w)$ is holomorphic for $w_{i}{ }^{\neq W_{j}}$, $1 \leqq i \leq m^{\prime}$ and $m^{1}+1 \leqq j \leqq m$, Lemma 2 implies that there exists a positive number $c_{3, R}$ such that for $j=1, \ldots, m^{\prime}$

$$
\begin{gathered}
\mid D\left(0,1, \cdot j-2, j n, m^{\prime}-1\right)\left(\tau_{1} r \quad, \tau_{m}, x_{1}\right) \\
\times\left(\left(\varepsilon^{1 / m^{\prime \prime}} \cdot \tau_{m^{\prime}+1}\right) \cdot \cdot\left(\varepsilon^{1 / m^{\prime \prime}} \cdot \tau_{m^{\prime}}\right)\right)^{m^{\prime}} \cdot E\left(\varepsilon^{1 / m^{\prime \prime}} \cdot \tau_{1}, \cdots, \varepsilon^{1 / m^{\prime \prime}} \cdot \tau_{m}\right) \mid \\
\leqq C_{3, R^{\prime}}
\end{gathered}
$$

on $\left[0, \varepsilon_{R}\right] \times[0, T] \times B_{R}$. Then

$$
\begin{gathered}
\left|D(0,1, \quad j-2, j, \quad, m-1)\left(\tau_{1}, \cdots, \tau_{m}, x_{1}\right)\right| \\
\leqq C_{3, R}+\left(C_{1}+C_{2} \cdot C_{2, R}\right) \cdot \varepsilon^{1 / m^{\prime \prime}},
\end{gathered}
$$

for $\mathrm{j}=1$, ., m^{\prime} and

$$
\begin{aligned}
& \left|D(0,1, \ldots, j-2, j, \ldots, m-1)\left(\tau_{1}, \cdot, \tau_{m}, x_{1}\right)\right| \\
& \leqq\left(C_{1}+C_{2} \cdot C_{2, R}\right) \cdot \varepsilon\left(j-m^{\prime}\right) / m^{\prime \prime},
\end{aligned}
$$

for $j=m^{\prime}+1$, , m. Put $C_{1, R}=c_{3, R}+c_{1}+c_{2} \cdot C_{2, R}$, then we have (2.4)
[Q.E.D.]

Denote by $\mathrm{y}_{\mathrm{j}}\left(\mathrm{x}_{1}, \xi^{\prime}\right), \mathrm{j}=1, \quad, \mathrm{~m}^{\prime}$ the fundamental solutions of the following ordinary differential equation with parameter ξ^{\prime} :

$$
L_{0}\left(D_{1}, \xi^{\prime}\right) y\left(x_{1}, \xi^{\prime}\right)=0
$$

with initial conditions:

$$
D_{1}^{k-1} y\left(0, \xi^{\prime}\right)=\delta_{j, k}, j, k=1, \quad, m^{\prime},
$$

where $\delta_{j, k}$ is Kronecker's delta. As we have already shown

$$
\begin{equation*}
y_{j}\left(x_{1}, \xi^{\prime}\right) \tag{2.6}
\end{equation*}
$$

$=(-1)^{j-1}-D\left(0,1, \quad \ldots j-2, j, \quad, m^{\prime}-1\right)\left(\sigma_{1} \ldots, \sigma_{m}, x_{1}\right), j=1, \quad, m^{\prime}$, where $\sigma_{j}=\sigma_{j}\left(\xi^{\prime}\right), j=1, \quad, m$ are roots appearing in Lemma 2.

Lemma 4. Let Assumption 1 be satisfied and ε_{R} be the same as in Lemma 2. Then

$$
\begin{gather*}
Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right) \rightarrow y_{j}\left(x_{1}, \xi^{\prime}\right), j=1 . \quad, m^{\prime} ; \tag{2.7}\\
Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right) \rightarrow 0, j=m^{\prime}+1, \quad, m,
\end{gather*}
$$

uniformly on $[0 . T] \times B_{R}$ when $\varepsilon \ngtr 0$.
Moreover, $Y_{j}\left(E, x_{1}, \xi^{\prime}\right), j=1, \quad, m$ satisfy
(ER)

$$
\sup _{1 \leqq j \leqq m, \quad 0<\varepsilon \leqq \varepsilon_{0}, \quad 0 \leqq x_{1} \leqq T, \quad \xi^{\prime} \in R^{n-1}\left|Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\right| \leqq C_{0} .}
$$

then $y_{j}\left(x_{1}, \xi^{\prime}\right), j=1, \ldots, m^{\prime}$ satisfy
(Eq)

$$
\sup _{l \leqq j \leqq m^{\prime}}, \quad 0 \leqq x_{1} \leqq T, \quad \xi^{\prime} \in R^{n-1}\left|y_{j}\left(x_{1}, \xi^{\prime}\right)\right| \leqq C_{0}
$$

Proof. By Lemma 3, (2.8) is obvious and it suffices to show that for $j=1$, m^{\prime}

$$
\begin{gathered}
(-1)^{j-1} \cdot D\left(0,1, \quad, j-2, j, \quad, m^{\prime}-1\right)\left(\tau_{1}, \quad, \tau_{m^{\prime}}, x_{1}\right) \\
\times\left((\varepsilon ^ { 1 / m ^ { \prime \prime } \cdot \tau _ { m ^ { \prime } + 1 }) \cdot \quad } \quad (\varepsilon ^ { 1 / m ^ { \prime \prime } } \cdot \tau _ { m })) ^ { m ^ { \prime } } \cdot E \left(\varepsilon^{1 / m^{\prime \prime}} \cdot \tau_{1}, \quad, \varepsilon^{\left.1 / m^{\prime \prime} \cdot \tau_{m}\right)}\right.\right. \\
\rightarrow Y_{j}\left(x_{1}, \xi^{\prime}\right)
\end{gathered}
$$

Since $\tau_{j}\left(\varepsilon, \xi^{\prime}\right) \rightarrow \sigma_{j}\left(\xi^{\prime}\right), j=1, \quad, m^{\prime}$ uniformly on B_{R} when $\varepsilon \psi 0$ by
Lemma 2, it implies that for $j=1, \quad, m^{*}$

$$
(-1)^{j-1} \cdot D\left(0,1, \quad, j-2, j, \quad, m^{\prime}-1\right)\left(\tau_{1}, \quad, \tau_{m}, x_{1}\right) \rightarrow y_{j}\left(x_{1}, \xi^{\prime}\right)
$$

On the other hand,

$$
\begin{gathered}
\left(\left(\varepsilon ^ { 1 / m ^ { \prime \prime } \cdot \tau _ { m } + 1) \cdot } \cdot \left(\varepsilon^{\left.\left.1 / m^{\prime \prime} \cdot \tau_{m}\right)\right)^{m^{\prime}}}\right.\right.\right. \\
+\left(\left(\theta \cdot \tau_{m}^{\prime} \cdot+1 \cdot|p|^{1 / m^{\prime \prime}}\right) \cdot \cdots\left(\theta \cdot \tau_{m}^{\prime} \cdot|p|^{1 / m^{\prime \prime}}\right)\right)^{m^{\prime}}
\end{gathered}
$$

and

$$
\begin{gathered}
E\left(\varepsilon^{1 / m^{\prime \prime}} \cdot \tau_{1}, \quad, \varepsilon^{\left.1 / m^{\prime \prime} \cdot \tau_{m}\right)}\right. \\
\rightarrow \\
E\left(0, \quad \cdot, 0,\left(\theta \cdot \tau_{m^{\prime}+1}^{\prime}|p|^{1 / m^{\prime \prime}}\right), \quad,\left(\theta \cdot \tau_{m}^{\prime} \cdot|p|^{1 / m^{\prime \prime}}\right)\right) \\
=1 /\left(\left(\theta \cdot \tau_{m^{\prime}+1}^{\prime} \cdot|p|^{1 / m^{\prime \prime}}\right) \cdot . \quad \cdot\left(\theta \cdot \tau_{m}^{\prime} \cdot|p|^{1 / m^{\prime \prime}}\right)\right)^{m^{\prime}}
\end{gathered}
$$

Thus we have (2.7)
Since R is arbitrary, (2 7) and (E8) imply (E9)

Let us consider the following singulary perturbed Cauchy problem:
(CP2)

$$
\left\{\begin{array}{l}
L_{\varepsilon}(D) u(x)=0, \text { in }[0, T] \times R_{X^{\prime}}^{n-1} ; \\
D_{1} j-1 u\left(0, x^{\prime}\right)=0, j=1, \quad, m^{\prime} \\
D_{1}^{j-1} u\left(0, x^{\prime}\right)=\phi_{\varepsilon, j}\left(x^{\prime}\right), j=m^{\prime}+1, ., m,
\end{array}\right.
$$

and its reduced Cauchy problem:
(RCP2)

$$
\left[\begin{array}{l}
L_{0}(D) u(x)=0 . \text { in }[0, x] \times R_{x^{\prime}}^{n-1} ; \\
D_{1}^{j-1} u\left(0, x^{\prime}\right)=0, j=1, \quad, m^{\prime}
\end{array}\right.
$$

Denote by $u_{\varepsilon, 2}(x)$ the solution of (CP2) and by $u_{0,2}(x)$ the solution of (RCP2) Then $u_{0,2}(x)=0$.

Lemma 5. Let Assumption 1 be satisfied and ε_{R} be the same as in Lemma 2 Assume that every support of the datum $\hat{\phi}_{\varepsilon, j}\left(\xi^{\prime}\right)$,
$j=m^{\prime}+1$, , m in ($C P 2$) is contained in the closed ball B_{R}. Then, for arbitrary real numbers s and s ' there exists a positive number K_{R} which is independent of ε such that for $0<\varepsilon \leq \varepsilon_{R^{\prime}}$, (2.9) $\sup _{0 \leqq x_{1} \leqq T}\left\|u_{\varepsilon, 2}\left(x_{1}, \cdot\right)\right\|_{S} \leqq K_{R} \cdot \sum_{\ell=m+1}^{m} \varepsilon^{\left(\ell-m^{\prime}\right) / m^{\prime \prime}} \cdot\left\|\phi_{\varepsilon, \ell}\right\|_{S}$.

Remark. Here we do not use any conditions on the fundamental solutions Y_{j} but use (A2) in Assumption 1 Lemma 4 shows that (A2) ensures the boundedness of Y_{j} on $[0, T] \times B_{R}$ when E $\downarrow 0$

Proof of Lemma 5. It is well known that the solution $u_{\varepsilon, 2}(x)$ of (CP2) satisfies

$$
\hat{u}_{\varepsilon, 2}\left(x_{1}, \xi^{\prime}\right)=\sum_{j=m^{\prime}+1}^{m} Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right) \cdot \hat{\phi}_{\varepsilon, j}\left(\xi^{\prime}\right)
$$

Lemma 3 implies

$$
\left|\hat{u}_{\varepsilon, 2}\left(x_{1}, \xi^{\prime}\right)\right| \leqq c_{1, R} \cdot \sum_{\ell=m^{\prime}+1}^{m} \varepsilon\left(\ell-m^{\prime}\right) / m^{\prime \prime} \cdot\left|\hat{\phi}_{\varepsilon_{,} \ell}\right|
$$

on $[0, T] \times B_{R^{-}} \quad$ Thus

$$
\begin{gathered}
(2 \pi)^{-n+1} \int_{\left|\xi^{\prime}\right| \leqq R}\left|\hat{u}_{\varepsilon, 2}\left(x_{1}, \xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s}\right|^{2} d \xi^{\prime} \\
\leqq C_{1, R}^{2 \cdot m^{\prime \prime}} \\
x \sum_{\ell=m^{\prime}+1}^{m}(2 \pi)^{-n+1} \int_{\left|\xi^{\prime}\right| \leqq R}\left|\varepsilon^{\left(\ell-m^{\prime}\right) / m^{\prime \prime}} \cdot \hat{\phi}_{\varepsilon, \ell^{\prime}}\left(\xi^{\prime}\right)\left\langle\xi^{\prime}\right\rangle^{s}\right|^{2} d \xi^{\prime}
\end{gathered}
$$

Put $K_{R}=C_{1, R} \cdot m^{\prime \prime 2 / 2} \cdot \sup _{\left|\xi^{\prime}\right| \leq R}\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}} \quad$ Then we have (2.9)

The following corllary shows us that the stability is very strong when the Cauchy problem is admissible.

Corollary 2. Let Assumption 1 be satisfied and ε_{R} be the same as in Lemma 2. Then, for every positive number ε with $\varepsilon \leq \varepsilon_{R^{\prime}}$ there exist Cauchy data $\phi_{\varepsilon, j} j^{\prime}=m^{\prime}+1, \quad, m$ belonging to H^{∞} such that for arbitrary real numbers s and s^{\prime},

$$
\begin{aligned}
& \| \phi_{\varepsilon, j} l_{S}, \rightarrow \infty, j=m \cdot+1, \ldots m ; \\
& \sup _{0 \leqq x_{1} \leqq T}\left|u_{\varepsilon, 2}\left(x_{1}, \cdot\right)\right|_{S} \rightarrow 0,
\end{aligned}
$$

where $u_{\varepsilon, 2}$ are the solutions of (CP2) for these data $\phi_{\varepsilon, j}$, $j=m^{\prime}+1, \quad, m$.

Proof. Choose non-trivial $C_{0}^{\infty}\left(B_{R}\right)$-functions $\psi_{j}\left(\xi^{\prime}\right)$, $j=m \cdot+1, \ldots, m$ and a positive number α with $\alpha<1 / m$ " Put

$$
\phi_{\varepsilon, j}\left(x^{\prime}\right)=\varepsilon^{-\alpha} \cdot F_{\xi^{\prime} \rightarrow x}^{-1},\left(\psi_{j}\left(\xi^{\prime}\right)\right), j=m^{\prime}+1, \quad, m,
$$

which are rapidly decreasing functions. If s'<0, then

$$
\left\|\phi_{\varepsilon, j}\right\|_{s}, \geqq \varepsilon^{-\alpha} \cdot\langle R\rangle^{\cdot}\left\|F^{-1}\left(\psi_{j}\right)\right\|_{0}+\infty .
$$

when $\varepsilon \nmid 0$. If $s^{\prime}>0$, then

$$
\left\|\phi_{E, j}\right\|_{s^{\prime}} \geqq\left\|\phi_{E, j}\right\|_{-s^{\prime}} \geqq \varepsilon^{-\alpha} \cdot\langle R\rangle^{-s^{\prime}}\left\|F^{-1}\left(\psi_{j}\right)\right\|_{0} \uparrow \infty,
$$

when $\varepsilon \downarrow 0$. By (2.9),

$$
\sup _{0 \leqq x_{1} \leqq T}\left\|u_{\varepsilon, 2}\left(x_{1}, \cdot\right)\right\|_{s} \leqq \varepsilon^{1 / m \cdot-\alpha} \cdot K_{R} \cdot \sum_{j=m \cdot+1}^{m}\left\|F^{-1}\left(\psi_{j}\right)\right\|_{S}, \psi 0 .
$$

when $\varepsilon \nleftarrow 0$.
[Q.E.D.]

Lemma 6. Let the same assumption as in Theorem 1 be satisfied. Consider the singulary perturbed Cauchy problem (CP2) and the reduced Cauchy problem (RCP2) for (CP2) Assume that for the Cauchy data $\phi_{\varepsilon, j}, j=1$, m there exist positive numbers δ and M such that $\sup _{1 \leqq j \leqq m}\left\|\phi_{E, j}\right\|_{S^{\prime}+\delta} \leqq M$. Then the following two conditions are equivalent:
(C9) The Cauchy problem (CP2) is ($s, s^{\prime}+0$)-stable in [0,T] for $\varepsilon+0$ with respect to a particular solution $u_{0,2}=0$ of (RCP2)
(Cl0) For every positive number δ there exist positive numbers ε_{δ} and c_{δ} such that
 $\leqq C_{\delta}$

Proof. First we shall show (C10) implies (C9) We have only to show that if $\sup _{I \leqq j \leqq m}\left\|\phi_{E, j}\right\|_{s^{\prime}+\delta} \leqq M$ then $\sup _{0 \leq x_{1} \leq T}\left\|u_{\varepsilon, 2}\left(x_{1}, \cdot\right)\right\|_{S}+0$. As we have already shown in the proof of Lemma 1 , the solution $u_{\varepsilon, 2}(x)$ of (CP2) satisfies

$$
\hat{u}_{\varepsilon, 2}\left(x_{1}, \xi^{\prime}\right)=\sum_{j=m}^{m}+1 Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right) \cdot \hat{\phi}_{\varepsilon, j}\left(\xi^{\prime}\right)
$$

Denote by $X\left(\xi^{\prime} ; B_{R}\right)$ the characteristic function of the ball B_{R}. Put

$$
\begin{gathered}
\hat{\mathrm{v}}_{\varepsilon, 2}\left(\mathrm{x}_{1}, \xi^{\prime}\right)=\hat{u}_{\varepsilon, 2}\left(\mathrm{x}_{1}, \xi^{\prime}\right) \cdot x\left(\xi^{\prime} ; \mathrm{B}_{\mathrm{R}}\right), \\
\hat{w}_{\varepsilon, 2}\left(\mathrm{x}_{1}, \xi^{\prime}\right)=\hat{u}_{\varepsilon, 2}\left(\mathrm{x}_{1}, \xi^{\prime}\right) \cdot\left(1-x\left(\xi^{\prime} ; \mathrm{B}_{R}\right)\right)
\end{gathered}
$$

Then $v_{\varepsilon, 2}(x)=F_{\xi^{\prime}+x^{\prime}}^{-1}\left(\hat{v}_{\varepsilon, 2}\left(x_{1}, \xi^{\prime}\right)\right)$ is the solution of (CP2) with
the initial conditions:

$$
\begin{gathered}
D_{1}^{j-1} u\left(0, x^{\prime}\right)=0, j=1, \ldots, m^{\prime} ; \\
D_{1}^{j-1} u\left(0, x^{\prime}\right)=F_{\xi^{\prime}+x^{\prime}}^{-1}\left(\hat{\phi}_{\varepsilon, j}\left(\xi^{\prime}\right) \cdot x\left(\xi^{\prime} ; B_{R}\right)\right), j=m^{\prime}+1, \quad, m .
\end{gathered}
$$

Since the supports of the Fourier transforms of these Cauchy data are contained in the ball B_{R}, we can apply Lemma 5 to $v_{\varepsilon, 2}(\mathrm{x})$ Obviously

$$
\left\|F_{\xi^{\prime}+x}^{-1},\left(\hat{\phi}_{E, \ell}\left(\xi^{\prime}\right) \cdot x\left(\xi^{\prime} ; B_{R}\right)\right)\right\|_{S^{\prime}} \leqq\left|\phi_{\varepsilon, \ell}\right|_{S^{\prime}},
$$

(2.9) and $0<\varepsilon \leq \varepsilon_{R}<1$ imply that

$$
\begin{gather*}
\sup _{0 \leqq x_{1} \leqq T} \mid v_{\varepsilon, 2}\left(x_{1}, \cdot\right) \|_{S} \tag{2.10}\\
\leqq K_{R} \cdot \varepsilon^{1 / m^{\prime \prime}} \cdot \sum_{\ell=m^{\prime}+1}^{m} \|\left. F_{\xi^{\prime} \rightarrow x^{\prime}}^{-1}\left(\hat{\phi}_{\varepsilon, \ell}\left(\xi^{\prime}\right) \cdot x\left(\xi^{\prime} ; B_{R}\right)\right)\right|_{S^{\prime}} \\
\leqq K_{R} \cdot \varepsilon^{1 / m^{\prime \prime}} \cdot \sum_{\ell=m^{1}+1}^{m}\left\|\phi_{\varepsilon, \ell}\right\|_{S^{\prime}}
\end{gather*}
$$

Choose a positive number δ^{\prime} satisfying $\delta^{\prime}<\delta$ and put $\delta^{\prime \prime}=\delta^{\prime} \delta^{\prime}$ Since

$$
\begin{gathered}
\left|\hat{w}_{\varepsilon, 2}\left(x_{1}, \xi^{\prime}\right) \cdot\left\langle\xi^{\prime}\right\rangle^{s}\right| \\
\leqq \sum_{j=m^{\prime}+1}^{m}\left|Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right) \cdot\left\langle\xi^{\prime}\right\rangle^{s-s^{\prime}-\delta^{\prime}}\right| \\
\cdot\left|\hat{\phi}_{\varepsilon, j}\left(\xi^{\prime}\right) \cdot\left\langle\xi^{\prime}\right\rangle^{s^{\prime}+\delta}\right| \cdot\left|1-x\left(\xi^{\prime} ; B_{R}\right)\right| \cdot\left\langle\xi^{\prime}\right\rangle^{-\delta^{\prime \prime}},
\end{gathered}
$$

the estimate (E3) for $\delta=\delta^{\prime}$ implies that

$$
\begin{gathered}
\left|\hat{w}_{E, 2}\left(x_{1}, \xi^{\prime}\right) \cdot\left\langle\xi^{\prime}\right\rangle^{s}\right| \\
\leqq \sum_{j=m^{\prime}+1}^{m} c_{\delta} \cdot \cdot\left|\hat{\phi}_{\varepsilon, j}\left(\xi^{\prime}\right) \cdot\left\langle\xi^{\prime}\right\rangle^{\prime}+\delta\right| \cdot\left|1-x\left(\xi^{\prime} ; B_{R}\right)\right| \cdot R^{-\delta^{\prime \prime}}
\end{gathered}
$$

Hence
(2.11) $\sup _{0 \leq x_{1} \leq T}\left\|w_{\varepsilon, 2}\left(x_{1}, \cdot\right)\right\|_{s} \leqq c_{\delta} \cdot \cdot R^{-\delta^{\prime \prime}} \cdot \sum_{j=m^{\prime}+1}^{m}\left\|\phi_{\varepsilon, j}\right\|_{s^{\prime}+\delta}$
(2.12) $\sup _{0 \leqq x_{1} \leqq T}\left\|u_{\varepsilon, 2}\left(x_{1}, \cdot\right)\right\|_{s} \leqq\left(K_{R} \cdot \varepsilon^{1 / m^{\prime \prime}}+C_{\delta}, \cdot R^{-\delta "}\right) \cdot M \cdot m^{\prime \prime}$

First take the upper limit of ε in $(2,12)$ and next let $R \uparrow \infty$, then

$$
\overline{\lim _{\varepsilon \downarrow 0}} \sup _{0 \leqq x_{1} \leqq T}\left\|u_{\varepsilon, 2}\left(x_{1}, \cdot\right)\right\|_{s}=0 .
$$

Next we must show (C9) implies (Cl0) Assume that (Cl0) is not satisfied. Then there exists a positive number δ such that (E3) is not satisfied. Replacing s^{\prime} by $s^{\prime}+\delta$ in (2.2) and (2.3) in the proof of Lemma 1 , we have a sequence of solutions $u_{n}(x)$ of (CP2) such that

$$
\begin{array}{r}
\sup _{0 \leqq x_{1} \leqq T} \mid u_{n}\left(x_{1}, \cdot\right) \|_{s} \geqq 1 / 2, \\
\left\|D_{1}^{j-1} u_{u_{n}}(0, \cdot)\right\|_{s^{\prime}+\delta}+0, j=1, \quad, m .
\end{array}
$$

This contradicts (Di), (D5), (D6), and (D7)
[Q.E.D.]

Proof of Theorem 1. First we shall show the equivalence between (Cl) and (C3) Denote by $u_{\varepsilon, 1}(x)$ the solution of (CP1) and by $u_{\varepsilon, 2}(x)$ the solution of (CP2) with the initial conditions:

$$
\begin{gathered}
D_{1}^{j-1} u\left(0, x^{\prime}\right)=0, j=1, \quad, m^{\prime} ; \\
D_{1}^{j-1} u\left(0, x^{\prime}\right)=\phi_{\varepsilon, j^{\prime}}\left(x^{\prime}\right)-D_{1}^{j-1} u_{0}\left(0, \xi^{\prime}\right), j=m^{\prime}+1, \quad, m .
\end{gathered}
$$

Then the solution $u_{E}(x)$ of (CP) is given by $u_{\varepsilon, 1}(x)+u_{\varepsilon, 2}(x)$
Apply Lemma 1 and Lemma 6. The condition (C3) is equivalent to the (s, s^{\prime})-stability of (CP1) with respect to a particular solution u_{0} of (RCP) and the (s,s'+0)-stability of (CP2) with respect to a particular solution $u_{0,2}=0$ of (RCP2) By the definition, the (s, s^{\prime})-stability implies the (s, s'+0)-stability

Hence we can easily show that (C3) is equivalent to the (s,s'+0)-stability of (CP) with respect to a particular solution u_{0} of (RCP)

Since (C3) is independent of the choice of a particular solution u_{0} of (RCP), it implies that (C2) is equivalent to (C1)

Finally we shall show the equivalence between (C3) and (C4) We have only to show that (C4) implies (C3) Apply Lemma 3 for $R=R_{0}$. Then we have (E1) and (E2) for $\varepsilon_{0}=\min \left\{\varepsilon_{0}^{\prime}, \varepsilon_{R_{0}}\right\}$ and

$$
c_{0}=\max \{1, T\} \cdot \max \left\{C_{0}^{\prime}, C_{1, R_{0}} \cdot\left(1+R_{0}^{2}\right) \max \left\{\left(s-s^{\prime}\right), 0\right\} / 2\right\}
$$

Apply Lemma 3 for $R=R_{\delta} \quad$ Then we have (E6) for $\varepsilon_{\delta}=\min \left\{\varepsilon_{\delta}^{\prime}, \varepsilon_{R_{\delta}}\right\}$ and

$$
c_{\delta}=\max \left\{c_{\delta}^{1}, c_{1, R_{\delta}} \cdot\left(1+R_{\delta}^{2}\right)^{\max \left\{\left(s-s^{\prime}-\delta\right), 0\right\} / 2}\right\}
$$

[Q.E.D.]

By the same argument as Theorem 1 we have the following theorem whose proof is omitted.

Theorem 2. Let Assumption 1 and 2 be satisfied for s'=s. Then the following three conditions are equivalent:
(C5) The Cauchy problem (CP) is H^{5}-stable in [0,T] for $\varepsilon \neq 0$ with respect to a particular solution $u_{0}(x)$ of (RCP) belonging to $c^{m}\left([0, T] ; H^{s+\ell}\right)$
(C11) The Cauchy problem (CP) is H^{S}-stable in $[0, T]$ for $\varepsilon \downarrow 0$ with respect to every solution $u_{0}(x)$ of ($R C P$) belonging to
$c^{m}\left([0, T] ; H^{s+\ell}\right)$
(C12) There exist positive numbers $\varepsilon_{0}^{\prime}, R_{0}$, and C_{0}^{\prime} such that
(E10) $\quad \sup _{0<\varepsilon \leqq \varepsilon_{0}}, \left.R_{0 \leqq} \leqq \xi^{\prime}\left|\int_{0}^{T} \frac{1}{\varepsilon} \cdot\right| Y_{m}\left(\varepsilon, x_{1}, \xi^{\prime}\right) \right\rvert\, d x_{1} \leqq C_{0}^{\prime}$,
(E11) $\sup _{1 \leqq j \leqq m, ~} \quad 0<\varepsilon \leqq \varepsilon_{0}, \quad 0 \leqq x_{1} \leqq T, R_{0} \leqq\left|\xi^{\prime}\right| \quad\left|Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\right| \leqq C_{0}^{\prime}$.

3. An example for Nagumo's H^{5}-stability

Let $P_{1}(\xi)$ and $P_{2}(\xi)$ satisfy Assumption 1 and ord $P_{1, j}\left(\xi^{\prime}\right) \leqq j, j=0, \ldots, m ;$ ord $p_{2, j}\left(\xi^{\prime}\right) \leqq j, j=0, \quad, m^{\prime}$ Then $P_{1}(D)$ and $P_{2}(D)$ are kowalewskian operators. Put

$$
L(\xi, \lambda)=P_{1}(\xi)+\lambda^{m "} \cdot P_{2}(\xi)
$$

$N^{\prime}=(1,0)$ in $R_{\xi} \times R_{\xi}^{n-1}$, and $N=\left(N^{\prime}, 0\right)$ in $R_{\xi}^{n} \times R_{\lambda} \quad$ Denote by $L(\xi, \lambda)$ the principal symbol of $L(\xi, \lambda)$ with respect to (ξ, λ) and by $\stackrel{\circ}{P}_{i}(\xi), i=1,2$ those of $P_{i}(\xi), i=1,2$, respectively. Then

$$
\stackrel{\circ}{L}(\xi, \lambda)=\stackrel{\circ}{P}_{1}(\xi)+\lambda^{\mathrm{m}}{ }^{\prime \prime} \stackrel{\circ}{\mathrm{P}}_{2}(\xi)
$$

It must be remarked that $\dot{\mathrm{L}}(\mathrm{N})=\mathrm{p}_{1,0} \neq 0$ and $\stackrel{\circ}{\mathrm{P}}_{2}\left(\mathrm{~N}^{\prime}\right)=\mathrm{p}_{2,0} \neq 0$. Kevorkian and Cole's suggestive example in 54.12 in [7] is as follows.

Example 1 (Kevorkian and Cole).

Let $P_{1}\left(\xi_{1}, \xi_{2}\right)=\xi_{1}^{2}-\xi_{2}^{2}$, which is the simple wave operator, and $P_{2}\left(\xi_{1} \cdot \xi_{2}\right)=\sqrt{-1} \cdot\left(a \cdot \xi_{1}+b \cdot \xi_{2}\right)$, where a and b are real numbers. Let us consider the solutions $u_{\varepsilon}\left(x_{1}, x_{2}\right)$ through a fixed point $P\left(x_{1}{ }^{0}, x_{2}{ }^{0}\right)$ of the following equation:

$$
\varepsilon \cdot\left(P_{1}\left(D_{1}, D_{2}\right)+P_{2}\left(D_{1}, D_{2}\right)\right) u\left(x_{1}, x_{2}\right)=0 .
$$

If there exists a convergent sequence of $u_{\varepsilon}\left(x_{1}, x_{2}\right)$, then the limit $u_{0}\left(x_{1}, x_{2}\right)$ must satisfy the reduced equation

$$
P_{2}\left(D_{1}, D_{2}\right) u\left(x_{1}, x_{2}\right)=0
$$

Since the general solution of the reduced equation has the form:
$u_{0}\left(x_{1}, x_{2}\right)=f\left(b \cdot x_{1}-a \cdot x_{2}\right)$ and the subcharacteristic of the reduced equation has the form: $b \cdot x_{1}-a \cdot x_{2}=$ constant, if $|a / b|>1$ then the subcharacteristic to P lies outside the usual domain of dependence of P for the simple wave operator Hence $u_{0}\left(x_{1}, x_{2}\right)$ can not be approximated by $u_{E}\left(x_{1}, x_{2}\right)$ when $|a / b|>1$.

Thus even when $\stackrel{\circ}{P}_{1}$ and $\stackrel{\circ}{P}_{2}$ are strictly hyperbolic, we need some additional assumption on the propagation speeds. Therefore we require the following assumption.

Assumption 3.

(A3): The polynomial $\stackrel{\circ}{\mathrm{L}}\left(\xi_{1}+\tau, \xi^{\prime}, \lambda\right)$ has only simple real zero for every (ξ, λ) in $R^{n}{ }_{x} R-\{(0,0)\} \quad$ That is, $L(\xi, \lambda)$ is a strictly hyperbolic polymonial in (ξ, λ) with respect to N.
(A4) : There exists a positive number T_{1} such that if $\operatorname{Im} T<-T_{1}$ then $P_{2}\left(\xi_{1}+\tau, \xi^{\prime}\right) \neq 0$ for all ξ in $R^{n} \quad$ That is, $P_{2}(\xi)$ is a hyperbolic polymonial in ξ with respect to N ' in the sense of Garding

Remark. Since

$$
\begin{gathered}
\dot{L}(0+\tau, 0, \lambda)=p_{1,0} \cdot \tau^{m}+\lambda^{m "} \cdot p_{2,0} \cdot \tau^{m \prime} \\
=\tau^{m^{\prime}}\left(p_{1,0} \cdot \tau^{m^{\prime \prime}}+\lambda^{m^{\prime \prime}} \cdot p_{2,0}\right)
\end{gathered}
$$

(A.3) implies that $\mathrm{m}^{\prime} \leqq 1$

Theorem 3. Let Assumption 1 and 3 be satisfied and s be an
arbitrary real number Then the Cauchy problem (CP) is H^{s}-stable (and therefore ($s, s+0$)-stable) in $0 \leqq X_{1} \leqq T$ for $\varepsilon \nLeftarrow 0$ with respect to every solution u_{0} of (RCP) belonging to $\mathrm{c}^{\mathrm{m}}\left([\mathrm{O}, \mathrm{T}] ; \mathrm{H}^{\mathrm{s}+\mathrm{m}}\right)$

Proof. By Theorem 2, it suffices to show that Assumption 2, which is the assumption on the unique solvability, and (C12) are satisfied. First we shall show (Cl2) Denote by $t_{j}\left(\xi^{\prime}, \lambda\right)$, $j=1$, , m the roots of $L(\xi, \lambda)=0$ with respect to ξ_{1} When $\varepsilon^{-1}=\lambda^{m "}$, we may write

$$
\begin{equation*}
t_{j}\left(\xi^{\prime}, \lambda\right)=\tau_{j}\left(\varepsilon, \xi^{\prime}\right), j=1, \quad, m \tag{3.1}
\end{equation*}
$$

for $\epsilon \neq 0$ by choosing the suffixes $\{j\}$ of $t_{j}\left(\xi^{\prime}, \lambda\right)$ properly. The strict hyperbolicity of $L(\xi, \lambda)$ implies that there exist positive numbers R_{1}, c_{1}, and M_{1} such that
(3.2) $\inf _{j \neq k,} 1 \leqq j, k \leq m,\left|\left(\xi^{\prime}, \lambda\right)\right| \geqq R_{1}\left|t_{j}\left(\xi^{\prime}, \lambda\right)-t_{k}\left(\xi^{\prime}, \lambda\right)\right| /\left|\left(\xi^{\prime}, \lambda\right)\right|$

$$
\geqq c_{1} ;
$$

$$
\begin{equation*}
\sup _{1 \leqq j \leqq m}\left|\left(\xi^{\prime}, \lambda\right)\right| \geqq R_{1}\left|t_{j}\left(\xi^{\prime}, \lambda\right)\right| /\left|\left(\xi^{\prime}, \lambda\right)\right| \leqq M_{1} \tag{3.3}
\end{equation*}
$$

(For example, if we look carefully into the proof of Theorem 4.10 in [8], we can find this fact easily.) Hence the roots $\tau_{j}\left(\varepsilon, \xi^{\prime}\right), j=1, \quad, m$ of $L_{\varepsilon}(\xi)=0$ with respect to ξ_{1} are distinct for $\varepsilon \neq 0$ and $R_{1} \leqq\left|\xi^{\prime}\right|$ The hyperbolicity of $L(\xi, \lambda)$ implies that there exists a positive number C_{3} such that

$$
\begin{equation*}
\sup _{l \leqq j \leqq m,}\left(\xi^{\prime}, \lambda\right) \in R^{n-1}{ }_{x R}\left|\operatorname{Im} t_{j}\left(\xi^{\prime}, \lambda\right)\right| \leqq c_{3} \tag{3.4}
\end{equation*}
$$

Put $\rho=\left|\left(\xi^{\prime}, \lambda\right)\right| \quad$ Then (A.4) in Appendix implies that for $\varepsilon \neq 0$,

$$
\begin{aligned}
& \mathrm{R}_{1} \leqq\left|\xi^{\prime}\right|, 0 \leq \mathrm{x}_{1} \leqq \mathrm{~T} \text {, and } j=1, \quad, m \text {, } \\
& \left|Y_{j}\left(\varepsilon, X_{1}, \xi^{\prime}\right)\right| \\
& =\left|(-1)^{j-1} \cdot D(0,1, \ldots, j-2, j, \quad ., m-1)\left(t_{1}, \quad, t_{m}, x_{1}\right)\right| \\
& \leqq M(0,1, \cdot, j-2, j, \quad, m-1) \cdot\left|\left(t_{1}, \quad, t_{m}\right)\right|^{m-j} \\
& x \sum_{\ell=1}^{m} \exp \left(-\operatorname{Im} t_{\ell} x_{1}\right) / \Pi_{k \neq \ell}, 1 \leqq k \leqq m \quad\left|t_{\ell}-t_{k}\right| \\
& \leqq \rho^{l-j} \cdot M(0,1, \quad ., j-2, j, \quad, m-1) \cdot\left|\left(t_{1} / \rho, \quad, t_{m} / \rho\right)\right|^{m-j} \\
& x \sum_{\ell=1}^{m} \exp \left(-I m t_{\ell} x_{1}\right) / \Pi_{k \neq \ell}, l \leqq k \leqq m \quad\left|t_{\ell} / \rho-t_{k} / \rho\right| \\
& \leqq \rho^{1-j} \cdot C_{4} \text {, }
\end{aligned}
$$

where
$C_{4}=M(0,1, \ldots, j-2, j, \quad, m-1) \cdot m^{(m-j) / 2} \cdot M_{1}{ }^{m-j} \cdot m \cdot\left(\exp C_{3} T\right) \cdot c_{1}{ }^{1-m}$ Since $R_{1} . \leqq\left|\xi^{\prime}\right| \leqq \rho$ and $\lambda \leqq \rho$, it implies that $\rho^{1-j} \leqq R_{1}^{1-j}$, $j=1, \quad, \quad m$ and $\varepsilon^{-1} \cdot \rho^{1-m}=\lambda^{m "} \cdot \rho^{1-m} \leqq \lambda^{m "+1-m} \quad$ Hence $\sup _{0 \leqq \subseteq \leqq \varepsilon_{R_{1}}}, \quad 0 \leqq x_{1} \leqq T . R_{1} \leqq\left|\xi^{\prime}\right| \quad\left|Y_{j}\left(\varepsilon_{r} x_{1}, \xi^{\prime}\right)\right| \leqq C_{4}, \quad j=1, \quad, m ;$

$$
\sup _{0 \leqq \varepsilon \leqq \varepsilon_{R_{1}}}, \quad 0 \leqq x_{1} \leqq T, \quad R_{1} \leqq\left|\xi^{\prime}\right|^{\frac{1}{\varepsilon} \cdot\left|Y_{j}\left(\varepsilon, x_{1}, \xi^{\prime}\right)\right| \leqq C_{4}}
$$

Next we shall show that the unique solvability
Since (Cl2) and Lemma 3 imply (C6), Lemma 4 can be applied. It is well known that (E8) and (E9) imply the unique solvability
[Q.E.D.]

Remark. If $\phi_{\varepsilon, j}, j=1, \quad, m$ and $\phi_{0, j}, j=1, \quad, m$ belong to $H^{\infty}\left(R^{n-1}\right)$ and f_{E} and f_{0} belong to $H^{\infty}\left(R^{n}\right)$ then u_{E} belong to $C^{m}\left([0 . T] ; H^{s}\right)$ and u_{0} belongs to $C^{m}\left([0 . T] ; H^{s+m}\right)$

Appendix

Let $z=\left(z_{1}, z_{2},, z_{n}\right)$ be complex variables. For a non-negative integer ℓ, denote

$$
a(\ell)(z)=\left(\left(z_{j}\right)^{\ell} ; j \rightarrow 1, \quad, n\right)
$$

and for non-negative integers $\ell_{1}, \ell_{2}, ., \ell_{n}$ satisfying $0 \leq \ell_{1}<\ell_{2}<\quad<\ell_{n}$, denote

$$
A\left(\ell_{1}, \ell_{2}, ., \ell_{n}\right)(z)=\operatorname{det}\left(a\left(l_{i}\right)(z) ; i \neq 1, \quad n\right) .
$$

In particular, $A(0,1, \quad, n-1)(z)$ is the Vandermonde determinant and represented as the difference product $\Pi_{1 \leqq i<j \leqq n}\left(z_{j}-z_{i}\right)$ Let $i=\sqrt{-1}$ and x_{1} be a real parameter. Denote

$$
e\left(z, x_{1}\right)=\left(\exp i z_{j} x_{1} ; j+1, \quad, n\right)
$$

and for non-negative integers $\ell_{1}, \ell_{2}, \ldots, \ell_{n-1}$ satisfying $0 \leq l_{1}<l_{2}<\ldots<l_{n-1}$, denote

$$
\begin{gather*}
B\left(\ell_{1}, \ell_{2}, \quad, \ell_{n-1}\right)\left(z, x_{1}\right) \\
=\operatorname{det}{ }^{t}\left(t_{e\left(z, x_{1}\right), t_{a\left(\ell_{1}\right)(z),}^{t_{a(\ell}},}\right) \tag{z}
\end{gather*}
$$

Expand the determinant $B\left(\ell_{1}, \ell_{2}, \quad, \ell_{n-1}\right)\left(z, x_{1}\right)$ with respect to the first row. Then

$$
\begin{equation*}
B\left(\ell_{1}, l_{2}, \quad, \ell_{n-1}\right)\left(z, x_{1}\right) \tag{A.1}
\end{equation*}
$$

$$
=\sum_{j=1}^{n}(-1)^{1+j} \cdot A\left(\ell_{1}, \ell_{2}, \quad, \ell_{n-1}\right)(z(j)) \cdot \exp i z_{j} x_{1},
$$

where $z(j)=\left(z_{1}, z_{2}, \quad, z_{j-1}, z_{j+1}, \quad, z_{n}\right) \quad$ Denote

$$
\begin{gathered}
C\left(\ell_{1}, \ell_{2}, \quad, \ell_{n}\right)(z) \\
=A\left(\ell_{1}, \ell_{2}, \quad, \ell_{n}\right)(z) / A(0,1, \quad, n-1)(z)
\end{gathered}
$$

and

$$
\begin{gathered}
D\left(\ell_{1}, \ell_{2}, \cdot, \ell_{n-1}\right)\left(z, x_{1}\right) \\
=B\left(\ell_{1}, \ell_{2}, \cdot \quad, \ell_{n-1}\right)\left(z, x_{1}\right) / A(0,1, \quad, n-1)(z)
\end{gathered}
$$

Then $C\left(\ell_{1}, \ell_{2}, \quad, \ell_{n}\right)(z)$ is a homogeneous symmetric polynomial in $z[z]$ of order $\ell_{1}+\ell_{2}+.+\ell_{n}-(n-1) n / 2$, which is called a Schur function. Since $B\left(\ell_{1}, \ell_{2}, \quad, \ell_{n-1}\right)\left(z, x_{1}\right)$ is an entire function of 2 and vanishes on the zeros of irreducible polynomials $z_{j}-z_{i}, 1 \leqq i<j \leqq n$, Nullstellensatz implies that
$B\left(\ell_{1}, \ell_{2}, \ldots \ell_{n-1}\right)\left(z_{r} x_{1}\right)$ is divided by $A(0,1, \quad, n-1)(z)$ in the ring of entire functions. Hence $D\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n-1}\right)\left(z, x_{1}\right)$ is an entire function. If $z_{i} \neq z_{j}, l \leqq i<j \leqq n$, then (A. 1) implies that (A.2)

$$
D\left(l_{1}, l_{2}, \ldots, \ell_{n-1}\right)\left(z, x_{1}\right)
$$

$$
=\sum_{j=1}^{n}(-1)^{1+j} \cdot C\left(\ell_{1}, \ell_{2} . \quad, \ell_{n-1}\right)(z(j)) \cdot \operatorname{exp~iz_{j}x_{1}-E_{j}(z),~}
$$

where $E_{j}(z)=1 /\left\{(-1)^{n-j} \cdot \mathbb{H}_{k=j, l \leqq k \leqq n}\left(z_{j}-z_{k}\right)\right\}$
Put

$$
M\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right)=\max _{|z|=1}\left|C\left(\ell_{1}, \ell_{2} . \quad, \ell_{n}\right)(z)\right|
$$

Then
(A. 3)

$$
\left|C\left(\ell_{1}, \ell_{2}, \quad, \ell_{n}\right)(z)\right| \leqq M\left(\ell_{1}, \ell_{2} r \quad, \ell_{n}\right) \cdot|z|^{L},
$$ where $L=\ell_{1}+\ell_{2}+\cdots \ell_{n}-(n-1) n / 2$ and

$$
\begin{equation*}
\left|D\left(l_{1}, \ell_{2}, \quad, \ell_{n-1}\right)\left(z, x_{1}\right)\right| \tag{A.4}
\end{equation*}
$$

$\leqq M\left(\ell_{1}, \ell_{2}, \quad, \ell_{n-1}\right)|z|^{L \prime} \cdot \sum_{j=1}^{n} \exp \left(-I m z_{j} x_{1}\right) / \Pi_{k=j, l \leqq k \leqq n}\left|z_{j}-z_{k}\right|$, where $L^{\prime}=\ell_{1}+\ell_{2}+.+\ell_{n-1}-(n-2)(n-1) / 2$.

Let $m_{r} m^{\prime}$, and $m^{\prime \prime}$ be positive integers such that $m=m^{\prime}+m^{\prime \prime}$ Denote $z^{\prime}=\left(z_{1}, z_{2}, \ldots, z_{m}^{\prime}\right), z^{\prime \prime}=\left(z_{m}{ }^{\prime}+1, z_{m}{ }^{\prime}+2^{\prime}, z_{m}\right)$, and $z=\left(z^{\prime}, z^{\prime \prime}\right) \quad$ Let $\ell_{1}, \ell_{2}, \quad, \ell_{m-1}$ be non-negative integers satisfying $0 \leq \ell_{1}<\ell_{2}<\cdots<\ell_{m-1} \quad$ Let S_{1} be the set of all bijections ρ from $\{1,2, \quad, m-1\}$ onto $\left\{\ell_{1}, \ell_{2}, \ldots, l_{m-1}\right\}$ satisfying

$$
\begin{gathered}
\rho(1)<\rho(2)<\quad-<\rho\left(m^{\prime}\right) ; \\
\rho\left(m^{\prime}+1\right)<\rho\left(m^{\prime}+2\right)<. \quad-\rho(m-1)
\end{gathered}
$$

and S_{2} be the set of all bijections ρ from $\{1,2, \quad, m-1\}$ onto $\left\{\ell_{1}, \ell_{2}, \quad, \ell_{m-1}\right\}$ satisfying

$$
\begin{gathered}
\rho(1)<\rho(2)<. \quad<\rho\left(m^{\prime}-1\right) ; \\
\rho\left(m^{\prime}\right)<\rho\left(m^{\prime}+1\right)<\quad .<\rho(m-1) .
\end{gathered}
$$

There are one-to-one correspondence between the bijections in S_{1} and the selections of $m-1$ objects taken m^{\prime} at a time and between the bijections in S_{2} and the selections of $m-1$ objects taken $\mathrm{m}^{\prime-1}$ at a time, respectively. Define the bijection π from $\left\{l_{1}, \ell_{2}, \quad, \ell_{m-1}\right\}$ onto $\{2,3, \quad, m\}$ as

$$
\pi\left(\ell_{j}\right)=j+1, \quad j=1, . \quad, m-1 .
$$

Denote

$$
I(\rho)=\sum_{j=1}^{m^{\prime}} \pi(\rho(j))+m^{\prime}\left(m^{\prime}+1\right) / 2
$$

and

$$
J(p)=1+\sum_{j=1}^{m^{\prime}-1} \pi(\rho(j))+m^{\prime}\left(m^{\prime}+1\right) / 2
$$

For $z_{i} \neq z_{j}, l \leqq i \leqq m^{\prime}, m^{\prime}+1 \leqq j \leqq m$, denote

$$
E(z)=1 / \Pi_{1 \leqq i \leqq m}, m^{\prime}+1 \leqq j \leqq m\left(z_{j}-z_{j}\right)
$$

Lemma A.l. For $z_{i} \not z_{j}, 1 \leqq i \leqq m^{\prime}, m^{\prime}+1 \leqq j \leqq m$,
(A. 5)

$$
\begin{gathered}
\left.D_{1} \ell_{1} \ell_{2}, \quad, \ell_{m-1}\right)\left(z, x_{1}\right) \\
=\sum_{\rho \in S_{1}(-1)^{I(\rho)} \cdot C\left(\rho(1), \rho(2), \ldots, \rho\left(m^{\prime}\right)\right)\left(z^{\prime}\right)} \\
\times D\left(\rho\left(m^{\prime}+1\right), \rho\left(m^{\prime}+2\right), \quad \rho(m-1)\right)\left(z^{\prime \prime}, x_{1}\right) \cdot E(z) \\
+\sum_{\rho \in S_{2}(-1)^{J(\rho)} \cdot D\left(\rho(1), \rho(2), \ldots, \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime}, x_{1}\right)} \\
\quad \times C\left(\rho\left(m^{\prime}\right), \rho\left(m^{\prime}+1\right), \ldots \rho(m-1)\right)\left(z^{\prime \prime}\right) \cdot E(z)
\end{gathered}
$$

Proof. Apply the Laplace expansion theorem to
$B\left(\ell_{1}, \ell_{2}, \ldots, l_{m-1}\right)\left(z, x_{1}\right) \quad$ The minors of order m of the original matrix ${ }^{t}\left(t_{e\left(z, x_{1}\right)}, t_{a\left(\ell_{1}\right)(z),}, t_{a\left(\ell_{m-1}\right)}(z)\right)$ of order mare

$$
\begin{aligned}
& A\left(\rho(1), \rho(2), \ldots \rho\left(m^{\prime}\right)\right)\left(z^{\prime}\right), \text { for } \rho \text { in } S_{1} \\
& B\left(\rho(1), \rho(2), \ldots, \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime \prime}, x_{1}\right), \text { for } \rho \text { in } S_{2},
\end{aligned}
$$

and those cofactors of order $m^{\prime \prime}$ are

$$
\begin{aligned}
& (-1)^{I(\rho)} \cdot B\left(\rho\left(m^{\prime}+1\right), \rho\left(m^{\prime}+2\right), \quad, \rho(m-1)\right)\left(z^{\prime}, x_{1}\right), \text { for } \rho \text { in } S_{1}, \\
& (-1)^{J(\rho)} \cdot A\left(\rho\left(m^{\prime}\right), \rho\left(m^{\prime}+1\right), \quad, \rho(m-1)\right)\left(z^{\prime \prime}\right), \text { for } \rho \text { in } s_{2},
\end{aligned}
$$

respectively Hence
(A. 6)

$$
\begin{gathered}
\quad B\left(\ell_{1}, l_{2}, \quad, l_{m-1}\right)\left(z_{,} x_{1}\right) \\
=\sum_{\rho \in S_{1}}(-1)^{I(\rho)} \cdot A\left(\rho(1), \rho(2), \quad \rho\left(m^{\prime}\right)\right)\left(z^{\prime}\right) \\
\times B\left(\rho\left(m^{\prime}+1\right), \rho\left(m^{\prime}+2\right), \quad \rho(m-1)\right)\left(z^{\prime \prime}, x_{1}\right) \\
+\sum_{\rho \in S_{2}}(-1)^{J(\rho)} \cdot B\left(\rho(1), \rho(2), \quad, \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime}, x_{1}\right) \\
\times A\left(\rho\left(m^{\prime}\right), \rho\left(m^{\prime}+1\right), \quad \rho(m-1)\right)\left(z^{\prime \prime}\right)
\end{gathered}
$$

Divide (A.6) by
(A.7)
$\mathrm{A}(0,1, \quad, m-1)(z)$

$$
=A\left(0,1, ., m^{\prime}-1\right)\left(z^{\prime}\right) \cdot A\left(0,1,, \quad m^{\prime \prime}-1\right)\left(z^{\prime \prime}\right) / E(z)_{r}
$$

we have (A.5).
[Q.E.D.]

Denote

$$
L^{\prime}(\rho)= \begin{cases}\rho(1)+\rho(2)+\ldots+\rho\left(m^{\prime}\right)-\left(m^{\prime}-1\right) m^{\prime} / 2, & \text { for } \rho \text { in } S_{1} \\ \rho(1)+\rho(2)+\ldots+\rho\left(m^{\prime}-1\right)-\left(m^{\prime}-1\right) m^{\prime} / 2, & \text { for } \rho \text { in } S_{2}\end{cases}
$$

and

$$
L^{n}(\rho)=\left\{\begin{array}{l}
\rho\left(m^{\prime}+1\right)+\rho\left(m^{\prime}+2\right)+\ldots+\rho(m-1)-\left(m^{\prime}-1\right) m^{\prime \prime} / 2, \text { for } \rho \text { in } S_{1} \\
\rho\left(m^{\prime}\right)+\rho\left(m^{\prime}+1\right)+\ldots+\rho(m-1)-\left(m^{\prime \prime}-1\right) m^{\prime \prime} / 2, \text { for } \rho \text { in } S_{2}
\end{array}\right.
$$

Put

$$
\begin{aligned}
& \tilde{M}_{\left(\ell_{1}, \ell_{2}, \quad, \ell_{m-1}\right)} \\
& =\max \left\{\max _{\rho \in S_{1}} M\left(\rho(1), \rho(2), \quad \rho\left(m^{\prime}\right)\right),\right. \\
& \max _{\rho \in S_{1}} M\left(\rho\left(m^{\prime}+1\right), \rho\left(m^{\prime}+2\right), \ldots, \rho(m-1)\right), \\
& \left.\max _{\rho \in S_{2}} M\left(\rho\left(m^{\prime}\right), \rho\left(m^{\prime}+1\right), \quad \rho(m-1)\right)\right\}
\end{aligned}
$$

For a positive parameter η, put $w_{j}=\eta \cdot z_{j}, j=1, \quad, m$.

Lemma A.2. Assume that $z_{i} \neq z_{j}$, for $1 \leq i \leqq m^{\prime}, m^{\prime}+1 \leqq j \leqq m$ and for $m^{\prime}+l \leqq i<j \leqq m$. Then

$$
\begin{gathered}
\mid C\left(\rho(1), \rho(2), \quad \rho\left(m^{\prime}\right)\right)\left(z^{\prime}\right) \\
x D\left(\rho\left(m^{\prime}+1\right), \rho\left(m^{\prime}+2\right), \quad \rho(m-1)\right)\left(z^{\prime}, x_{1}\right)-E(z) \mid \\
\leqq \tilde{M}\left(\ell_{1}, \ell_{2}, \quad, \ell_{m-1}\right)^{2} \cdot\left|z^{\prime}\right|^{L^{\prime}(\rho)} \cdot\left|w^{\prime \prime}\right|^{L^{\prime \prime}(\rho)+\left(m^{\prime \prime}-1\right)} \cdot|E(w)|
\end{gathered}
$$

$x \eta^{\prime \prime} m^{\prime \prime}-L^{\prime \prime}(\rho) \cdot\left(\sum_{j=m} m^{\prime}+1 \exp \left(-\operatorname{Im}_{j} w_{j} / \eta\right) / J_{k \neq j} m^{\prime}+1 \leq k \leq m \quad\left|w_{j}-w_{k}\right|\right)$, for ρ in S_{1} and

$$
\begin{gathered}
\mid D\left(\rho(1), \rho(2), \quad, \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime}, x_{1}\right\} \\
x C\left(\rho\left(m^{\prime}\right), \rho\left(m^{\prime}+1\right), \quad, \rho\left(m^{\prime}-1\right)\right\}\left(z^{\prime \prime}\right) \cdot E(z) \mid \\
\leqq\left|D\left(\rho(1), \rho(2), \quad, \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime}, x_{1}\right)\right| \\
x \tilde{M}\left(\ell_{1}, \ell_{2} \quad, \ell_{m-1}\right) \cdot\left|w^{\prime \prime}\right|^{L \prime}(\rho) \cdot|E(w)| \cdot n^{m^{\prime} m^{\prime \prime}-L "(\rho)},
\end{gathered}
$$

for ρ in S_{2}

Proof. Since

$$
C\left(\ell_{1}, \ell_{2}, \quad, \ell_{n}\right)(z)=\eta^{-L} \cdot C\left(\ell_{1}, \ell_{2}, \quad, \ell_{n}\right)(\eta \cdot z),
$$

where $L=\ell_{1}+\ell_{2}+. \quad+\ell_{n}-(n-1) n / 2$,

$$
D\left(l_{1}, l_{2}, \quad, l_{n-1}\right)\left(z, x_{1}\right)=n^{-L "} \cdot D\left(l_{1}, l_{2}, \quad, l_{n-1}\right)\left(n \cdot z, x_{1} / n\right),
$$

where $L^{\prime \prime}=\ell_{1}+\ell_{2}+\ldots+\ell_{n-1}-(n-1) n / 2$, and $E(z)=n^{m \prime m "} \cdot E(w)$, it implies that

$$
\begin{gathered}
C\left(\rho(1), \rho(2), \quad, \rho\left(m^{\prime}\right)\right)\left(z^{\prime}\right) \\
x D\left(\rho\left(m^{\prime}+1\right), \rho\left(m^{\prime}+2\right), \quad, \rho(m-1)\right)\left(z^{\prime \prime}, x_{1}\right) \cdot E(z) \\
=C\left(\rho(1), \rho(2), \ldots, \rho\left(m^{+}\right)\right)\left(z^{\prime}\right)
\end{gathered}
$$

$$
x D\left(\rho\left(m^{\prime}+1\right), \rho\left(m^{\prime}+2\right), \quad, \rho(m-1)\right)\left(w^{\prime \prime}, x_{1} / \eta\right) \cdot E(w) \cdot \eta^{m ' m "-L "(\rho)},
$$

for ρ in S_{1} and

$$
\begin{gathered}
D\left(\rho(1), \rho(2), \quad, \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime}, x_{1}\right) \\
\times C\left(\rho\left(m^{\prime}\right), \rho\left(m^{\prime}+1\right), \quad, \rho\left(m^{\prime}\right)\right)\left(z^{\prime \prime}\right)-E(z) \\
=D\left(\rho(1), \rho(2), \quad, \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime}, x_{1}\right)
\end{gathered}
$$

$$
x C\left(\rho\left(m^{\prime}\right), \rho\left(m^{\prime}+1\right), \quad, \rho(m-1)\right)\left(w^{\prime \prime}\right) \cdot E(w) \cdot n^{m^{\prime} m^{\prime \prime}-L^{n}(\rho)},
$$

for ρ in S_{2}. By using (A.3) and (A.4), we come to the conclusion.
[Q.E.D.]

Lemma A.3. Assume that $z_{i} x_{j}$, for $1 \leqq i \leqq m^{\prime}, m^{\prime}+1 \leqq j \leqq m$ and for $m^{\prime}+1 \leqq i<j \leqq m$. Let

$$
\left\{\ell_{1}, \ell_{2}, \cdots, \ell_{m-1}\right\}=\{0,1, \quad, k-1, k+1, \quad, m-1\} .
$$

Assume that there exist positive numbers M, M, c, and n_{0} with $\eta_{0} \leqq 1$ such that for every n satisfying $0<n \leqq n_{0}$, the following estimates are satisfied:
(A. 8)

$$
\left|z^{\prime}\right| \leqq M ; \quad\left|w^{\prime \prime}\right| \leqq M ;
$$

$$
\sum_{j=m^{\prime}+1}^{\mathrm{m}} \exp \left(-\mathrm{Im} w_{j} \mathrm{x}_{1} / n\right) \leqq M^{\prime} ;
$$

$$
\inf _{m^{\prime}+l \leqq i<j \leqq m}\left|w_{i}-w_{j}\right| \geqq c ; \inf _{l \leqq i \leqq m}, m^{\prime}+l \leqq j \leqq m m w_{i}-w_{j} \mid \geqq c .
$$

Denote

$$
\begin{gathered}
\tilde{M}=\max _{0 \leqq k \leq m-1} \tilde{M}(0,1, \quad, k-1, k+1, \quad, m-1), \\
C_{1}=\frac{(m-1)!}{m^{\prime}!\left(m^{\prime \prime}-1\right)!} \cdot \tilde{M}^{2} \cdot M^{m^{\prime} m^{n}-k+m^{\prime \prime}-1} \cdot c^{-m \cdot m^{\prime \prime}-m^{\prime \prime+1}} \cdot M^{\prime},
\end{gathered}
$$

and

$$
c_{2}=\frac{(m-1)!}{\left(m^{\prime}-1\right)!m^{\prime \prime}!} \cdot \tilde{M} \cdot M^{m ' m "} \cdot c^{-m ' m "}
$$

Then
(A.9)

$$
\left.\begin{array}{ll}
\mid D(0,1, & , k-1, k+1, \\
- & , m-1)\left(z, x_{1}\right) \\
- & D(0,1,
\end{array}, k-1, k+1, \quad, m^{\prime}-1\right)\left(z^{\prime}, x_{1}\right) .
$$

$$
\begin{gathered}
x\left(w_{m}+1 \cdot w_{m^{\prime}+2} \cdot \quad * w_{m}\right)^{m^{\prime}} \cdot E(w) \mid \\
\leqq\left(C_{1}+C_{2} \cdot \max _{\rho \in S_{2}}\left|D\left(\rho(1), \rho(2), \quad \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime}, x_{1}\right)\right|\right) \cdot n,
\end{gathered}
$$

for $k=0, \ldots, m^{1-1}$ and
(A.10) $\quad\left|\mathrm{D}(0,1, \cdot, k-1, k+1, \quad, m-1)\left(2, x_{1}\right)\right|$

$$
\leqq\left(C_{1}+C_{2} \cdot \max _{\rho \in S_{2}}\left|D\left(\rho(1), \rho(2), \quad, \rho\left(m^{\cdot}-1\right)\right)\left(z^{\prime}, x_{1}\right)\right|\right) \cdot \eta^{k-m^{\prime}+1}
$$

for $k=m \cdot$, , $m-1$ Here ρ in S_{2} are bijections from
$\{1,2$, .,m-1\} onto $\{0,1, \ldots, k-1, k+1, ., m-1\}$ satisfying

$$
\begin{gathered}
\rho(1)<\rho(2)<\quad .<\rho\left(m^{\prime}-1\right): \\
\rho\left(m^{\prime}\right)<\rho\left(m^{\prime}+1\right)<\quad<\rho(m-1) .
\end{gathered}
$$

Proof. First it must be remarked that

$$
m^{\prime} m^{\prime \prime}-L^{n}(\rho) \geqq m^{\prime} m^{\prime \prime}-m^{\prime}-\left(m^{1}+1\right)-.-(m-1)+\left(m^{\prime \prime}-1\right) m^{\prime \prime} / 2=0,
$$

where the equality holds if and only if
(A.11) $k=0,1, \quad, m l^{\prime} 1$,

$$
\begin{gathered}
\rho \in S_{2}, \\
\rho(j)= \begin{cases}j-1, \quad j=1, & , k ; \\
j, j=k+1, & , m-1\end{cases}
\end{gathered}
$$

Since

$$
C\left(m^{\prime}, m^{\prime}+1, \quad, m-1\right)\left(z^{\prime \prime}\right)=\left(z_{m^{\prime}+1} \cdot z_{m^{\prime}+2} \quad z_{m}\right)^{\prime \prime}
$$

it implies that for p satisfying (A.11),

$$
\begin{gathered}
(-1)^{J(\rho)} \cdot D\left(\rho(1), \rho(2), \quad \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime}, x_{1}\right) \\
x C\left(\rho\left(m^{\prime}\right), \rho\left(m^{\prime}+1\right), \quad \rho(m-1)\right)\left(z^{\prime \prime}\right) \cdot E(z) \\
=(-1)^{m^{\prime}\left(m^{\prime}+1\right)} \cdot D\left(0,1, \quad, k-1, k+1, \quad, m^{\prime}-1\right)\left(z^{\prime}, x_{1}\right)
\end{gathered}
$$

$$
x\left(w_{m}+1 \cdot w_{m}+2 \cdot \ldots \cdot w_{m}\right)^{m^{\prime}} \cdot E(w)
$$

For ρ not satisfying (A.11), Lemma A. 2 implies that

$$
\begin{gathered}
\mid C\left(\rho(1), \rho(2), \quad \rho\left(m^{\prime}\right)\right)\left(z^{\prime}\right) \\
x D\left(\rho\left(m^{\prime}+1\right), \rho\left(m^{\prime}+2\right), \ldots \rho(m-1)\right)\left(z^{\prime \prime}, x_{1}\right) \cdot E(z) \mid \\
\leqq \tilde{M}^{2} \cdot M^{L^{\prime}}(\rho)+L^{n}(\rho)+m^{\prime \prime}-1 \cdot|E(w)| \cdot \eta^{m^{\prime} m^{\prime \prime}-L^{\prime \prime}(\rho)} \cdot M^{\prime} \cdot c^{-m^{\prime \prime}+1},
\end{gathered}
$$

for ρ in S_{1} and

$$
\begin{gathered}
\mid D\left(\rho(1), \rho(2), \quad, \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime}, x_{1}\right) \\
x C\left(\rho\left(m^{\prime}\right), \rho\left(m^{\prime}+1\right), \quad, \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime \prime}\right) \cdot E(z) \mid \\
\leqq\left|D\left(\rho(1), \rho(2), \quad, \rho\left(m^{\prime}-1\right)\right)\left(z^{\prime}, x_{1}\right)\right| \\
\times \sim M^{\sim} \cdot M^{L \prime}(\rho) \cdot|E(w)| \cdot \eta^{m^{\prime} m^{\prime \prime}-L^{\prime \prime}(\rho)},
\end{gathered}
$$

for ρ in S_{2}. If (A.ll) is not satisfied, then $m^{\prime \prime \prime \prime}-L(p) \geqq 1$. If $k=m \cdot, \quad, m-1$, then

$$
m^{\prime} m^{\prime \prime}-L "(\rho) \geqq m^{\prime} m^{\prime \prime}-\left(m^{\prime}-1\right)-m^{\prime}-. \quad-(m-1)+k+\left(m^{\prime \prime}-1\right) m^{\prime \prime} / 2=k-m^{\prime}+1
$$

Since $|E(w)| \leqq c^{-m^{\prime} m^{\prime \prime}}$ and $L^{\prime}(\rho)+L^{\prime \prime}(\rho)=m^{\prime} m^{\prime \prime}-k$, for ρ in S_{1},
Lemma A. 1 implies the conclusion.
[Q.E.D.]

References

[1] R. Ashino: The reducibility of the boundary conditions in the one-parameter family of elliptic linear boundary value problems I, Osaka J. Math., 25 (1988), 737-757.
[2] R. Ashino: On the admissibility of singular perturbations in Cauchy problems, Osaka J. Math., 26 (1989), 387-398.
[3] R. Ashino: The reducibility of the boundary conditions in the one-parameter family of eliiptic linear boundary value problems II, Osaka J. Math., 26 (1989), 535-556.
[4] R. Ashino: On the weak admissibility of singular perturbations in Cauchy problems, Publ. Res. Inst. Math. Sci, 25 (1989),
[5] M. Nagumo: On singular perturbation of linear partial differential equations with constant coefficients I. Proc. Japan Acad. 35 (1959), 449-454
[6] H. Kumano-go: On singular perturbation of linear partial differential equations with constant coefficients II, Proc. Japan Acad. 35 (1959), 541-546.
[7] J Kevorkian and J. D. Cole: Perturbation Methods in Applied Mathematics, Springer-Verlag (1981)
[8] S. Mizohata: The Theory of Partial Differential Equations, Cambridge (1973)
[9] S. Mizohata: On the Cauchy Problem, Vol. 3 in Notes and Reports in Mathematics in Science and Engineering, Academic Press (1985)

