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                              1. Introduction  

    In [5], Nagumo defined the  HS-stability in singular 

perturbations. Here HS=HS(RX,1) is the global Sobolev space 
with the norm 

       Du(x1)11S=I(27)-n+l(lu(') 12(l+l'I2)s dY, )1/2. 
We shall generalize the notion of HS-stability in some sense. 

    Let us consider the following linear partial differential 

operator with constant coefficients containing small positive 

parameter E (0<E<l): 

L
E (D) = E - P1 (D) + P2(D) 

Denote by m the order of P1(D) with respect to D1 and by m' that 

of P2(D). Put m"=m-m' and assume that m>m'>0 Then the order 

of L0is less than that of LEfor EEO. Such an operator as LE 

is called a singularly perturbed operator. 

    We shall study the folowing so-called singulary perturbed 

Cauchy problem for LE(D): 

L(D)u(x) = f( x), , in [0,T] xRn,l 

                                                        ; (CP) 

D1j-1u(0,x') = 6
,j(x'), j=1. .m, 

and the following so-called reduced Cauchy problem for (CP): 

                 L0(D)u(X) = f0(x) , in [0,T] xRn1; 

(RCP) 

D1j-1u(0,x') = (P,0,j(x') , j=1, ,m' 

    The following assumption on P1 and P2 will be required. 
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    Assumption 1.  

 (Al): The symbols of P1(D) and P2(D) are represented as 

P1() = Yj=0 

132() - /
JmO 

where p1
,0 and p2,0 are non-zero constants. 

(A2): (m"=2 and p2 ,0/p1,0 is negative real number) or 

(m"=1 and the imaginary part of p2 ,0/P1,0 is non-positive) 

    The following assumption on the Cauchy data and on the 

solvability of (CP) and (RCP) will be required. 

    Assumption 2.  

    There exist real numbers s and s' such that (CP) is uniquely 

solvable in C([O,T];Hs) and (RCP) is uniquely solvable in 

C([O,T];Hs) for the Cauchy data q (x') and cp0j(x') belong to 

Hs' and fs(x) and f0(x) belong to C([O,T];Hs1) 

    Nagumo defined the Hs-stability of (CP) with respect to a 

particular solution u0 of (RCP) in [5] as follows: 

    Definition 1. Let Assumption 2 be satisfied for s'=s. 

    The Cauchy problem (CP) is said to be Hs-stable in O<x1<T for 

E+O with respect to a particular solution u0(x) of the reduced 

Cauchy problem (RCP) in Cm([O.T];Hs) if 
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 (D1)sup Ilus (x1,•) - u0(xl,-)~~ s0 
                 0<x <T                   = 1= 

whenever us(x) are solutions of (CP) in Cm([0,T];Hs) satisfying 

the following three conditions: 

(D2)sup (x1,-) - f0(x1,.) ~s i 0; 
0<x <T                   = 1= 

(D3)11cps ,j0,j1s 0, j=1,. ,m'; 

(D4)~I~s ,J() - Di-lu0(0,,)1s 0, j=m'+1,.. ,m. 

    If f0(x) belongs to Cm-m'([0,T];Hs1) then the initial values 

Di-lu0(0,x'), j=m'+l, ,m are uniquely determined and 

represented as a sum of derivatives of f0(x) and c0j(x'), 

j=1, .,m'. When (D4) is required, then the Cauchy data 

(x'), j=m'+l, ,m are very restricted. For example, when s
,J 

f0=0 andcp,O
,j=O, j=1, ,m', (D4) implies that(I)sj -;0, 

j=1, ,m. Hence another definition of the stability whose 

convergence on the Cauchy data (i)s rj(x'), j=m'+1, ,m are 

different from Nagumo's is needed. 

    Definition 2. Let Assumption 2 be satisfied. 

    The Cauchy problem (CP) is said to be (s,s')-stable in 0<xl<T 

for E4-0 with respect to a particular solution u0(x) of the 

reduced Cauchy problem (RCP) in Cm([0,T];Hmax{s,s'}) if 

(D1)sup ~~UE (x1, •) - u0(x1,•)L-> 0, 
0<x <T                   = 1= 
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whenever  u(x) are solutions of (CP) in Cm([0 ,T];Hmaxs,s1}) 

satisfying the following three conditions: 

(D5)sup IIf(x1,.) - f0(xl,.)II
SI - 0;                   0<x <T                   = 1= 

(D6)II~E
, l0, jIIs'+0, j=1,.. 

(D7): There exists a positive number M, which may depend on the 

choice of the initial data cp
E,), qb0,•,and f0such that 

II~E,j() - Dj-lu0(0,.)~Is,<M, j=m'+1,. ,m. 

     The Cauchy problem (CP) is said to be (s,s'+0)-stable in 

0<x1<T for E+0 with respect to a particular solution u
0(x) of 

(RCP) in Cm([0,T];Hmax{s,s'}) if (Dl) whenever uE(x) are 

solutions of (CP) in Cm([0,T];Hmax{s,s'}) satisfying (D5), (D6), 

and 

(D8): There exist positive numbers 6 and M, which may depend on 

the choice of the initial data cpE,.,(1)0,j, and f0 such that 

II~E,j(.) - Dl-lu0(0,.)Ilsl+d<M, j=m'+1, ,m. 

     Remark. For every positive number 6, the (s,s')-stability 

implies the (s,s'+0)-stability, the (s,s'+0)-stability implies 

the (s,s'+d)-stability, and the (s,s')-stability implies the 

(s-8,s')-stability 

    It will be shown that requiring (A2) is natural when we deal 

with the (s,s')-stability with respect to solutions of (RCP) for 

various Cauchy data. Following to the definition of the 
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C-admissibility of (CP) with respect to (RCP) in [4] , we shall 

define the  C([0,T];Hs)-admissibility of (CP) with respect to 

(RCP) 

    Definition 3. Let Assumption 2 be satisfied. The Cauchy 

problem (CP) is said to be C([0,T];Hs)-admissible in [0,T]XRn-1 

with the Cauchy data space (Hsi)m with respect to (RCP) if for 

every Cauchy datum (IPl, m) (H5')m, the solutions us of (CP) 

with cl)E,j=j,j=1,...,m and fs=0 converge in C([0,T];Hs) to the 

solution u0of (RCP) with cp0
,j=j,j=1, ,m' and f0=0. 

    By looking into the proof of Theorem in [2] and §2 and §3 in 

[3], we can prove that (A2) remains a necessary condition for the 

C([0,T];Hs)-admissibility with the Cauchy data space (Hm)m when 

P1 and P2 satisfy (Al) We do not give the proof in this paper. 

     In [5], Nagumo gave a necessary and sufficient condition for 

the Hs-stability for more general system in the form of 

inequalities which must be satisfied by the solutions of (CP) 

with the initial conditions: 

D1j-1u(0,x') = di
.j.a(x'), i,j=1, ,m, 

where 6i
,jis Kronecker's delta and 6(x') is the Dirac measure. 

We have succeeded in seeking a necessary and sufficient condition 

for the (s,s'+0)-stability but a necessary and sufficient 

condition for the (s,s')-stability is open. Our condition for 
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the  (s,s'+0)-stability which will be found in §2 is Nagumo type. 

As a corollary, we can show that Nagumo's Hs-stability implies 

the (s,s+0)-stability In [6], Kumano-go applied Nagumo's 

result to the following operator: 

E'D12 + q-D1 + Q(D'), 

where q is a complex number and Q(D') is a polynomial of D' 

Kumano-go deduced conditions for the Hs-stability on the complex 

constant q and on the structure of the polynomial Q(E') In §3, 

we shall give another example for the Hs-stability. 

    Ackowledgement. The author expresses his deep gratitude to 

Professor Shigetake Matsuura for his encouragement and helpful 

comments. 
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                        2. The  (s,s'+0)-stability  

     We shall use the notation and the result in Appendix . 

Denote the roots of L
E(E) = 0 with respect to Elby T.(E,Y'), 

j=1, ,m and those of L0(E) = P2(e) = 0 with respect to El by 

o.(E'), j=1,.. ,m', respectively_ It is well known that 

T j ( E , ' ) , j =1 , . , m are continuous in (E , ') for E 0 and a . (E ' ) 

j=1,. ,m' are continuous in E' Put 

       b(T) _ (41; j+1, .,m) and c. = (Sj
,k, k+1, .,m), 

where d. is Kronecker's delta. Other notation can be found in          j
,k 

Appendix. Denote by Y.(E,xl,E'), j=1 , ,m the fundamental 

solutions of the following ordinary differential equation with 

parameter (E,E'): 

                        LE(Dl,E')Y(E,xl,E') = 0 

with initial conditions: 

                    D1-1Y(E,O,') = 6j
,k' j,k=1, .,m, 

Then Cramer's formula implies that if Ti�Tj, 1<i<j<m then 

                               Yj(E,xl,') 

       mdet(b(T1), ,b(Tk-1)'cj'b(Tk+l), ,b(Tm)     ~
k=1exp iTkxl.                               det(b(T

1), ,b(Tm) 

       __dett(ta(0),ta(1),...,ta(j-2),te,ta(j),...,ta(m-1)]  
                                A(0,1,.. ,m-1) 

= (-1)j-1-D(0 ,1, ,j-2,j, ,m-1)(T1, ,Tm,xl), j=1, ,m. 

But the last representations remain valid without any restriction 
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 on T j=1, ,m. Denote by 2 the maximum of the polynomial 

orders of the coefficients pl
,j('), j=0, ,m in the symbol 

P1() and put 

<Y> = (1+IYI2)1/2 

Then we have the following theorem whose proof will be found at 

the end of this section. 

    Theorem 1. Let Assumption 1 and 2 be satisfied. Then the 

following four conditions are equivalent: 

(Cl) The Cauchy problem (CP) is (s,s'+0)-stable in [O,T] for 

E+O with respect to a particular solution u0(x) of (RCP) 

belonging to Cm([0,T];gmax{s,s'}+Q) 

(C2) The Cauchy problem (CP) is (s,s'+0)-stable in [O,T] for 

E4-O with respect to every solution u0(x) of (RCP) belonging to 

       T]•gmax{s,s'}+2) Cm([0 

(C3) There exist positive numbers and Co such that 

(El) sup n-1 1T E-IYm(E'xl, C)< '>s-s' dx1< C0' 
      O<E<E0,DER0 

(E2) sup
Rn-1iy ts,x1,'                                                              ')<>s-s'I < Co, l<j<m', 0<E<E0, 0<xl<T, 

and for every positive number d there exist positive numbers ES 

and Cd such that 

(E3) sup
E Rn-1 lyj(E,x1,~)<E'>s-s'-dl        m'+1<j<m, 0<E<E6, 0<xl<T, 

<C8 

(C4) There exist positive numbers EO, R0, and CI') such that 
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     T1' 

(E4) supT'ly m(E,x11,')<E'>s-sIdx< CO    0<E<so,RO<I'I/0E 

(E5) sup1Y (E,xI<C' 
 1<j<m', 0<E<E6, O<x1<T, R0<Iy'l j 10, 

and for every positive number (5 there exist positive numbers es , 
RS, and CS such that 

(E6) supIYjIs,xl.')< ,>s-s'-SI 
m'+l<j<m, O<E<Es, 0<x1<T, R6<lE'l 

< C' 
      = S. 

    Remark. Nagumo studied the Hs-stability in the following 

general situation: 

LE = Xj=pL.(E,D')Di-i, 
where the symbolsL,(E, ') are matrices of polynomials in'with 

constant coefficients which depend continuously on the parameter 

E>0. He proved the equivalence between the following two 

conditions: 

(C5) The Cauchy problem (CP) is Hs-stable in [0,T] for E+0 with 

respect to a particular solution u0(x) of (RCP) belonging to 

Cm[[O,T] ;Hs+2). 

(C6) There exist positive numbers co and CO such that 

                            T 

(E7) sup ERn-1 lO1-1Ym(E,xl,E')I dx1< CO;          0<E<E'                   = 0' 

(E8) supn-1 1Yj(E,x1, )I < CO. 
1<j<m, 0<E<E0, 0<xl<T, E'ER 

- 9 -



    Corollary 1. Let Assumption 1 and 2 be satisfied and u0(x) 

be a solution of (RCP) belonging to  Cm([0,T];Hs+) If the 

Cauchy problem (CP) is Hs-stable in [O,T] for EEO with respect to 

a particular solution u0, then the Cauchy problem (CP) is 

(s,s+0)-stable in [O,T] for s4'O with respect to a particular 

solution u0_ 

    Proof. Since Nagumo's theorem can be applied to our problem 

and obviously (E8) implies (E2) for s=s' and (E3) for s=s' 

[Q.E.D.] 

    To prove Theorem 1 we need several steps. For the solution 

u0of the reduced Cauchy problem (RCP), we shall consider the 

following singulary perturbed Cauchy problem: 

L(D)u(x) = f( x), , in [0,T] xRn-1; 

(CP1)D1j-1u(0,x') =E fj(x'), j=1, • ,m' 

D1j-1u(0,x') = D1j-1u0(O,x'), j=m'+1, ,m. 

Here the initial values D1j-1u(0,x'), j=m'+1,,m are fixed. 

The reduced Cauchy problem for (CP1) is (RCP)Denote by 

u
6,1(x) the solution of (CP1) 

    Lemma 1. (due to Nagumo) Let (Al) and Assumption 2 be 

satisfied. Then the following two conditions are equivalent: 
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(C7) The Cauchy problem (CP1) is (s,s')-stable in  [O ,T] for E4-0 

with respect to a particular solution u
0(x) of (RCP) belonging to 

Cmr[0,T];Hmax{s,s'}+21 

(C8) There exist positive numbers E0 and Co such that 

T 
(El) supn -1

0E1.IYm(E,xl,,)<'>s-s'lC 

f 

         0<E<E0,E'ER 

(E2) suplY(E,x~C)<'>s-s'l < C 
       1<j<m', O<E<E0, O<x1<T, E'ER n-1j1= 0. 

    Proof. First we shall show (C8) implies (C7) Put 

v (x) = u6,1(x) - u0(x) , 

gE (x) = Lo(D)u0(x) - LE(D)u0(x) + fE (x) - f0 (x) 

Denote by u(x,,') the Fourier transform of u(x) with respect to 

x' and by Fl ex, the inverse Fourier transformation. Then v(x) 

is given by 

v (x) = F m'1 Y.(E,x1,E1) 6;( ') -O ,j(~)) E~xE,j 

        + Fl}x, [x1  1•Y(E,x1-t,')g(t,') dt 
0P1,0*Em11 

Since 

                          lvE(xl,E')l<yI>s 

     < X
Jm' lY'(E,x1, ,)<E,>s-s'l'CPE,j(E')~0,j(')l<~>s' 

                1+ (
01lP1Ol•E•lYm(E,x1-t, ')<E'>s-s'llgE(t,Y )l<'>s,dt, 

it implies that 
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 11  vs (x1,-)11, 

m'CO xl Co'j=1Iles, i-~0,j11s,+Ip1,0!joII(t,)IIS, dt. 
By (D6) , we haveLjml II ~s - 0 j II s, - 0. Since 110 belongs to 

Cm( [0,T] ;Hmax{ s,s'}+Q) it implies that 

           sup I!L0(D)1.10(x1,-) - Ls(D)u0(x1,•)Ils, - 0. 
           0<x <T             = 1= 

Hence (D5) implies that supII gs (x1 , -) II s , O. Thus we have 
                            0<x <T                             = 1= 

                     sup 1Ivs (x1,-) Its } 0.                        0<x <T                         = 1= 

    Next we shall show (C7) implies (C8) Assume that (E2) is 

not satisfied. Then, for a certain j with 1<j<m', there exist 

sequences {en} with sn4- 0 and { tn} with 0<tn<T and a sequence of 

open balls {Sn},  Sn = { I ' -CnI <rn} such that 

(2.1)I Yj (sn,tn,C) <y>s-s' 1 > n for C' in Sn, 

(2.2)2-1 < (<C>/<yn>)5 < 2 for C' in Sn 

Put 

             un(x) = cn-F1}x,(Yj(sn,x1,') •X (Y' ;Sn)) , 

where cn = n-1 1Sn1_1/2<n>-s' Then un(x) satisfies 

L(D) u (x) = 0. Since 
 sn 

                           lun(tn, ')!<Y.>8 

           n_1-ISnI-1/2<'>-s'! -(sn,tn,')1X(;Sn)< C>s 

    = n-1•IS
nI-1/2(<C,>/<Cn>ls'IYi(sn,tn,C')<,>s-s11X(Y;Sn), 

(2.1) and (2.2) imply that 
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             supHuIlu n(x11.)Its?Ilun(tn,.)Its> 1/2 

Since 

             ID1j-1un(0,E')I< '>sr  =  cn•X(  ';S n)<  '>si 

               =n-1_ IS
nI-1/2•X( ';Sn) f<'>/<'>)st, 

                                                        n (2.2) implies that IDli1u n(0,•)IIs, < 2/n + 0. For k�j, we have 

IIDlk-lun(0,-) Hs, = 0. Put ue(x) = un(x) + u0(x) Then we 

                                   n have a contradiction to (D1), (D5), (D6), and (D7) 

     Assume that (El) is not satisfied. Then there exist a 

sequence {e
n} with en4'0 and a sequence of open balls {Sill, 

Sn = { 'E Rn-1;nI<rn} such that 

        fT (2.3)
JO IP1OI•En.IYm(sn,T-x1,Y')<Y>s-s'Idx1> n, 

for ' in Sn_ We choose (1)ej(x') = D1j-lu0(0,x'), j=1, ,m' 

Then the solutions of (CP1) for {s
n} are given by 

         -rx un(x)u0 (x) + Fl~x~l11P1 -Y(s,xlge(t,C) dt 
           01,0~enn 

Put 

yn(xl,~')= ----------------1•Y(e,T-x1,E')                                P
1,0.enmn 

As we shall show later by (2.5) in the proof of Lemma 3 that 

Y
m(e,xl,') is continuous in (xl,') for fixed s, it implies that 

yn(x ') is continuous in (x1,C) for every positive integer n. 

For E = {(xl,Y ); yn(xl, ')�0}, denote by X((xl,Y );E) the 

characteristic function of the set E. Put 

        Hn(xl,') = X((x1,Y);E)•yn(x1,Y)/lyn(x1,Y) 
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Then IHn(x1,E')I < 1 and (2.3) implies 

                    = 

             Jyn(xliY)<Y>5H(xi,Y)T dx1> n, 
for E' in SnApproximate  H

n(x1,') in the sense of L1([O,T]) 

valued in bounded functions in C by the mollifier pS(x1)* with 

respect to xl Put 

hs,n(x1,Y') = JRP(x1-t)H(t,Y) dt. 
                                   Then hS n(x1,.') are continuous functions with respect to x1in 

[O,T] satisfying Ihd,n(xl,Y1)I < 1. Since

CI',,                   Jynl,1)<>SHnl, ') dxl 

0 

                 JT-Yn(x1,,)<,>s-s,h6,n(x1,y1) dxl 

0 sup IYn(xl,')~•<1>s-s'•(T Ihsn(x1,y1)-Hn(x1,y )Idxl, 
 0<x<TJJ0' 

it implies that for E' in Sn there exist positive numbers Sn(E') 

such that 

      CI' 
              Jyn(x1, C)< ,>s-s'hS(~),n(x1,') dx1 > n,  0n 

for Y in Sn Put 

h
n(x1'Y) hd(I),n(x1,C), 

    n 

      ge(x) = F]+x(n-11Sn1-1/2hn(x1,~,)<E,>-s'X(,;Sn)), 

         n where ISn1 denotes the measure of Sn and X(Y;Sn) is the 

characteristic function of the ball Sn We set fE= f0 + gE 
             nn 

Then 
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                      kEn(xl, •) L,  < n-* O. 
Since 

(un(T,') - u0(T,y))<y'>s 

             Jyil)>g1,)<y>s' dx1 

 _rT, 

       1yn(xl,E,)<~,>s-s•hn(xl,E) dxl•nISnI-1/2X(~';Sn), 

       0 it implies that ki n(T,•)-u0(T,•)Ils > 1. This contradicts (D1), 

(D5) , (D6) , and (D7) 

[Q.E.D.] 

     Put 

      BR= {I'I<R}, p = p2
,0/p1,0'6= arg -p,0= exp i0/m", 

C = exp 27i/m", and T = ~]-m , j=m'+1, ,m. 

By the same argument as in Lemma 2.2 in [3], it implies the 

following lemma whose proof is omitted. 

    Lemma 2. Let (Al) in Assumption 1 be satisfied. Then, for 

every positive number R, there exist a positive number ER with 

ER<l and continuous functions Ti f1(E,Y), j=l, ,m on [O,ER]xBR 

satisfying 

lim sup T.1(E,')I= 0, for j=1, ,m 
E+0 ' E BR 

such that for m'+1<i<j<m and for l<i<m', m'+1<j<m 

Ti(E,Y) T•(E,Y) on (O,ER]xBR, 

and 
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 T  .  (E,E') = c. (E') + Tj 1 (E,E') , for j=1,,m'; 

nn 

    E1m•T,(E,Y) = OT•IPj1/m+ Tj
,1(E,Y1), for j=m'+1, ,m. 

    Lemma 3.Let Assumption 1 be satisfied and E
R be the same 

as in Lemma 2. For every positive number R , there exists a 

positive number C1
,R such that 

(2.4) supE- max{ (j-m'),0}/m"1Y (E,xl,') 1 
        0<E<ER,0<x1<T,I'I<R 

                         <C1
,R,for j=1, ,m. 

     Proof. Fix an arbitrary positive number R and asuume that 

0<E<ERFor arbitrary rootsTj=T.(E,C'), j=1, . ,m, which do 

not need to be distinct, 

(2.5)Yj(E,x1,C1) 

= (-1)j-1•D(0 ,1, ...j-2,j, ,m-1)(T1, ,Tm,x1), j=1, ,m. 

As we have already shown in Theorem in [2], (A2) in Assumption 1 

implies that the imaginary parts of OT, j=m'+1, ,m are 

non-negative. Putn=1 m,~R = ER1/m, Zj = Tj(E,E'), 

j=1, ,m, and wj = E1/m11•T(E,'), j=1, ,m. Then Assumption 

1 implies that for every positive number R, there exist positive 

numbers MR,MR,and cR such that (A.8) in Lemma A.3 in Appendix 

is satisfied for M=MR, M'=MR,c=cR, and ri0=fl R. Hence Lemma A.3 

can be applied to (2.5) Since D(p(1),p(2), ,p(m'-1))(z',x1), 

p in S2 are entire in z' and continuous in x1 for 0<x1<T, it 

implies that there exists a positive number C2 ,R such that 

                                     - 16 -



      max  1  D  (p  (1)  ,P  (2)  , • ,p (m'-1)) (T
1, . ,Tm, ,x1) 1 < C2R, 

pS2 

- on [O,ER]x[O,T]xBR_ Since E(w) is holomorphic for w.�wj,1<i<m' 

and m'+l<j<m, Lemma 2 implies that there exists a positive number 

C3Rsuch that for j=1,. .,m' 

1D(0,1, .j-2,j,. ,m'-1)(T1, ,Tm,,X ) 

    x((slm•Tm,+l) • . .• (sl/m.T m)~m'.E(s1/m"•T1,.,sl/m"•T) 

                                                           m < C3
,R, 

on [O,ER] x [O,T] xBR. Then 

jD(0,1,,j-2,j, ,m-1)(T1, . ,Tm,x1)I 

                   <C3R+ (C1+ C2•C2
R)•sl/m~~ 

for j=1, .,m' and 

1D(0,1, ..,j-2,j, • ,m-1)(T1,. ,Tm,x1)1 

< (C1+ C2•C2R) •E (j-m') /m~~ 

for j=m'+1,. ,m. Put C1 
R C3 ,R + C1 + C2•C2 R, then we have 

(2.4) 

[Q.E.D.] 

     Denote by yj(x1,'), j=1, ,m' the fundamental solutions of 

the following ordinary differential equation with parameter ': 

L0(D1, ')y(x1,Y') = 0 

with initial conditions: 

Dk-1y(0,E') = dj
,k, j,k=1, ,m', 

where d.
,kis Kronecker's delta. As we have already shown       ~ 
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(2.6) Yj  (x1,E'  ) 

= (-1)j-1 •,j-2,j, ,m'-1)(o • • ,c
m,x1),j=1, ,m' , 

where 6j = o (C'), j=1,,m' are roots appearing in Lemma 2. 

    Lemma 4. Let Assumption 1 be satisfied and ER be the same 

as in Lemma 2. Then 

(2.7)Yj (E,x1,Y') Yj (xl,C') , j=1, ,m' 

(2.8)Yj(E,x1,C') } 0, j=m'+1, ,m, 

uniformly on [O,T]xBR when E+0. 

     Moreover, Y(E,x1,Y), j=1, ,m satisfy 

(E8)sup1Yj(E,x,')1 < C 
       1<j<m, 0<E<EO, 0<xl<T, C'ERn-11- 0 

then yj(x1,Y), j=1,. ,m' satisfy 

(E9) supn-1 Iyj(x1, ') I < CO 
               1<j<m', 0<xl<T, E'ER 

     Proof. By Lemma 3, (2.8) is obvious and it suffices to show 

that for j=1, ,m' 

(-1)D(0,1, ,j-2,j, ,m'-1) (T1, ,Tm„xl) 

    x ((E1/m .Tmi+1)(E1/m..•Tm)~m''E(E1/m,•T1,,E                                                                 1' 

yj(x1,C') 

Since T(E,Y') } 6(C'), j=1, ,m' uniformly on BR when Ey0 by 

Lemma 2, it implies that for j=1, ,m' 

  (-1)j-1•D(0,1, ,j-2,j, ,m'-1)(i1, ,Tm,,xl) > yi(xl,Y ) 

On the other hand, 
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                              m"                                                                                               ' 

                 0E1/m-                       (E1.Tmi+l)...(El/m"                                          (S1/m.T
m)lm 

 (0•Tm'+1  PI 1/m") • . (0•Tm• I PI 1/m")) m' 

and 

                    E (s 1/m". T1/m°                       1' 'E1/m"--c
m) 

E(0, .,0,(0•T' • IpI1/m~~), , (0•T'• IpI1/m'~)) 
m'+1m 

          = 1/( (0•Tm,+1•IPI1/m") •  • • (0•Tm• I1)I1 m))m. 

Thus we have (2.7) 

    Since R is arbitrary, (2 7) and (E8) imply (E9) 

[Q.E.D.] 

     Let us consider the following singulary perturbed Cauchy 

problem: 

L(D)u(x) = 0, in [0,T]xRX,1; 

(CP2)D1j-1u(0,x') = 0, j=1, ,m' 

                  Dlj-1u(0,x') _~ sj(x'), j=m'+1,. ,m,                •

and its reduced Cauchy problem: 

L0(D)u(x) = 0, in [0,T]xRX,1; 

(RCP2) 

                        D1j-1u(0,x') = 0, j=1, ,m' 

Denote by u s,2(x) the solution of (CP2) and by u0,2(x) the 

solution of (RCP2) Then u02(x) = 0. 

    Lemma 5. Let Assumption 1 be satisfied and ER be the same 

as in Lemma 2 Assume that every support of the datum (I)£,j('), 
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 j=m'+1, .,m in (CP2) is contained in the closed ball BR. Then, 

for arbitrary real numbers s and s' there exists a positive 

number KR which is independent of E such that for 0<E<ER' 

(2.9) supIIuE ,2(x1,-) Its< KR.Lz.m'+1 c"'-in')/m" • DcPS.          0<x <T           = 1= 

    Remark.Here we do not use any conditions on the 

fundamental solutions Yj but use (A2) in Assumption 1 Lemma 4 

shows that (A2) ensures the boundedness of Y. on [0,T]xBR when 

Ey0 

    Proof of Lemma 5. It is well known that the solution 

u E2(x) of (CP2) satisfies 

                   mY
,,               uE

,2(x1,') _j=m'+l(Ex1E')'(E')j 

Lemma 3 implies 

       1ul)_~(2-m')/m". I~          E,2(xlC1,R•Q=m'+1 E E,Q 

on [0,T]xBR_ Thus 

              (27)-n+1 j IuE,2(x1, I)< '>sl2 d ' 
1'1_R 

                          < C 2•m" = 1 ,R 

          'm (2~r)-n+l(IE(2-m')/m".-(1)(E')<E1>s12 dEl  x~Q=m+1JII <RE,Q 

Put KR= C1
,RP•m"1/2-su<'>S-SiThen we have (2.9) 1E1 15-R 

[Q.E.D.] 
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    The following  corllary shows us that the stability is very 

strong when the Cauchy problem is admissible. 

    Corollary 2. Let Assumption 1 be satisfied and E
R be the 

same as in Lemma 2. Then, for every positive number s with 

s<ER,there exist Cauchy data(
s,, j=m'+1, ,m belonging to H~                                J 

such that for arbitrary real numbers s and s', 

IIF£js~j=m'+1, ..m; 

sup lu s,2(x1.'s O. 0<x <T = 1= 

where us,2are the solutions of (CP2) for these data(I)s,j, 

j=m'+l, ,m. 

Proof. Choose non-trivial Co(BR)-functionsj('), 

j=m'+1,.. ,m and a positive number a with a<1/m" Put 

s, J (x' )s-aF „(~j(~)) , j=m'+1, E,x

which are rapidly decreasing functions. If s'<0, then 

              IIcPS,JIIs'> £-a-<R>5IIF-1(vpj) IIo T ~. 

when 6J+O. If s'>0, then 

II~S,jIIS,>II~S,jII-s' > £-a,<R>-S'IIF-1(j)Do fi 00, 

when 6+0. By (2.9), 

sup IIus,2(x1, )IIs < sl/m., a.KR'j-m'+1 IIF-1(4)j) IIS, 1 0, 0<x <T        = 1= 

when s+0. 

[Q.E.D.] 
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    Lemma 6. Let the same assumption as in Theorem  1 be 

satisfied. Consider the singulary perturbed Cauchy problem 

(CP2) and the reduced Cauchy problem (RCP2) for (CP2) 

Assume that for the Cauchy data  (1)
E  j, j=1, ,m there exist 

positive numbers 6 and M such that supM. j s,+o< M. Then                                         1<j<m 

the following two conditions are equivalent: 

(C9) The Cauchy problem (CP2) is (s,s'+0)-stable in [O,T] for 

EJ+O with respect to a particular solution u02 = 0 of (RCP2) 

                                                                                               , (C10) For every positive number 6 there exist positive numbers 

6 and C6 such that 

(E3) sup
'ERnlyre,xl         E,c')<E,>s-s'-61        m+l<j<m,0<<E6,0<x1<T, 

     <C6 

    Proof. First we shall show (C10) implies (C9) We have 

only to show that if sup k s~jl~s,+S< M then                        1<j< m 

sup [uE 2(x1,•)~~s } 0. As we have already shown in the proof 
0<x <T  = 1= 

of Lemma 1 , the solution u s , 2 (x) of (CP2) satisfies 

             uE2(xl,) m Yj(E,x,E1)•(E')                                                 ,E1)-q)] 

Denote by X(Y';BR) the characteristic function of the ball BR. 

Put 

                vE 2(x1,E') = uE
,2(xl,E')•X(E';BR), 

            wE,2(x1,E1) = UE,2(x1, ') • (1 - X(Y';BR)) 

             -1 ~
v   Then v(x) = F(x1'')) is the solution of (CP2) with 

   E , 2E , 2 
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the initial conditions: 

                       D1h-1u(0,x') = 0, j=1,  • ,m'; 

 -1 
     D1J-1u(O,x') = F,~(~E ,J(E')•X(E';BR,J=m'+1, ,m. 

Since the supports of the Fourier transforms of these Cauchy data 

are contained in the ball BR, we can apply Lemma 5 to vE2(x) 

Obviously 

          

IIF1,x,(q)E,Q(E')•X(Y;BR)) Ifs, kE,QIIS„ 

(2.9) and 0<E<ER<1 imply that 

(2.10)sup ilvE,2(x1,.)Its                           0<x <T                            = 1= 

< KR.E1/m".1Q_m'+lIIF'}x' (q) ()'X(C;BR)Js' 

< KR.E1/m.,.L2 =m'+11I~E,Q1~St 

Choose a positive number 6' satisfying 6'<6 and put S" = 6-6' 

Since 

                          1wE 2(x1,E')•< '>s1 

                   <j =m'+1IY.(E,xl,')•<E'>s-'                                                         s'-61 

                                                                                -S 
            .Iq)

E,j()-<E'>s'+51.11 - X(';BR)1•< '> 

the estimate (E3) for S=S' implies that 

                          1wE 2(x1,C').< '>Sl 

      <Xj=m'+1C6,•1$ . (E1)•<'>st+61.11-X(';BR)I.R-6~~ 

Hence 

-6" m 

(2.11) sup IIwE,2 (xl, •) Its CS, -R •Lj_m,+l I111)E, J IIs,+6 
          0<x <T           = 1= 

Thus - 23 -



                          1 /m~~-S (2.12) supIIus ~2(xl,-) Its< (KR.S+ CS,_R ) -M-m"          0<x <T           = 1= 

First take the upper limit of s in (2 .12) and next let RTco, then 

lim sup Ilus,2 (x11.) Its = 0. s4,0 0<x1<T 

    Next we must show (C9) implies (010) Assume that (C10) is 

not satisfied. Then there exists a positive number S such that 

(E3) is not satisfied. Replacing s' by s'+S in (2.2) and (2.3) 

in the proof of Lemma 1, we have a sequence of solutions u
n(x) of 

(CP2) such that 

                    sup Ilun(xl,-)11s> 1/2, 
                       0<x <T                         = 1= 

                  IIDl'-lun(0, .)lls'+S -4-0, j=1, ,m. 

This contradicts (D1), (D5), (D6), and (D7) 

[Q.E.D.] 

    Proof of Theorem 1. First we shall show the equivalence 

between (C1) and (C3) Denote by u
s,1(x) the solution of (CP1) 

and by u2(x) the solution of (CP2) with the initial conditions: 
              s, 

                      D1j-1u(0,x') = 0, j=1, ,m'; 

      D13-lu(0,x') =~ s,j(x') - D13-1u0(0,E'), j=m'+1, ,m. 

Then the solution us(x) of (CP) is given by us
,1(x) + us,2(x) 

Apply Lemma 1 and Lemma 6. The condition (C3) is equivalent to 

the (s,s')-stability of (CP1) with respect to a particular 

solution u0of (RCP) and the (s,s'+0)-stability of (CP2) with 

respect to a particular solution u02 = 0 of (RCP2) By the 

                                                                            , definition, the (s,s')-stability implies the (s,s'+0)-stability 
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Hence we can easily show that (C3) is equivalent to the 

 (s,s'+0)-stability of (CP) with respect to a particular solution 

u0of (RCP) 

    Since (C3) is independent of the choice of a particular 

solution u0of (RCP), it implies that (C2) is equivalent to (C1) 

    Finally we shall show the equivalence between (C3) and (C4) 

We have only to show that (C4) implies (C3) Apply Lemma 3 for 

R=RO_ Then we have (El) and (E2) for co = min{q,E
R } and 

0 

      C0= max{1,T}•max{C',C1R(1+R02)                                             max{(s-s'),0}/2} 
                                     '0 

Apply Lemma 3 for R=Rd Then we have (E6) for Ed = min{sa,sR} 

and 

                                       2max{(s-s'-d),0}/2 Ca= max{Ca,ClR(1+Ra)}
cS 

[Q.E.D ] 

   By the same argument as Theorem 1 we have the following 

theorem whose proof is omitted. 

    Theorem 2. Let Assumption 1 and 2 be satisfied for s'=s. 

Then the following three conditions are equivalent: 

(C5) The Cauchy problem (CP) is Hs-stable in [0,T] for EJ0 with 

respect to a particular solution u0(x) of (RCP) belonging to 

Cm([0,T];Hs+Q) 

(C11) The Cauchy problem (CP) is Hs-stable in [0,T] for c“) 

with respect to every solution u0(x) of (RCP) belonging to 
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 Cmr  [0,T]  ;Hs+Q) 

(C12) There exist positive numbers c(!), R0, and CI!) such that 

                      (El0) supJT1•IY(E,x')I dx<C' 
        O<s<c0,RO<I'I0em11<0, 

(Ell) supIYj(s,x1,E')I < C(121. 
1<j<m, 0<s<s0, 0<x1<T, R0<1'1 
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                3. An example for Nagumo's  Hs-stability  

    Let P1(g) and P2(a) satisfy Assumption 1 and 

     ord p1.() < 7, J=O: . ,m; ord p
2,j (Y') < j, j=O,,m• 

Then Pl(D) and P2(D) are kowalewskian operators . Put 

L(E,A) = P1 (E) + Am .P
2 (E) , 

N'=(1,0) in R xRn,1, and N=(N',0) in RnxR~Denote by L(E,A) 

              1 the principal symbol of L(E,A) with respect to (E,X) and by 

0 Pi(E), i=1,2 those of Pi(), i=1,2, respectively- Then 

L(E,A)  = Pl( ) + Amy,-P2() 

   00 

It must be remarked that L(N) = P1
,0 0 and P2(N') = P2,0 0. 

Kevorkian and Cole's suggestive example in §4.1 2 in [7] is as 

follows. 

     Example 1 (Kevorkian and Cole).  

    Let P1(E1,E2)E12E22, which is the simple wave operator, 

and P2(E1,t2) = r•(a•E1 + b.E2), where a and b are real 

numbers. Let us consider the solutions u
s(xl,x2) through a 

fixed point P(x10,x20) of the following equation: 

6*(P1(D1,D2) + P2(D1,D2))u(xl,x2) = 0. 

If there exists a convergent sequence of uE(xl,x2), then the 

limit u0(xl,x2) must satisfy the reduced equation 

P2(D1,D2)u(x1,x2) = 0. 

Sincethe general solution of the reduced equation has the form: 
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 u0(xl,x2) = f(b•x1-a•x2) and the subcharacteristic of the reduced 

equation has the form: b•xl-a•x2 = constant, if la/b1 > 1 then 

the subcharacteristic to P lies outside the usual domain of 

dependence of P for the simple wave operator Hence u0(xl,x
2) 

can not be approximated by uE(xl,x2) when la/bl > 1. 

00 

    Thus even when P1 and P2 are strictly hyperbolic, we need 

some additional assumption on the propagation speeds. Therefore 

we require the following assumption. 

    Assumption 3.  

0 (A3): The polynomial L( 1+T,Y 'A) has only simple real zero for 

every (E,A) in RnxR-{(0,0)} That is, L( ,A) is a strictly 

hyperbolic polymonial in (E,A) with respect to N. 

(A4): There exists a positive number Tl such that if Im T < -T1 

then P2(1+T,') = 0 for all E in Rn That is, P2(c) is a 

hyperbolic polymonial in E with respect to N' in the sense of 

0 Garding 

    Remark. Since 

L(0+T,0,X) = P10.Tm+A .P2
,0.7"m~                                  

          m'm" 
                             (p1

,0.T                 = I + Am..,p2,0) , 

(A.3) implies that m'<1 

    Theorem 3. Let Assumption 1 and 3 be satisfied and s be an 
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arbitrary real number Then the Cauchy problem (CP) i
s 

 Hs-stable (and therefore (s ,s+0)-stable) in 0<xl<T for E+0 with 

respect to every solution u
0 of (RCP) belonging to 

Cm([0 T];Hs+m) 

     Proof. By Theorem 2, it suffices to show that Assumption 2 , 

which is the assumption on the unique solvability , and (C12) are 

satisfied. First we shall show (C12) Denote byt
j(E',a), 

j=1, .,m the roots of L(E,X) = 0 with respect to El When 

E-1= X, we may write 

(3.1)tj (Y' ,X) = T. (E,E') , j=1, ,m 

for E#0 by choosing the suffixes fj} of tj(Y',a) properly The 

strict hyperbolicity of L(E,X) implies that there exist positive 

numbers R1, cl, and M1such that 

(3.2) inf~tj( ~,A) - tk(E',A)1/1( ',A)1 
j#k, 1<j,k<m, 1( ,A)!>R1 

        > c; 

(3.3) supIt.(E1,A)1/1(E',A)1 < M 
      1<j<m,1(E',A)1>R- 1   =1 

(For example, if we look carefully into the proof of Theorem 4.10 

in [8], we can find this fact easily_) Hence the roots 

Tj(E,E'), j=1, ,m of LE(E) = 0 with respect to El are distinct 

for E#0 and Rl<IE'I The hyperbolicity of L(E,X) implies that 

there exists a positive number C3 such that 

(3.4) supn-1lIm tj(E',X)1 < C3 
1<j<m, (E',A)E RxR 

Put p = Then (A.4) in Appendix implies that for E#0, 
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 R1<Iy'1, O<xl<T, and j=1 , ,m, 

1Yj (E,x1,E') 1 

          = I(-1)j-1-D(0 ,1,. .,j-2,j, .,m-1)(t1, ,t m,x1)1 

             < M(0,1, . ,j-2 ,j, ,m-1)•1(t1, ,t m)1m- 

                                                   j 

             x~~=1 exp(-Im tQxl)/llk2 ,1<k<mIt- tk1 

< p1-j•M(0,1, •,j-2,j, . ,m-1).1(t
1/p,1 ,t/p)1m-j 

x4=1 exp(-Im tZx1)/1lk=2, 1<k<m It/p - tk/PI 

                                     pl-j.04, 

      = where 

 C4= M(0,1,.. ,j-2,j, ,m-1)•m(m-j)/2•Mlm-j•m•(expC3T).c11-m 

Since R1.< 1E'I < p and A < p. it implies that P1-j < R11-j, 

            -11-mm"1-mm"+1-m 
j=1, ,m andEp= A•p<Hence 

   sup1Yj(E,x,')1 < C4, j=1, ,m; 
      O<E<ER,0<x1<T'R1<1~'I 

1 

      supE•IY.(E,xl,')1 < C4 
           O<E<ER,0<x1<T,R1< 

1 

    Next we shall show that the unique solvability Since (C12) 

and Lemma 3 imply (C6), Lemma 4 can be applied. It is well 

known that (E8) and (E9) imply the unique solvability-

                                                                        [Q.E.D.] 

    Remark. If (I)E,j,j=1, ,m and~O.,j=1, ,m' belong to 

e(Rn-1) and f and f0 belong to Hc°(Rn) then u belong to 

Cm([O,T];Hs) and u0 belongs to Cm([O,T];Hs+m) 
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                               Appendix  

    Let z =  (z1,z2'. ,z
n) be complex variables. For a 

non-negative integer Q, denote 

a (Q) (z) _ ( (zj) Q; j+1, ,n) 

and for non-negative integers Q1'Q2'. ,Q
n satisfying 

0<Q1<Q2< _<Q
ndenote 

A(112,. ,Qn) (z) = det(a(Qi) (z) ; 1+1, ,n) . 

In particular, A(0,1, ,n-1)(z) is the Vandermonde determinant 

and represented as the difference product H.
n(z. - zi) 

                                                            < 

                                  j_<j 

Let i = /J and x1be a real parameter. Denote 

                   e (z,x1) = (exp izjxl; j->1, ,n) 

and for non-negative integers Ql,Q2' .. 'Qn -1 satisfying 

0<Ql<Q2<.._ <9W,denote 

B(91,92' 'Qn -1)(z,x1) 

          = det t(te(z,x
1),ta(Q1)(z), 'ta(Q11-1)(z)) 

Expand the determinant B(Q1'Q2,'Qn -1)(z,x1) with respect to 

the first row. Then 

(A.1)B(Q11 2' 'Qn-1)(z'x1) 

          =j _i(-1)1+j,A(Q1,Q2, 'Qn-1)(z(j))•exp izjxl, 

where z(j) = (z1,z2, ,z. -1,7z.+1, ,zn) Denote          ~ 

C(Q1,Q2' ,Q
n)(z) 

= A(QI,Q,2' ,Q
n) (z) /A(0,1, ,n-1) (z) 

                                     - 31 -



and 

 D  (Q1'  Q2,  . 4 1,1-1) (z,x1) 

            = B(
1121. 'Qn-1) (z,x1)/A(0,1, ,n-1) (z) 

Then C(2,1,Q2' ,Qn)(z) is a homogeneous symmetric polynomial in 

Z[z] of order 2,1+2,2+- -+2 n-(n-1)n/2, which is called a Schur 

function. Since B(Q1,Q2' n-1)(z,x1) is an entire function 

of z and vanishes on the zeros of irreducible polynomials 

zj - z., 1<i<j<n, Nullstellensatz implies that 

B(2,l'2.2' n-1)(z,x1) is divided by A(0,1, ,n-1)(z) in the 

ring of entire functions. Hence D(2.1'9.2, .'Qn -1)(z,x1) is an 

entire function. If zi # zj,1<i<j<n, then (A.1) implies that 

(A.2)D(1121.. 'Qn-1)(z'x1) 

=j =1 (-1)1+j-C(2,12' 'Qn-1) (z (j)) •exp iz .xl-Ej(z) , 

where E (z) = 1/{(-1)n-j'lk�j ,l<k<n (zj - zk)} 

Put 

M(Q1,Q2,. .,Qn) = max IC(2,1,Q2' '2n) (z) 
Izl=1 

Then 

(A.3) 1C(Q1,Q2, ,2,n)(z)1 < M(9,1,2,2, ,QnNzIL, 

where L = 1+R,2+_ +2n- (n-1) n/2 and 

(A.4)1D(2.l' 2' n-1)(z'x1)1 

< M(2Q'2 n-1 Iz1L•1 n exp(-Im z.x )/llIz.-zH,     2'n-1j=1 j 1 kj,l<k<nk 

where L' =1+2,2+. _+2,n-1-(n-2)(n-1)/2. 
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    Let m, m', and  m" be positive integers such that m = m'+m" 

Denote z' = (zz2'...,z m'), z" = (zm'+1'zm'+2"zm), and 

z = (z',z") Let 1,k2'. ,k
m-1 be non-negative integers 

satisfying 0<Ql<2,2< ,_<Qm -1 Let S1 be the set of all 

bijections p from {1,2, ,m-1} onto {Q12'.. satisfying 

P(1)<P(2)<-<P(m'); 

P(m'+l)<P(m'+2)<. .<P(m-1) 

and S2 be the set of all bijections p from {1,2, ,m-1} onto 

1„9„2'm-1} satisfying 

P (l) <P (2) <• -<P (m'-1) ; 

P(m')<p(m'+1)< _<p(m-1). 

There are one-to-one correspondence between the bijections in S1 

and the selections of m-1 objects taken m' at a time and between 

the bijections in S2 and the selections of m-1 objects taken m'-1 

at a time, respectively. Define the bijection rr from 

{,Q,12'. m-1} onto {2,3, ,m} as 

                                 = j+l, j=1,. ,m-1. 

Denote 

I(p) =7(P(j)) + m' (m'+1)/2                            j =1 

and 

J(p) = 1 +j=17mt-17(P(j)) + m' (m'+1)/2. 

For zi ~ z.,1<i<m', m'+1<j<m, denote 

          E(z) = 1/II(z.- z.)                          1<i<m'
, m'+l<j<m~i 
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    Lemma  A.1. For z zj,1<i<m',m'+1<j<m, 

(A.5)D(2.,12' ,km -1)(z'x1) 

              pES1(-1)I (P). C (P (1) , P (2) , • • , P (m')) (z' ) 

xD(P (m'+1) ,P (m'+2) , ,P (m-1)) (z",x1) _E(z) 

                   J (p)         +
P CS2•D (p (1) ,p (2) , ... , p (m'-1)) (z' ,x1)                2 

xC(p(m')'p(m'+1), • ,p(m-1)) (z")-E(z) 

    Proof. Apply the Laplace expansion theorem to 

B(Q1'Q2' .. 'Q m-1)(z,x1) The minors of order m' of the original 

matrix t(te(z,xl)'ta(Q1) (z)' 'ta(Qm -1) (z)) of order m are 

A(P(1),p(2),• •,P(m'))(z'), for p in Si, 

B(P(1),P(2),...,p(m'-1))(z",x1), for p in S2, 

and those cofactors of order m" are 

   (-1)I (P)-B (p (m'+1) , p (m'+2) , , p (m-1)) (z' ,x1) , for p in Si, 

(-1)J(P)•A(p(m'),p(m'+1), .,p(m-1))(z"), for p in S2, 

respectively Hence 

(A.6)B(Q1,Q2' 'Qm-1)(z'x1) 

                      (-1)'(P).A(P(1),p(2),,P(m')) (z') PES
1 

xB (P (m'+1) , P (m'+2) , , P (m-1)) (z„ ,x1) 

        + 1
PES(-1)J(P).B(P(1),P(2), ,P(m'-1)) (z',x1) 

               2 xA(p(m'),p(m'+1), ,p (m-1) ) (z") 

Divide (A.6) by 
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(A.7) A(0,1,  ,m-1)(z) 

= A(0 ,1,. ,m'-1) (z') •A(0,1, . ,m"-1) (z") /E(z) , 

we have (A. 5) . 

[Q.E.D.] 

     Denote 

P(1)+P(2)+- _+p(m')-(m'-1)m'/2, for p in S 
 L' (p) =1 

p (1)+p (2)+_ _+p (m'-1)-(m'-1)m' /2, for p in S2, 

and 

p(m'+1)+p(m'+2)+_ _+p(m-1)-(m"-1)m"/2, for p in S1 
L (P) 

p (m')+p (m'+1)+_ , _+p (m-1)-(m"-1)m"/2, for p in S2 

Put 

M(Q1, 2, 'Q
m-1) 

                = max {max M (p (1) , p (2) , , p (m')) , 
peS1 

                  max M(p(m'+1),p(m'+2),.. ,p(m-1)), 

p E 1 

                max M(p(m'),p(m'+1), ,p (m-1))} 
               p E S2 

For a positive parameter n, put wj = f•zj, j=1, ,m. 

    Lemma A.2. Assume that zi zj,for 1<i<m', m'+1<j<m and 

for m'+1<i<j<m. Then 

IC (p (1) ,p (2) „P (m')) (z') 

xD(p(m1+1),p(m'+2), ,p(m-1))(z,',x1)-E(z)I 

< M(Q1'2''Q m-1)2-Iz' IL' (p) Iw„L"(p)+(m'~-1) . IE(w) 
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   m'm"-L"(p) • m xr1(xexp (-Im w.x                 =m'+11/rl)/llkj
,m'+l<k<m lwj wkl)' 

for p in S1 and 

1D(p (1) ,p (2) , ,p (m'-1)) (z' ,x1) 

xC(p(m'),p(m'+1), ,p(m-1)) (z")-E(z) I 

< !D(p (1) ,p (2) , ,p (m'-1)) (z' ,x1) 1 

xM(212' m-1).Iw"IL"(p)•IE(w)I•nm' m"-L"(p), 

for p in S2 

    Proof. Since 

           C(212'n)(z) =-L.C(212' ,211)(11•z), 

where L = 21+22+_ +2n-(n-1)n/2, 

   12n-11-L1'12n-11    D(2,2,2)(z,x) _~•D(2,2,•,2)(n•z,x/n), 

where L" = 21+22+_ +2
n-1                               -(n-1)n/2, and E(z) = nm m"-E(w), it 

implies that 

C(p(1),p(2),,p(m')) (z') 

xD(p(m'+1),p(m'+2), 'p(m-1))(z',x1)-E(z) 

                     = C(p(1),p(2), - ,p(m')) (z') 

     xD(p(m'+l),p(m'+2), ,p(m-1))(w",x1/7l)-E(w)•nm'm-L"(p)~ 

for p in S1 and 

D(p(1),p(2), ,p(m'-1)) (z',x1) 

xC(p(111'),p(m'+1), ,p(m-1))(z")-E(z) 

                  = D(p(1),p(2), ,p(m'-1)) (z',x1) 
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 xC(p(m'),p(m'+1),  ,p(m-1))  (w"),E(w),nm  m  -L  (p), 

for p in S2. By using (A.3) and (A.4) , we come to the 

conclusion. 

                                                                        [Q.E.D.] 

    Lemma A.3. Assume that zi = z.,for 1<i<m',m'+l<j<m and 

for m'+1<i<j<m. Let 

{2,1'Q2' '.,km -11 = {0,1, ,k-l,k+l, ,m-1}. 

Assume that there exist positive numbers M, M', c, and no with 

n0<1 such that for every n satisfying 0<n<n0,the following 

estimates are satisfied: 

(A.8)Iz'I < M; 1w"I < M; 

g,+]_ exp (-Im w.xl/n) < M'; 

   infIw. - w.l > c; infIw. -w.l > c. 
   m'+1<i<j<m11<i<m',m'+1<j<m1 J _ 

Denote 

             M = max M(0,1, ,k-1,k+1, ,m-1), 
0<k<m-1 

      (m-1) !  -M' ,, 

and 

                            _ (m-1) ! .M.Mm'm.,•c_m'm"                     C2 (m ' -1) ! m"! 

Then 

(A.9)ID(0,1, ,k-1,k+1, ,m-1)(z,x1) 

                    - D(0 ,1, ,k-1,k+1, ,m'-1)(z',x1) 
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 x(wm'+1•wm,+2• •wm)m' E(w)I 

< (C1 + C2•max ID(p (1) ,p (2) „p (m'-1)) (z' ,x1) ) •n, 
pES2 

for k=0,.. ,m'-1 and 

(A.10)ID(0,1, . ,k-l,k+l, ,m-1)(z,x1)I 

  < (C1 + C2•max 1D(P (1) ,p (2) „p (m'-1)) (z',x1)I).nk-m'+1, 
P ES2 

for k=m',. ,m-1 Here p in S2 are bijections from 

{1,2, .,m-1} onto {0,1, .,k-1,k+1,. ,m-1} satisfying 

p(1)<p(2)< <p(m'-1); 

p(m')<p(m'+1)< <p(m-1). 

    Proof. First it must be remarked that 

m'm"-L"(p) > m'm"-m'-(m'+1)-. --(m-1)+(m''-1)m"/2 = 0, 

where the equality holds if and only if 

(A.11)k=0,1, ,m'-1, 

PE S2, 

j-1, j=1, ,k; 
P(j) = 

                               j, j=k+1, ,m-1 

Since 

                                                                                        m'           C(m',m'+1, ,m-1)(z") = (zm'+1•zm'+2• •zm) , 

it implies that for p satisfying (A.11), 

(-1)J(P)•D(p(1),P(2), ,p(m'-1)) (z',xl) 

xC(p(m'),p(m'+1), ,p(m-1))(z")-E(z) 

(-1)m'(m'+1).D(0,1  k-1 k+1  m'-1) (z' ,x1) 
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                                                                 m'                          x~wm,+1•wm,+2•...•w m~ -E(w) 

For p not satisfying  (A.11), Lemma A.2 implies that 

IC(P(1),P(2), ,P(m')) (z') 

xD(P(m'+1),P(m'+2), ••,P(m-1)) (z",x1)-E(z) 

< 2•ML'(P)+L"(P)+m"-l.1E(w)I. m'm"-L"(P)•M,•c-m"+1~ 

for p in S1 and 

ID(P(1),P(2), ,P(m'-1)) (z',x1) 

xC(p(m'),p(m'+l), ,p(m-1)) (z")-E(z) 

                < ID(p(1),p(2),• ,p(m'-1))(z',x1)I 

xM•ML~~ (P) • IE(w) I •-Im'm"-L" (p) 

for p in If If (A.11) is not satisfied, then m'm"-L(p) > 1. 

If k = m', . ,m-1, then 

m'm"-L"(p) > m'm"-(m'-1)-m'-- -(m-1)+k+(m"-1)m"/2 = k-m'+1. 

Since IE(w)I < c-mm'and L'(p)+L"(p) = m'm"-k, for p in S1, 

Lemma A.1 implies the conclusion. 

[Q.E.D ] 
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