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    Chapter 1 

General introduction

   Enrichment, or often referred to as eutrophication, is an increasingly widespread and 

serious trend in natural ecosystems, and may become even more serious in the future 

due to an increased level of human activities . Special attention to effects of enrichment 

on ecosystems has been paid by ecologists since Rosenzweig (1971) implied decimation 

of species due to enrichment using several predator—prey models. This counterintuitive 

prediction is called the  `paradox of enrichment' after the title of his paper. It was subse-

quently modeled and confirmed by Gilpin (1972) and May (1972). 

  When we consider the problem of species extinction in theory, we should deal with the 

response of population abundance at equilibrium to enrichment as well as the stability 

of the system. This is because population which decreases its mean abundance and has 

large oscillation of abundance in the face of enrichment is much prone to extinction. In 

one-predator—two-prey systems, there is a regular trend that less profitable (therefore less 

vulnerable) prey increases in abundance with enrichment in theoretical (Phillips 1974; 

Vance 1978; Leibold 1989, 1996; Grover 1995) and in empirical works (Watson & Mc-

Cauley 1988; Watson et al. 1992). On the other hand, there is not such a clear trend in 

the abundance of more profitable prey among theoretical works, although the empirical 

works (Watson & McCauley 1988; Watson et al. 1992) showed that the more profitable 

prey did not change in abundance with enrichment. These imply that the relative impor-

tance of the less profitable prey to the more profitable prey increases with enrichment. 

                            1



  Here I examine the effects of enrichment on one-predator—two-prey systems , especially 

in aquatic systems like zooplankton—phytoplankton interactions , because these aquatic 

systems are some of the theoretically and empirically best-studied systems . Algal prey 

are mechanically classified into two categories according to their cell sizes . Relatively 

small algae (often called nano-phytoplankton) are classified as the more profitable prey; 

larger algae (micro-phytoplankton) as the less profitable prey. As for the predator, I 

separately consider two type: an optimally selective predator like calanoid copepods and 

a generalist predator like Daphnia. 

  The thesis consists of four chapters including this. In Chapter 2, I deal with stability 

of a cyclic system, which is defined by the amplitude of population oscillation, in the 

case of an optimally selective feeding predator. Analysis for the population abundances 

at equilibrium in this case is omitted, because switching property produces discontinuous 

dynamics so that the accurate analysis for equilibrium is not possible. In the case of a 

generalist predator, I analyse the response of population abundances at equilibrium to 

enrichment in Chapter 3 and the stability at equilibrium in Chapter 4.
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Chapter 2

Effects of enrichment on stability of a system 

     an optimally selective feeding predator

with

2.1 INTRODUCTION 

   A predator—prey model incorporating a natural assumption of satiation in predation 

has led to a paradoxical prediction (Rosenzweig 1971; Gilpin 1972; May 1972): a suf-

ficient enrichment of the prey leads to the risk of destruction of the system. Such an 

enrichment first destabilizes a stable equilibrium point, resulting in a limit cycle. The 

amplitudes of the population oscillations will grow rapidly and, thus, the minimum popu-

lation abundances will approach zero as enrichment is further increased, so that stochastic 

effects could lead to extinction (smaller populations are more prone to such an extinc-

tion). Thus, Rosenzweig (1971) warned against enriching natural ecosystems in order to 

increase their food yield. 

  In spite of the astonishing prediction of this classic model, the paradox has seldom been 

tested empirically. In one predator—one prey systems, there have been several experiments 

in which enrichment caused population oscillations (Huffaker et al. 1963; Luckinbill 1974; 

Bohannan & Lenski 1997). In contrast to these examples, McCauley & Murdoch (1990) 

showed by using a  Daphnia—algal system that enrichment did not change the amplitude 

of the population oscillation, either in a field or an experimental system. Furthermore, 

Kirk (1998) showed with laboratory microcosms containing planktonic rotifer predators 
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and phytoplankton prey that enrichment can stabilize the population oscillations through 

autotoxins produced by the predator. 

  These empirical studies imply that it is necessary to apply additional assumptions 

to the theoretical model. For the empirical work by McCauley & Murdoch (1990), the 

presence of inedible prey is proposed as a plausible mechanism to resolve the discrepancy 

between theory and observation, in which the prey acts as a nutrient  `sponge' (Kret-

zschmar et al. 1993; Murdoch et al. 1998). The experiment by Kirk (1998) can be 

explained by the addition of density-dependent predator mortality to the classic model 

(Gilpin 1975), because this factor results in stabilizing an unstable system. Other models 

incorporating an assumption that the attack rate of the predator depends on the ratio 

of prey to predator abundances claim that enrichment is not predicted to be destabiliz-

ing (Arditi & Ginzburg 1989). These `ratio-dependent' models, however, are less widely 

accepted than 'prey-dependent' models in which the attack rate depends on the instan-

taneous density of prey (Oksanen et al. 1992; Diehl et al. 1993; Abrams 1994; Gleeson 

1994) . 

  In this chapter, I theoretically propose a new mechanism that resolves the paradox of 

enrichment, using a one predator—two prey model in which the predator shows optimal 

selective feeding, which is a well known behaviour of many predators (Werner & Hall 1974; 

Krebs et al. 1977; DeMott 1989). Several studies have shown that switching between prey 

by predators can stabilize predator—prey systems (Murdoch 1969; Murdoch & Oaten 1975; 

Tansky 1978; Teramoto et al. 1979). However, none of these studies considered cases in 

which the equilibrium was unstable and the system followed a limit cycle. The model 

applied here is different from the previous models with switching predators in (i) that 
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I deal with non-equilibrium dynamics of limit cycles and (ii) that the predator displays 

the optimal selective feeding strategy which maximizes energy input, dependent on the 

profitabilities and the abundances of its prey (Charnov 1976). I assume that enrichment 

of a system increases only the prey carrying capacity, following the original model in 

which the paradox of enrichment was discussed (Rosenzweig 1971). It is well known that 

the stability of an equilibrium point depends on the carrying capacity, but not on the 

intrinsic growth rate which may affect the equilibrium abundance.

2.2 MODEL 

  Consider a system consisting of two prey species populations (X1 and X2) and one 

predator population (Y), whose dynamics is defined by the following set of equations: 

dtl ={El (1—X1—aXl)—r1Y}Xl (2.1a) 
                 1 dX2{E2 (i_ XlX2)— r2y X2(2.lb) 

dtK2K2 

dY 

dt= {—E3 + k(giriXi + g2r2X2)} Y(2.1c) 

where ri = piai/(1 + >i p3h3aiXi)• 

  The parameters e's and K's are the rates of growth of the two prey when scarce (e3 

is the predator death rate) and the carrying capacities of the prey in the environment, 

respectively. The two prey species compete with each other, described by a Lotka—Volterra 

competitive system with interspecific competition coefficients a and ,6. The energy value 
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of an individual of prey species i is  gi. The conversion efficiency of consumed prey into 

the predator's reproduction rate is k. The term ri corresponds to predation, in which 

the encounter efficiency with prey species i is at; the handling time for prey species i is 

hi; pi is the probability that the predator captures an individual of prey species i when 

encountered. I assume here that the predation is basically described by a type 2 functional 

response (concave downwards), because I am interested in the dynamics of an unstable 

system and the type 2 is the simplest functional response that produces a population 

oscillation. 

  Assume that the predator is an optimal forager that chooses the value for each of the 

probabilities pi (0 < pi < 1; i = 1, 2) so as to maximize the energy input by predation 

giriXi + g2r2X2. The two prey species are assumed to be ranked in their profitability 

as g1/hi > g2/h2 (i.e. prey X1 is more profitable for the predator than prey X2) so that 

Pi should always be 1 (Charnov 1976). I also assume that the more profitable prey Xi 

is superior in competition to the less profitable prey because, otherwise, the two prey 

species cannot coexist (Takeuchi 1996). I further assume that the more profitable prey 

X1 yields nutrition enough to support a persisting predator population in the absence of 

the less profitable prey, or mathematically, that 

gi/hi > E3/k.(2.2) 

This inequality is derived from the condition that there exists a positive range of X1 such 

that dY/dt > 0 when X2 = 0 and Y > 0 in equation (2.1c). 

  It is known (Charnov 1976) that the predation rate g1r1Xi + g2r2X2 is maximized
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when  p2 = 0 (or 7,2 = 1) if the abundance of the more profitable prey X1 is greater (or 

smaller) than a critical abundance X1, where Xi = g2/[aihih2(gi/hi — g2/h2)]• 

  Noting that Xl is an increasing function of the profitability g2/h2 of the less prof-

itable prey X2, let the prey be classified, according to the range of its profitability g2/h2, 

that is, the value of X1, into three categories: inedible prey (Xi < Xrin), unpalatable 

prey (Xmin < Xl < Xi ), and palatable prey (Xi < Xi), where Xmin is the minimum 

abundance of X1 in its oscillation when X2 = 0, and Xi (- e3/[ai(kgi — E3h1)]) is the 

equilibrium value of X1 when X2 = 0, obtained from dY/dt = 0 in equation (2.1c) with 

Y > 0. Note that Xmin and Xi do not depend on 92 or h2. 

  Setting X1 = Xi , I obtain the critical profitability of X2, e3/k, below which (i.e. 

g2/h2 < E3/k) the less profitable prey is classified as unpalatable and above which (g2/h2 > 

c3/k) it is classified as palatable. Note from inequality (2.2) that an unpalatable or inedible 

prey cannot, while a palatable prey can, yield nutrition enough to support the predator 

population in the absence of the alternative prey.

2.3 RESULTS

  I numerically calculated the dynamics of three species for different profitability of the 

less profitable prey and summarized the results in figure 2.1. We first observe that in 

the absence of the less profitable prey X2, population oscillations occur with sufficient 

enrichment, that is, for large values of K (the left-most panels in figure 2.1a, b). The 

presence of X2 always reduces the amplitude of oscillation (the other panels in figure
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 2.1a, b). The degree of this stabilizing effect depends on the profitability g2/h2 of the less 

profitable prey X2 (figure 2.1a, b, d). The stabilizing effect is the strongest when the less 

profitable prey is unpalatable. Within the range of unpalatable prey, the stabilizing effect 

becomes stronger as the profitability g2/h2 of the less profitable prey X2 increases and the 

oscillation is sharply suppressed (almost to a negligible level) at the critical profitability 

of the prey, e3/k, beyond which the amplitude of the oscillation discontinuously increases 

(figure 2.1d). 

  In the presence of inedible prey X2i the effective carrying capacity of X1 is reduced 

by competition (Kretzschmar et al. 1993), resulting in reduction in the amplitude of 

the oscillation. In the presence of unpalatable prey X2i observe a vertical drop of the 

orbit in the X1—Y space (figure 2.1b). A close-up view of the drop (figure 2.1c) indicates 

the following: an expanded population Y causes the reduction of X1, but, once X1 falls 

below Xl, the predator begins to eat not only X1 but also X2, which causes an immediate 

recovery of X1, while decreasing Y itself (because X1 < XI, where dY/dt < 0, as is clear 

from equation (2.1c)). As the profitability g2/h2 of the unpalatable prey X2 increases, the 

X1 value and, thus, the realized minimum X1 value increase, which causes the minimum 

Y to increase, resulting in the reduction in the amplitude of the oscillation (figure 2.1d). 

  In the case of palatable prey X2i its population level is more heavily suppressed both 

by predation due to its relatively high profitability and by competition with the superior 

competitor X1. The competitive influence of X2 on X1 is thus reduced, resulting in a 

larger value of the maximum X1 as shown in figure 2.1a. The maximum Y is enhanced 

not only by the large value of the maximum X1 but also by a relatively high profitability 

of X2i which subsequently causes the small values of the minimum X1 and Y Thus, the

8



amplitude of the oscillation in the case of palatable prey is larger than that in the case of 

inedible prey (figure  2.1d). 

  Next, I examine the effects of increasing enrichment , or the carrying capacity K, on 

the oscillation amplitude and the minimum abundance of prey X1 under the presence of 

different categories of prey X2. In the case of unpalatable prey, the minimum abundances 

of all the species populations are kept considerably higher than zero in the face of increas-

ing enrichment, while they approach to zero in the other cases (figure 2.2a). This means 

that an unpalatable prey prevents the abundances of all the species populations from 

becoming so low that stochastic fluctuation may cause them to go extinct. Although 

the amplitude of the population oscillation increases with an increasing enrichment in 

the case of any category of the less profitable prey, the increase is much slower in the 

case of unpalatable prey (figure 2.2b). Thus, unpalatable prey most effectively prevents 

the system from oscillating to population extinction in the face of increasing enrichment, 

resolving the puzzle over the paradox of enrichment.

2.4 DISCUSSION 

  As to the effect of enrichment on the parameters, I followed a historical manner that 

enrichment of the prey caused only a change in the carrying capacity, but one might 

imagine that enrichment can cause an increase in the intrinsic growth rate (s1 and E2), 

or further both in the intrinsic growth rate and the carrying capacity. I preliminarily 

confirmed by numerical simulation that an increase in the intrinsic growth rate had little 
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effect on the amplitude of the population oscillation , in contrast to an increase in the 

carrying capacity, and caused the cycle to move upward in the X1—Y space (which corre-

sponded to an increase in the predator equilibrium abundance). Therefore, if enrichment 

increased only the intrinsic growth rate, there would not exist the problem of the  `paradox 

of enrichment' in the first place. This is the reason why I confined my study to effects of 

the carrying capacity on dynamics of the system. 

  My model with an optimally foraging predator which maximized its energy intake, 

revealed that the stabilizing effect of the alternative (less profitable) prey species was 

strongest when it yielded insufficient nutrient on its own to maintain the predator pop-

ulation but its profitability was relatively high (i.e. unpalatable prey). The relationship 

between the profitability of the less profitable prey and the amplitude of the population 

oscillation in figure 2.1d showed a discontinuous change between the categories, unpalat-

able and palatable prey, which is a new result in the stability analyses of communities. 

This discontinuous change implies the possibility that a population oscillation with small 

amplitude can explosively increase due to a small change in the profitability of the less 

profitable prey, for example, in the handling time in response to a change in temperature 

or in the energy value of individual prey in response to enrichment of the system. The 

reversed scenario that the amplitude is suddenly reduced is also possible. These could 

occur when the profitability of the less profitable prey takes a value near the critical 

profitability e3/k. 

  My assumption of optimal behaviour by the predator was shown to prevent the para-

doxical prediction as to enrichment: in the presence of unpalatable prey, though the 

amplitude of the population oscillation increased somewhat with enrichment, the mini-
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mum abundance of the more profitable prey species was kept well above zero and
, thus, 

the minimum abundance of the predator was subsequently kept considerably higher than 

zero, so that the predator—prey system was robust against any magnitude of enrichment . 

There have been theoretical works with other assumptions of adaptive behaviour by preda-

tors and prey which can stabilize population oscillations , although most of these works 

dealt with only the stability of the equilibrium points . Selective feeding by predators, in 

which they fed more intensively on the more abundant prey species , was shown to broaden 

the condition under which the equilibrium point was stable (Murdoch 1969; Murdoch & 

Oaten 1975; Tansky 1978; Teramoto et al. 1979). Antipredator behaviours of prey can 

also stabilize population oscillations in a system with heterogeneity such as refuges in 

which the predation risk is low but the prey has some disadvantage (Ruxton 1995;  Kfivan 

1998). In conclusion, adaptive behaviours of predator and prey have a general tendency 

to make it harder for predators to overexploit a specific prey and so can have stabilizing 

effects.
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Figure 2.1 Dynamics of the predator—prey system described by equations (2.1) with the less 

profitable prey of different degrees of profitability. I solved numerically by the Runge-Kutta 
method using the following values: Ei = 0.5, e2 = 0.25, E3 = 0.25, a = 0.1, Q = 0.4, al = a2 = 
1, k = 1, gi = 92 = 0.5, hi = 1, Ki = K2 = 4. I change the profitability g2/h2 of the less 

profitable prey X2 by changing the h2 value. (a) The temporal change in abundances of the 
more profitable prey (Xi, thin line), less profitable prey (X2, thick line) and predator (Y. dotted 
line), and (b) the dynamics in the X1—Y space of the system. Panels in (a) and (b) in the same 
column depict the same case. Numbers in parentheses in (a) express the profitability of the less 
profitable prey. Arrows in (b) express the values of Xi. In the left-most panels of (a) and (b): the 
less profitable prey X2 is absent; the initial values are (X1, X2, Y) = (2, 0, 1); the equilibrium 

point in the X1—Y space is (1, 0.75). In the other panels: the initial values are (2, 2, 1); the 
equilibrium point is (1, 0.66). (c) A close-up view of the vertical drop in the X1—Y space in the 
case of the unpalatable prey X2 with profitability g2/h2 = 0.24. (d) Relationship between the 

profitability g2/h2 of the less profitable prey X2 and the amplitude of the oscillation, defined by 
the difference between the maximum and minimum abundances of the more profitable prey Xi. 
The broken line represents the amplitude of the oscillation in the absence of the less profitable 

prey X2. The profitability g1/hi of the more profitable prey Xi is 0.5.
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Figure 2.2 Effects of enrichment in the presence of the less profitable prey with different 

profitability values. Numbers in parentheses express the profitability g2/h2 of the less 
profitable prey X2. The degree of enrichment is represented by the magnitude of the prey 
carrying capacity, K (= K1 = K2). The other parameters are the same as in figure 2.1. 
(a) Minimum abundances on the limit cycles in the X1—Y space. In the case of inedible 
and palatable prey, the orbits with K = 16 almost cling to the axes. (b) Relationship 
between enrichment and the amplitude of the oscillation, defined as the same as in figure 

2.1 d.
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Chapter 3

Effects of enrichment on the response of population 

abundances in a system with a generalist predator

3.1 INTRODUCTION

   The abundance of the less profitable prey in a one-predator—two-prey system has shown 

to increase with enrichment theoretically (Phillips 1974; Vance 1978; Leibold 1989, 1996; 

Grover 1995) and empirically (Watson & McCauley 1988; Watson et al. 1992), whereas 

the response of the more profitable prey abundance has not been clear. This problem 

on the response (i.e. the more profitable prey increases or decreases with enrichment) is 

critical, because the prey is the main resource supporting the system. 

  Many theoretical models predict that the more profitable prey decreases with enrich-

ment (Phillips 1974; Vance 1978; Leibold 1989, 1996), while another model predicts that 

it increases (Grover 1995). Although these models have assumed the less profitable prey 

as inedible, it is not always clear how profitable the less profitable prey is actually for the 

predator (Leibold 1989; Murdoch et al. 1998). In this chapter, changing this unknown 

profitability of the less profitable prey, I investigate the response of population abundances 

to enrichment in a one-predator—two-prey system. 

  Here I focus on a system consisting of a predator species, like a generalist filter feeder 

Daphnia, and two prey species, like two species of algae, with different profitability. The 

 Daphnia—algal system is one of the most widespread and best studied systems in lakes. For 
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Daphnia, unicellular algae (often called nano-phytoplankton) are more profitable, while 

larger algae (micro-phytoplankton) are less profitable (Sterner 1989; Kretzschmar et al. 

1993). The ratio of the surface area to the volume of algal cells decreases with the cell size, 

so smaller algae are generally superior in nutrient competition. The functional response 

of Daphnia can be well described by a type 2 equation (DeMott 1982; Paloheimo et al. 

1982; Porter et al. 1982). There exists a difference in vulnerability between the two prey 

and the less profitable prey cannot be perfectly excluded from Daphnia's diet, because 

 Daphnia mechanically selects its prey by filtering comb. Using a theoretical model that 

incorporates these features, I investigate the response of the equilibrium abundances to 

enrichment defined as an increase in the total amount of nutrient in the system.

3.2 MODEL 

  I use the following set of differential equations: 

dX1/dt = µl(N)X1 — e1X1 — ri(Xi, X2)1' 

dX2/dt = u2(N)X2 — e2X2 — r2(X1, X2)Y 

dY/dt = —E3Y + k(g1r1(X1, X2) + g2r2(X1) X2))Y 

and 

N+g1X1+g2X2+g3Y=T, 

                            15
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where X1, X2 and Y are the abundances of the more profitable prey , the less profitable 

prey and the predator, respectively. Parameters are:  µi(N), the nutrient-dependent re-

productive rate of prey i (i = 1, 2); ei (or 6.3), the density-independent loss rate of prey i 

(or predator); ri (Xi i X2), the functional response of the predator modified to include two 

prey species; gi (or g3), the amount of nutrient bound in an individual of prey i (or preda-

tor); k, the conversion efficiency of the nutrient into the predator's reproduction rate; T, 

the total amount of nutrient in the system. The equation for the nutrient dynamics (N) is 

not necessary in this closed system because of a simple algebraic mass balance expression 

in equation (3.1d). I define as the degree of enrichment the total amount of nutrient, T, 

in the system, as is commonly used in empirical studies (e.g. total phosphorus in lakes), 

rather than the carrying capacity or the intrinsic growth rate of prey which is biologically 

obscure with relation to enrichment (Abrams & Roth 1994). 

  According to Kretzschmar et al. (1993) and Grover (1995), the two-prey-species version 

of the functional response of Daphnia is expressed by

ri (Xi ' X2) = aiXi

1 + h1a1X1 + h2a2X2'

where ai and hi are, respectively, the consumption efficiency of and the handling time for, 

prey i. Since prey 1 is more profitable for, and more vulnerable to, the predator than 

prey 2, the following inequalities hold:

gi/hi > 92/1/2 and al > a2. (3.2)

16



I assume that the more profitable prey X1 is superior in nutrient competition to the less 

profitable prey  X2, because otherwise the two prey cannot coexist (Takeuchi 1996). I 

also assume that the more profitable prey yields enough nutrition to support a persisting 

predator population in the absence of the less profitable prey as in Chapter 2 (equation 

(2.2)), which mathematically requires 

gi/hl > e3/k.(3.3)

3.3 RESULTS 

  In the X1—X2 space (figure 3.1), the equilibrium abundances of the two prey are given 

as the intersection point of the two lines represented by the following equations: 

(kg. — hiE3)a1X1 + (kg2 — h2e3)a2X2 = E3(3.4a) 

(g1 + g3hialc)X1 + (g2 + g3h2a2c)X2 = T — N* — g3c,(3.4b) 

where c = (µ1(N*) — e1)/al = (µ2(N*) — e2)/a2 and ` *' denotes a value at equilibrium. 

Equation (3.4a) is derived from equation (3.1c) (the right hand side equaling zero) and 

equation (3.4b) from equations (3.1a) and (3.1d). Line (3.4a), which is given by equa-

tion (3.4a), has a negative slope if g2/h2 > e3/k (figure 3.1a), and a positive slope if 

g2/h2 < e3/k (figure 3.1b). Line (3.4b), which has been referred to as a mass-balance 

constraint (Holt et al. 1994), has always a negative slope, and moves away from the origin 

as T increases. The slope of line (3.4a), when negative, is always steeper than that of line 
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(3.4b) under the condition given in inequalities (3.2) (Appendix 3.A). Thus, the response 

of the prey abundances at equilibrium to enrichment (indicated as an increase in T from a 

lower level T1 to a higher level T2) exhibits two qualitatively different patterns depending 

on the profitability of the less profitable prey, g2/h2. The equilibrium abundance of the 

more profitable prey  (XI', the X1-coordinate of the equilibrium point, indicated as the 

intersecting point of the two lines in figure 3.1) decreases while that of the less profitable 

prey (Xi) increases if the profitability of the less profitable prey (g2/h2) is higher than 

a critical value 63/k so that the slope of line (3.4a) is negative (figure 3.1a), whereas 

both increase otherwise (figure 3.1b). Because, as seen from inequality (3.3), a less prof-

itable prey with a profitability g2/h2 > E3/k can yield sufficient nutrition to support the 

predator population in the absence of the more profitable prey, while a prey with a prof-

itability g2/h2 < e3/k cannot even at high densities, let the less profitable prey be called 

a `palatable' prey for the former case and an `unpalatable' prey for the latter case. 

  The equilibrium concentration of the nutrient (N*), which is obtained from equations 

(3.1a) and (3.1b), is independent of the degree of enrichment (T) as long as the two prey 

coexist (figure 3.2). The equilibrium abundance of the predator (Y*) always increases with 

enrichment (Appendix 3.A). When the less profitable prey (X2) is palatable, the decline 

of the more profitable prey with enrichment finally leads to its extinction, resulting in a 

one-predator—one-prey system, as shown in figure 3.2a. In this reduced system, both the 

nutrient concentration and the predator abundance increase, whereas the less profitable 

prey abundance remains unchanged, with a further enrichment, as shown by previous 

works (Grover 1995; Leibold 1996). As the profitability of the less profitable prey (g2/h2) 

decreases (the transition: a —+ b —+ c --> d in figure 3.2), the rate of increase in the
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equilibrium abundance of the more profitable prey (the slope of the line representing  XI 

in figure 3.2) increases so that it turns from negative (figure 3.2a, b; corresponding to 

figure 3.1a) into positive (figure 3.2c, d; corresponding to figure 3.1b). When the less 

profitable prey has a profitability close to the critical value E3/k, XI scarcely changes 

with enrichment (figure 3.2b, c).

3.4 DISCUSSION 

   The equilibrium abundance of the less profitable prey increased with enrichment , in-

dependent of its profitability, as shown in the previous models (Phillips 1974; Vance 1978; 

Leibold 1989, 1996; Grover 1995). The outcome of my model with respect to the predator 

abundance conforms to some of these models in which the predator increases in abun-

dance with enrichment (Leibold 1989; Grover 1995), but differs from other models in 

which the predator does not change in abundance (Phillips 1974; Leibold 1996). As for 

the more profitable prey, the response was dependent upon the profitability of the less 

profitable prey. The two qualitatively different predictions made by previous models can 

be interpreted in the context of my model, although some of these models define enrich-

ment in slightly different ways. In one prediction where the more profitable prey decreases 

in abundance with enrichment (Phillips 1974; Vance 1978; Leibold 1989, 1996), a linear 

functional response was assumed (the case hi= 0 in my model, and hence the profitabil-

ity is infinity), implying that the less profitable prey was able to support the predator 

population by itself unless it is completely valueless (i.e. 92 � 0), which corresponds to a 
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 ̀ palatable' p
rey in my model. On the other hand, in the other prediction where the more 

profitable prey increases in abundance with enrichment (Grover 1995), the less profitable 

prey was assumed not to yield any nutrition to the predator (g2 = 0), corresponding to an 

`unpalatable' pre
y in my model. These qualitatively different responses of the more prof-

itable prey abundance may be explained by the reason that although enrichment leads 

in general to increases in both prey abundances, the presence of a less profitable but 

palatable prey suppresses strongly the more profitable prey by raising the abundance of 

the common predator, namely, the effect of apparent competition (Holt 1977). 

  Leibold (1989) summarized results from numerous experiments involving nutrient en-

richment, in which the most general outcome was an increase in all abundances of more 

profitable (edible) prey, less profitable (inedible) prey, and predators (herbivores). Ac-

cording to my model, this outcome suggests that the less profitable prey was nutritionally 

inadequate to support the predator populations in the absence of the more profitable prey. 

In this sense, the prey could be called unpalatable prey. Moreover, other compiled empir-

ical data (Watson & McCauley 1988; Watson et al. 1992) showed that the less profitable 

prey increased largely whereas the more profitable prey scarcely changed, with increasing 

total phosphorus, suggesting that the profitability of the less profitable prey in these cases 

was close to the critical value E3/k.
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Figure 3.1 Graphical representation of the effects of enrichment on the abundances of 

two competing prey, the more profitable prey (X1) and the less profitable prey (X2), in 
the X1—X2 space (a) when the less profitable prey is palatable, i.e. g2/h2 >  e3/k and 
(b) when the prey is unpalatable, i.e. g2/h2 < E3/k. Their equilibrium abundances are 
expressed by an intersection point of solid line (corresponding to equation (3.4a)) and 
dashed line (corresponding to equation (3.4b)). The dashed line moves away from the 
origin as the system is enriched, which is defined as an increase in the total amount of 

nutrient (T) in the system (T1 < T2).
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Figure 3.2 Examples of the response of the nutrient (dotted line), the more profitable 
prey (thick line), the less profitable (thin line) and the predator (dashed line) at equilib-
rium to enrichment (a, b) when the less profitable prey is palatable, i.e.  g2/h2 > e3/k and 
(c, d) when the prey is unpalatable, i.e. g2/h2 < e3/k. The degree of enrichment is defined 
as the total amount of nutrient (T) in the system. I assumed that µi(N) = biN(i = 1, 2). 
The following parameter values were used: b1 = b2 = 1, el = 0.8, 62 = 1, al = 10, a2 = 8, 

91 = g2 = 1, h1 = 0.1, e3 = 0.5, k = 0.1, g3 = 10. I changed the profitability of the less 

profitable prey (g2/h2, numbers in parentheses) by changing h2. The critical profitability 
(e3/k) is 5 and the profitability of the more profitable prey (g1/h1) is 10.
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APPENDIX 3.A 

The equilibrium abundance of the predator and the steepness of lines given by 

equations  (3.4) 

  The equilibrium abundance of the predator (Y*) is given from equations (3.1b—d) by 

Y* =khih2aia2c(gi/hi— g2/h2) T + constant, (3.A1) 
    ai(kgi — hiE3)(g2 + g3h2a2c) — a2(kg2 — h2e3)(gi + g3hiaic) 

where c = (µ1(N*) — ei)/ai = (µ2(N*) — E2)/a2 and the `constant' term is independent 

of T The numerator is positive under the condition given in inequalities (3.2) (hereafter 

I call condition (3.2)). The denominator is also positive if 

{(pi + sai)a2 — (pi — q)al}p2 < (q + sai)pia2, 

where pi = gi/hi, q = e3/k, s = g3c. This is equivalent to 

P2 < f (a2)when a2 > a2(3.A2a) 

P2 > f (a2)when a2 < a2i(3.A2b) 

where f(a2) = (q+sai)pia2/{(pi+sai)a2— (pi —q)ai} and 0 < a2 = (p1—q)a1/(p1+sai) < 

al. It is obvious that condition (3.A2b) always holds because f(a2) < 0. Since f(a2) is a 

decreasing function of a2, it takes its minimum pi at a2 = al in the interval, a2 < a2 < a1. 

Thus, condition (3.A2a) is also satisfied as long as p2 < pi and a2 < al. Therefore, 
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 dY*/dT  > 0 under condition (3.2). 

`The slope of line (3.4a), when negative, is steeper than that of line (3.4b)' 

ematically equivalent to `the denominator of the coefficient of T in equation 

positive' which has already been proved above under condition (3.2).

is math-

(3.A1) is
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Chapter 4

Effects of enrichment on stability of a 

      a generalist predator

system with

4.1 INTRODUCTION

   Enrichment in a predator—prey system leads in theory to destruction of a stable equi-

librium (Rosenzweig 1971; Gilpin 1972; May 1972). Further, a limit cycle caused by 

destabilization of the equilibrium point has a potential to result in stochastic extinction 

of species. On the other hand, instability with enrichment does not always occur in ex-

perimental and natural communities (McCauley & Murdoch 1990), puzzling us as to the 

effect of enrichment on stability of ecosystems. 

  In a system consisting of an optimally selective feeding predator, like many'copepods, 

and two prey with different profitability, the stability defined by the amplitude of the 

population oscillation depends on the profitability of the less profitable prey (Chapter 2). 

Specifically, the presence of a less profitable but edible (thus unpalatable) prey increased 

the stability of the system. In Chapter 3, I analysed the response of population abun-

dances at equilibrium to enrichment in a system consisting of a generalist predator like a 

filter feeder Daphnia and two prey species with different profitability, where the analysis 

for stability was omitted. Here I focus on the stability of the system, especially on the 

relationship between the stability and the profitability of the less profitable prey along a 

gradient of enrichment. 
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   The prey considered here differ in profitability for the predator . One prey is labeled the 

more profitable prey, corresponding to relatively small algae (nano-phytoplankton). The 

other is labeled the less profitable prey, corresponding to larger algae (micro-phytoplankton). 

Although the latter prey has been viewed as inedible by previous works (e.g. Leibold 1989; 

Kretzschmar et al. 1993; Grover 1995; Murdoch et al. 1998), I regard the prey as one that 

can yield some nutrition to the predator because the nutritional values of the so-called 

inedible algae are various  (Leibold 1989; Murdoch et al. 1998). Consumption of algae by 

a generalist filter feeder Daphnia, considered here as the predator, is often well described 

by a type 2 functional response (DeMott 1982; Paloheimo et al. 1982; Porter et al. 1982). 

This functional response is a factor generating instability in predator—prey systems when 

the system is enriched (May 1972). My model includes the dynamics of nutrient, because 

many of empirical works use the total amount of nutrient (e.g. total phosphorus in lakes) 

as an indicator of enrichment. 

  As is often the case with stability analyses of systems consisting of more than two 

species, the analyses are quite complicated and the stability depends critically on pa-

rameter sets chosen. To avoid this, I use plausible values as parameters for one of the 

best-known examples, a Daphnia—algal system. Although parameter values are basically 

chosen from Grover (1995) as representatives, the parameter values with regard to the 

nutrient-dependent growth rate of prey are chosen from several other literatures because 

the values did not correspond to one identical species in Grover (1995). I chose a green 

alga, Scenedesmus quadricauda, and a diatom, Cyclotella meneghiniana, as the repre-

sentatives of the more profitable prey and blue-green algae, Anabaena flos-aquae and 

Oscillatoria agardhii, as the representatives of the less profitable prey, because these are
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 widespread species in freshwater ecosystems and I am able to refer to each set of the 

parameter values for each species with regard to the nutrient-dependent growth rate from 

one original literature.

  4.2 MODEL 

  Model formation , 

     As a model, I use a revised version of the model in Chapter 3, which seems more similar 

  to the Grover (1995) model, to incorporate values of parameters based on laboratory 

• • studies of Daphnia and algae: 

 dX1/dt = µl(N)X1 — e1X1 — ri (Xi , X2)Y(4.1a) 

 dX2/dt = µ2(N)X2 — E2X2 — r2(Xi, X2)Y(4.1b) 

dY/dt = —e3Y + slr1(Xi, X2)Y + s2r2(X1, X2)Y(4.1c) 

N+91X1+82X2+q3Y=T(4.1d) 

  The state variables are the densities of the more profitable prey (X1 [cells 11), the less 

  profitable prey (X2 [cells 11) and the predator (Y [animals 11), and the concentration 

  of nutrient available for the prey (N [µmot 11). The degree of enrichment is expressed 

  by the total amount of nutrient in the system (T [imol 1-']). I adopted a saturating 

  function of nutrient for the nutrient-dependent growth rate of prey i (Monod equation): 
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        biN  
 /~i(N)=i=1, 2. 

Ki + N 

For the functional response of the predator Daphnia , I use a type 2 equation including 

two prey: 

()_ aiXi  rZXl' X2
1 +h1a1X1+h2a2X2a = 1, 2. 

Notation of parameters is listed in table 4.1. 

   Differences between the prey in profitability and in predator filtering rate are, respec-

tively, described by the following inequalities (see Chapter 3) : 

si/hi > s2/h2 and al > a2.(4 .2) 

Parameterization 

  I adopt the estimation by Grover (1995) as values for most of parameters (table 4.1). 

As for the nutrient-dependent growth rate of prey, I use another parameter set for each 

prey type (table 4.2). 

  As previously stated, I assume that the less profitable prey, as well as the more prof-

itable prey, is consumed and can contribute some nutritional benefit to the predator. I 

represent the degree of this unknown nutritional benefit of the less profitable prey by 

changing the assimilation rate of the prey, s2i which must satisfy inequality (4.2), i.e. 

0 < s2 < sih2/hi. The case s2 = 0 corresponds to the third class of inedible prey 
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(nutritionally valueless prey) in the Grover (1995) model.

4.3 STABILITY

  Stability of the system in equations (4.1) was calculated numerically by testing the 

Routh-Hurwitz criteria (equations (4.A1) in Appendix 4.A) in the presence of Daphnia 

as the predator, either of S. quadricauda or C.  meneghiniana as the more profitable prey, 

and either of A. flos-aquae or 0. agardhii as the less profitable prey. Results are expressed 

in a parameter space of the degree of enrichment (T) and the relative profitability of the 

less profitable prey to the more profitable prey, 7 = (s2/h2)l(silhi), in figure 4.1. Total 

phosphorus concentration is used here as the degree of enrichment, with a plausible range 

<3 Arno' P 1-1 (Grover 1995). 

  In the case of S. quadricauda vs. A. fios-aquae (figure 4.1a), at low degrees of enrich-

ment the less profitable prey (X2 = A. flos-aquae) cannot invade into the system because 

of its inferiority in nutrient competition. The degree of enrichment below which X2 can-

not invade is generally determined by the difference in competition ability between the 

prey. The more profitable prey (X1 = S. quadricauda) is excluded when the system is 

sufficiently enriched and the profitability of the less profitable prey is high. This would 

be due to a relaxation of nutrient competition between the prey caused by enrichment 

and the effect of so-called apparent competition (Holt 1977). The boundary above which 

the more profitable prey (X1) goes extinct approaches to a line 7 = e3/(si/hi) where the 

profitability of the less profitable prey is e3. Below this critical profitability E3, the prey
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(X2) cannot yield sufficient nutrition by itself to support the predator population (see 

Chapters 2, 3). 

  There is a region in which all the species coexist (figure  4.1a). Similar to previous 

models of one predator and one prey (e.g. Rosenzweig 1971), coexisting equilibria tend 

to be stable at low degrees of enrichment. Numerical simulation showed that systems 

with parameter sets in the unstable region displayed cyclic dynamics (limit cycles). It is 

noticeable that, when the profitability of the less profitable prey exists in the vicinity of the 

critical profitability E3, coexisting equilibrium points remain stable even at considerably 

high degrees of enrichment. The reason why the unstable region occurs at large T and low 

'y values would be as follows . When the profitability of the less profitable prey is low, the 

abundance of the more profitable prey (X1) increases more sensitively to an increase in the 

total amount of nutrient than the less profitable prey (Chapter 3). Thus, the stabilizing 

effect of the less profitable prey by reducing the net attack rate on the more profitable 

prey diminishes with enrichment. 

  In the case of C. meneghiniana vs. 0. agardhii, the coexisting equilibria are always 

unstable (figure 4.1b). The qualitative results of the other two combination of prey are 

classified into either of the results above (table 4.3). There were also coexisting equilibria 

at high degrees of enrichment in the case of C. meneghiniana vs. A. flos-aquae when 

the profitability of the less profitable prey was close to the critical value E3, although 

the region of the stable equilibria was smaller than in the case of S. quadricauda vs. A. 

flos-aquae. 

  Finally I conducted numerical simulation to see the dependency of a region in which 

all three species can coexist stably in Daphnia—two-algal systems on the parameters for 
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the nutrient-dependent growth rate of prey (figure 4.2). Given that one of two prey 

is S. quadricauda, a region of stably coexisting equilibria appears over a wide range of 

parameter values (figure 4.2a), reflecting compatibility of the species with less profitable 

prey in table 4.3. Although 0. agardhii is unable to have stable equilibria with either of 

the more profitable prey chosen (table 4.3), there exist parameter values to have stable 

equilibria but the region is considerably smaller (figure  4.2b) than S. quadricauda (figure 

4.2a). In the both cases, the presence of stably coexisting equilibria is more dependent on 

the maximum growth rate (b) than the half-saturation constant (K) of prey. In systems 

with parameter sets in the region of stable equilibria in figure 4.2, there was a common 

tendency that coexisting equilibrium points were likely to be stable with the profitability 

of the less profitable prey close to the critical value £3 even at high degrees of enrichment, 

similar to figure 4.1a.

4.4 DISCUSSION

  In the Grover (1995) model there were no stable equilibria when the less profitable prey 

was nutritionally valueless (82 = 0, b1 = 0.93, K1 = 0.02, b2 = 0.9, K2 = 0.06 were used). 

I preliminarily re-examined the stability of the Grover (1995) model with nutritionally 

valueless prey, but no stable equilibria appeared even when the profitability of the less 

profitable prey, which had been assumed zero as was called `valueless', could take positive 

values. In my model of typical freshwater one-predator—two-prey systems, all species were 

able to coexist stably in two cases of four possible combinations of prey, whereas there

31



were no stable equilibria for the rest of two cases which always involved the species 0 . 

agardhii (table 4.3). It was, however, shown that such a species as 0.  agardhii could 

have stable equilibria, depending on the nutrient-dependent growth rate of its competitor 

(figure 4.2b). This indicates that in a Daphnia—two-algal system every algal species in 

nature can coexist stably with a certain algal species. Furthermore , an alga has a potential 

to coexist stably with any algal species because parameter values for the algal growth rate 

depend on temperature (Ahlgren 1978, 1985, 1987), light intensity (Schlesinger & Shuter 

1981; Ahlgren 1985), and probably conditions of other nutrients such as nitrogen and 

silicon. 

   When all three species were able to coexist stably, equilibria were always stable around 

the critical profitability of the less profitable prey E3 even in the face of sufficient enrich-

ment. In Chapter 3, I theoretically suggested that the unknown profitability of less 

profitable prey could be close to the critical value E3i from the viewpoint of the response 

of the more profitable prey abundance to enrichment which had been theoretically un-

clear. I showed in Chapter 3 that whether the more profitable prey increased or decreased 

with enrichment depended on the profitability of the less profitable prey and the more 

profitable prey did not change in abundance when the profitability took the critical value 

(E3). According to compiled empirical data by Watson & McCauley (1988) and Watson et 

al. (1992), the more profitable prey biomass scarcely varies with total phosphorus. Thus 

the theoretical prediction and the compiled empirical data can lead to an estimation of 

the unknown profitability of less profitable prey to be close to the critical value (E3). 

Together with this estimation, my results here imply that natural Daphnia—algal systems 

can keep stable equilibria with no increase in the more profitable prey biomass against
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enrichment, without any specific assumptions such as spatial heterogeneity (e.g. Ruxton 

1995;  Kfivan 1998) and density-dependent autotoxins produced by predator (Kirk 1998). 

This could be a resolution of discrepancy between theory and observation with regard to 

the effect of enrichment on stability in predator—prey systems.

33



Table 4.1 Notation of parameters and their estimated values

Symbol Meaning Units Values used

 b1, 

K1, 

E1I 

a1, 

h1, 

E3 

Si, 

ql, 

q3

b2 

K2 

E2 

a2 

h2

S2 

q2

Maximum growth rate of prey 

Half-saturation constant 

for growth rate of prey 

Density-independent death 

rate of prey 

Predator filtering rate 

Handling time for prey 

Per capita death rate of 

predator 

Assimilation rate of prey 

Cellular nutrient content of prey 

Per capita nutrient content 

of predator

d-1 

µcool P 1-1 

d-1 

 1 animal-1 d-1 

animal days cell-1 

d-1 

  animal cell-1 

µcool P cell-1 

pmol P animal-1

see table 4.2 

see table 4.2 

 0.02, 0.1t 

0.04, 0.032t 

2.2 x 10-6, 

2.8 x 10-61- 

    0.1 

5.7 x 10-7, 

 varioust 

9.1 x 10-9, 

1.8 x 10-8t 

1.6 x 10-2

t Parameter values for the less profitable prey X2.
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Table 4.2 Algal prey species for the calculation of stability and their estimated 

for the maximum growth rate (b) and half-saturation constant (K)

values

Species  b K 

 ((I') (µmol P 1-1)

Reference

More profitable prey (X1) 

  Scenedesmus quadricauda 

  Cyclotella meneghiniana 

Less Profitable prey (X2) 

Anabaena flos-aquae 

  Oscillatoria agardhii

0.6 

0.78

1 

0.5

0.034 

0.25

0.06 

0.032

Sommer 

Tilman

(1989) 

Kilhaml

Morel (1987) 

Ahlgren (1977)

(1976)

'Based on data of Gotham & Rhee (1981).
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Table 4.3 

absent  (x  ) 

prey

Summarized results of whether a region of stable equilibria is present (0) or 

in systems of Daphnia, one of more profitable prey, and one of less profitable

 More profitable prey (X1)

S. quadricauda C. menegh iniana

Less profitable prey (X2)

A. flos-aquae 0 0

0. agardhii x x
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(a)

Unstable
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Stable

X1-^0

0.6 0.8

X2^ 0

(b)

 0

Unstable

0.2

 X2-0

X1-$-0

0.6 0.8 1

Relative profitability of X2 to Xi (Y)

Figure 4.1 Numerical analyses of systems with Daphnia and algae. The horizontal 

axes represent relative profitability of the less profitable prey to the more profitable prey, 
'y = (s2/h2)/(si/hl) [dimensionless]. The vertical axes represent total phosphorus, T 
[µmol P 11. Arrows express where the profitability of the less profitable prey takes the 
critical value (= e3/(s1/hl)). Parameter values used are shown in tables 4.1 and 4.2. The 
algal prey are (a) Scenedesmus quadricauda and Anabaena flos-aquae, and (b) Cyclotella 
meneghiniana and Oscillatoria agardhii.
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Figure 4.2 Numerical analyses for stability of systems with Daphnia and two algae. One 

of the two algae is given and the other is an imaginary alga with various parameters for 

the nutrient growth rate, b and K. (a) S. quadricauda is given. (b) 0. agardhii is given. 
Region 1, there are stably coexisting equilibria; region 2, coexisting equilibria are always 

unstable; region 3, there is no equilibrium for all three species to coexist. The parameter 

sets for S. quadricauda (Sq), C. meneghiniana (Cm), A. flos-aquae (Af), and 0. agardhii 
(Oa) are also indicated.
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APPENDIX 4.A 

Stability analysis 

  Though the system described in equations (4.1) has four variables,  X1, X2, Y and N, 

it can be reduced to a three-dimensional system (X1, X2, Y) because of the mass balance 

equation (4.1d). Standard analysis for stability in this system leads to three conditions 

with regard to derivatives at equilibrium, aij = aXi/ax3 * (i, j = 1,2,3; X3 corresponds 

to the predator Y), where ̀  *' denotes a value at equilibrium. The system is stable if and 

only if 

Al > 0(4.A1 a) 

A3 > 0(4.A1 b) 

A1A2 > A3,(4.Alc) 

where 

Al = —all — (122 — a33 

A2 = a11a22 + a22a33 + a33a11 — a12a21 — a23a32 - a31a13 

A3 = —a11a22a33 — a12a23a31 — a32a21a13 + a11a23a32 + a22a31a13 + a33a12a21• 

The full expressions of the derivatives, aii = aXi/aXj, are 

all = Xi (—Ql dui/dNI * + hia0Y*/D2) 

                           39



 a12 = XI (—q2 dµ1/dNI * + h2a1a2Y*/D2) 

a13 = XI(—q3 dµi/dNI * — ai/D) 

a21 = X2 (—q1 dµ2/dNI * + hiaia2Y*/D2) 

a22 = X2 (—q2 42/dNI * + h2a2Y*/D2) 

a23 = X;(—q3 dµ2/dNI * — a2/D) 

a31 = Y*{siai/D — hiai(siaiX1 + s2a2X2)/D2} 

a32 = Y*{s2a2/D — h2a2(s1a1X1 + s2a2X2)/D2} 

a83 = 0,

where D = 1 + hiaiXi + h2a2)2.
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Chapter 5

Summary and conclusion

   Using one-predator—two-prey systems with different prey profitability, I theoretically 

examined the effects of enrichment on stability and population abundances at equilib-

rium. In any feeding type of predator, the effects were shown to depend critically on the 

profitability of the less profitable prey which had been unknown in natural systems and 

not been clearly dealt with by previous models. 

  In Chapter 2, I analysed the stability of a system involving an optimally selective 

feeding predator as a possible resolution of the paradox of enrichment. A theoretical model 

of a predator—prey system with a natural assumption of satiation in predation predicted 

that enrichment caused the populations to fluctuate to stochastic extinction. However, 

this paradox of enrichment did not always occur in experimental and natural communities. 

I presented a theoretical model that described a novel mechanism for resolving the paradox 

in the case of a predator with optimal selective feeding. Specifically, a less profitable but 

edible (thus,  `unpalatable') prey species sharply reduced the amplitude of population 

oscillations and firmly prevented the minimum abundances of species from falling below 

certain values. The presence of such an unpalatable prey thus guaranteed the robustness 

of the system against enrichment. 

  In Chapter 3, using a system involving a generalist predator I clarified the response of 

the more profitable prey abundance at equilibrium to enrichment which had been various 

among previous models. Theoretical and empirical evidence in a one-predator—two-prey 
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system consistently indicated a regular trend that the less profitable (therefore, less vul-

nerable) prey increases in abundance with enrichment. The response in the abundance of 

the more profitable (more vulnerable) prey to enrichment had, however, remained unclear. 

Previous theoretical models had assumed the less profitable prey as inedible , though its 

actual profitability was unknown. Relaxing this assumption, I showed that the response of 

the more profitable prey abundance to enrichment depended critically on the profitability 

of the less profitable prey. Specifically, the more profitable prey increased in abundance 

with enrichment if the profitability of the less profitable prey was lower than a critical 

value so that it was unable to support the predator population by itself even at high den-

sities (in this case, the prey was referred to as  ̀ unpalatable'), and decreased otherwise. 

This established a more general rule, which unified the previous works and resolved the 

indeterminacy, on the response of the more profitable prey. 

  In Chapter 4, I analysed the stability of the system considered in Chapter 3. There 

is evidence in freshwater one-predator—two-prey systems that there is no change in the 

abundance of more profitable prey. Regarding stability of predator—prey systems, al-

though enrichment often led in theory to destabilization of systems, this destabilization 

did not always occur empirically. I conducted numerical analyses of stability along a 

gradient of enrichment using Daphnia—algal systems with realistic parameter values. It 

was shown to depend on combination of algal prey species whether or not all species were 

able to coexist stably. In systems with proper combination of prey species, if the prof-

itability of less profitable prey was close to a critical value, it was further shown that the 

Daphnia—algal systems can hold a stable equilibrium even at high degrees of enrichment 

with no change in the abundance of more profitable prey. This accounted simultaneously

42



for the response of population abundance and stability to enrichment in natural systems . 

  I showed that the presence of less profitable prey with a profitability close to a critical 

value sharply increased the stability in the case of a predator with optimally selective 

feeding in Chapter 2. In Chapter 4, I showed a possibility that equilibria in nature 

keep stable even with an increase of total phosphorus in lakes in the case of a generalist 

predator. These indicate a potential that predator—prey systems are robust with regard 

to stability against a recently serious trend of enrichment, irrespective of the type of 

predator. 

  Most real communities are more complex than the communities analysed here. Mc-

Cann et al. (1998) showed with communities of up to four species that interactions of 

weak to intermediate strength between species were important in promoting community 

persistence and stability. The presence of less profitable prey in my models can be re-

garded as a cause of such a link, because the prey is not a main food for predators. 

Although it will be difficult to analyse communities incorporating many (i.e. more than 

three) species and more realistic links such as intraguild predation, it is an important and 

open problem to be solved step by step.
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 'We 

We

have not inherited the earth from our ancestors. 

are borrowing it from our unborn children.' 

             — Native American Saying
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