


Asymptotic Behavior of Multitype
Galton-Watson Processes
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9. Introduction

The asymptotic behavior of the distributions OQAGalton
~Watson processes has been studied by many mathematicilans.
According to the author's kn%éedge, Jirina (8] for subcritical
processes 1s the first paper on this subject, and Chistyakov
(4] and Mullikin [10] for critical processes followed. But

they assumed that (1) the second moments (in the subcritical

case) or the third moments (in the critical case) .are finite

and (ii) the mean matrix_is_positively regular. Joffe and
Spitzer [9] obtained the results for discrete time processes
without the hypothesis (1), and Sevastyanov [14] extended’
them for cotinuous time processés. Their results are final
for the processes satisfying the condition (i1). However,
when the condition (ii) fails, somewhat different phenomena
occur. Chistyakov [3] illustrated it for the continuous time

subcritical processes with the hypothesis (i). For the continu-



ous time critical processes, the results of Savin and Chistya-
kov [12] for the processes with three particle types and the
hypothesis (1) are very suggestive.

In this paper, we shall give the whole asymptotic behav-
ior of discrete and continuous time multitype Galton-Watson
processes without the hypotheses (i) and (ii) (but with some
weaker‘hypotheses). The processes are decomposed into elemen-
tary subprocesses, When the elgmentary subprocesses have pos-
itively regular mean matrices, the results naturally coincide
with those of [8], [9], [10] and [14]. But when they are reduc-
ible, the rate that the generating functions tend to the extinc-
tion probabilities are different from ifﬁfe of the positively
regular cases. Furthermore for the processes with discrete time
we must take.care of the periodicity.

some

Vie shall give the definitions and notations in sectionil.

In section 2 we shall deal with the discrete time noncritical

processes having aperiodic mean matrices, while we shall deal

with those having periodic mean matrices 1In section 3. Sections



4 and 5 are devoted to the study of the discrete time criti-
cal processes. The results for the continuous time processes

are summarized in section 6, and some examples are given in

section 7.



‘L. DRefinitions .and notationg
We designate the set of all integers between m and n by

<m,n >and put Z_ =<0,«>, S=Zf (Ne<I,»>). If two vectors
sl=(si,--.,§§) and sz=(s;,--.,§f) satisfy %i>§i [si;si] for ali
i€<1,N>, we say that sr'is larger. [resp. not_less] than iifand
write as sa>§2 [resp. glgsz]. Thus we can naturally define the
maximum, minimum, monotony, etc. of a sequence of vectors.
Further, these notions and notations are extended for matrices

in the natural way. For example a matrix A is called nonnegative
if all its components are nonnegative, and in this case we write
as A20, Let A be a nonnegative square matrix of order k. We
call A positively regular if A">0 for some ne€<l,®>, where A"

means the n-fold product of the matfix A. Also the matrix A is

called irreducible if for each i,je<l,k>, i}j, there is an

ne<l,«> such that A}(n)>0, where A?(n) 1s the (i,j)-component of

the matrix An. Hence each nonnegative matrix of order 1 is

always irreducible. We also call a square matrix a with non-

negative off-diagonal elements to be irreducible if the matrix

a+%I (20) 1is irreducible for some &>0 in the above sense, where



I is the identity matrix. For two vectors S, and S, we define

new vectors s.S, and sl/s2 (for s2>0) by

1 - 1 1 LR BN NN - 1 1 e oo N N
s;s, (slsz, »8.8.), sl/s2 (sl/sz, ,sl/sz).
For each seRN and x€S we set
X 1y X} N XN 1 N 1 . ©N
S = (S) 'oo.(s) s s = (s ’oo-,s ), X = (x ’ooo’x ).

Finally we denote the i-th canonical unit basis by €45 i.e.

ei=6§ where 6§ is the Kronecker's delta.

Now we shall call a Markov chain X=(Z(n),Px) on S a discrete
time N-type Galton-Watson process (DGWP for brevity), if its
probability generating functions

F¥(n;s) = j3g P {Z(n)=yls’, xeS, ne<o,=>, 0gsgl,
are given by
(1.1)  F%(n;s) = F(n;s)¥,
for some vector functions F(n;s)=(FI(n;s),°",FN(n;s)). Then it
is clear that F(n;s) is given by the n-fold iteration of the vector
probabllity generating function F(s) =F(1l;s):

F(n+l;s) = F(F(n;s)), né<Q o>,

(1.2)

F(0;s) = s, 0gs<l,

where



(1.3)  Fl(s) = g Pr(y)sY, 16<1,N>,

with Pi(y);o and Pi(y)él. Since the family of generating

yis
functions {F(n;s)} uniquely determines a DGWP, we sometimes
call {F(n;s)} itself a DGWP.

Similarly a M%yov process X=(Z(t),Px) on S is called a
continuous time N-type. Galton-Watson process (CGWP), if its
probabllity generating functions Fx(t;s) are given by

(1.4)  F*(t;s) = F(t;8)%, xe&S, t€[0,»), O0gs<l,

where F(t;s)=(F1(t;s),---,FN(t;s)) is the unique solution of

SELE:8) o p(r(t;s)), £ 30,
(1.5)

F(03s) = s, 0gs<1,
where

i _ i y
(1.6) £ (s) = yés p(y)s?, i€<1,N>,

with pi(y)go; y+ei, and ygs pi(y)go. Also, we sometimes call
the family of generating functions {F(t;s)} itself a CGWP.
It 1s shown by Sevastyanov ([13],[14]) that for a DGWP

[CGWP] there existsif least nonnegative fixed point q of F(s)
2

[resp. zero point q of f(s)] in the cube (0<s<l, and it is stable

in the sense of

“~



(1.7) riim'F(n;s) = q [resp. Efm’F(t;s)=qJ, .0<sgq.

n - oo B

Especially it holds

P {T<w} = 1in Fi(n;O) = qi"“\
L i Lonve e
_[respl. P {T<w} =i F(t;0) = ¢*1,
1 b oo

where T is the first hitting time for the trap state :0€S, namely
the extinction time. Hence we shall call g the extinction

probability of the DGWP [resp. CowB]l. Lot R27 6 Rio>. Cad RIS = G=Fin: 55

Cn gt of tht prireh pape~ iy to sblosn | : Bu; s ; -
ot of i et fage jo " plaseet R0y Bndeite g

For a DGWP, we shall assume
0

(D) aq>0 E}IEL"‘ F;]..]-(Q)<°°; 1936<1:N>:

where F§(5)=8Fi(s)/asj if it exists and F§(5)¥TEE‘F§(£) otherwise.
Et+s

1

Note that when the DGWP'isAqr;tical with no final classeé’;;NﬁL

;suberitical), q=1>0 holds. We call the matrix

N

- i
AE DAY 5

= [Fi()Iy y,

the g-mean_matrix of the DGWP. Since A;ﬁ, there exists a non-
negative characteristic root p(A) of A which is not smaller in
absolute value than any other characteristic roots (cf. Gantmacher
[6]). We call it the Perron-Frobenius_root (R=F root for

brevity) of the matrix A. From the-definition of g, the

inequality p(A)<l easily follows. It 1s known that by a change



of suffixes the nonnegative matrix A 1s represented as

FAJO”'”O B
K 0e--0
2

(1.8) A

R 1s
! g

-~

where each Aa is an irreducible square matrix of order mae<l5N>
g =
(Zg=1 My N). We set

1 . {je<1,N% A1(n)>0 'Tor Some ne<l,o>U {1},

' =
J
a=1 o} .
= = < >).
% <B§1 mgtts 321 ng> (8, = <Lm, )
PR '
Since every K  is irreducible, Aé:Pi if P%\AB+@,and ri=pd

if i,i'éAa. Hence Pi is a disjoint’union of some AB's and it is
same for all i€A , which we denote by I . We also set fa=Pa—Aa.
The T -part (Si)iéra [T -part (Si)iefa’ A Spart (Si)ieAa] of a
vector s=(slg---,sN) is denoted by sa [resp. Ea,§a]. ‘From (1.3)
and (1.8) it follows that the generating function Fi(s) for iera
[iéfa] only depends on Sy, f}esp.'Ea]. Hence we can write as
F(s),=F(s,), CFésp.'?(s)aéﬁ(Ea)a]. Similarly, since Fi(n;s) for
1€T, [1€f&] only depends on s [?esp.'ﬁa] by (1.2), we can write as
(1.9) F(n;s), = Flnss ), 0884817 oy

“-[resp. F(n;s), = F(n;5 ), 055, <11.



We set S_={x =(xi) on xi <0,w>} ., Ahe family of generating
o o T, Mhen)

functions {F(n;sa)a; n<<0,»>} forms a DGWP on S,» Which we denote

by Xa=(Za(n), P; ). Note that the extinction probability of the
o

DGWP Xa is equal to the Fa—part d, of the extinction probability
q of the original DGWP X by (1.7), and hence the submatrix

coincides with the q—mean*matriX“of'Xa.‘\\

)

o1
Aa=[AJ]isj€Pa

'/Further it follows

Fi(n;a) = Fi(nig,) = (A (n))y = Aj(n),  1,J€T,.
Since p(A)<1, paEp(Aa)gl'holds. We.call the DGWP.Xa critical if
pa=1 and noncritical if pa<l.

For a CGWP, we assume

(c) q>@i€ﬁqﬁf§(q)<w, i,j€<1,N>,
We call the matrix

a = [a)l jop = (£
the infinitesimal g-mean matrix of the CGWP X. Since (1.6)
implies a+&I120 for some £>0, there is a real characteristic root
p(a) of a which 1s not smaller in real part than any other
characteristic roots of a. In this case p(a)<0 holds (cf. Ogura

[11]). By a change of suffixes the matrix a is represented as



510.....0“
g 0---0
2

(1.10) a

o

where each éa is an irreducible square matrix of order m, (§§=l

m =N). We define the.sets AQ’ Ty and ?a as 'in the discrete

time case .but from the matrix a+&I (20) instead of A. By (1.6) and
(1.10) the function fl(s) for 1er, [1€T_] only depends on s

[resp. Ea], and we write as

(1.11)  £(s), = £(s,),, 0¢s <1 —,

v“ T ——— l Sm— - -~ sl —
. [resp. f(s)a = f(sa)a’ 0<8 _<1].

Hence Fi(t;s) for iﬁra[iffa] only depends on Sq ﬁ;ééﬁ. Ea] by
{1.5), so that we can write as

(1.12)  F(t3s), = F(t3s) 0<s §15_f1

A i R —- _
\ﬂrespk F(t;s)a = F(t;sa)a’

: : & = = o
We designate the CGWP {F(t;s ) ; t€[0,=)} by X, =(Z (t), an>.

The extinction probability of the CGWP Xa is equal to the

Loy ! — j"
ra—part a, of that q of the CGWP X, and the submatrix aa‘[aj]i,JeFu

coincides with the ‘infinitesimal gq-mean matrix of Xa' Moreover,

setting



A(t) = [Aji(wjg‘,j:l = exp' (ta),

_ i e
Aa(t) = [Aaj(t)]i,jfra = fexp (taa),
we have
Lee.0y = ploe. _ i _ i
(1.13) Fj(t,Q) Fj(t,qa) Aaj(t) Aj(t), 1,J€r,.

Since p(a)g0, o =p(a )<0 holds. We call the CGWP X, critical
if °a=0’ and noncritical if da<0.
2. Nonexiti

w A

. In this section we shall deal with noncritical DGWP's

with the assumption
(DN) ;23 pl(y)y#q¥T0e yF < =, 1,j€<1,N>.
We shall also assume that all the matrices in this section
are aperiodic, i.e.
G.C.D% {ne<l,=>;a5(n)>0}=1, 1,€8

Since Aa is irreducible, it 1s positively regular if it is not
equal to the zero matrix of order 1. Hence there correspond

. ~ ol I =(3
positive right and left eigenvectors ua_(ua)ieAa and va'(vai)ieA

to the P-F root 5aEp(Aa);

with the normalizations



z

~ _ ~1 _
i&Aa Voi Yy —.;, ) u. = 1

(Gantmacher [6]). It is also known that as

n = ©
n _ <n ¥
(2.1) Aa = Py (Ea + o(1)),
*= *i = ~i~
where Aa [AaJ] [uavajjl,J Aa‘ Of course it holds
* = X% = 3 K% A% = A*
(2.2) Aana Aaﬁa paﬁa, Aaﬁa Aa'

In order to define the 'rank Vo, of o', we shall introduce the

semiorder '«<' in the space of indices <l,g> by

B<La if AB Pa

Next we define the rank vB(r) of B w.r.t. r by

- - r?""l ~
ﬁEﬂ{vY(r); Y ?«B }, if Pg # r,
(2.3) VB(P)=
_— 3
ﬁhx{vY(r), Y ?ﬁB } o+ 1, if

inductively, where we agree on maXx' ¢==1. Then the rank v, of

——

o is given by

(2.4) ")

o va(pa)'

Note that va§<0,g—1> since 58 = Py for some BR<o .

To state the theorem we shall define one more set:

e

~ I (x) = {,ch<l,g>;xa+0},'x~S.

Theorem 2.1. Let a DGWP X=(Z(n),P ) satisfy Conditions

(D) and (DN) for each a¢<l,g> with pa<I, and,the matrices Aa be

alk

1
\
}
J



aperiodiec. Then, 1) for each o<<l,g> with pa<1.there correspond !

monotone nonincreasing functions R*i(sa) iangsaéqa, iEAa,

such that as n » «

N -

(2.5) RY(n;s) = nvapan(R*i(sa) + 0(1)), 1€a .,
where o(l) is uniform in s on 0gs _<q . The R*i(sa) are determined
inductively w.r.t. the semiorder '<' from Lemmas 2.1 and 2.4 below.
Further, if p >0, every R*i(sa), icd,, is not identically zero.
2) For each x-S such that p,<1 holds for all aeI+(x), and'pa>0‘
for some a€I+(x), there corresponds a probability distribution
{P;(y)} on S-{0} satisfying
(2.6) EEﬁ‘PX{Z(n) =y|ln < T < o} = Pi(y).

n-e -

We shall prove this theorem by the induction w.r.t. the

semiorder '«<'. When o is minimal, T =A and A =X . —~
o "o o et

(ﬁenceg

{the g-mean matrix A, 1is positively regular, if’pakg; i.e. Aa+{ojl;
In this case there are the following excellent results given by
Joffe and Spitzer [9].

\;emma_gél?(jgffe Ehd‘Spitzeﬂ). Let the g-mean matrix Aa of

B
- ; ).
the DGWP Xa is positively regular and pa<lh Then there exist a J d

[



monotone nonincreasing function Kz(sa) in Ogsagqa and a dis-

tribution {Pa*(ya)} on S, such that f

f
P ... q.-F(n;s) ,
(2.7)  im 22— % = K2 (s )i, 0gs,5q, s g
n-e P
[0 ]

(2.8) '1im'P%* {Z (n) = y_ |n<T<e} = P%¥(y ) x ,y.€S -{0}. |
now Xy ol a’? a’Ya~"a i
Further K*(s )$0 if and only if (DN) holds.

When o is not minimal, Fa+¢ and the g-mean matrix A 1is

represented as

A, O B
(2.9) A, =
Al Aa s
where
A=Aty = ar = [al] = +0
a Joi,jer 2’ a J ieAa,jEPa )

©
.

8= 38>. Then it 1s given by
1%

Joffe and Spitzer [8] ((4.6)) that
(2.10) R(s) = (A-E(s)) (q-s), 0¢sgaq,

. y-e 1 -
(2.11) E?(s) = y&s Ply)ylte” I- f(q—(q—s)&)y ejda},

0

where we agree on sY=0 for yiS. (2.11) implies



$s,49,

0<E(s )<E(s )<A, 0<s
= 2 = P =1

(2.12) _ )
E(s) =0, as s » q in 0<s<q.

We set E(n;s)=E(F(n;s)) and C(n;s)=A-E(n;s). We define the
matrices E(n;s)a, C(n;s)a, E(n;s)a, etec. in the natural way.
From (1.3), (1.8), (1.9) and (2.11) it follows
(2.13) E(n;s)a = E(n;sa)a, C(n;s)a = C(n;sa)a, 0gs <q,.
Hence (2.10) implies

R(n+l;s)a = R(n+l;sa)a = C(n;sa)aR(n;sa)a, -0<s_<q
and with the aid of (2.9) and (2.13)
(2.14) R(n+l;sa)a = C(n;sa)aR(n;sa)a + C(n;sa)&R(n;sa)a.
Using (2.14) inductively, we obtain

(2.15)  Rln+tlss )y =B (n,=1)(§,-8,) +

e s

=0 @

where

(2.16) '5a(n,£) 'ﬁa(n,l;sa)

{'E(n;sa)&ﬁ(n—l;sa)a---6(2+l;sa)a, 26<41,n-1>,

I s 2 = n. -"'-i-';'i-‘_'Z;;;_.‘_ )

JLemma 2.2. If Condition (DN) and the inequallty p <1
are satisfied, then it holds

(2.17)

Lo E(n;0) < .

D (n,z)c(z;sa)&'ﬁ(z;‘s‘a)a,



Proof. From the convexity of the function Fi(n;s+(q-S)E)
in 0 $g$ 1, 1t follows q -F(n;0), g A;lqa. Applying? the same

n
arguments as in the proof of Lemma 2.5 below to the matrices A",

we obtaln s
?‘p}:\'fi"“"

g 6 rnqa,

where K 1s a positive square matrix with the indices in Pa R
and r and @ are constants with pa<i*<—l and 6 >.0. Hence
it follows F(n3;0), 2 (1-96 r'n)qa, and we obtain the conclusion
by the same arguments as in Joffe and Spitzer [9](pp.424-425)
with the aid of (2.11).

Lemma 2.3. The relations 5, >0 and (2.17) imply the 1

exlstence of the 1limit

i ~ =n+4 ~
(2.18) Tim' By(n,pssy) 8,70 = D¥(45s)
N>
uniformly in 0 X s 2 q,- Further 1t holds
(2.19) © < D¥(ass ) s AY 0's s, S q, LE€<ale> .o



Proof. Let

e
(2.20) € ='ﬁax{Ei(n;O)/ALﬁ;i,Jeég-
/-\3—70
Then it is clear that
. ’ ~ ~ '- ~ \Ntu
(2.21) 05 E(n;s) & E(n;0) s ¢ B¥,
AV
(2.22) L e < 7 Y ﬁ§(nig)/ﬁ4§ < @,

0 "7 nz0 1,jen

by (2.17). On the other hand, there‘;s a sequence o +(O;

ap 2.0, by (2.1) satisfying

Hence 1t follows

(2.23) 5 TMB(n,0)5 B TTHETTY c@ata, ) A%,
and with the aid of (2.2) and (2.21)
N n A (-en)
B TB(n, )2 1 BA—tE AR
k=g+1 -
n (7R
=g ~ =N+ o~
= BPRTTE 4 (1 m (R-e /RDEE
INTS k=2+1
(18
n
' > (l-o - z ek/ﬁ)ﬁ*,



for all large % with €,/ K<1, KE<L ,00>. Therefore we obtain

b
v
n ~o L =nH ot
(2.24) @, k—z+1 ek/i)A* < D(n,2) - A¥ £ an_zﬁ*.
=X

Now take any €> 0. Then by (2.22) we can choose an n, such

- ) .
that Xk=n0+l Sk/&w\fe. Further, it holds
~=n +2 o =N, +g .
P v D(n,,0) -5 ? D(n,_,g,)?

ean e e v st 5
e

-
e

s »
{ ~=Nn;+Nnox =N, N, x =N +2x
— = (3B (n,,n,) - B2 00D(n,,n ) B0 Blng,), D

Ll?1"“2 > Tp»

+2

—n -
9 D(no,z) is bounded in n;

and P because of (2.23).

i

Hence it &———-follows that the sequencg/;
~-n+ ‘ )
- 37T B(n,0), n e <QKL,e0>

—-1s a Cauchy sequence uniformly in 0 £ saggqa. So we obtain
(2:18). Now we shall show (2.19). Letting n-> o in (2.24),
we have 5*(n0) ; 0 for ali sufficiently large QO' Since
B(n,) = B(n,ny)D(ny, 2), it holds

-~ =N +L

~ _ O :’4 ~
(2.25) D¥(g) = P w(nQ)D(rto:,JL).



On the other hand it follows from (2.11) that A§> 0 implies

i i_
AJ - Ej >0, so that
ctie) 5 o, T Al s 0.
J J
~n0-2
Since the matrix A is positively regular A > 0 for a
large n,. Combining these facts with (2.25) we have D¥(%) > 0.

The relation D#¥(%) S A*¥ 1is clear, if we let n + ®» in (2.23).

=

Corollary. 2.l. Suppose that Condltion (DN) holds and o |
L
is minimal w.r.t. the semiorder '<' with Da < 1. Then the Y

limit of (2.7) is uniform in 0 < sa=§qa and K¥(0) > 0.

The proof is clear from Lemmas 2.2 and 2.3, since
R(n;sa)a = Da(n,-lssa)(qa-sa)

in this case.

Now we assume that for all B'§ a

2.26) f(nis,), = nBp™RE (s.) + 0(1)), 10
(2.2 Sglg n " pg(Rg 8 o) » 0 <s

B;qss

as n »» , where o(1l) is uniform in 0 < 84 < q,- Then

it follows as n = «



— \Y
(2.27) R(nis ), = n @5 MRS )+o(1)), 0 < 5 < T

A

for some vector valued function F{"’&(Ea), where o(1l) is uniform

in 0<s < q and

'Uq = 'max { Vg (Ba ) ;3 B=<a }

=l=

Hence, it 1s enough for (2.5) to prove the following

Lemma 2.4. Let (2.17), (2.27) and p_<1jhold. Then it follows !

ot . = A n,zs o
(2.28) R(njs )y = n @ o "(RE(sy) + 0(2)), Q'gs <ag

where o(l) is uniform in 0 < Sq £ Qy v, and ﬁt(sa) are

glven separately in the followlng three cases : (@) 1ir Py = p>P >

then va=50 and

(2.29) Ri(s,) = 5*<-lssa)(aa'§a>+9205§<23Sa)0(25Sa)&§<25§g)a°a'“-l’

&

41 =7 5 =9
(11) 1if o e, > B,» then v =V and

(2.30) R¥(s,) = (p,I - A )THAIRE(S ),

and (iii) if Py= Py = p, >0, then vy = ;& +1 and



(2 31 ﬁ* = A¥A'E%
) a(s ) AXA'RE(s )/p v,
Proof? (1) When p =5 > 5, we divide the sum in (2.15)
Ny n _
int or .
nto 9=0) ad ) Reng+1” Fcr each P> r>p we have from (2.23)

and (2.27) that

-~ '—n-l~
]

B(n,2)C(2) 'R(2) < (rp~H)¥e,

where ¢ 1s a positive vector with the indices -in A.

Hence it follows

n -1,
o 5 Bwe(w) R <L) cie, ne<ngrl, =,
% =ngy+1 1-rp~t

for all sufficiently larsge Ny - Similarly, for all large ngy»

it holds

n
~ - -2
y o1 D¥(2)C(L)'R(L)p "< g, nE <ngtl, w> ,
n -

uniformly in 0 < s < q. But for a fixed n,; (2.18) implies

n
o {D(n,-1)(5-5) + ] Bln,a)oe) Re) |
=O , :
n
. o 0 B g1
——  D#¥(-1)(3-3) + izoD*(z)C(z)'R(l)p -

as n- o , uniformly in 0 < s £ q. Hence we have (2.28) with



V=0 and R*¥ given by (2.29).

(11) - When o =7 > 5 , we shall exploit (2.15) in the form

of

. n
R(n+l) = D(n,-1)(3-%) + y

n
divliding the sum into ZOO and

it follows

(n+1) Vo ™ 1B(n,n-2)c(n-2) "R(n-2) < (pp"

so that

- n
(n+1) Vo 21 ¥ D(n,n-2)C(n-2) 'R(n-2) < oL

£=no+1

for all sufficiently large ng-

S

large Ny that

-2-1x2

[ Nat

L=n,+1

0

by means of R¥(s)< R¥(0) < =,

(2.32) A > C(n) > A-E(n;0)

as n > ® , we have for a fixed 2€<0,n

B(n,n-2)C(n-2) 'R(n-2),
=0

n
zn.,o”’l' From (2.23) and (2.27)

l)Qc,

(Bo=1,"0
~ =] c <€, ngcn
il_gp

Similarly, i1t holds for all

p A"A'R¥< €, ‘uniformly in' 0 <s < q,

Since

+~ A

O> that

" ~ ~ R . C e )
9im' D(n,n-2) = &, uniformly in! ‘0 <s <a.

N>

0

+1l,0>,

2



Hence it folIOWS'erm (2.27) that

n n
- _ —y —ne1 O — 0 _,_.1.0 —
Tim (n+1) Vo ™1 ¥ B(n,n-2)c(n-2)" R(n-2) = 7 o 1K arRx,
N> 2=0 2=0

o

uniformly in 0 <'s £ q. Finally (2.23) and the inequality p >

imply

Tim(n+1) o™ 15(n,~-1)(3-3) = 0, Tniformiy IR 0 < s < q.

Nn-=> o
Combining the above facts we obtain the conclusion.
(111) Suppose that p = =p> 0. From (2.24),(2.22),(2.32)

and (2.27) we can find ng and n, € <1, »> satisfying

1

(2.33) =% 2Ve < o ™D(n,2)C(g)'R(g) - A*A'R#yV < Egve,£€<n0;n—nl>,

for some vector ¢ > 0. Now we divide the sum in (2.15) like as

n n0 n-nl n
% = 7 + 1 + 7 = I+ II + III.
0 no+1 n—n1+l
Since the functions
_n"'l "'5"’ 2 ,-—
P (n+l) "D(n,%)C(R)'R(L), £ &€<0,n>, ne<0, o>,

are bounded in £ , n and s on 0 <s <aq, it hclds

Tim 0 "L nen) V" L(re11I) = 0, Mniformly in' s.

n-—+ o



Further it follows from (2.33) that

n-n
-1y 13 -1

g=n.+1

—gep < o ey TV ke a0~ (ne1) "

Hence by the fact that

ey _v-1 n-n — —-
Tim(n+1) V71 ) 1 RV o= 1/(Vv+l),

N-w ,Q,=no+l

and the boundedness of R¥ in s, we have

o

Tim o 2 e 1) ™V T B(n, 2)0(L) TR(R) = K*A'R*/p (1),

n-=o 2 =0

uniformly in 0 < s < q. But since (2.23) implies

Tim(n+1)”> ~1,78

N-ece

“1B(n,-1)(§-3) = 0, GAIformly in 0'< s < q,

we obtain the conclusion.
Note that the &ea%&ﬁe to determine v from 3& by
Lemma 2.4 is the same as that of (2.3) - (2.4). Further, we have

WA AN AN AL

Lemma 2.5. Under Condition (DN), the function Rgi(sa) !

.

determined by Lemmas 2.1 and 2.4 for each 1€ 4, , a€ <d,g>

3

with 0 < Py <1, 1s not identically zero. |
Proof. If o 1s minimal w.r.t. the semiorder '<£' , the

assertion is clear by Lemma 2.1. If p. =P >-3& » 1t is



also clear from (2.19) and Lemmas 2.4 and 2.2. To deal with
other cases, we assume that Rgi(ss) $ 0 for all 1€,

with B ‘éu satisfying OB > 0. We choose a maximal element

T

BO in the set { g%}a ; vB(pa) =V, }. This §0‘ ls also maxi-

mal in the set { 8 7a }, since in general B<u implies

=|=

Pg S Py > and B<a , pB= py 1imply Vg SV, - Indeed, 1if

it is not maximal in { B8 ;ﬁa } , there is a B such that

Boqfﬁqfa . Then it follows Pg =pg= p , and so Vg =vg =V
0 0
which implies Ua = V8(5a> and leads a contradiction.
Now, since Ua = vg (py)> 1t follows
0 ,
—i_ ~ui
R¥ (s ) = R¥ (sg ) ¥ O 1€ s >
a BO BO ’ BO

by (2.26) and (2.27), and sinee Bg is maximal 1in the set {Bfﬁa}
A - l

it holds
Al s oo, for some' i€ A fand' j € bp,.
J a .0
Hence the conclusion is clear from (2.30) - (2.31) since
A* > 0 and, when py, >0, », (pyI - Aa)_l > 0.
o

Proof of Theorem 2.1. Since 1) is clear from the previous

arguments, we have only to show 2). Combining the equality

[NEY
[

\



PX{T < w} = 1lim F(n;0)* = ¥

No w

with the Markov property, we obtailn

) P{2Z(n) =y, T <wys’ J P_{Z(n) = ytq'sY
yes yes *

F(n;qs)x.

Hence it follows

y a*-F(n;as)*
(2.34) ) P {Z(n) = y|n< T<obs? =1 - == ==L
y€S q"-F(n;0)
Further by mean of (2. 5) and (1.7) 1t holds as n »+ o«

(2.35) a* - F(n3qs)* = 1 I xlq fn % PRl s, )+o(1)),
aeI (x) 1€by

where o0(1) 1is uniform in 0 < s <.1. Hence there exists the limit

F¥(s) = Tim' ] P {Z(n) = y|n < T<m}sy,
X X
Ny y&S

uniformly in 0 £ s < 1. Since R*i(qa) =0, 1€d,, it is easily

seen that F;(l) = 1. Thus F¥(s) 4is a generating function of

%
X
a probability distribution and we obtaln the conclusions.

Remark 2.1. We can calculate the support of the limit

distribution {Pi(Y)} more precisely. Let Py = max{p, ; o€l (x)1},



Vxéﬁéx“&a;aelﬂjx), o= Py} 'and’ I*(x)={aEI+(x); P=Py > va=vx}.
Then it is clear from (2.5),(2.6),(2.34) and (2.35) that the
support of the limit distribution {P§(y)} is contained in the

set

{x = (xl,...,xN)éS 3 = 0, ié \/ ryt - {o}.
acl*¥(x) "

Remark 2.2. It can also be calculated how the limit distri-

~—t N

butions {Pi(y)} depend on x€S - {0}. Indeed, it follows from

(2.34) and (2.35) that

1 X-e

il
ocT*(x) i&Aax q R¥ (qasa)

I PE(y)s¥ = Fi(s) = 1 -
yE&S X-e
1 1yl

a€I*¥(x) igAa *q (0)

Further, if 5ag=3a or o is minimal w.r.t. the semiorder '',
it holds
RE(sy) = KE(sg)Uq,
for some monotone nonincreasing function Kg(sa), since (2.7) holds,
and (2.29) and (2.31) imply A R¥(s ) = 5a§§ (sy). In the
case of 5a<ﬁﬁ , (2.30) will give us the sufficient informations

for the purpose.



Remark 2.3. From (2.5) it easily follows that

(2.36) R*i(F<n;s)a) = pﬂnR*i(Sa), 1€ 4

if O <pa< 1. Hence the coefficients of the power series

on Sa - {0}.

3. _Noneritical periodic DGWP

P

In this section we shall deal with the noncritical DGWP's
with the periodic matrices Aa. It is known that, by a change

of suffixes, an irreduc ible nonnegative matrix %?;is represented

e - (#L01)”
as '
i -
0 Ml 0 ... 0
00 M20 e 0
(3.1) M= ittt
0 vvvnnnnn. 0 My_,
LOMO ., 0 ,

where every 0 matrix on the diagonal i1s a square matrix and

each Q, = M, .. MgM; ..M. _, 1s positively regular (Doob[5]



pp. 177 - 178). We shall call the positive integer d the
beriod of the matrix M. Of course the d-fold product Md

of M 1is given by

QiO ..... 0 7
.
0 Q,0 ... 0
(3.2) M =
-{
0 e dog |

Lemma 3.1. The P-F root of the matrix Qa is equal to -

o(m)<.

Proqf. The set of all characteristic roots of Md is the
union of the sets of characteristic roots of Qa’ o€ <l, d> ,
by means of (3.2). On the other hand it holds p(M%) = p(M)<
by the Frobenius' theorem on the characteristic roots of a

polynomial in a matrix. Hence we have

(3.3) p()? ="hax' {0(Q) 5 a € <1, @ }.
Suppose that O(M)d = p(Q, ). Then, because of the positive
0

regularity of Q“O’ there corresponds a positive eigenvector

u of Q to D(M)d 3



u =M ee. MM, ... M

= p(M)dua
(1,0 ao ao 0

u
ao-l oq

Operating the matrix Ma ... M -1 if o €<l, o - 1> (and

-~
.

the matrix M ... MM, ... M _, if ae€<aytl, d> ) from the

_ d )
left, we have Qu = p(M)"u , where u, =M, ... M _;u

if

o E<1, 0 o My ooee MgMy oo My -luao

dl g

o OLO 01.0

-1> (and u_ =M M.M M if

0

a € <aptl, d> ). But u ¥ 0 since every Qa is positively

(o}

regular, and hence p(M)d is a characteristic root of Qa'

Therefore p(Qa)g p(M)d and so O(Qd) = p(M)d by means of

(3.3).

For each d & <1,«> , the family of generating functions

{ F(na ; sa)a;11€<0,w> } forms a DGWP on S,» Which we denote

by X

(a)

o .

Lemma 3.2. The least nonnegative fixed point of F(a4d ; sa)a

(03

is equal to the [ -part qy of the extinction probability g

o

of the DGWP X. Hence the g-mean matrix of the DGWP"Xéd) .coin-

cides with the d-fold product AS of A_, and if Conditions (D)

and

satisfied for the DGWP X

o
(DN) are satisfied for the DGWP X, ‘then they are also

(d)

o .

1

[



Proof. Let ra be the least nonnegative fixed point of

F(d ; Then it holds r <q_  since q,. is a nonnegative

s ) .
o o= "0 a
fixed point of F(d ; 5,04 Hence it follows

r = 1im F(nd ; ra) =q

o} N o

from (1.7). ~The.remaininé assertions except for that on (DN)
are clear. But the assertion on (DN) can be easily seen if we
make use of the same arguments as in Athreya [1] or Sevastyanov
[14] Chapter III, 5§3.

Now let aa € <1, m_ > be the period of the irreducible
matrix Ea in (1.8), and
da = L.C.M.{aB; AB<:ra }

(we set aa =1 1if P = 0). Then by a change of the suffixes,

o
we have
. Aég) 0 vvvvnn. 0 7]
y ‘TV"’/\V‘/ t
R f (a)
? 0 A62 0 0
4 R =
(3.4) AR = 8g C Ty
|
: % (a)
: O . 00 Asas s




where each Aﬁi) is an irreduclble aperiodic nonnegative square
»

d
- = . W £
matrix of order mBY’€<l’ mg> <2Y=% mBY mB) e define from

(a)
By

(3.4) the sets A, , F(a) and Séz), the vectors s

By By

and

sBY’ and the matrices Aéz) as we defined AB’ Ta, etc.,iln section

1l; for example

B-l Y—l B'il
A= < m_+ m + 1 m_+ m, >.
BY pll P qll gn 7 ps1 P S

Note that m (and hence A

By is independent of da which

BY)

satisfies & |d . We also define the DGWP Xéz) by the family

of vector generating functions { F(nda;séi))éz) ; NE <0,o> },

(

By Lemma 3.2 and the representation (3.4), our DGWP XS )

a .
y satis

fles the assumptlons of Theorem 2.1. As in section 2, we shall

introduce the semiorder "(a' in the space of the suffixes

{(8,p)} by

r—

v T4 (a)
(8,9) <, (B,p) if bsg - Pep .

Then the rank v of (a,y) 1is defined by

max{ve (r) ;5 (8,a) Ga(8,p)}, If Fgrr ,

(mé'x'{vsq(r) 3 (8,q) éﬁ (B,p)}+ 1, ER 53"’1" s

o~



SN o ENCY
(maxé; 1), and Vg Voy (pa).

Y

Lemma 3.3. Let Conditions (D) and (DN) be satisfied for

VA SN Sl

all a&<l, g> with pa<l. Then for each g€&<l, 8> and

Y €<1, aa> with o, < 1, there correspond monotone non-

. /
i ; 1
increasing functions R¥ (séi)) in 0 < sé$> < qéz), i¢ Aay’ .
/

such that it holds as n » « Lo

P 1!?\;' o

AR
i . _ Yay nd 1. (a)
(3.6) R7(nd 3s) = n Py *(R (Say Y + o(1)), iéiAay,

where o(1l) is uniform in s on O < séi) < qii). Further,

if Py >0, every R*i(séi)), i¢ A, » is not identically zero. R

For each x%S, we set

a, = L.C.M.{da ; aeI+(x)}.

Theorem 3.1. Let a DGWP X = (Z(n), P ) satisfy Conditions

o

(D) and (DN) for each o €&<1l, g> with p_ < 1. Then .

1) for each o&<1l, g> with Pyl and ye€E<1, aa> , 1t holds ’

as n > Am$a%€
i vay nd. 1 (a)
(3.7) R™(nd, + %;s) = n P G(R¥T(F(L35)0”) + 0(1)),
2€<0, a - 1>, 1€ 4., 0 ¢ sy £ ay

(4

v/



where o(l) is uniform in s on O

fia

s < q . Further, if
o = "o

o

2) For'each x&S such that o <1 ¢——--for all o€I_(x),
"X

and Po > 0 for some a&gI+(x), there correspond a probability

distributions {P§£(y)} on S-{0} satisfying

et
© = *
(3.8) i&g PX{Z(ndx + ,Q,)]ndx + 2 < T <} sz

(y), 2€<0, d -1>.
Proof. Repeating the arguments in the proof of Theorem 2.1,

we have only to show the nontriviallty of the functilons

R*i(F(l;s )(a)); ié’Aa, for p > 0. It follows from (3.6)

a’oy a
that (} R /\;_ K e
(3.9) el (P(ma_ss )@y = Mdpal(glal, 1€n
a’a’ay Pa ay °° ay”

(@), . @) oy
Since Fay (23;0) < Fay (mda,O), L < mda, it 1s clear that Py > 0

implies

md

i (o) i (o) i .
* . > * M = ¥
R (F(.Q.,O)OLY ) R (F(mda’o)ay ) Py ?R (0) > 0, léAay’ 2 >md

d »F i3
and we obtain the conclusion. "

Remark 3.1. With the aid of Lemmas 2.1 and 2.3, we can

determine the functions R*l(ség)) inductively w.r.t. the

semiorder 'L in the space of the suffixes {(g,p); ABé:r(a)}
: ay °°

p_ > 0, then every R*i(F(Q;sa)iz)), 1€4,, is not identically zero.
L/
e

iz

f;



4. . Asymptotic behavior of critical DGWP

Vo ot VN

Since we have studied the noncritical DGWP's in the previous
sections we shall study tie critical ones 1 this and the next

sections. We assume Condition (D) and

(00)  Fpla) <=, 1,iker

k

where ij(s) = 82Fi(s)/ 5:99s 1f it exists and

FT (s) = 1im'FX (£) otherwise. We set
Jk Ets Jk - -
\, N L

‘ () ()
(4.1) u, = /2%, Nay 1/ 8,

where va(l) and véi)(l) are those defined by (2.3) and (3.5).
The object of this section is to prove the next two theorems
Theorep 4.1. Let a DGWP X = (Z(n), PX) satisfy Conditions

~~~~~~

(D) and (DC) for each as<l, g with Py ='1l, and every matrix

—~

Aa be aperiodic. Then, for each o€ <l,g> with o =1,
a

~3

there correspond constants R¥T > ‘0, ié}Aa » such that

. My 4
(4.2) 1im' n ®RY(n;s) = m¥i, 1€, ,
n+oo

for each s satisfying 0 < s < q and

6] o



(4.3) 8g < 4, if g<a Bg > 0.
The constants R*i are determined inductively w.r-t. the semi-
order '~ ' from Lemmas 4.2 and 4.7 below.

Theorem_4.2. Let a DGWP X = (Z(n), PX) satisfy Conditions
(D) and (DC) for each a€<l,g> with p, = 1. Then, for each

o €<l,g> with Py = 1, and YyE<]L, aa> » there correspond

constants R*1 > 0, ‘iE-AaY, such that
| uay i i
(4.4) 1lim n R™(n3s) = R¥, . 1€, ,

ay

Ny

for each s satisfying 0 <s_ < g and (4.3).

o o

Proof of Theorem 4.2 assuming Theorem 4.1. By the same
arguments as in the proof of Lemma 3.3, we have from Theorem

4,1 that

. H
Lim(nd ) *Y Ri(nda;s) = gt 1€n ,

N->oc0 (I'Y

for each s satisfylng 0 < s < q, and (4.3). But since

F(%3;s) also satisfies 0 < F(l;s)a < q, and (4.3) for such

an s, 1t follows

. M M
Tim (nda+z) oy Ri(nda+£;s) = Eim(nda) oy Ri(nda;F(Q;s))c\\

N-~o0 >0

B



1
= R#*~, 158, 5 L€<0, 4, -1>.

Remark 4.1. Combining Theorems 3.1 and 4.2, we of course
obtain the whole asymptotic behavior of a DGWP satisfying con-
ditions (D) and (DC) for all a€<l, g>

Now we shall prove Theorem 4.1 without haste. In the follow-

ing in this section, we assume that the hypotheses of Theorem 4.1

are satisfied, unless otherwise is stéted.

Lemma 4.1. If § = 1, then ’
L o 3
{
7
1 ] L3~k
(4.5) B == ¥ LF (Q)UYd > 0
o 1,5,k¢ Aa ai” jk o

Proof?® . Suppose first that T =¢ and F(s) = F(0) + As.

Then it follows

q = F(n;q) = F(n;0) + A'q.

Letting n » « we have 1im Anq 0 by (1.7), which implies

I1-»cc

p < 1. Next we shall assume that T ¥ ¢ and F(s) = ﬁo(§)+ﬁ(§)§

with F,(5) § 0. Then it follows that H(Q) = & and

n-1
P(n;s) = Fy(F(n-155)) + glﬁ('ﬁ(n-l;'g))...ﬁ(p(z;é‘))ﬁ;o(‘s?(z-l;g))..._
| o 4,

+ B(F{n-1;8))... B(F(0;3))s.



Hence it follows

i ’"*ﬁo Q@) + APG.

e~ 3

d = F(n3q) =

=1

n -~
since )} A%*F (D) > 0 for a large n, it tolds § > A'q.
921

Hence we have p(ﬁ)nx 1 by the mini-max principle (ef.
= o(i%) <
Gantmacher [6] II, p.65).

For an o€<l,g> which is minimal w.r.t. the semiorder
'X', we exploit the following
Lgmmadg.2€30ffe and Spitzer' [9]). If the g-mean matrix |
Aa is positively regular with Py = 1l, it holds
i

u v“-(lh—sa)

(4.6) R (n;s) = (1 + o(1)), 1€ A

1+nB v -(la-sa)
as n + » , where o(l) 1is uniform in 0 <s S1,, o
Note that q  1is equal to the T -part 1  of the vector
l1=(l, ..., 1) in this caée.
To study the case when o 1s not minimal, we prepare some
lemmas.

Lemma 4.3. Let 6, =1 and 0 g 5,24y, S, # a,.- Then S

the relation i



- R (n+k;5 )
(4.7) lim & & = g, k € <0,%> ,
nro¥v R (n;s )
QO [o e 4 ,.'/
7
implies /
. . R (n3s)
(4.8) riil’n" w—'.rzﬁgs—oT = GOL'
N+ Va Tl o

Proof?® . First of all we note that
/

(4.9) veR(n;s) > 0, n € <ng, ®>, 0O <s<q, s#a,

~.

‘for some n, € <l,0> . Indeed, for each 1€pA and Jjér there

corresponds an n? & <1 ,0> such that A?(n?) > 0. Hence the

positive regularity of A implies
i i iv,i,. 1 :
A7 (n) > A (n-n7)AT(n > .0
J( ) > i( J) J( j)
for all sufficiently large n. So such Fi(n;s) depends on
every variable sJ@ith jJeT , and we obtain (4.9). Now
Tes o

using (2.14) inductively, we obtain

n
(4.10) R(n+l) = D(n,n-m-1) R(n-m)+ J D(n,2)C(2)'R(&).
. &=n-m

We take the sequences € and o in the proof of Lemma 2.3.

In our case the sequence €, may not satisfy (2.22), but it



tends to zero as n » = and satisfies (2.24)'with o = 1.

Combining (2.24) and (4.10) we have

n n n _
L g A¥R(n-m) + ] (l-a o =] g JA¥C(2)'R(L)
k=n-m L2=n-m k=2+1

n

< R(n+l) < (1o, )A¥R(n-m) +

(1+ YA*¥C(2)'R(2).
L=n-m *n-2 ,

Hence it follows, for each m and n with n-m & <Ngse>

n n N
(4.11) Loy ~kEn-me ) P(am) + ign—m(l’“n-g B k£2+1 g R(n,2)
= (1+am+1) + g (1tg 1980 L)
L=n~m n-2 >
n -~
ﬁ(n'l'l (l+(xm+l)P(n,m) + R.En—m(l-Fan—g)Q(n"q')
- - I _ _ ..
(1-a 41 S g) + Q,En—m(l R kE“lek)v 8(n,2)
where .
3 _ A*R(n-m) A*C(2) 'E( 4
P(n;m) = m s Q(n’g) = ( ) (J.

veR(n-m)

But P(n,m) = U by the definition of X¥, and &(n,%) — O
as n -+ o by (4.7) and (2.32). Hence, letting n + o 1in

(4.11), we have

- ~1 s . ~1
i e I k'S L
l+am+l =mv-R(n+l) = n—»ooV.R(n-l'l) = 1l-q > €A, me<l, x>

m+1



Now we obtain (4.8) by letting m » « .

Lemma 4.4. There are functions BL (s ) and Gi(s )
e . Ik Ca SR

in 0< s < g such that
= "o = ‘o

i . . . )
(4.12) R (s ) = § al(ql-gd) - gt (s )(qj—sj)(qk-—sk)
* e, ? 5’12‘5% Jk*a > {
/
1 61 J_&d ‘ 7
+ JZ_T‘- (Aj GJ(Su))(q S ), iE Aa, \\Q ; SO. ; qa,
o
where (1) (1) (2)
i 1 i (2) 1.1 : 1 2
0 < By (s4™") £ By (5,72 5Fy (@), 0 28 7 <872 q
(4.13)
i 1.1 ,
Bﬂk(sa) ~ §FJK(Q)’ as s, >4, In 0 <s <a, i’J’kEAa’
i i -
(4.14) 0 < Gj(sa) < 2Ej(sa), iea, , JET, . )

roof. Integrating by parts the integral in (2.11), we have

Ej(s) = [ Bl (s)(a"-s™), 1es, 0<s ca,
kel 9 - T

(4.15)

. 1
By (s) = I Prn)(yIy-yIe)) j (a-(a-s)£)Y ™5™ k(1-8)qk.
yES .0 \
enF L

—

Combining this with (2.10) we have



SN

RYs) = ] atal-sh) - 1 Bl (s)(af-sT) (a5 -
jea 9 j,ken 9
i1 J 3 gl J k
+ (Ay-E7(s))(gY=-sY) - (s)(q -5 )(q -5 ), -
J'g_f J JéAzkeI‘ Jk

Since B?k(s) = BT by (4.15), the last term is equal to

kJ(s)

i JgT kgA ng(S)(qk‘sk)(qJ'sj):

and we obtain (4.12) with

(L.16) G§<s> = E§<s> + z B (s)(q -s5).

Further (4.13) follows from (4.15), and (4.14) follows from
(4.15) - (4.16).
Note that, if we replace s, in (4.12) by F(n ; Sa)a’ we

obtaln

(4.17)  Ri(ntlzs ) = | ajRM(ngs)) - j ! By (n35) R (n55,)R (n;s,
> o

+ g (A -G(ns))R’j(ns), i€b,, 0<s <q ,

o o



where

i N _ o1 . 1 . = i .
Hence it follows, when ba =1,
_ 2
(4.19) a.y &, = -b a_ + s
where
roag = ag(sy) = v-R(nss ),
~ i . Ji. k. .
(4.20) b o= (s = 1,9 xen,Tq1Byk(n3s )R (n5s )R (n;5s )
1 n an- o ' a (s )2
an
- _ ~ i i J —_
c_=c (s )=} ¥ . (AT - Gi(n;s ))RY(n;5.).
\ n an o iEAa,jGT& ol "] J o a

Note that (4.9) is rewritten as

(4.21) &y ? 0, n € Ngs>®> 02 Sa S 9y Sa # 9>
for some n, € <l,o> . Further
(4.22) iiﬁ‘an =0

N-»o00

by (1.7), and

(4.23) 0 < b*

t
|
[
3
o

i A
e
=
o

o]

"

o
*®
A
8

by (4.13) and the inequality GO >0. PFinally it holds



(4.24)

ch >0, ne <np,e> o,
for some n; € <0,w> by means of (4.14), (1.7) and the fact
that AT = 0 implies E-(s ) = 0.
J J ' Ta
Now we assume that
e Mg l, o\ _ oyl
(4.25) 1im n PR (nj;s) = R¥™, 1c€a, >
Nn->oo B
for each qua with Pg = 1 and s satisfying 0 < S < q,
and (4.3), where get are constants with R*i > 0. Then we
have
Lemma 4.5. 1) If % < 1, it holds h
(4.26) c, = o(l/n2), as n -+ &
/
- ]
2) If Py = 1,
A
(4.27) 1im n %R(n;s) = R¥ ,
N> o
for each s with 0 < s _<q  and (4.3), where
(4.28) My = min{uB R B:%a, Pg = 1}.
Further,

it holds



' , n —_— )
(4.29) 1im n % = ¥ A'E¥ = c* > 0.
N n a oo

Proof. (4.26) is clear from (4.20) and Theorem 2.1.
(4.27) is also clear bty (4.25). Hence (4.29) except for the
relation c* > 0 follows with the aid of (4.Q4) and (1.7).
But c¢#% >0 1is easily seen if we repeat the same arguments
as in the proof of Lemma 2.5.

The next lemma plays an important role in the following.

Lemma 4.6. Let sequences {an}, {bn} and {cn} satisfy

(4.19) and (u.zi)-<u,2u). Then, 1) (4.26) implies

Al

(4.30) 1/b* < lim n a, < 1im'n a_ < 1/b*.
. nro - N0 n =
2) Let
(4.31) 0 < b¥ < b¥* < w ,
(4.32) Tim n“cn = c¥,
oo

for some 0 < py < 1, then it holds

c¥ S - = u/2 c¥
(4.33) ’g; < dim n""a < Tim'n™ %a ¢ ¥

n->o T neo

——r—



Proof. 1) By (4.22) and (4.23), it holds

b
n .
— < N, n = <n,,»>
‘l—anbn = 2
for some M >0 and n, = <l,»> . Hence it follows from (4.19),

(4.21) and (4.24) that

nn _ n < M, ne_1<n3,°°> s

b a b
a
n+l (laanbn)+cn/an

- L«
a_ =
n

o)

n+l

where n3 = no\fnl\fnZ. Summing up these linequalities from n3

to n we have

1
< (n—n3)M + T > n & <n3,w> s

i3

ol
i [N

so that, by means of (4.26),

oL s 2 _
1im cn/an = 1im cn/an = 0.
N> 1 oo

Hence we obtain (4.30) since (4.19) implies

2
B! , = 1 n-1 bﬂ,_cﬂ,/ak
{a a n

3

S
o]

2=n3 l—b2a2’+c£/a2

u/2a » we have from (4.19) that

2) Setting gn = n n



n"/2 (¢ ~£) =a 0@,

“n°n n "n+l n n+l

as n -+ o , Since 0 < p < 1, this with (4.2z; implies the

basic equality

(4.34) ‘iim‘{bngi - ¥+ n"/2

n-+o n

(Eqyp ~Ex)} = O

Now we shall show that the sequence {En}.is bounded. Suppose

that {En} is unbounded, and let

A

n, = 1, n, ="'min{n;£n > & \/k}, K € <2,%>
. k-1
Then it follows
(4-35) g > g \.“k; g ) ké<23°°>3
Dy T ] ny-1
(4.36) Tim £ = =
kK> k

By (4.35) we have E > & 1> and hence by (4.3%)
k 'S

Timb_ ., €, - (n-1)%_ .} < 0.
Koo Tk 1 n, 1 k nk—l

Hence. with the aid of (4.32) and (4.31) we have

(4.37)  TIm g _

kaso 'k

A

1 c*/'g* < ® R



and from (4.34)

2 - -1)H
. bn —lgnk—l (nk 1) cnk—l
(4.38) 1im (¢ - £ 1) = -1im = 0.
k> Dk Ny~ Koo (5 1)H/2
,lk -

(4.37) and (4.38) imply the boundedness of the sequence {gn },
k

which is a contradiction. We note that, by means of the bounded-

ness of the sequence {in}, (4.38) is valid for any subsequence

{nk}. To prove (4.33), we set

£¥* = 1im £ % = Tim' g
e ) N->c
Flrst we shall show that g% = ¥ =z g% implies
vVe¥/p¥ < g*¥ < Ve¥/p¥

Indeed if. t&¥* < //c*/g* for example, it holds by (4.34) and

~(02)

(4.32) that
nu/2(£n+1 - En) > n“cn - bngi - €

c¥ - 3*(5*)2 - 2 > 0, r1€<N0,w>

v

for some NO € <1,0> Hence 1t follows

~ _ 2 n_
£, - &y 2 (c* - b*(&¥)° - 2¢) ]
0 k=N



which contracts the boundedness of {En}. Next we shall show
di

that (4.33) holds even when £¥ < E#. Since the situations

do not differ, we suppose g* > //c*/g* and lead a contaradic-

tlon. Take a constant & in E¥> £> E*V/e¥/b¥, and let

ny = hin{n;gn>g },
m, = min{n €<ny_q +t 1, ®> 5 & <E},
n, = min{ng <m, + 1,0 > 3 E, > &Y, k & <1,o>
/
Then it holds
(4.39) gnk > gnk_l\/g , kK € <1, 0>

Indeed, the inequalilty gq > £ is clear from the definitions,
AI(

3 if n, -1€<m

K k1%

and E > &, _ is also clear since § <
n, n, 1 nk—l

and gnk_lﬁigg if n-1=m . Now it follows from (4.34)
L mk
and (4.39) that for any € > 0 there is a k, satisfying

(n,_-1)%c + ¢
2 k Ny —..
gnk_l < ’d s k & <k\1,,oo>

nk-l
Combining this inequality with (4.39), (4.38) and (4.32), we

obtain



52 < Tim Ei = lin
ko k k»o n, -1

=]
vy
!
|o
*

which contradicts the inequality & > vVc¥/b¥.

Corollary 4.1. (4.33) is still valid even if we replace "

LY
the assumption (4.19) by (4.34) where gn = nu/zan. J

Now we are ready to prove the next lemma which completes
the proof of Theorem 4.1

Lemma 4,7, Let p_ =1, and (4.25) nholad. Then it follows |

o
/
oo | SN Ua~ ~
(4.40) 1im n R(n;s)a = Rg ,
>
for all s satisfying 0 < Sy < qy and (4.3), where My, and

ﬁ§ are given separately in the following three cases ; (i)

if 1 = Py > Py o then My = 1l and

(4.41) ﬁg = ﬁa/B s

(11) 4if 1 = 5& > ba , then My = ﬁ& and
(4.42) RE = (I - K)7'a’RX,

]
h =

and (1ii) if 1 = 3 = 5 _, then M, o /2 and

(4.43) R



Proof. (i) When 1 =5 >p , 1t holds (4.26) by
Lemma 4.5. Hence it follows (4.30) by Lemma 4.6, and we have
(4.7) by Theorem 2.1. Therefore (4.8) holds by Lemma 4.3,

and so

L}
oy}

(4.44) lim b

by (4.20), (4.18), (1.7) and (4.13). Now appealing to Lemma 4.6

‘1) again, we have '©im n a, = 1/B to obtain (4.40) with u =1

N->co

and R¥* given by (4.41) ¥rom (4.8).

~

(1i) When 1 = p > p, it holds
(4.45) n"R(n3s) < 3, n€ <0,%> ,
for U =¥n . Indeed, combining (2.15) with (2.23) and (4.27)

we have

(n+1)PR(n+1) < (n+1)MAPTYg + (n+1)M g P RarR(y)

n

tlixg + (n+1)¥o,5" Z “hgTHE*A'R¥ +X),

< (n+1)"e p"

where el, 92 and K are positive constants. But since

n . -
J 5 "M a3 (- Tog 5),  'ES N o

(4.45) follows.



Now by means of (4.10) it holds
m~ —— ~
} D(n,n-2)C(n-2)" (n+1)*R(n-2) < (n+1)*R(n+1) .
2=0 o '

At (n+1)PR(n-2).
0

Il o313

< (BEHE™ (n-m)H R (nem) +
- L

Hencéietting n-+ o we have from (4.45) that

m
} E*A'R® < '1im nR(n) g.ﬂim\n“ﬁ(n)7
2=0 - n-+e : T oo et
m
< Py 4 ) A% prRs
= %0
But Km+l > 0 as m~»> « since § <1, and we obtain the conclusion.

{(iii}ﬂIn the case of 1 = § = p , we shall first prove (4.44).

R ]
Since the sequence an(O) 1s monotone nonincreasing in n, it

follows from (4.19) and (4.20) that

c_(0)
aOA_<_= ;nT_O_) ;bn(O)an(O) +~ 0, Tas! n-+ o
n

Hence it holds from (4.29) that

il
(@]

EEmVI/nuan(O)

IN->co

s £ q satisfying (4.3) we.can find an

Further, for each O

2 € <Q,w> by (1.7) such that s < F(23;0) < q, whence it



follows R(nj;s) > R(n+% ;0) and

Eiﬁzl/nuan(s) = 0.

N>
Hence we have (4.7) by (4.27), so that (4.8) and (4.44) by
Lemma 4.3 and (4.20). Now since B >:0 by Lemma 4.1, it

follows from (4.44) and Lemma 4.6 2) that

-\ /2

1im'n a, = Ye¥/B.
Y1->co

Hence we have the conclusion with the aid of (4.8).

Remark 4.2. The vectors Rg given above are positive.

Vs Lt e,

The proof is similar to that of Lemma 2.5.

Remark 4.3. It is clear from the proof that (4.40) hold§

D

for~s wlth 0 <s <@

; , s_# q, in case of (i), and for all
call

a a

and (4.27). Further, it
'in case of (ii)

s satisfying 0 £ S < Ay> Sy # a,

can be seen that if we assume Condition (DE) in the next section
(4.40) (and hence (4.2)) holds for all s with 0 < Sq S Q>

S # Q, in all cases.



R:.. Asymptotic behavior of Z(n)/n_ of critical DAWE

In this sectlion we shall glve the asymptotic behavior of

the distributions

Q(n;u) =P {Z(n) <u | n< T<eo }, uELRE,

of critical DGWP's. We shall assume for each ag<l, g> with

~

Py = 1 that

. i ik o i,2
(DE) ) v L Fr(a) g e (] ¥ &)
: ayl™ jk = oy . oyl ?
i’;’kEAaY 161\0‘Y
E = gi) > 0 e<l, d >
oy iea ? Y > Tal?
ay
where cay is a positive constant and vay is the positive

(a)

left eigenvector of KQY

corresponding to the P-F root 1.
When the matrix Aa is aperiodic, it is clear that &a = 1,

and Condition (DE) is reduced to
j ’¢ .
for some ca > 0. We set

(n) _ (n,x) _ N .

s (atexp(-at/m), ..., %% (-2N/n)),



for each A = (A7,...,x") > 0. Our object in this sectlon is

to prove the following
Theorem 5.1. Let a DGWP X = (Z(n), P.) satisfy Conditions ?
(D), (DC) for each o<<l, g> with Py = 1 and (DE) for each

a & <1, g> with ﬁa = 1, andAthe matrices ﬂa be aperiodic.
i

Then, 1) for each af<l, g> with Py = .1, there correspond nontrivial

nonnegative functions wl( Aa), ieAa’ such that

, . m
(5.2) Tim'n ®RI(n;s (MeA)y = i x)s 1€4,,

-

-

for each X > 0 satisfying
(503) A > Oi if B‘\‘O‘ > BB >‘*O_°

The functions wi( Aa), iEEAa » are determined inductively
w.r.t. the semiorder 'dgf from Lemmas 5.1 and 5.3 below. 2)

For each x€S with oy = 1 for some aeI+(x), the distri-

butions Qx(n;u), ne€ <l,x> , converge as n =+ « to a proba-

N . .
given, by, x-e .
+ M ]
1o Ho)
aeI+(x) leAa

bility distribution Qi(u) on R

Y M =N
(5.4) J e” M Ugqe(y) = 1 - %X
N X i X785 4
’ R+ 2 Z X q R¥ P
a€I+(x) i€ A
- )
Ua— Ux ‘ N



\~
.~

where M _ = min {ua; a - I+(x)}.

Theorem 5.2. Let a DGWP X = (Z(n), Px) satisfy Conditions
(R), (DC) for each a«<1l, g> with Py = 1 and (DE) for each
af<l, g> with 5a = 1. Then, 1) for each a¢<l, g> with i

Py = 1l and y€<l1, aa> , there correspond nonnegative functions

S

i,,(a)
Y ()‘ozy ) s iGAaY, such that

u (nd +2,A)
(5.5)  'Lim (nd +2) *YR'(nd +e5s  ° ) = wi(wz(x)éi)%’j

>

- - iéAaY’ L & <0, da—_1> s

for each X > 0 with (5.3), where w,(}) = Az{q}\}/q. 2)
For each Xx€ S with P, = 1 for some aE-I+(x), the distributions
Qx(ndx+2;u), ué Ril, converge as n - « to a probability distri-

bution Q¥ (u) on RI_E.

X% i
Throughout in the following in thils section we always assume
the hypotheses of Theorem 5.2. Further, we shall assume for the

moment that every Ea is aperiodic. Then, for an o &<1l, g>

which is minimal w.r.t. the semlorder '<' , there is the follow-

ing excellent



Lemma 5.1 (Joffe and Spitzer [9]). If the gq-mean matrix

Aa 1s positively regular with oa = 1, 1t holds (5.2) with {
2}
= V4
My 1l and
i
a” ¢ - (a A )
(5.6) vr, ) = . ;
1+ BVa(arg ) [

To deal with the case when o 1s not minimal, we prepare
a lemma.
Lemma 5.2. Suppose that Ba =il and X > 0 satisfies (5.3)[

Then the relation’

e, Flnmmins (022
(5.7) lim =0, 2€<0,m>, m & <0,0> ,
e g -ﬁ(n—m;s(n’k))
o o a
implies
.. R (n;s(n’”)
(5.8) 1im ————& &= § .
n-+e ?a'R(n;sén’A))a o

Further the relation

ﬁ(k—m+£;§<n’A))

¢} Q
(n,k))
[0

(5.9). Tin "sup'

- 0, 2€<0,m> , m & <0,«>
k+» n>k Ga-R(k-m;s

o

implies
1ie.<(ny2)
R (k,sa )

(5.10) 'Iim ‘sup max |

~ - u
k+o n>k i€ A q.R(k;s(n,A))



The proof is similar to that of Lemma 4.3 and will be

omitted.

Here we assume

R ¥ ’
9im' n BRi(n;s(n’A)) = wi(AB), 1€
N0

B 2

for all B<a with = 1. Then it follows, if p_ = 1, that

F i @
B _‘Ia LAYy L
(5.11) iiz n *R(n;s )a = wa(la )

IS I
) = @0 X DT

for some ;$a(
o

A,
Lemma 5.3. Let p =1, and (5.11) hold if p = 1. Then

it follows

. M, - '
(5.12) Him' n 0LR(n;s(n’}‘)) = wa( Aa)’

n-ow

for all X > 0 with (5.3), where/\\ﬁa( Aa) are given separately
‘u, are those in section 4 and
in the following three cases : (i) if .1 = 5a > B& » then

~ g
¥ (3 X )u
(5.13) Vol 2y) = l+v,?q(;a)?; fx (2}
o faa’ Ta fal o
where
) 7o 7!
(5.14) Xg{he ) = 1 ,

T (A A DT (A g A 1Ty



/

(11) 1if 1 = Py 7 Pys then

(5.15) T (0, ) = (T - E)7Ma; ¥, (X, ),
and (11i) if 1 =5, = o, , then
~ VAL P (X, )
(5.16) O )24,
ol

Proof. (i) With the notations in (4.20), a, > 0 holds

for all n € <0,x> since A > .0 satisfies (5.3) and

>.0.

“ot
R

Hence it follows from (4.19)

-~

(5.17)

o [0

(— - - —3 }
a (s e s™)

n-1 bk(s(n))

ol o

E 4
k=0 ll-bk(s(n>)ak(s(n))+ck(s(n>)/ak(s(n)l

1 ck(s(n))
0 ak(s(n))a

]
=

i
L (n)
k= x+1 (8 e

By the same arguments as 1in the proof of Lemma 2.2, it holds

(5.18) Rk - m +2; 500y ¢ g mHeg _ glndy

6 rk—m+2

1 - .
. £ @, k¢ <m=g,0> ,
n



for some 61 = el(x)> 0 and p<r<1. Similarly, by the convexity

of the function Fi(n;s+(q—s)€) in 0 £ & £ 1, we have
(5.19) ﬁ(k-m;s(n)) ;K(k-m;s(n))(d-'s“(n)), k € <m,»> ,

where A(k;s) = [F?(k;s)ji jea - Further it can be seen that for

each r<yp <i there is a vector @<n;q satisfying (4.3) such that
(5.20) F(n) > n ‘and p(A(1;n ))> B

Indeed, since Fl(n;o) +q1 as nt®, it is enough to take an
F(n;0) with a sufficiently large n as the vector n. Since

the matrix A(l;n) is also positively regular, it follows from

(5.20) that
(5.21)  AGen) 2 B(m¥ 2 ¥ -s )08 (),

where K.*(n) is a positive matrix and {6-1{} 1s a sequence with
61{ >0 as k> and 026 <1. But since there is a kg€ <1, >
Jee with

n ; S .<-= S ; a, neg <k, o> > k6-<k_09°°> >

we have from (5.19) that

¢



[

V- ~
- 5.7 (1-6 _ )A¥(n)q
(5.22) R(k—m;s<n)) > = k-m >, n 2k 2 mKg,
n (
for some 62 = GZ(A) > 0. Combining (5.18) and (5.22) we

obtain (5.9), and hence (5.10) by Lemma 5.2. Since
B?k(kss> > F§k(q)/2 as k » o uniformly in 0 < s £ q, it

follows from (5.10) and (4.20) that

(5.23) Tim sup Ibk(s(n)) - B| =.0.
k+eo n>k

Hence 1t also follows from (4.22) that

(5.24) Tim ;ﬁp bk(s(n))a (n)y - o,

(s
K+ n>k k

Letting m =2= 0 1in (5.18) and (5.22), we have

ck(s(n)) 61rk§A'E
(n) ; ~l; % = n ; k _Z__ ko,
ak(s ) 6, (l—ék)vA (n)§
so that
(5.25) limsup o (s(™)/a (s()) = 0.

K+ n;k
To estimate the sequence ¢ (s(n>)/a (S(n))a (s(n)) hal
exploit (5.22) for an P with

Vo < B < 1.



Then it is clear from (5.18) and (5.22) that

n
ak(s

for some 6, > 0. As for ki <0, k0>, it is not difficult to

3
see that
1 Ck<s(n)) € <
o M n < o>
n n) Yy« <M >
2 (s D2y (s777)
Since
kg o Lk
LMt kzk a3 ST
k=0 0

-

we can apply the Lebesgue's convergence theorem, obtaining

ck(s(n))

(5.26) Aim )

= X(A)s
nee k=0 O ak(s(n))ak+l(s(n))
with the help of
(5.27) 1im nR(k ; s(n,A)) = Ak{qx}.

n-ro

Combining (5.23) - (5.26) with (5.17), we have

Hence we have (5.12) with wi(k) given by (5.13) because of (5.8).



(ii) By the convexity of the function,

Fi(z;s(2)+(s(n+l)_s(2))E) in 0 ; E_i_l’_"j
{we have
(5.28)  RE(2;5%)) RM(ess ™)) = Fleess () < ph(ess ()
< Z_F%(Q;s(n+l))(s(n+l) - S(l))J,
= JET Y

-

for each 16?. Similarly it holds

-

(5.29) Ri(k;s<n+l)) = Fi(l;q) _ Fi(zss(n+l))

.

> z F;(Q;S<nil))(q - S(n+l))j-
€

Since

(5.30) (s(n‘“l)-s(’”)j _ S(n+13)J n+i_2

A
D
\

=" n+ql & >

“-n+l > &ng ,

for some 6 >0 and ng € <l,o> , it follows from (5.28), (5.29)

b=~ and (4.27) that
(5.31) 0 < R(l;s(z)) - E(l;s(n+l)) < Lgil%&le§(2;0)~
(n+l1-Lc
(& TR TR vt 2 avng,

for some vector <c. Hence, substituting & = n-2% s Wwe have for

any fixed m



_— m _
T 1)H | Bln,n-258 M) o(nmgs5s By rR(n-g;s (PFL))
N+ 2=0
m
= Um [ DB(n,n~g; 05 (1)) 0 (nep ;s D)y 1 (nog Y MR (005 ;s (0= Q))g
Nsoo £=0 -
m -5
= 2 arp(d)

Now we can obtain (5.12) with (5.15) by the same arguments as in

f
the proof of Lemma 4.7 (ii).

(iii) By Lemma 4.7 (1ii), the sequence R(n;s

is bounded in 1 & <1, > so that we have by the same way as

for (5.31) that

~

(5:32) 0 < R ™) = Almed;s M) <28 n s m,

for some vector & and <l,o> . Let

ng

Q
n

a,(0) = 02 sy p = s () = b (s, L

n"e (s
n

(n)).

<
i

Y, (A)
Then (4.19) and (5.32) imply

_ o o mW/2, o 2 1
@ ¢ n ( Bnan * Yn) + O(n)>



as n > o > S0 that

(5.33)  Tim'(n"Z(a_,; - o)) + (Byof - v} = 0.

N>co
Further, by means of (4.20) and assumptions (DC) and (DE), it
holds

©> B =TIm 6 (\) 21n 8.(N) =8 > 0,

n->o n->oo
for some B = B(A) and B = B(A). Henee, appealing to Corollary

4.1, we obtain from (5.33) that

(5.34) Yy#/B < lim a, < Tim'a_ </y*/8,

where

v = Tim vy = FA'T(X).

Now

Combining (5.34); (5.32) and (4.29), we obtain (5.7). Hence

(5.8) follows by Lemma 5.2, and also

Tim B, (1) = B.

n-—-o

Hence, agailnusing Corollary 4.1, we obtain from (5.33)

THiu

-

ﬁim‘an(k) = J/y¥/B,

N>



Now (5.12) with (5.16) is proved, since (5.8) is valid.
Proof of Theorem 5.1. Since 1) is clear from Lemmas 5.1 and
5.3, we shall show 2). By the similar arguments as for (2.34),

it 1s easily seen that

g¥=F(n;s (P 1))%

q*-F(n;0)*

f e’»ude(n;u) =1 -
N

Ry

Further, 1t follows from (5.2), (4.2) and (1.7) that

' -H s -H
qx—F(n;s(n))x =n % \Z xiqx eiwl(la)+o(n R
a€l (x)1€4
ua=ux

1 —H

+oln *)

qx-F(n;O)x=n ) xiq R¥*

3
as n -+ o ., Hence 1t follows

T e Vag (nsw) = v, (1),

n-+o’ _N
Ry

where wx(x) is given by the right side of (5.4). Further
{P,“«wm~wwx(l) is a Laplace transform of a nonnegative measure

dQ:(u) on Rf. Since ‘iig wi(ka ) =0 by (5.6) and (5.13) -

(5.16)% it holds 1lim' wx(k) = 1. Hence the nonnegative measure
AY0

»dQ;(u) is a probability measure and we obtain the conclusion.



We note that the parallel assertions to those -of Remarks
2.1 and 2.2 are also valid in this case. Further, we have

Remark 5.1. It holds

(5.35)  wllw,0) = v, 4

where wz(x)\= A2 {gr} /q.
Proof. From (5.6) and (5.13) - (5.16), it is enough to
show (5.35) in the case of (5.13). But this 1s not difficult

since 4. k=

- (A{gA})7d
1+9(A{qA ) "B = ¥-(Alqd}) x(wy (X))

¥(wy(A))

- e (A{gA} )" @
O
147+ (A{QA})" (B =x(A))+VA'{QX}/¥- (dX)

PNy,

As to Theorem 5.2, we have the next lemma from Theorem 5.1

L

by the same arguments as those to lead Lemma 3.3 from Theorem 2.1.

Lemma 5.4. There exist . nontrivial limits 7 ¢
/



. H
T, aysl (nd 52y 2 i, () -
(5.36) 1im (nd ) " 'R7(nd 35" "a ) =y (Aay ), 1¢ Boy? )
N-o -
H :'x
for each X >0 with (5.3), a“<l,g> with p = 1 and :
Y €<1, aa> ‘
Proof of Theorem 5.2. First we set
(nd,wz(k)) .
>

F(L) = P(a;s(NHEADy s(w) = s

C FVs = (Fl(z)vsl(w),---,FN(z)VSN(w)).

Then it is clear that

(5.37)  Ri(aa + 235Ny o plnaipaa)).

Further by the differentiability of the function Fi(nd;F(z)

+ (s(w) - F(&))&) 1t holds

IRT(naiP(2)) - Ri(nd;s(w))| < Zer'(nd;c)lF‘j(z)—s'j(w)I\
J€

(5.38)
g ] FiasEvs) [P0 - T,
JET
where c¢ 1s a vector with c¢ < Fvs., Similarly

F?(nd;FVS) (qj -'FJ(Q)VSj(w>).

(5.39) R (na;mvs) >
j°T



On the other hand, since

F(2) = o - 14l (W ma + o) |
2
= q9(1 - wJ(A)/na) + o(;%),
s9(w) = ol (1 - Wl /ma) + oD,
\ n

as n + o , it follows

B2 - sd(w)| ¢ Kk /P,

A

(5.40)

qj - FJ<2)\/SJ(UJ) ;kz/n, n€<1:10-’°°> > jer:

for some k;, k;, >0 and ny = <l,o> . Combining (5.37)-(5.40),

we have
i (nd+4) i kl i
(5.41) |[R™(na +2;s ) - R7(nd;s(w)) | SR (nd;Fvs) .
: 2
k
1.1 . -
nk2R (nd,O), n (: <no> >

Hence 1t follows from (5.36) and (5.37) that



Eih(nd+£)“Ri(nd+2;s(nd+2)) = '"_[i'm'(nd)“Rj‘(nd;s(w))'—w

N> n->o

v, (), 1€d4,  L€<0, d-1>.

The assertion of 2) is easily seen from (4.4) and (5.5) by

the same arguments as in the proof of Theorem 5.1.

\
6. Asymptotic behavior of CGWP
AN A~ -

A S

In this section we shall deal with CGWP's X = (Z(t),Px)

satisfying Condition (C). Since the matrix

B (8) = [AJ(0) ], = B¥p(ta,),  t >0,

33.' AOL
is always positive by the irreducibility of éa, the periodicity

does not appear- There also correspond positive right and left

eigenvec£ors ﬁa = (ﬁi)iﬁAa and ﬁa = (vai)iéAa of the matrix
;a to the P-F root & = p(éa);

éaﬁa i,aaﬁa’ vaéa - sava;
with the normalizations

ig/_\. ~°‘i~°i‘ b i:-ZA ﬁi‘ "t



We set & = 1/2P, p  <0,%> . Then the family of the
generating functions {F(n@p;s) ; n € <0,«>} forms a DGWP on
S, which we shall denote by X(Gp). The extinction probability

(%)
of X' P is equal to ¢« ee—emethgt of the original

(%) (8,)
CGWP X, and the g-mean matrix A‘ P of X' P is equal to

et /
'exﬁ(spa). Similarly, the family of the generating functions

) .
{F(ndp;sa)a 3 ng& <0,x>} forms a DGWP Xé p) with the g-mean

$ .
matrix Aé p> bxﬁ(épaa). Here we set the condition

i j 2 \ j
(CN) JP (y)y'aY Tog'y? < =, 1,J€T, ,
y€

where pi(y) are those in (1.6).
é@ggguégia It is necessary and sufficient for Condition

(CN) to hold that

(6.1) E, {Zj(t)qz(t>‘56g‘zj(t)} < 1i,j€T , t >0.
1

Proof. For a jE€ <1, N> with qJ <1l, both (CN) and

C

(6.1) are automatically satisfied since the function

o Y B 5
ylg¥ Tog'yd = {y?(a?)Y" Hozly’} xg (qh)Y
i#J

RN



is bounded in y¢S. But, for a J€<1l, N> with qJ =1, it 1is
not difficult to show the necessity by the similar arguments as
in the proof of Sevastyanov [13] Theorem 2.4.7, and the suffi-
ciency from the arguments as in Athreya [1] (pp. 49-50Y).

Now as in (2.3) - (2.4), we shall define vB(r) by

/ g -2
max{vy(r) 3 Y‘fs} , if Gg r,
vB(r) =
oo, . N | } ~ -
max{vY(r) ,Y‘$~B} +(1, 'if g = 1,
inductively (max ¢ = -1), and v, by v, = va(oa ). Then

setting R(t;g)éé q - F(t;s), we have the following .Theorem 6.1.

L

- ]
e e ] T - ’

‘Let a CGWP X = (2(t), P,) satisfy Conditions (C) and (CN) for

each a€ <1, g> with o, < 0. Then,(}) for each a€<i; g>
with 9 <0’ there correspond monotone nonincreasing functions

R*i(s ) in 0 < s
a =

o S 9y i#EAa > sSuch that as t » «

v to X
(6.2)  R(t3s) =t % %(r¥(s) + o(1)), 1ed,

<

where o(l) 1s uniform in s on 0 <s <49, Further every

)
R*i(sa) is not identically zero. 2) For each x&S8 such that

ca<0 for all a-I_(x), there corresponds a probability distri-

bution {P¥(y)} on S-{0} satisfying .



(6.3) r1‘££n‘1>x{z(t) = ylt < T < =}= Pi(y).

T >
Proof. By means of Theorem 2.1 and (6.1), there arec

monotone nonincreasing functions R*i(s),

1¢ A, which are independent of the choice of p & <0,«> , such that

(6.4) gi(ndp;S) = (nsp)venGpG{R*i(S) + o(1)}, i€ a4,
5™ T g

as n + « , where o(1l) is uniform in 0'< s < g. Hence 1t holds

by (2.36) that

(6.5) R*L(F(t;5)) = e"OR#l(s),

for each t >'0 with the form of n/2° first, and then for all
t ;(?l by means of the continuity of R*i(s) in 0°<s < q and of

F(t;s) 1in t. Now (6.4) and (6.5) imply

1
e (RC(nsF(rss)) 1 _
(6.6) iii(mi)vefniﬂc - R¥"(s)) =0

uniformly in O <s <q and O ;-r<i; Since each t >{0 1is
represented as t = n+t, 0< T <1, where n » = as t +» o
we obtain (6.2) from (6.6). The assertion 2) is clear from (6.2)

if we repeat the arguments in the proof of Theorem 2.1.



LS Ll cde

Remark 6.1. The ‘%gfto determine the v~ and R*i(sa),
iE’Aa, 1s not complicated. 1Indeed we have only to repeat the
analogous way along Lemmas 2.1 and 2.5 in the case of DGWP.

Of course the parallel assertions to those of Remarks 2.1 - 2.3
are also valid in this case.

/
To deal with the critical CGWP, we shall assume

(cc) fj‘k(q) < o, 1,5,k £ <1, N> ,
.4 ik L 1.2 4 |
(CE) i,jgkea Vi Tye(a)e’e” 2 cm(igA V480 B (¢ )KAa;
o o

for some ca > 0.

Lemma 6.2. Condition (CC) implies

VA

(6~7) F'ijk(t;Q) < ® i’j:k€<.l-: N>, t >I\Q~.
Further, (CE) and Sa = 0 imply

- ~ i J ek
(6.8) ) v .FL (t;0)E%E% 5> e (e)( ) ¥
i,J,kGAa ai” jk = a ieAa oi o o

for some ca(t) > 0.

Ewgoﬁ: The first assertion is well known (eg. Sevastyanov

[12] Theorem 4.7.3). To show the second assertion, we shall

use the relations



t

i i m n
F,, (t;q) AT (t=-1)f _ (@)A (T)A (T)dT~
Jk z,m,n€FfO 7 mn J k '

t .
1 K
2 QEAJOA (t-1)%4, ()4 ()AL (T)ar

(ibid. (4.7.16)). Then it follows

Fr (t-q)ajgk ft (q)AJ(T>A (r)gjg dt
i:jskéA k § kf-A i jk

which implies (6.8), since Ag(r) + 1 as T ¥.0.
Setting B, T 1/2V@(O), we have ‘the following

Theorem 6.2. Let a CGWP X = (Z(t), P.) satisfy Conditions

(C) and (CC). Then for each aé<l, g> wilth Iy ='0, there {
’
i 7
correspond constants R¥", i€ Aa, such that ;
) > O 1
(6.8) Nim' t %rl(t;s) = R*T, 1€ by, O s <aq.
troo
The proof is clear from Theorem 4.1 and (6.7), and will be
omitted. ¢
C{
Theorem 6.3. Let a DGWP X = (z(t), P.) satisfy Conditions
(C), (CC) and (CE) for each a€<I, g> with &_=0. Then, 1) -
i
for each a&<1l, g> with Oy = 0, there correspond nonnegative '

functions wi(ka ) ic;Aa, such that



e Moapi, L (E,A0)y o o1 ,
(6.9) Tim' t °RY(t;s ) =y (Aa), 1€8, Ay > O- |

‘C-)'OO
2) For each x£€S with Oy = 0 for some a & I+(x), the distri-

butions

Qx(t,u) = Px{zét) < ult < T <}, uERI_E,

converge as t - o« to a probability distribution Q;(u) on Rﬁ ;

Proof. By means of Theorem 5.1 and (6.8), there are non-

negative functions wl(A), i A , which are independent of the

choice of p &€ <0,»> , such that

(6.10) Eiﬁ(nap)“Ri(na (néps2)y o wi(x),~ iea , A > ©.

N»o

;s
|9
Further, (5.35) implies
(6.11) ¥ (w (1) = vt(),

for each t > 0 with the form of n/2p, where wt(k) = A(t)(qr)/q.
Since the function l—wi(x)/R*i is a Laplace transform of a
probability distribution, it is continuous in X >0. Hence the
function wi(wt(k)) is continuous in .t, and so (6.11) holds

for all t >/0. Now representing each t >0 as t = n+T,

0 <t <l, we have



(6.12) Ri(t;s(t’x)) = Ri(n;F(r;s(t’”))-

But by the same reason as of (5.41) it holds

lRi(n;F(T;S(t’)\)) - Ri(n;s(n:w‘r(k)))l ;%Ri(n;O), ne <nf0.’°°>

Hence it follows from (6.8) and (6.10) - (6.12) that

-~

' Tim t*R (65552 = iim n¥RE(nys(Moec (WD)

trw N-+»o0

Ve, () = vt

The assertion of 2) is clear from (6.9) and (6.8).

TN e NN e

7. Examples
N/,

In this section we shall give four examples. The first
two are those proposed by Jirina [8] and Sevastyanov [1l4] as
examples which, because of the fallure of the positive regularity,
do not satisfy their theorems. But these are contained in our
scheme, and the direct calculations show that the asymptotic
forms coincide with those given by our theorems: Example 3
is of reducible cases, where the asymptotic behaviors are

also calculated directly and coincide with those given by



our theorems. However , all - - --the marginal distributions of
Qi(u) in Examples 1 - 3 are of exponential type. In Example

4 we shall show with aid of our theorems that there really exists
a case when a certain marginal distribution of Q;(u) is not of
exponential fype. Naturally the distribution is the same type

of that in Savin and Chistyakov [12].

J

Example '1. Let o(g) = 2;=0pj£ be an one-dimensional
probability generating function with p, > 0, "(1)<e 1if

6'(1) =1, and consider the two-type DGWP X with the generating

funetions
. { M} i7"
(7.3) Fl(sl, 32) = ¢(s2), F2(§ s 52) = &(s7).

Let qq be the least nonnegative fixed point of ¢(&) and set

p = ¢'(qp), Then 1t is well known that @'(1l) # 1’ implies

-

p<l, and ¢'(l) =1 implies p = 1. The extinction probability
qg of X 1is equal to (qo, qo), and the g-mean matrix A 1is

given by [%8]. Hence it follows that Ay, =T

‘1\' \ = {1\, 2} and

1

~

Py = Bj.=P- We can calculate the n-step generating functions

F(n;s) precisely



o(n;st), 1f* n Ts' Even, 1 =1,2,
(7.2)  Pi(n;s) =
@(n;si+l), i n s %4qd, i

il
oo
S
-
N
-

where ¢(n;f) 1s the n-step iteration of ¢(g) and i+l 1s
identified with 1 if 1 = 2. Here we shall divide it into
three cases.~

(1) When p = 0, it follows F(n;s) 5(;, n € <l,w> , and
all the situations are trivial.

(i1) _When 0<p<1l, the one-dimensional (or positively

regular case) arguments assure the existence of a nonincreasing

function K#*(g) and,a distribution {P¥(j)} on <1l,o> such

of
that
Tim' {q. - o(n;g)} /ot = K¥(g) 0 < < q
now O ’ g ’ £t 29>
(7.3) 5( )
m.go— n;qO; hot J
1 - Tim : = ) P¥(§EY, 0.2EL N
needg =2 (030) =1 -

Combining (7.2) and (7.3) we obtain

Tim R (2n;s)/e%® = k*(st), 0'<s<q, 1=1,2,

N->w

(7.4)
Tih’Ri(2n+l;s)/o2n = pK¥(s

Y=o



5 " 1ok 1 2n % 2
Tin P (z(2n) = y|on< T<w}s X EAGTIEXPR(Y )
X 1,.2
(7.5)
= log/.2 2081
Him' P _{Z(2n+l) = y|2n+l < T<w} = X P¥(y“)+x " P*(y™)
* ’ x+x2

n-+w

,x=(xr,x2)#0;

(111) Let p = 1. Also in this case the one-dimensional

~

arguments tell us

T {1 - 0(m0)} = 28"(), Wz &<,
N>
(7.6)
Tim'n {1 - @(n;exp(-n/n))} = . s @

N>oo {(1#+0"-(I)n/2
. ‘ "/)(

%

Hence by means of (7.2) 1t follows

(7.7) TIE‘nRi(n;s) = 2/%"(1), (b?; s <.l

nro

e 1 2
Tﬁm‘Ex{gxp(-k'z(2n)/2n|2n< T} = ll 2{ X T+ X 5 )
n-o xT+xS 1+0"(1)AT/2 2+e"(1)r°/2

>

(7.8)
‘iim‘EX{%kp(-x-Z(2n+1)/(2n+1))|2n«1<T
n-+rw SR
: 1 2
= 1 X X
— > { +

xt+x® Lre"(102%/2  @een(at/2

}



for each x = (xl,x2) #0 and A = (X;; A2):>@1 From (7.8) it

follows

1 n . - 2 1"
Q¥ (u) = 1l 5 {x}(1-e72W /0" (L) )42 (g2 /2" (1) yy s
X +X

(7.9)

‘ 2 pon . oyt saniq.
QF () = —— (xl(1-e72/0" (1)) 4xB(qem2U /0 L)y,
= XT+X

for each x = (xl, x2) #0 and u = (ﬁl, u2)€ Ri.
Example 2. Let ¢&(&), g and p be those given in Example 1.

We consider the two-type DGWP X with the generating functions

(7.10) Flst,s?) = os?),  P2(sY,s?) = 8T

The extinction probability is equal to (qO,qO) and the g-mean
_ r0p _ _ . o~
matrix is A = :lO]' Hence Al = Pl:' {1,2} and Py = B9 vp-

The n-step generating functions F(n;s) is given by

o(n/2;s%), 1 n T kved, 1 =(1,2,

(7401 Fr(n;s)

i+@5

o ({n-(-1)T}/2;s , 1 n §9bda, 1 =.1,2.

(1) When p 0, F(n;s)=1l "For 'all n€<2,=>

i

(11)¥nen 0<p <1, 'it holds!



riimiRi(Qn;s)/pn = K*(si), 0 < s%q, i=1,2,
N+>w

(7.12) 1 ]
Tim' R (2n+1;s)/p" = p{lF(—l) }/2K*(Si+l),f3

N>

where K¥(g¢) 1s that of (7.3). Here we assume
(7.13) f RJE Tog § < », 1 o'(1) <@

Then K¥(&) $0 and we have

— Tow ey 2px(g?
ﬁim‘Px{Z(2n) = y|2n < T < »}= X"P¥(y)+x"P¥(y") ,
e x1+x2
(744)
. 1 . .
Tim' P {2(20+1) = y[an+1<T <w)= & P‘i{ )+2x P (. ), x=(x%,x2)#

N+ X"+ X
Oi}i) When p = 1, we also have (7.7) - (7.9) but with
$"(1) replaced by o"(1)/2.
Example_ 3. Let ¢(£) be an one-~dimensional infinitesimal
generating function with ¢"(1l) <« and AQ(O) > 0. We consider

the two-type CGWP with the infinitesimal generating functions

(7.15)  £X(st,s?) = o(s1), £2(s%62) = p(sli1)+e(1-52),

where b and ¢ are constants with 0 <b <c. Let Q. be the



least nonnegative zero point of ¢(£) and put ¢ = ¢'(qq). Then
$'(1) # 0 implies 0<0, and ¢'(l) =0’ implies o =0. The

. . . _ 1 2 1 _
extinction probability is given by q = (q~,q°) where q~ = qq

and q2 =1l—b(l~q1)/c, and the infinitesimal g-mean matrix is

o0
a = [S‘é] Hence it follows 4, = {1}, 4, = {2}, %; = {1}
and T. = {1,2}. Now we can define the one-type CGWP {¢(t;E&)}

2

with the infinitesimal generating function ¢ (&)

Lit5e) = o(a(t36)),  0(038) = & QL& 1.
Then our CGWP {F(t;s)} 1is given by

Fr(tss) = o(t;st),

(7.16)
2

t ?
Fz(t;s) e_Ct J eCT(b¢(T;sl)+c-b)dT+s -
0

t P
q2+e_0t{bj ecr(é(r;sl)—ql)dt+s2—q2}.
0

The CGWP XIE{Fl(t;s)} is divided into two cases.
(i) When o <Q, the one-dimensional arguments assure the
existence of a monotone nonincreasing function KX¥(&) and a

distribution {P¥(j)} on <1,®> satisfying

w



tr+o

(7.17)

Tim{a, - o(t;6)}/e%" = K*(g), O

1-Tim
t+°°ql-® ( € ;O )

Hence it follows

{=

N

= JTex(nE, ©LE 2o
35D

’fiﬁ‘Rl(t;s)/eOt K*(sl), 0'< st < le
trw
(7.18) . pe(yl), y% =0,
"im P 1 {Z(t)=(yl,y2)|t<T<°°}= R o
tro  (x7,0) 0, '6?herwisé;>
Cxle <1,e0 .
(1i1) In case of o = 0, the one-dimensional arguments also
tell us
1im {1 - @(t;€)} = 2/¢"(1), 0.5 & £ i1,
t >
(7.19)
- n
Mim t{1 - ®(t;exp(-n/t)} = s n>o0
g d+9Y (1) n/2
Hence it follows that
ISP 1 . = i | 1
1im tR™(t;s) = 2/¢"(1), 0 < 87 i,
4 roo -
(7.20) N
e _ FUEAR
Tim' P ] {Zét) ;jul,u2)lt <T} =1 - g% /9'(1),
tro  (x,0) ’
1 2
for each x € <l,®> and u € R}.



/5

The CGWP X2 = X = {F(t;s)} 1is divided into four cases.

(1) YWhen -c <o <0, the P-F root o, = p(a) 1s equal to o.

Tt follows from (7.16) and (7.17) that

rﬂiﬁ‘Rz(t;s)/edt N E%E K*(sl), 0'< s < q,
troo
(7-23) e 1,2 ~ Py, v =0, NES
1im P_{zZ(t) = (y ,y°)|t <T<=} = 2 f
gro X {0, 'otHevwise, x # 0. '
/
«éﬁ) lnen o<-c <0, it holds o0, = -c, and
‘Tiﬁ‘RZ(t;s)/e-Ct = bJ eCT(ql—Q(T;sl))di+q2—s2,~)
Eoroo 0 o -
(7.22) S0 <s £a,
Tim B, , {2(t) = y|t <T <=}= P¥(y), x2 # 0,

g+ (X ,x2)

wherée the distribution {P¥(y)} 1s given by

(o]

cT 11 2 2
b[oe (ql—q)(Taq S )dT+q (;]‘.-S ), 0 =<= s ; 1.

Y P¥(y)sY = 1-

y#0 bf eCT(q1-¢(T;O))dT+q2
0
(@ii) In case of ¢ = -c <0, it holds o, =0= -c, and
EZ&‘Rz(t;s)/tect = bK*(sl>, (0'< s £Qq,
treo ’ =
(7.23) ‘
p*(y1), y2 = 0,

Tim' P LZ(t) = (yl,y2)|t<T<oo}=
=00 e e T
t 0, '‘otherwise, x # 0.

L



O
o~

(iv) When -c<o¢ = 0, it follows o, = 0' and the CGWP X

is critical with q = 1. By means of (7.16) and (7.19) it holds

W 2 . _ 2b A hE
%iz tR(t;s) = EEW(TT s 0 <s <,
(7.24)
iy -/t -alrt 2 ‘
Tim tR2(t; (e , e )) = % — — =2+, 2% 0.

/
Hence with the aid of (7.19) and (7.20) it follows

1 1"
(7.25) ap(ut,u?) = 1 - VN

e

2
~x # 0, uERy

Example 4. Let ¢(g) be ar one-dimensional probability
generating function with ¢'(1) = 1 and 0 <¢"(1) = 2B, < «.
We consider two-type DGWP X given by the generating functions
Fl(sl;s2) = @(sl) and 'F2(sl,s2) with Ei(l) = A' >0,

Fg(l) =1, and O <F§2(l) = 2B, <~ . Then the extinction pro-

bability 1s equal to 1 = (1,1) and the g-mean matrix is

10 - - .
A= [Avlj’ Hence Al - {1}’ A2 = {2}3 1:1 = {l}, 1"2 = {1,2}

and ”g)= P, = Dl = oy 1. From (7.6), we have



rTirh‘an(n;s) = 1/By, 0 < st < 1,
i>o0 :
(7.26)
L S
1im an(n;s(n’A)) = ——L—fi, Al > 0.
n-o 1+B l}t :

Now by Lemmas 4.7 and (5.3)

Tinm n'/2R%(n;s) = VA'/B B, , 0 gs <il,
N> .
(7.27)
o n1/202, . () anat
1im n™ "R%(n3;s* >"7) = — 5, A > 0.
n--c . - '
B2cl+§lg )

Hence by Theorem 5.2 2), it follows

(7.28) UM E |, {exp(-X-Z(n)/n)| n<T} —~
N->oo (X » X ) ’

: x, =0
_ 1 2 =3
= l+BlX
1 .
1 - (l" l l) /2) X2 #\L;
1+B. A
1
that is
-u. /B, \
(7.29) Q¥ (1 .2y (u)=
ot &
1 B o (L. ,.E ’
2B JO € 131( > 2’B)d€’ X2 # 0,



where

lFl is the Barnes' generalized hypergeometric function:

0 (-1/2)k gk
k=0 (--2)k k!

\}Fl(—l/2;_2;€)

©0

- (k=1/2)(k=1-1/2)...(1-1/2) gk
k=0 (k+1)! k!
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Footnotes

1.

If Aa = [0], (2.5) is always satisfied.

Or equivalently, we may use the Jordan's normal form of
A reminding the asymptotic forms of its products.

In the proofs of the following theorems and lemmas we

shall often abbreviate the suffix o and the va%eble s

muu?where there. are no confusions.

5.

Thls means, in terms of measures,

1 1' .
1.2y _ 1 2x ~2u” /9" (1) , il
Q¥ (E™xE") = { & f e “fauTI L, (0) ~,
x0. x1+x2 d"(1) El' E2 s
w2 [ m2ufem(Lau®T o (0)3,
(1) J 5 E

where IE(~) is the indicator function.

More precisely, one may take Aa with the form of

g , T& = 623 where 6 >0, 6 +0, in the case of

!
"
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