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 0. Introduction 

     The asymptotic behavior of the distributions of
iAGalton 

                                           mtaXire 
-Watson processes has been studied by many mathematicians. 

According to the author's kno,(1edge, Jirina [8] for subcritical 

processes is the first paper on this subject, and Chistyakov 

[4] and Mullikin [10] for critical processes followed. But 

they assumed that (1) the .second ___moments_ (in the subcritical_ 

case) o....the third _mome_nts (in the critical case) _a e_.finite 

and (ii) the m_aan_matr_ix_is._p_o_sitively__regular. Joffe and 

Spitzer [9] obtained the results for discrete time processes 

without the hypothesis (i'), and Sevastyanov [la] extended' 

them for cotinuous time processes. Their results are final 

for the processes satisfying the condition (,ii'). However, 

when the condition (ii,) fails, somewhat different phenomena 

occur. Chistyakov C3J illustrated it for the continuous time 

subcritical processes with the hypothesis (i'). For the continu-



ous time critical processes, the results of Savin and Chistya-

kov [12] for the processes with three particle types and the 

hypothesis  (i) are very suggestive. 

     In this paper, we shall give the whole asymptotic behav-

ior of discrete and continuous time multitype Galton-Watson 

processes without the hypotheses (i) and (ii) (but with some 

weaker hypotheses). The processes. are decomposed into elemen-

tary subprocesses. When the elementary subprocesses have pos-

itively regular mean matrices, the results naturally coincide 

with those of [8], [9], [10] and [14]. But when they are reduc-

ible, the rate that the generating functions tend to the extinc-

tion probabilities are different from these of the positively `tl.ot 

regular cases. Furthermore for the processes with discrete time 

we must take^care of the periodicity. 
             some 

     We shall give the definitions and notations in section11'. 

In section 2 we shall deal with the discrete time noncritical 

processes having aperiodic mean matrices, while we shall deal 

with those having periodic mean matrices in section 3. Sections
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4 and 5 are devoted to the 

cal processes. The results 

are summarized in section 6 

section 7.

study of the discrete time criti-

for the continuous time processes 

, and some examples are given in



     Definitions and notations 

      We designate the set of all  integers between m and n by 

<m,n >and put Z+=<0,co>, S=Z+ (NEcr,o>). If two vectors 

 s =(s.1,•••,sN) and s =(s1,•••,sN) satisfys.i>si[si>si] for all 
 1 1.i . ,2 22, 1 .2 1 = 2 

1E<1,N >, wesay that s . is larger, [resp. iuQt,....e .D] than s and 
1:L2, 

 write as s >s [resp.s>s]. Thus we.can naturally define the 
       21 - 2 

maximum, minimum, _monotony_, etc, of a sequence of vectors. 

 Further, these notions and notations are extended for matrices 

in the natural way. For example a matrix A is called nonnegative 

if all its components are nonnegative, and in this case we write 

 as A>0, Let A be a nonnegative square matrix of order k. We 

 call A positively regular if An>0 for some nE<1,03>, where An 

means the n-fold product of the matrix A. Also the matrix A is 

called irred=ibl_e if for each i, je<l,k>, i#j , there is an 

nE<1,00> such that Ai(n)>O, whereAi(n) is the (i,j)-component of 

the matrix An. Hence each nonnegative matrix of order 1 is 

always irreducible. We also call a square matrix .& with non-

negative off-diagonal elements to be irreducible if the matrix 

a+kI (>0) is irreducible for some k>0 in the above sense, where



I is the identity matrix. For two vectors  s
1 and s2, we 

new vectors s s and s Is (for s >0) by 
1 21 22 

   ss2= (sis2,...,sNs2), s1/S2= (si/s2,...,sNIsN). 

For each BERN and xES we set 

    1N 
gx = (gl)x...(5N)xs = (s1,...,sN), x = (x1 

Finally we denote the i-th canonical unit basis by ei, i. 

ei=d3wherediis the Kronecker's delta. 

     Now we shall call a Markov chain X=(Z(n),Px) on S a 

time __NTtype_Galton-Watson process .(DGWP for brevity), if 

probability generating functions 

Fx(n;s) = yESPx{Z(n)=y}sy, xES, nE<0,00>, 0<s<1, 

are given by 

(1...1) Fx(n;s) = F(n;s)x, 

for some vector functions F(n;s)=(F1(n;s),•••,FN(n;s)). 

is clear that F(n;s) is given by the n-fold iteration of 

probability generating function F(s) EF(l;s): 

F(n+l;s) = F(F(n;s)), nE<0,°°>, 

(1.2) 
         F(0;s) = s, 0<s<1, 

Where

define

N 

                          • e. 

discrete 

its

Then 

the

it 

vector



 (1.3) Fi(s) = 'E Pi(Y)sY, is<1,N>, yes 

with P1(y)>0 and 31,1SPi(y)<1. Since the family of generating 

functions {F(n;s)} uniquely determines a DGWP, we sometimes 

call {F(n;s)} itself a DGWP. 

     Similarly a M94ov process X=(Z(t),Px) on S is called a 

                                                      ' continuous time N-typeGalton-Watson_process (CGWP), if its 

probability generating functions Fx(t;s) are given by 

(1.4) Fx(t;s) = F(t;s)x, xES, tE[0,00), 0<s<1, 

*here F(t;s)={F1(t;s),•••,FN(t;s)) is the unique solution of 

        dF(t;s) = f(F(t;s)) , t)0, dt 

(1.5) 

F(0;s) =.s, 0<s<1 , 

where 

(1.6) fi(s) =ySPi(Y)sY, 

with pi(y)20', y+ei, and 
yES pi(y)<0. Also, we sometimes call 

the family of generating functions {F(t;s)} itself a CGWP. 

    It is shown by Sevastyanov ([13],[14]) that for a DGWP 

[CGWP] there exists 4r least nonnegative fixed point q of F(s) 

                               Q [resp. zero point q of f(s)] in the cube 0<s<1, and it is stable 

in the sense of



 (1.7) lim F(n;s) = q rresp. lim F(t;s)=q], ,0<s<<-q. 
n-'t+ 

Especially it holds 

    p{T<oo}=rrnFi (n; 0) = qi----~    e 
in.._ .. ... 

. rrespl. Pe{T<00}=limFi(t;0) = qi], 
    i t-• 

where T is the first hitting time for the trap state OES, namely 

the extinction time. Hence we shall call q the extincti,Qn 

. r_Q.120,lzility. of the DGWP [resp. CGWP] .(s) 7is) . au( n /i) c) 1'•J) 
2n d  ~-xaQ,tc~.c t s)i~--~,ca 
      For a DGWP, we shall assume 

 (D) q>0ands-.'F1(q)<oo, i,jE<1,N>, 

where F~(s)=3Fi(s)/asi if it exists and Fl(s)=1im'F1(E) otherwise. 
Efts 

Note that when the DGWP ismcritical with no final classesor 

1subcritical; q=1>0 holds. We call the matrix 

   A ,E [AJ]i ,j=1[F. (q) ]i,j=1 

the si,i^Lean_mat iX. of the DGWP. Since A>O, there exists a non-

negative characteristic root p(A) of A which is not smaller in 

absolute value than any other characteristic roots (cf. Gantmacher 

[6]) . We call it the Perron-Frobe.nius_-'oot (' root for 

brevity) of the matrix A. From the definition of q, the 

inequality p(A)<1 easily follows. It is known that by a change



of suffixes the nonnegative matrix A is represented as 

 0.....0  ` 
                  1 

                  A 0•••0 

                     2 (1.8) A = 
... 

A where each Aa is an irreducible square matrix of order maE<,1,N> 

(Ea=1ma=N). We set 

ri = { jE<1,N >; A3(n)>0ror'some' nE<1,c>}1J{i}•, 
a-1 a 

   Aa = < E m0+1,E m$> (A
l= <1,m>).•            •R=1 R=1 

Since every Aa is irreducible, Aacri if rinAa4.,and ri=ri 

if i,i'EQa. Hence ri is a disjoint union of some SS's and it is 

same for all iepa, which we denote by ra. We also set ra=ra-Aa. 

The ra-part(si)[r'part (si)=part'(si)] of a 
i~ raaiEr,aaiE 0a 

vector s=(s1,•••,sN) is denoted by 'sa [resp. sa,sa]. 'From (1.3) 

and (1.8) it follows that the generating function Fi(s) for iera 

[iera] only depends on sa [resp. sa]. Hence we can write as 

F(s)a=F(sa)a [resp. F(s)a=F(sa)a]. Similarly, since Fi(n;s) for 

iEra [iEra] only depends on sa['resp.sa] by (1.2), we.can write 

(1.9) F(n;s)a = F(n;sa)a, 0<sa<1;__, 

F(n;s)a = F(n;sa)a, 0<s a<1].

as



 We set Sa={xa=(xi)i_r•xl <0,00>}._he family of generating 
          athen) 

 functions {F(n;s a)a; nE<,0,00>} forms a DGWP on Sa, which we denote 

 by Xa=(Za(n), PX ). Note that the extinction probability of the 

a 

 DGWP Xa is equal to the ra-part qa of the extinction probability 

 q of the original DGWP X by (1.7), and hence the submatrix 

 Aa=[Ai]i.j€rcoincides with the q-mean-matrixof X. 

                a Further it follows 

FJ,i(n;q) = F3(n;ga) = (Aa(n)), = Ai(n),i,jEra. 
 Since p(A)<1, pa=p(Aa)<1,holds. We, call the DGWP.Xa critical if 

pa=1 and noncritical if pa<1. 

      For a CGWP, we assume 

(C) q>Qid~,fi(q)<oo, i,jE<l,N>• 

 We call the matrix 

   a E Caj]i, j=1= [f(qN                         )]i
,j=1 

 the infintes.3.,ma],_q,-mean..matrix of the CGWP X. Since (1.6) 

 implies a+kI>Q:for some 2.>0, there is a real characteristic root 

 p(a) of a which is not smaller in real part than any other 

characteristic roots of a. In this case p(a)=0 holds (cf. Ogura 

 [11]). By a change of suffixes the matrix a is represented as



 ra  0.....01 
a o...o 

                      2 (1.10) a = 

ag{ , 
where each as is an irreducible square matrix of order ma(Ea=l , 

ma=N). We define the setsAa, ra and ra as in the discrete 

time case but from the matrix a+LI (y)) instead of A. By (1.6) and 

(1.10) the function fi (s) for if ra [1r] only depends on sa 

[rresp'. La], and we write as 

(1.11) f(s)a = f(sa)a, 05.sa<1 --` 

       [resp'. f(s)a = f(s), 0<<1]. 

Hence Fi(t;s) for i2'ra[itra] only depends on sa [1resp. sa] by 

(1.5), so that we can write as 

(1.12) F(t;s)a = F(t;sa)a, 0<sa<1,___ 

resp. F(t;s)a = F(t;sa)a, 0<sa<1]. 

We designate the CGWP {F(t;s a)a; te[0,co)} by Xa=(Za(t), Px ). 

a The extinction probability of the CGWP X
a is equal to the 

ra-part' qa of that q of the CGWP X, and the submatrix as-[al] 
                                                          J i,jera 

coincides with the infinitesimal q-mean matrix of Xa. Moreover, 

setting



A(t) _ [Ai (t) ]i~j=1=expo(ta), 
A(t) E [Ai (t)=rxp'(taa)' aaj:I'

aa 

we have 

(1.13)  Fl(t;q) = Fi(t;ga) = Aaj(t) = Ai(t),i,jEra. 

Since p(a)<0', a Ep(a
a)<0 holds. We call the CGWP Xa critical  

if a
s=0, and noncritical if as<0. 

iodic DGWP 

     In this section we shall deal with noncritical DGWP's 

with the assumption 

(DM) yESPi(Y)YgogYly <.i,jE<1,N>. 

We shall also assume that all the matrices in this section 

are aperiodic, i.e. 

{nE<1,00>;Ai (n)>0}=1,i,jEAa . 

Since Aa is irreducible, it is positively regular if it is not 

equal to the zero matrix of order 1. Hence there correspond 

positive right and left eigenv.ectors ua=(ua)iEp
a and a-(vai)iE Da 

to the P-F root paEp(Aa); 

Aaua = paua, ? Aa=Pava, 

with the normalizations



 iEpaaiu= l'iEpau _ 1 

(Gantmacher [6]). It is also known that as n -> 

(2.1) An=pa(Aa+ 0(1)), 

where A
a=[Aaia              ]=[uvaji]p•Of course it holds                       '~a 

(2.2) AaAa AaAa paAa' AaAaA*. 

In order to define the 'rank va of al, we shall introduce the 

semiorder '..' in the space of indices <,1,g> by 

(3-Ca if pRra • 

Next we define the rank v5(r)ofRw.r.t. r by 

            fia{v
Y(r) ; yR} ,ifpRX r, 

(2.3). va(r)= 

                               r 

             rax{vy(r);YR } + 1,if PR= r, 

inductively, where we agree on max' 0:_ 1). Then the rank va of 

a is given by 

(2i) va = va(r)a). 

Note that va.<0,g-1> since pR= pa for some13.-<a 

     To state the theorem we shall define one more set: 

I+(x) = {aE<1,g>;xa#0} , x.S. 

Theorem 2.1. Let a DGWP X=(Z(n),Px) satisfy Conditions 

(D) and (DN) for each ar<1,g> with pa<I, andAthe matrices Act be 

at(

1 ~ 
y



 aperiodic. Then, 1) for each  a=<l,g> with pa<l.there correspond 

 monotone nonincreasing functions R*i(sa) in.0<sa<qa'i€6,a, 

 such that as n + co 

 (2.5) Ri(n;s) = n apan(R*i(sa) + o(1)), 1EDa, 

 where o(1) is uniform in s on 0<sa<qa.The R*i(sa) aredetermined 

     = 

 inductively w.r.t. the semiorder from Lemmas 2.1 and 2.4 below. 

Further, if pa>0, every R*i(sa), 1cQa, is not identically zero. 

 2) For each x S such that pa<1 holds for all la I+(x), and pa>0' 

 for some aEI+(x), there corresponds a probability distribution 

{PX(y)} on S-{.,0} satisfying 

 (2.6) lim Px{Z(n) = yin < T < oo} = PX(y)• 
 n400n-- 

      We shall prove this theorem by the induction w.r.t. the 

 semiorder ',C'. When a is minimal, r =Aa and Aa=Aa. ~ - 

Hence.-, 

 the q-mean matrix Aais positively' regular,if'pa>,0', i.e. Aa [0] . 

 In this case there are the following excellent results given by 

 Joffe and Spitzer [9]. 

      Lemma 2.1' (Joffe and Spitzer). Let the q-mean matrix A
a of -, 

 the DGWP Xa is positively regular and pa<.1. Then there exist a

1' 

9

J



 monotone  nonincreasing function Ka(sa) in 0<sa<qa and a dis-

 tribution {pa*(ya)} on Sa, such that 

          Y._. qa-F (n; s)a  (2
.7) lim 

pn_ Kxa(sa)ua,0<sa<qa.                     n-' a 

 (2.8) 'lim' Pa {Za(n) =yajn<T<oo} = pa*(ya),xa,YaESa-{Q}. 
                r1-0-00a 

 Further Ka(set)0 if and only if (DN) holds. 

      When a is not minimal, ra40 and the q-mean matrix Aa is 

 represented as 

Aa 0 1 

 (2.9) Aa = 
                Aa c. , 

 where 

Aa [Aj]i ,jEra'Aa[Aj]iEoa,j Era#0. 

 We put pa=p(Aa).Then pais equal to the maximumpaVpaofp 

a' 

          - _ =': -- -- -,- . Then it is given 

 Joffe and Spitzer [8] ((14.6)) that 

 (2.10) R(s) = (A-E(s)) (q-s), 0<s<q, 

              y-eay-e  (2.11) Ei(s) = 14s p1(Y)Y3{qj- J(q_(q_s) dE}, 
where we agree on sY=O for y4S. (2.11) implies

f

a 

by

and

f



 0<E(s )<E(s )<A,0<s <s <q,  = 2 - 1 -= 1= 2= 

(2.12) 
         E(s) -, 0, as s -^ q in 0<s<q. 

We set E(n;s)=E(F(n;s)) and C(n;s)=A-E(n;s). We define the 

matrices E(n;s)a, C(n;s)a, E(n;s)a, etc. in the natural way. 

From (1.3), (1.8), (1.9) and (2.11) it follows 

(2.13) E(n;s)a = E(n;sa)a, C(n;s)a = C(n;sa)a,0<sa<qa• 

Hence (2.10) implies 

R(n+l;s)a = R(n+1;sa)a = C(n;sa)aR(n.;sa)a, 0<s<q 

and with the aid of (2.9) and (2.13) • 

(2.'14) R(n+1;sa)a = C(nisa)aR(n;sa)a + C(n;sa)aR(n;sa)a. 

Using (2.i14) inductively, we obtain 

         n _ _ 

(2.15) R(n+1;sa)a=15a(n,-1)(E1aa)  + Ef)(n,t)C(t;sa)aR(Q;sa)a, 
R=0 

where 

(2.16) Da(n,R) = Da(n,k;sa) 

C(n;sa)aC(n-1;sa)a•••C(t+1;sa)a, R,E<-(1,n=1>, 

I, R = n._,r 

     Lemma 2.2. If Condition (DN) and the inequality pa<1 -~ 

are satisfied, then it holds 

(2.17)n0E(n;0)a < co.

I:



 Proof: From the convexity of the function F(n;s+(q-s)) 

in .0 1, it follows qa-F(n;0)a_< Aaga. Applying2 the same 

arguments as in the proof of Lemma 2.5 below to the matrices An 

we obtain 

                               V 

               AaganapanKga< 0 raga, 

where K is a positive square matrix with the indices in ra , 

and r and 0 are constants with p.a.< rr' <- 1 and 6 >0. Hence 

it follows F(n;0)a _> (1- © r n)q a, and we obtain the conclusion 

by the same arguments as in Joffe and Spitzer [9](pp.424-425) 

with the aid of (2.11). 

Lemma`2.3,: The relations pa > 0 and (2.17) imply the 1 

existence of the limit 

(2.18)lim Da(n,k;sa)pa=Da(k;sa) 
n-0.00 

uniformly in .0 sa < qa. Further it holds 

(2.19)10 < Da(k;sa) ;0'S•sa<q, k E<-,1,co>

,

c



             3 
    Proof. Let 

 V' 

(2.20) En = max{Ei(n;0)/Aii;i,j€ }• 
                                f1b7t~ 

Then it is clear that 

b~L1 

(2.4) 0 E(n;s) 5 E(n;;0) < nAi, 

                                                      co 

(2.22')En �. ILE~(n0)/Ai< °°, 
n=0 n=0 i,jEA 

by (2.17). On the other hand, there is a sequence an 

anby (24) satisfying 

                (1- an)A* s An P-n < 4:+an)A*. 

Hence it follows 

(2.23)P -n+2D(n,2)< -n+k.An-k <(;1+an-k)A*, 

and with the aid of (2.2) and (2.21) 

n a/,r Cr-4)                      -n+kD(
n,k)> -----------f) 

k=k+l 

                                                                        ~,«                  = An-2p-n+k1 (1,— Al (1-E
k/R))0 

LIL k=2+1M~ 

(1-a - y Ek/p)A*, n-k k=k1)

i



   for  all  large k with ck/ti41, kE<k ,op>. Therefore we obtain 

N~ 

(2.24) -(an -k + y ek/)A. < p -n+u' n(n,k) - A* s an-kA*• 
k=z+1 

  Now take any c> 0. Then by (2.22) we can choose an no such 

  that   ksc. Further, it holds            =n
0+l kMu 

-n +k 
      P 1 U(n1,k) - P-n2 D(n2 ,k) 

       -nl+no~-n+n-n +k-            (P
D(nl,no) - P2o5(n 2,n0) ) P o D(no,k), 

                                                        n2>n0, 

           -n
0±k  andPD(n

0,k)isboundedinnbecause of (2.23). 

  Hence it< — follows that the sequence 

-n+kNn
,k),ne<k-k;,°°?, 

—is a Cauchy sequence uniformly in 0 < s
a5 qa. So we obtain 

                                                 (2.18). Now we shall show (2.19). Letting n-^ co in (2.24), 

  we have 5*(n0) > 0 for all sufficiently large n0. Since 

D(n,k) = D(n,n0)5(n0,k), it holds 

                            -n +k 

  (2.25) 5*(2) = P 0 D'{(n0)3(n,k).



On the other hand it follows from (2 .11) that  Aii > 0 implies 

A - Ei >.0, so that 

Ci (k) > 0, if A > ~O 

                                                                 n0-2. 
Since the matrix A is positively regular A > 0 for a 

large n0. Combining these facts with (2.25) we have D*(2) 

The relation D*(R) A* is clear, if we let n co in (2. 

Coro lary,„2.1. Suppose that Condition (DN) holds and a 

is minimal w.r.t. the semiorder '-<' with P
a< 1. Then the 

limit of (2.7) is uniform in 0 < s
a <q and K(0) > 0. 

     The proof is clear from Lemmas 2.2 and 2.3, since 

            R(n;s
a)a=Da(n,-l;sa)(ga-s"a) 

in this case-

     Now we assume that for all 131 a 

(2.26)f(n:s)= nRps(RQ(se) + 0(1)),Q< sa< qs, 

as n  , where o (1) is uniform in '0 <sa< qa.Then 

it follows as n -~

> 0 

23)



(2.27) R(n:s).a=  nvapn(ff*(s )+o(1))        a)+o(1)),0 <s<q 
         a a aa= a 

for some vector valued function R*(s ), where o(1) is uniform 
a a 

in 0 < s < q aand 

            - 

             va ='max'{ v13p                        () ;Ra} . 

Hence, it is enough for (2.5) to prove the following 

      Lemm,_2,?4 . Let (2.17) , (2.27) and pa <; ̂i hold. Then it follows 

(2.28) R(n;sa)a= nva pan(Ra(sa) +o(1)),iQ`< s a<qa, 

where o(1) is uniform in 0 < s a< q a, va andRa(s a) are 

given, separately in the following three cases : (3') if pa = pa>pa, 

then v =:0 and 
a 

co 
(2.29) Rasa) = D*(-l;sa)(aa-"sa)+ X Da(Q;sa)C(k;sa)-1(Q;S

a)apa-k-1,                                             =0 

(:ii) if p
apa> pa' then va=va and 

(2.30) R*(sa) = (paI-Aa)-lAaffa(sa), 

and (iii) if p
a=pa="a >0, then va=a+1 and



(2.31) A*(sa) =A**AaRa(sa)/pava .• a      

_Proof!  (i) When p = p > p, we divide the sum in (2.15) 

into vn0 end Q=n0+1.Fcr each P> r> pwe have from (2.23) k=0; 

and (2.27) that 

n-115(
n,k)C(2.)'1R(Z) < (rp-1)kc, 

where c is a positive vector with the indices-in A. 

Hence it follows 

   n _1n0 -n-1' 
D(n,k)C(k)'R(k) _(rP )  c< s, n E < n0+.1,°°> 

k =n0+1-1                                            1-rp 

for all sufficiently large n0. Similarly, for all large n0, 

it holds 

             D*(C(t)'Rk)                            (p_St:E, n E <n0+1, 00> , 
      2,=n0+1k) 

             uniformly in c0 < s < q. But for a fixed no (2.18) implies 

no 

p-n-165(n,-1)(a-s) + 1 D(n,k)C(k)'R(k)~ 
Z=0 

no 

5*(-1)(c1-) + D*(k)C(k)'R(k)p-k-1 
k=0 

as n -0- co , uniformly 'in 0 < s < q. Hence we have (2.28) with



 1.

v = 0 and R* given by (2 .29). 

(ii) • When p = p p , we shall exploit (2.15) in the form 
of 

                                          n 
            R(n+1) = D(n,-1)(q-^6) + y D(n,n-k)C(n-k)'R(n-k), 

2,=0' 

dividing the sum into y00 and In From From (2.23) and (2.27)                                                     ,0 

it follows 

(n+1)-up-n-115(n,n-k)C(n-k)'R(n-14) (pp-l)kc, 

so that 

   n _n0 
  (n+l)-vp-n-.lyD(n,n-k)C(n-k)'R(n-k) < (AP- )1c < E , nE<n0+1,00>, 

                k=n0+l 

for all sufficiently large n0. Similarly, it holds for all 

large no that 

P A A'R*< E, 'uniformly' ink 0 << s < a, 
k=n0+1 

by means of R* (s) < * (0) < co. Since 

(2.32) A > 0(n) > A-E(n;0) } A 

as n co , we have for a fixed 2,E  <;O,n0> that 

D(n,n-k) = A , uniformly in'•0 < s< a. 
n+co—



 .

Hence it follows from (2.27) that 

 slim   O (n+1)-vp-n-1~D(n,n-Q)C(n-R)' R(n-R) = 
                                                         0 

p -1ARA'R*, 
n-}ooR=0Q=0 

uniformly in 0 < s < q. Finally (2.23) and the inequality A> P 

imply 

lim'(n+1)-7)p-n-1D(n,-1)(q-s) 0, Cniformly in 0 < s < q. 
n co 

Combining the above facts we obtain the conclusion. 

(iii) Suppose that p = p =p> O. From (2.2L),(2.22),(2.32) 

and (2.27) we can find no and n1E<1, 03> satisfying 

(2.33) -c 2Y < p-nb(n,Q)C(Q)'7(L) - A*A'R `Qv47E,ZE<nO,n-nl>, 

for some vector c > 0. Now we divide the sum in (2.15) like as 

         n0 n-n1 
    = + F +y= 

                                  

.I + II + III. 
0n0+1 n-nl+l 

Since the functions 

-n-1(
n+1)-v D(n,Q)C(R)'171(2.),2 G <O,n>, n E <0, 00>, 

are bounded in k , n and s on 0 < s < q, it holds 

p _n-l(n+1)-v-l(I+III) = 0,fiiniformly in s. 
n 00



Further it follows from (2 .33) that 

                                                               n-nl 
      -dc--1<Pn-1(n+l)-v-1II -A*A'R4P-1(n+1)-7-1 I 2,_acs p-1. 

 Q=n0+1 

Hence by the fact that 

                          n- n 
     linAn+1)-7-11Q~= 1/(v+1), 

n-)co 

o+1 

and and the boundedness of R* in s, we have 

  ~-_v-1n      lim' p-n-1(n+1)-F D(n, Q)C(Q)'R(Q) = A*A174e/p(7+1), 
n-÷00Q =0 

uniformly in 0 < s < q. But since (2.23) implies 

tlim'(n+1)-7 -1-n-lb(n ,-1)(4-"s) = 0,yMin 0< s <      p'informlq, 
n->« 

we obtain the conclusion. 

pt ,-Gectcl.av      N
ote that the routine to determine va from v a by 

Lemma 2.4 is the same as that of (2.3) - (2.4). Further, we have 

Lemma 2.5. Under Condition (DN), the function Ra(s a) 

determined by Lemmas 2.1 and 2.4 for each i E Aa , aE <1,g > 

with 0 < pa <1, is not identically zero. 

p,-oQf. If a is minimal w.r-t. the semiorder '-<' , the 

assertion is clear by Lemma 2.1. If pa = pa > pa , it is



also clear from (2.19) and  Lemmas 2.4 and 2.2. To deal with 

other cases, we assume that RR i (sa) t 0.' for all i E Aa 

with R1:a satisfying Pa >.0. We choose a maximal element 

130 in the set { ~, '_ a ; v a (p a) =va } . This 130, is also maxi-

mal in the set {a }, since in general -< aimplies 

pa < pa , and a-<a , pf= pa imply va < va . Indeed, if 

                                      c it is not maximal in { a a } , there is a a such that 

ao T a I a . Then it follows Pa = pa = and and s'o va.= va=71043 0.0 

which implies va = va (i7a)and leads a contradiction. 

Now, since Ta = va (pa), it follows 
0 

R*I(s ) = R*'(sa ) 0, i E pa 
a a0 00 

by (2.26) and (2.27), and since a© is maximal in the set {a- a} 

it holds 

Ai > 0, rfor some i E Aa rands j E Aa0 

Hence the conclusion is clear from (2.30) - (2.31) since 

A* > 0 and, when Pa > -'a , (PaI - Aa)-1 > 0. 

a _proof_ofTheorem 2.1. Since 1) is clear from the previous 

arguments, we have only to show 2). Combining the equality

t-



 Px{T < co } = `lim F(n;0)x = qx 
n, 

with the Markov property, we obtain 

Px{Z(n) = y, T < a} sY = y Px{Z(n) = y}gYsY 
 yESyES 

                                 = F(n;gs)x. 

Hence it follows 

            xx 
(2.34)SP{Z(n) =yln< T<co}sY =;1-q-F(n;cs)  

yESxyqx-F(n;0)x 

Further by mean of (2. 5) and (1.7) it holds as n co 

                               x-e v 

(2.35)qx - F(n;gs)x = / xiq in a pa (R*, (gases)+0(1)) 
aEI+(x) iEtla 

where o(1) is uniform in 0 < s <,1. Hence there exists the limit 

     F*(s) = Tim' y Px{Z(n) = yin < T<oo}sY, 
               n}00 yF S 

uniformly in 0 < s < 1. Since R*l(qa) = i E Act, it is easily 

seen that F*(1) = 1. Thus F*(s) is a generating function of 

a probability distribution and we obtain the conclusions. 

Remark 2.1. We can calculate the support of the limit 

distribution {PX(y)} more precisely. Let px =rmak{pa ; aEI+(x)},



v 
x=max' {va; a E I+.(x),Pa=px } and I * (x) = { aEI+(x) ; Pa= Px' va= vx } . 

Then it is clear from  (2.5),(2.6),(2.34) and (2.35) that the 

support of the limit distribution {PX(y)} is contained in the 

set 

      {x = (xl,...,xN)E S ; x1 = 0, i t rot} - {0}. 
a€I*(x) 

Remark 2.2. It can also be calculated how the limit distri-

butions {PX(y)} depend on x E S - {0}. Indeed, it follows from 

(2.34) and (2.35) that 

                                                         x-e                         iii 

y PX(y)sy = FX(s) = 1 - ac=I*(x)i~axqR(gases) 
y.Sx-e 

                            a EI*(x)i~daxiqiR*(0) 

Further, if or Pa or a is minimal w.r.t. the semiorder 

it holds 

Rasa) = Ka(sa)ua, 

for some monotone nonincreasing function K*(sa), since (2.7)holds , 

and (2.29) and (2.31) imply AR*(sa) =paRa(sa). In the 

case of as<Ta , (2.30) will give us the sufficient informations 

for the purpose.



      Remark 2.3. From (2.5) it easily follows that 

 (2.36) R*1(F(n;s)a) =  pnR*  (sa),iE Aa, 

if 0 <p
a< 1. Hence the coefficients of the power series 

(log R*(s)/R*(0))/t6e pgive a stationary measure of the DGWP X 
 aa 

on S
a - {0}. 

3. Noncritical periodic DGWP 

      In this section we shall deal with the noncritical DGWP's 

with the periodic matrices A
a. It is known that, by a change 

of suffixes, an irreduc ible nonnegative matrix M7;is represented 

(#[:0] ) 

as 

0 Ml 0 .....0 

i 0 0 M20 ... 0 

(3.1) M = 

•                

0 .........0 Md -1 

             Md0 .........0' , 

• where every .0 matrix on the diagonal is a square matrix and 

each Qe = Mc • . MdMl is positively regular (Doob[5]

2 ;



 pp. 177 - 178). We shall call the positive integer d the 

period of the matrix M. Of course the d-fold product Md 

of M is given by 

                       ( Qr0 ..... .,0 — 

                                                                                  • 0 Q20 ... i0 

(3.2)Md = 

                    _ o ......q,YQd _ • 

     Lemma 3.1. The P-Froot of the matrix Q
a is equal to 

P(M)d. 

_roo'. The set of all characteristic roots of Md is the 

union of the sets of characteristic roots of Q
a, a E <l, d> , 

by means of (3.2). On the other hand it holds p(Md) = p(M)d 

by the Frobenius' theorem on the characteristic roots of a 

polynomial in a matrix. Hence we have 

(3.3)P(M)d =^max' {p(Qa) ; a E <1, d> }. 

Suppose that p(M)d = p(Qn ). Then, because of the positive 
0 

regularity of Q"'0, there corresponds a positive eigenvector 

u of Q to p(M)d a
0 a0

1'

2'/



           Qu= M...MdM1M -lu= p(M)dua .         '4aa     0000a0a0 

Operating the matrix  M
a ... Ma -1if a E.<1, a0 - 1> (and 0 

 the matrix M
a... MdM1 ... M_1if a E <a0+1, d> ) from the                           0 

 left, we have Q
aua= p(M)dua,where ua= Ma..•Ma0-1ua                   0 

if a E<l, a0-1> (and u a = Ma ... MdM1 ... Ma -lua if 0 0 

E<a0+1, d> ). But ua0 since every Qais positively 

regular, and hence p(M)d is a characteristic root of Q. 

Therefore p(Qa)> p(M)d and so p(Qa) = p(M)d by means of 

 (3.3). 

      For each d E <l,00> , the family of generating functions 

{ F(nd ; sa)a; n E<0,°> } forms a DGWP on Sa, which we denote 

by X(d). 

a Lemma 3,.2., The least nonnegative fixed point of F(d ; sa) 

is equal to the ra-part qa of the extinction probability q 

of the DGWP X. Hence the q-mean matrix of the DGWP X(ad) coin- 

cides with the d-fold product Aa of and and if Conditions (D) 

and (DN) are satisfied for the DGWP Xa then they are also 

satisfied for the DGWP X(d).

a

..



 Proof. Let r be the least nonnegative fixed point of 

F(d ; sa)
a. Then it holds ra <qa since qa is a nonnegative 

fixed point of F(d ; s
a)a. Hence it follows 

                 ra = lim F(nd ; ra) qa 
n-* 

from (1.7). The. remaining assertions except for that on (DN) 

are clear. But the assertion on (DN) can be easily seen if we 

make use of the same arguments as in Athreya [1] or Sevastyanov 

[14] Chapter III, §3. 

     Now let da E <1, ma> be the period of the irreducible 

matrix Aa in (1.8), and 

da = L.C.M.{d; ARCra} 

(we set as = 1 if pa= 0). Then by a change of the suffixes, 

we have 

A(a) 0 0 --                    Rl 

0 AR2) 0 ... 0 

(3.4) Asa=ASCr, 

0 .........0 A(a) f3d
s '

a 1



where each A(a)is an irreducible aperiodic nonnegative square 
 ay 

matrix of order mR
y E<1, me (Iy=1 mRy = ms). We define from 

(3.4) the sets AR
y,r(a)a':dS(a),the vectors s(a) and                                                 ay 

gay,and the matrices Asa) as we defined A,r'a,etc.,in section 
1; for example 

R-1 y-1R-1    ARypryp= < y m+ I mR+ 1, I m+ I mRq>. 
     p=1q=1p=1q=1` 

Note that ma
y(and hence ARy) is independent of da which 

satisfiesaa aida. We also define the DGWP X(44) by the family 

of vector generating functions { F(nd
aSY;s(a))(RYa); nE <0,°°> }. 

$y Lemma 3.2 and the representation (3.4), our DGWP 4c.;) satis-

fies the assumptions of Theorem 2.1. As in section 2, we shall 

introduce the semiorder '~ ' in the space of the suffixes 

{($,p)} by 

                (6,q) -te (R,p) if' Aaar(a). 

Then the rank vayof (a,),) is defined by 

              (max{\6q(r) ; (6,q)a(,p)}, if yr 
(3.5) v sp(r) =i 

[mx{vq(r) ; (6,q) a 03,p)1+.1, if ̀ ps=r ,



 07.6.71(1)\.  = -1`), and vay= V(P). 

     Lemma 3.3. Let Conditions (D) and (DN) be satisfied for 

all a E<1, g> with pa<1. Then for each 04E:1,  g> and 

y E<1, da> with pa < 1, there correspond monotone non- 

increasing functions R*i(s(a))n0 < s(a)< qay), iay, 
such that it holds as n co 

                           v 

(3.6) Ri(nda;s) = nay Pada(Ri(5()) + 0(1)), i E Day,ay 

where o(1) is uniform in s on 0 < s(a) < q(a). Further,
ay 

if pa >0, every R* (s(a)),Qa , is not identically zero. I 

     For each x -S, we set 

                    d x -'L.C.M.(da•aEI+(x)}. 

     Theorem 3.1. Let a DGWP X = (Z(n), P) satisfy Conditions' 

(D) and (DN) for each a E<1, g> with pa < 1. Then 

1) for each a E <1, g> with pa<1 and Y E<1, aa> , it holds 

as n -~
`k .. 

                                 V 

(3.7) Ri(nda +£;s) = nay Anda(R*1(F(Q;sa)(a)) + 0(1)), 

. . E <O, d
a - 1>, iE Day,0 < s<qa,

1



where o(1) is uniform in s on 0 <  s <  q  . Further, if = a =  a 

p> 0,then every R*1(F(R;s )(a)),iEA, is not identically zero. aa aya 

2) For each x S such that pa 1~-----for all aEI+ (x)        a'% VLk i 

and pa > 0 for some a `I+(x), there correspond a probability 

distributions {PXQ(y)} on S-{0} satisfying 

 P*(y), QE<O,d-1>. (3. 8)lim Px{ Z (ndx+ Q) ~ ndx+ ~, < T < co}~}xQx 

     Proof. Repeating the arguments in the proof of Theorem 2.1, 

we have only to show the nontriviality of the functions 

R'i(F(t;sa)(a)), i€ Da, for pa > .0. It follows from (3.6) 

that 

(3.9)R' i(F(mda;sa)(a)) = padaR*i(saa)),iE-Day- 

                                                       Since F(a)(t;O) < F(a)(md;0),Q<and,it is clear thatp>0 ay_ ayaaa 

implies 

 i(ai(a)andi   R(F(t;O))(a)>R(F(md a;0)aY) = paIR(0) > 0,iFpaY, Z > mda              ay

and we obtain the conclusion. 

     Remark 3.1. With the aid of Lemmas 2.1 and 2.L, we can 

determine the functions R*1(saY)) inductively w.r.t. the 

semiorder t~ 
a1 in the space of the suffixes {(S,p); p (-r(a)). apay



J  -

 4. Asymptotic behavior of critical DGWP 
 Nom. ~ .~ ... ..i..... . . .. _ . . 

     Since we have studied the noncritical DGWP's in the previous 

sections we shall study  the critical ones in this and the next 

sections. We assume Condition (D) and 

(DC)F~k(q) < °O ,i,',kEra , 

where F~k(s) = a2Fi(s)/ a:jask if it exists and 

Fjk(s) _nlimF~k( 0 otherwise. We set 
\,;11 

(4.1) pa 1/2va(1),
aY= 1/ 2vaY)(1), 

where va(1) and v(a)(1) are those defined by (2.3) and (3.5). 

The object of this section is to prove the next two theorems : 

Theore4, _1. Let a DGWP X = (Z(n), Px) satisfy Conditions v1 

(D) and (DC) for each az<l, g> with p
a =.'1, and every matrix 

Aa be aperiodic. Then, for each a E <l,g> with p
a= 1, 

there correspond constants R*i > ‘0, i E p
a , such that 

                  Pa 
(4.2) limnaR1(n;s) = R* , i E pa , 

                   n--00 

for each s satisfying 0 < sa < q
a and

i



 (4.3)f3qif{a,ps> 0. 

The constants R*i are determined inductively w.r-t. the semi-

order 1.41 from Lemmas 4.2 and 4.7 below. 

Theorem_-4.2. Let a DGWP X = (Z(n), PX) satisfy Conditions 

(D) and (DC) for each a E<l,g> with pa = 1. Then, for each 

a E <1,g> with p
a = 1, and y E <l, a > , there correspond 

constants R*i > 0, iE d
ay, such that 

(4.4) lim nay R1(n;s) = R*i, i E Aay 
               n.+0 

for each s satisfying 0 < s
a < qa and (4.3). 

     Proof of Theorem 4.2 assuming Theorem 4.1. By the same 

arguments as in the proof of Lemma 3.3, we have from Theorem 

4.1 that 

       lim(nd a)ua1R1(nda;s) = R*i, i E Aa            n 4-coY 

for each s satisfying 0 < s
a < qa and (4.3). But since 

F(k;s) also satisfies 0 < F(Q,;s)
a < qa and (4.3) for such 

an s, it follows 

~lim1 (nd+Q,)uaYR1(nd+Q;s) =lim(nd)uaYRind;F(R;s)) , 
  n.4.0n.4.00aan}~aa

i

•r 

f



 Rai, i AaY,QE <0, da -1>. 

Remark 4.1. Combining Theorems 3.1 and 4.2, we of course 

obtain the whole asymptotic behavior of a DGWP satisfying con-

ditions (D) and (DC) for all a E <1, g> . 

     Now we shall prove Theorem 4.1 without haste. In the follow-

ing in this section, we assume that the hypotneses of Theorem 4.1 

are satisfied, unless otherwise is stated. 

Lemma 4.1,. If pa= 1,then 

(4.5)Ba-2va1F~k(q)uaua> 0. 
                     i,J,ke A

a 

12roof3 . Suppose first that r =4 and F(s) = F(0) + As. 

Then it follows 

            q = F(n;q) = F(n;0) + Anq. 

Letting n 00 we have lim Anq = 0 by (1.7), which implies 
n+c0 

p < 1. Next we shall assume that I'  and P(s) = P0(s)+11(T)s 

with F0(T) t 0. Then it follows that H(q) = A and 

n-1 _ P(n;s) = F0(P(n-1;s)) + H(F(n-l;T))...H(F(t;s))FoF(Q-l;s)) 
                               Q=1 

         + I4(1;n-l;s))... Pi(F(0;s))t.



Hence it follows 

              =`(n;q) =An-r'Foal")   + Ac. 
             Q=1 

SinceL A FO(q)> 0 for a large n, it holdsq>  A. 
Q=1 

Hence we have p(A)n 1 by the mini-max principle (cf. 
                     = o(An) < 

Gantmacher [6] II, p.65). 

     For an a E<1,g> which is minimal w.r.t. the semiorder 

      we exploit the following 

-                                                                 
Lemma 4.2(Joffe and Spitzer [9]). If the q-mean matrix 

A
a is positively regular with pa = 1, it holds 

(4.6) R1(n;s) =ury,v`'".(1~'-sa) (1 + o(1)), IEA(; , 
                      l+nB v • (1

a-sa) 

as n -- w , where o(1) is uniform in 0 < sa < la' sa la' 

     Note that qa is equal to the ra-'part';la of the vector 

1 = (1, ..., 1) in this case. 

     To study the case when a is not minimal, we prepare some 

lemmas. 

Lemma 4.3. Let p= 1 and 0 < s <qsq. Then         aaa= aaa 

the relation



 (I

(n+k;s ) 
(4.7) lim----------------a a = 0, k E <0,°°> , 

      n-}cov
a•l (n;sa)a! 

impliesf 

R (n;s ) 
(4.8)lime------------•11 (n;sa) = U. 

                                  - 

        n03 aa a 

Proof3 . First of all we note that 

(4.9) v•R(n;s) > 0, n E <n0, co>, ,0 < s < q, S 

for some n0E<l,00>Indeed, for each i E A and jEr there 

corresponds an ni E <1,03> such that Ai(ni) > 0. Hence the 

positive regularity of A implies 

A~ (n) > Ai(n-ni )Ai (ni) > 0 

for all sufficiently large n. So suchF1(n;s) depends on 

every variable swith jr r , and we obtain (4.9). Now 

using (2.14) inductively, we obtain 

       n
_ 

(4.10)R(n+l) = D(n,n-m-1)R(n-m)+D(n,Q)C(Q)'R(k). 
k=n-m 

We take the sequences c
n and an in the proof of Lemma 2.3. 

In our case the sequence cn may not satisfy (2.22), but it

q,



 (l+am+1) + 

       R(n+l)  
       v•R(n+l) < 

where 

P(n,m) _ 

But ?(n,m) = u 

as n}co by ( 

(4.11), we have 

(1-am+1)u  

l+am+1

tends to zero as n ; co and satisfies (2.24)' with p = 1. 

Combining (2.24) and (4.10) we have 

     (1-am+le.k)A*R(n-m) + (1-an _R - ek)A*C(R)'(R)        k =11-171R=n-mk=R+1 

   < R(n+l) < (l+am+1)A*R(n-m) + (1+an_R)A*C(R)'R(R). 
R=n-m 

Hence it follows, for each m and n with n-m ` <n0,00> , 

  nnn 

(4.11) 
        (1-am+l kn -mEk)P(n,m) + QEn-m(1-an-R k=k+1ek)Q(n,R)

4,=n-m(1+an-R)v•Z(n,R) 

n (l+am+1)1(n,m) + REn-m (l+a
n-R

)Q(n,R)

   nnn 

      (1-am+l- E ek) + E (1-an -R- E ek)v• (n,R)          k =n-m t=n-mk=k+1 

   'n-m)(n
~R) =A*C(R)'(R)  ;n-m)

v•R(n-m) 

by the definition of A*, and 0(n,R) --> 0 

     and (2.32). Hence, letting n -^ 00 in 

                           (1+a)ui 
   imR1(n+1) <-L (n+1) < m+1  
   -}-v•I(n+1)=n-~~v•R(n+l) _iE~, mE <1,~> l-a

m+1



Now we obtain  (4.8) by letting m co . 

Lemma 4.4. There are functions. Blik(sa) and Gi,i(sa) 

in 0 < s
a< qsuch that 

(4.12) Ri(sa 0) _~~A~(q3-si) -kBJk(sa) (qi-si) (qk-sk) 
        aJ°~a 

                + (A1-Gi(s ))(qi-si),iE A,i 3O < s < q ,        asaaa 
                       `Era 

where 
      i (1)i (2)1 i(1)(2) 

                                2Fjk(q) , 0 sa < sa < qa, 

(4..13) 

            jk(sa)2FI (q),as sa-> qain,0< sa< q, i,j,kEA 

(4.14)0 < Gi(sa)<2E~(s), iE.a , jeT . 

     Proof. Integrating by parts the integral in (2.11), we have 

Ei(s) kEr Bi. (s) (qk-sk), JCL., 0 < s < q, Jk 

(4.15) 

         Bk(s) = Pi(y) (yiyk-yJok) (q-(q-s) )y-ej-ek(1E)d. 
yES0', 

Combining this with (2.10) we have

1 

a'



 R1(s)
jEL

A~(qj-si) -

.) ,kEL

 i B

jk
(s)(4j-sj)(gk-sk)

 j€7    F
(Ai-EJ (s)) (qj-sj) -

kEr

Bjk(s) (qj-sj )(qk-sk), -

0 < s < q.

Since Bj k(s) _  Bkj (s) by (4.15), the last term is equal to

 jErkEA
i B

jk
(s) (qk-sk) (.qj—sj) ,

and we obtain (4.12) with

(4.16) G1 s) = Ej: (s) + 

 kip

 i B

jk
(s)(qk—sk).

Further (4 13) follows from (4. 15), and (24. 124) follows from

(4.1.5) - (4. 16).

Note that, if we replaces
a

in (4. 12) by F(n ; sa)a, we

obtain

(4.17) Ri(n+l;s a) = jEd
a

AiRj(n;sa) -
j,kEpa

i B

jk
(n;sa)Rj (n; sa)Rk(n;s

a

  _(Ai - G j
Frcc j j

(n;sa) )Rj (n;sa), iEpa, 0 <s 
a

 qa3



where 

 (4.18) 

Hence it 

(4.19) 

where 

(4.20) 

Note that 

(4.21) 

for some 

(4.22) 

by (1.7), 

(4.23) 

by, (4.13)

 Bjk(n;sa) = Bjk(F(n;s 

follows, when pa = 1, 

2 a
n+l - an = -bnan + 

        an = aan(sa) = 

        bn = ban(sa) = 

        c
n = can(sa) = 

(4.9) is rewritten as 

an > 0, n E <n0,co 

n0E <1,..> . Further 

 lim' a= 0 
  n-..       an 

and 

0 < b* = lim bn< 
n-*«c 

and the inequality n .

a)a)'Gi (n;sa) = Gj(F.(n;sa)a) . 

en' 

a 

 -R(n 'sa)a 

i,j,kE~n°aiB~7k(n;sa)RJ(n;sa)Rk(n;sa)

iEoa,JEra 

> , 0

m b 

>0

n

jai

aan(sa)2 

(Ai - Gi 

s
a < qa,

  b* < 00 

Finally it

(n;s

holds

a) )R.3 

sa

(n;sa). 

qa'



 (4.24) cn> 0,n, 

for some n1E <0,00> by 

that Ai = 0 implies Ei 

     Now we assume that 

(4.25) lim n PR1(n;s) 
n--co 

for each S a with p = 1 

and (4.3), where R*i are 

have 

     Lemma 4.5. 1) If pa 

(4.26) cn = o(1/n2), as 

2) If pa = 1, 

                    Pa— 

(4.27) lim naR(n;s)a = 
n+ 

for each s with 0 < s<q                  =a=a 

(4.28) pa = min{u;a, 

Further, it holds

Go> 

means of 

0.

(4.14), (1.7)

R*1,i EA
s , 

  and s satisfying 

instants with R*1 > 

  1, it holds 

n i co

Ra , 

and 

ps =

(4. 

1}

3), where

and

0 < 

0.

the

s
a< 

Then

fact

qa 

we



                 u 

(4.29)  lim n acn =vaAaR* E c* > 0. 
n-~co 

     Proof. (4.26) is clear from (4.20) and Theorem 2.1. 

(4.27) is also clear by (4.25). Hence (4.29) except for the 

relation c* > 0 follows with the aid of (4.(14) and (1.7). 

But c* >`0 is easily seen if we repeat the same arguments 

as in the proof of Lemma 2.5. 

     The next lemma plays an important role in the following. 

Lemma,4.6. Let sequences {an), {bn} and {cn} satisfy 

(4.19) and (4.21)-(4.24). Then, ,1) (4.26) implies 

(4.30) 1//3* < lim' n an < ~limy n an < I/b 
n÷00 n+ 

2) Let 

(4.31) ,0 < b* < b* < 00 , 

(4.32) lim nucn = c*, 
n+c,0 

for some 0 < p < 1, then it holds 

(4.33)< lim' n/2an< Zim( nu/2an<b• 
E4 — n-0.n+co

I 

/.



for 

 (4.

  Proof. 1) By  (4.22) and (4.23), it 

          b 

       1-anb< M, n <n2,00>             nn 

some M > 0 and n2<1,co> . Hence 

21) and (4.24) that

1 - 1< 
        an a

n+ln 

n3 = n0\Jn1 

we have

b 

a

 a nn 

n+1

b
n

holds

it follows from

< M, nE<n3,co> ,

(4. 19)

where 

to n

1 < 

a n
(n-n

.' n2.

3)M + 

 (1,anbn)+c 

Summing up

        •
-"3 

 of (4.26)

n/an 

these inequalities

so that, by means

n E <n3, co> ,

from n3

Hence

1 
n

lim'cn/an = 
n--03

we obtain

 1 {an a

(4.

1 } _ 

n

30)

1 
n

lim 

n->00

en/an = 0.

 since (4.19) 

n-1 b-c/a2
Q?n

implies

2) Setting En = n

3 

u/2

1-bQaR+cQ/aQ .

an' we have from (4.19) that



       bnEn2 - n cn + nu/2(En+1fin)an+10(nu)' 

as n -> 03 . Since 0 < p < 1, this with (4.22} implies the 

basic equality 

(4.34) `aim{bnE2 - nucn + n11/2(En+1 -En)} = 0. 
n+0 

Now we shall show that the sequence (En} is bounded. Suppose 

that {En} is unbounded, and let 

nl = 1,nk =min {n; En > En Vic},kE <2,03> . 
k-1 

Then it follows 

(4.35) En>n`' k> En-1'k 
     kk-1k 

(4.36) lm' 
                               k.+0.nk 

         =. 

By (4.35) we have En
k> Enk-1' and hence by (4 . 3.:; ) 

          '7 irri'{b
nk-1nk-1-nk-1)uc-1}<0.     nk 

Hence, with the aid of (4.32) and (4.31) we have 

(4.37)n-1< c*/b* < °° 
      k~k



and from  (4.34) 

b 
nk 

(4.38) `lim(finn -1) =-'lim     k ->°°kkk,M 

(4.37) and (4.38) imply the 

which is a contradiction. We note t 

ness of the sequence {C
nf, (4.38) 

{nk}. To prove (4.33), we set 

E* = lim fi— 
                    n+oo 

First we shall show that 

^c*/b' < < 

Indeed if, c_. * < /c*/*  for 
_(0<) 

(4.32) that 

      nu/2(n+1 - fi) > nucn bnEn 

                        > c* - 

for some N0 E <1,03> . Hence it foll 

n- EN>(c* -b*(E*)             0

- .l

2 _ 
nk-1(nk

------------------------- = O. 

1)u/2 

the sequence {En1, 
              k 

means of the bounded-

for any subsequence

-1)uc
nU-1

            (:~k - 

boundedness of 

e note hat, by 

         valid

n 

        it

implies

holds

- 

        - 2E >

it  

         -1  
1  

k=N0 k11/2

by (4.34) and

n E <N,oo> 
        ~_0



  which contracts the boundedness of  {E
n}. Next we shall show 

  that (4.33) holds even when E* < -*. Since the situations 

  do not differ, we suppose -* > /C** and lead a contaradic-

 tion. Take a constant E in > E> E" V v'c*/b*, and let 

no = 4nin'{n;En>E }, 

               mk = 'min'{n <nk -1 + 1, °3> ; En < E}, 

nk = `mini{nE. <mk + 1,co > ; E
n > } , k E <1,00> 

 Then it holds 

(4.39)n
k> Enk-lVE ' k E <1',°°> . 

 Indeed, the inequality C> E is clear from the definitions, 
                                             nip 

                                                                   and En> En -1 is also clear since En_1< E if nk-1E<mk+1,00>, 
    kk 

  and E"k-...              <E if nk-1 = mk . Now it follows from (4.34) 
                  ~- m 

k 
 and (4.39) that for any .e > 0 there is a k1 satisfying 

                 (n-1)uc,+ c 

           n  

      2 
-1 <knk k E<k1,00> k 

b
nk-1 

 Combining this inequality with (4.39), (4.38) and (4.32) , we 

 obtain



 E2 < Tim E2 = li m y2 <  cb+E , n
kk}~nk-1b 

which contradicts the inequality E > ^c*/b*. 

Corollary "4.1. (4.33) is still valid even if we replace ' 

.y 
the assumption (4.19) by (4.34) where En = nu/tan. 

     Now we are ready to prove the next lemma which completes 

the proof of Theorem 4.1 : 

     Lemma 4,7,., Let pa = 1, and (4.25) hold. Then it follows _1 

                       1 (4.40)'lim na:;(n;s)=1-?*, 
           n-4-00aa 

for all s satisfying 0 < s
a < qa and (4.3), where pa and 

kaare given separately in the following three cases ; (i) 

if .1 = pa > pa , then p
a = 1 and 

(4.41)Ra= ua/Ba, 

(ii) if 1 =a > pa , then p=uaand 

(4.42) Rk = (I -)-1A'R*, 
aaa a 

and (iii) if 1 =a= pa, then pa = 404/2 and 

                          A'=;1. 
(4.43)Ra=(  a a 'a )1/2. 

                    B 

                          a



 Proof. (i) When 1 = - > p , it holds (4.26) by 

Lemma 4.5. Hence it follows (4.30) by Lemma 4.6, and we have 

(4.7) by Theorem 2.1. Therefore (4.8) holds by Lemma 4.3, 

and so 

(4.44) 11im bn = B 
• n}oo 

by (4.20), (4.18), (1.7) and (4.13). Now appealing to Lemma 4.6 

1) again, we have slim n an = 1/B to obtain (4.40) with .i = 1 
n->00 

and R* given by (4.41) from (4.8). 

    (ii) When 1 = p > -, it holds 

(4.45)nuR(n;s) < c, n E <0,00> , 

for u = u . Indeed, combining (2.15) with (2.23) and (4.27) 

we have 

(n+1)11l(n+1) < (n+1)11An+lq + (n+1)/1 An—QA'ff(k) 
Q=0 

                                                            n 
< (n+1)/18

1-0+1A*q+ (n+1)ue2-n(~ - 2,Q-uA*At * + K), 

1 where 81, 82 and K are positive constants. But since 

n _            -lC/1 ,~n/1-gy -                        -n/(- lo) , '~as`n-r00 
      Z=1 

(4.45) follows.



      Now by means of (4.10) it holds 

         m 

 5(n,n-R)C(n-Q)1(n+1)U_(n-Q) <  (n+1)11R(n+1), 
R=0 

m _        <(n+m)uAm+l(n-m)uR(n-m) + AQA'(n+1)/1R(n-Q). Q=0 

Henceletting n } co we have from (4.45) that 

m 1 AA'70i < 'lim' nuR(n) < 'lim' nuR(n) ~ 
Q=0-n-oo-n-4-00 

< Am+lc + AQA'. 
Q=0 

But Am+1 + .0 as m -'- co since p < 1, and we obtain the 

f 

    iii) In the case of 1 = p = p , we shall first prove (4 

Since the sequence an(0) is monotone nonincreasing in n, 

follows from (4.19) and (4.20) that 

          c(0) 
<an(0)< bn(0)an(0)-~0,asn+0 

               n Hence it holds from (4.29) that 

lim`l/nan(0) = 0. 
n->00 

Further, for each 0 < s < q satisfying (4.3) we, can find 

LE <0,03> by (1.7) such that s < F(Q;0) < q, whence it

conclusion. 

.44). 

it

an



follows R(n;s)  ? R(n+Q ;0) and 

slim 1/nua
n(s) = 0. 

n-.00 

Hence we have (4.7) by (4.27), so that (4.8) and (4.44) by 

Lemma 4.3 and (4.20). Now since B > 0 by Lemma 4.1, it 

follows from (4.44) and Lemma 4.6 2) that 

       lim`nu/2an = ^c*/B. 
n+co 

Hence we have the conclusion with the aid of (4.8). 

     Remark 4.2. The vectors Pagiven above are positive. 

     The proof is similar to that of Lemma 2.5. 

     Remark 4.3. It is clear from the proof that (4.40) hold$ 

for ^.s with 0 < sa<n a,sa # qa in case of (i), and for all   r all 

s satisfying 0 < sa < qa, sa # qa and (4.27),,. Further, it 

in case of (ii) 

can be seen that if we assume Condition (DE) in the next section 

(4.40) (and hence (4.2)) holds for all s with 0 < sa < qa, 

sa # qa in all cases.



 5,,_  Asymptotic behavior of Z(n)/n of critical DGWP 

     In this section we shall give the asymptotic behavior of 

the distributions 

Qx(n u) = Px{ Znn) ‹un< T<00 }, u 6 R+, 

of critical DGWP's. We shall assume for each a E <1, g> with 

pa = 1 that 

(DE) 1vaYiF(q) Cik>caY( V e-)2' 
   i , j , kE AaYie                                          ay 

cay=()iEA> 0, y E <1, da>, 
ay 

where caYis a positive constant and vaYis the positive 

left eigenvector of A(a) corresponding to the P-F root 1. 

When the matrix Aa is aperiodic, it is clear that a
s = 1, 

and Condition (DE) is reduced to 

     ?c _ (5.1)vF          i~.~ ~kE~aijk(~'-WE> ca(VG. i)2,a(Ei)i~Ga>0, 
  aa 

for some c
a> 0. We set 

       s(n) = s(n,a)= (glexp'(-al/n),...,gNexp'(-aN/n)),

i



 J 

for each  A = (A1,...,XN) > 0. Our object in this section is 

to prove the following 

Theorem 5.1. Let a DGWP X = (Z(n), Px) satisfy Conditions 

(D), (DC) for each a;<1, g> with pa = 1 and (DE) for each 

a E <1, g> with p
a = 1, and,the matrices Aa be aperiodic. 

Q 

Then, 1) for each a<1, g> with pa =:1, there correspond nontrivial 

nonnegative functions 1p1( Aa), iE~a, such that 

      r-uai (nX)i (5imn R (n;s) =( X
a), i E Day 

n->0 

for each X > 0 satisfying 

(5.3)as > 0, if (3 a , 'CSs > Q. 

The functions1                I,( a
a), i E Da are determined inductively 

w.r.t. the semiorder '' from Lemmas 5.1 and 5.3 below. 2) 

For each x E S with pa = 1 for some a EI+(x), the distri-

butions 0(n;u), n E <1,00> , converge as n-co to a proba- 

bility distribution QX(u) on R+ given by.i x-eii 
                             xg(X

a) aEI
+(x) iE Aa 

u =u 

(5.4)(e-a•udQ*(u) = 1 -a X  
   J

RNxxigx-eiR*i 
                             aEI+(x) iE A

ct 
u«= ux



                                                                                     r 
                                                                                         l 

where  Px = 'min {ua;aHI+(x) } . 

theorem 5.2. Let a DGWP X = (Z(n), Px) satisfy Conditions 

(D), (DC) for each a c <1, g> with pa = 1 and (DE) for each 

a<1, g> with pa = 1. Then, 1) for each a E<1, g> withs/ 

pa = 1 and y E<1, da> , there correspond nonnegative functions 

tyi(X(a)), i E Aay, such that 

(5.5)flim:(nd+Q)u°iyRm(nda+k;s(nda+Q,a)) =pi(wk(X)(a)),'~. 
n+co 

• F Day, E <0, da-1> , 

for each X > 0 with (5.3), where wk(X) = AQ{qX}/q. 2) 

For each x E S with pa = 1 for some a E I+(x), the distributions 

Qx(ndx+Q;u), uE R+, converge as n -} co to a probability distri-

bution Q* (u) on R. 
x Q, 

     Throughout in the following in this section we always assume 

the hypotheses of Theorem 5.2. Further, we shall assume for the 

moment that every A
a is aperiodic. Then, for an a E<1, g> 

which is minimal w.r.t. the semiorder '-<' , there is the follow-

ing excellent



 Lemma 5.1 (Joffe and Spitzer' [9]). If the q-mean matrix 

Aa is positively regular with pa = 1, it holds (5.2) with 

pa= 1 and 

           iui. (gaac~)  (5.6)(a) = 
                  a1 + B

ava•(gaXa) 

     To deal with the case when a is not minimal, we prepare 

a lemma. 

Lemma 5... 2_. Suppose that pa =a and A > 0 satisfies ( 5 

Then the relation 

              7(n—m+k;s(n'X)) 
(5.7)lima  

no-co .17
a•1/(n-m;s((n'X) )a 

implies 

(n;s(n'A)) 
(5.8) `lim` a au          n}. a•R(n;san'~))aa 

Further the relation 

                 7(k-m+P;s(n'X)) 
(5.9)mlisup ----------------------------- =,0, QE <0,m> , m E <0,00> 

          k+ n>k v
a • R (k-m; s (an' X)) a 

implies 

Ri(k;s(n'X)) 
(5.10) slim sup max --------------------a(n~a)- ual= 0.          k-4-00n>ki=A aaR(k;sa)a

I,

.3).

i



     The proof is similar to that of Lemma  4.3 and will be 

omitted. 

      Here we assume 

              slim' nu131ii(n;s(n'A) ) = 
ipi(X ), i E a ' 

n÷oo 

for all a with p = 1. Then it follows, if pa = 1, that 

(5.11)Timn17a7(n;s(n'X)) = aa), 
n-}00 

for some Ta( ) = (Ti( aa))iET • 

a Lemma 5.3. Let pa = I, and (5.1) hold if pa = 1. Then 

it follows 

(5.12)slim'nuaR(n;s(n'X)) =~a( A ), 
/1-0-co 

for all A > 0 with (5.3), where ;la( Aa) are given separately 
                                uaare those in section 4 and 

in the following three cases :(i) if l = pa > pa , then 

(5.13)( x ) = a.(ga~a)ua  a a1+a(g
aaa){Bax ( A )}                                              aa 

where 

                         9'Aaa{g0X0} 
a (5.14) x (aa) =                  k=0{v

a•(Aa{gaxa})a}{°a.(Aa+1{gaXa})a}

5i



(ii) if 1 =  Aa > A, then 

(5.15) V'a(A ) = (I - A(1)-1Aa ~'a (aa ), 

and (iii) if 1 = pa = Pa , then 

            A-)  
(5.16)V~a(aa )(Vaa~a a )1/2ua. 

Ba 

     Proof. (i) With the notations in (4.20), an > 0 holds 

for all n E <O,m> since a >,0 satisfies (5.3) and iSa >0. 

Hence it follows from (4.,19) 

(5.17) n{ -------------1(n) -(n)} - 

                        ) n-i bk(s(n))  

              n k=0 .1-bk(s(n))ak(s(n))+ck(s(n))/ak(s(n))_ 

n-1 ck(s(n)) 
_ 

k0 ak(s(n))ak+1(s(n))  

By the same arguments as in the proof of Lemma 2.2, it holds 

(5.18) R(k - m +Q; s(n)) < Ak-m+Q(q - s(n))-. 

                                   A rk-m+Q 
<1 —                                                 q, k < <m- Q , co> , 

n

S



ire

for some01= 01(X)> 0 and p<r<1. Similarly, by the convexity 

of the function Fi(n;s+(q-s)E) in 0 < E < 1, we have 

(5.19)R(k-m;s(n)) > A(k-m;s(n))(ci-s(n)), k E<m,co> , 

where A(k•s) = [F
oi.(k;s>ji,ic Further it can be seen that for 

each r < r <1' there is a vector 0, < n <q satisfying 01.3) such that 

(5.20)F(n) > n and P(A(l;n ))> r . 

Indeed, since Fi(n;0) tql as n t°°, it is enough to take an 

F(n;0) with a sufficiently large n as the vector n. Since 

the matrix A(l;n) is also positively regular, it follows from 

(5.20) that 

(5.21) A(k;n) > A(l;n)k > r (1-dk)A*(n), 

where Di(n) is a positive matrix and {dk} is a sequence with 

dk -~ 0 as k p° and 0 <6k<1. But since there is a k
0 E <1,oo> 

I~- with 

n < s(k)<s(n)< q,nE <k,co>,kE.<k,co>,   =0 

we have from (5.19) that



rte...

(5.22)(,(n))5r(1-6k-m)A*(n)q  .22Rk-m•s> 2, n >  k 
 n 

for some 6.2 = e2(X) > 0. Combining (5.18) and (5.22.) 

obtain (5.9), and hence (5.10) by Lemma 5.2. Since 

B~k(k;s)}Fjk(q)/2 as k-~co uniformly in 0 < s 

follows from (5.10) and (4.20) that 

                                     r°• 

(5.23)lim sup Ibk(s n ) - BI =:0. 
k->°° n>k 

Hence it also follows from (4.22) that 

(5.24) slim sup bk(s(n))ak(s(n)) = O. 
k÷° n>k 

Letting m = Q= 0 in (5.18) and (5.22), we have 

c (s(n))e rkeA'q 

         ak(s ) e2r (1-6k)vA*(n)q 

so that 

(5.25) lim'sup ck(s(n))/ak(s(n)) = 0. 
k-}oo n>k 

To estimate the sequence ck(s(n))/ak(s(n))ak+
,l(s(n)), 

exploit (5.22) for an with 

IF < r < 1.

> milk Q, 

 we 

< q, it

we shall



   Then it is clear from (5.18) and (5.22) that 

        1  ck(s(n)) rk 
            na(s(n))a (s(n))<`=e3r2k' nk0' 

       k k+1 

   for some 63 > 0. As for k:=<0, k0>, it is not difficult to 

   see that 

           1ck(s(n)) ------------------------------- < M
,n E <k,03> .             n 

ak(s(n))ak+1(s(n))k 

   Since 
k0 c 

r 

            k=0Mk +kk0+1e3r2k< 

   we can apply the Lebesgue's convergence theorem, obtaining 

     _(n) 

  (5.26)slimn~11ck(s) = X(a)~ 
             n+03k=0ak(s(n))ak+l(s(n)) 

  with the help of 

  (5.27) lim nR(k ; s(n,A)) = Ak{qX}. 
n--00 

  Combining (5.23) - (5.26) with (5.17), we have 

            slim' n a
n(s(n)) = v•(qa)           n4.01-1-ii-(4){B-x(X)1 

  Hence we have (5.12) with V1(X) given by (5.13) because of (5.8).



      (ii) By the convexity of the function-; 

         Fi(k;s(k)+(s(n+l)-s(k))) in 0 <  E 

 '-we have 

(5.28) R(k;s(k)) -Ri(k;s(n+l)) = Fi(k;s(n+.l)) - F(k;s(k)) 

          <EI'FJ(.;s(n+1))(s(n+1) - s(k))J~ 

for each 1E-7. Similarly it holds 

(5.29) R(k;s(n+l)) = F(k;q) - Fi(k;s(n+1))~` 

                     >~ _F(k;s(nti))(q - s(n+1))J. 
                        Jer 

Since 

(5.39)(s(n+1)-s(k))~<e'
n+ln+1-2,-s(n+1'))Jn+1-2,  

n+l > £Vn0 , 

for some 8 >0 and n0£ <1,00> , it follows from (5.28), (5.29) 

1 - and . (14.27) that 

(5.31) 0 < 17(2,;s(k)) - R(k;s(n+l)) < (n+l-2 ,2,)0 (k;0) 

< (n+l-i)c  
                                              kl+u ,n+1 >kVn0' 

for some vector c. Hence, substituting k = n-k , we have for 

any fixed m

( I'



f

 Tim(n+1)u D(n,n-R;s(n+1))C(n-R;s(n+1))T(n-R;s(n+1)) 
                                                                k=0 

        m (n+1)(n+1)
ru(n-R)          =SlimD(n ,n-R;s)C(n-R,s)(n-R)R(n-R,s)- 

              n±oo R=0 

m _ 
        = / 

R=0 

Now we can obtain (5.12) with (5.15) by the same arguments as in 

the proof of Lemma 14.7 (ii). 

                                                                       - 

     (iii) By Lemma14.7 (iii), the sequence nu/2R(n;s(n+l)) 

is bounded in n r <1,00> so that we have by the same way as 

for (5.31) that 

(5.32)0 < R(n+1;s(n)) = R(n+1;s(n+1)) <  +R/2~ n > n0~ 

n for some vector c and no = <1,03> . Let 

        an= an(X) =nV/2a
n(s(n)),Rn=Sn(x)b(s(n)), 

         Yn = y (A) = nucn(s(n)). 

Then (4.19) and (5.32) imply 

a
n+1 - an = n-u/2(-8nan2  + Yn) + o(n),



as n  i oo , so that 

(5.33) Tim {nu/2(an+1 - an)+nan- Yn)} = 0. 
n4.co 

Further, by means of (4.20) and assumptions (DC) and (DE), it 

holds 

co > = aim' n(x)> 'lim`a(x) = > 0, 
             n->00 n+oo 

for some 7 = R(X) and R = e,(X) . Hence, appealing to Corollary 

4.1, we obtain from (5.33) that 

(5.34) ^y' < lim' an < Zim' an <^y*/B, 
             n+oo n+c 

where 

y' = lim yn = VA' (l). 
n+oo 

Combining (5.34), (5.32) and (4.29), we obtain (5.7). Hence 

(5.8) follows by Lemma 5.2, and also 

                lim 13„,"(X) = B. 
                        /1+00 

Hence, agair),using Corollary 4.1, we obtain from (5.33) 
7'7 IL 

'lim' a
n(A) = ^y*/B. 

n÷co



 

' Now (5 .12) with (5.16) is proved, since (5.8) is valid. 

 Proof of Theorem 5.1. Since 1) is clear from Lemmas 5.1 and 

 5.3, we shall show 2). By the similar arguments as for (2.34), 

 it is easily seen that 

              e-X.udQ x(n;u) = 1 
  R+- ox-F(n;s(n'X))x  

  jNq                                     x -F(n;0)x 

 Further, it follows from (5.2), (4.2) and (1.7) that 

            qx-F(n;s(n))x= n-ux lyxigx-ei,hi(~a)+o(nx), 
                             aEI+(x)iEAa 

                                       u=ux 

                   x-e-u 

          qx-F(n;0)x=n x / xiqiR*i+o(n x), 
a• I (x)i_-p

a ua=ux 

 as n -r 00 . Hence it follows 

r Tin e~udQ x(n; u) =Vex(A), n-.00 
RN 

 where iyx(A) is given by the right side of (5.4). Further 

      --
x(a) is a Laplace transform of a nonnegative measure 

 dQ*(u) on R.SincelimIpl(X) = 0 by (5.6) and (5.13) -  x+
A+0a 

(5.16)4, it holds `lim' IP (X) = 1. Hence the nonnegative measure 
                  A+0 

dQX(u) is a probability measure and we obtain the conclusion.



     We note that the parallel assertions to those of Remarks 

2.1 and 2.2 are also valid in this case.  Further,-we have 

     Remark 5.1. It holds 

(5.35) V,i(wk(x)a) = gii(Aa), 

where wQ(a)\= AZ {qX} /q. 

Proof. From (5.6) and (5.13) - (5.16), it is enough to 

show (5.35) in the case of (5.13). But this is not difficult 

since Y t= 
n '- 

      V~(wl(X)) =v•(A{qX})-u  
l+v.(A{qX})TB - v•(A{qa}) X(wl(X)) 

• (A{qX} )~ u  

1+v• (A{qX})" (B -X(a))+vA' qa}/v• MX) 

                         = 

     As to Theorem 5.2, we have the next lemma from Theorem 5.1 

by the same arguments as those to lead Lemma 3.3 from Theorem 2.1. 

Lemma ,:5;._4., There exist. nontrivial limits .( 
                                                                         _ 

~Y



(5.36)  rlim (nda)ayRi(rida;~(nda;X)) = *i(A(a)), i Aay, 
n-rco 

I 

for each A > 0 with (5.3), a t<1,g> with pa = 1 and 

Y E<1, da> 

     Proof of _Theorem 5.2. First we set 

F(k) = F(k;s(nd+k,X)),s(w) = s(nd,wk(a))~ 

L FVs = (F1(2 .)Vsl(w),.•.,FN(k)VsN(w)). 

Then it is clear that 

(5.37)Rind +k;s(nd+k,a)) = R1(nd;F(k)). 

Further by the differentiability of the function Fi(nd;F(k) 

+ (s(w) - F(k))) it holds• 

(5.38) IRi(nd;F(k)) - Ri(nd;s(w))I < Fi(nd;c)1FJ(k)-sj(w)1, 
                                  jer 

__<< FJ (nd;FVs) I Fi (k) - si (w) 1 , 

where c is a vector with c < Fvs. Similarly 

(5.39) Ri(nd;FVs) >F1(nd;FVs) (q3 - F3 (k)vs3 (w)). 
j-r

l



On the other hand, since 

 FJ(k)  q3 - 1Ak(k)gkak/nd + 0( 4) 
n- 

qJ(1 - wR(A)/nd) + 0(4), 

sj(w) = qJ(1 - wQ(1)/nd) + 0(4), 
 ~n 

as n 00 , it follows 

jFi(R) - sj(w)j < k1/n2, 

(5.40) 

           qi - Fj (Z)\!sj (w) > k2/n, n €<n.,00> , 

for some k1, k2> 0 and no<1,00> . Combining 

we have 

                                          k 
(5.41)IRi(nd +Q;s(nd+2)) - Ri(nd;s(w))1 <

nk1Ri 
                                          2

k 

         <nk1Ri(nd;0), nE<n0,00>             2 

Hence it follows from (5.36) and (5.37) that

~Er, 

 (5.37)-(5. 

(nd;FVs)

40), 



 rlim(nd+2)11Ri(nd+2;s(nd+2)) = 1im(nd)PRi(nd;s(w)) -1 
n+co/14 -co 

 ;Di(w2(x) ), 1€ A , 2E <0, d-1>-

The assertion of 2) is easily seen from (4.4) and (5.5) by 

the same arguments as in the proof of Theorem 5.,1 ,. 

6. Asymptotic behavior of CGWP 

     In this section we shall deal with CGWP's X = (Z(t),Px) 

satisfying Condition (C). Since the matrix 

a(t) = EA(t)J1,J 4= rexp'(taa), t >'o, 

                                      a is always positive by the irreducibility of a
a, the periodicity 

does not appear. There also correspond positive right and left 

eigenvectors ua = (ua)1._A06 and va ai).paof the matrix 
asto.the P-F root ua - p(aa); 

        aqu
a= daua,vaaa= a ; 

with the normalizations 

        L v   aiaua= 1,Lui=1. 
      iEAa 

 aa

I -



 // 

     We set 6 = 1/2p, p <0,co> . Then the family of the 

generating functions {F(n3p;s) ; n E <0,00>} forms a DGWP on 

S, which we shall denote by X(6p). The extinction probability 

of X(6P) is equal to.--that of the original 

CGWP X, and the q-mean matrix A(6P)of X(6P) is equal to 

exp(6a). Similarly, the family of the generating functions 

{F (n 6p;sa)a;n<0,00>1 forms a DGWP Xa6P ) with the q-mean 

6 matrix Aap)='exp(6paa). Here we set the condition 

(CN)/ pi(Y)Yigy rlog' y3 < °°, i,j E ra , 
YES 

where pi(y) are those in (1.6). 

Lemma 6.'l. It is necessary and sufficient for Condition 

(CN) to hold that 

(6.1) Ee{z(t)gZ(t) 'l.og~Z(t) } <~,i,jEra,t > O._' 

           i Proof. For a j <1, N> with qi <1, both (CN) and 

(6.1) are automatically satisfied since the function 

yiqY 1og'yj = {yj (qJ )yi logy y~ } II (gi)yi 
i/j



 17 ̂ J

is bounded in yES. But, for a j€ <1, N> with qi = 1, it is 

not difficult to show the necessity by the similar arguments as 

in the proof of Sevastyanov [13] Theorem 2.4.7, and the suffi-

ciency from the arguments as in Athreya [1] (pp. 49-5Q1). 

     Now as in (2.3) - (2.4), we shall define v(r) by 

'max'{v
y(r) ; Y: g} , if aS r, 

    va(r)= 

'max'{v.~(r) ;y S} + , Iif! 25. = r, 

inductively (max (1) = -1), and va by va = va(aa ). Then 

setting R(t;s) = q - F(t;s), we have the following.Theorem 6.1. 

                    .;_ 

Let a CGWP X = (Z(t), Px) satisfy Conditions (C) and (CN) for ' 

each a E <1, g> with a
s < 0. Then, l) for each aE<1., g> 

with a
s<,0' there correspond monotone nonincreasing functions 

R*i (s a) in .0 < s a< qa,iAa , such that as t}co 

V to 

(6.2) Ri(t;s) =t ae a(R*'(sa) + o(i)), iEAa , 

where o(1) is uniform in s on ,.0 < sa < q
a.Further every 

R*1(s
a) is not identically zero. 2) For each x E-S such that 

as<0 for all a--I+(x), there corresponds a probability distri-

bution {P*(y)} on S-{0} satisfying

,+



 (6.3)  slim'  PX{Z(t)  =  y  It  <  T  <  oo}=  P*(Y) 
                     t-)-00 

      Proof. By means of Theorem 2.1 and (6.1), there are- 

                              monotone nonincreasing functions R* (s), 

i C p, which are independent of the choice of p <0,co> , such that 

(6.14)Ri(n6p;s)= (n6)ven6pa{R*i(s)+o(1) },iE p, 

as n -^ 00 , where o(1) is uniform in (Y<  s < q. Hence it holds 

by (2.36) that 

(6.5) R*i(F(t;s)) = et6R*1(s), 

for each t >'0 with the form of n/2p first, and then for all 

t >(9 by means of the continuity of R*i(s) in ';0 < s < q and of 

F(t;s) in t. Now (6.4) and (6.5) imply 

(6.6)flim(Ri(n;F(T'S))- R*i(s)) =,,0 
(n+T)ve(n+T)cr 

uniformly in 0 < s < q and 0 < T<1. Since each t >0 is 

represented as t = n+T, 0< T <1, where n } as t + 00 

we obtain (6.2) from (6.6). The assertion 2) is clear from (6.2) 

if we repeat the arguments in the proof of Theorem 2.,1.



 rJ

     Remark 6.1. The ouxi- to determine the v a and R* (sa) 

i: Aa, is not complicated. Indeed we have only to repeat the 

analogous way along Lemmas 2.1 and 2.4. in the case of DGWP. 

Of course the parallel assertions to those of Remarks 2.1 - 2.3 

are also valid in this case. 

     To deal with the critical CGWP, we shall assume 

(CC) fjk(q) < co , i,j,k E <1, N> , 

(CE)
jvf(q)cje_         ,kF~ai ikkca(iEAvaiai)Via= ()iE~             i,   aa 

for some ca > O. 

Lemma 6.2. Condition (CC) implies 

(6.7) F~k(t;q) < co , i,J,k6<,1, N>, t > .0 

Further, (CE) and 6a = 0 imply 

(6.8)aiF1 (t,q) jek > ca(t)( /ai1)2~Via= (C1)i: _A    ~kEDaviELaa 
for some ca(t) > 0. 

     Proof. The first assertion is well known (eg. Sevastyanov 

[12] Theorem 4.7.3). To show the second assertion, we shall 

use the relations

0, 

>0,



 ;~ J

       Fjk(t;q) = JA1(t)f(q)Am(T)An(T)dt                                                                                                                        .~ 

                        R,m,n(I'0 

               > J6Ai(t_T)fj(q)A(T)A(t)dT 

                         (ibid.  (4.7.16)). Then it follows 

                                  t            F~k(t;q)Eik >vifl 
i, j ,kEAp0 

which implies (6.8), since Ai (T) -} 1 as T +..0. 

     Setting p
a = 1/2va(0), we have the following 

     Theorem 6.2. Let a CGWP X = (Z(t), PX) satisfy Conditions 

(C) and (CC). Then for each aE<1, g> with Qa ='0, there 

correspond constants R* 1, iE Aa, such that                   • >0 

(6.8) Tim' t -R1(t;s) = R'1, 1E pa,~0 < s < q_ 
t+ 

     The proof is clear from Theorem 4.1 and (6.7), and will be 

omitted. 

C 

     Theorem 6.3. Let a LGWP X = (Z(t), PX) satisfy Conditions 

(C), (CC) and (CE) for each a E <1', g> with as =4). Then, 1) 

for each a €<1, g> with ca = 0, there correspond nonnegative 

functions l(Aa),1pa,:>uch that



 Ij f 

(6.9) 1im; tuaR1(t;s("a)) = 4,1(x ),1E,as> 0. 
t+ 

2) For each xfS with as = 0 for some a E I+(x), the distri- 

butionsf~ 

Q(t,u) = Px{Ztt)< ult < T <co},u E R+, 

converge ast + co to a probability distributionq(u) on R+. 

      Proof. By means of Theorem 5.1 and (6.8), there are non-

negative functions ty1(A), i4 A , which are independent of the 

choice of p E <0,°> , such that 

(6.10) ~lim(nd)PRi(ns;s(ndp,a)) = Ipi(x), iEA , X > 
n-co 

Further, (5.35) implies 

(6.2i) (wt(x)) = 11J1(x), 

for each t > 0 with the form of n/2p, where wt(X) = A(t)(qX)/q. 

Since the function 1-tpi(X)/R*1 is a Laplace transform of a 

probability distribution, it is continuous in A >0. Hence the 

function IP(wt(A)) is continuous in t, and so (6.11) holds 

for all t >(0. Now representing each t > 0 as t = n+T, 

0 <T <`l, we have



 ij f 

(6.12) Ri(t;s(t,X)) = Ri(n,F(T;s(t'X)))• 

But by the same reason as of (5.41) it holds 

       i(t,X)i(n,W(a)Ki          IR(n;F(T;s) -R (n;sTI
nR (n;9), n E <n0,00> . 

Hence it follows from (6.8) and (6.,I0) - (6.,:12) that 

1-Em tuRi(t;s(t'X)) = slim nu Ri(n;s(n,WT(a))), 
t-roofl.. 

(WT (X)) = 

The assertion of 2) is clear from (6.9) and (6.8). 

7. Examples 

     In this section we shall give four examples. The first 

two are those proposed by Jirina [8] and Sevastyanov [14] as 

examples which, because of the failure of the positive regularity, 

do not satisfy their theorems. But these are contained in our 

scheme, and the direct calculations show that the asymptotic 

forms coincide with those given by our theorems: Example 3 

is of reducible cases, where the asymptotic behaviors are 

also calculated directly and coincide with those given by



our theorems. However , all  --  -the marginal distributions of 

q(u) in Examples 1 - 3 are of exponential type. In Example 

4 we shall show with aid of our theorems that there really exists 

a case when a certain marginal distribution of q(u) is not of 

exponential type. Naturally the distribution is the same type 

of that in Savin and Chistyakov [2'2]. 

Example '1. Let 0(E) = I7 =0pi EJ be an one-dimensional 

probability generating function with p0 > CO', "(1)<co if 

O'(1) ="1, and consider the two-type DGWP X with the generating 

functions 

(74) F-(sl, s2) = o(s2), 2                          F(s'~`)21                                         , s) = c(s') . 

Let q0 be the least nonnegative fixed point of CO and set 

p = '(q0). Then it is well known that ''(1) # :1`' implies 

p <q, and 0'(l) = 1 implies p = 1. The extinction probability 

q of X is equal to (q0, (10), and the q-mean matrix A is 

given by [PO]. Hence it follows that 41, = r.i. _ {12,2} and 

p1;=15,-,=p. We can calculate the n-step generating functions 

F(n;s) precisely

r~ S



 0(n;s1), if` n rise everi, i = 1,2, 

(7.2) Fi(n;s) = 

0(n;s1+1), ± n 'is^ `odd`, i =1,2, 

where 0(n;E) is the n-step iteration of 0(E)and i+J is 

identified with 1 if i = 2. Here we shall divide it into 

three cases.- 

     (.i) When p = 0, it follows F(n;s) _ `1', n E <1;,.> , and 

all the situations are trivial. 

     (ii) When 0 < p < 1, the one-dimensional (or positively 

regular case) arguments assure the existence of a nonincreasing 

function K*(E) andAa distribution {P*(,j)} on <1,co> such 
of 

that 

rli m~ {q0 - 0(n;01 /pn = K*( 0, LO% < E < q0, 
n-,co 

(7.3) 

                r_-.q0-4)(n;g0)           1 - lim' 0(n•0)= / P*(j)E`),,O. < E< (1. 

Combining (7•.2) and (7.3) we obtain 

          iimRi(2n;s)/p 2n = K (si),O'<sq,i= 
n-r00 

(7.4) 

1.im'Ri(2n+l;s)/P2n = PK*(si+l), 0;< s <                                                     q, i = 1,2 
n+

7')



     ~-1P*(y1)+x2P*(Y2)   P
x{Z(2n) = yl2n< T<00).= 

  n-~~x1+x2 

(7.5) 

~lim'P {Z(2n+1) = yI2n+l <T<co} = x1P*(y)+22P*(yl),x=(x1,x2)0• 
            n-~~ xxl+x 

     (iti) Let p = 1. Also in this case the one-dimensional 

arguments tell us 

            n { 1 - (n; ) } = 2/0"U), ro) << <1`, 
n+oo 

(7.6) 
                                                                            .n 

n {1.- (I)(n;exp`(-n/n))} = ------------------, n>~Ql• 

jL 

Hence by means of (7.2) it follows 

(7.7) M.? nRi(n;s) = 2/cD"(1), `0 < s < ~1 
n+co 

          l2 
      rlimlE{exp(-X•Z(2n)/2n12n<T}1--------{ x ,+  x  

       n-~cxx1+x2 „1,+40(1)X1/2 f,1+el)" (1)X2/2 

(7.8) 
        rlm`E

x{exp'(-X•Z(2n+1)/(2n+1))I2n+1<T}~ 

     12       1-------- 
{ x +x2 } ,• 

            x1+x2 1+4)"(1)X2/2c1+o"(1)X1/2



                                                                     v 1 

for each x = (xl,x2) 0 and  a =(x', X2):>0: From (7.8) it 

follows 

        Qx0(u) =12{x1(1-e-2ul/0"(.1))+x2(1-e-2u2/0"(1))}, 
                    X1+x 

(7.9) 

         QXl(u) =12{xl(i_e-2u2/0"(:]))+x2(1'-e-2ul/0"E1:))}, 
                                                              x1+x 

2 for each x = (x1, x2) 0 and u = (u1, u2)E R+. 

Example,2 Let (1)( ), q0 and p be those given in Exampleil. 

We consider the two-type DGWP X with the generating functions 

(7.10)F1(s,s2) = 0(s2),F2(sL,s2)•= s. 

The extinction probability is equal to (g0,g0) and the q-mean 

matrix is A = (iC0)]. Hence Ai = r1;= {1,2} and p1, p; 'T. 

The n-step generating functions F(n;s) is given by 

        r 

                   0(n/2;s1), if n`evert, i =(f,2, 

(71)) Fi(n;s) = 

0 ({n-(-1)i}/2;si+;1'), if n g bdd, i =,1,2. 

(1:1) When p = 0, F(n;s)=l foY. all n E<2,co> . 

(ii.)?Jhen .0 <p < 1, pit holdsk



 r

 ̀ li
m'  Ri(2n;s)/pn = K*(si), rQ < s<q, i = 

n+c 

(7.12) 

Ri(2n+l;s)/pn = p{1-(-.1)i}/2K*(si+,1),---: 
n+00 

                                 ~0 < s < q , i = 1,2, 

where K*(E) is that of (7.3). Here we assume 

(743) / p J r , ,j < 00, i fP 40(1) <(i: 
j=0 

Then K* () t 0 ̀  and we have 

                   xP(y)---------------------------+x2P*(y2)          P
x{Z (2n) = y2n < T <oo}_   n-~~

xl+x2 

(744) 

        lira Px{Z(2n+1) = yi2n+1,<T <00}=x1P*(12)+2x2P (Y1), x=(x1',x2)Xl 
n-~ox+ x 

 When p = ],, we also have (7.7). - (7.9) but with 

eq.) replaced by e(1)/2. 

                             Exmj i.e _-3 ., Let q() be aa one-dimensional infinitesimal 

generating function with 0"(1) <00 and 4(0) > 0. We consider 

the two-type CGWP with the infinitesimal generating functions 

     1'1212 '1'' 2l~.2 (7
..15) f(s,s) =~(s),f (s' ,s ) = b(s-1)+c(1-s), 

where b and c are constants with 0 <b <c. Let ql, be the



least nonnegative zero point of  .cp(E) and put a = c'(q1)• Then 

.V(1) / 0 implies o <0, and (P'(1) =4' implies o = The 

extinction probability is given by q = (q1,q2) where ql = ql 

and q2=;1-b(1-q1)/c, and the infinitesimal q-mean matrix is 

a =°].Hence it follows 01= (1},D2= {2},r1_{1} fib;
-c. 

and t2 = {1,2}. Now we can define the one-type CGWP {0(t;E)} 

with the infinitesimal generating function ',(E) : 

g(t;E) = CO(t;E)), 0(,0;E) = E, ,0 < E < 

Then our CGWP {F(t;s)} is given by 

1, (t;s) =~(t;sl)
, 

(7.16)
F2(t;s) = e-ctftecT(b4)(T;s1)+c-b)dT+s2O 

                   q2+e-ct{b(tecT(0(T;s1)-gl)dT+s2-q2}.                    J
O 

The CGWP X1={F1(t;s)} is divided into two cases. 

(i) 3.he.n o <Q, the one-dimensional arguments assure the 

existence of a monotone nonincreasing function K*( ) and a 

distribution {P* (j) } on <1,41'3>satisfying

J



 rlirri{q
l - (1D(t;)}/eat = K*(E), 0' < E < q,  t+p. 

(7.17) 

             ql-0(t;glE) co P*(j)Ei
, ;Q' < E tl 

t}°°q1-1)(t;0) ,j=1) 

Hence it follows     

- • 1at11 
         lireR (t;s)/e = K*(s1), 0 < s < q . 

t +00 

(7.18)P*(Y1) , Y2 = 
        rlimP{Z(t) =(Yl2)It <T<0.}= 

t+co (x1, 0)0, otherwise', 

                                        ~xl E <1,00> 

     (ii) in, caseof a = 0, the one-dimensional arguments 

tell us 

lim t{1 - 0(t;)} = 2/$"(1), 0.,< E < 1, 
t +0 

(7.19) 

n rlim` t{1 - (1)(t;exp(-n/t) } = ------------------, n > 0. 
t-}°° (1) n/2 

Hence it follows that 

                                         0`                      tR1(t;s) = 2/4)"(1),< s1<j .1, 
t+00 

(7.20)            
• 

P{Z(t) <(ul,u2)It <T} =l'-e-2u1/_!'( ) 
t->o0 (x',0) 

for each x1E <1,00> and u E R+.

0, 

 also



 /.S

 The  CGWP  X2  =  X  =  (F(t;s)}  is  divided  into  four  cases. 

     (i) When -c <a < Q, the P-F root a2 = p(a) is equal to 

It follows from (7.16) and (7.17) that 

      r ..1 2ofb1'          li
m R (t;s)/e=c+QK*(s ),i0< s < q, 

tt°° 

(7.24)P*(Y1), Y2 = 0, 
        dim' P{Z(t) _ (y1,Y2) It<T<03}_ 

     t}~x0', othe`rwise~, x # 0.. 

i ((ii) .'hen a<-c <0, it holds a2 = -c, and 

                                                             00 

R2(t;s)/e-ct = bJecT(g1-cT;sl))dT+q2-s2, 
ttco0 

(7.22) 0- < s < q, 

        slimP{Z(t) = ylt <T <°°}= P*(y) , x2 # 0, 
          t-^°° (x1, x2 ) 

where the distribution {P*(y)} is given by 

                       b{0ecT(g1_(T;q'ls1)dT+q2(,1-s2)~0 < s
L1..`y)s- 1-

       y#0 

( ii) In case of a 

R2(t;s)/te 
t+°° 

(7.23) 

        lam` Px{Z(t) =

 b(00ecT(gl-0(T;:0))dT+q2 

   0 

 = -c <0, it holds a
2 = a= -c, 

at = bK*(s1) , (;0 < s < q, 

P*(Y1), 

y1,y2)It<T<co}= 
                  otherwise

and

2 = 

x # 0

a.

•

< 1.

a +`:



 \.  /

     (iv) When -c <a = 0, it follows a2 = 0' and the CGWP X 

is critical with q = 1. By means of (7.16) and (7.19) it holds 

              'lim' tR2(t;s) =ce(1),0'< s <,,1, 
t+eo 

(7.24) 
-al/t -a2/t2 

lim'tR2(t;(e , e))b ----------------------,1',X2)>0. 
t+c0c 03:411 (~1) X1/2 

i Hence with the aid of (7.19) and (7.20) it follows 

                                                           n (7.25) QX(u1,u2) = 1 - e-2u1/e(1)~ 

• x 0, u E R+. 

Example 4. Let 0( ) be a4 one-dimensional probability 

generating function with 0'(1) = 1 and 0 <0"(1)  - 2B1 < 00. 

We consider two-type DGWP X given by the generating functions 

F1(ss2) = 0(s1) and F2(s1,s2) with F2(1) = A' >',0, 

F2(1) = 1, and 0 <F22(1) = 2B2<03 . Then the extinction pro- 

bability is equal to 1 = (1,1) and the q-mean matrix is 

A = [Ail]. Hence Al = {1}, 62 = {2}, rl. = {1}, r2 = {1,2} 

and P1)= P2 = P1 = P2 = 1. From (7.6), we have



   / 
I

(7.26)

 `lim 
nR 

n±oo

n+co

1
(n;s) = 1/B1,

nR1(n;s(n'X)) = x;1

0 < sl < 1,

1+BX
a'1> 0.

Now by Lemmas 14.7 and (5.3)

'ur
nl/2 

     n 

  oo

(n;s) = ^A'/B1 B2 , i.0• < s <

(7.27)

n.4..00

n1/2R2(n;s(n'X)) AT
1

2(a+B 1Aa)

X > 0.

Hence by Theorem 5.2 2), it follows

(7.28)
sli

m' E 
n+o (x1,x2)

{exp'(-A.Z( n)/n) n <T}

1

l+B
lit

1 - (1-

x2=.0,

l+B

1 )1/2 
 1 '

1
X

x2(0'

  that is

(7.29) Q*(x1 , x2)(u)=

1-e

1 
2B

-u
1/B.1

1
ul -i 
 eB1F1(-2. 

0

x2=LO,

;-2;)d, x2\0,



 f'

where
1F1 

1F1

is the Barnes' 

(-1/2;-2;)

 generalized hypergeometric function: 

 1(-1/2)k k 

k=0 (-2)k k! 

  co 

(k-1/2)(k-1-1/2)...(1-1/2)k . 
k=0 (k+1)! k! 
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     Footnotes 

 1.. If Aa = [0], (2.5) is always satisfied. 

     2. Or equivalently, we may use the Jordan's normal form of 

         A reminding the asymptotic forms of its products. 

     3. In the proofs of the following theorems and lemmas we 

         shall often abbreviate the suffix a and the variable s 

     where there are no confusions. 

     5. This means, in terms of measures, 

        Q(ElxE2) =1 { 2x1e-2u1/0"(',l)duI (0)    Q*
x1+x2(1)1.E2 E - 

+ 2x2 e-2u2/0"(1)du2I1(0)}, 0"(1) 

       E2E 

    where IE(•) is the indicator function. 

4. More precisely, one may take A
a with the form of 

5:a = 64 , a = 624- where 6 >,0, 6 +A; in the case of 

  7f =>         p
a13.a.

I'
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