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   Synopsis 

       Direct observation of internal structure of a bulky poly-

  ethylene fiber was made with an electron microscope using selec-

  tive etching technique by fuming  nitric acid. Striations with a 

  period of  230,1 making an angle of 45 deg. with the fiber axis, 

 0 

  and wavy striations with a period of 320 A perpendicular to the 

  fiber axis , are observed on different fractured  surfaces perpen-

                                                      0 
  dicular to each other. Fibrils  of 5000 A in width are also seen. 

  These values are consistent with a model of  double-textured fiber 

  studied by x-ray scattering methods. Amorphous tie molecules be-

  tween lamellae are oriented perpendicularly to the fiber axis  , 

  and parallel to the plane of fiber strip. Tie molecules give the 

  anisotropic structure and the broad range of melting of the fibers.
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 s1. Introduction 

    Polymer chains are usually oriented to the direction of the 

resultant maximum strain in the severely drawn sample. When the 

oriented crystalline polymers are annealed , they give meridional 

or off-meridional reflections ( so-called two-point or four-point 

pattern ) in x-ray small angle scattering ( XSAS ).1) The  mecha-

nism of fiber formation by drawing was proposed by Kobayashi ,2) 

and by  Peterlin.3)  Developement of chain orientation in sedimented 

mat of polyethylene (  PE ) single crystals was studied through 

structural changes by hot press in our previous  work.4)                                                        Morpho-

logical investigation of the final fiber texture in severely drawn 

PE will help us to understand the mechanism of chain orientation 

more clearly. 

     Various models of fiber texture have been proposed by x-ray 

scattering and electron microscope ( EM )  studies.3'5) On the 

structure corresponding to the  foAr-point XSAS , morphological 

investigations having been reported until now were made chiefly by 

XSAS method.611)                     The reliability of the models could be increased 

by direct EM observation of internal structure of fibers with double 

texture , but no EM observation has been reported yet. Though 

Gezovichi et al. succeeded in EM observation of a double texture of 

as-rolled polyoxymethylene12) and polyethyleneoxide ,13) the resul-

tant strain of their specimens appears to be too small to consider 

the texture to be a model of fiber with double texture. 

    We investigated the internal structure of bulky linear-PE 

fiber with double texture by direct EM observation of fractured 

surfaces. The PE fibers were prepared in the same way as used



by Seto et  al.7*%.9), and the anisotropic structure was confirmed by 

XSAS method. Specimens for the  EM observation were made by use of 

the selective  etching technique by fuming nitric acid  ( FNA ) 

developed by Palmer et al.14),Hay et al.15)and Peterlin et a1.16). 

In the course of the morphological studies, tie molecules were 

found to play an important role in the anisotropic nature of fiber 

strips. Hence we investigated and discussed  qualitative:effects 

of tie molecules on appearance of the anisotropic structure, and 

on melting behaviour of the fiber strips. 

 § 2. Experimental 
    Unfractionated linear-PE ( Sholex-6009 ) was molded into 1 mm 

thick sheets. They were once melted and then quenched in ice 

water. Strips about 10 mm wide were cut out of the sheets and 

were drawn at room temps. through the stage of necking.  Dimen-

sional changes after the neck-drawing were about 8 times in length, 

 1/5-..1/6 time in thickness, and  4/5^,5/6 times in width. The neck= 

drawn parts of strips were then annealed at a temperature between 

 l22-'#l28°C for half a day under zero stress. The sample preparation 

so far was almost the same as Seto et al. did?~ 9) 

     In the following, the specimens are represented as "fiber 

strips" or simply "strips"- The axes of coordination in  the, 

strip are given in Fig. 1 , where the draw axis and the normal of 

the plane of fiber are chosen as the z- and y-axes respectively. 

    Two kinds of fractured surfaces of the strips, parallel to 

the y-z and x-z planes, were prepared at liquid nitrogen temp. to 

observe the anisotropic structure expected from  the reports by 

        71-9) 
Seto et a1.. Since the y-z fractured surfaces were observed



 to  be  covered  over  with  microfibrils  introduced  by  the  fracture  , 

they were etched by FNA at 80 °C ; the density of the nitric acid 

is 1.50  g.cm-3. Other strips were treated by FNA at 80 °C for 

 1/2 h in advance ,  and then fractured parallel to the y-z 

plane. 

     These fractured surfaces were shadowed with Pt-C along the 

z-axis and stripped with polyacrylicacid. The replicas were 

backed with carbon and the polyacrylicacid supporter was removed in 

water. Because heavily treated strips were too fragile to apply 

the above mentioned replication technique , some other strips were 

Pt-C shadowed , immediately backed with carbon , and removed by 

exposure to vapour of boiling xylene. 

    The magnification of the  EM (  HU-11 ,  Hitachi Ltd. ) was cor-

rected by  1/576 and  1/2000 mm grating replicas previously to the 

present experiment. X-ray wide and small angle scattering patterns 

were taken simultaneously with a point collimated camera , with 

Ni-filtered  Cu-K0( radiation , at room  temp$.. 

    The experimental procedures to investigate effects of tie  mole-

cules on the anisotropic structure , and on melting behaviour of 

the strips will be given in  § 4. 

    3. Texture of Fractured Surfaces 

    The x-ray scattering patterns in Fig. 2 were taken with 

incident beams along the  x-axis on the  right.:  one-third portion of 

the y-z plane of a fiber strip , which was so fixed that the  de-

velopinudirection of the neck during the  cold drawing was
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 directed upwards along the patterns. The central one-third part 

fixed in the same orientation gives four-point reflections with 

equal intensity in XSAS. ( See , for example , Fig. 8a ) The 

 remaining.left,.part gives the mirror images of the patterns in 

Fig. 2 with respect to the x-z plane. The XSAS with beams along 

the y-axis gives no trace of off-meridional reflections but meridional 

two-point reflections. These show that our strips have the same type 

of double texture and of anisotropic structure as was reported by Seto 

         ^, 

et a1..79) Further they display a biased distribution of the 

double texture in the strip. 

     Seto's model viewed along the  x-axis is schematically shown in 

Fig. 3 together with structural  parameters. The twin-like arrange-

ment of adjacent fibrils corresponds to the four-point XSAS. The 

texture is assumed to develope along the  x-axis to explain the meridi-

onal two-point pattern with x-rays along the y-axis. 

    From such scattering patterns of strips annealed at 126 °C as 

given in Figs. 2 and 8a , the thickness of layers composed of crystal- 

line and amorphous parts , D , is determined as 220".02401 , and 

the  tilting'angles of the  lamellar normal 6 and of chains  5? 

reffering to the z-axis are about 45 deg. and 5 deg. respectively. 

The long period L is calculated to be about 310^-,340                                                  0 by the 

relation , L =  DZcos  e , which is deduced from the model. 

As to the width of fibrils , W , we assume a lower limit of W to 

         0 be 350 A as a criterion for the EM observation , which is calculated 

from the lower limit of the coherent length for XSAS reflections 

estimated by Seto et  a1..8)
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     To check the FNA treatment effects on the texture, wide angle 

x-ray pattern of  nonl.treated strips was compared with that of the 

strip treated at  80°6 for 40 h. It is seen that, by the treat-

ment, a disorientation of chains is caused a little, and amorphous 

halo in Fig. 4a disappears in Fig. 4b. Since the halo in Fig. 4a 

is stronger in meridional directions than in the equatorial direction, 

chains in the amorphous  regions are partly oriented perpendicularly 

to the z-axis. The treatment gradually decreases the intensity of 

XSAS peaks, and increases the intensity  Of diffuse scattering near 

the direct spot. ( Fig. 4c ) The former is considered to be caused 

by the increase in electron  densitty in the amorphous parts due to  1 

oxidation, and the latter is ascribed to voids formed by the treat-

ment. The XSAS pattern Fig. 4c is given by the strip treated for 

8 h at  809C, and is obtained by 10 times as long exposure to x-rays 

in the evacuated camera as one given in Fig. 2. The D and  6 remain 

constant within experimental errors by the treatment for up to 8 h 

at least. 

    In the following the word "fractured" will be abbreviated for 

brevity. The y-z surfaces of non-treated strips are more rough than 

the x-z surfaces of non-treated strips by the EM observations. From 

Fig. 5a ,  Structure elements of 5000  I in width ( we call them 

"fibrils"  henceforth ) are extending along the z-axis, though they 

are covered over with  microfibrils running to various directions. 

Some  fibrils were found to protrude from the shadowed film, since



they were fluttering due to the  electron bombardment during EM obser-

vation. We cannot see any other characteristic structure in it. 

In marked contrast to the y-z surfaces , we  can  see , on the x-z our, - 

                                        A faces , striations with periods of 320:t30A , which are rather wavy 

and perpendicular to the z-axis. 

    Though the y-z surfaces of etched strips are still covered with 

 microfibrils , their x-z surfaces give a clear  lamellar structure 

( Fig. 6 ) ; lamellae , stacked in layers along the z-axis , exhibit 

their accidental branching and various waviness. 

    FNA treatment previous to the fracture were found to reduce the 

microfibrils appreciably , and periodic striations  are observed on 

the y-z surfaces after the treatment for 8 h at 80 °C . ( Fig. 7 ) 

Since the disappearance of microfibrils is considered to be due to 

scissions of tie molecules which tightly cnnect contiguous stacks of 

crystalline layers , tie molecules will not be easily torn  up but 

bring out microfibrils on the fracture , especially on the fracture 

parallel to the y-z plane . Hence the different roughness of the 

x-z and y-z surfaces indicates the preferential orientation of tie 

molecules parallel to the x-axis. This type of orientation has 

already been suggested by Seto et al..7  ,9) 

    From Fig. 7 , the normal of the striations with periods of 

 230±30  I makes an angle of 45 deg. with the z-axis. The fibrilar 

structure in Fig. 5a is not observed , and a single region with 

striations inclining in the same direction spreads in an average 

width of a few ten microns. Of course , this single region might 

be composed of some fibrils , and the width of fibrils will be more 

than 5000 A at  least. This satisfies the criterion  discribed above.



Moreover , Seto et al. assumed that adjacent fibrils with rather 

small width should shift along the z-axis each other to avoid the 

creation of excess voids due to misfit between them. Our  obserlp, 

vation means that fibrils are so wide that the importance of the 

arrangement of fibrils is reduced. 

    The biased distribution of the double texture seen in Fig. 2 

seems to develope on a more macroscopic scale than the width of each 

fibril. It should be pointed out that the symmetry of the texture 

is consistent with that of the plastic strain in an as-drawn strip. 

We can observe the macroscopic local strain by drawing parallel marker= 

lines  perpendicular_to the z-axis in advance. After the neck-draw 

central portions are seen to be drawn more severely than both sides 

by the distortion of the lines. Such strain pattern is very similar 

to that of flat metal bar test piece. Hence , in spite of the micro-

scopic texture of the initial strip , the plastic strain is a con-

spicuous feature of a flat bar test piece. This can explain the 

symmetry of the texture seen in Fig. 2 , because the symmetry will 

not be lost before the perfect melting. The inhomogeneity of the 

initial strip , i.e. , spherulitic texture , tends to produce local 

 \€-,/ 
variations in the plastic strain , which  determi&the inclining direc-

tion of lamellae in each fibril. 

    It is safely concluded that the results obtained by EM obser-

vations agree with those determined by x-ray scattering methods  , 

qualitatively in the anisotropic nature  and  quaptiteively in the 

structural parameters.
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 4i4. Tie Molecules in Fiber Strips 
     Tie molecules have been considered to play some roles on the 

anisotropic structure ,7,9) and superheating of PE fibers.1719) 

It is almost confirmed that the FNA treatment cuts tie molecules 

and weakens the tight connection between  lamellae and between fibrils. 

Hence , effects of the treatment , in other words , effects of de-

crease in tie molecules on the fiber texture were studied through 

structural change of the strips by re-annealing. Effects  on  melt-

ing behaviour were also examined with DSC ( Rigaku-thermoflex  , 

Rigakudenki Ltd. ) 

 4.1 Effects of tie molecules on the anisotropic structure 

    Strips  annea1ed at  122 °C were treated for various durations 

including zero hour , and thereafter re-annealed just below their 

respective melting  points. Their melting points are indicated by 

T3 in Tables II and III in  § 4.2 . Corresponding structural 

changes studied by  XSAS are given in Fig. 8 and in Table I  . 

    The double texture in non-treated strip is maintained up to at 

132.5 °C ( Fig. 8a ) and complete disorientation of lamellae is 

observed at 133 °C . Re-annealing at 132.8 °C causes partial  dis-

orientation of  lamellae , but some of them still hold their initial 

orientation.  ( Fig. 8b ) On the contrary , the textures of strips 

once treated for  longer than 1 h are changed by the re-annealing. 

( Figs. 8c  ^-8f ) It is notable that such changes will not be 

caused by stored energy which was  accumglated in the amorphous in 

the course of the previous drawing  ,lo) since the texture in non= 

treated strip does show considerable stability. 

    The structural change can be explained as follows. Seto et  al.
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 suggested that the volume effect discussed by Flory20) could account 

for chain tilting in oriented semi-crystalline polymers. Following 

Flory's discussion , we  can deduce a modified equation , 

 N///Nc =  Aci/(2.A.a• cos  00.  (  1  ) 

 , where Ac and  Asare the areas of chain cross-section in crystalline 

and amorphous regions respectively , and the angle  O( is the tilting 

angle of chains mentioned above. Number of crystalline chains 

crossing unit area of  crystal-amorphous interface is represented by 

 N , and the number N
a is that of chains crossing unit area of a plane 

placed in the amorphous region apart from the interface by a certain 

distance. Directions of chains crossing the plane are assumed to 

be completely random. This condition is not satisfied in the present 

strips , but here we neglect it. The ratio  Nev/kc is considered to 
be an upper limit of number fraction of tie molecules , which leave 

from the interface and cross the plane at least. 

    Scissions of tie molecules reduce the ratio N
a///Nc, which 

leads to the decrease in the angle  0( following to  eq.(1)  . 

Thus we can estimate the ratio  Na///ic from the observed angles 

 6 and  cf  . The last column in Table I is the caluculated values 

of the ratio , where we assume the ratio of  A
c to Aa equal to  unity 

for simplicity. We obtain a rate of scission of tie molecules to 

be 9% per h , which is consistent with the fact  thht it takes 8 h 

to observe the y-z fractured surfaces free from the  microfibrils.
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 4.2 Tie molecules and melting behaviour of fiber strips 

     Typical thermograms are given in Fig. 9 together with chara-

cteristic temperatures ,  T1 T4 . The  T1 , T3 and T4 are the 

initiation- , peak- and termination-temps. of the melting respectively. 

The T2 is the temperature at which the tangential of the melting 

curve crosses the base line of the thermogram at an angle of 45 deg. 

in the case of a chart speed of 8 mm per  min as shown in Fig. 9 . 

The T3 is  regarded as the melting point of the fiber strip. The 

effect of heating rate and that of duration of the FNA treatment 

are studied separately. The former is summarized in Table II , 

and the latter is in Table III  . 

    Non-treated strip shows appreciable rise in  T4iwith a fast 

heating rate of 20 °C per  min as seen in Table II  . The melting 

point T3 increases a little , but not so appreciable as T4 . The 

high-temp. tails of melting curves are decreased considerably by the 

 FNA treatment. 

    The effect of treatment duration is very interesting. The 

treatment of only 1/2 h lowers T4 by 4.5 °C , and further lowering 

of T4 is only 2  °C by the treatment for 5 h  .  ( Table III ) Since 

the treatment for 8 h enables us to observe the internal structure 

free from the microfibrils , it is reasonable to assume that scissions 

of almost all tie molecules need the treatment for 8 h at least. 

Further we can assume a constant scission speed from the discussion 

in  §. 4.1  . The observation leads to the idea that rather small 

fraction of tie molecules  sholdd owes to the high-temp. tails of 

melting curves , since a fraction of 93% or more of tie molecules 

still survives  after the treatment for 1/2 h
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     Similar ideas to explain the  superhehting of stirred crystals of 

PE were given by Kawai et al.  ,17) Keller et  al.18) and  Zachmann.19) 

 Zachmann19)studied theoretically the entropy of semi-crystalline 

polymer , and broad melting in such system could be ascribed to the 

decrease in the entropy of melting due to two factors ; the one was 

that both ends of non-crystalline parts of chains were fixed , and 

the other was that volume available to those parts of chains were 

 limited  by sorrounding crystallites. Such considerations can be 

applicable to the present strips. 

    By a short treatment , the  T1 is increased and the portion of the 

melting curves below T2 is lowered as seen in Fig. 9 . Tie molecules 

in semi-crystalline system should take rather extended conformations 

in thermodynamically equiliburium  state.19)                                              Since such tie molecules 

begin to melt or relax at lower temperature due to their characteristic 

entropies , the semi-crystalline polymer with many tie molecules gives 

a lower temperature T1 than the one  without tie molecules. 

      Summary 

 An anisotropic structure of a specially oriented PE with double 

texture is observed directly with EM by use of the selective etching 

technique by fuming nitric acid. On the y-z fractured surfaces  , 

                                               0 striations with a mean period 230 A making an angle of 45  deg. with 

the z-axis are observed in accord with the off-meridional four-point 

 XSAS. On the x-z surfaces , rather wavy striations with a mean 

period of 320 A are observed to be perpendicular to the z-axis on an 

average. Fibrils are estimated to be wider than 5000I. at least.



The different roughness of the y-z and x-z fractured surfaces of 

non-treated strips indicates a preferential orientation of tie 

molecules  to the x-axis. Results of EM observation agree well with 

a model of fiber with double texture proposed by Seto et al.  . 

    Re-annealing experiments show that the FNA treatment influences 

the texture through change in tilting angle of chains , and this • 

can be caused by the reduction of tie molecules. Scission of even 

 a small fraction of tie molecules can cause appreciable lowering of 

the termination-temp. of melting T4  , and tie molecules are also 

responsible on the shape of lower-temp. side of the  endotherms of 

the fiber strips. 
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Table I Changes in the ratio Na! Ncof fiber strips with duration 
of the FNA treatment by re-annealing. 

    Strips are pre-annealed at 1226C, then treated by FNA at  804C 

 and  atlast re-annealed just below respective melting points. 

See  the  text and Fig. 8. 

 Strips treated 

forNa/Nc 
   0 h 48 deg. 5.0 deg. 53.0 deg. 0.83 

 1/2 h 46 4.5 50.5 0.80 

 3/2 b 40 3.0 43.0 0.69 

  3 h 29 1.0 30.0 0.58 

 6  h 0 0 0 0.5



Table II Variation of endotherms of fiber strips with heating rate. 

    Strips are annealed at 122°C. 

 .Heating rate Characteristic Temps . 
Strips 

    per  min2T4      T1T23  

           20 °C  100.0°C  122.5°C  136.5°C  153.5°C 

Non= 10 103.5 123.5 133.8 139.5 

treated 5 106.0 124.0 133.0 137.0 

        1 124.5 130.0 133.0 134.5 

           20 °C  97.0°C  122.0°C  131.5°C  142.5°C 
 Treated . 

        10 100.0 122.5 130.5 134.0 
  for 

        5 106.0 123.5 129.5 132.0 
 6h 

        1 124.0 126.5 129.5 130.5



Table III. Variation of  endotherm- of)fiber strips with duration of 

the treatment by FNA at  80°C. 

    All the strips were pre-annealed at  128°C for 12 h. 

    Heating rate :  5°C per  min. 

   Duration 

   ofCharacteristic Temps. 

treatment1T2 T3 T4 

 0 h  100.0.0  128.0°C  133.5°C  140.0.0 

  1/2 h 118.0  127.8 132.5 135.5 

  2 h 106.0 127.5 131.5 135.0 

  5 h 105.0 127.0 131.0 133.5
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Figure captions 

 Fig.%1 : The axes of coordinations in the fiber strip. 

Fig. 2 : X-ray scattering patterns of ( Right ) small angle, and of 

        ( Left ) wide angle, taken with beams along the x-axis on the 

       right one-third portion of the y-z plane of a fiber strip, 

       which was so fixed that the developing direction of the neck 

        was directed upwards along the patterns. 

Fig. 3 :  Seto's  model of fiber with double texture, 

            Twin-like adjacent fibrils, composed of stacks of oppositely 

        inclined  lamellar crystal-amorphous parts are arranged side by 

        side consecutively. Hatched areas are crystalline parts and 

       lines in the areas represent chain axes, which make an angle  9? 

        with the z-axis. Blanked areas are amorphous parts. 

 nL ;•The normal of lamellae, L ; The long period, 

          D ; The  total thickness of a  pair , of crystalline and amor-

       phous layers, W ; The width of a fibril. 

Fig. 4 : X-ray scattering patterns with beams along the x-axis, 

       Wide angle patterns of strips ( a ) non-treated,  ("b ) treated 

       by FNA for 40 h at 80°C.  ( c ) Small angle pattern of the 

       strip treated for 8 h at 80°C. 

Fig. 5 : Electron micrographs of fractured surfaces of non-treated 

       strips ; ( a ) the y-z surface, ( b ) the x-z surface,



Fig. 6  : An electron  micrograph of the x-z surface etched for 4  h 

         after the  fracture , Cr-shadowed  . 

Fig. 7 : An electron micrograph of the y-z surface , treated for 8  h 

        previously to the fracture. 

Fig. 8 : Changes in x-ray small angle patterns of treated and non= 

         treated strips with re-annealing  , 

           Strips were  pre-annealed at 122 °C , and FNA treatment 

        was done at 80 °C. 

         Non-treated , (  a ) Annealed at 132.5  °C ( b ) Annealed 

       at 132.8 °C , Treated , ( c ) For 1/2 h , ( d ) For 1.5 h , 

        ( e ) For 3 h ,  (:f ) For 6 h , then annealed just below 

         respective melting points. 

Fig. 9 : Variations of endotherms of strips pre-annealed at 128 °C 

        with duration of FNA treatment , Heating rate ; 5 °C per  min
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