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ABSTRACT 

 

 We examine how the nonuniform distribution of current density develops along 

the electrode surface in confined electrochemical system.   For this purpose, we 

numerically study free convection and mass transfer accompanying the electrochemical 

reactions on the electrode surface immersed in an aqueous electrolyte solution.   

Two-dimensional numerical simulation is performed for copper electrolysis in an 

aqueous copper sulfate (CuSO4) electrolyte solution sandwiched by the two vertical 

plane electrodes.   We focus on the dependence of vertical nonuniformity of current 

density distribution on mass transfer associated with free convection.   The 

development mechanism of free convection is investigated for a particular case of the 

applied current density of 2 mA/cm
2
 and the electrode spacing of 2 mm.   A steady 

state is realized at large times.   A single swirling motion compatible with the buoyant 

flow is observed along the electrode and wall surfaces at the steady state.   It is 

confined to the thin boundary layer and the interior region stays almost stagnant.   A 

heavier (or lighter) electrolyte solution is transferred to the lower cathode (or upper 

anode) region by this rotational flow.   The supply of concentration from the counter 

electrode causes nonuniform current density distribution along the vertical direction.   

By changing the applied current density or the electrode spacing, we find that as the 

applied current density increases, current density distribution becomes more 

nonuniform by the stronger rotational fluid motion.   As the electrode spacing 

decreases, more nonuniform distribution of current density is attained earlier, even 

though the steady swirling flow gets weaker.    
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Section 1 Introduction 

 

 There exist many electrochemical systems in our daily lives, such as the metal 

electroplating, primary and secondary batteries, copper wiring technique in the 

microprocessor and graphic chip, and the electrochemical pattern etching in electronic 

circuit design.   In these systems, we know that the electrochemical deposition and 

dissolution reactions of metal on the electrode surface are essential phenomena.   It is 

thus indispensable to understand and control the electrochemical reactions, which may 

improve the efficiency and productivity in battery systems and electrolytic tankhouse. 

 The electrolytic refining and winning processes have been widely adopted as 

the extraction method of high purity metals such as copper, silver, gold, and zinc.   

The current industrial copper electrolytic tankhouse commonly consists of many 

electrode arrays, where 1 meter high vertical plane electrode surfaces are placed face to 

face, separated by a 0.01-0.1 meters thick electrolyte solution layer.   On the other 

hand, with the great progress in microelectronics, especially motivated by the successful 

application of Damascene process in IBM [1], the electrochemical method to fill trench 

or pore with metal has attracted much more attention [2-5].   The feature scale of the 

trench is the order of 10
-7
-10

-4
 meters and the aspect ratio is generally within 0.1 to 10. 

Figure 1.1 shows the relationships between the aspect ratio B (see Eq. (2-38) 

for definition) and the applied average current density jave frequently employed in 

several industrial copper electrochemical systems.   In this figure, the “Region IV” 

represents the parameter region where some functional materials such as copper 

nanotube, nanowire, and nanoparticle have been fabricated by the electrochemical 

method in the laboratory level. 
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Figure 1.1: Relationship between the aspect ratio B and the 

applied average current density jave in several industrial copper 

electrochemical systems. Region I: Copper electrorefining 

system [6-a, 7], Region II: Copper electrowining system [6-b], 

Region III: Trench filling and pattern etching by electrochemical 

method [8-15], Region IV: Laboratory level electrochemical 

material tailoring research. 

 

It is clearly seen that the electrochemical systems have a broad range of B and jave, and 

the operational electrolytic condition varies widely depending on the intended use.    

The optimal designing of operational electrolytic condition is indispensable to 

improve the industrial productivity.   The high electrolytic current operation is desired 
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because the productivity is proportional to the applied electrolytic current.   However, 

it is well-known that the current density distribution readily becomes nonuniform when 

a high electric current is applied.   The dendritic or needle-like electrodeposited metal 

growth and unwanted side reactions are possibly induced.   As a result, the high 

electric current operation causes the nonuniform electrolytic metal film in the 

electrorefining and winning systems.   Besides, it produces the void in the 

electrochemical trench filling, which results in the breakdown and degradation of 

copper wiring.   It is required to profoundly understand the development mechanism 

of the nonuniform current density distribution along the electrode surface.    

 So far many theoretical and numerical studies have been carried out on mass 

transfer phenomena accompanying the electrochemical reactions, since Wagner’s 

pioneering work [16].   However, most studies have employed the boundary layer 

theory in semi-infinite media, and only two extreme cases of boundary condition on the 

electrode surface have been discussed.   One is the uniform current density along the 

electrode surface, which is realized when the applied electrolytic current is sufficiently 

low [17-21].   The other is the zero concentration of a reactant species on the electrode 

surface when the applied electrolytic current is extremely high [16-23].   Even in 

recent studies of confined electrochemical system [24-28], the above-mentioned 

simplified boundary conditions are imposed on the electrode surface.   Therefore, it is 

still unsolved how the current density distribution develops along the electrode surface. 

The aim of this study is to examine the development mechanism of current 

density distribution along the electrode surface.   Whence, we study free convection 

and mass transfer caused by the electrochemical reactions in confined electrochemical 

system.   In particular, we focus on the dependence of the vertical current density 
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distribution on mass transfer associated with free convections developing along the 

vertical plane electrodes immersed in a stagnant aqueous electrolyte solution.   In 

Section 2, a mathematical model is developed in a binary aqueous electrolyte solution 

system.   The governing equations are described by the mass and momentum 

conservation equations, in which the buoyancy effect is accounted through the 

Boussinesq approximation.   The boundary condition modeling is based on the 

electrochemistry, where the dilute-solution theory for ion transport is employed.   In 

Section 3, two-dimensional numerical simulation is carried out for copper electrolysis in 

an aqueous copper sulfate (CuSO4) electrolyte solution as a model case.   A summary 

of this study is given in Section 4. 
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Section 2 Mathematical Model and Calculation Procedure 

 

2.1 Problem Statement 

 

 In this section, a mathematical model is developed in a binary aqueous 

electrolyte solution system.   Figure 2.1 shows the geometry of the two-dimensional 

(2D) container filled with a dilute aqueous electrolyte solution to be considered, where 

the coordinate system is defined. 

 

 

 

Figure 2.1: Schematic diagram of the 2D electrolytic cell. 
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The two vertical walls are the electrodes, and the bottom and top of container are the 

electrically insulated walls.   The vertical electrode height is denoted by H and the 

electrode spacing L.   Both electrodes are made of the same metallic material.   The 

left (or right) electrode is the cathode (or anode) where the electrochemical deposition 

(or dissolution) of metal takes place on the surface.   The electric current flow is 

generated by the power supply apparatus.   The total electric current over the whole 

electrode surface area is denoted by I.   The power supply is controlled to provide a 

constant total electric current. 

 The electrolyte is a dilute aqueous solution composed of a mixture of the small 

amount of a chemical compound and the excess amount of distilled water.   A 

chemical compound is metallic salt composed of the same metallic ion species as 

electrode material.   A mixture of the chemical compound and distilled water is called 

the fluid.   Below given are the basic equations describing physicochemical 

hydrodynamic phenomena during the electrochemical reactions. 

 

2.2 Model Equation 

 

 Mathematical model includes the unsteady advection-diffusion equation for the 

concentration of a chemical compound, 

.
D

D 2mD
t

m
∇=     (2-1) 

Here, m is the concentration of a chemical compound, D the diffusion coefficient, and t  

the time.   tDD  stands for the substantial derivative.   The continuity and 

Navier-Stokes equations for the incompressible viscous fluid motion are written as 
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,0
D

D
　=⋅∇+ uρ

ρ
t

    (2-2) 

.
1

D

D 2
gu

u
+∇+∇−= ν

ρ
p

t
  (2-3) 

Here, ρ  is the fluid density, u the fluid velocity, p the pressure, ν  the kinematic 

viscosity, and g the gravitational acceleration. 

 When the additive amount of a chemical compound is very small, the linear 

relationship 

( )000 mm −=− βρρρ    (2-4) 

may be assumed between concentration and fluid density.   Here, 0ρ  is the fluid 

density at the equilibrium concentration m=m0, and β is the densification coefficient.   

A similar linear relationship is assumed between fluid temperature and density.   The 

conversion of electric energy to thermal energy, the so called “Joule heating”, takes 

place on the electrode/electrolyte interface due to the passage of an electrolytic current 

[29-a].   If a long-term charging is carried out at high electrolytic current, such a heat 

generation cannot be negligible.   However, when the applied electrolytic current is 

sufficiently low, the variation of temperature can be negligible during the 

electrochemical reactions, as the temperature measurements with thermocouples usually 

made in the laboratory scale electrochemical system.   Under the Bousinesq 

approximation, Eqs. (2-2) and (2-3) are transformed into  

,0　=⋅∇ u     (2-5) 

( ) .
1

D

D
0

2

0

gu
u

mmp
t

−+∇+∇−= βν
ρ

  (2-6) 

Here, the Bousinesq approximation implies that the fluid density is considered as a 

variable only in formulating the buoyancy term ( )g0mm −β  and all other properties 

are taken as constant. 
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 As the initial condition we assume that the concentration of a chemical 

compound is homogeneous and an aqueous solution is at rest before the onset of the 

electrochemical reactions, which may be written as 

.0

,0

,0

=

=

=

w

u

mm

    (2-7) 

Here, the variables ( )wu,  denote the ( )zx,  components of the fluid velocity.   Just 

after completing the electrical circuit, the initial current density distribution on the 

electrode surface is considered as uniform in the vertical direction, that is, 

( ) ( ).0   ave Hzjzj ≤≤=    (2-8) 

Here, j is the current density and jave is the average over the entire electrode surface.   

The current density means the electric current per unit electrode surface area. 

 No-slip boundary condition is applied on both the electrode and insulated wall 

surfaces, that is, 

( ) ( ) 0,, == zxwzxu  at x=0, L and z=0, H.  (2-9) 

 

 We describe below the boundary condition for the concentration of a chemical 

compound.   Let us consider an electrolyte solution containing a 1:1 chemical 

compound AX.   It completely dissociates into 1A z and 2X z ions in an aqueous 

solution based on the dissociation reaction, 

.XAAX 21 zz +→    (2-10) 

Here, 1A z and 2X z  represent the chemical formulas of cation and anion, respectively.   

z1 and z2 express the valencies of each ion, being positive for cation and negative for 

anion.   When the concentration of a chemical compound AX is given by m and the 

concentrations of 1A z and 2X z  ions are denoted as C1 and C2, we find 
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. 21 mCC ==     (2-11) 

These ion concentrations satisfy the electroneutrality condition, 

.0
2

1

∑
=

=
k

kkCz     (2-12) 

This condition means that there exists the same number of equivalents of cations as 

anions, and solution is thus electrically neutral.   Such an electroneutrality is observed 

in all regions except in thin electric double layer.   Because the length scale of the 

double layer thickness is of the order of 10
-9
-10

-8
 meters and the time scale is of the 

order of 10
-9
-10

-7
 seconds, the electronutrality is a good approximation in order to 

describe physicochemical hydrodynamic phenomena over both the length scale of 

10
-3
-10

0
 meters and the time scale of 10

0
-10

4
 seconds [29-b, 30-a]. 

 We now describe the boundary condition for the concentration of a chemical 

compound on the electrode surface.   It is based on the ionic mass transfer phenomena 

expressed by the dilute-solution theory [29-c].   That is, the flux density Nk of ion 

species k consists of diffusion, ionic migration, and advection terms, 

.uN kkkkkk CCCD +∇−∇−= φµ    (2-13) 

Here, Dk and µk represent the diffusion coefficient and mobility of ion species k, and φ  

the electric potential.   Note that µk has positive sign for cation and negative sign for 

anion, which means that cation and anoin move in the opposite direction with each other 

under an electric potential gradient. 

 Because no-slip boundary condition is applied on the electrode surface, the net 

mass flux of each ion species k normal to the electrode surface Nk,x on the cathode (x=0) 

and anode (x=L) surfaces is given by 

.
,0,0

,0,

Lx

kk

Lx

k
kLxxk

x
C

x

C
DN

==
=









∂
∂

−







∂

∂
−=

φ
µ  (2-14) 
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After starting the electric current flow, the concentration boundary layers for both 

1A z and 2X z  ions inevitably develop due to the electrochemical reaction on the 

electrode/electrolyte interface and the condition of electroneutrality.   Because the net 

mass flux of an ion species k produced by the electrochemical reaction Nk,x on the 

electrode surface is expressed by Faraday’s law [29-d], we find 

.
,0, j

nF

s
N k

Lxxk −=
=

   (2-15) 

Here, n is the number of electrons transferred in the electrochemical reaction, F the 

Faraday constant, and sk is the stoichiometric coefficient for the generalized 

electrochemical reaction equation 

∑ −→
k

z

kk nes kM    (2-16) 

with Mk being the symbol of the chemical formula.   Only the electrochemical 

deposition and dissolution of metal are considered as the electrochemical reactions on 

the electrode/electrolyte interface, and no other reactions take place.   That is, only 

1A z ion reacts on the electrode/electrolyte interface.   On the cathode surface, the 

electrochemical deposition of metal A takes place, which may be written as 

A.A 1 →+ −ne
z

    (2-17) 

On the other hand, the reverse reaction of Eq. (2-17) takes place on the anode surface. 

The boundary conditions for 1A z and 2X z  ions on the electrode surfaces are written as 

,
,0

11

,0

1
1,0,1

nF

j

x
C

x

C
DN

LxLx
Lxx =








∂
∂

−
∂
∂

−=
==

=

φ
µ  (2-18) 

.0
,0

22

,0

2
2,0,2 =








∂
∂

−
∂
∂

−=
==

=
LxLx

Lxx
x

C
x

C
DN

φ
µ  (2-19) 

Based on the condition of electroneutrality, we find 
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,1
12

1

,012

2112

nF

j

x

mDD

Lx









+−
−=

∂
∂

+−

+−
−

= µµ
µ

µµ
µµ

 (2-20) 

under the presumption of constant physical properties.   Then, we obtain 

( )
.

1 1

,0

j
nF

t

x

m
D

Lx

∗

=

−
=

∂
∂

−    (2-21) 

Here, 

12

2112

µµ
µµ

+−

+−
=

DD
D    (2-22) 

is the diffusion coefficient of a chemical compound AX appearing in Eq. (2-1).   It is 

expressed by combining the diffusivities of 1A z and 2X z  ions with their mobilities.   

D is called the “binary electrolyte diffusion coefficient” [29-c].   Here,  

12

1
1 µµ

µ
+−

=∗t     (2-23) 

is the transference number of 1A z ion in a binary AX aqueous electrolyte solution.   It 

represents the mass flux of 1A z ion transferred by the ionic migration term.    

 Boundary condition for the concentration on the electrically insulated bottom 

and top wall surfaces is based on the presumption that no electrochemical reaction takes 

place on these interfaces, that is,  

.0
,0

=
∂
∂

= Hzz

m
    (2-24) 

 

2.3 Current Density Distribution 

 

 Now we describe the calculation procedure for local current density j along the 

electrode surface.   Although the overall electric current I is constant, the local current 

density j is not uniform along the electrode surface but varies depending upon the 



 12 

concentration of a reactant metallic ion at the corresponding position.   Random 

thermal collisions of a reactant ion on the electrode/electrolyte interface cause the 

electrode reaction to take place, sometimes in the anodic direction and sometimes 

cathodic direction.   At the equilibrium condition, the rate of the anodic reaction is 

equal to that of the cathodic reaction.    

 Figure 2.2 shows the schematic of the relative energy difference of the electron 

in anodic and cathodic reactions [29-e]. 

 

 

Figure 2.2: Schematic description of the relative energy 

difference of the electron in anodic and cathodic reactions. The 

dashed line indicates the electrode/electrolyte interface. 

 

The driving force for electrode reaction is determined by the thermodynamic properties 

of the electrode and electrolyte solution.   These thermodynamic properties are the 

electrochemical potentials.   The electrochemical potential difference between the 

electrode and electrode/electrolyte interface is the driving force for electrode reaction.   

The rate of electrode reaction in response to this driving force depends on the kinetic 

rate parameter.   Therefore, it is indispensable to express the effect of this potential 

difference on the rate of electrode reaction.   During the anodic reaction, electrons are 
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transferred from the electrode to the lowest unoccupied energy level of a reactant 

species on the electrode/electrolyte interface.   On the other hand, vice versa takes 

place during the cathodic reaction.   Thus, applying a positive (or negative) potential 

relative to the equilibrium potential of electrode drives the reaction in the anodic (or 

cathodic) direction.   The rate of electrode reaction is characterized by the current 

density as expressed by Eq. (2-15).   The potential difference between the electrode 

and electrode/electrolyte interface is termed the “electrode surface overpotential”, and it 

is given by the symbol ηS.   The rate of electrode reaction is often related to ηS by the 

Butler-Volmer equation, which has the form 

.expexp
0,1

,1

0, 













−−















= S

C
S

AS

e
RT

F

RT

F

C

C
jj η

α
η

α
γ

  (2-25) 

Here, R expresses the universal gas constant and T represents the temperature.   The 

first term in the right hand of Eq. (2-25) is the rate of the anodic direction, while the 

second is that of the cathodic direction.   The difference between these rates gives the 

net rate of electrode reaction.   The parameter je,0 is called the exchange current 

density and is analogous to the rate constant used in chemical kinetics.   The net 

direction of electrode reaction depends on the sign of j.   The current density has 

negative value for the cathodic reaction and positive for the anodic reaction.   The 

parameters αA and αC, called “apparent transfer coefficients”, are additional kinetic 

parameters that relate how an applied potential difference favors one direction of 

electrode reaction over the other.   The rate of electrode reaction depends on the 

concentration of a reactant ion species in the electrolyte solution adjacent to the 

electrode surface.   It is just outside the electric double layer, because the double layer 

is regarded as the part of the electrode/electrolyte interface [29-f].   The parameter γ 
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expresses how the concentration of a reactant metallic ion species on the electrode 

surface influences the rate of electrode reaction.   The numerical values of αA, αC, and 

γ generally depend on the nature of electrode reaction such as the process of electron 

transfer across the electrode/electrolyte interface.    

 In the right hand of Eq. (2-25), all symbols except for C1,S and ηS are constant.   

C1,S expresses the electrode surface concentration of 1A z  ion, and it is a variable to be 

computed in the numerical calculation.   ηS is uniform along the vertical direction and 

it is numerically calculated by the constraint that the integration of local current density 

over the whole effective electrode surface area is equal to the constant overall electric 

current I, that is,  

.ave
0

HjdzjjdAI
H

=== ∫∫    (2-26) 

Here, ( )HA =  expresses the total electrode surface area per unit electrode depth.  

Therefore, ηS gives a measure of degree of nonequilibrium to drive an overall electric 

current I. 

 

2.4 Dimensionless Expression 

 

 The governing equations (2-1), (2-5) and (2-6) are non-dimensionalized by 

introducing the following variables: 

0' xxx = , 0' xzz = , 0' uuu = , 0' uww = , ( )00' uxtt = , 2

00' upp ρ= , 0' mmm = .

 (2-27) 

Here, the variables with subscript 0 are reference scale values defined later.   The 

non-dimensional governing equations read as 
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Here,  

D

ν
=Sc      (2-32) 

is the Schmidt number,  

ν
00Re

ux
=     (2-33) 

the Reynolds number, and  

2

0

3

0Gr
ν

βgmx
=     (2-34) 

the Grashof number. 

 The reference scales are defined as follows.   The electrode spacing L is 

chosen as the reference length scale x0: 

.0 Lx =      (2-35) 

The reference velocity scale u0 is determined as 

( ) ,GrSc
52

0
HzH

D
u

=

∗⋅=    (2-36) 

from the analytical solution of the laminar boundary layer equations for free convection 

along a vertical plane electrode having uniform current density jave [31-33] (see 

Appendix).   Here,  
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is the modified Grashof number at z=H, and   



 16 

L

H
B =      (2-38) 

is the aspect ratio.   From the above estimation of reference scales, it is recognized 

that L, B, and jave are controlling factors to determine the dimensionless numbers. 

 

2.5 Discretization Procedure 

 

 Using the first-order backward difference scheme for time discretization, we 

write the governing equations (2-28)-(2-31) as 
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Here, superscripts N and N+1 indicate the time steps.   Given the numerical values at 

'' tNt ∆⋅= , those at ( ) '1' tNt ∆⋅+=  are computed.   Eq. (2-40) is the Poisson 

equation for pressure, where 1' +Np  is determined so as to make [ ] 1
''

+⋅∇ N
u  zero. 

 The convective terms in Eqs. (2-39), (2-41) and (2-42) are approximated in a 

linear form for 1' +Nu  and 1' +Nw , that is,  
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The first term in the right hand of Eq. (2-40) is approximated by  
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 The computational grid with uneven interval mesh size in the x direction is 

employed in order to describe the thin concentration boundary layer formed along the 

electrode surface more accurately.   The non-dimensional concentration boundary 

layer thickness may be estimated as ( ) 21
ReSc'

−⋅=δ  from the scaling analysis of Eq. 

(2-28).   When the Schmidt number is 2740 and the Reynolds number is 0.5, 

corresponding to typical model case of the present numerical calculation, we have 

2107.2' −×=δ .   The uneven mesh size in the x direction is generated from the 

electrode surface to the middle line of the electrode spacing by a geometrical 



 18 

progression as 
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Here, subscript M indicates the grid number beginning with the electrode surface (M=1).   

Figure 2.3 shows the computational grid of 80×100 cells in the case of L [mm]=2 and H 

[cm]=1.     

 

 

Figure 2.3: Computational grid of 80×100 cells employed in 

numerical simulation in the case of L [mm]=2 and H [cm]=1. 

 

The minimal mesh length min'x∆  is set to 310−  and the common ratio r less than 1.15 

is employed in order not to make the numerical calculation extremely less accurate in 

the middle region of the electrode spacing.   In the z direction, the mesh size is taken 
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uniform.    

 The non-dimensional physical 2D plane ( )',' zx  is transformed to the 

calculation plane ( )ζξ , .   Generally, the coordinate transformation is expressed by  

( )
( ).,''
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zz

xx

=

=
    (2-44) 

Then, the partial derivatives with respect to 'x  and 'z  are written as  
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Here, 

ξζζξ '''' zxzxJ −=    (2-46) 

is the transform Jacobian.   Here, subscripts ξ and ζ stand for the partial differentiation 

with respect to ξ and ζ, respectively.   Then, Eqs. (2-39)-(2-42) are written as 
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The Laplace operator 2'∇  in the calculation plane is defined by  
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For space discretization, the second-order central difference scheme  
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is applied except for the convective term, for which the third-order upwind (Kawamura) 

difference scheme 

( )

( ),464
12

3

88
12

1

),2(

1

),1(

1

),(

1

),1(

1

),2(

),(

1

),2(

1

),1(

1

),1(

1

),2(

),(

1

),(

),(

+
−

+
−

++
+

+
+

+
−

+
−

+
+

+
+

+

+−+−
∆

+

+−+−
∆

=







∂
∂

N

ji

N

ji

N

ji

N

ji

N

ji

N

ji

N

ji

N

ji

N

ji

N

ji

N

ji

N

ji

N

ji

hhhhh
f

hhhh
fh

f

ξ

ξξ

　　　　　　　　　　

(2-54) 

is adopted.   Here, subscript ( )ji,  indicates the grid point in calculation plane 

( )ζξ , . 

 

 A brief flow chart of numerical calculation at each time step is given as below. 

 

(1) The concentration field ( )
1

,'
+N

jim  is calculated by solving Eq. (2-47) with 

boundary conditions.   The concentration fields of each ion ( )
1

,1'
+N

ji
C  and 
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( )
1

,2'
+N

ji
C  are calculated based on Eq. (2-11). 

(2) Both anodic and cathodic current density distributions in the vertical direction 

are calculated by determining the electrode surface overpotential ηS based on 

Eqs. (2-25) and (2-26), in order to satisfy the constraint that the integration of 

local current density over the whole electrode surface area is equal to the 

applied constant overall electrolytic current I.    

(3) The pressure field ( )
1

,'
+N

jip  is calculated by numerically solving Eq. (2-48) with 

boundary conditions. 

(4) The velocity fields ( )
1

,'
+N

jiu  and ( )
1

,'
+N

jiw  are numerically calculated by solving 

Eqs. (2-49) and (2-50) with boundary conditions. 

 

In all numerical calculations, 410' −=∆t  is employed.   The iterative calculation 

procedure for concentration, current density distribution, pressure, and velocity fields is 

based on the Successive Over-Relaxation (S.O.R) method.   The iteration is finished 

when the absolute values of difference between the successive iteration counts, i.e. 

)1(

),(

)(

),( '' −− I

ji

I

ji mm , )1(

),(

)(

),( '' −− I

ji

I

ji pp , )1(

),(

)(

),( '' −− I

ji

I

ji uu , and )1(

),(

)(

),( '' −− I

ji

I

ji ww  are less than 10
-2
 

respectively, and 
( ) ( )1

aveave

−− II
jj  is less than 10

-4
.   Here, superscripts in parenthesis 

(I) and (I-1) express the number of iterations. 
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Appendix Laminar Boundary Layer Equations for Free Convection 

along a Vertical Electrode with Uniform Current Density 

 

 We consider the steady boundary layer flow formed along the vertical plane 

electrode in the coordinate system as shown in Figure A.1.    

 

 

Figure A.1: Coordinate system to be considered. 

 

The infinitely-long vertical plane electrode is immersed in an aqueous electrolyte 

solution.   It is assumed that the electrode spacing is large enough to neglect the effect 

caused by the counter electrode.   From the scaling analysis, we neglect the pressure 

gradient and viscous dissipation with respect to the z direction in Eqs. (2-1), (2-5), and 

(2-6).   The governing equations expressing the conservations of mass, momentum, 

and concentration for laminar free convection in the boundary layer are written as 
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The solution of Eq. (A-2) is written in terms of the streamfunction ψ  defined by 
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By introducing similarity variables, 

,51

1 xzE −=η      (A-5) 

( ) ,
2

54

E

z
F

−

=
ψ

η      (A-6) 

( ) ( )
( ) ,
1 51

ave1

01

zjt

mmnFDE
H

∗−

−
=η     (A-7) 

the partial differential equations (A-1) and (A-3) are transformed to ordinary differential 

equations.   Here, the numerical values of E1 and E2 are defined by  
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The vertical velocity component w is written as 
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 The boundary conditions are derived by noting that u=w=0 and  
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on the electrode surface ( )0=x , and that w=0 and 0mm =  at a great distance from the 

electrode surface ( )∞=x .   By the use of Eqs. (A-6), (A-7), and (A-10), the boundary 

conditions are written as  
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The numerical solution to the ordinary differential equations (A-11) and (A-12) subject 

to the boundary conditions (A-14) and (A-15) is obtained by a shooting method.   

Calculated result is obtained for the Schmidt number of 1000, which is the same order 

in the conventional electrochemical system. 

 Figure A.2 shows the numerical solution of ( )ηddF . 

 

 

Figure A.2: Calculated result of ( )ηddF  at 1000Sc = . 
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It is seen that the maximum value of ( )ηddF  becomes 1.1.   Based on Eq. (A-10), 

the maximal vertical velocity component wmax is written as  

( ) .GrSc1.1
52

max

∗⋅=
z

D
w     (A-16) 

We employ the value close to wmax at z=H as the reference velocity, as shown in Eq. 

(2-36). 
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Section 3 Numerical Simulation in Copper Electrolysis System 

 

3.1 Parameters in Electrochemical Model System 

 

 In this section, numerical simulation is carried out by the mathematical model 

developed in Section 2.   Copper electrolysis in a binary copper sulfate (CuSO4) 

aqueous solution is chosen as the model electrochemical system.   It is because many 

studies have been carried out so far on mass transfer and physical property 

measurements during copper electrolysis in a CuSO4 aqueous solution [16-23, 34-45].   

The reproducibility of physicochemical phenomena accompanying the electrochemical 

reactions has been confirmed.   The reaction mechanism of the electrochemical 

deposition and dissolution of copper is relatively simple, and a smooth copper film is 

electrochemically deposited as long as it is not too thick.   Thus, copper electrolysis in 

a CuSO4 aqueous solution is a good subject for the initial model numerical experiment.    

In the case of copper electrolysis in a binary CuSO4 aqueous solution, the 

cupric ion (Cu
2+
 ion) and the sulfuric acid ion (SO4

2-
 ion) are present in liquid phase due 

to the dissociation reaction written as  

.SOCuCuSO -2

4

2

4 +→ +     (3-1) 

On the cathode/electrolyte interface, the electrochemical deposition of copper,  

Cu,2Cu 2 →+ −+ e     (3-2) 

takes place.   The reverse reaction of Eq. (3-2) takes place on the anode/electrolyte 

interface.   Referring to Section 2, Cu
2+
 ion is the cation and labeled 1 in symbols, and 

SO4
2-
 ion is the anion and labeled 2.   The number of electrons transferred in the 

electrochemical reaction is -2 for the cathodic reaction and +2 for the anodic reaction 
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based on Eq. (2-16).   The physical properties of a binary CuSO4 aqueous solution are 

listed in Table 3.1, which is based on the physical properties of a 0.6 M(=mol/dm
3
) 

CuSO4 aqueous solution [38-40].   The parameters associated with the electrochemical 

copper deposition and dissolution reactions are tabulated in this table [43-45]. 

 

 

Table 3.1: Physical properties used in numerical simulation. 

 

 Table 3.2 lists the electrolytic conditions such as the predetermined electrolyte 

concentration of CuSO4, the copper electrode height H, the electrode spacing L, the 

applied average current density jave, and the absolute temperature T.   The electrode 

height is fixed value of 1 cm, and the electrode spacing is 1 or 2 mm.    
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Table 3.2: Electrolytic conditions. 

 

Tables 3.3 summarizes the dimensionless numbers associating with the applied 

average current density jave, the aspect ratio B, the characteristic length scale x0, and 

velocity scale u0. 

 

 

Table 3.3: Dimensionless numbers and reference scales. 
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3.2 Flow and Boundary Layer Structures 

 

3.2.1 Velocity Field 

 

 We describe here the development mechanism of free convection.   Figure 

3.1 shows the contour of streamfunction Ψ  (see Eq. (A-4) for definition) at various 

times after starting the electrochemical reactions in the case of (jave [mA/cm
2
], L 

[mm])=(2, 2).   The cathode is placed on the left side and the anode on the right side 

in all the subsequent figures.   Note that the vertical size is reduced in this figure. 
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Figure 3.1: Time evolution of streamfunction 00xuΨ . (a) t 

[s]=24, (b) 54, (c) 96, (d) 132, (e) 258, (f) 414, (g) 906, (h) 6000. 

The contour interval is 1001  in (a)-(d) and 2001  in (e)-(h). 

The flow direction is indicated by arrows. 
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The electrochemical reaction causes concentration difference near the electrode surface: 

a lighter (or heavier) electrolyte solution is produced near the cathode (or anode) surface.   

This induces the upward and downward convections along the vertical cathode and 

anode surfaces, respectively.   They form a single swirling fluid motion compatible 

with this buoyant flow (Figure 3.1(a)).   At the same time, the shear flows are formed 

along the top and bottom walls.   These shear flows then get stronger.   Figure 3.1(b) 

shows that the vortex starts to tilt and deform.   The successive deformation process of 

this vortex structure (Figures 3.1(c)-(e)) is observed with decreasing intensity by 

viscous diffusion effects.   Thereafter, the flow activity becomes further weaker except 

the vicinity of the cathode and anode surfaces where the upward and downward flows 

are continuously driven by buoyancy (Figures 3.1(f)-(h)).   In Figure 3.1(h), the 

interior region is almost stagnant, whereas a boundary layer flow exists along the 

electrode and wall surfaces of the container. 

 Next, we examine the detailed flow structure by plotting a cross-sectional 

velocity profile.   Figure 3.2 shows a typical time evolution of free convective velocity 

profile at the middle of the electrode height (z [mm]=5).   The positive value of w 

indicates the upward flow, the negative one the downward flow.   The velocity profile 

changes similarly in time.   The velocity magnitude increases from zero on the 

electrode surface to a maximum, then gradually decreases toward the center line (x=L/2).   

The region between the electrode surface and the point that the velocity magnitude 

decreases to zero may be defined as the hydrodynamic boundary layer (HBL).   As 

shown with the dotted and dashed lines, the HBL thickness is initially equal to L/2, and 

the maximal value of free convective velocity wmax in the HBL increases with time.   It 

is consistent with the initial development of a single swirling fluid motion as seen in 
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Figures 3.1(a) and (b).   Thereafter, the dashed-dot, dashed-two dotted and solid lines 

indicate that both the HBL thickness and wmax decrease with time due to the viscous 

effect.   The dashed-two dotted and solid lines show that the interior region has almost 

no vertical component of the fluid velocity.   At 6000 seconds, the solid line indicates 

that the HBL thickness and wmax decrease to about 0.4 mm and 0.04 mm/s, respectively.    

 

 

 

Figure 3.2: Transient variations in free convective velocity 

profile at z [mm]=5. The dotted line: t [s]=24, the dashed line: 54, 

the dashed-dotted line: 132, the dashed-two dotted line: 414, and 

the solid line: 6000. 
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 Now, we examine the decay process of free convection quantitatively by 

looking at the time evolution of wmax. 

 

 

Figure 3.3: Time evolution of maximal free convective velocity 

wmax at z [mm]=5. 

 

As seen in Figure 3.3, initially wmax increases rapidly and attains a maximum of 0.21 

mm/s at t [s]=54.   After that, it decreases first rapidly then slowly.   Finally, it 

converges to about 0.04 mm/s as the time increases toward infinity.   The decreasing 

region of wmax is compatible with the deformation and the subsequent weakening of the 

swirling flow by viscous diffusion effect in Figures 3.1(c)-(h). 

Whether a steady state is attained or not may be examined more accurately by 

using the Shanks transformation.   Let us denote the value of wmax at time tn by ( )ntw , 
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and assume that as ∞→nt , wmax approaches a limit ∞w  as 

( ) ,n

n qwtw α+= ∞     (3-3) 

where α and q are constants.   Then, the ratio, the so called Shanks transformation,  

( ) ( ) ( )
( ) ( ) ( )nnn

nnn
n

twtwtw

twtwtw
A

211

2

11

−+

−
=

−+

−+    (3-4) 

may converge to ∞w  as the time increases more rapidly than ( )ntw .   Figure 3.4 

shows the time evolution of An thus calculated.    

 

 

Figure 3.4: Time evolution of calculated A(t) at z [mm]=5. 
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It is clearly seen that ( ) nAtA ≡  converges to a finite value of about 0.04 mm/s as the 

time increases after 3000 seconds.   This value agrees well with 04.0=∞w  mm/s 

estimated from Figure 3.3.   Therefore, we confirm that the present numerical 

calculation in the case of (jave [mA/cm
2
], L [mm])=(2, 2) attains a steady state.   We 

define in this study that the steady state is attained when wmax agrees with ∞w  

estimated from the Schanks transformation with an accuracy of 1%.   In the case of (2, 

2), the steady state is attained at t [s]=6000. 

 As seen in Figure 3.1(h), the swirling flow at the steady state is confined to the 

vicinity of the electrode and wall surfaces.   In order to capture the flow characteristics, 

we plot in Figure 3.5 the horizontal component of the fluid velocity on line x [mm]=1 

and the vertical component on line z [mm]=5 at t [s]=6000.   We observe clearly the 

HBL along the walls in which the fluid flows clockwise.   The thickness of the vertical 

boundary layers is about 0.4 mm and the maximum value of velocity is about 0.04 mm/s.   

The flow fluxes in the upward and downward boundary layers are the almost same 

value of 3103.6 −×  mm
2
/s per unit depth.   As for the boundary layers along the top 

and bottom walls, the thickness is about 1 mm, the maximum value of velocity is about 

0.015 mm/s, and the flow flux is estimated as 3100.6 −×  mm
2
/s per unit depth.   

Therefore the flux is conserved in the boundary layers formed along the electrode, 

bottom, and top wall surfaces.    
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Figure 3.5: Velocity profiles at the steady state. The solid line: 

u(z) on line x [mm]=1, the dashed line: w(x) on line z [mm]=5.  

t [s]=6000. 

 

3.2.2 Concentration Field 

 

 Figure 3.6 shows the contour of concentration profile at various times after the 

initiation of the electrochemical reactions in the case of (jave [mA/cm
2
], L [mm])=(2, 2). 
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Figure 3.6: Transient variations in contour of concentration 

profile. (a) t [s]=24, (b) 54, (c) 96, (d) 132, (e) 258, (f) 414, (g) 

906, (h) 6000. The region where the concentration is less than the 

initial value of 0.6 M is shaded. The contour interval is 300m . 
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Because the concentration of CuSO4 is depleted (or enriched) near the cathode (or 

anode) surface due to the electrochemical deposition (or dissolution) of copper there, 

the concentration boundary layers (CBLs) are formed along the cathode and anode 

surfaces, respectively.   At early times a swirling fluid motion is weak, so that the 

diffusion term dominates the advection term in the advection-diffusion equation.   As 

seen in Eq. (2-21), the direction of mass flux caused by the electrochemical reaction is 

perpendicular to the electrode surface.   The diffusion term mainly acts in the x 

direction near the electrode surface, so that the CBL thickness is almost uniform in the z 

direction (Figure 3.6(a)).   Thereafter, the anodic and cathodic CBLs develop faster in 

the upper and lower end regions of 0<z<1 and 9<z<10, respectively (Figure 3.6(b)).   

As a swirling fluid motion develops, mass transport by the right- (or left-) ward flow 

near the top (or bottom) wall surface cannot be negligible.   At the time of Figure 

3.6(c), the supply of concentration from one electrode reaches the other electrode side 

by the rotational flow.   In Figures 3.6(c)-(e), we observe the mass transfer by the 

swirling fluid motion.   In the mean time, the stable electrolyte stratification is formed 

(Figures 3.6(g) and (h)) as the fluid motion gradually reduces to a steady swirling flow 

by viscous diffusion effects (Figures 3.1(g) and (h)).   In Figures 3.6(f)-(h), the 

molecular diffusion in the z direction is seen.   At the steady state, Figure 3.6(h) shows 

that the CBL thickness is almost uniform in the x direction except for the vicinity of the 

cathode and anode surfaces. 

The steady state concentration profiles at z [mm]=1, 5, 9 are drawn in Figure 

3.7.   The CBL thickness has the almost same value of 0.17 mm in the both electrode 

sides.   Referring to Section 2 (Page 17), the non-dimensional CBL thickness 

( ) 21
ReSc'

−⋅=δ  may be estimated from the scaling analysis of Eq. (2-28).   When 
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04.0=∞w  mm/s is employed as the velocity scale, we have 

( ) 15.0ReSc
21

0 =⋅= −
∞ xδ  mm, which is indicated with the dashed line in the figure.  

It agrees well with that estimated from the present numerical calculation.    

 

 

Figure 3.7: Steady state concentration profile of Cu
2+
 ion. The 

dashed-dotted line: z [mm]=1, the solid line: 5, and the 

dashed-two dotted line: 9. t [s]=6000. 

 

 The developments of vertical concentration distribution of Cu
2+
 ion and the 

current density distribution on the cathode surface (x [mm]=0) are plotted in Figure 

3.8(a) and (b), respectively.    
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Figure 3.8: Vertical distribution of (a) concentration of Cu
2+
 ion 

and (b) current density on the cathode surface. The dotted line: t 

[s]=0, the dashed line: 10, the dashed-dotted line: 54, the 

dashed-two dotted line: 414, and the solid line: 6000.   In (b), 

the lines at t=0 and 10 overlap each other. 
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The dashed line in these figures shows the almost vertically uniform distribution.   In 

Figure 3.8(b), the dotted and dashed lines overlap each other, which implies that the 

vertical current density distribution remains unchanged during the initial 10 seconds.   

By the time t [s]=54, a heavier electrolyte solution produced near the anode surface is 

transferred to the cathode side by the rotational flow, and we observe an extreme value 

around z [mm]=0.5 in both the concentration and the current density distributions.   

This position is close to the maximum velocity point in the boundary layer along the 

bottom wall surfaces (see Figure 3.5).    

 

3.3 Dependence of Nonuniformity of Current Density Distribution on 

Electrolytic Conditions 

 

We investigate the effect of the operational conditions on the magnitude and 

decay behavior of convection.   The time evolution of wmax in the HBL formed in the 

vicinity of the cathode surface at z [mm]=5 is employed as the typical barometer to 

describe transitional regime.   Besides, we are able to estimate the flow flux in the 

upward and downward boundary layers from the steady state wmax and the HBL 

thickness.   Figure 3.9 shows the time evolutions of wmax for three cases (jave 

[mA/cm
2
], L [mm])=(2, 2), (2, 1), and (1, 2).    
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Figure 3.9: Time evolution of maximal free convective velocity 

wmax at z [mm]=5 for (jave [mA/cm
2
], L [mm])=(2, 2) (solid line), 

(1, 2) (dashed-dotted line), and (2, 1) (dashed-two dotted line). 

 

First we compare the peak values of wmax for same L but different jave, i.e. the solid and 

dashed- dotted lines.   The peak value of wmax is about 0.155 mm/s at t [s]=72 for (1, 

2), while it is about 0.21 mm/s at t [s]=54 for (2, 2).   Thus, when L is fixed and jave 

increases, the peak value becomes larger and the corresponding peak time becomes 

earlier.   This implies that as jave is larger, the gradient of the initial rise gets steeper.   

Next we note that the peak value of wmax is about 0.19 mm/s at t [s]=54 for (2, 1).   

Therefore, as L decreases, the peak value becomes smaller but the peak time hardly 

changes, so that the gradient of the initial rise becomes more moderate.    

Concerning the approach to the steady state, we observe in Figure 3.9 that wmax 
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converges to the respective limit in all the three cases.   By the use of the definition of 

the steady state introduced in the Section 3.2.1 (Page 35), we find 0285.0=∞w  mm/s 

at t [s]=5700 for (1, 2) and 0365.0=∞w  mm/s at t [s]=4800 for (2, 1).   It is thus 

found that the steady state is attained earlier for smaller L.    

In order to investigate the effect of the operational conditions on the 

nonuniformity of vertical current density distribution, we plot in Figure 3.10 the steady 

state cathodic current density distribution along the vertical direction for the above three 

cases.    

 

 

Figure 3.10: Steady state vertical current density distribution 

along the cathode surface for (jave [mA/cm
2
], L [mm])=(2, 2) 

(solid line), (1, 2) (dashed-dotted line), and (2, 1) (dashed-two 

dotted line). 
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By comparing the vertical current density distributions for same L but different 

jave, i.e. the solid and dashed-dotted lines, we see that the current density distribution 

becomes more nonuniform in the z direction for larger jave.   This dependence of the 

nonuniformity of current density distribution on jave is reasonable because the stronger 

rotational flow brings the heavier fluid from the anode side.   It is consistent with the 

past experimental studies [16-22].    

Next, we compare the vertical current density distributions for same jave but 

different L, i.e. the solid and dashed-two dotted lines.   We find that the nonuniformity 

is stronger for smaller L.   This result is not trivial because the shortening of L makes 

two opposite effects.   One is to reduce the nonuniformity by weakening the swirling 

flow (Figure 3.9).   The other is to enhance the nonuniformity by the reduction of 

molecular diffusion effect as shown below. 

Figure 3.11 shows the contour of the steady state concentration profile for (jave 

[mA/cm
2
], L [mm])=(2, 2) and (2, 1).   It is seen that concentration diffusion in the 

vertical direction is larger for (2, 2).   It is ascribed to the viscous effect and molecular 

diffusion over a long distance along the top and bottom wall surfaces.   Thus, the 

enhancement of nonuniformity of current density distribution for smaller L obtained in 

the present case is understood as that the molecular diffusion effect dominates the 

change of magnitude of the swirling flow. 
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Figure 3.11: The contour of concentration profile at the steady 

state for (a) (jave [mA/cm
2
], L [mm])=(2, 2), and (b) (2, 1). The 

region where the concentration is less than the initial value of 0.6 

M is shaded. The contour interval is 300m . 
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Section 4 Concluding Remarks 

 

We studied the development mechanism of vertical current density distribution 

on the electrode surface throughout the electrochemical reactions in confined 

electrochemical system.   The concentration of CuSO4 is depleted (or enriched) near 

the cathode (or anode) surface due to the electrochemical deposition (or dissolution) of 

copper on the surface.   Because the fluid density increases with the concentration, the 

upward and downward convections develop along the cathode and anode surfaces, 

respectively.   A swirling fluid motion compatible with the buoyant flow initially 

develops.   At the same time, strong shear flows are formed along the top and bottom 

walls.   After that, mass transfer by advection is clearly observed, and the vertical 

concentration diffusion process is then seen.   At the final time of the present 

numerical simulation, the interior region is almost stagnant, whereas a boundary layer 

flow prevails along the electrode and wall surfaces of the container. 

We confirmed by the Shanks transformation that the steady state electrolyte 

flow attained after a long-term decay period by viscous effect.   At the steady state, a 

swirling boundary layer flow is observed along the electrode and wall surfaces.   A 

heavier (or lighter) electrolyte solution is transferred to the lower cathode (or upper 

anode) region by this rotational flow.   The supply of concentration from the counter 

electrode causes an extreme value in the vertical current density distribution.   It is 

located in the lower cathode region, which is close to the maximum velocity point in the 

hydrodynamic boundary layer formed along the bottom wall surface.   Mass transfer 

associated with the rotational flow promotes the vertically nonuniform current density 

distribution. 
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We investigated the dependence of the vertical nonuniformity of current 

density distribution on the operational electrolytic conditions such as the applied 

average current density jave and the electrode spacing L.   When L is fixed and jave 

increases, current density distribution on the electrode surface becomes more 

nonuniform.   This dependence of the nonuniformity of current density distribution on 

jave is reasonable because the stronger rotational boundary layer flow brings the heavier 

fluid from the anode side.   By comparing the vertical current density distributions for 

same jave but different L, we saw that the nonuniformity was stronger for smaller L, even 

though the steady swirling flow got weaker.    This result is not trivial because the 

shortening of L makes two opposite effects.   One is to reduce the nonuniformity by 

weakening the rotational flow.   The other is to enhance the nonuniformity by the 

reduction of molecular diffusion effect.   We recognized that the enhancement of 

nonuniformity of current density distribution for smaller L obtained in this study was 

understood as that the molecular diffusion process dominated the change of the 

magnitude of swirling fluid motion. 

 

 The mathematical model developed in this thesis does not take the electrode 

shape evolution into account.   However, the electrode surface roughness actually 

develops with the duration time of electrolysis.   The growth rate of surface roughness 

is proportional to the current density, so that we consider the methodology described in 

this thesis as useful for further numerical study.   However, it is still unsolved how to 

mathematically describe the surface roughness development as the moving boundary 

problem.   The electrochemical deposition and dissolution mechanisms severely 

depend on the electrode surface condition and the degree of nonequilibrium.   The 
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recent progress in micro- and nano-scale experimental setups may provide much helpful 

information to model the surface roughness development. 

 

 The comparison to the real physicochemical phenomena is indispensable to 

develop more realistic and sophisticated model equation and boundary condition.   

Certainly it is quite difficult to figure out the complete picture of physicochemical 

hydrodynamic phenomena in the actual electrochemical experiment.   But we are able 

to measure and observe the local characteristic mass transfer and flow structures.   

Repetition of numerical experiment and subsequent comparison to measurement of the 

real electrochemical phenomena accumulates the know-how.   It may lead further 

improvement of mathematical model.   The author believes that methodology and 

calculated results in the present study contribute to more realistic numerical modeling in 

electrochemical system. 
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