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Abstract 

Bulk metallic glasses (BMGs) have a variety of excellent properties compared 

with the majority of conventional crystalline alloys. However, they exhibit limited 

global plasticity at room temperature because of shear banding. Several methods have 

been proposed to improve the limited ductility of BMG; one method is the 

homogeneous distribution of crystalline particles. However, our understanding of the 

interaction between the crystalline particles and shear bands (SB) is not sufficient. Here, 

we performed molecular dynamics (MD) simulations of mode II deformation of a 

notched BMG plate and BMG plates containing one nano-crystalline particle ahead of 

the notch bottom. To compare the effect of crystalline particle size on the resistance to 

SB propagation, we used the J-integral. By comparing J-R curves and the deformation 

behavior of the BMG plates with and without nano-crystalline particles, we found that 

the resistance to shear banding is efficiently improved by introducing crystalline 
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particles with sufficient size, compared to the SB width. 

 

PACS: 62.20.F-; 64.70.pe; 62.25.Mn; 02.70.Ns 

 

1. Introduction 

Bulk metallic glasses (BMGs) have excellent properties [1, 2] such as a high 

elastic limit and good resistance to fatigue. However, due to shear banding, they exhibit 

limited global plasticity at room temperature. The shear bands (SB) in BMG are roughly 

planar and very thin (10–20 nm); they nucleate preferentially from surfaces, with 

intense heating and evidence of melting at the trailing edges [3, 4]. Recent research 

indicates that controlling the initiation and propagation of SBs is effective in enhancing 

the mechanical properties of BMG [5, 6]. Several methods have been proposed to 

improve the limited ductility of BMG [7-10], including homogeneous distribution of 

nano-sized crystalline particles. However, there has not been sufficient analysis of the 

interaction between crystalline particles and SBs. In particular, it is important to 

determine the most effective particle size and ideal crystal-volume fraction, because of 

difficulties in controlling the particle size and volume fraction and in experimental 

observation of internal structural changes. 

Here we perform molecular dynamics (MD) simulations of mode II 

deformation of a notched Zr65Al7.5Ni10Cu17.5 BMG plate, and BMG plates containing 

one nano-crystalline particle of Ni ahead of the notch bottom. To compare the effect of 

the size of crystalline particles on SB propagation, we use the fracture-mechanical 

parameter J-integral. Comparing J-R curves, we investigate the appropriate size of 

crystalline particles for improving the ductility of BMGs. 
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2. Calculation method and simulation models 

2.1. MD Simulation 

Various properties of materials at an atomic level can be estimated through 

MD simulations by tracing the trajectories of all particles in a system. Experimental 

observation of atomic structural changes in amorphous structures is extremely difficult; 

therefore, MD simulations have been applied in many research studies [11-16]. In this 

study, we use the velocity-scaling method to control the temperature. The periodic 

boundary conditions are applied to the x, y, and z-axes in the generation process of the 

amorphous structure, and only to the z-axis in simulations of mode II deformation. We 

employed the generalized embedded-atom-method (GEAM) potential as an interatomic 

potential [17]. 

2.2. Preparation of BMG plates 

An alloy plate with amorphous structure, which we call a BMG plate, was 

numerically produced by melting–rapid quenching MD simulations (see details in [12, 

13]). The material composition was initially defined as Zr65Al7.5Ni10Cu17.5, and the 

thickness of plate Lz was determined as the periodic boundary condition applied to the 

thickness direction (z-axis) when a Ni nano-crystalline particle, whose [211] direction is 

taken in the z-axis, is introduced. The heating and quenching rate are both 1 × 10
14

 K/s. 

By this procedure, we obtained a BMG plate with a unit cell size (Lx, Ly, Lz) of about 

(82.8, 51.8, 2.16 nm), which is composed of about 500,000 atoms. We then introduced a 

notch of length Lc = 10 nm and bottom radius Rc = 2 nm at the center of the left edge, as 

shown in Fig. 1(a). 

After generating the notched BMG plate, we introduced nano-crystalline 
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particles of various sizes into the BMG plate (see detail in [13]). Here, we chose ]110[  

direction to the x direction, and this crystal orientation is the most deformable under the 

loading condition defined in the next section. The center of the particle was defined 

such that its left edge is placed at a distance of D = 15 nm from the notch bottom (Fig. 

1(b)). We produced eight different models with particle diameters, d, of 3, 6, 9, 12, 15, 

18, 21, and 24 nm, and labeled these A3, A6, A9, A12, A15, A18, A21, and A24, respectively. 

In addition, A0 is the BMG plate without a crystalline particle. 

2.3. Simulation conditions for Mode II deformation 

In this study, the initial temperature of the notched plates was defined very 

low (1 K), to cause pronounced inhomogeneous deformations, or to enhance sharp SB 

nucleation and propagation. First, relaxation was performed for 10 ps under constant 

temperature, with the boundary atoms, which are located inside the cut-off distance (rc 

= 0.648 nm) from the left, top, and bottom edges of the BMG plates, fixed in the x- and 

y-axis. After the relaxation, the upper half of the boundary atoms were moved to the 

right, and the lower half were moved to the left, with the displacement of all the 

boundary atoms controlled in the y-axis (Fig. 1(b)). In the initial 2 ps of deformation, 

the deformation velocity increased linearly until V = 50 m/s in order to reduce the 

propagation of elastic waves. No temperature control was applied during the 

shear-banding simulations. 

2.4. Calculation of J-integral 

We used the J-integral in the form of a domain integral. Equation (1) was 

employed for the J-integral to remove the influence of the distribution of initial stress 

and potential energy [12]. 
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Here, ij
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 and W
()

 are the atomic stress tensor and the potential-energy density of atom 

 at the deformed state, and ij
0()

 and W
0()

 are those at the initial state, respectively. 

ui
()

 and V
()

 are the displacement and volume of atom , and  is Kronecker’s delta. The 

integration domain S is constructed by the rectangular edges with a width of several 

nanometers surrounding the notch bottom (Fig. 1(b)), and Q is the linear function, whose 

value is 1 inside of the integral domain and 0 outside of the domain. In this study, we 

neglect the temperature effect on J, because the internal stress in BMGs is very high. 

Thus, the contribution of the temperature gradient is considered negligible. 

 

3. Estimation of shear-banding resistance and discussions 

3.1. Dependence of J on the integral domain 

First, we calculated the J-integral for Model A0 when the shear distance x is 

8 nm, with changing width wS and the distance from notch bottom to the right edge of 

the integral domain lS (Fig. 2(a)), and then examined the influence of the integration 

domain. The dependence of J on the position of the right edge when the width of the 

integral domain wS is 3 and 5 nm is shown in Fig. 2(b). The oscillation of the J-integral 

is large when the domain width is 3 nm; therefore, we need a wider integral domain. J 

becomes large when the distance from the notch bottom is longer than 60 nm; i.e., the 

distance between the right free edge and the right edge of the integration domain is 

shorter than about 10 nm. This is the influence of the free surface of the right edge of 

the BMG plate. From this result, we found that it is necessary to choose a distance 

between the notch bottom and the right edge of integral domain lS less than 60 nm. Next, 
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we show J-displacement curves when the width of the integral domain is 5 and 7 nm 

(Fig. 2(c)). When the domain width is 5 nm, the oscillation of the J-integral due to the 

position of the right edge is large. On the other hand, when the width is 7 nm, the 

dispersion is comparatively small, and the J-integral becomes almost path independent. 

From these results, we choose wS = 7 nm and lS = 50 nm as the appropriate J-integral 

domain for the present models. The determined integration domain is shown in Fig. 

1(a). 

3.2. Dependence of shear-banding resistance on particle size 

The J-displacement curves for a monolithic BMG plate (A0) and BMG plates 

containing one crystalline particle (A3, A6, A9, A12, A15, A18, A21, and A24) are shown in 

Fig. 3(a). The values of the J-integral are considerably improved for the models 

containing crystalline particles with a diameter of more than 15 nm, compared to the 

values for A0. Here, the horizontal axis of the J-R curves should be the crack extension 

a from the usual definition of the J-R curves that are used to estimate ductile crack 

growth behavior. Crack growth is not always observed for BMG, and the propagation of 

SB is considered more essential. In this study, we used the extension of a 

high-temperature region that appears in SBs as the definition of a, because the higher 

the temperature, the lower the resistance to deformations, thus making the resistance 

very small. We employed Tc = 350 K as the critical temperature. Thus, the x-component 

of the distance between the notch bottom and the leading edge of the region over 350 K 

is defined as a (Fig. 3 (b)). Figure 3 (c) shows the relationship between x and a for 

model A0. Finally, we changed the horizontal axis of the J-displacement curves from x 

to a and obtained the J-R curves (Fig. 3 (d)). We also show the slopes of the R curves 

dJ/da, and the slopes of the lines of the second stage of the J-R curves (Fig. 3(e)). The 
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slopes represent stability of SB growth. When a crystalline particle with a diameter 

larger than 15 nm is introduced, the slope becomes steeper. This result indicates that 

these larger crystalline particles improve the shear-banding resistance of BMGs in this 

simulation condition. 

In this study, we chose Tc = 350 K for the critical temperature because of the 

limitation of time and spatial scales of the MD simulations; this temperature is 

considerably lower than the glass transition temperature Tg. However, we believe that 

the influence of Tc on the particle-size effect is very small, because a increases almost 

linearly in Fig. 2 (c); therefore, the change in Tc only alters the turnoff point of the J-R 

curves Jc and a small part of the slope of dJ/da. 

3.3. Relationship between the J-integral and the deformation state 

To investigate the relationship between the J-R curve and deformation state, 

we evaluated the distributions of the equivalent strain using the weighted function [14]. 

The distributions for A0, A6, and A15 at x = 16 nm are shown in Fig. 4. Since the 

crystalline particles are very small and they include no defects, the crystalline particles 

are harder than the amorphous phase. Despite the most deformable crystal orientation, 

they do not undergo deformation. When the crystalline particle is small, as in A6, the 

particle is swallowed by the primary SB developed from the notch bottom (Fig. 4 (b)). 

Introducing a crystalline particle with a diameter of 15 nm, however, notably changes 

the shape of the region with high equivalent strain (Fig. 4 (c)). The boundary particle 

size (~15 nm) is close to the width of the primary SB in BMG without a crystalline 

particle (A0) (Fig. 4 (a)). Consequently, we consider that a crystalline particle of 

sufficient size, compared to the width of SBs at the position of the particle, is necessary 

to prevent the propagation of the SB or to change the propagation path. 
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On the other hand, hard nano-crystalline particles can also work as a 

nucleation source of SBs [15]. In this calculation, we can also observe the nucleation of 

SBs around the crystalline particle (arrows in Fig. 4(c)). Since the effect of particle size 

on the nucleation of SBs is quite small [15], the increase in particle size leads to a 

decrease in the density of the deformation source under the same crystal-volume 

fraction, and therefore, the plastic work around the primary SB is reduced. Moreover, 

for coarse arrangements of crystalline particles, the primary SB can grow more easily 

up to the critical length, which potentially causes catastrophic propagation [16]. It is 

considered that once the unstable SBs are generated, the growth of the SBs cannot stop 

without the use of some mechanism capable of arresting running SB such as soft 

inhomogeneities. Therefore we consider that, for the introduction of hard crystalline 

particles, an appropriate particle size for efficiently improving the ductility exists. 

 

4. Conclusion 

By estimating the dependence of J on the integral domain, we employed the 

reliable domain. Further, by evaluating J-R curves, we found that the shear-banding 

resistance of BMG is improved by introducing crystalline particles with a sufficient size, 

compared to the width of the SB. On the other hand, an increase in particle size leads to 

a decrease in the nucleation source of SBs. Therefore, we find that an appropriate 

particle size that provides the best ductility exists. 
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Figure captions 

 

Figure 1: Simulation model: (a) Geometry of the simulation model. (b) Boundary 

conditions, position of the crystalline particle, and appropriate integral domain for the 

J-integral. The left edge of the particle is placed at a distance of D = 15 nm to the right 

of the notch bottom. The diameter of the particle in this figure is d = 12 nm. 
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Figure 2: Dependence of J on the integral domain: (a) Definition of the width of integral 

domain wS and distance from the notch bottom to the right edge of the integral domain 

lS. lS is changed by moving the right region of the integral domain, as shown by the 

dotted arrow. (b) Dependence of J on the position of the right edge of integral domain 

(x = 8 nm). (c) Influence of wS and lS on the J-displacement curve. 
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Figure 3: J-integral and J-R curves: (a) J-displacement curves. (b) Definition of SB 

extension a. The critical temperature was chosen as Tc = 350 K. (c) Relationship 

between shear displacement x and SB extension a for A0. (d) J-R curves converted 

from J-displacement curves, using the relationship between x and a. (e) Dependence 

of the slope of the R curves dJ/da on particle size. 
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Figure 4: Distribution of equivalent strain (x = 16 nm). 


