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Abstract

A local Heine-Abarenkov model potential satisfying the energy minimum condition of the
crystal is presented for alkali metals. The remaining parameter is determined from the first
zero of the original pseudopotential by Animalu and Heine themselves using the atomic energy
levels from spectroscopic data. The local Heine-Abarenkov potential obtained is noticeably
different for Li from the previous models. Then, the crystal energy, pressure and bulk modulus
of alkali metals are calculated and compared with the results of the previous models by other
workers. The third order contributions are also investigated, and their effects are not negli-

gible but small for alkali metals except Li.

§1. Introduction

The physical properties such as cohesive energy, pressure, bulk modulus and lattice dy-
namics of simple metals have been widely investigated from the electron theory of solids. The
pseudopotential concept was proposed for the band calculation, but the perturbational treat-
ment of pseudopotential has opened possibilities for calculating various crystal properties
directly without band calculations. The so-called second order perturbation theory based on
the pseudopotential formalism has been applied to simple metals with many successful ex-
amples (see for example!)). Thereafter, since the expression for the third order perturbation
term was obtained by Lloyd-Shollz) and Brovman et al.*), some works® ™® about the third
order contributions have been reported. At present, the pseudopotential formalism is applied
to the anharmonicity of lattice dynamics and the problem of complicated lattice defects for

simple metals, and its extension to noble and transition metals is studied intensively.

§2. Local Heine-Abarenkov Potential
§82.1. Determination of the Parameter

The pseudopotential has a nonlocal character essentially, but the local model potential
is convenient and desirable, especially in the perturbational treatment. For simple metals,
the typical examples with only one parameter are given in the following two types. One is
the empty-core potential by Ashcroft?) (hereafter referred to as A) in the Fourier-transform

Vp(q) of the atomic pseudopotential Vy(r).

qnZe?
Vb(qr)=—Q > cos(g-re) . (1)
0
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The other is the optimized model potential by Shaw'® given by
4nZe*  sin(g -re)

M@= = — @)

In egs. (1) and (2), Z and £, are valency and atomic volume respectively. Then, the
parameter 7, corresponds to the core radius and is determined by fitting the shape of Fermi
surface or the resistivity of liquid metal in the case of Ashcroft’s potential. Ashcroft and
Langreth“) introduced the extra parameter in the first order perturbation energy of the
pseudopotential in order to satisfy the zero pressure condition that the total crystal energy
E should have the minimum at the observed crystal volume Q4. Their procedure corresponds
substantially to the model with two parameters. The self consistent model potential with

two parameters are the local Heine-Abarenkov-type potential given by

2

Ze
Vo) = u r<Ry
Rym
3
Ze?
- r> RM
The Fourier-transform Vy(g) of this potential is
AnZe? sin(q-R )
Vol@) = — (1+u)cos(q -Ry) — # ——=—202 @)

Qoq’ q Ry
The local Heine-Abarenkov potential leads to the empty-core potential in the case of u=0
and the Shaw’s potential in the case of u=-1.

Previously, five works!?2~1®) to determine the parameter Ry and u have been reported.

The form f(g) in the electronic dielectric function e(g), including the electronic exchange

and correlation effects, is also important.

47e? Xo(q)
=1 5
(@ T ae@id ®)
_ kg 1— (q/2kg)’ 1+q/2kp
Xo(q) = 47* ‘ * qlkg ln, 1-q/2kE ’ (6)
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where ky is Fermi wave number. Ho'?) used the modified Hubbard-type!” flg)=q®/2(q*+
Zklfz). Three parameters Ry, u and £ were determined by satisfying three elastic constants
Cy1, Caq and C' = (Cy; — C12)/2. Afterwards, considering the importance of the zero-pressure
condition, Ho'®) (referred to as m.Ho) corrected these parameters. Brovman et al.'®) (referred
to as B-K-K) obtained the parameter £ to satisfy the compressibility sum rule of an electron
gas, and Ry, u by fitting the elastic constants Cy4 and the zero-pressure condition. Popovic
et al.!®) (referred to as P-C-P) adopted f(q)=4 { 1—e-B(a/kp)? 1 obtained by Singwi et al.'®).
Parameters 4 and B depend on the electron density and give the compressibility sum rule of
an electron gas. Parameters Ry and u were determined by fitting the bulk modulus B=(C1,+
2C,,)/3 and the stable condition for the uniform volume expansion. Senoo et al.’®) used the
Hubbard-Sham approximationw) for f(g). This corresponds to the parameter £=1+2/mky:
and violates largely and fatally the compressibility sum rule of an electron gas for the low
density elements such as alkali metals. Consequently, we omit the model by Senoo et al.
in what follows.

In determining the parameters of the model potential, we feel that the zero-pressure con-
dition is necessary in order to maintain the stability of the crystal structure, and that the data
of Fermi surface and atomic properties should be used as far as possible. The bulk modulus,
elastic constants and phonon dispersion curves should be the physical properties to try the
model potential in comparison with observed data. Therefore in the present work, using the
first zero V3,(qo)=0 of the original Heine-Abarenkov potential®®) (referred to as A—H), we

obtain the following relation

CIORMCOS(CIORM)
u =— . (7
sin(goRwM) — qoRpcos(@oRy)

The first zero go of the Fourier-transform ¥, (q) are shown in Table I in comparison with

Table 1. The first zero qo/2ky of the pseudopotential form factor
Vi (q) for various models.

A-H A Ho m.Ho B-K-K pP-C-P
Li 0.77 1.26 1.12 1.08 — 1.02
Na 0.89 0.97 0.98 1.00 0.92 0.90
K 0.89 0.93 0.93 0.90 0.88 0.90
Rb 0.97 0.82 0.94 0.91 — 0.92
Cs 0.96 0.79 — 0.90 — 0.92
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those by others. We notice that the value of Li deviates largely from other data. The remain-
ing one parameter is determined by satisfying the zero-pressure condition in the framework

of the usual second order perturbation given by

dr

_ =0 8
20 la-a, (8)

In performing numerical calculations, we adopt the following four approximations to the
exchange correction f(g) to the dielectric screening function e(g). First, the modified Hubbard-
type (referred to as H). Secondly, Kleinman-Langreth-type??) (referred to as K-L) flg)=
q°[4(q*+¢kg* ) + q* Jatky” where the parameter § is obtained from the compressibility sum
rule of an electron gas with Noziéres-Pines formula??) for the correlation energy. Thirdly, the

one by Singwi et al. (referred to as S-S-T-L), and lastly, the revised one by Vashishta-Singwi2?
(referred to as V-S).

§82.2. Numerical Results

The values of Ry and u determined by the procedure of eqs. (7) and (8) are summarized

in Table II compared with the previous works. In our model, the pseudopotential of Li re-

Table 1I. Parameters Ry (in atomic unit) and u of the local Heine-Abarenkov-type
model potential for various models.

present work Ho mHo B-K-K P-C-/P A-H*
H K-L  S-S-T-L V-S H H H S-S-T-L  ——

Li Ry | 1384 1.406 1.409 1.408 2.230 1.68 — 1560 28
u 0.6885 0.6292 0.6214 0.6240 |-0.9421 -0.5863 —— -0.3730 -0.941

Na Ry | 2.047 2.073 2.072 2.085 2305 240 2.073 2076 34
u [-0.2722 -0.2965 -0.2956 -0.3074 | -0.6246 -0.6840 -0.363 -0.3079 -1.037

K Ry | 3.019 3.050 3.049 3.037 3.005 3.04 2973 3.035 42
u |-0.5682 -0.5825-0.5821 -0.5766 | -0.6205 -0.5761 -0.540 -0.5723 -1.008

Rb Ry | 3.980 4.018 4.039 3973 3.288 3.54 — 3.553 44
u [-09047 -0.9140 -0.9191 -0.9030 | -0.6592 -0.7115 —— -0.7273 -0.985

Cs Ry | 4610 4711 4.790 4.804 — 395 — 4.114 438
u |-0.9605 -0.9818 -0.9982 -1.0012 | —— -0.7367 —— -0.8079 -0.984

*We adopt u of s electrons for the nonlocal Animalu-Heine pseudopotential.

presents the repulsive interaction inside the core, but this fact does not mean unphysical

result because even the negative values of u are varied widely in various models given by Table
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II. The sign of u depends on the sign of the factor F=tan(qoRy;)/qoRy—1. The negative u
is obtained -when 7/2 < goRy < 4.49. This condition corresponds to 2.04 < Ry <5.83 for
Li in our model, but we have no energy-minimum point actually within this region of Ry.
The full curves of the screened pseudopotential form factor ¥V (q)=V(¢)/e(q) thus obtained
are shown in Figs. 1-5, for Li, Na, K, Rb and Cs, respectively. In figures, we show the results

(full line) including the V-S exchange correction. Then, the results with the common V-S

Vs(q)
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~0.10

Vs (q)
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exchange correction by P-C-P (chain line) and by A potential (broken line), and A-H potential
(points) are shown together. The notable difference between the local Heine-Abarenkov
potential and the empty-core potential is that the latter shows the oscillation with the large
amplitude in the region of ¢ > 2kg. As a whole, our local Heine-Abarenkov potential is quite

different for Li from the previous models by others. In Table III, we give the first three pseu-

Table III. The screened pseudopotential Fourier component V(G) (in Rydberg unit).

present work ' Ho m.Ho BKK P-C-P A A-H

H K-L  S-S-T-L V-S H H H S-S-T-L VS —

Li Vg(100)[ 0.0758 0.0799 0.0783 0.0788 | 0.0020 0.0066 —— 0.0162-0.0121 0.0935
Vs(200)| 0.0754 0.0760 0.0742 0.0744 | 0.0104 0.0199 ~—— 0.0285 0.0212 0.0611
V(211)] 0.0531 0.0518 0.0506 0.0508 | 0.0042 0.0127 —— 0.0193 0.0252 0.0164

Na V4(110)| 0.0282 0.0302 0.0294 0.0297 | 0.0137 0.0125 0.0231 0.0287 0.0229 0.0200
Vs(200)f 0.0282 (0.0284 0.0278 0.0274 |} 0.0158 0.0138 0.0248 0.0273 0.0346 0.0089
Vs(211)] 0.0146 0.0140 0.0138 0.0133 | 0.0062 0.0046 0.0128 0.0135 0.0265 -0.0038

K PVs(110)| 0.0179 0.0195 0.0188 0.0195 | 0.0145 0.0178 0.0187 0.0191 0.0225 0.0073
Vs(200)| 0.0130 0.0132 0.0127 0.0130 | 0.0121 0.0126 0.0138 0.0131 0.0293 -0.0055
Vs(211)] 0.0027 0.0023 0.0022 0.0024 | 0.0030 0.0023 0.0032 0.0024 0.0211 -0.0116

RbV(110)| 0.0082 0.0090 0.0086 0.0091 | 0.0125 0.0133 ——— 0.0135 0.0349 -0.0015
V5(200)| 0.0053 0.0055 0.0052 0.0055 | 0.0103 0.0080 ——— 0.0080 0.0298 -0.0146
Vs(211){-0.0002 -0.0003 -0.0003 -0.0002 | 0.0022 0.0000 ——— 0.0000 0.0159 -0.0172

Cs V4(110)| 0.0075 0.0084 0.0080 0.0083 | ——— 0.0122 ——— 0.0109 0.0358 -0.0025
Vs(200)| 0.0042 0.0044 0.0042 0.0043 | —— 0.0066 —— 0.0055 0.0275 -0.0160
Vs(211) [-0.0005 -0.0005 -0.0005 -0.0005 | ——-0.0006 ————— -0.0008 0.0129 -0.0179

dopotential Fourier component V(G) compared with those by previous models. The close
examination of our presented model potential is tried by applying to calculations of the

cohesive energy and bulk modulus in the following section.

§3. Cohesive Energy and Bulk Modulus
§3.1. Second Order Perturbation Scheme
In the framework of the usual second order perturbation based on pseudopotentials,

the total energy E per atom in metallic crystals is given as follows:
E=E+E®+EM+ g 9)

E; is the Madelung energy that means the total Coulomb energy of positively charged ions
in a uniformly negatively charged background. FE(9) is the energy of the free electron gas

consisting of the kinetic, exchange and correlation energies. E(!) is the first order perturba-

—188—



Local Heine-Abarenkov Potential of Alkali Metals

tion energy in terms of pseudopotentials and in our model with the local Heine-Abarenkov

potential it becomes

2
F) = 2nZe

RM2 (1+—2—3Li) ) (10)

E® is the second order term usually called as the band-structure energy.

por__ %o 5 O X0 (G) |
2 g9 €G)  1-471*f(G)xo(G)/G? (11)

The pressure P and the bulk modulus B are obtained from the first and the second derivative

of the crystal energy with respect to the crystal volume £, as follows:

dE
P = —
aQ, (12)
B aE (13)
° a0,

We divide the pressure and the bulk modulus into four contributions in the same way as the

crystal energy in eq.(9) and write

P = P+PO® +pM) 4 p®) , (14)

B = Bl-+B(°)+B(1)+B(2) . (15)

In Tables IV-VIII, we show the obtained results of the crystal energy, the cohesive
energy, the pressure and the bulk modulus for alkali metals compared with those by previous
models. In these tables the small deviations from the results of the previous works are due to
the small difference of the lattice constants. We must examine critically the cohesive energy
in order to avoid the superficial agreement of the total energy. From Table IV, we see that
our value of the cohesive energy is better agreement with the observed data compared with
those by the previous workers, especially for Li. We do not introduce the fitting the elastic
constants and the bulk modulus, but our results for the bulk modulus is in good agreement

with the experiments shown in Table V. In Table VI-VIII, we show the individual terms in
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Table IV. The total crystal energy £ per atom (in Rydberg unit)

and the cohesive energy £, (in eV unit).

FE present work Ho m.Ho B-K-K P-C-P A-L* obs.**
H K-L S-S-T-L  V-S H H H S-S-T-L V-S —
Li -0.5370 -0.5367 -0.5333 -0.5290 -0.5411 -0.5542 -0.5469 -0.5512 -0.5162
Na -0.4637 -04631 -0.4608 -0.4553 -0.4688 -0.4664 -0.4678 -0.4612 -0.4501 -0.4598
K -0.3893 -0.3890 -0.3867 -0.3822 -0.3964 -0.3884 -0.3902 -0.3868 -0.3733 -0.3878

Rb -0.3704 -0.3701 -0.3676 -0.3637 -0.3780 -0.3670 — -0.3664 -0.3481 -0.3700
Cs -0.3458 -0.3455 -0.3430 -0.3384 -0.3437 —— -0.3424 -0.3283 -0.3451
Ecoh

Li 1.91 1.91 1.86 1.80 1.97 2.15 —  2.05 2.11 1.63

Na 1.166 1.158 1.127 1.052 1.236 1.203 1.222 1.132 0.982 1.113
K 0.955 0.950 0.919 0.858 1.051 1.121 0.967 0.921 0.737 0.934
Rb  0.857 0.853 0.819 0.764 0.961 0.811 — 0.803 0.554 0.852
Cs 0813 0.809 0.775 0.712 0.784 —  0.767 0.575 0.804

*We obtained the results by Ashcroft-Langreth’*!) procedure with Ashcroft’s empty-core potential®).
**From data collected by Kittel24).

Table V. The bulk modulus B (in 10! dyn-cm™ unit).

B present work Ho m.Ho B-K-K P<CP AL obs.*
H K-L  S-S-T-L V-S H H H S-S-T-L VS E—
Li 1.373 1.371  1.262 1.246 1.297 1.308 — 1.324 1.183 1.410, 1.320

Na  0.807 0.794 0.718 0.699 0.766 0.746 0.743 0.753 0.742  0.790, 0.760
K 0.385 0.395 0.358 0.348 0.376  0.368 0.378 0.366 0.315 0.366
Rb  0.306 0.322 0.283 0.285 0.264 0.290 —  0.282 0.311 0.277, 0.306
Cs 0.266 0.282 0.239 0.245 — 0.217 — 0.213 0.243 0.231

*From data collected by Soma”).

eqs.(9), (14) and (15) contributing to the total energy, the pressure and the bulk modulus,
respectively. From these tables, we obtain the following predominant characteristics. First,
the contributions from the electron system become important when going from the total
energy to the bulk modulus. In the extreme case for the bulk modulus of Li in our model,
the second order term of the pseudopotential contributes almost as much as the electrostatic
term between ions. Secondly, the model by Ashcroft-Langreth give large contributions of the
second order term because of the long range character of the model potential with the large
oscillation, and the agreement with the experimental data, especially for the cohesive energy

is not good. Thirdly, in our model, the pseudopotential of Li is large and the contributions
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from the electron system are important with respect to the higher order perturbations.

Table VI. The individual terms £;, E®, E® and E®) contributing
to the total energy (in Rydberg unit).

present™® A-L* Ho m.Ho B-K-K P-C-P

Li E, -0.5515
E© -0.1447 -0.1510 -0.1495
EM 0.2458 0.1533 0.1629 0.1503 — 0.1599
E® -0.0783 -0.0083 -0.0003 -0.0020 ———  -0.0058

Na E| -0.4557
E® -0.1556 -0.1625 -0.1605
EM 0.1705 0.1770 0.1530 0.1546 0.1607 0.1690
E® -0.0145 -0.0158  -0.0035 -0.0028 -0.0102  -0.0140

K £ -0.3684
E® -0.1537 -0.1608 -0.1588
EM 0.1481 0.1677 0.1381 0.1484 0.1475 0.1486
E® -0.0081 -0.0189  -0.0052 -0.0076 -0.0084  -0.0081

Rb E; -0.3447
E® -0.1513 -0.1583 -0.1561
EW 0.1342 0.1825 0.1294 0.1407 —_ 0.1389
E® -0.0018 -0.0345  -0.0044 -0.0046 ———  -0.0044

Cs E; -0.3184
E®©) -0.1473 -0.1554 - -0.1520
EM® 0.1292 0.1775 —_— 0.1337 — 0.1315
E® -0.0018 -0.0400 S -0.0045 ———  -0.0033

*We adopt V-S approximation for the exchange correction.
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Table VII. The individual terms P;, P(°), P(!)and P() contributing
to the pressure (in 10'° dyn-cm™).
present A-L Ho m.Ho B-K-K P-C-P
Li P -18.81
PO 3.50 3.60 3.74
PM 25.14 15.70 16.56 15.39 — 16.37
P® -9.83 -0.39 0.04 -0.28 — -1.30
P 0 0 1.39 -0.10 S 0
Na P; -8.77
P 0.39 0.42 0.45
PO 9.85 10.22 8.84 8.93 9.28 9.76
P® -1.47 -1.84 -0.70 -0.45 -0.93 -1.44
P 0 0 -0.21 0.13 0 0
K P -3.75
P® -0.33 -0.33 -0.34
PO 4.52 5.12 422 4.53 4.51 4.53
P® -0.44 -1.04 -0.37 -0.47 -0.50 -0.44
P 0 0 -0.23 -0.02 -0.07 0
Rb P; -2.87
PO -0.36 -0.36 -0.34
PO 3.35 4.56 3.24 3.52 —_— 3.47
P?) -0.12 -1.33 -0.28 -0.28 S -0.26
P 0 0 -0.27 0.01 —_ 0
Cs p; -2.09
PO -0.35 -0.36 -0.30
PM 2.54 3.49 — 2.64 e 2.59
P® -0.10 -1.05 S -0.21 —_ -0.20
P 0 0 — -0.02 — 0
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Table VIII. The individual terms B, B®, B®") and B® contributing
to the bulk modulus (10'! dyn-cm™).

present A-L Ho m.Ho B-K-K PC-P

Li B -2.510
B©® 0.977 0.993 0.968
BM 5.028 3.140 3313 3.079 — 3.275
B® -2.249  -0424  -0.499 -0.254 S— -0.409

Na B, -1.170
B® 0.253 0.260 0.256
B 1.970 2.045 1.768 1.787 1.857 1.952
B®@ ~0354  -038  -0.092 -0.131  -0.204 -0.285

K B -0.500
B© 0.027 0.030 0.030
BM 0.904 1.024 0.844 0.907 0.901 0.908
B® -0.083  -0236 0.002 -0.069  -0.053 -0.072

Rb B, -0.383
B 0.003 0.005 -0.003
BM 0.671 0913 0.647 0.704 —_— 0.695
B® -0.006  -0222  -0.005 -0.036 —— -0.027

Cs B -0.279
B -0.011 -0.010 -0.013
BM 0.510 0.700 —_ 0.528 — 0.519
B® 0.025  -0.167 _ -0.022 _— -0.014

83.2 Third Order Perturbation Term
Next, we investigate the third order energy £3) by Lloyd-Sholl?) and by Brovman et al.).
This is that for the simplest loop diagram and is given by

po - g 3 @ITG)V(Ga)

A(3)(Gl ,Gz , G3)5G1+GQ+G3, 0
G1 s 02 , G3 #OG(GI )6(62)6((;3)

(16)
where the details of A®) (G, , G,, G3) are referred to the above original paper. Similarly,
we obtain the corresponding third order contributions P©) and B®) to the pressure and the
bulk modulus according to the definition of eqs.(12) and (13). In Tables IX—-XI, we show
these contributions together with the ratio of the total quantities. From these tables, we

see that third order contributions are not negligible but small except Li in our model and for
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Table IX. The third order contribution £¢) (in eV unit) and the ratio
to RE=E(3)/ECOh to the cohesive energy F o in the framework
of the second order perturbation formalism.

present A-L Ho m.Ho B-K-K P-C-P

Li £® 0.21 0.03 0.00 0.00 — 0.02
Rg 0.11 0.02 0.00 0.00 — 0.01

Na E®) 0.038 0.034 0.005 0.003 0.019 0.035
Ry 0.036 0.035 0.004 0.002 0.016 0.031

K E® 0.018 0.063 0.008 0.014 0.016 0.018
Ry 0.021 0.085 0.008 0.012 0.017 0.019
Rb E©) 0.001 0.098 0.007 0.007  — 0.007
Rp 0.002 0.177 0.007 0.008 —_ 0.008
Cs gG) 0.001 0.132 S— 0.007 S 0.004
Ry 0.002 0.229 _ 0.009 _ 0.005

Table X. The third order contribution P©) (in 10'° dyn-cm™ unit) and
the ratio Rp=P(3)/P(2)l to the pressure P(?) in the second
order contribution.

present A-L Ho m.Ho B-K-K P-C-P

Li PO 2.68 0.06 0.00 0.03 —_ 0.21
Ry 0.27 0.15 0.10 0.11 — 0.16
Na pG) 0.39 0.53 0.07 0.05 0.24 0.37
R, 0.27 0.29 0.10 0.11 0.26 0.26

K PO 0.09 0.44 0.06 0.07 0.08 0.08
R, 0.20 0.42 0.17 0.14 0.16 0.19
Rb pG) 0.01 0.63 0.04 0.03 —_— 0.03
R, 0.11 0.47 0.13 0.10 _— 0.11

Cs PG 0.01 0.56 —_— 0.02 —_ 0.01
R, 0.09 0.53 — 0.09 — 0.07
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Table XI. The third order contribution B(®) (in 10'! dyn-cm™) and
the ratio| Rg=B(®)/B |to the bulk modulus B in the
framework of the second order perturbation formalism.

present A-L Ho m.Ho B-K-K P-C-P

Li B® 0.212 0.058 0.049 0.026 — 0.079
Ry 0.17 0.05 0.04 0.02 — 0.06

Na B®) 0.064 0.077 0.018 0.014 0.051 0.064
Ry 0.09 0.10 0.02 0.02 0.07 0.09

K B®) 0.005 0.055 0.008 0.005 0.007 0.006
Rp 0.02 0.18 0.02 0.01 0.02 0.02
"Rb B® 0.002 0.038 0.005 0.007 _ 0.006
Rp 0.01 0.12 0.02 0.03 —_— 0.02

Cs B®) -0.000 0.022 ——  -0.003 —  -0.002

Ry 0.01 0.09 e 0.02 S 0.01

Ashcroft-Langreth model.  This result is consistent with previous work for Na(see for
example”)), and third order contributions seem to be important for polyvalent metal with
the covalent force such as In, Sn and Pb.

In conclusion, we presented a local Heine-Abarenkov-type model potential of alkali metals
using the original pseudopotential proposed by Animalu and Heine, and obtained the numeri-
cal results of cohesive energy and bulk modulus in good agreement with the observed data.
This potential will be useful to the studies for the anharmonicity of lattice dynamics, the

problem of the alloy system and the complicated lattice defects.
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