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The method of calculation is shown with respect to rotational energy levels and rotational

eigenstates in one of two rotating spherical molecules coupled with orientational potentials.

This method is applied to tetrahedral molecules dispersed in rare gas mattix. The comparison

with experimental results by neutron inelastic scattering gives the most suitable strength and

symmetry of the potential between two rotators.

In solid phase or in rare gas matrix, the spherical molecule like a type of tetrahedral~

or octahedral AX6 has quite large degree of freedom of rotational motion even in lower

temperature such as liquid-helium temperature. Due to the interaction with the surrounding

molecules and with the neighboring coupled spherical molecule, each of two molecules has a

hindrance in rotational motion. As the anisotropic potential becomes greater, it changes

gradually from nearly free rotation to considerably hindered rotation. When the potential is

much stronger than the thermal energy, the so,;alled rotational tunneling appears by. the

symmetrical equivalence. The structure of splitting in the energy levels of tunneling system

is characterized by the type of site symmetry.

The rotational Hamiltonian of one hindered molecule is given by

(1)

where K is the kinetic energy and V (w) the octahedral crystalline field which is a function of

the Euler angles {w} of the molecule in site. The 3rd order of tetrahedral fi:1nction u 1" ( W )

(T =1 '-7) should be zero in the case of octahedral unit because of higher symmetry. When

the field strength A increases, the energy levels tend to make groups and the rotational states

approach tunneling motion. In octahedral case, there are four types: Td, D2d, C3v, and Czv

while there is one type in tetrahedral case.

Next, we proceed to the system of two molecules which orientationally interacts directly·

with each other and which are surrounded by other molecules. We may introduce the

Hamiltonian of such a system in the following:
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(2)

Here, W 1or w 2 is the Euler angles in molecule 1 or 2, and the coefficient C .. u is offered

by octopole~ctopole interaction. Now, we use the above relation for the tetrahedral

molecules. Moreover, we take up only the terms· r = U·=l because it is too complicated to

compute as the beginning step. By comparison with the experimental results,1) it is concluded

that the (1,1) component gives rise to the rather strong field using the normal value of

octopole moments. A typical potential map is shown in Fig.1. Each molecule rotates by z

axis from Td orientation and the connection line runs along (111) direction.

Before we examine the contribution of other components in the interaction, it is necessary

to check the behavior in molecular-field approximation. If the Euler angels w 2 are averaged,

Hamiltonian for two-particles are shown as

(3)

where the constant is

(4)

Basically, Hamiltonian with the averaged potential corresponds to the single1Jarticle

Hamiltonian Jt.1)( W). But, it is important to investigate the self-consistency in Equations (3)

and (4) because we employ the averaged Hamiltonian in (3) in order to calculate the

averaging over U1 in (4).
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1) B. Asmussen, W. Press, M. Prager, and H. Blank, 1. Chern. Phys. 98, 158 (1993).
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