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ABSTRACT 

The global (in tirre) existence and asymptotic stability of smooth 

solutions to the initial value problem are proved for a general class of 

quasilinear symretric hyperbolic-pararolic cor:nposi te, systems, under the 

smallness assumptions on the initial data and the dissipation-condition 

on the lin~arized systems. In the special case of hyperbolic-parabolic 

systems of conserva tion laws with a convex entropy, it is also proved 

that for t.irre t -+ 00, the solutions of the nonlinear systems are asyrrp

totic to those of the linear ones if the space-dimension n ~ 2, and to 

those of the semi-lineal! ones if n == 1. These results are applicable 

to the equations of cOIr1pressible viscous fluids, the equations of 

magnetohydrodynamics (or electro-ma.gneto-fluid dynamics) for electrically 

conducting compressible viscous fluids, the equations of heat conduction 

with finite speed of propagation, and so on. 

Furthennore hyperbolic systems of conservation laws with small vis

cosity" are investigated on the relation to the limit systems without vis

cosity". It is proved that as viscosity" tends to zero, the srrooth solu

tions ,of the systems with viscosity converge on a finite t:ine interval 

to the srrooth solutions of the limit systems. 
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

1.1 HISTORICAL BACKGROUND 

Many physical phenonena arising in rrathematical physics are described 

by the quasilinear symmetric hyperbolic-parabolic systems of composite 

~ which consist of first-order hyperbolic equations and second-order 

parabolic ones, when the effects of dissipative ID2chanisrns (such as vis-

cosity, heat conduction etc.) are taken into account. If the dissipative 

effects are neglected, then these systems degenerate to the first-order 

quasilinear symmetric hyperbolic systems. 

In recent years, these systems describing physical laws have been 

studied intensively from a mathematical point of view. Vol'pert and 

Hudjaev [85] considered the initial value problem for a general class of 

symmetric hyperbolic-parabolic composite systems and established in a 

unified way the local (in tirre) existence and uniqueness of solutions in 

2 the L -Sobolev spaces. Their results remain valid for the two special 

cases, quasi linear symmetric hyperbolic systems and quasilinear symmetric 

parabolic ones. Similar existence and uniqueness results were also ob-

tained by Fisher and Marsden [16] and Kato [37] 4 (see also [30]) in the 

case of quasilinear symmetric hyperbolic systems. 
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However, there has been nothing about a unified treatment of the 

global (in time) existence problem for these general systems. Concerning 

the global existence problem, we should note the following: sIIDOth solu

tions of the first-order quasilinear hyperbolic systems (without dissi

pation) in general develop singularities in the first derivatives in 

fini te tine no matter how srrooth the initial data are, which was proved 

by Lax [50J 2' John [35] 1 and others [52] 7' [53] , [9] , [46] (see also [35] 2,3' 

[37] 7). This fact suggests that at least for these hyperbolic systems 

(without dissipation) global solutions must be sought in a class of non

smooth (discontinuous) functions. This approach was pursued for the 

first-order nonlinear strictly hyperbolic systems of conservation laws in 

one space-d.irrension; the global existence of weak solutions in the space 

of bounded variation was shown by Glimm [22] and Kuznetsov and Tupchiev 

[48] for small initial data; the structure of weak solutions was studied 

by DiPerna [13] 3; asymptotic behaviors of weak solutions as t.irre t -1- 00 

were investigated by Glimm and Lax [23], DiPerna [13] 2,4 and by Liu 

[52] 3-6. These results are applicable to the system of gas dynamics in 

one space-c1iJ:n2nsion. But it is not straightforward to generalize these 

results to higher dimensions. 

Another approach for the global existence problem is to still seek 

SIIDOth solutions. Sorre authors have succeed to prove the global exist

ence, uniqueness and asymptotic stability of smooth solutions for the 

physical sys tems in which the effects of dissipative rrechanisrns are taken 

into account. Among these systems, we rrention: 

(a) the equations of compressible viscous fluids, 
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(b) the equations of magnetohydrodynamics (or electro-magneto

fluid dynamics) for electrically conducting compressible 

viscous fluids I 

(c) the equations of nonlinear viscoelas tici ty (or therrroelas

ticity) , 

(d) the equations of heat conduction with finite speed of propa-

gation, 

(e) the equations for discrete- velocity rrodels of the Boltzmann 

equation. 

'Ihe systems (a), (b) and (c) (resp. (d) and (e)) are typical exanples of 

quasilinear symmetric hyperbolic-parabolic composite systems (resp. 

quasilinear symmetric hyperbolic systems with dissipation) .. Global ex

istence theorems for these systems were proved by a combination of the 

local existence results and the a priori estimates of solutions. In l1B.Ily 

cases I a priori es tina tes are derived by the L2 -energy rrethod which makes 

use of the energy integral associated with the physical structure of the 

systems; see Kane 1 , [36] 1 and Okada and Kawashirra [66] (and also [36] 2' 

[43] ,[42]2) for the system (a), Kawashima and Okada [41] (and also [38]3) 

for (b), Greenberg, MacCamy and Mizel [27] (and also [25], [12], [26], [2], 

[3]) for (c), and Kawashima [38]4 (cf. [64]1) for (e). It is also effec

tive, especially in the case of higher dirrensions, to make use of the 

decay estirna.tes for linearized equations (wi th constant coefficients) ; 

see M3.tsumura and Nishida [55] 2 for (a), BrOVJIle [4] and Potier-Ferry [67] 

for (c) I Matsurmrra [54] 1 (and also [71]) for (d), and Inoue and Nishida 

[33] (and also [38] 4) for (e); for another class of equations, the Boltz-
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rrann equation and the nonlinear wave equations, we refer to Nishida and 

Imai [62] (and also [79], [80]1,2) and Klainerman [45] (and also [47], 

[70]). The existence of energy integral and the decay estirrates (for 

linearized equations) are, however, not known for a general class of 

quasilinear symmetric hyperbolic-parabolic composit~ systems. 

Usually we have two different systems for a physical phenOmenon, one 

of which corresponds to the dissipative case am the other to the non-:

dissipative case. It is then expected that in the limit, as the coeffi

cients of dissipations tend to zero, the solutions of the dissipative 

system converge to the solutions of the non-dissipati ve system. This 

convergence problem has been solved in the case of a single equation, but 

it is still open for general systems. The convergence of progressive

wave solutions to shock-wave solutions in one space-d.irrension was shown 

by Fay [17] and Conley and Smaller [10]1 (and also [73] ,[74]) for general 

systems; we also refer to [86], [20], [21] (resp. [10]2,3' [29]) for the 

equations of compressible fluids (resp. rragnetohydrodynamics). The con

vergence (on a finite tirre interval) of srrooth solutions in higher dirren

sions was proved by Nishida and Kawashirra [63] for the equations of com

pressible fluids; this is a generalization of the results for incornpress-

ible fluids, see [76], [37]2 (cf. [24], [57]). Similar convergence results 

were also obtained for the Bol tzrnann equation (resp. its discrete veloc-

ity models), see [61]3' [6], [80]3 (resp. [33], [7]). Finally we should 

note the recent work of DiPerna [13] 6. He has established a general con

vergence result for a model system of one-dimensional nonlinear elas

ticity: smooth solutions of the dissipative system converge (for all tirre 

t ?: 0) to the weak solutions of the ron-dissipative system. 
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1.2 AIM OF THE PRESENT WORK 

The ma.in purpose of the present work is to show, in a unified way, 

the globa.l (in time) existence and asymptotic stability of SIrCOth solu

tions to the initial· value problem for a class of quasilinear symmetric 

hyperbolic-parabolic conposite systems. We are only concerned with small 

amplitude solutions because the systems treated here are general enough 

and so the global existence of large amplitude solutions can not be ex

pected in general in a class of srrooth functions. Therefore in this 

si tua tion we are sufficient to show that the constant 8:1Uilibrium solu

tions for these systems are asymptotically stable (in tirre) for small 

perturba tions at the initial time. 

In order to establish these results, we usually need decay estimates 

for the equations linearized around the equilibrium state. For our 

general class of systems, we shall formulate a condition which guarantees 

the decay structure for linearized systems. This dissipation condition 

enables us to conclude the global exis tence and asynptotic s tabili ty of 

solutions when the space-diIrension n 2 3. 

In the case n ~ 2, additional considerations are needed. We shall 

restrict our attention to a class of hyperbolic-parabolic conposite sys

tems of conservation laws with a convex entropy. These systems enjoy the 

energy integral associated with the entropy. This energy integral to

gether with the dissipation condition gives the globa.l existence and 

asynptotic stability results for all n 2 1. 

We then show that our results are applicable to the physical systems 

(a), (b) and (d) rrentioned in section 1.1 (though, in some cases, slight 
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rrodifications are needed); the applications to the systems (c) and (e) 

will be omitted in this dissertation, we refer to Kawashima [38] 4 for 

(e). In applications a key point is to verify the dissipation condition 

for each sys tern, and this can be done ra ther algebraically. 

The second aim of this work is to justify the vanishing viscosity 

lTethod locally in tiITe for a class of hyperbolic systems of conservation 

laws. We shall assume that our systems with snaIl viscosity are of 

hyperbolic-para}:x)lic corrposi te type and' possess a convex entropy. In 

this situation a convergence theorem (as the viscosity tends to zero) is 

es tablished for local smooth solutions and this theorem can be applied 

to the physical systems such as (a) and (b). 

1.3 SUMMARY 

The contents of this dissertation are as follows. In chapter ]I we 

shall consider the initial value problem for a class of quasilinear sym

metric hyperbolic-parabolic composite systems and prove a local (in tiITe) 

existence theorem in the Sobolev space HS 
(JR

n). The global (in tirre) 

existence problem for these general systems is swdied in chapter ill. 

Ivlaking use of the dissipation condition, we shall derive a priori esti

nates (with decay rate t -n/ 4 as tiITe t -7- co) of snaIl solutions when 

the initial data are in HS (JRn) n L 1 (JRn) and n ~ 3. Combining these 

a priori estimates with the local existence result, we can show the 

global existence and asymptotic stability of SIlXX)th solutions if n ~ 3 

and the initial data are sufficiently small in If (JRn) n L 1 eJRn). In the 
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last section of chapter ill, we shall apply these results to the equations 

of heat conduction with finite speed of propagation. 

In chapter IV we treat a rather restricted class of systems, hyper-

bolic-paraJ::x)lic composite systems of conservation laws with a convex en-

tropy. By the technical energy ITethod based on the ,energy integral, we 

shall establish similar global existence and asyrrptotic stabillty results 

for all n. ~ 1. In this case it is also proved that for t -+ co, the 

solutions of the nonlinear systems are asymptotic to those of the linear 

ones if n ~ 2, and to those of the semi -linear ones if n = 1. 

In chapter V we shall inves tiga te the convergence problem for a 

class of hyperbolic systems of conservation laws with vanishing vis-

cosity. It is proved that in the limit, as viscosity tends to zero, the 

smcxyth solutions of the systems with small viscosity converge on a finite 

tirre interval to the smooth solutions of the limit systems without 

viscosity. 

d1apter VI contains the applications to the equations of rragneto-

hydrodynamics (or electro-magneto~fluid dynamics) for electrically con-

ducting conpressible fluids. Global existence and stability results are 

established for the following cases: 

(1) two special type systems of electro-magneto-fluid dynamics in 

JR2, 

(2) the equations of ma.gnetohydrodynamics in JR3 

(3) the equations of magnetohydrodynamics in JRI . 

2 or JR, 

The dissipation condition is verified for (1) and (2) if all the effects 

of dissipative mechanisms are assurreci, while for (3) this can be done by 
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assuming only one or two of them. As a special case, we also discuss 

briefly the system of fluid rrechanics in JR3 (or R2) and JR
l

. 



- 9 -

CHAPTER II 

QUASILINEAR SYMMETRIC HYPERBOLIC-PARABOLIC. SYSTEMS, I 

(LOCAL EXISTENCE) 

2.1 INTRODUCTION 

In this chapter we shall consider the initial value problem for a 

system of quasilinear partial differential equations of the form 

on, 

( 

Al (u,v)ut + ,L1Ail (u,v)ux . = fl (u,v, DxV) , 
J= J 

(2.1) 

o n 'k 
A

2
(u,v)v

t 
- L BJ

2 
(u,v)v = f

2
(u,V,D u,D v) 

j,k=l Xj~ x x 

where t 2 0 and x = (xl'····' xn) E TIP (n 2 1) i u = u ( t, x) and v = 

v (t, x) are vectors with m' and m" corrponents , respectively, and the 

pair (u,v) (t,x) takes its values in an open convex set 0 in TIf (m= 

m'+m" 21) i A~ and Ail (j = 1,···· ,n) (resp. A~ and B~k (j,k =1,···· 

•• ,n)) are square matrices of order m' (resp. m"); fl (resp. f
2

) is a 

TIf' -valued (resp. TIf"-valued) function; D denotes the derivatives 
x 

(8/8x)a with 10.1 = 1. The initial data are prescribed at t = 0 : 

(2.2) (u, v) (O,x) 
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We assume that the system (2.1) is symmetric hyperbolic-parabolic in 

the following sense. 

Condition 2.1 The functions A~ (u,v),· A~ (u,v) , A11 (u,v) (j = 1,···· ,n) 

'k 
and B~ (u, v) (j ,k = 1,· •• • ,n) are sufficiently srrooth in (u, v) E 0 such 

that 

(i) ° ° Al (u,.v) and A2 (u,v) are real symretric and positive definite for 

(u, v) EO, 

(ji) AIl (u, v) are real symrretric for (u, v) EO, 

'k 'k k' 
(ill) B~ (u, v) are real symrretric and satisfy B~ (u, v) = B2 J (u, v) for 

(u,v) E 0 I B
2
jk 

(u,v) w.w.. is (real symrretric) positive definite for all 
'k J K 
J n-l 

(u,v) E 0 and w = (wl'····,wn) E S . 

Under these conditions fl (u, v ,Dx v) and f
2

(u,V,D u,D v) x x in the 

right hand side can be regarded as lower order tenns of the system. Let 

n E JIfffi' and l; E JIfffi" denote the vectors corresponding to D u and 
x 

D v. We assurre: 
x 

Condi tion 2. 2 The functions f 1 (u, v , l;) and f 2 (u, v , n , l;) are suffi-

nmll run 
ciently smooth in (u,v,l;) E 0 x IR and (u,v,n,l;) E 0 x JR , respective-

ly, and satisfy fl (li,v, 0) = f2 (li,v,O,O) = ° for sorre constant state 

(ti,v) EO. 

Remark 2.1 In the special case mil =, 0, the system (2.1) is reduced to 

(2.1) , 
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which is syrnrretric hyperbolic; while in the case m' = 0, 

(2.1) II 
o 'k 

A: (v) v t - I B2
J (v) v = f2 (v, DxV) , 

-~ jk Xj~ 

which is parabolic in the sense indicated above. 

In a qimilar situation Vol 'pert and Hudjaev [85] have proved the 

existence of local solutions (in theL2 (JRn) -Sobolev spaces) to the ini-

tial value problem (2.1) ,(2.2), by use of the Schauder's fixed point 

theorem. Their results are applicable to the special case ml = 0 or 

mil = o. On the other hand Fischer and Marsden [16] and Kato [37] 4 have 

established similar existence results for symmetric hyperbolic systems 

(2.1)' (i. e., m" = 0), by using the general theory of abstract evolution 

equations (see Kato [37] 1,3). The purpose of this chapter is to recon

struct a local solution of (2.1) ,(2.2). 

The contents of this chapter are as foll()VVs. In section 2.2 we in-

troduce some function spaces. The basic inequalities in the Sobolev 

spaces are also given. In section 2.3 we consider the linearized equa-

lions (with variable coefficients) for (2.1). The existence result is 

obtained as an application of Theorem II of Kato [37] 3. We also derive 

the energy inequalities in the L 
2 

(nf) -Sobolev spaces. In section 2.4 

we construct a local solution of (2.1), (2.2) as a limit of successive ap-

proxima tion sequence. 
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2.2 PRELIMINARIES 

We shall first introduce some fllilction spaces. LP (JRn) (l:s; p < (0) de-

notes the space of Treasurable fllilCtiOns whose p-th powers are integrable 

on JRn , with the nonn 

II f II = ( J I f (x) I p dx ) lip 
. rJ? 

We SOTret.irres write II f II ins tead of II f II 2. L 00 (JRn) denotes the space 
L 

of bollilded rreasurable fllilctions on JRn , with the nonn 

II f II 00 = ess. sup I f (x) I . 
L x 

HS (JRn) (s 20 : integer) denotes the space of L2 (m.
n) -fllilCtiOns f whose 

derivatives (in the sense of distribution) Dkf (k:s; s) are also L 2 (JRn)_ 
x 

functions, wi th the norm 

Here Dk denotes the derivatives (8/8x)a with 
x 

instead of Dl. Note that HO (m.n) = L 2 (JRn) and 
x 

I a I = k i we write D . x 

II f II ° = II f II. " (JRn) 

(s 20 : integer) denotes the space of L
oo 

CUf) -fllilCtiOns f whose deriva

tives D f are Hs-l(JRn)-fllilctions, with the norm 
x 

Ilfll" 
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o n co n 
In the case of s = 0 we define V (JR) = L (JR) and IIfll 0 = Ilfll co • 

Q, V L 
B (nf) (9., ~ 0 : integer) denotes the space of bounded continuous func-

tions f whose derivatives Dkf (k s; Q,) are ,also bounded continuous I with 
x 

the norm 

B9.,+a (JRn) (9., ~ 0 : integer I 0 < a < 1) denotes the space of BQ, (JRn) -functions 

such that their Q,-th order derivatives are a-Holder continuous, with the 

norm 

Let X be a Banach space and let t l < t. LP (tI,t i X) (1 s;p S;'co) 

denotes the space ofLP -functions f (t) on [ tI, t] with the values in 

X. cQ, (t' It ; X) (9., ~ 0 : integer) denotes the space of Q,-th times continu

ously differetiable functions f (t) on [t I I t] with the valUes in X. 

The following interpolation inequalities for LP (JRn) -norm of the 

derivatives Dju are found in [60]. 
x 

Lemma 2.1 ([60]) 

Asswne that U E 

Let 1 s; q., r s; co., and let k > 0 be an integer. 

a -...Jl k r n 
L:l.(J.I:{) and DUE L (JR ) • 

x Then for the derivatives 

o s; j < k., the following inequa~ities hold: 

(2.3) 
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l' 1 k 1 
- = 1. + a ( - - -) + (1 - a) -
p n r n q 

for all a satisfying j/k'~ a ~. l~ and C ~s a positive constant; 

there are the following exceptional cases: 

(i) If j.= o~ rk < nand q = oo~ then we made the additional asswnp

tion that ei ther u (x) -+ O· as I x I -+ 00' or U E Lq ' (JRn) for some 0 < 

q' < 00 • 

(id) If 1 < r < 00 ~ and k - j - n/r ~s a non-negative integer~ then 

(2.3) holds only for a satisfying j/k ~ a < 1. 

As a consequence of (2.3) we have: 

Corollary 2.2 
s n Let. s ~ 0 be an integer and asswne that U E H em:) • 

Then the following two statements are true. 

(i) For any p with max {O~ 1/2 - sin} ~ lip ~ 1/2 ~ we have U E 

LP (nf) and 

(2.4) c II U II ~ s 

where a = (n/s) (1/2 - IIp)~ with the exceptional case: if s = n/2~ 

then (2.4) holds only for 0 < lip ~ 1/2 (i.e.~ 2 ~ P < (0). 

(id) If s > n/2 ~ then for 9., = s - So ~ 0 (so = [n/2] + 1). and for any 0 

with 0 < 0 < So - n/2~ we have U E B9.,+0(JRn) and lul9.,+0 ~ ell U lis· 
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Remark 2.2 It follows from (ii) that for s > n/2 there is an imbed-

By virtue of Corollary 2.2, Lemma 2.1 and leibniz I s formula we get 

the follGJ'iNing estimates for cx::mposi te functions. 

Lemma 2.3 . Let s;;::: 0 and fL;;::: 0 be integers satisfying s + fL ;;::: So 

(sO = [n/2] + 1). Assume that u E H
S (JRn) (resp. U E yB (JIfl) ) and v E 

HfL (Jil). Then for k = min {s-' fL-, s + fL - so} we have uv E If (JIfl) and 

(2.5) (resp. Iluvll k ~ c Ilull IlvllfL)' 
yB 

Note that if s;;::: So and 0 ~ fL ~ s, the estimate (2.5) holds for k = fL. 

Lemma 2.4 ([85]) Let s;;::: 1 be an integer and assume that v = (vl ,··· 

• • , v ), E if (JIfl). Let F = F (v) be a dX) -function of v E :rrf. Then for 
m 

1 < . h D F (v) E Hj -, 1 (JRn) and - J ~ s -' we ave x 

where C ~s a positive constant and 

over all v with Ivl ~ Ilvll co ). 

L 

j 
M = L sup ID~(V) I v 

k=l v 
( sup 

v 
~s taken 

Finally we shall give the estimates for commutators (for the proof, 

see [58] and [54]}. 
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Le.rru:ua 2.5 Let s;::: So + 1 (sO = [n/2] + 1) be an integer and asswne that 

u E ~ (TIf) • 

(i) Let 1 s £ s s be an integer and let v E H£-l (JRn). Then for 0 s 

k k k 2 . 
k s £ -' we have [D, u] v == D (uv) - uD VEL (TIf) and x x x 

(2. 7) 

(ii) Let 0 s £ s s be an integer and l.et v E H£ (JRn). Let ¢ 0 * denote 

the Friedrichs mollifier. Then we have 

Dx v) E H£.(TIf) -' 

and II [¢ 0 *, u] Dx v II £ -+ 0 as 0 -+ 0 • 

2.3 LINEARIZED EQUATIONS 

[¢ * u]D v == ¢ *(uD v) - u(¢ * 0' x 0 x 0 

In this section we shall prove the existence of solutions for the 

linearized equations of the fonu 

(2.9) 1 

o A 'k A 

A2 (u'V)Vt - L B2
J (u,v)v = f2 . 

jk Xj~ 

Let o.:r = [O,T] x JRn (T is a positive constant) and So = [n/2] + 1, and 
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let s ~ SO' + 1 and 0' ~ £ ~ s be integers. For (u,v) (t,x) and (f
1

, 

f 2) (t,x), given functions on Or' we assume the following conditions. 

(2.10') 1 

{

V - V E CO(O',T i HE> (JRn)) 

0' s-2 Ii . 2 s-l ....Jl 
.dtV E C (O',T iH (JR)) n L (O',Ti H (lli)), 

(2.11) (u,v) (t,x) E 01 for any (t,x) E Or ' 

where (u,,,) E ° is the constant state in Condition 2.2 and 01 is a 

bounded open convex set in nf1 satisfying 01 c ° i 

(2.12)1 

(2.12)2 

First we shall obtain the energy estimates for (2.9) 1,2. For this 

purpose we only require the conditions which are obtained by replacing 

0' . 00 

C ( ••• ) ln (2.10')1,2 and (2.12)1,2 by L (eee). That is, 

(2.13) 1 
00 s-l -.-n 

dtU E L (O',T iH (lli)), 

(2.13) 2 
{

V - VEL 00 (0' , T i HS (JRn) ) 

dtV E Loo(O',T i HS
-

2 (JRn)) n L2 (O',T i HS
-

1 (JRn)) 

(2.14) 1 
00 £-1 n 2 £ n 

f1 E L (O',T iH (JR)) n ~ (O',TiH (JR)) , 
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(2.14)2 
00 ~-1 n 

f2 E L (O,T i H (JR )) • 

Then we have: 

I.emma 2.6 (energy est.i.rrates 'for linearized equations) Let us assume 

Condition 2.1. Let n:2: 1 and. s :2: So + 1 (sO = [n/2] + 1) be integers and 

let (u,v) (t,x) satisfy the conditions (2.13)1,2 and (2.11). Put 

M= sup II (u-u, v-v) (t)11 -' 
O~t~T s J

T 2 V2· 
M1 = ( 0 II dt (u,v) (t) II s-l dt) 

(i) Let 0 ~ ~ ~ s be an integer and let f1 (t,x) satisfy (2.14)1· As-

sume that u(t,x) ~s a solution of (2.9)1 satisfying 

(2.15)1 
00 ~ n 

u E L (0, T i H (JR))-, 

Then we have 
o ~ ......n 

C (O,T i H (.ill.)) • Furthermore there exist constants U E 

C1 = C1 (Ol) > 1 and C2 = C2 (Ol,M) > 0 such that the following energy 

inequality holds for t E [O,T]. 

(2.16)1 

(ii) Let 1 ~ ~ ~ s be an integer and let f2 (t,x) satisfy (2.14) 2. As

sume that v(t,x) is a solution of (2.9)2 satisfying 

(2.15)2 
00 ~ n 

VEL (O,T i H (JR))-, 
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Then v E cO (O,T ; H.Q, (JRn)) n L 
2 

(0 ,T i H.Q,+ 1 
(JRn)) -' and the fol'lowing energy 

inequality holds for t E [O,T]. 

(2.16)2 

where C
1 

and C
2 

are constants as in'(i). 

Proof. This 1errma can be proved by the standard energy method (see [63] 

or [54] 3' for exanp1e). We devide the proof of (i) into 4 steps. 

step 1 We first show the estinate (2.16) 1 under the assurrptions that 

u satisfies (2.13)1' v and f1 satisfy 

I 

(2.13)2 

I 

(2.14) 1 
00 .Q, n 

f1 E L (O,T; H (JR)) , 

respectively, and that u is a solution of (2.9) 1 satisfying 

, 
(2.15) 1 

00 .Q, n 
dtU E L (O,T; H (JR)) • 

Applying D~ (k::;.Q,) to the system (2.9) l' we have 

(2.17) 1 
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where 

I k A 

Take the inner product (in nf1) of (2.17) 1 with DxU. Integrating it 

n 
over JR and adding for k = 0, 1, • • • • ,~, we obtain 

(2.18)1 

-.-.JIll • where <, > denotes the standard inner product in JJ:{ 

here the energy nonn: 

( . I I < A~ (u, v) D~~, D~~ > dx ) 1/2 
k=O 

We introduce 

Since o 
Al (u,v) is real symmetric and positive definite, E1 [U] is equiva-

A 

lent to II u II ~' that is, there are constants Co = Co (01) > 0 and Co = 
A A A 

Co (01) > 0 such that Co II ull ~ ~ E1 [u] ~ Co II u \I ~. By integration by 

parts we find that the left rrember of (2.18) 1 is bounded from be1CJV.l by 

for sorre constant Co = Co (°1), where (2.4) (with p=cc and s -+s-l ~ sO) was 

used. On the other hand (2. 7) and (2.6) (with j = s) yield the estimate 
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~ k 0 -1 j A A 

I II [Dx ' Al (u,v) All (u,v)]ux.11 s CM Ilull~ " 
k=O J 

while (2.5) (with k=~) and (2.6) (with j =s) give the estimate 

IIA~ (u,v) -IfIll ~ sell fIll ~ ,where C = C (01 ,M). Therefore the right hand 

side of (2.18)1 is majorized'by 

Thus we arrive at 

Applying the Gronwall's inequality, we obtain 

C (Mt + M t 1
/

2
) t 

El [ul (t) ,; e . 1 . {E
1 

[~l (0) + ct1/2 (foil fl (e) II ~ de) 1/2} 

for some constant C = C (01 ,M). The estimate (2.16) 1 is an irnrrediate con

sequence of the last inequality. 

step 2 Next we shCMl the estima.te (2.16) 1 for (u,v), f1 and u satis-
, , 

fying (2.13)1,2' (2.14)1 and (2.15)1' respectively. Let ~a* denotes the 
, 

Friedrichs mo11ifier and put va = ~a*v. Then va satisfies (2.13)2· 

The system (2.9) 1 is rewritten in the form 

(2.19) 1 

where 
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'The results in step 1 are applicaple to (2.19) 1. So we get the estimate 

(2.16)1 with fl replaced b~ fl + ~. Since IIR~IIQ, ::; c Il~ - volls· 
A 0 

( II fIll Q, + II u II Q, + 1 ) by (2 • 5) and ( 2 . 6), we have sup II Rl (L) II Q, + 0 as 
L 

o + O. 'Therefore, letting 0 + 0, we conclude the estimate (2.16) 1 for 

(u, v), fl and u rrentioned arove. 

step 3 Finally we show that (2.16) 1 also holds for (u,v), fl and u 

satisfying (2.13)1,2' (2.14)1 and (2.15)1· Applying <1>0* to the system 

(2.9) l' we obtain 

(2.20) 1 

o 0 -1 j A 

- Al (u, v) ~ [<1>0*' Al (u, v) . All (u, v) ] ux . 
J J 

o 
'The results in step 2 are applicable to (2.20) 1 because fl,o + Ql and 
A , I 

Uo satisfy (2.14)1 (cf. (2.8)) and (2.15)1' respectively. So we get the 
A A 0 

estimate (2.16) 1 with u and fl replaced by U o and fl,o + Ql. It 

00 Q, ...Jl 
is easy to see that as 0 + 0, Uo + U strongly in L (O,T; H (lli.)), fl,o 

+ fl strongly in L 
2 

(O,T i HQ, (JRn)) , and Q~ + 0 strongly in L2 (0 ,T ; 

HQ, (JRn)) i the last convergence is a consequence of Lemma 2.5 (li). 'There-
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fore, letting 0 -+ 0, we obtain (2.16) 1 for (u, v), fl and u IreIltioned 

in lemma 2.6. 

step 4 It remains to prove 

cO (0, T i H£ (mn )) for 0 > o. 

A 0 £ n 
u E C (0, T i H (JR)). 

From (2.20)1 we have 

Note that U o E 

Since the estimate (2.16) 1 is applicable to this system, we get (2.16) 1 

with ~ and fl replaced by ~o - ~o' and f~'o', respectively. It is 

easily seen that as 0, 0' -+ 0, (u
o 

- u
o

,) (0) -+ 0 strongly in H£ (m
n

) 

and f~'o' -+ 0 strongly in L 
2 (0 ,T i H£ (m

n) ). This implies that ~o 

(0 > 0) is a Cauchy sequence in cO (0 ,T ; H£ (m
n) ). Therefore the limi t 

A 0 £ n 
u belongs to C (0 ,T ; H (JR )) • Thus the proof of (i) is corrpleted. 

The proof of (ii) is alnDst similar to that of (i). Since the argu-

IreIlts on the rrollifier are also applicable, it suffices to prove the esti-

mate (2.16) 2 only in the case that u~ v and f2 satisfy (2.13) l' 
, 

(2.13)2 and 

, 
(2.14)2 

CD £ n 
f2 E L (O,T; H (JR)) , 

respectively, and that v is a solution of (2.9) 2 satisfying 

, 
(2.15)2 

CD £ n 
dtV E L (O,T;H (JR)) • 

CD £+2 -.Jl 
VEL (O,T;H (JJ:{)), 
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Applying D~ (k s; £) to (2.9) 2' we have 

(2.17) 2 

where 

In the sarre way as in step 1 we obtain as a counterpart of (2.18) 1 : 

(2.18) 2 
£ J 0 k'" ij k'" k" L < A2 (u, v) D vt - L B2 (u, v) D v , D v > dx 

k O
x. . x X.x. x 

= 1J 1 J 

. Define the energy norm 

" 
which is equivalent to Ilvll £. By integration by parts and the GTIding's 

. . 2 
inequality for the strongly elliptic operator L B~J (u,v) (a lax. ax.), we 

ij 1 J 

find btlo positive constants Co = Co (01) and C = C(Ol,M) such that the 

left hand side of (2.18) 2 is bounded from below by 

On the other hand the right member of (2.18) 2 is majorized by 
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A A A 

C Il v ll£+l E2 [V] + C Ilf211£_11Ivll£+1 ' 

if we estimate the tenus containing D;f 2 by integration by parts and the 

other tenus by using (2.5), (2.6) and (2.7), where C = C(Ol,M) is a con

stant. Thus we arrive at 

from which follows the desired estimate (2.16) 2 by virtue of the Gronwall's 

inequali ty . 

The regularity result, V E 

be shOlID in the sarre way as in step 4 of (i). So we omit the details. 

This oonpletes the proof of Lemma 2.6. 

Next we state the existence results for (2.9) 1,2. 

Proposition 2.7 (existence of solutions for linearized equations) Let 

us asswne Condition 2.1. Let n 2 1 and s 2 So + 1 (sO = [n/2] +1) be 

integers and let (u,v) (t,x) satisfy (2.10) 1,2 and (2.11). 

(i) Let 1 ~ £ ~ s be an integer and let fl (t,x) satisfy (2.12)1. If 

the initi~l data satisfy ~ (0) E H£ (nfl) -' then the system (2.9) 1 has a 

unique solution ~ E cO (O,T i H£ (nfl)) n C1 (O,T i H£-l (JRn)) satisfying the 

estimate (2.16)1-

(~) Let 2 ~ £ ~ s be an integer and let f 2 (t,x) satisfy (2.12)2. If 

v(O) E H£(nfl) -' then (2.9)2 has a unique solution ~ E CO(O,T; H£(nfl)) n 

C1 (O,T ; H£-2 (nfl)) n L2 (O',T ; H£+l (JRn)) satisfying the estimate (2.16) 2. 
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Proof. The sys tern (2.9) 1 is written in the fonn 

(2.21)1 
du 
dt + Al (t)u = fl (t) t E [O,T] , 

A ° -1 j A 0-1 
where Al (t) = 4 AI (u,v) All (U,V)dX.' fl (t) = AJ. (u,v) fl· ~e apply 

J J 2 h 
Theorem II of Kato [37] 3 to the system (2.21) 1. Let X = L (JR), Y = 

H~ (nf) anq, S (t) = s = (1- 6) ~/2. It is not difficult to verify the 

• A 1 
conditions (i)', (ii) Ill, (iii) of Theorem 'I in [37] 3. Sli1ce fl E L (0 ,T i 

H~ (£)) n cO (0 ,T i H~-l (JRn )) by (2.12) l' Theorem II in [37] 3 gives a solu-

• A ° ~.....n 1 2 n tion u E C (O,T i H (lli.)) n C (O,T i L (JR )) of (2.21) 1 (and consequent-

ly (2.9) 1). IYbreover it follows that dtU E cO (O,T; H~-l(JRn)). There-

fore u is the desired solution. The estimate (2.16) 1 is an irrrrnediate 

consequence of Lerrrna 2.6 (i). Thus the proof of (i) is completed. 

The sys tern (2. 9) 2 is written in the fonn 

(2.21) 2 t E [O,T] , 

\ ° -1 jk 2 A _ ° -1 where ~ (t) - - jk A2 (u,v) 132 (u,v) dXj~ f2 (t) - A2 (u,v) f 2 · We give 

the proof for ~ = 2. Letting X = L 
2 
(nf), Y = H2 (nf) and S (t) = ~ (t) 

+ S + 1 (with a sufficiently large S > 0), we can verify the conditions 

(i)', (ii)"', (iii) of Theorem I. Sup}?Ose now that f2 E L2(0,T ;H2 (JRn)) n 

° 2.....n A 1 2 n ° 2 n _ C ( ° ,T ; L (lli. )). Then f 2 E L (0, T i H (JR)) n C ( ° ,T i L (JR )), and there-

fore Theorem II gives a solution v E CO (0, T ; H2 (nf)) n Cl (0 ,T ; L 2 (JRn) ) 

of (2.21)2 (and consequently (2.9)2). For general f2 satisfying (2.12)2 

wi th ~ = 2, we consider the problem 
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(2.22) 0 o "0 jk "0 _ 
A=' (U,V)V t - L B2 (U,V)V - f2 .s.: , 
-~ jk Xj~ ,v 

~0(0) =V(O) , 

2 2_J1· 0 2.....n 
where f 2 ,0 = ¢0*f2 . Since f 2 ,0 E L (O,T; H (..ll:{)) n C (O,T; L (Jl:{ )), 

"0 0 
the above consideration shows the existence of a solution VEe (O,T i 

H2(nf)) n Cl(o,T; L2(nf)) of (2.22)0. Applying (2~16)2 (wi-tl} ,Q,=2) to 

the system 
o 0 J 

(2.22) - (2.22) , we have 

"0 "0' 2 Jt
, 2 II (v. - v ) (t) 112 ,; C(T) 0 II (f2,6 - f 2,6') (T) III dT 

for some constant C(T). Since f 2 ,0 - f 2,o' + 0 (as 0, 0' + 0) strongly 

in cO (0 ,T i HI (JRn )), ~o is a cauchy sequence in cO (0 ,T i H2 (nf)) • 

o 2 "0 " 
Therefore there is a VEe (O,T; H (nf)) such that v + v strongly in 

cO (O,T i H2 (JRn)) as 0 + o. This limit v is a solution of (2.9) 2' and 

so we know at~ E cO (O,T ; L2 errf)). Hence, by I.e.mma 2.6 (ji), we have a 

regularity ~ E L2 (O,T i H3 (nf)) and the estimate (2.16) 2 with ,Q, = 2. 

Thus the proof for ,Q, = 2 is completed. We can give the proof for 2 < 

,Q, ~ s by induction, but we omit it. This corrpletes the proof of Propo-

sition 2.7. 

2.4 LOCAL EXISTENCE 

First we shall consider the linearized system of (2.1): 

(2.23) 
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l OA 'k A 
A

2
(u,V)V

t 
- I B

2
J (u,v)v = f

2
(u,V,D u,D v) , 

jk Xj~ x x 

wi th the initial data 

(2.24) (u,v) (O,x) .. - (u,v), (O,x) = (uO,v
O

) (x) . 

let Conditions 2.1 and 2.2 be assurred and let s ~ So + 1 (sO = [n/2] + 1) 

be an integer. For (uO,v
O

) (x) we assune that (u
O 

-u,v
O 

-v) E HS(:rrf) 

and 

(2.25) for any x E :rrf I 

where 0
0 

is a rounded open convex set in :nf satisfying 0
0 

cO. For 

(u, v) (t,x) , given functions on QT' we assurre that 

u - U E 
o s-l n 

dtU E C (O,T i H (JR ) ) (2.10) 1 

I 

(2.10) 2 

(2.11) (u,v) (t,x) E 0
1 

for any (t,x) E Q
T 

' 

(2.26)1 sup II (u-u, v-V) (T)11 2 +ftll(v-v)(TlI12+ldT 
O~'T~t " s 0 s 

2 
~ M , 

(2.26)2 for t E [0, T] , 
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where 01 is a bounded open convex set in nf1 satisfying 01 cO, and 

s 
M and Ml are constants. We denote by XT(Ol,M,Ml ) the set of func-

, 
tions (u,v) (t,x) satisfying (2.10) l' (2.10) 2' (2.11), (2.26) 1 and 

(2.26) 2. 

We shall detennine °1 " M, Ml and T so that for 
s 

(u,v) E XT(Ol' 

M'Mi) , the initial value problem (2.23), (2.24) has a unique solution 

(u,v) in the same ~(Ol,M,Ml). That is, the set ~(01,M/M1) is in

variant under the mapping defined by' (u,v) -+ (u,v). To state nore pre

cisely, we need sorre preparations. Let ,(u, v) E ~ (01 ,M,Ml ). Then Con

di tion 2.2 together with the estimates (2.5) (wi th k = 9.- = s-l and s -+ s-l 

;::: sO) and (2.6) (withj =s-l) gives 

(2.27) 

for SOffi2 constant C = C(Ol,M). Let (u,v) (t,x) be a solution of (2.23) 
, 

satisfying (2.10)1' (2.10)2 and (2.26)1 with M replaced by M. Then, 

by using (2.5) (with k=9.-=s-l), (2.6) (with j =s) and (2.27), we have 

(2.28) 

wi th sorre constant C3 = C3 (Ol,M). Now fix a constant d l so that 0 < 

dl < dO = dist(OO' aO), and take 01' M and Ml as follows: 

(2.29) 
( 

01_= d1-neig~rhood_Of 

M - 2Cl II Uo - u, v 0 - vii s 
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where Cl = Cl (01) and C3 = C3 (Ol,M) are constants in lemma 2.6 and 

(2. 28) , respectively. Then we have: 

Proposition 2.8 (invariant set under iterations) Let Conditions 2.1 

and 2.2 be assumed. .Let n ~ 1 and s ~ So + 1 (so = [n/2] + 1: be inte-:, 

gers. Suppose that the initial data satisfy (u
O 

-ii,v
O 

- v) E H
S (JRn) and 

(2.25) . Then there exists a positive constant 'TO-' depending only on 00-' 

dl and II uo - ii, v 0 - vii s -' such that if' (u, v) E X; (01 ,M,~) with 01-' 
o 

M and ~ defined by (2.29)-, the initial value problem (2.23)-, (2.24) 

has a unique solution (u,v) 

Proof. The existence of a solution (u,v) to (2.23), (2.24) follows from 

Proposition 2.7 with ~ = s. So it suffices to estimate the solution. 

By (2.16) 1,2 (with ~ =s) we have 

(2.30) 
A A 2 

\I (u - li, v - v) (t) II s f
t A 2 

+ 0 II (v - v) (L) \I s+ 1 d L 

C(t + M t l / 2) 
2 1 II' - -11 2 2 s C

l 
e { U o - u, v 0 - v s + CM t (1 + t) } 

for some constant C = C (01 ,M). Here we have used the estimates II fl (u, 

v,D v) II s C(M+ liD vii) and (2.27). Take TO so that 
x s x s 

Then the right hand side of (2.30) is rnajorized by 4c1
2 II U o - li, v 0 - vii; 

= M2. Therefore the solution (u, v) satisfies (2.26) l' which also gives 
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(2.28) with M = M : 

It A A 2 2 2 
o II at (u,v) (T) II s-l dT :s; C3 M (1 + 2t) . 

The right hand side of the above inequality is bounded by 4c3
2
. M2 = M12 

provided TO:S; 3/2. So the estimate (2.26) 2 is proved to be satisfied 

for the solution. On the other hand this estimate gives 

where C is the mnstant in (2.4). 

Then the last inequality irrplies that the solution ~atisfies (2.11). 

This m:rrpletes the proof of Proposition 2. 8 . 

Based on Proposition 2.8, we shall introduce the successive approxi-

n n }oo nation sequence {(u,v) (t,x) n=O for the initial value problem (2.1), 

(2.2) as follows: 

and for n ~ 0, 

o n n n+l \ j n n n+l _ n n n 
A: (u ,v) u t + l.. A (u ,v) u - fl (u ,v ,D v) , ···1 . x. x 

(2.31) n+ 1 J J 

Ao (n n) n+ 1 _ \ Bjk (n n) n+ 1 f (n n n D n) 
2 u ,v v t l.. 2 u,v v = 2 u ,v ,D u, v. , 

jk Xj~ x x 

(2.32)n+l ( n+ 1 n+ 1)' (0 ) _ ( ) ( ) u ,v IX - uO' vOx . 
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By Proposition 2. 8 the sequence n n (u ,v ) (t,x) is well ,defined on ~ 
o 

for all n ~ 0, and is unifonnl y bounded with respect to n ~ 0, i . e. I 

n n vB 
(u ,v ) E '<'T (01 ,M,~) • We will show the convergence of the sequence 

n n 
(u ,v ) 

o 
as n -+ 00. Consider the difference (2.3l)n+l - (2.3l)n. 

(~n, ~n) = (un+ 1_ un, J1+ 1_ vn ), for n ~ 1. Then we obtain 

{ 0 n n An L j n n An ~ Al (u ,v )~ t + . All (u ,v )u x . = 
n J J 

(2.33) 

o n n n L Bjk(un,vn)~ ~ A2 (u ,v )v t = 
jk 2 Xj~ 

(2.34)n 
An An 

(0, 0) (u ,v ) (O,x) = , 

where 

:n 0 n nOn n -1 n n n 0 n-l n-l-l 
'1:1 = Al(U IV ) {Al(U ,v) fl(u ,v ,DxV) - Al(U ,v ) • 

n-l n-l n-l 0 n n\,O n n -1 j n n 
e f 1 (u , v ,D x v )} - Al (u ,v ) ~ {Al (u ,v) All (u ,v ) -

J 

_ AO (n-l n-l) -lAj (n-l n-l)} n 
1 u , v 11 u , v u x . 

J 

Let 

:n 0 n n On n -1 n n n n 0 n-l n-l-l 
1: 2 = A2 (u ,v ) {A2 (u ,v) f 2 (u ,v , D xu, D x v ) - A2 (u , v ) e 

n-l n-l n-l n-l ,'0 n n\,O n n-l 
ef2(u ,v ,D u ,D v )} - A=(U ,v) ~ {A

2
(U ,v) e 

X X -~ jk 

eBjk ( n n) _ A20( n-l n-l)-l jk( n-l n-l)} n 
2 

u, v u, v 13
2 

u , v v . 
Xj~ 

By the estimates (2.5), (2.6) and 
n n s 

(u ,v) E XT (Ol,M,M
l
), we find a con-

o 
stant C = C(Ol,M) independent of n ~ 1 such that 
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n 
'Iherefore, applying (2.16) 1,2 (with 9., =s-l) to .the system (2.33) , we get 

(2.35) 
An An 2 It An 2 

sup II (u ,v ) ('[) II -1 + Ilv ('[) II d'[ 
.O::::;'[::::;t s 0 s 

1/2 . 
C (t + MIt) . An-l An-l 2 

::::; Ct (1 + t) e {sup II (u , v ) ('[) II -1 + 
O::::;'[::::;t s 

It An-l 2 
+ II v ('[) II d'[} , 

o s 

where C = C(Ol,M) is a constant independent of n ~ 1. Take Tl so 

small that 

Then it follcws from (2.35) that n - n -
(u - U,v - v) is a Cauchy sequence in 

o s-l ......Jl 
C (0 ,T 1 i H (lli. )) • Therefore there is a (u,v) (t,x) with (u - u,v - v) 

E cO (0 ,T
l 

i Hs - l (JRn) ) n n 0 
such that (u - u, v - v) -+ 0 strongly in C (O,T

l 
i 

H
s - l (nf)) as n -+ 00. On the other hand it follows from the uniform esti-

n n s s 
mate (u, v ) E XT (Ol,M,Ml ) c XT (Ol,M,Ml ) that there is a subsequence 

01' nl 2 s+l n 
{n l

} of {n} such that v -v -+ 0 weakly in L (O,T
l 

i H (JR )). 

Furtherrrore there is a subsequence {n "} = {nil (t)} of {n I } , depending 

nil nil s ......Jl 
on t E [O,T

l
], such that (u -u,V -v) -+ 0 weakly in H (lli. ) for 

every fixed t E [O,T
l
]. Thus we have a solution (u,v) (t,x) of (2.1), 
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(2.2) satisfying 

00 s n 
u - U E L (0,T

1
; H (ill:)) 

Moreover it fo110tJs that 

00 s-l ........Jl 
dtU E L (0,T1 ; H (lK )) I 

Therefore I by Lerrnna 2. 6 I we have a regularity 
o 

(u-u,v-v) E C (OfT1; 

S ........Jl 0 s-l ........Jl 
H (lK )) I and consequently d t U E C (0 IT 1 ; H (lK )) and 

Hs - 2 (JRn)) . Thus we have proved: 

Theorem 2.9 (local existence) Let Conditions 2.1 and 2.2 be assumed. 

Let n ~ 1 and s ~ So + 1 (sO ~ [n/2] + 1) be integers. Suppose that the 

initiat data satisfy 
- - s n (u

O 
-u,v

O 
-v) E H (JR) and (2.25). Then there 

exists a positive constant T1 (s TOJ., depending onty on DO" d1 and 

Iluo - u, Vo - viis" such that the initiat vatue probtem (2.1)., (2.2) has a 

unique sotution 

mined by (2.29). In particutar., the sotution satisfies 



- 35 -

(2.36) sup II (u-u, v-v) (T) 112 + ft II (u-u) (T) 112+ II (v-v) (T) Ils2+1dT 
O~T~t s 0 s 

where C4 > 1 is a constant·· depending only on 00-, dl and 11~0 - u, v
O

-

-viis· 

Rema.rk 2.3 (i) In the special case m" = 0 (resp. m I = 0), we can shON 

a similar local existence result for the sy:mrretric hyperbolic system 

(2.1) I (resp. sy:mrretric parabolic system (2.1)"). 

(li) The proof and the staten:ent of Theorem 2.9 remain valid in the case 

'k 
when B~ (j ,k = 1, • • • • ,n) depend on Dx v as well as ( ) ' Bjk = u, v , 1. e. , 2 

'k B~ (u, v ,Dx v), provided that s 2 So + 2 is assu.rred. 
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CHAPTER III 

QUASILINEAR SYMMETRIC HYPERBOLIC-PARABOLIC SYSTEMS, IT 

(GLOBAL EXISTENCE) 

3.1 INTRODUCTION 

Let (u,v) be the constant state in condition 2.2. Then (u,v) (t,x) 

= (u,v) is a constant equilibrium solution of the system (2.1). In this 

chapter we shall prove that under appropriate conditions a solution to 

the initial value problem (2.1), (2.2) exists for all tine in a small neigh-

borhood of (ti, v) and decays to (u, v) as t -+ 00, that is, the equi-

librium state (u, V) is asyrrptotically stable as t -+ 00. 

Our analysis below is based on a study of the dissipative structure 

of ,the linearized system for (2.1) around the equilibrium state (ti, v) . 

(3.1) 

, (cf. (3.16)), where all the coefficients AO (u, v), Aj (u, v), B
jk (u, v) and 

L(u,v) are constant square matrices of order rn; they are given explic-

itly by 
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o A (u, v) 

= [Ah (u,v) 

A~l (u, v) 

A
j 

(u, v) 

(3.2) 

BJ (u, v) 'k = l 00 

where 

o 1. , 
'k B~ (u, v) 

= - D~,fl (u,v,O) , 
J 

__ [Lll,(U' v) 
L(u,v) 

L21 (u, v) 

Ll~ (u, v) ], 

L22 (u, v) 

(3.3) 1 

= - D f
2

(u,v / 0 , 0) , n, 
J 

A~2(U,V) = - D~,f2(UIVIO,0) I 

J 

rnn' rnn" 
Here n = (nI'···· Inn) E JR and ~ = (~l'···· I ~n) E IR are vectors 

oorresponding to D u and D v I respectively; x x 
denotes the differ-

entiation with respect to ~, and so on. 
. J 

We assurre the follOiN'ing conditions on the linearized system (3.1); 

these conditions guarantee the dissipative structure for the system (3.1) 

(see Proposition 3.A.4) . 

Condi lion 3.1 

(i) AO (u/v) is real symretric and positive definite, 

(ii) Aj (u, v) (j = 1,· • · • ,n) are real symretric, 

(ill) Bjk(U,V) (j,k=l,····,n) are real symretric and satisfy Bjk(U,V) = 
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jk - - \' jk --B (u,v) i L B (u,v)w,w, is 
'k ] K 
] n-l 

any W = (wl'····,wn) E S " 

(real sy.rro:retric) positive semi-definite for 

(iv) L (u, v) is real sy.rro:retric and positive semi -defini te. 

Condition 3.2 There exist ,(real) constant square natrices K
j 

(j = 1,··· 

··,n) of order ill such that 

(i) KjAO Ju, v) (j = 1,···· ,n) are real anti-sy:rmetric, 

(ii.) the symretric part of the matrix, L {KjAk (u, v) + Bjk (u, V) }w ,w, + 
'k ] K 

- ] ~l 
+ L(U,v) is positive definite for any w = (wI'···· ,wn ) E S . 

It is noted that, in vieitl of (3.2), Condition 2.1 (i) and (iii) irrply Con-

clition 3.1 (i) and (iii) respectively. 

Under these conditions it has been proved by Umeda, Kawashima and 

Shizuta [81] that the solution of the linearized system (3.1) with the 

initial data U(O) E, L2 (JRn) n LP (JRn) (1 ~p ~ 2) decays at the rate t-Y 

(wi th Y = n (1/2p - 1/4)) as t -+ 00 (see appendix 3 .A.l). A combination of 

this decay estimate with the energy inequalities for (2.1) gives the main 

result of this chapter. "Let n 2: 3. If the initial data are close to 

the constant equilibrium state (u, v) in HS (JRn) n LP (JRn) (with s 2: 

[n/2] +3 and 1 ~p < 2n/(n+2)), then the initial value problem (2.1), (2.2) 

has a unique global solution in a small neigh}::x:)rhood. of (u, V) and the 

solution tends to (u,'1) at the rate t-Y (with Y =n(1/2p -1/4)) as t 

-+ 00." (Theorem 3.6) . 

The plan of this chapter is as follCMs. In section 3.2 we give the 

a priori estimates for higher order deri vati ves of sma.ll solutions of 

(2.1) by a sorrewhat technical energy rrethod, which make use of the Kj 
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in Condition 3.2. For similar energy rrethods, see [54,], [66], [41], 

[38]3,4- In section 3.3 we shall prove that small solutions of (2.1) 

have the decay rate t-Y, Y = n(1/2p -1/4), if n ~ 3 and if 1 s P < 

3/2 for n = 3 and 1 s p < 2 for n ~ 4 i this is an .i.rmrediate con-

sequence of the sane -decay result for linearized system (3.1). This 

decay rate also gives the a priori estimates for lower order derivatives 

of solutions when n ~ 3 and 1 s p < 2n/ (n+2) _ The global existence 

of a solution of (2.1) is proved in section 3.4 by the standard continu-

ation argwrent, based on the a priori estimates derived in sections 3.2 

and 3. 3 . Section 3.5 contains sorre global exis tence results for (2 .1) 

in the case that the nonlinear tenus satisfy additional conditions _ In 

section 3.6, as an application of our results, we shall treat the Equa-

tions of heat conduction with finite speed of propagation. 

In the appendix the linearized system (3.1) is investigated on the 

decay estimates and the spectral analysis. The decay estimates in ap-

pendix 3.A.l are used in section 3.3. The eigenvalue problem associated 

with (3.1) is discussed in appendix 3.A.2. 

3.2 A PRIORI ESTIMATES, I (ENERGY ESTIMATE) 

Let s ~ So + 1 (sO = [n/2] + 1) be an integer and let T > a . be a 

constant, and consider a solution (u,v) (t,x) of (2.1), (2.2) satisfying 

U E 
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(3.4) 

2 s-l n 
DUE L (0, T i H (JR )) , 

x 

(3.5) (u,v) (t,x) E 02 for any (t,x) E QT I 

where 02 is a bounded open convex set in :nfl satisfying 02 c 0. For 

the solution we introduce 

(3.6) NS (t' ,t) 2 =, sup II (u -li, v -v) (T) 112 + 
tl~T~t s 

It 2 2 
+ liD U(T) II -1 + liD V(T) II dT 

t' x s x s 
for 0 ~ t' < t ~ T , 

and we simply write N (t) = N (O,t). 'Then by (2.4) (with p =00 and s =sO) 
s s 

we find a positive constant a O such that 

(3. 7) if N (T) ~ a O ' then (3.5) is satisfied automatically. 
So 

So it is convienient to assume Ns(T) ~ a
O 

instead of (3.5). 

'The purpose of this and the next sections is to obtain the a priori 

estimate for N (T) when N (T) satisfies a smallness assurrption. OUr 
s s 

first result is stated as follows: 

Lemma 3.1 Assume Conditions 2.1~ 2.2 and 3.1. Let n ~ 1 and s ~ So 

+ 1 (sO = [n/2] + 1) be integers~ and let the initial data satisfy (uO - li, 

Vo -v) E H
S 

(nf). Let (u,v) (t,x) be a solution of the problem (2.1) ~ 

(2.2) satisfying (3.4) and Ns (T) ~ a
O

. Then there is a constant C = 
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c(a
O

) > 1 such that the following a priori estimate holds for t E [O,T]. 

where p+ .1--S the orthogonal projection onto the range of L(U,,,) (= the 

orthogonal complement of the null space 'of L(U,v)). 

Proof. We first rewrite the system (2.1). Since f1 (u,v,O) = f 2 (u,v,O,0) 

= 0 by condition 2.2, the lONer order terms f 1 and f2 can be written 

in the form (see (3.3)1,2) 

\' j --
fl (U,v, DxV) = - 4 AI2 (u,v)vx . -

J J 

{L11 (u, v) (u - u) + L12 (u, v) (v - v)} + fl (u, v ,Dx v) 

f 2 (u,V,D
X

U,D
X

V) = - ~ {A~l (u,v)ux . + A~2(u,V)Vx.} -
J J J 

- {L21 (u, v) (u - u) + L22 (u, v) (v - v)} + £2 (u, v ,DxU,Dx v) , 

where the remainders £1 and f2 are smooth in each argurrent and satisfy 

{ 

fl (U,V,DxV) = O({lu-u, v-vi + I Dxvi }2) , 

(3.10 ) 

f2 (u, v,D u,D v) = 0 ({ I u - u, v - vi + I D (u, v) I} 2) x x x 
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for !u-u, v-v! + !Dx(U,V) I -+ 0. Substitute (3.9) 1~2 into (2.1) to 

obtain 

(3.11) 

where 

= f(u,v,D u,D v) x x 

t - - ,...., t,...., ,...., 
u = (u-u,v-v), f(u,v,D u,D v) '= (fl(u,V,D v), f

2
(u,V,D u,D v)), . x x x x x 

__ [AIJ·.l (_U '_V) Aj 
(u, v) 

A21 (u, v) 

It suffices to prove the lerru:na for sufficiently smooth solutions be

cause the argu:rrents on the lIDllifier are also applicable. Apply D9.- (1::; 
. x 

9.- ::; s) to (3. 11). The resul ling sys te:m can be written in the form 

(3.12) 9.-

= t( Fl9.- , D~2(u'V,D u,D V,D
2
V)) , x x x x 

where 

'A0 
(u, v) = [ A~ (Uo,V) 

(3.13)1 
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o \' R, 0 -1 j £ 0 -1 j --
- Al (u, v) 4 {[Dx ' Al (u, v) All (u, v) ] ux . + [Dx ' Al,(U, v) ]A12 (u, v) v x. } 

J J J 

o £ 0 -1 - - -
- Al (u, v) [D

x
' Al (u, v) ] {L

11 
(u, v) (u - u) + L12 (u, v) (v - v)} , 

(3.13) 2 

. 
- A~(U,V) {A~(U'V)-l - A~(U'V)-l} ~ {A~l (U,V)Ux . + A~2(U,V):VX.} + 

'J J J 

o .2- - \' 0 -1 jk 0 - - -1 jk - -
+ A2 (U,V) jt {A2 (U,V) -S2 (u,v) - A2 (U,V) -S2 (U'V)}VXj~-

- A~(U,V) {A~(U'V)-l - A~(U'V)-1}{L21 (U,V) (u-U) + L
22

(U,V) (V-v)} . 

It should be noticed that the equations for D£U are regarded as a lin
x 

ear hyperbolic system whose principal part is of variable (not constant) 

coefficients. Take the inner product (in nfl) of (3.12)£ with D~U, in

tegra te the resulting equali q over Qt = [0, t] x:nf and then add for 

o 0 - - \' jk --
R, = 1,····, s. Noting that Al (u, v), A2 (u, v) and jk B2 (u, v) WjWk are 

positive definite and that L(U,v) is positive semi-definite, we have by 

integration by parts 

(3.14) 

where C = C (a
O

) > 1 is a constant and 
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+ J ID h 2 (u,V,D u,D V,D
2

V) liD Vi dx + x x x x x 

s J ~-1_ 2 ~+l + I I D -h2 (u ,v, D u, D v, D v) II D V I dx • 
~=2 x x x x x 

By the estimates (2.5), (2.6) and (2 . .1) we have 

Rl(t) ::; C Ilu-u, v-vii (liD ul1
2 

1 + liD V112) s x s- x s 

wi th a constant C = C (ao) , where Ns (T) ::; aO is assurred. Therefore the 

desired estimate (3.8) follows from (3.14) easily. This conpletes the 

proof of I.errn:na. 3.1. 

. 2 s-2 n 
Next we show the estimate for L (O,T; H (JR ) ) -nonn of the deriva-

lives 

I.errn:na. 3.2 Assume Conditions 2.1., 2.,2., 3.1 and 3.2. Let (uO,v
O

) (x) and 

(u,v) (t,x) be the same as in Lemma 3.1. Then there is a positive cons-

tant C = C(aO) such that the following a priori estimate holds for t E 

[0, T] • 

(3.15) 

Proof. We again rewrite the sys tern (2.1) such that the linear pars at the 

constant state (u, v) appear in the left hand side and the nonlinear parts 



in the right hand side: 

(3.16 ) 

2 = h(u,v,D u,D v,Dv) , 
x x x 
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t - - t 
where U =« (u - u, v - v) and h = (hl ,h2) 

2 
h2 = h

2
(u,v,D u,D v,D v) is x x x 

given by (3.13) 2 and hl = hl (u,v,Dxu,D~V) by 

(3.17) 

o - - \' 0 -1 j 0 - - -1 j --
- A

1
(U,V) 4 {A

l 
(u,v) All (u,v) - A1 (u,v) All (u,v)}ux . -

J J 

o - - 0 -1 0 - - -1 \' j --
- Al (u,v) {A

l 
(u,v) ,- Al (u,v) } ~ A12 (u,v)vx . -

J J 

o - - 0 -1 0 - - -1 - - - - - -
- Al (u, v) {A

l 
(u, v) - Al (u, v) } {L

ll 
(u, v) (u - u) + L12 (u, v) (v - v)} . 

Apply D; (1 s;.Q, s; s-l) to (3.16) and then multiply the resulting system by 

the matrices Kj (in Condition 3.2). Take the inner product (in nfl) of 

these eg:uations with the vectors 

add for both j = l,····,n and 

j 0 - -.Q, .Q, 
< K A (u,v) DxUt , D U xx. 

J 

and the estimate 

D.Q,U , integrate them over Qt and then 
x x. 

J 
.Q, = l,····,s-l. By condition 3.2 we have 

> 

{ ....... } 
x. 

J 
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\'f jk-- £ £ L < K A (u, v) D U ,D U > dx 
jk x ~ x Xj 

with constants c and C (0 '< c < C). Therefore the above calculation 

yields the estimate 

(3.18) 

where C is a constant and 

s-l ft £ 2 £+1 
R.. (t) = L ID h(u,v,D u,D v,D v) liD (u,v) I dx • 
-"L £=1 0 x x x x x 

By use of (2.5), (2.6) and Ns (T) ~ aO' we know a constant C = C(aO) 

such that 

R..(t) ~ C Ilu-u, v-vii (liD ul1
2 

1 + liD v112) . -"L s x s- x s 

This estimate and (3.18) yield (3.15). This conp1etes the proof of rem-

rna. 3.2. 
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3.3 A PRIORI ESTIMATES, II (DECAY ESTIMATE) 

In this section we shall get the decay estimates of small solutions 

to the problem (2.1), (2.2). Let (u,v) (t,x) be a solution of (2.1), 

t - ,-
(2.2) and put U(t,x)" = (u~u,v-v) (t,x). Then, noting (3.16), we ar-

rive at the expression 

(3.19 ) 

t - - t where Uo = (u
O 

-u,v
O 

-v), and h = (h
l

,h
2

) is given by (3.17) and 

(3.13) 2; e-ts is defined by (3.A.13) (for the definition of S (~), see 

(3.A.4)) in appendix 3.A.l. Applying the decay estirrate (3.A.14) to the 

expression (3.19), we have: 

Prgeosition 3.3 (a priori decay estimate) Assume Conditions 2.1~ 2.2~ 

3.1 and 3.2. Let n ~ 3 and s ~ So + 2 (sO = [n/2] + 1) be integers~ and 

let p E [1,3/2] for n = 3~ P E [1,2) for n = 4 and p E [1,2] for 

n ~ 5. Suppose that (u
O 

- u,v
O 

-v) E H
S crrf) n If CIRn) and put 

(3.20 ) 

for 9.,:::; s. Let (u,v) (t,x) be a solution of (2.1)~ (2.2) satisfying 

(3.4) . Then there exist positive constants a l (:::; a O) ~ °1 = °1 (al ) and 

Cs = Cs (al,ol) > 1 such that if Ns (T) :::; a l and Iluo -u, Vo -vlls-l,p 

:::; °
1 

~ then the following decay estimate holds for t E [O,T]. 
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(3.21) 

where y = n(1/2p - 1/4). 

corollary 3.4 Assume the conditions of Proposition. 3.3 with p satis-

fying 1 ~ p < 2n/(n+2). Then the following energy estimate 'holds for 

t E [O,T] •• 

(3.22) 

where C = C(al ,81) > 1 is a constant. 

Proof of Proposition 3.3 Applying (3.A.14) (with 0 ~ ~ ~ s-l) to (3.19), 

we obtain the inequality 

(3.23) 

I
t -c (t-T) 

+ C e 2 Ilh(T) II -1 + (1 +t- T)-n/4 IIh(T) II 1 dT 
O. s L 

with y = n (1/2p - 1/4) and a constant C. From (3.17) and (3.13) 2 we 

see that for Iu-u, v-vi + I Dx(U,V) I -+ 0, 

(3.24) 
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Therefore if Ns(T) ~ aO with s ~ So + 2, then 

(3.25)1 

(3.25)2 

II h ll s- l ~ C lI u ll s- l ( Iluli s + IIDxvlls) , 

Ilhll 1 ~ c lIull~ 
L " 

hold for some constant C = C(a
O
). Substitution of (3.25)1,2 to (3.23) 

yields 

I
t -c (t-1") 

+ c sup IIU(1") \I e 2 IIU(1") II -1 d1" + 
O~1"~t s 0 s 

Put III u (t) III -1 = sup (1 + 1") '1 II u (1") II -1. Then it follows that 
s ,'1 O~1"~t s 

(3.26) IIIU(t) IIls-l,'1 ~ c lIuolls-l,P + 

where 
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Here we note that lli (t) and 112'( t) are majorized ,by a constant inde

pendent of t E [0,(0) for any n and p indicated in Proposition 3.3. 

Therefore we can deduce from (3.26) that there are positive constants 

a l (~aO) and 01 = 0l(al ) such that if Ns(T) ~al and Iluolls-l,p 

~ 01' then IIIU(t) Ills-l,y ~ C Iluolls-l,p holds with sorre constnat C = 

C(al,ol). This implies (3.21). Thus the proof of Proposition 3.3 is 

conpleted. 

We next prove Corollary 3.4. Since y = n (1/2p - 1/4) > 1/2 for 

n ~ 3 and 1 ~ P < 2n/ (n+2)., the function (1 + t) -y is square inte-

grable with respect to t E [0,(0). Therefore (3.22) is proved as a 

direct consequence of (3.21). This corrpletes the proof. 

Finally in this section we make a sWDma.ry of the a priori estimates 

of snaIl solutions to the initial value problem (2.1), (2.2). let us com-

bine the estimates in lerrlmas 3.1 and 3.2 and Corollary 3.4 so as to make 

(3.8) + (3.15) xa + (3.22) with a positive constant a satisfying aC 

< 1. Then we obtain the inequality for N (T): s 

N (T) 2 + IT II (u - li, v - v) (t) 112 dt 
s 0 

~ C{ II uo - li, Vo - '1112 + N (T) 3} , s,p s 
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from which we can deduce that both N (T) and the L 
2 

(0, T ; L 
2 (JRn) ) -norm 

s 

of (u-u,v-v) are bounded by C Iluo -u, Vo -'III if N (T) is suit-s,p s 

ably small. Thus we have proved: 

Proposition 3.5 (a priori estimate) Asswne Conditions 2.1., 2.2., 3.1 

and 3.2. Let n ~ 3 and s ~ So + 2 (sO = [n/2] + 1) be integers., and let 

- - s n p n 
1 ~ P < 2nj (n+2). Suppose that (u

O 
- u, v 0 - v) E H (JR) n L (JR). Let 

(u,v) (t,x) be a solution of (2.1)., (2.2) with (3.4). Then there are pos-

itive constants a 2 (~al) and C
6 

= C
6 

(a2 ,01) > 1 (01 is the constant 

in Proposition 3.3) such that if Ns (T) .~ a 2 and Iluo -u, Vo -vlls-l,p 

then the following a priori estimate holds for any t E [O,T]. 

(3.27) N (t)2 + It II (u-u, v-v) (T) 11
2

dT ~ C621Iuo-u, vo -vl1
2 

. 
s 0 s,p 

Remark 3.1 (i) In special cases m' = 0 and m" = 0, Proposi tion 3.3 

and Corollary 3.4 (and therefore Proposition 3.5) are valid for s ~ So 

+ 1 because the estimate (3.25)1 for h is replaced by 

for m' = 0 , 

for m" = 0 1 

where Ns (T) ~ aO (with s ~ So + 1) is assurred. 

(li) The a priori estimate (3.27) has been derived by a conibination of 

the energy inequalities for quasilinear equations and the decay estimates 

for linearized equations (with constant coefficients). This rrethod was 
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previously employed by Matsumura and Nishida [55]2 for the equations of 

corrpressible viscous fluids in JR3. 

3.4 GLOBAL EXISTENCE 

Based .on the a priori estima.tes (Propositions 3.5 and 3.3) and the 

local existence result (Theorem 2.9) I we can conclude the global exist-

ence and asyrrptotic stability of a solution to the problem (2.1), (2.2) . 

Theorem 3.6 (global existence and asyrrptotic decay) Assume Conditions 

2.1." 2.2." 3.1 and 3.2. Let n ~ 3 and s ~ So + 2 (sO = [n/2] +1) be in

tegers." and let 1::; p < 2n/(n+l). Suppose that (u
O 

-u,v
O 

-v) E HS(nf) 

n LP (nf) and define II uo - li, v 0 - v\1 Q, ,p (with Q,::; s) by (3.20). Then 

there exists a positive constant 02 (::; °1", a 2) such that if II uo - li, 

vo-vll ::; °2 ", then the initial value problem (2.1).,,(2.2) has a unique s,p 

global solution (u,v) (t,x) with 

u-u E 

v-v E 

The solution satisfies the following estimates for t E [0,00). 

(3.28) II (u-u, v-v) (t) II; + f: II (u-u) (T) II; + II (v-v) (T) 11;+1 dT 
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(3.29 ) 

where y = n(1/2p - 1/4); C
6 

and C
5 

are constants 'l.-n (3.27) and 

(3.21)~ respectively. 

Remark 3.2 In special cases m I =0 'and mil = 0, the above results 

also hold for s ~ So + 1, see Remark 3.1 (i). 

Proof of Theorem 3. 6 Take ° 2 so tha t 

Then the solution of (2.1), (2.2) can be continued globally in time pro

vided the snallness condition lI u
o 

-ti, Vo -vii s,p ~ 02 is satisfied. In 

fact we have Ilu
o 

-ti, Vo -viis s 02 ~ a 2 ~ a O. Therefore, by Theorem 2.9, 

there are constants Tl = Tl (aO) > 0 and C4 = C4 (aO) > 1 such that a 

solution exists on [O,Tl ] and satisfies Ns (Tl ) S C4 Ilu
o 

-ti, Vo -viis. 

Since Ns (Tl ) S C402 S a 2 (sal) and Ilu
o 

-ti, Vo -vlls-l,p S 02 ~ 01 by 

the definition of 02' Propositions 3.5 and 3.3 give the estimates (3.27) 

and (3.21) for t E [O,T
l
]. 

Noting that II (u - ti, v - v) (Tl ) II s S Ns (Tl ) S a 2 S a O' we apply Theo

rem 2.9 by taking t = T 1 as the new initial tirre. Then we have a solu

tion on [Tl ,2Tl ] with a estimate Ns (Tl ,2Tl ) S C4 II (u -ti, v -v) (Tl ) lis. 

B¥ the estimate (3.27) (for tE [O,T
l
]), we have 
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N
S

(2T
l

) s {N (T )2 + N (T 2T )2}1/2 
s 1 s l' 1 

_< (1 +c 2) 1/2r,1 (T ) (1 2) 1/2 II - -II 4 l'l s 1 s C 6 . + C 4 Uo - u, v 0 - v s , p , 

from which we conclude that Ns (2T
l

) s C
6 

(1 +c
4
2) 1/2°

2 
s a

2
. On the other 

hand the conell tion II Uo - u, v 0 - vii s-l, p S °1 was already Ch~ked. There

fore Propositions 3.5 and 3.3 again give the estimates (3.27) and (3.21) 
. 

for t E [0, 2T
l

] . In the same way we can extend the solution to the in-

terval [O,nT
l

] successively n = 1,2,·····, and get a global solution . 

. This corrpletes the proof of Theorem 3.6. 

3.5 SOME FURTHER REMARKS 

In this section we shall treat the case when the remainder term 

f(u,v,D u,D v) = t(fl(u,V,D v), f
2

(u,V,D u,D v)) (f
l 

and £2 are defined x x x x x 

by (3.9) 1,2) sa tisfies the additional condition 

(3.30) +,....., I - -1 3 (I - P )f(u,v,D U,D v) = o( u-u, v-v + x x 

for \u-u, V-'ll + ID (u,v) I -r 0, where p+ is the orthogonal projec
x 

tion onto the range of L (u, v). Note that 
+ ,....., 

(I - P ) f does not contain 

1 - -1 2 the quadratic term u - U , V - V (corrpare (3.30) with (3.10)). 
,....., 

For general f(u,v,D u,D v) the existence of a global solution has x x 

been proved for the initial data near the constant state in HS 
(:rtf) n 



- 55 -

If cuf) , where n ~ 3, s ~ So + 2 (SO = [n/2] + 1) and _ 1 ~ p < 2n/ (n+2) 

(see Theorem 3. 6). In the case (3. 30), we will show a similar exis tenee 

result for a class of initial data near the constant state in H
S 

(nf) 

wi th n ~ 2 and s ~ So + 1. 

We start out to improve-the a priori estimates in lemmas 3.1 and 

3.2. 

lemma 3.7 Let n ~ 2 be an integer and assume the same conditions as 

in Lemma 3.1. We further asswne the additional condition (3.30). Then 

the following a priori estimate holds for t E [O,T]. 

(3.31) II (u-u, v-v) (t) 112 + Jt liD V(L) 112 + IIp+(u- u, v-v) (L) 11
2

dL 
sOx s s 

t - -Proof. We put U = (u.-u,v-v) and use the equation (3.16). It fo1-

1cws from (3.17) and (3.13) 2 that the right member h is expressed as 

(3.32) o - - 0 -1'" 0 - - 0 -1 0 - - -1 h = A (u,v)A (u,v) f - A (u,v) {A (u,v) - A (u,v) }. 

for lUi + I Dxul ~ O. The first term in the right hand side of (3.32) 

r-J f"J f"J 2 
is of the form f + O( lull fl) = f + O( lui {lUi + IDxul} ), where (3.10) 

was used. While the second term is dominated by 0 ( I u II p + u I). There-

fore we get 

(3.32)1 
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for lui + ID ul -+ O. Now we take the imler product of (3.16) with u 
x 

and integrate it over Qt. By the sarre arguments as in I.ermna 3.1 we have 

(3.33) 

with sorre constant C, where 

It follows from (3.10), (3.30) and (3.32)' that for lui + ID Ul -+ 0, the 
x 

integrand in R3 (t) is dominated by 

Therefore if Ns(T) saO' we have 

(3.34) 

for any E > 0 and a };X)si ti ve constant C = C (ao) , where we have used 
E E 

the estimate (2.4) for n?: 2 (with p = 4 and s = So -1 ; P =00 and s = sO) . 

Choose E so small that EC < 1. Then (3.33) together with (3.34) yields 

(3.35) 
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The desired estimate (3.31) is a consequence of (3.35) and (3.8). 'This 

(xmpletes the proof of Ie.mrna 3. 7 . 

< 

Ie.mrna 3.8 Let n ~ 2 be an integer and assume the same conditions as 

in Lemma 1.2. Then the following a priori estimate holds for t E [O,T]. 

(3.36) 
f

t 22ft 2 
liD UCf) II -1· d'I - C{ II (u-u, v- v) (t) II +. liD v('I) II + 

OX s sOx s 

Proof. Multiply (3.16) by Kj and take the irmer product of the result-

ing equation by U . Integrate it over Qt and add for j = 1,···· ,no 
x. 

J 
'The argurren ts in Ie.mrna 3. 2 gi ve the es tima te 

(3.37) f
t 22ft 2 
o IIDx(u,v) (T) II dT - c{ II (u-li, v-v) (t) III + 0 II DxV(T) III + 

+ IIp+(u-u,v-v)(T)II~dd sC{iiuo-u,vo-vlli+ f: R4(Tl dd, 

where 

R
4

(t) = f Ih(u,v,D u,D V,D
2

V) liD (u,v) I dx • x x x x 

Taking (3.24) into account, we have in the sane way as in (3.34) 
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(3.38) ~ C I\u-u, v-vii liD (u,v) 112 -1 ' 
So x So 

provided that n;::: 2 and Ns (T) ~ a
O 

are assurred. Here we again used 

the estirLlate (2.4) (wi th p = 4 and s = So -1). Substi tuting (3.38) into 

(3.37), we obtain the- estimate (3~36) for s = 1, wi:th Nl (T) replaced 

by N (T). This estimate together with (3.15) irrplies the desired esti
So 

mate (3.36).. This completes the proof of Lemna 3.8. 

A combination of Lemnas 3.7 and 3.8 corrpletes the a priori estimates 

of small solutions to the problem (2.1), (2.2) when the additional condi-

tion (3.30) is satisfied. Indeed, we combine Lemmas 3.7 and 3.8 so as to 

ffi3k.e (3.31) + (3.36) xa with a positive constant a satisfying aC < 1. 

Then we obtain 

where C = C (a
O

) is a constant and Ns (T) ~ aO is assurred. From this 

inequality we can deduce: 

proposition 3.9 (a priori estimate) Let Conditions 2.l~ 2.2~ 3.1 and 

3.2 as well as (3.30) be asswned. Let n;::: 2 and s;::: So + 1 (sO = [n/2] 

+ 1) be integers. Suppose that (u
O 

-u,v
O 

-v) E HS(nf)~ and (u,v) (t,x) 

is a solution of (2.l)~ (2.2) satisfying (3.4). Then there exist positive 
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then the following a priori estimate holds for t E [O,T]. 

(3.39) 

Conbining Theorem 2.9 with Proposition 3.9, we can conclude the ex-

istence of a global solution to (2.1) ,(2.2). 

Theorem 3.10 (global existence) Assume (3.30) in addition to Conditions 

2.1., 2.2., 3.1 and 3.2. Let n ~ 2 and s ~ So + 1 (sO = [n/2] +1) be in

tegers and suppose that (u
O 

- U, v 0 - v) E H
S 

(JRn) • Then there exists a 

positive constant 03 (s a 3) such that if Iluo - u, Vo -vii s s °3 " then 

the problem (2.1)., (2.2) has a unique global solution (u,v) (t,x) satis-

fying (3.4) with T = 00. The solution satisfies the estimate 

(3.40) II (u - u, v - v) (t) 112 + ft II D u ( L) II 2 1 + II D v (L) 112 + 
sOx s- x s 

for t E [0,00)., where C
7 

is the constant in (3.39). Furthermore the 

so lution decays to the constant state (u, v) (uniformly in x E nf) as 

(3.41) 

Proof. 

I (u - u, v - v) (t) 1 s- (s + 1) + 0 
o 

as t + 00 . 

existence of a global solution can be proved in the sarre way as in Theo-
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rem 3.6. So we omit it. We only prove the decay law ,(3.41). Put <P(t) 

= IIDx(U,V) (t) 11~-2. Then it fo1100s from (3.40) and (2.1) that 

with sorre constant, C. From this estimate we can deduce that' <P(t) = 

IIDx(U,V) (t) 11~-2 -+ 0 as t -+ 00. This and the inequality 

(which fo1100s from (2.4)) give the decay result in (3.41). 'rhus the 

proof is conp1eted. 

It is easy to get the decay rate of the solution (constructed in Theo

rem 3.10) when the initial data satisfy (u
O 

- li, v 0 - v) E If (Iff) n If (Rn ) • 

Theorem 3.11 (asymptotic decay) Assume (3.30) in addition to Conditions 

2.1-, 2.2-, 3.1 and 3.2. Let n 2 3 and s 2 So + 2 (sO = [nl2] +1) be in

tegers-, and let p E [1,3/2] for n = 3 and p E [1,2) for n 2 4. Sup

pose that (uO-li,vO-v) EHsCrn.n) nLP(TIf) anddefine Iluo-li,v
O

-

- vll.Q"p (with .Q, ::;;s) by (3.20). Then there exists a positive constant °4 

(::;;°1-, ( 3) such that if Iluo -li, Vo .;..vlls,p ::;; °4-, the solution construct

ed in Theorem 3.10 satisfies the decay estimate (3.21) for t E [0,00): 
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where y = n(1/2p - 1/4). 

Remark 3.3 In special cases m' = 0 and mil = 0, the a.l:x)ve decay re-

suIts also hold for s ~ So + 1, see Remark 3.1 (i). 

Proof of Theorem 3.11 Take ° 4 so that ° 4 = min {o l ' ° 3' a'1/c7 }. 

Then, by tl}e estirrl.:::lte (3.40), the solution satisfies Ns(t) ~ c71luo-u, 

Vo -viis ~ C704 ~ a l for t E [0,(0). On the other hand the condition 

Iluo - u, Vo - vlls-l,p ~ ° 4 ~ °1 is obvious. Therefore Proposition 3.3 

proves the assertion of Theorem 3.11. This completes the proof. 

Finally in this section we shall make a slight modification of Prop-

osition 3.3 (and consequently of Theorem 3.11) , when the nonlinear term 

2 t 2' 
h(u,V,D u,D v,D v) = (hI (u,v,D u,D v), h2 (u,V,D u,D V,D v)) (hI and h2 x x x x x . x x x 

are defined by (3.17) and (3, 13) 2 respectively ) satisfies the additional 

condition 

(3.42) 

for any 

+ 2 (I - P )h(u,v,D u,D v,D v) 
x x x o 

2 :2 run n mil 
(u,V,D u,D V,D v) E 0 X]R xJlZ • 

x x x 

Proposition 3.12 (a priori decay estimate) Assume Conditions 2.1~ 2.2~ 

3.1 and 3.2 as well as (3.42). Let n ~ 1 and s ~ So + 2 (sO = [n/2] + 

+ 1) be integers~ and let p = 1 for n = l~ P E [1,2) for n = 2 

and pE [1,2] for n~3. Suppose that (uO-u,vO-v) EHs(nf) n 

LP(JRn)~ and (u,v) (t,x) 1.-S a solution of (2.1)~ (2.2) satisfying (3.4). 
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Then there exist positive constants all (s ao) "' <5 I = <5 ' (a ') and c' = 1 . 1 1 5 

C ' (a' ° ') > 1 5 l' 1 

0i:l then the following decay estimate holds for t E [O,T]. 

(3.43) 

where y = n(1/2p - 1/4). 

t - -Proof. Let U = (u - U,v -v). Noting (3.24), we have 

(3.44) 

and (3.25) 2' where Ns (T) ~ a
O 

(s ~ So + 2) is assumed. Let n = 1. Ap

plying (3.A.16) (with 0 ~ 9., ~ s-2 and q = 1) to the solution of (3.16) and 

using (3.44) and (3.25) 2' we obtain as a counterpart of (3.26): 

(3.45) 

where y = 1/2p ..;. 1/4 and 
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It is easy to see that 113 (t) and 114' (t) are bounded by a constant in

dependentof t E [0,(0) for p = 1 (note that y = 1/4 for p = 1). There-

fore we deduce from (3.45) that IIIU(t) IIl s - 2 ,1/4 ~ C lIuolls-2,1 if 

Ns (T) and II Uo II s-2, 1 are sufficiently small. Thus the proof for n = 

1 is corrpleted. 
. 

let n;::: 2. Apply (3 .A.12) (with 0 ~ .Q, ~ s-2 and q = 1) to -the solu-

tion of (3 . .16). Following the above argwnents we obtain 

(3.46) 

where y = n(l/2p - 1/4) and 

It is easy to see that 115 (t) and 116 (t) are uniformly bounded with re

spect to t E [0,(0) for n;::: 2 and p E [1,2). Therefore the desired 

estilnate (3,43) for n;::: 2 follows from (3.46) in the same way asi~ the 

proof for n = 1. This corrpletes the proof of Proposi lion 3.12. 

Proposi lion 3 .12 gives the following :rrodifica lion of Theorem 3. 11. 
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Theorem 3.13 (asyrrptotic decay) Asswne (3.30) and (3.42) in addition 

to Conditions 2.1-, 2.2-, 3.1 and 3.2 .. Let n;;:: 2 and s;;:: So + 2 (SO = 

[n/2] +1) be integers-, and let p E [1,2). Suppose that (uO-li,vO-v) 

E H
S 

(JRn) n if (JRn
). Then there exists a positive constant °4' (~01-' 

(3) such that if Iluo-li, vo'-vlls,p ~ 04-' the solution of Thec:rem 3.10 

satisfies the decay estimate (3.43) for t E [0,00): 

where y = n(1/2p - 1/4). 

Remark 3.4 For symrretric hyperbolic systems (m" =0), Proposition 3.12 

is valid for s;;:: So + 1 and the estimate (3.43) is replaced by 

(3.43) , 

if the condition lI u
o -li, va -vll s - 2 ,p ~ °1' is replaced by Iluo -ull s - 1 ,p 

~ ° 1'. Therefore, in this case, the results in Theorem 3 .13 also hold 

for s;;:: So + 1 and the decay estimate is improved as in (3.43)'. 

Proof of Theorem 3.13 Take ° 4' so that ° 4' = min { °1, °3 , a1/e7 }. 

Then the theorem is proved in the same way as in Theorem 3.11. The de-

tails are omitted. 
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3.6 EXAMPLE 

As an application of our results, we treat here the equations of 

heat conduction in an anisotropic rigid body of constant densiq at rest 

(cf. [56], [84] , [8] , [51], and also [28]): 

(3.47) 
[ 

e = - divrn . t ~ , 

T qt + q = - KV8 

where the unknown functions e and q represent the (real-valued) inter

nal energy and the (nf -valued) heat flux respectively, which are the 

functions of tiJre t;::: 0 and position x = (xl'···· ,xn ) E JRn; 8 = 8 (e) , 

the given function of e, is the absolute temperature; T = T (e,q) and 

K = K (e,q), the given functions of (e,q), are the (scalar) relaxation 

:t.irre and the heat conducti vi q tensor , respectively. The first equation 

of (3.47) describes the energy balance, where the exteDlal heat supply 

is neglected; while the second one of (3.47) is the generalized Fourier's 

law. 

We assurre the following conditions on the system (3.47). 

(3.48) 1 

(3.48) 2 

The function 8 (e) is srrooth in e E JR and satisfies 8 (e) 

> 0 and d8(e)/de > 0 for e E JR. 

The functions T (e,qJ and K (e,q) are smooth in (e,q) E 

JR
n+ 1 ; T (e, q ) > 0 holds for (e , q ) E JRn+ 1 , while K (e, q ) 

is real symmetric and positive definite for every fixed 
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n+l (e,C}) E JR • 

Let us rewrite (3. 47) in the form 

(3.49) 

where 

0 
= [ ~ T~-1 J I Ajw. ( :w : 1 

A (e,g) = 
j J 

L(e,q) 
= l: 0_1 1 

cv< 

-1 
Cv = (de/de) is the heat capacity at constant volurre, and w = (wI'·· 

n-l ···,wn ) E S . We can show that if (3.48)1,2 are assurr€d, then Condi-

tions 2.1, 2.2, 3.1 and 3.2 as well as the cond1tions(3.30) and (3.42) 

are satisfied for the system (3.49). Indeed, it is easily seen that 

AO (e,q) is real symmetric and positive definite, Aj 
(j = 1,···· ,n) are 

real sy:mrretric, and L (e, q ) is real symmetric and positive semi -defini te. 

Therefore Conditions 2.1, 2. 2 and 3.1 are verified with m" = 0, 0 = 

{(e,C!) i e E JR, C! E JR
n } and with a constant state (e,C}) = (e, 0) , 

where e E JR is an arbitrarily fixed constant. 'ill check Condition 3.2, 

we define the matrices Kj 
(j = 1,·· •. ,n) by 
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w J ° - -1 ° A (e,O) , 

where a is a positive constant determined beloo. For the above K
j

, 

it is obvious that KjAO (e,O) (j ~ 1,···· ,n) are real anti-sy:mrretric. 

Furthermore a simple calculation shCJV.7S that 

-1 -1 -
where Al = ('T ~ K) (e,O) 

= [a< 

° 
-1 ..:... 

and 1\.2 = ( c,," ) (e, ° ) are real syrnrretric 

and positive definite; < , > denotes the standard inner product in JRn 

and tww the syrrn:retric matrix with elements w.w.. Therefore 
1 ] 

L KjAkW.W, + L(e,O) is proved to be positive definite for any w E sn-l 
jk ] K 

if a > ° is suitably small. Thus Condition 3.2 is verified. Since the 

projection p+ onto the range of L(e,O) is given by 

we can verify (I - P+)f = (I - P+)h = ° which implies (3.30) and (3.42). 

Surrmarizing the above considerations, we have: 

Lemma 3.14 Let (3.48)1,2 be assumed. Then the system (3.47) satisfies 

Conditions 2.1., 2.2., 3.1 and 3.2 as well as (3.30)., (3.40)., with mil = 0., 

ill 1 -o = {(e,q) E JR } and a constant state (e,q) = .(e,O). In particular., 
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the matrices K
j 

(j = 1-, • • • • -' n) in Condi tion 3.2 are taken as 'tn (3.50) 

with a suitably small constant a > o. 

By this lermna we can apply all the theorems (in particular, Theorems 

2.9, 3.10, 3.13 and also Remarks 2.4 (i), 3.3, 3.4) in chapters IT and ill 

to the system (3.47). Consequently, we obtain the local solution for 

n ;;:: 1 and .the global solution for n;;:: 2. 

Finally in this section we shall rerrark that the system (3.47) ad-

mits a global solution even if n = 1. lBt 

'" 2 2 + - - 2 I
t 

N (t' ,t) = N (t' ,t) + lip (u- u, v- v) (t) II dT , 
SSt' 

where N (t I , t) 
s 

takes the fonn 

is defined by (3.6). For the system (3.47), N ·(t' , t) 
s 

2 2 It 2 2 N ( t' , t) = sup II (e - e, gjJ (T) II + II D e ( T) II -1 + II q (T) II dT . 
s t' :S;T:S;t s t' x s s 

It is not difficult to see that for our system (3.47), Lerrma.s 3.7 and 3.8 

also hold for n;;:: 1 wi th N (T) replaced by N (T). Hence Proposition 
s s 

3.9 (with N (T) instead of N (T)) and Theorems 3.10, 3.13 (cf. Proposi-
s s 

tion 3.12) are also valid for n;;:: 1. Therefore we obtain the following 

results for the system (3.47). 

Theorem 3.15 (local existence, global existence and asyrrptotic decay) 

Let (3.48) 1,2 be assumed. Let n;;:: 1 and s ~ So + 1 (sO = [n/2] + 1) be 

integers. 
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(i) (cf. Theorem 2.9) Suppose that the initial data .(e - e,q) (0) E 

HS(IRn). Then there is a positive constant Tl such that the initial 

value problem for (3.47) has a unique solution 

HS (nf)) n Cl (0 ,T
l 

i Hs - l (JRn)) . 

o (e-e,q) E C (O,T
l 

i 

(ii) (cf. Theorems 3.10 and 3.13) If (e-e,q) (0) E HS(nf) and II (e-

- e,q) (0) II is small., then the solution of (3.47) exists for 'all time s 

t ;::: 0 and decays to the constant state (e,O) as t -+ 00: I (e - e, q) 

(t) I s- (s +1) -+ 0 as t -+ 00. Furthermore if (e - e,q) (0) E H
S 

(JRn) n 
o 

rP(nf) (with p=l for n=l and p E [1,2) for n;:::2) and II (e-e, q) (0) II s,p 

is small., then II (e - e, q) (t) II s-l decays at the rate t-Y (with Y = 

n (1/ 2p - 1/4)) as t -+ 00. 

Remark 3.5 If 'T is a constant and K = K (e) is independent of q, 

the system (3.47) is reduced to the second-order single equation 

. -1 
'T e tt + e t = dl V (cv K'Ve) , 

which is called the dissipative wave equation. For these equations, the 

global existence results are known; see [61] 2' [54] 2' [71] · 
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APPENDIX TO CHAPTER III 

LINEARIZED SYSTEMS AT THE CONSTANT EQUILIBRIUM STATE 

3.A.l DECAY ESTIMATES 

We shall treat here the linearized system (3.1) with the right hand 

side: 

(3.A.l) 

where and L = L(u,v) are 

(real) constant square ma.trices of order ill, and h = h(t,x) is a given 

function on Q
T 

= [O,T] x nf. We assl.llre Conditions 3.1 and 3.2 on the 

system (3.A.l). Under these conditions the decay rate of solutions of 

(3.A.l) with h = 0 has been obtained in [81] by the ITethod of estimat-

ing the Fourier ima.ge of solutions. The purpose of this section is to 

extend the results to the case that 

(3 .A. 2) (I - P+)h(t,x) = 0 for any (t,x) E ~ , 

where p+ is the orthogonal projection onto the range of L = L(u,v) • 

Let f (t;:) denote the Fourier image of f (x) : 
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f (~) 

Taking the Fourier transfonn of (3 .A.l) , we have 

(3.A.3) 

, 'k 
where A(w) = L AJw, , B (w) = L BJ w,w and w = ~/I~ I. It should be 

,J 'k J k 
J J 

noted. that (3.A.3) can be reduced to a syrrrrretric system with AO = I if 

° 1/2A A we consider (A) u instead of U. In fact we have 

(3 .A. 3) I 

where S (~) is defined by 

(3.A.4) 

with A(~) = I ~ IA(W) 
2 

and B(~) = I~I B(w). 

The estimate for U(t,~) is given by the following. 

Lemma 3.A.l Assume Conditions 3.1 and 3.2. If h(t,x) satisfy (3.A.2)~ 

then the solution of (3.A.3) has the estimate 

(3.A.5) 

for n 
(t,~) E [O,T] xIR ~ 
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2 2 
where p (r) = c l r / (1 + r ); C and c

l 
are positive constants. 

Remark 3.A.l Since the solution of (3.A.3) with h = 0 is represented 

by the fonnula (A 0) 1/2; ( t, ~) = e -ts (~) (A 0) 1/2; (0 I~) I the estimate (3. A. 5) 

with h = 0 gives 

Proof of Lerrma 3.A.l Take the inner product (in ~) of (3.A.3) with U. 

Since A 
0 

I A (w), B (w) and L are real symrretric, its real part is 

(3.A.6) 

where (, denotes the standard inner product in ~. Next multiply 

(3.A.3) by - i I ~ IK(W) (K(w) = 4 Kjw
j

) and then take the inner product 

wi th ~ . Since iK (w) A 0 is h~nui tian I the real part of the resulting 

equality is 

(3.A.7) 
1 0'" '" 2 '" '" 

{-21~1 (iK(w)A u, U)}t + I~I ([K(w)A(w)]'U , U) 

3 '" '" A"'''' '" = Re{il~1 (K(w)B(w)U , U) + il~I(K(w)LU, U)} - Reil~I(K(w)h, U) I 

where [K(W)A(w)] I denotes the symrretric part of K(w)A(w). Noting that 

B (w) and L are positive semi-definite and the condition (3.A. 2), we 

have from (3 .A. 6) and (3 .A. 7) 
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(3.A.8) 

(3.A.9) 
1 0'" '" 2 '" '" 

{- 2"\l;1 (iK(w)A u, U)}t + Il;l ([K(w)A(w)] 'u, U) 

for any e:.> 0 and for some constants C and Ce:. Combine (3 .A. 8) with 

(3.A.9) so as to make (3.A.8) x (1+ 1l;1~) + (3.A.9) xa with a constant 

a > 0 (a will be determined later). 111en we have 

(3.A.lO) 

where we set 

(1+ 1l;1
2

)E
a
t 

+ 1l;1
2

({a[K(w)A(W)] I +B(w) +L}~, ~) + 

+ 1l;14(B(W)~, ~) + (L~, ~) ~ ae:Il;12IGI2 + 

0'" '" Il; I 0'" '" 
EO. = (A U, U) - ~ (iK(w)A U, U) 

2 1+ 1l;12 

It is easy to see that there exists a constant 0.
0 

> 0 such that EO. is 

equivalent to 
'" 2 

I U I for a E (0,0.
0

]. On the other hand f by Condition 

3.2, there exists a constant c > 0 such that the second tenu in the 

2 '" 2 
left rrember of (3 .A.lO) is bounded from belCNl by ac Il; I I U I ,where a 

~ 1 is assurred. NCNl choose e: and a so that e: = c/2 and a = min 

{I, 0.
0

, l/Ce:}. Then (3.A.lO) inplies 
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(3.A.ll) 

with p (r) = c
l

r
2
/(1 +r2) i c

l 
and Care positive constants. Inte

gration of (3.A.ll) with respect to t gives the desired estirrate (3.A.5) 

by virtue of the Gronwall's ineg:uali ty . This completes the proof of Iem-

ma 3.A.l. 

Integrating (3.A.5) over ~ and applying the Plancherel's theorem, 

we can obtain the follCJVVing decay estimate. 

Theorem 3.A.2 (decay estimate) Assume Conditions 3.1 and 3.2. Let n 

~ 1 and £ ~ 0 he integers and let p~ q E [1,2] .. Suppose that U(O) 

E H£ (nf) n If (JRn) and that h E cO (O,T ; H£ (nf) n if errf-) ) satisfies 

(3 .A. 2) • Then the solution of (3.A.l) has the estimate 

(3.A.12) 

for t E [O,T]~ where y = n(1/2p - 1/4) and y' = n(1/2q - 1/4)~ and 

c
l 

is the constant in (3.A.5). 

Remark 3. A. 2 Let us define e -ts by 

(3.A.13) 2 n for f E L (1R ) . 
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Then the estima.te 

(3.A.14) 
-c t 

IIDx~(e-tsf) II ::; C{e 2 IID~fll + (1+t)-(Y+~/2) Ilfll } 
x LP 

~ n p n 
holds for f E H (IR) n L (JR ) 1 where c2 = cl/2 and y = n (:-/2p - 1/4). 

This irrplies that the L2 (lif)-nonn of solutions of (3.A.l) with h = 0 

decays at the rate t-Y as t -+ 00. This decay rate coincides with the 

one' for the dissipative wave equations ([54] 1) 1 the Boltzmann equation 

([62] 1 [80] 1) and the equations of corrpressible viscous fluids ([55] 2) . 

Proof of Theorem 3.A.2 It suffices to prove that (3.A.5) I irrplies 

(3.A.14). Multiply the square of (3.A.5)' by I ~ 12~ and integrate it 

over ~. By the Plancherel' s theorem we have 

We divide the integral in the right hand side into bNo parts II and 12 

according to the regions I ~ I ::; 1 and I ~ I 2:: 1. By use of the Holder's 

inequality we have 

2 

J 
2 0 -rcllt; I t II J '" 2' 11' 

::; C ( I ~ I x-r e d~ ) r ( I f (~) I r d~) r 
1~1::;1 1~1::;1 
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where r E [1,00] and l/r + l/r' 1. Apply to the last tenn the Haus-

dorff-Young inequality 

"-

Ilfll p' 
L 

P E [1,2], lip + lip' = 1, 

. 
with taking 2r' = p' (i.e. I 1/2r = lip - 1/2). '!hen we obtain' '; 

with Y = n(1/2p - 1/4). As for I2 we have 

Thus the desired estimate (3.A.14) is obtained. '!his completes the proof 

of '!heorem 3.A.2. 

For general f E H,Q, (IRn) n LP (JRn) I we have prove the decay estimate 

(3. A.14) ~ Next we shall shON that in sorre case the decay rate t -y is 

improved to t-(y+1/2). 

Theorem 3.A.3 (decay estimate) Assume Conditions 3.1 and 3.2. Let n 

= l~ ,Q, ~ ° (an integer) and p E [1,2]. Assume that f E H,Q,(JR1) n LP(JR1) 

1 and that for each x E IR the vector f(x) is orthogonal to the null 

space of (AO)-1/2L (AO)-1/2. Then the decay estimate (3.A.14) is ~m-

proved to 
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(3.A.1S) 

where y = 1/2p - 1/4 (because of n = 1). 

Remark 3.A.3 It follows from ().A.3) , that 

Note that (3.A.2) is equivalent to the condition that the vector (AO) -1/2. 

h(t,x) is orthogonal to the null space of (AO)-1/2L (AO)-1/2 for each 

(t,x) E~. Therefore, applying (3.A.14) (with n=l) and (3.A.1S) to the 

above expression, we conclude the estimate 

(3.A.16) 

f
t -c (t-rr) 

+ C e 2 IID£h(T) II + (1+t_T)-(y'+1/2+£/2) Ilh(T) II dT 

° x ~ 

for t E [0 ,T], provided that the conditions (with n = 1) of Theorem 3.A.2 

are satisfied, where y = 1/2p - 1/4 and y' = 1/2q - 1/4. 

Proof of Theorem 3 .A. 3 When n = 1, 

is an one-paraneter family of matrices, where t;, = t;,l E JRl, A = Al(U,V:) 

11 --and B = B (u,v). Therefore the perturbation theory of matrices (see 
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Kato [37] 6) is applicable to S (EJ. This enables us to represent the ma.

trix eJ:CPOnential e -ts (s) explicitly for s -+ 0. We have to estiJuate this 

expression carefully as in [33] or [15] (see also [62]). :Noting that 

f(s) is orthogonal to the null space of (AO)-1/2L(AO)-1/2 for S E lRl, 

we can get 

for s -+ ° , 

where c and C are positive constants. This inequality together with 

(3.A.S) I gives the desired decay estiJuate (3.A.lS) in the sarre way as in 

the proof of Theorem 3 .A. 2. We omit the details. 

3.A.2 SPECTRAL ANALYSIS 

In our analysis in chapter lIT, Condition 3.2 has played a crucial 

role. We discuss in this section the eigenvalue problem associated with 

the" linearized sys tern (3.1): 

(3.A.17) 

where A = A(ilsl ,w) E ~ and ¢ = ¢(ilsl ,w) E ~ \ {a}. We prove that 

(under Condition 3.1) Condition 3.2 guarantees the dissipative structure 

for the sys tern (3.1) in the following sense. 
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proposition 3 .A. 4 Let Condition 3.1 be asswned. Let A = A (i I ~ I ,w) 

satisfy (3.A.17) for some ¢ = ¢(il~l,w) E ~ \ {O}. Then the following 

statements are true. 

(i) Condition 3.2 implies that 

(3.A.18) 1 Be A (i I ~ I ,w) s - p (I ~ I) for any I ~ I ;::: 0 and w' E Sn-l ., 

where 2 2 
p (r) = cr / (1 + r ) with some .constant c > O. 

(ii) The condition (3.A.18) 1 and the following two conditions (3.A.18) 2 

and (3.A.18) 3 are equivalent with each other. 

(3.A.18) 2 

(3.A.18) 3 

Be A(il~1 ,w) < 0 for any 
n-l 

and w E S . 

n-l 
Let ~ satisfy B(w)~ = L~ = 0 for some w E S . Then 

for this wand for any ~ E JR., ~O~ + A(w)~ ~ 0 holds. 

(Here ~.~ 0 is asswned.) 

Femark 3.A.4 The estimate (3.A.18) 1 was proved in [81]. The proof of 

(ii) was OVling to the private oorrmunication with Y. Shizuta. 

Proof of Proposition 3 .A. 4 The proof of (i) is essentially the sane as 

that of Iemma 3.A.l. The equation (3.A.17) is equal to (3.A.3) if d
t

, 

U and h are replaced by A, ¢ and 0, respectively. Therefore we ob-

'" '" 
tain (3.A.6)- (3.A.IO) with d

t
, U and h replaced by 2 Re A, ¢ and 0, 

respectively. Hence, as a cOW1terpart of (3.A.ll), we have 2 Re A + 

2p(I~I) s 0, which is the desired estimate (3.A.18)1 with c = c
l

. This 
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corrpletes the proof of (i). 

We next prove (li.). First note that the implication (3.A.18) 1 :::::::> 

(3.A.18) 2 is trivial. The renaining part of the proof is devided into 

4 steps. 

step 1 We prove (3 .A.18) 2 ,~ (3 .A.18) 3 by contradiction. Let B (w) 1}J 

° ~l = L1}J = ° and llA 1}J + A(w) 1}J = ° hold for SOm2 w E S ,1}J~. ° and 1.1 

E JR. The!]. we have (3.A.17) with A = i 1 r; 11.1 and ¢ = 1}J. '!his contra

dicts (3 .A.18) 2. '!hus (3 .A.18) 2 =;:. (3 :A.18) 3 is proved. 

From (3.A.3) with dt' U and h replaced by 2 Re A, ¢ and 0, we 

have 

(3.A.19) 

Since AO is positive definite, B(w) and L are positive semi-definite, 

we knON Re A :::; 0. NON assume tha t Re A = ° holds for some 1 r; I ~ ° 

n-l 
and w E S . '!hen, from (3.A.19), we obtain B(w) ¢ = L¢ = 0. Using 

these relations in (3.A.17), we get AAO¢ + ilr;IA(w)¢ = 0. This gives 

llA°1}J + A(w)1}J = ° with 1.1 = ImA/Ir;1 and 1}J = ¢ because Re A = 0. This 

is a contradiction. Thus the proof is corrpleted. 

step 2 We prove that (3.A.18)3 implies (3.A.18)1 for any r:::; 1r;1 :::; R 

and w E sn-l, where r and R are arbitrary positive constants. '!his 

is a easy consequence of (3.A.18)3 ~ (3.A.18)2 because A(ilr;l,w) is a 

continuous function of I r; I and w. 

step 3 We prove the implication (3.A.18)3 =;:. (3.A.18)1 for 1r;1 ~ ° 

d n-l di . an w E S by contra ction. AsSUffi2 that there are sequences 

n-l 
~ ° (j~oo) and w. E S such that A. = A(ilr;.l,w.) satisfies 

J J J J 

I r; . I 
J 
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Be A . / I ~ . 12 -+ 0 (j -+ (0). Let cpJ' E afU \ {O } be the vector corresponding 
J J 

to A.: 
J 

(3.A.20) o 2 
A.A cp. + {i 1 ~ . I A (w .) + 1 ~.I B (w .) + L}cp. = 0 • 

J J J J J J. J 

We nornalize cp. by the relation 
J 

o (A cp., cp. ) = 1. By choosing subse-
J J 

quences, we may assurre without loss of, generality that w. -+ Wo and cp. -+ 
. , J J 

cp 0 as j -+ 00. Take the inner prcxluct of (3. A. 20) with cp j . From its 

real part, 

(3.A.2l) 2 
Be A. + I ~.I (B (w .) cp ., cp.) + (Lcp., cp.) = 0 • 

J J J J J J J 

Divide (3.A.2l) by 1 ~ . 1 2 and take the limi t along j -+ 00. Then, since 
J 

B (w) and L are positive semi-definite, we get B (wO) CPo = 0 and 

L¢ ./ I ~ . I -+ 0 as j -+ 00. From the latter we knew LCPO = o. On the other 
J J 

hand we have from the imaginary part 

Im A. + i 1 ~ . I (A (w .) cp ., cp.) = 0 • 
J J J J J 

Divide the above equality by i I ~ . I and let j -+ 00. Then we obtain 
J 

(3.A.22) 

New devide (3.A.20) by i I ~.I and let j -+ 00. Using the relations ob
J 

tained above, we conclude the equality 

tradicts (3.A.18)3. 
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step 4 We prove (3.A.18)3 ~ (3.A.18)1 for I~I + 00 and W E Sn-l by 

contradiction. Assurre that there are sequences 1 ~.I + 00 (j +00) and w. 
J J 

n-l ~ 
E S such that A. = A (i 1 ~ .1 ,W .) satisfies Fe A. + o. Let ¢. E Q; 

J J J J J 
o 

\ {a} be the vector satisfying (3.A.20) and (A ¢" ¢.) = 1. By choosing 
J J 

subsequences, we may ·assUIre that· Wj + Wo and ¢j + ¢O as j + 00. 

ting j+oo in (3.A.21),wehave 1~.IB(w.)¢.+O as j+oo' and 
J J J 

Let-

LPo 
= O. In particular, we get B (w

O
) ¢O = O. Therefore, deviding (3 .A. 20) 

by il~.1 
J 

and letting j + 00, we obtain in the 

same way as in step 3, where 110 is given by (3.A.22). This is a con

tradiction. 

By steps 2-4, we have proved the implication (3.A.18) 3 ~ (3.A.18) 1-

Thus the proof of (.ii) is completed_ 
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CHAPTER N 

HYPERBOLIC-PARABOLIC SYSTEMS OF CONSERVATION LAWS 

WITH A CONVEX EXTENSION 

4.1 INTRODUCTION 

Many equations in rrathema.tical physics are described by oonservation 

lavvrs. In this chapter we shall oonsider the initial value problem for 

the folla..ving system of conservation laws. 

(4.1) 
n 'k 

= I {GJ (w)w } 
j ,k.=l ~ Xj 

(4.2) w(O,x) = wO(x) . 

Here t ~ 0 and x = (x •••• x ) E :nf; w = w(t,x) takes its values l' , n 

in an open oonvex set 0 in :rtf; fj (w) (j = 0 I 1, • • • • I n) are :rrf -valued 

'k 
functions and GJ (w) (j ,k = 1,···· ,n) are square matrices of order ffi. 

Keeping applications to the equations of fluid mechanics (or elas

ticity) in mind, we assurre the following conditions on- the system (4.1). 

Condi tion 4.1 The functions 
. 'k 

fJ(w) (j=O/l,····/n) and GJ (w) (j/k= 

1, • • • • ,n) are sufficiently smooth in w E 0 such that 
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(i) fO(w) is non-singular for w E o. 
W 

There exist smcxyth functions n (z) (z E 0' = fO (0)) and qj (w) (w E 0) (j = 

l,····,n) such that 

(ji) n (z) is strictly convex for z EO' , 

, t ' 0 
(iii) ~ (w) = f~ (w) nz (f (w)) (j = 1,· • • • ,n) hold for all w E ~, 

(jy) :sjk (w) = tfO (w) n (fO (w) ) Gjk (w) (j ,k = 1, · · • · ,n) satisfy' ';t:sjk (w) = 
w zz . 

ifj(w) faY: w EO; I Bjk(w)W.w, is (real syrmretric) positive semi-
'k J K 

defini te for all w E Jo and w E Sn~l. ' 

Here and in the sequel we sonetirres use the abbreviations 

n
z 

(fO (w)) = Dzn (fO (w) ), n
zz 

(fO (w)) = D~n (fO (w) ) etc. The functions n 

and (ql'···· ,~) in Condition 4.1 are called the convex entropy and the 

associated en tropy f~ux , respectively. The notion of the convex entropy 

was introduced by Friedrichs and Lax [19] for the firsb-order systems of 

conservation laws (i.e., (4.1) with Gjk(w) =0); for related topics of the 

convex entropy, see [50]3' [13]4_6 (and also [18]2' [68]). 

It was proved in [19] that the first-order systems of conservation 

laws with a convex entropy can be put into a syrmretric hyperbolic form. 

A similar result still holds for our system (4.1). Indeed, we have from 

(4.1) 

o ' 'k 'k 
fw(w)w

t 
+ I, fJ (w)w - I GJ (w)w = I GJ (w) w 

J W Xj jk Xj~ jk Xj ~ 

tOO Multiplying the above equation by f (w) n (f (w)), we get 
W zz 

(4.3) 
o ' 'k 

A (w)w
t 

+ I, AJ(W)W
x

, - I BJ (w)w = g(w,D w) , 
J J ~ ~~ x 
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where 

A
j 

(w) 
t 0 -0 ' 

= f (w) n (f (w)) fJ (w) 
w zz w j = O,l,····,n 

. j,k = l,····,n I 

o 0 'k 
g (w,D w) = I f (w) n (f (w)) GJ (w) (w ,w ) , 

x jk w zz w Xj ~ 

Under Condition 4.1, the coefficient rratrices in (4.3) satisfy the fol-

lowing: 

(4.5) 1 A 0 (w) is real symrretric and positive definite for w EO, 

(4.5) 2 A
j 

(w) (j = 1,· • • • ,n) are real symrretric for w EO, 

(4.5)3 
'k 

BJ (w) (j,k=l,····,n) are real symmetric and satisfy B
jk 

(w) 

k' 
= B J (w) for w E 0 i L Bjk(W)W,W

k 
is (real symrretric) posi-

'k J 
ti ve semi -defini te for J w E 0 and W E Sn-l. 

It follc::M7s from Condition 4.1 (ll) that n (z) is real symmetric and 
zz 

positive definite, which together with Condition 4.1 (i) implies (4.5) 1. 

The property ( 4. 5) 3 is a consequence of Condition 4.1 (jy) while (4. 5) 2 

is proved in [19]. 

For the symmetric system (4.3) we assume: 

Condition 4.2 t There is a partition w = (u, v) 

TIf" (m=m' +m") such that 

with u E TIf' and V E 
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(i) AO 
(w) = 

( A~ (:,V) ~(:,V) 1 
'k [ 

0 

o 1 (:ii) iP (w) = rvjk j,k = 1,····,n , 
0 B2 (u, v) 

E 0 

'k L B
2
J (u, v) w ,w, 

'k J K 
J n-l 

and W. E S , 

. 
is (real syrnrretric) positive definite for (u, v) where 

(iii) 

Here we note that Condition 4.2 (:ii) gives 

'k ( 0 
BJ (w) = 0 ° 1 'k B~ (u, v) 

jk 1 "'jk rvkj 
where B2 (u, v) = '2 {B2 (u, v) + B2 (u, v) }. According to the partition in 

Condi tion 4.2, let us denote 

, [41(U'V) 
AJ (w) = 

~l (u,v) 

~2(U'v.)1· 
A~2 (u,v) 

Then the system (4.3) can be written in the form (2.1) with the right 

nerrbers 

(4.6) 
{ 

fl (U,V,DxV) = - ~ Ar2(u,V)Vx , + gl (u,V,DxV) , 
J J 

f2 (u, v,DXU' DxV) = - ~ {A~l (u, v) ux , + A~2 (u, v) vx ,} + 
J J J 

+ g2(u,V,D u,D v) . 
x x 
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The above system satisfies Conditions 2.1 and 2.2. In fact Condition 2.1 

(i), (.ii) follow from (4.5) 1,2 while Condition 2.1 (ill) from (4.5) 3 and 

Condition 4.2 (ji). Since Gjk (w) = {tfO (w) n (fO (w) ) }-~jk (w), (4.4) 3 
w zz 

together with Condition 4. 2 (.ii) and (ill) .irrplies that 

(4,; 7) 

2 
[ gl (U,V,DxV) = O(\DxV\ ) , 

l g2 (u,v,D u,D v) = O( ID (u,v) liD vi) x x x x 

for I u - u, v - vi -+ 0, where w = t (u, v) E. 0 is an arbitrarily fixed con

stant state. So Condition 2.2 is satisfied for arbitrary w = t(u,v) E o. 

Thus we have proved that under Conditions 4.1 and 4.2 the system (4.1) 

can be reduced to a symmetric hyperbolic-parabolic form in the sense in-

dicated in chapter II. Hence, by 'Iheorem 2.9, we have a local solution 

to the problem (4.1), (4.2) . 

To discuss the global existence and asymptotic stability of solu-

tions, we shall require, as in chapter ill, the conditions which guarantee 

the dissipative structure for the linearized system of (4.3): 

(4.8) 

(cf. (4.18)), where we have used L(w) = D g(w,O) = o. We note that Con
w 

dition 3.1 is satisfied automatically because (4.5) 1,2,3 and L(W} = O. 

So we only require: 

Condi tion 4.3 'Ihere are (real) constant square matrices K
j 

(j = 1, • • • • 
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• • ,n) of order m such that 

(i) 

(:ii) 

'0-
KJA (w) (j = 1,···· ,n) are real anti-symnetric, 

the symnetric part of the matrix L {KjA
k (w) + B

jk (w) }wjw
k 

jk n-l 
itive definite for any W E S . 

'" Since the remainder tenn f (u,v,D u,D v) 
x x 

associated with 

is pos-

in (4.6) satisfies (3.30), we can apply Theorems 3.10 and 3.11 to thesys-

tern (4.1). Hence we obtain the global existence and asynptotic stability 

results for (4.1), (4.2) if n ~ 2. 

The purpose of this chapter is to establish the global existence re-

sul ts for (4.1) I (4. 2) for all dimensions n ~ 1, and to get an asynptotic 

fonn of the solution as t -+ ex). In order to get the a priori estimates 

of solutions of (4.1) in one space-dimension, we errploy a technical ener-

gy method, which makes use of the quadratic function associated with the 

convex entropy (see the proof of Lerrma 4.1). For similar energy methods, 

see [36]1,2,[66], [41], [38]3,4' [27]. It seems to the author that in one

dimensional case the convex entropy piays a crucial role in a study of 

the global existence problem for (4.1). 

The contents of this chapter are as follows. In section 4.2 we shall 

de,riVe the a priori estimates of small solutions of (4.1) by the tech-

nical energy method. As a consequence we get a global solution to (4.1), 

(4.2) for small initial data with Wo - WE HS 
(nf) (with n ~ 1 and s ~ 

[n/2] + 2). In section 4.3 we shall prove the decay rate of the solution: 

if Wo - W E HS (JRn) n LP (JRn) (with n ~ 1 and s ~ [n/2] + 3 i P = 1 for n = 1 

and P E [1,2) for n ~ 2) is small, then the solution of (4.1), (4.2) decays 

to the constant state w at the rate t-Y (withy = n (1/2p - 1/4)) as t 
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-+ 00. In section 4.4 the asyrrptotic behavior of the. solution is discussed 

rrore precisely. It is proved that if n ~ 2 (resp. n = 1), the solution 

of (4.1), (4.2) is asyrrptotic to that of the linearized system (4.8) (resp. 

the semi-linear system (4.39)) with the corresponding initial conditions 

at the rate t -S (with some, S > y) as t -+ 00. The results in sections 4.3 

and 4.4 are based on the conservation fonn of the sys tem (4.1). 

4.2 GLOBAL EXISTENCE 

First, follCMing [19], we write dCMn the equation of the convex en

tropy. Differentiating n (fO (w) ) wi th respect to t and using (4.1), 

we get 

o n(f (w))t= -

o 'k 0 'k + L {< n (f (w)), GJ (w) w >} - L < n (f (w)) ,GJ (w) w > 
jk z ~ Xj jk z Xj ~ 

where <, > denotes the inner product in :n.f1. It folloos from Condi-

. tion 4.1 (iii) that the first tenn in the right hand side is E:.Xiual to 

I qj (w) . Since n (z) is real symrretric, the last tenn in the right ,x, zz 
J J ' 
rrenber is rewritten as I < i3jk (w)w ,w > (cf. the definition of i3Jk (w) 

jk ~ Xj 
in Condition 4.1 (jy)). Therefore we obtain the equation 

(4.9) 
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o 'k 'k . = L {< n (f (w)) , GJ (w) w >} - L < iP. (w) w , 
jk z ~ Xj jk ~ 

w > • x. 
J 

This equation has a physical rreaning if the latter half of Condition 4.1 

(jy) is replaced by the follCMing stronger condition: 

~jk . ~ L < B (w)¢k' ¢. > ~ 0 holds for all w E 0 and ¢J' E,~lK 
jk J 

(j = I, · · · · ,n) • 

In fact in this case· (4.9) irrplies that'the integral - f n (fO (w(t,x)))dx 

is non-decreasing in t, which corresponds to the second law in themo-

dynamics. 

NCMT let us introduce 

( 4.10) n * (z , z) = n (z) - n (z) - < n z (z), z - z > 

for z, z E 0' = fO(O). Since n(z) is strictly convex, n*(z,Z) is pos-

iti ve defini te i n * (z, Z) = 0 holds if and only if z = z. In particu-

lar, n* (z,z) is equivalent to the quadratic function 1 z - zl2 in B (z) 
r 

= { z E JIfl i 1 z - 21 < r }, where r > 0 is arbitrary as long as B (z) EO' 
r 

o - 0 - - t--
is satisfied. Let z = f (w) and z = f (w), where w = (u,v) E 0 is 

an arbitrarily fixed constant state. Since fO (w) is non-singular, the 
w 

inverse mapping theorem shovvs that there exists a neighborhood B (w) = 
rO 

{w E JEf1; Iw - wi < rO} c 0 with sorre rO > 0 such that 

(4.11) 1 

wi th sorre positive constants c and C, 
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(4.11)2 the inverse function w = w (z) exists and. satisfies D w(z) 
z 

Without loss of generality we can asswre that B (w) c 0 and fO (B (w)) 
. , rO rO 

0- . -
c B (f (w)) COl. So we get· the following estimate for any WEB (w). 

r rO 

(4.12) 

with some positive constants c = c(r
O

) and C = C(r
O

) . 

Now, letting s ~ So + 1 (sO = [n/2] + 1) be an integer and T > 0 be 

a constant, we consider a solution w(t,x) = t(u,v) (t,x) of (4 .. 1) satis-

fying (3.4) and (3.5) with 02 = Bra (w) = {w E lIf ; Iw -wi < r a}. Let 

Ns (t I , t) be defined by (3.6). Then there is a positive constant a 4 = 

a 4 (r
O

) such that 

(4.13) if N (T) ~ a4 , then (3.5) with O2 = B (w) is satisfied 
So rO 

automa.tically. 

We will derive the a priori estimate for N (T). The a priori estimate 
s 

for L 
2 

(n:f1) -norm of the solution is obtained by means of the quadratic 

function n* (z, z) : 

Lemma 4.1 
- t--

Let w = (u,v) E 0 be an arbitrarily fixed constant state. 

Asswne Conditions 4.1 and 4.2. Let n ~ 1 and s ~ So + 1 (sO= [n/2] + 

1) be integers. Suppose that the initial data wO(x) = t(Uo'Vo) (x) sat

isfy Wo - w= t(Uo-U,vo-v) E HS
(n:f1) and that w(t,x) = t(u,v) (t,x) 
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is a solution of the problem (4.1)~ (4.2) satisfying (3.4) and N (T) ~ So 
a4" Then there is a constant C = C(a4) > 1 such that the following a 

priori estimate holds for t E [O,T]: 

(4.14) II (u-u, v-v) (t) 112 + It liD vCr) 11
2

dT 
o x 

Pr<x>f. For the solution w = w (t,x) , we consider the quadratic function 

o 0 - 0 n*(f (w) ,f (w)). From (4.9) and (4.1) we get the equation of n*(f (w), 

fO (w) ) : 

o 0 'k 'k L { < n (f (w)) - n (f (w)) , GJ (w)w >} - L < 13J (w)w ,w > 
jk Z Z ~ Xj jk ~ Xj 

Integration of this eg:uali ty over Qt = [0, t] x nf yields 

(4.15) J 
0 0 't=t It I 'k [ n*(f (w) ,f (w))dx] + I <13J (w)w ,w > dxd't = 0 . 

. 't=0 jk 0 ~ Xj 

Since L 13
2
jk (il, v) W ,w. is real syrnrretric and positive definite, the sec-

jk J K 

ond term in ( 4 .15) is bounded from below by 

with sone positive constants c and C = c(a4). Therefore (4.15) togeth-
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er with (4.12) gives the desired estimate (4.14). This conp1etes the 

proof of I.emna 4. 1. 

VoJe proceed to estimate the derivatives of the solution. Under Con

ditions 4.1 and 4.2 (resp. 4.1-4.'3), I.emna 3.1 (resp. 3.2) with p+ = 0 

is applicable to the system (4.1). Therefore I if Ns (T) ~ a 4',' we obtain 

the estimates 

(4.16) 

(4.17) 

for t E [O,T] I where C = C(a
4

) is a positive constant. 

To conp1ete the estimate for N (1') lit suffices to estimate the 
s 

L
2 (O,T i L

2 (JRn))-nonu of the derivatives D u. Let U = w-w = t(u-u, 
x 

v-v) . The system ( 4. 1) is rewritten in the fonu 

(4.18) 
o "k 2 

A (W)U
t 

+ L, AJ (W)U
x

, - L BJ (w)U = h(u,v,D u,D v,D v) I 

J J jk Xj~ x x x 

t where h = (h
1

,h
2

) is the nonlinear tena of the fonn 

(4.19) 1 
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o - - \' 0 -1 j 0 - - -1 j --
- Al (u,v) 4 {Al (u,v) All (u,v) - Al (u,v) All (u,v) }ux . 

J J 

o - - \' 0 -1 j. 0 - - -1 j --
- Al(U,V) 4 {A

l 
(u,v) A

12
(u,v) - Al (u,v) A12 (u,v)}vx . 

J J 

(4.19) 2 

- A~(U,V) 4 {~(U'V)-l~l (u,v) - A~ (U'V)-l~l (u,v) }u~. -
J J 

"- A~ (u, v) ~ {A~ (u, v) -lA~2 (u, v) - ~ (li, v) -lA~2 (u, v) }Vx . + 
J ' J 

o - - \' 0 -1 jk 0 - - -1 jk - -
+ ~(u,v) ji {A2 (U,V) B2 (u,v) - ~(u,v) B2 (u,v) }VXj~ 

Therefore, following the arguID2l1ts in Lerrma 3.8, we obtain the estimate 

(3.37) with p+ = o. Since 

(4.20 ) 
2 2 

h(u,v,D u,D v,D v) = O(ID (u,v) I + 
x x x x 

+ lu-li, V-V\{\D (u,v) \ + ID
2
VI}) x x 

for lu-li, V-'ll +0 (compare this with (3.24)), the estimate (3.38) 

also holds for n;;::: 1. So we get 

(4.21) 

Now consider the combination (4.14) + (4.16) + {(4.17) + (4.21)} xa 

with a positive constant a satisfying 2aC < 1. Then we obtain 
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whenever Ns (T) ~ a
4 

is satisfied. Hence we have: 

Proposition 4.2 (a priori estimate) 
- t--Let w = (u,v) E 0 be arbitrary 

and let Conditions 4.1-4.3 be assumed. Let n ~ 1 and s ~ So + 1 (sO = 

- t - - s n 
[n/2] +1) .be integers. Suppose that wo -w = (u

O 
-u,vO -v) E H em)" 

and w(t,x) = t(u,v) (t,x) is a solution of (4.1)" (4.2) with (3.4). Then 

there exist positive constants as (~a4) and C8 = C8 (as) > 1 such that 

if Ns(T) ~ as" the following a priori estimate holds for t E [O,T]. 

(4.22) 

The global existence result for (4.1), (4.2) (for all n ;;::1) is now 

follows from Theorem 2.9 and Proposition 4.2 by the continuation argu-

ments as in Theorem 3.10. 

Theorem 4.3 (global existence) 
- t--

Let w = (u,v) E 0 be arbitrary and 

let' Conditions 4.1-4.3 be assumed. Let n;;:: 1 and s;;:: So + 1 (sO = 

[n/2] +1) be integers. Suppose that Wo -w == t(uo -u,v
O 

-v) E HS(nf). 

Then there exists a positive constant 05 (~aS) such that if Iluo - u, 
va -viis ~ 05" the problem (4.1)" (4.2) has a unique global solution 

w(t,x) = t(u,v) (t,x), satisfying (3.4) with T = 00. The solution satis-

fies (4.22) for t E [0,00): 

(4.23) II (u-u, v-v) (t) 112 + It liD u(L) 112 1 + liD vel) 112 dL 
s a x s- x s 
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2 I - -11 2 
::; Ca I uo - u, v 0 - v s . 

- t-
Furthermore the solution decays to the constant state w = (u,v) as 

t -+ 00: I (u-u, v-v) (t) Is-(s +1) -+ O· as t -+ 00. 

o 

Remark 4.1 The constant 05 in the theorem is detennined by' 05 = min 

2 1/2 
{ as/C 4' as/Ca (1 + C 4 ) } . 

4.3 ASYMPTOTIC DECAY 

In this section we shall show that if w 0 - W E HS 
(Jil) n LP (JIi1) , 

the solution of Theorem 4.3 decays at the rate t-Y (with Y =n(1/2p -1/4» 

as t -+ 00. If n ~ 3, this decay law was already proved in Theorem 3.11. 

The fol10Ning argcurents including the case n = 1, 2 are based on the 

conservation form of the system (4.1). 

Theorem 4.4 (asymptotic decay) Let w E 0 be arbitrary and let Condi-

tions 4.1-4.3 be assumed. Let n ~ 1 and s ~ So + 2 (sO = [n/2] + 1) be 

integers~ and let p = 1 for n = 1 and P E [1,2) for n ~ 2. Sup

pose that Wo -w E H
S 

(Jil) n LP (JRn) • Then there is a positive constant 

06 (::; 0S) such that if Ilwo - wlls,p ::; 06~ then the solution w(t,x) con

'structed in Theorem A. 3 satisfies 

(4.24) 
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for t E [O,oo)~ where y = n(1/2p - 1/4)~ and C = C(06) is a positive 

constant; the norm /I-II n is defined by (3.20). 
NIP 

Remark 4.2 '!he solution w (t,x) itself satisfies 

(4.24) I II (w - w) (t) " s - 2 ~ C(l+t)-Yllwo - wll -2 . s ,p 

. . 0 
Proof of '!heorem 4. 4 We conslder z -= f (w) as the unknc:wn and linear-

- 0-
ize (4.1) at the constant state z = f (w). Noting (4.11) 2' we obtain 

(4.25) 

where we set 

= -

Put 

(4.26) 

Multiplying (4.25) by tf~(w)nzz (fO (w)) and noting (4.4) 1,2 (see also 

Condition 4.1 (jy) ), we have 



(4.27) 

where 

(4.28)1 

(4.28)2 
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jk t 0 - 0 - ~jk H (w) = f (w) n (f (w)) H (w) . 
w zz 

It should be noticed that the linear part of (4.27) coincides with that 

of (4.18) and the nonlinear term of (4.27) is of a conservation form. 

Let A(~) = I A
j 

(w) ~. and B (~) = I B
jk 

(w) ~ '~k. Let S (~) be de-
,] 'k] 
] 0 0 -] -ts 

fined by (3.A.4) with A = A (w) and L = 0, and let e by (3.A.13). 

Then the solution V of (4.27) has the expression 

(4.29) 

Applying (3.A.14) to (4.29) and using the conservation form of the nonlin-

ear term, we obtain 

(4.30) II V (t) II s-2 ~ C (1 + t) -Y II V ( 0) II s-2, P + 

I
t -c (t-T). . 

+ C e 2 { I Ilh] (w) (T) II -2 + I II {H]k(w)w } (T) II -2} dT + 
o j Xj s jk ~ Xj S 
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with Y = n(l/2p - 1/4) and a constant C. We estimate the norms in the 

right hand side of (4.30). It fo11ews from (4.28) 1,2 that h
j 

(w) = 0 (Iw -

-12 jk I-I - w ) and H (w) ='0 ( w -w ) for I w - wi -+- o. On the other. hand 

(4.11) 1 gives clw -wi s Ivi s clw -wi for w E Bro (w), and "(4.11) 2 shews 

the existence of the inverse function w = w (V) of (4.26) in the neigh-

borhood V (B (w) ). Therefore if II V II' (with s ~ So + 2) is suitably small 
rO s 

(this condition is satisfied if Ilw -wll s s a 4' with sufficiently small 

a4' s a 4), then 

(4.31) 1 L, II h j (w (V) ) x, II s-2 + L II {H jk (w (V) ) w (V) } 11_2 
J J jk ~ Xj s 

(4.31)2 

hold with some constant c. Substituting (4.31) 1,2 to (4.30) and using 

Il v ll s _2,p s c Ilw-wlls_2,p' IIvlls s c Ilw-wlls and (4.23), we obtain the 

inequality for IlIv(t) III -2 = sup (l+T)Yllv(T) II -2: 
. s ,y 0< <t S -T-

(4.32) IIIV(t) Ill s - 2 ,y S C Ilwo -wll s - 2,p + 

where 1.13 ( t) appeared in (3. 45) and lJ 4 (t) is given by 
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Note that 114 (t) is identical with 114' (t) in (3.45) if n = 1. Since 

II J (t) and 114 (t) are unifonnl y bounded with res:pect to t E [0 ,co) for 

any n and p indicated in,'Theorem 4.4, the desire¢! estimate (4.24) fol

lows from (4.32) as in Proposition 3.3 (or 3.12). 'Thus the proof of the 

theorem is .corrpleted. 

4.4 ASYMPTOTIC BEHAVIOR 

In this section we shall study the asyrrptotic behavior of solutions 

of (4.1) in detail. We first consider the case n 2 2. Let w* (t,x) be 

a solution of the linearized system (4.8): 

(4.33) 

wi th the ini tial conditions 

(4.34) ° - -1 ° ° -w* (0 ,x) = fw (w) {f (w
O 

(x)) - f (w)} , 

where w
o 

(x) is the initial data in (4.2). Let w (t,x) be the solution 

or (4.1) , (4.2) constructed in 'Theorems 4.3 and 4.4. Since w* (t) = 

(Ao)-1/2e-tS(AO)1/2w*(0) and w*(O) = V(O), (4.29) yields 

(4.35) 
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let s ~ So + 2 (note that So = [n/2] + 1 ~ 2 for n ~ 2) . Then for IIw -wll s 

(4.36) 

holds with sane constant C = C(a
4
).· Applying (3.A.14) to (4.35) and 

using the estimates (4.36), (4.31) 2 (with Ilvll l replaced by Ilw-wlll) and 

(4.24)', we obtain 

II 0 0 - 0 - II f (w (t)) - f (w) - fw (w)w* (t) s-4 

with S = 2y - E: (for any small E: > 0) for n = 2 and S = min {n/4 + 1/2, 

2y} for n ~ 3; 117 (t) is defined by 

117 (t) = (1 + t) S J: (1 + t - e) - (11/ 4 + 1/2) (1 + e) -2y de • 

It is not difficult to see that 117 (t) ::;; CE: holds for every small E: > 0 

if n = 2 and 07 (t) ::;; C if n ~ 3. Thus we have proved: 

Theorem 4.5 (asyrrptotic behavior) Let n ~ 2 be an integer and aSSW71e 

the same conditions as in Theorem 4.4. Let w(t,x) and w*(t,x) be the 

solutions of (4.1)-, (4.2) and (4.33)-, (4.34)" respectively. Then the fol-



- 102 -

. 'lowing estimate hoz,ds for t E [0,(0). 

(4.37) 

where f3 > y = n (1/2p ~ 1/4) .is determined by 

{ 

2y - € (for any sma'll, € > 0) 

f3 = 
min {n/4 + 1/2, 2y} 

if n = 2 " 

if n ~ 3 " 

and C = C (06) 'l--S a constant (in the case of n = 2 it depends on € > 0 too). 

Remark 4.3 The estimate (4.37) irrplies that the solutions of the non-

linear equations ( 4. 1) are asyrrptotic to those of the linear ones ( 4. 33) • 

A similar result was obtained by Kawashima, Matsumura and Nishida [39] 

for the e<:IW-tions of compressible viscous fluids in JR.3 . Based on this 

estimate, it was proved in [39] that the Boltzmann eg:uation can be appro x-

inated by the equations of compressible viscous fluids for t + 00 and 

that the latter eg:uations by the Navier-Stokes e<:IW-tion for incompress-

.ible viscous fluids . 

Next we consider the case n = 1. 
- 1- - 11-Let A (w) = A (w), B (w) = B (w), 

1 11 1 h (w) = h (w), H (w) = H (w) and x = Xl E JR. Then, in this case, the 

system (4.27) is reduced to a simple one: 

(4.27) I A 0 (Vi) V
t 

+ A (w) V - B (w) V = h (w) + {H (w) w} . 
x xx x xx 
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Let w = w(V) be the inverse function of (4.26). Since hew) = O( Iw-

- w1 2
) for Iw -wi -r 0, we find that D} (w (0)) = 0 for k = 0,1. There

fore . h (w (V) ) has the fonn 

(4.38) h(w(V)) = h*(V) +.hR(V) , 

2 
where h * (V) = D\Jl (w (0) ) (V, V), and hR (V) is the remainder tenn with 

~(V) = O(lvI
3

) for IVI -r o. 

We will ShON that for t -r co, the solution of (4.1), (4.2) (wi th n 

= 1) is approximated by the solution of the semi-linear equations 

(4.39) 

wi th the initial conditions ( 4 . 34). We need sone preparations. Firs t 

we ShON that in the case of n = 1 the L 2 (JR1) -nonn of the derivatives 

of solutions to (4.1), (4.2) decays at the rate t-S (with S = 3/4 - E for 

any small E > 0) as t -r co. 

Lemma 4.6 Let n = 1 and s ~ 5 (an integer)~ and assume that Wo - w 

E HS(JR1) n Ll(lRl ). Then for any small E > O~ there exists a positive 

constant 07 = 07 (E) (~06) such that if IIwO -wi I s,l ~ 07~ then the solu

tion constructed in Theorems 4.3 and 4.4 satisfies 

(4.40) 

for t E [O,co)~ where S = 3/4 - E~ and C = C(E,07) is a constant. 
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Proof. Apply D to (4.29) (wi th n = 1). Application of (3.A.14) to the 
x 

resulting equation yields 

+ C It (1 + t -T) - 3/4 11 D h (w) (T) II 1 + 
o x L 

+ (1+t-T)-5/4 11 {H(w)w }(T) \I 1 dT . 
x L 

By use of the estimate (2.4) (with p = co and s = n = 1), we have in the sane 

way as in (4.31)1,2' 

(4.42)1 

(4.42)2 liD h(w(V)) II '1 + IIH(w(V) )w(V) II l' s C IlvIIIID vii . 
x L x L x 

Substituting (4.42)1,2 to (4.41) and using the decay estimate (4.24) (with 

y = 1/4 for n =p = 1), we obtain 
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where (3 = 3/4 - s (for any small s > 0) and 

l1S (t) 

Q JT . -3/4 - (Q + 1/4) = sup (1 + T) I-' (1 + T - T ) (1 + T) I-' dT 
O~T~t 0 1 1 1 

For every small s > 0, l1
S

(t) and 11
9

(t) are bounded by a constant C s 

inde.r;>endent of t E [0,(0). rrherefore from (4.43) we can deduce the de-

sired estimate (4.40). rrhis completes the proof of Lemma 4.6. 

Next we investigate the initial value problem for the serni-linear 

sys tern ( 4. 39). In the sane way as in rrheorerns 4.3 and 4.4, and as in 

Lemma 4. 6, we can obtain: 

Lemma 4. 7 Asswne Conditions 4.1-4.3 for n = 1. 

(i) Let s ~ 1 and asswne wo - W E H
S 

(JR1). Then there is a positive 

constant 05 such that if Ilwo -wll s ~ °5*" the probrem (4.39)., (4.34) is 

sorved grobarry in time as in Theorem 4.3. 

(12.) Let s ~ 2 and assume' Wo - W E H
S (JR1) n Ll (JR1). Then there is a 

positive constant 06* (~OS) such that if Ilwo -wlls,l ~ °6*" the soru

tion w*(t,x) of (i) satisfies 

(4 ~ 44) 
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(iii) Let s ~ 3 and asswne Wo - w E H
S (JR1) n L 

1 (JR1). Then for any 

small E: > 0-, there is a positive constant 0l = of (E:) (:s; °6*) such that 

if Ilwo -wlls,l :s; 07* -' the solution w*(t,x) satisfies 

(4.45) 

with S = 3/4 - E: and a constant C = C (E:, 07*) . 

New we state the result on the asynptotic behavior (as t-roo) of the 

solution of (4.1), (4.2) in one-dimensional case. 

Theorem 4.8 (asynptotic behavior) Asswne Conditions 4.1-4.3. Let n 

. - s 1 1 1 
= 1 and s ~ 6 (an &-nteger) -' and asswne that Wo - w E H (JR) n L (JR ) • 

Then for any small E: > 0-, there exists a positive constant Os = 0S(E:) 

(:S;07-'0l) such that if Ilwo-wlls,l:S; 0S-' then w(t,x) and w*(t,x)-, 

the solutions of (4.1)-, (4.2) and (4.39)-, (4.34) respectively-, satisfy 

with S = 3/4 - E: and a constant C = C(E:,oS). (For the existence of 

w(t,x) and w*(t,x)-, see Theorem 4.3 and Lemma 4.7. See also Theorem 

4.4 and Lemma 4.6.) 

Remark 4.4 A similar result was proved by Kawashima [38] 1 for one-dimen

sionalrrodelequations of a viscous conpressible fluid, which are derived 

from the Broadwell nodel of the Boltzmann equation by the Chapman-Enskog-
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expansion. Using this result, he proved the follo.ving: in one-din:ension-

al case, the Broadwell model of the Boltzmarm equation can be approximated 

by the model equations of a viscous compressible fluid for t + 00. 

Proof of Theorem 4.8 ' We express' the solution w* (t,x) of (4.39), (4.34) 

by rreans of e-tS and subtruct it fran (4.29). Noting (4.26)' 'and (4.38), 

we have 

+ hR(V) + H(w(V))w(V) } (T) dT . 
xx 

Applying (3.A.14) to the above equation, we get 

(4.47) f
t -c (t-T) 

II (V-w*) (t) Il s- 6 ,; C 0 e 2 {llh*(V)x(T) Il s- 6 + 

+ cft (1+t-T)-3/4 1Ih*(v) (T) - h*(w*) (T) II 1 dT + 
o L 

The noDUS in the right rrember can be estimated in the sarre way as in 

(4.31)1,2: 
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Ilh* (V) - h* (w*) II 1 ~ c Ilv, w* IllIv - w* II , 
L . 

Substitute the above estimates and (4.42)2 to (4.47). Then by virtue of 

the decay estinates (4.24) (with '1=1/4 for n=p=l), (4.40), (4.44) and 

(4.45), we have the inequality for III (V - w*) (t) Ill s - 6 ,S (with S =3/4 - €): 

(4.48) 

where 119 (t) appeared in (4.43) and 1110 (t) is given by 

11 (t) = sup (l+1")S I1" (1+1" -1" )-3/4(1+1" )-(S/2 +5/8) d1" . 
10 O~1"~t 0 1 1 1 

Both of the first and the last integrals in the right rrernber of (4.47) 

are corresponding to the fir~t tenn in tile right hand side of (4.48). It 

is easy to see that 119 (t) + 1110 (t) ~ C€ holds for every snaIl E > o. 

Therefore we can deduce from (4.48) that the estimate III (V - w*) (t) IIl s - 6 ,S 

~ C€llwo - wll;_4,1 holds for suitably small Ilwo -wlls,l. Thus tile proof 

of Theorem 4.8 is corrpleted. 
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CHAPTER V 

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 

WITH VANISHING VISCOSITY 

5.1 INTRODUCTION 

In this chapter we shall consider the initial value problem for the 

system of conservation laws with a pararreter E E (0,1]: 

(5.1) 

(5.2) w(O,x) = wO(x) , 

where t ~ 0 and x = (xl'···· ,x
n

) E nf i w = w(t,x), fj (w) (j = 0,1,·· 

'k 
•• ,n) and GJ (w) (j ,k = 1,· •• • ,n) are the same as in chapter IV. We also 

assume Conditions 4.1 and ~. 2 . Then it was examined in chapter IV that 

the system (5.1) can be reduced to 

(5.3) 
o ' 'k 

A (w)wt + I, AJ (w)wx , - E I BJ (w)w = Eg (w,D w) I 

J J jk Xj~ x 

which is symrretric hyperbolic-para1::o1ic (in the sense indicated in chap-
, 'k 

ter IT) for every fixed E E (0,1] I where AJ (w) (j = 0,1,···· ,n), BJ (w) 
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(j,k=l,····,n) and g(w,DxW) are defined by (4.4)1,2,3' respectively. 

It should be also noted that the system (5.3) withE. = 0 is a syrrrrretric 

hyperbolic one, as was pointed out by Friedrichs and Lax [19] i this fact 

is seen from (4.5)1,2-

In the following we are. interested in the as~totic problem as E. 

-+ o. Since (5.3) with E. E (0,1] is syrrmetric hyperbolic-parabolic, 

Theorem 2. ~ gives a local solution of (5.1), (5.2) on a tine interval 

[0 , TE.] • However in this case we only know TE. = 0 (E.) for E. -+ 0 and 

so we can not take the limit as E. -+ O. To prove the existence of solu

tions to (5.1), (5.2) on a tiIre interval [O,T] independent of E., we 

must utilize the property that Aj (w) (j = I,· ••• ,n) are real symrretrici 

in Theorem 2.9 we only require that the block matrices Ah (w) (j = 1,··· 

• • ,n) are real syrnrretric. As is expected, we can establish the following 

results. "The initial value problem (5.1), (5.2) has a unique SIf(X)th 

solution wE. = wE. (t,x) on a tine interval [O,T] independent of E. if 

the initial data satisfy Wo - W E HS (JRn) (with n 2 1 and s 2 [n/2] + 2) 

with a given constant state W E O. Furtherrrore, as E. -+ 0, the solution 

wE. converges on [O,T] to a limit wO, which is a unique srrooth solu

tion of the limit system (i. e., (5.1) withE. = 0) for the same initial 

data." (see Theorems 5. 4 and 5.5) • 

Similar results were obtained by many authors. In one-dimensional 

case the system (5.1) wi til E. = 0 admits shock-wave solutions and (5.1) 

. with E. E (0,1] admits progressive-wa~e solutions, if (5.1) with E. = 0 

is strictly hyperbolic and genuinely nonlinear in the sense of Lax [50] 1. 

The convergence of progressive waves to the shock waves as E. -+ 0 was 

proved in [17], [10]1' [73], [74] for general systems, in [86], [20], [21] for 
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the equations of compressible fluids, and in [10]2,3' [29] for the equa

tions of nagnetohydrcxlynarnics. We also refer to DiPerna [13] 6' where gen

.eral convergence theorems are established for some simples t sys terns in 

one space-dimension: SJIlCX)th solutions w€ converge to a limit wO for 

all time t;::: 0, and .wO is·a weaJ< solution of the limit system. For 

convergence results (local in tirre) in higher dirrensions (n;::: 2)', we refer 

to [63], where the equations of compressible fluids in JR? are consider-

ed. 

Similar convergence problems were also considered for the equations 

of incompressible fluids and for the Boltzmann equation. We refer to 

[24], [57], [76], [37]2 for the former equations and [61]3' [6], [80]3 (and 

also [33], [7]) for the latter one. 

The contents of this chapter are as follows. In section 5.2 we con

sider the linearized system (with variable coefficients) for (5.1). The 

energy es timates and. the existence results, which are valid unifonnl y in 

€ E (0,1], are established by a similar rrethcxl as in section 2.3 of chap

ter ]I. By virtue of these results, we can shOtl that (5 .1) , (5. 2) has a 

sriooth solution w€ = w€ (t,x) on a tirre interval [O,T] independent of 

€ E (0,1], see section 5.3. The solution is constructed by the successive 

approximation rrethcxl. In section 5.4 we shall prove that as 
€ 

€ -+ 0, W 

converges on [0, T] to a snDoth solution of the limit system. Section 

5.5 contains some remarks on the global existence problem for (5.1), (5.2) . 

In particular, it is proved that if the arrplitude of the initial data is 

O(€), then (5.1), (5.2) admits a global solution whose amplitude is of the 

sane order. 
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5.2 UNIFORM STABILITY FOR LINEARIZED EQUATIONS 

In this section we shall consider the linearized 8CIuations of the 

fonn 

(5.4) 
'k A 

S L BJ (w)w = f + sg , 
jk Xj~ 

, 'k 
where coefficient matrices AJ (w) (j = 0;1,· • • • ,n) and BJ (w) (j ,k = I, • • 

• • ,n) are the sane as in chapter IV (cf. (4 · 5) 1,2,3 and Condition 4. 2) i 

t t t w (t,x) = (u, v) (t,x) , f (t,x) = (f
1

, f
2

) (t,x) and g (t,x) = (gl,g2) (t,x) 

are given functions on C4r = [O,T] x nf. let s;::: So + 1 (sO = [n/2] + 1) 

and 1 ::; 9., ::; s be integers. let w = t(u,v) satisfy (2.10) 1,2 and 

(2.11) : 

(5.5) 1 

(

V - V E CO (0, T ; HS (nf) ) 

o s-2 n 2 s-l -.......Il 
d tV E C (0, T ; H (JR )) n L (0, T i H (lI:{)), 

(5.6) 
t w(t,x) = (u,v) (t,x) E 01 for any (t,x) E ~ , 

. - t--
where w = (u,v) E ° is an arbitrarily fixed constant state and 01 is 

a bounded open convex set in nfl satisfying 01 c 0. For f = t(f1 ,f2) 

t 
and g = (gl,g2)' we assurre: 

t 0 9.,-1 ...Jl 2 9., n 
(5.7) f = (f

1
,f

2
) E C (O,T i H (Jl{)) n L (O,T; H (JR)) , 
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(5.8) 2 ° £-1 n g2 E C (O,TiH (JR)). 

As in chapter IT, we also consider the conditions (5.5) 1,2' (5. 7) 

o 00 

and (5.8)1,2 with C (eee) replaced by L (eee). 

[ 

00 s n 
v - 'v E L ( ° , T i H (JR)) , 

d tV E L 00 (0 , T ; HS
-

2 (nf-)) n L 2 (0 , T ; Hs- 1 (JRn)) , 

(5.10 ) 
t 00 £-1 n 2 £ n 

f = (f
1
,f

2
) E L (O,T iH (JR)) n L (O,T; H (JR)) , 

(5.11) 1 

(5.11) 2 
00 £-1 n 

g 2 E L ( 0, T i H (JR )) • 

Under these assl.lIlptions we can prove the energy estimates for (5.4), which, 

are valid uniformly in £: E (0,1]. 

I..emma 5.1 Let Aj 
(w) (j = 0., I., e e •• .,n) and B

jk 
(w) (j.,k = 1.,···· .,n) are the 

same as in chapter IV. Let n:2: I., S :2: So + 1 (sO = [n/2) + 1) and 1 ~ £ 

~ s be integers. t Let w = (u,v) satisfy the conditions (5.9)1,2 and 

(5.6) and put 

M = sup II (w-w) (t) II ., 
O~~T S J

T 2 1/2 
Ml = ( 0 II dtW (t) II s-l dt) · 
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t t Let f = (fl ,f2) and g = (gl,g2) satisfy the conditions (5.10) and 

'" t '" '" 
(5.11)1,2~ respectively. Further assume that w = (u,v) is a solution 

of (5.4) '(with E: E (0,1]) sa'tisfying 

00 f)" ......Jl 
VEL (0, T i H (J!{ )) ~ 

'" 00 f),,-2 ......Jl 
d tV E L (0, T i H (J!{)). 

'" t '" '" 0 f)" 1/2'" 2 Then it follows that w = (u,v) E C (O,T i H (nf)) and E: VEL (O,T; 

Hf),,+l(nf)). Furthermore we have the energy estimate which is valid uni-

formly in E: E (0,1]: 

(5.12) 

for t E [O,T] and for any U E (O,l]~ where Cg = C9(Ol) > 1 and C10 

= C10(Ol,M) are constants independent of E: and u. 

PrCXJf. We use the argurrents in Lerro:na. 2. 6 . Apply If- (k ~ f),,) to the sys
x 

tern (5. 4) and take the inner product (in nf) of the resul ting equation 

k'" 
by D w. Integra ting it over nf and adding for k = 0,1,····, f)", we ob

x 

tain 
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(5.13) 
£ J 0 k" . k" . . k" k" L < A (w) D w

t 
+ L AJ (w) D w - E: E B1J (w) D w , D w > dx 

k=O x j x Xj ij x XiXj x 

= ~ J < ~ + E:d<, Dl\, > dx , 
k=O x. 

where 

let us intrcxluce the energy nonn 

" £ J 0 k" k" 1/2 E [w] = (L < A (w) D w, D w > dx) , 
k=O x x 

" 
which is equivalent to Ilwll £. By the argurrents in lemma 2.6, we can de-

duce that the left hand side of (5.13) is bounded from belON by 

where Co = Co (01) ~d C = C (01 ,M) are positive constants independent 

of E:. On the other hand the right nernber of (5.13) is majorized by 

A A A A 

+ E:C(E[w] Ilvll£+l + Ilglli£llull£ + Ilg2 11£-11Ivll£+1) 

with a constant C = C(Ol,N) independent of E:. Therefore, noting that 
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A 2 2 -1 A 2 
SCllglll£llull£ ~ as Ilglll£ + a CE[w] for any a > 0, we can get the 

inequality 

where a ~ 1 is assurred. The desired estimate (5.12) is an im:rediate 

consequence of the above inequality. We omit the proof of the regularity 

results, because these results can be obtained in the same way as in Iem-

rna 2.6. This completes the proof of I.errma 5.1. 

The existence of a solution of (5.4) follows from Proposition 2.7. 

Indeed, (5.4) can be written in the form 

o A • A A 

(

AI (u,v)ut + 4 Ail (u,v)ux . = f~ (t,x i DxV) , 
J J 

(5.14) 

o A jk A s A A 

A: (u,v)vt - s L B2 (u,v)v = f2 (t,x ; D u,D v) 
-~ jk Xj~ x x 

where 

f~ (t I X i D x ~) = f 1 + sg 1 - ~ A{2 (u, v) ~ X. I 

J J 

f~(tlxiDx~'Dx~) = f2 + s92 - ~ {A~l(U,V)~x. + A~2(u,V)~x.} · 
J J J 

Therefore, based on Proposition 2. 7 I we can define the successive approx-
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A A 

imation sequence 
n n {(u ,v )} for (5.14) as follows: 

AO AO 
(u ,v ) (t,x) = (u, V) 

and for n ~ 0, 

o An+l \ j An+l E An+l 
Al (u, v) u t + 4 All (u, v) u x . = f 1 (t, x ; D xv) 

J J 

o An+l jk An+l 
A2 (u, v) v t - E L B2 (u, v) v . 

jk Xj~ 

(An+l An+l) (0 ) _ (A A) (0 ) u,v ,x - u,v ,x • 

E An An 
= f2 (t,x ; D u ,D v ) x x 

Note that the last variable of fE is not D;n but D .)1+1. We apply 
1 x x 

the energy estimates (2.16) 1,2 to the equations for the difference ~n+l 

- ~n. Then it follows that for every fixed E E (0,1], ~n = t(~n,;n) 
~ 0 £~ 2 

and v are the Cauchy sequences in C (O,T; H (JJ:{ )) and L (O,T i 

H£+l(nfl)), respectively. So we have a solution of (5.14) (and therefore 

(5.4)) as a strong limit of the sequence 

siderations, we have: 

An 
w. Summarizing the above con-

Proposition 5.2 (uniform stability for linearized equations) Let A
j 

(w) 

(j=O-,l-,···-,n) and Bjk(w) (j-,k=l-,···-,n) are the same as in chapter IV. 

Let n ~ 1-, s ~ So + 1 (sO = [n/2] +1) and 1::; £ ::; s be integers. Let 

w= t(u,v)-, f = t(f
l
,f

2
) and g = t(gl,g2) satisfy the conditions 

(5.5) 1,2 - (5.8) 1,2. If the initial data satisfy ~(O) = t(~,;) (0) E 

£ n 
H (IR)-, then (5.4) with E E (0,1] admits a unique solution w(t,x) = 
t A A 

(u, v) (t,x) wi th 
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U E 

V E 

which satisfies the energy estimate (5.12) for t E [O,T] and' for any 

s., a E (0,1]. 

5.3 UNIFORM STABILITY FOR NONLINEAR EQUATIONS 

In this section we shall construct a solution of (5.3) (and conse-

quently (5.1)) on a tirre interval independent of s E (0,1] by the suc-

cessive approximation nethod. To prove the existence of a invariant set 

(uniformly bounded with respect to s) under iterations, we first consider 

the linearized system for (5.3): 

(5.15) 
o A 'A 'k A 

A (w)wt + L, AJ(w)Wx , - s L BJ (w)w = sg(w,D w) 
J J jk Xj~ x 

wi th the initial data 

(5.16) w(O,x) = w(O,x) = wO(x) • 

Let Conditions 4.1 and 4.2 be assuned and let s ~ So + 1 (sO = [n/2] + 1) 

t - t be an integer. For Wo (x) = (uO,vO) (x) we assurre that Wo -w = (uO-

- -) E HS (JRn) -u v - V 
I 0 and 
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(5.17) n for any x Em:, 

where w = t(u,v) E ° is an arbitrarily fixed constant state and 00 is 

a bounded open convex set in :rrf s~tisfying .°
0 

c 0. For given functions 

t ' 
w (t,x) = (u,v) (t,x) ,'we assurre that 

.u - U E 

I 

(5. 5) 2 
{

V - V E cO (0, T i HS (lli
n

) ) 

o s-2 n 2 s-l .Jl 
dtV E C (O,T iH (JR)) n L (O,T; H (..11:<.)), 

(5.6) t w(t,x} = (u,v) (t,x) E 01 for any (t,x) E QT ' 

(5.18) 1 2 Jt 2 2 sup II (u- ti, v- v) (T) II + soil (v -v) (T) Ils+l dT ~ M , 
O~T~t s 

(5.18) 2 for t E [0, T] , 

where 01 is a bounded open convex set in nf1 satisfying 01 c 0, and 

M and Ml are constants; °1, M and Ml will be detennined later. We 

denote by ~(Ol,M,Ml;E) the set of functions w(t,x} = t(u,v) (t,x) sat-
I 

isfying (5.5) l' (5.5) 2' (5.6) and (5.18) 1,2· 

lBt w = t (u, v) E ~ (01 ,M,Ml ; s). Then II g (w,DxW) II s-l ~ CM
2 

holds 

with some positive constant C = C (Ol,M) (see (4.7)). Therefore, if w 
t r. r. I 

= (u,v) is a solution of (5.15) satisfying (5.5)1' (5.5)2 and (5.18)1 

wi th M replaced by M, then there is a constant Cll = ell (01 ,M) such 

that 
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(5.19 ) 

holds for t E [0 ,T]. NON fix d l so that 0 < dl < dO :: dist (°
0

, dO), 

and then take ° l' M and Ml as follows: 

{ 

01 = '\ -neighborhood of 00 ' 

(5.20) _ 

M = 2C9 Iluo -u, vo -viis' Ml = 2CIIM , 

where C9 = C9 (01) and Cll = Cll (Ol,M) are constants in Iernma 5.1 and 

(5.19), respectively. For this choice of 01' M and Ml , we can shON 
A A s that the set x;r,(Ol,M,Ml;S) is invariant under the napping (u,v) -7- (u,v) 

if T is sufficiently small (but independent of s) • 

Proposition 5.3 (invariant set under iterations) Let Conditions 4.1 and 

4.2 be asswned. Let n ~ 1 and s ~ So + 1 (sO = [n/2] + 1) be integers., 

- t--and let w = (u,v) E ° be an arbitrarily fixed constant state. Suppose 

that the initial data satisfy Wo -w = t(U
o 

- u,v
O 

- v) E HS 
(JRn) and 

(5.17). Then there exists a positive constant T2 (:::;T)., depending on 

00" d l and Iluo -u, Vo -viis but not on S E (0,11., such that· if w = 

t(u,v) E ~ (Ol,M,MliS) with 01" M and Ml defined by (5.20)., the ini-
2 A t A A 

tial value problem (5.15)., (5.16) has a unique solution w = (u,v) in 

s the same XT (Ol,M,Ml;S). 
2 

Proof. This lerrma. can be proved in the sarre way as in Proposition 2. 8 . 
A t A A 

It suffices to shON w = (u, v) E ~ (01 ,M,.Ml ; s), because the existence of 
2 
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A 

w follows irmediately from Proposition 5 .. 2 with .Q, = s,. Since IIg
1 

(u, 

v,DxV) lis :s; CM IIDxvlls and Ilg2 (u,V,DxU,DxV) Il s - l :s; CM
2

, the energy es

ti.mate (5.12 ) (with.Q, = s) yields 

(5.21) 
A _ A _ 2 It A - 2 II (u-u, v~v)(t)II, + 'E II (v-v) (T)II +ldT 

sO' s 

where C = C (O
l

,M) is a constant independent of E E (0,1] and a E 

(0,1]. Take a so that 2aCM
4

:s; II Uo - U, v 0 - vii ~. For this choice of 

a, we take T2 so small that 

Then the right hand side of (5.21) is majorized by 4C; II Uo - 11, v 0 - vII ~ 
2 A t A A 

= M. Therefore it is proved that w = (u,v) satisfies (5.18) 1. Since 

we have (5.19), the remainig estimates (5.18) 2 and (5.6) can be verified 

in the sa.ne way as in Proposition 2.8. This corrpletes the proof of Prop:-

osition 5.3. 

By virtue of Proposition 5.3, the initial value problem, (5.1) , (5.2) 

can be solved on a time interval independent of E: 

Theorem 5.4 (uniform stability for nonlinear equations) Let Conditions 

4.1 and 4.2 be assumed. Let n ~ 1 and s ~ So + 1 (sO = [n/2] + 1) be 

- t--
integers~ and let w = (u,v) E 0 be an arbitrarily fixed constant state. 
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- t - - S....Jl 
Suppose that the initial data satisfy wo-w = (uO-u,vO-v) E H (lli) 

and (5.17). Then there exists a,positive constant T3 (~T2)~ depending 

on 00~ dl and Iluo -ti, Vo -viis but not on E E (O,lL such that the 

t 
initial value problem (5.l)~ (5.2) has a unique solution W = (u,v) E 

~ (Ol,M,~;E) for any E E, (O,l]~ where 0l~ M and Ml are determined 
3 

by (5.20). In particular~ the solution satisfies 

1/2 - 2 s+l ....Jl 
E (v - v) E L (OfT3 i H (lli)) ~ 

(5.22) sup II (u- u, v- v) ('r) 112 + Eft II (u -u) (T) 112 + 
O~T~t S 0 s 

where C
12 

> 1 is a constant depending on 0o~ dl and Iluo -ti, Vo -viis 

but not on E. 

Proof. Let us introduce the successive approximation sequence {w
n

} = 

{(un,vn )} for (5.3) ,(5.2) as follows: 

o tOO t--w (t,x) = (u ,v ) (t,x) = (u,v) , 

and for n ~ 0, 
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n+l w (O,x) = wO(x) · 

By Proposition 5. 3 the sequence wn 
= t (un , ~) is well defined on QT 2 

for n;;::: 0, and is unifonnl y bounded with respect to n;;::: 0 and E: E 

(0,1], i.e., wn = t.(un,vn ) ,E X; '. (Ol,M,MliE:). To prove the convergence 
2 . ~ 

of wn to a solution of (5.3), (5.2), we consider the difference w = 
n+ 1 n t ( n+ 1 n n+ 1 n)' t An An 

w -w =. u -u ,v -v = (u ,v ): 

(5.23) 

(5.24) 

where 

An 
w (O,x) = 0 , 

fn = - AO (wn) L {A 0 (wn) -lAj (wn) - A 0 (wn- l ) -lAj 
(w

n- l ) }wn
x . ' 

j J 

II~, ~lls-l + 1I~~lls-2 ~ CM lI~n-llls_l 

II ~~ II s-l ~ CM ( II ~n-lll s-l + II ~n-lll s ) 
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for a constant C = C(Ol/M) independent of n and E:. Therefore appli

cation of (5.12) (with £=s-l) to (5.23), (5.24) yields 

(5.25 ) '" 2 It '" 2 sup II wn 
(T) II -1 + E: II vn 

( T) II dT 
OSTst s 0 s 

. 1/2' . . 
2 C (t/ a + M1 t) "'n-l 2 2 It "'n-i 2 

s CM e { t sup II w (T) II -1 + aE: II v . (T) II dT} 
O::;Tst s 0 s 

with a constant C = C (01 ,M) independent of n, E: and a, VJhere E: s 1 

and a s 1 are used. Take a so that 
2 

2aCM < 1. And for this choice 

of a I we take T 3 so snal1 that 

2CM2T 1 3 < • 

Then it follows from (5.25) that wn -w is a cauchy sequence in cO (0 IT3 i 

s-l ...Jl t t 
H (lJ:{)) I and hence there is a w = (u,v) with w -w = (u -u,v -v) E 

o s-l n n . 0 s-l n 
C (0,T

3 
i H (JR)) such that w -w -+ 0 strongly 1n C (0/T

3 
i H (JR) ) 

as n -+ co. .£v:breover by the argurrents in Theorem 2.9 it is easily seen 

that the limit w = t(u,v) is the desired solution to the problem (5.3) I 

(5.2) (and therefore (5.1), (5.2)). Thus the proof of Theorem 5.4 is cam-

pleted. 

5.4 LIMIT AS VISCOSITY TENDS TO ZERO 

The solution of (5.1), (5.2) constructed in Theorem 5.4 is depending 

(0 1] S . th' . . t' d ted b E: t (E: E:) on E: E , • 0, 1n 1S section, 1 1S eno y w = u ,V • We 
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shall shOW' that there is a time interval [O,T] independent of E such 

that as E -+ 0, wE converges on [O,T] to a limit wO, which is a 

smooth solution of the limit system (5.1) withE = 0. To see this we 

A ° E tOE ° EtA A consider the difference w = w -w = (u -u ,v -v ) = (u,v), where 

° < ° < E ~ 1. Since- wE satisfies 

the system for the difference ° E W = W -w is 

(5.26) ° ° A '0 A 'k ° A A (w )wt + I, AJ (w )wx , - ° I BJ (w)w 
J J jk Xj~ 

(5.27) w (0 ,x) = ° , 
where 

. fE,o = _ AO(Wo) I {AO(Wo)-lAj(Wo) - AO(WE)-lAj(WE)}wEx, ' 

j J 
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€ S 
In Theorem 5. 4 we have already proved tha t w E XT (.01 ,M,M1 i €) for any 

3 
(0 1] S f €,6 = t(f€,6 f€,6) €,6 = t( €,6 €,6) d h€,6 = 

€ E , • 0 1 ' 2 ' g gl ,g2 an 

t (h~' 6 ,h~' 6 ) respectively satisfy 

(5.28)1 

(5.28) 2 

(5.28) 3 

where C = C(Ol,M) is a constant independent of € and 60 Therefore, 

applying (5.12) (with 9., =s-l, f=f€,6 + (€ - 6)h€,6 and g=g€,6) to (5.26), 

(5.27) and using (5.28)1,2,3 and WE E X;3 (Ol,M,M1;E), we obtain 

(5.29 ) 
A 2 It A 2 

sup Ilw(T) II -1 + 6 Ilv(T) II dT 
OS;;TS;;t s 0 s 

1/2 
2 C(t/a+M1t ) -1 2 

s;; CM e {€ I € - 61 (1 + t) + 

A 2 2 It A 2 
+ t sup IIW(T) II -1 + a6 Ilv(T) II dT} 

o S;;T s;;t s 0 s 

for any 0 < 6 < € s;; 1 and a E (0,1], where C = C(Ol,M) is a constant 

independent of €, 6 and a. 
2 

Take a so that 2aCM < 1. For this a, 

we take T 4 so small that 

2CM
2T 1 4 < • 

Then (5.29) gives for t E [O,T4J, 
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(5.30) 

where 0 < cS < E: ::; 1, and C = C (01 ,t1) is independent of E: and cS. Es

timate (5.30) irnplies that wE: -w is a Cauchy sequence in cO (0,T
4 

; 

s-l --..Jl 0 ' 0 - 0 _~-1 ..Jl 
H (J.l{ )), and so there is a w . with w -w E C (0,T

4
;.H (J.l{ )) such 

E: 0 0 ' s-l ..Jl '; 
tha t w - w -+ 0 s trongl y in C (0, T 4 ; H (J.l{ )) as E: -+ 0.. ' Moreover, 

since wE: E. ~ (01 ,M,Ml ; E:), by the argurrents in Theorem 2.9 we can see 

400 
that this limit w is a solution of (5.3) with E: = 0, satisfying w -

- 00 s n 0 00 s-l ..Jl 
- w E L (0,T

4 
i H (JR)) and dtW E L (0,T

4
; H (lli. )) • Therefore, by 

0- 0 S--..Jl 
Iemma 2.6 (i), we have a regu1ari qr w -w E C (0,T

4
; H (lli.)).. Thus we 

have proved: 

Theorem 5 .5 (limit as E: -+ 0) Let n ~ 1 and s ~ So + 1 (sO = [n/2] + 1) 

be integers. Assume the same conditions as in Theorem 5.4. E: Let w = 
E: w (t,x) be the solution (on ~ ) of (5.1)~ (5.2) constructed in Theorem 

3 
5.4. Then there is a positive constant T 4 (::; T 3) independent of E: E 

(O,l]~ such that wO -w = lim (wE: -w) exists strongly in CO (0,T
4 

; 
1 E:-+O 0 

H
S

- (IR
n
)). This limit function w is a unique solution of the limit 

system (5.1) with E: = O~ satisfying wO -w E cO (0,T
4 

i H
S 

(IR
n

)) n C
l

(0,T4 i 

Hs- l (nf)). Moreover~ as a consequence of (5.30)~ we have 

(5.31) 

for t E [0,T4] and for any E: E (0,1]~ where C is a constant depend

ing on the initial data but not on E:. 
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Remark (i) In the case of s ~ So + 2 (sO = [n/2] + 1) , we can get a 

rapid convergence result: 

(5.31) I 

Because in this case we have the estimates (5.28) 1,2 with s 'replaced 

bv s-l as well as the es tima te II h S , 
0 h S ,

0 II ~ CM. Therefore as a 
.1 1 '2 s-2 

colllterpart of (5.30), we have 

which implies (5.31) I. 

(ii) In order to discuss the convergence S 0 w -+ w t ~ 0, for all tirrE 

we have to consider weak solutions (see DiPerna [13] 6). Because srrooth 

solutions of the limit system (5.1) with S = 0 in general develop sin-

gularities in the first derivatives in finite tirrE. 

5.5 REMARKS ON THE GLOBAL EXISTENCE 

In Theorem 4.3 we have proved that if Iluo-ti, vo-vlls ~ 05 , a solu

tion of (5.1) with S = 1 exists for all tine t ~ o. In this section 

we shall show that if the smallness condition lIuo -ti, Vo -viis ~ s05 is 

satisfied, then (5.1) admits a global smooth solution for any S E (0,1]. 

We assurre that the initial data (5.2) are of the form 
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(5.32) w 0 (x) = W + € W 0 (x) , 

- t-- . 
where w = (u,v) E 0 is an arbitrarily fixed constant state. Then we 

have: 

'lheorern 5.6 (global existence) Let Conditions 4.1-4.3 be as·sumed. Let 

n ~ 1 and. s ~. So + 1 (sO = [n/2] + 1) be integers. Suppose that the ini-

'" t"'.'" s n tial data satisfy (5.32) with wo = (uO',v
O

) E H (JR ) • Let 05 be the 

constant in Theorem 4.3. If Iluo,volls ::::; 0S.) then the initial value 

problem (5.1).) (5.2) has a unique global solution w(t,x) = w + €w(t,x) 
,....,.,; tt'Jf'tJ 

for any € E (0,1].) with w = (u,v) satisfying 

Furthermore we have the estimate for ~ = t(~,v).) which is valid uniformly 

in € E (0,1]: 

(5.33) 

for t E [0 ,00) .) 

where Cs > 1 ~s the constant in Theorem 4.3. We also have the decay 

law: I (u,v) (t) Is-(s +1) + 0 uniformly in € E (0,1] as t + 00. 
o 
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Proof. First we note the local existence result (Theorem 2.9). "'lliere 

exists a positive constant T~ (=O(s) as S +0) such that a solution 

t S w(t,x) = (u,v) (t,x) of (5.1), (5.2) exists on the time interval [O,T
l

] 

and satisfies 

I
t '. 

II (u-li, v-v) (t) 112 + S II (u-li) ('r) 112 + II (v-v) (T) 112+ldT 
s . 0 s s 

for t E [0, T~ ] • II 

Next we shall prove the a priori estimates for the solutions. We 

shall nodify N (t', t) as follows: 
s 

N (t' ,tiS) 2 = sup \I (u- li, v- v) (T) 112 + 
s· t':::::;T:::::;t s 

J
t 2 2 

+ S liD U(T) II -1 + liD V(T) \I dT • 
t l x s x s 

We put N (tiS) = N (O,tiS). Then we have the following rrodification of s s 

Proposition 4.2. "let a 
5 

and Cs be the rons tants in Proposition 4. 2. 

Ass"l.1Ire that Ns (Ti s) :::::; sa
5

. Then the following a priori estimate holds 

for t E [O,T]: 

(5.34) 

Indeed, as a rounterpart of (4.14), we have 

(5.35) II (u - li, v - v) (t) 1\2 + S Jt II D v (T) 1\2 dT 
o x 
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I - -11 2 3 ::; C {I Uo - U , V 0 - v + N So (T i e::) } I 

where N (Tie::)::; a 4 is assuned. Ivbreover if Ns (Tie::) ::; a4, then 
So 

(5.36 ) 

(5.37) It 2 2 It 2 liD U(T) II _ldT - C{ II (u- u, v- v) (t) II + liD vCr) II dT} 
OX s sOx s 

The estimate (5.36) (resp. (5.37)) is corresponding to (4.16) (resp. 

(4~17) + (4.21)). COmbining the estinates (5.35)-(5.37) as in Proposition 

4.2 , we get the inEqUality 

2 II - -11 2 -1 3 N (Tie::) ::; C{ UO-u, vO-v + e:: ~ (Tie::) } , s s s 

whenever Ns (T; e::) ::; a
4 

is satisfied. The desired estimate (5.34) is an 

imTedia te consequence of the above inequality. 

A combination of the local existence result and the a priori estimate 

stated above gives the theorem, see the proof of Theorem 3.10. This com-

pletes the proof. 
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CHAPTER VI 

APPLICATIONS 'TO THE EQUATIONS OF 

ELECTRICALLY CONDUCTING FLUIDS 

6.1 INTRODUCTION AND EQUATIONS 

In this chapter, as applications of the general theory developed in 

chapters TI - V, we shall deal with the system of e::juations describing the 

notion of an electrically conducting fluid in the presence of an electro-

magnetic field. The state of the fluid motion is specified by the mass 

d.ensi ty p, the velocity 1U = (u 1 , u2 , u 3) and the absoJ-ute temperature 8 , 

while the electromagnetic field by the electric field E = (El ,E2,E3), 

the magnetic induction JB = (Bl ,B2 ,B3) and the electric charge density 

p. All these quanti ties are functions of time t ~ 0 and position x 
e 

3 = (xl ,x2 ,x3) E JR. Since the flo.v and the electromagnetic field are 

closely connected with each other, the system of fundarrental equations of 

the fluid becorres a coupled system of conservation laws for hydrodynarnical 

quantities and Maxwell's law for electromagnetic ones (see [32] 1 [5] 1) : 

P t + di v (p u) = 0 , 
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= div(KV6) + \f + (J - P u)· (JE + u x lli) , 
e 

JB t + rot JE = 0 , 

div E = 0 • 

Here the pressure p and the inteITlal energy e are expressed with the 

aid of the thenrodynamic quanti ties p. and 6 by the equations of state, 

i.e., p = p(p,6) and e = e(p,6) (the abbreviations such as Pe = dp/de, 

ee = de/de, ••••• are used); the fluid under oonsideration is an isotropic 

Newtonian fluid, i.e., the stress tensor - pI + (2flIP + fl' I div u) is a 

_ i j 
linear function of the deformation tensor IP - (1/2) (u + u ) 1< . . <3 ' x. X. -l,J-

J l 

where I is the unit matrix of order 3, and 11 = 11 (p,e) and 11' = 

11' (p,e) are the ooefficients of visoosiqi \l' is called the viscous 

dissipation function and is given explicitly by 

. . 2 2 
\l' = ~ L (u

l + u J ) + 11' (div lU) 
2" x. X. lJ J l 

the heat flux q is given by Fourier's law, i.e., q = - KV6 (cf. the 

second equation of (3.47)), where K = K (p ,e) is the coefficient of heat 

conductivity; the electric current densiq J is given by Ohm's law, i.e., 

(6.3) J - P u = a (JE + u x ID) , e 
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where a = a(p,e) is called the coefficient of electrical conductivity; 

the dielectric constant So and the magnetic penneability 110 are as

sUITed to be FOsitive constants. 

We list up the conditions for (6.1), (6.2) . 

[Cl] The therm:>dynamic quantities p and e are sITOOth functions of 

P > 9 and e > 0 such that 

1. the relation de = edS - pd (lip) ,holds for sarre SlIDOth function S 

= S(p,e); this relation expresses the first law of thermodynamics 

and S is called the entropy (see [11], [49] 1) , 

2. P P (= dP I d p) > 0 and e e > 0 for p > 0, e > o. 

[C2] The coefficients ll, ll' and K are smooth functions of p 

e > 0, and satisfy one of the following four conditions for 

e > o. (v = 2ll + ll' ) 

1. ll, v > 0 K > 0 2. II :: v - 0 K > 0 

3. ll, v > 0 K - 0 4. II :: v - 0 K :: 0 

> 0 and 

p > 0, 

[C3] The coefficient a is a smooth function of p > 0 and e > 0 such 

that a > 0 for p > 0, e > o. 

Under these conditions, the equations (6.1) ,(6.2) fonn a closed system of 

14 equations for 12 unknowns (p, lU, e ,E, JB, P ), which is called the system 
e 

of electro-magneto-fluid dynamics. 

If letting s -+ 0 o formally in (6.1), (6.2), we have p = 0 
e 

and J 

= (1/1l0) rot E. These relations together with (6.3) yield JE = - n.l X JB + 
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(l/OllO) rot ::s. Therefore the system (6.1), (6. 2) can be reduced to (see 

[49] 2' [32], [5] 1) 

P t + di v (p u) = 0 , 

p(Ut + (ill-V) u) + Vp - (l/llO)rotJBx E = div(2llJP+ll"Idivu) , 

(6.4) 

JEt - rot(u x JB) rot{ (1/01l0) rot JB} , 

(6.5) div E = 0 • 

For this system, it is convenient to replace the condition [C3] by the 

following. 

[C3] I The coefficient 1/0 is a SITKX)th function of p > 0 and 8 > 0 I 

and satisfies either 

1. 1/0 > 0 or 2. 1/0 - 0 for p > 0, 8 > o. 

Under these conditions I we can consider (6.4) I (6.5) as a closed system of 

9 equations for 8 unknowns (p I U , e ,E) I which is called the system of 

magnetohydrodynamics. 

Furtherrrore I in the special case when the magnetic induction is neg

lected (i.e., JE= 0) in (6.4) I (6.5) I we get the usual system of fluid 

rrechanics (see [49] 1) : 
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Pt + div(p u) = a , 

(6.6) p CUt + (u·V) u) + Vp = div(21-1F +1-1'1 div lU) , 

This is a closed system of 5 equations for 5 unknOVJI1S (p, tu,8) . 

Here we briefly discuss the difference between the two systems (6.1), 

(6.2) and (6.4), (6.5). The second system (6.4), (6.5) of magnetohydro-

dynamics (and therefore the system. (6.6) of fluid rrechanics) is of the 

desired type, i. e ., it is transfor.rred into a syrnrretric hyperbolic-para-

bolic system in the sense of chapter TI. The system (6.1),(6.2) of 

electro-magneto-fluid dynamics is also of hyperbolic-pararolic cOIUfX)si te 

type. HCJIt.lever it is not of syrnrretric fonn. In fact the electroma.gnetic 

part (JE,E,p ) . e of (6.1) is considered as a first-order hyperbolic sys-

tem but it is neither syrnrretric hyperbolic nor strictly hyperbolic (cf. 

The situation is same for the first-order hyperbolic system of 

which is derived from the arove system by eliminating p wi th e 

the aid of the first equation of (6.2). Hence the existence problem. for 

(6.1),(6.2) (in JR3) is still open even if local in time. 

In this chapter we first restrict ourselves to the two-dimensional 

equations of (6.1),(6.2); this rreans that all the quantities appearing in 

(6 . 1) , (6.2) do not depend on the space-variable x3 . 'Ihere are two in

teres ting cases (see Kawashima [38] 3): the first case is 

I 2 
111 = (u , u , 0) , 

3 
JE = (O,O,E) , 

I 2 
JB = (B ,B ,0) , 
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1 2 
lU = (u ,u ,0) , 

1 2 
JE = (E , E , 0) , 

3 
]3 = (O,O,B ) . 

It was pointed out in [38] 3 that in the case (6.7) l' the syste:n (6.1), 

(6.2) becOIIes a syIill11.etric hyperbolic-parabolic fonn (in the sense of 

chapter JI)- in the domain {p > 0, e > O}, provided that [Cl] 2 and one of 

[C2]j (j=l,2,3,4) are satisfied; while'in the case (6.7)2' (6.1),(6.2) 

can be reduced to a syrnrretric hyperbolic-parabolic system in the non-

relativistic domain {p > 0, lui < cO' e > O}, provided that [Cl] 2 and one 

1 2 ~ 
of [C2] j (j = 1,3) are satisfied, where u = (u , u ), and Co = 1/ yEO 110 

is the speed of light. Therefore, in these two-dimensional cases, the 

local existence result of Theorem 2.9 can be applied to the system (6.1), 

(6 . 2). Furtherrrore it is seen that in both cases (6. 7) 1,2' the linear

ized system for (6.1) ,(6.2) satisfies Conditions 3.1 and 3.2 (with a 

slight m:::xlification) if [Cl] 2' [C2] 1 and [C3] are assumed. Using this 

property and the energy integral associated with - pS (see [Cl] 1) , we 

can establish the global existence and a~totic stability results for 

these two-dimensional system of (6.1), (6.2) . 

~'Ve next consider the system (6.4), (6 .5) of rragnetohydrodynamics. 

This system can be transfonred into a syrrmetric hyperbolic-parabolic sys-

tern (in the sense of chapter IT), provided that [Cl] 2' one of [C2] j (j = 

1,2, 3 , 4) and one of [C3] k (k = 1,2) are sa tisfied. Therefore by Theorem 

2. 9 we have a local solution. Furthermore the corresponding linearized 

system satisfies Conditions 3.1 and 3.2 if [Cl]2' [C2]1 and [~3]i are 

assurned. Moreover, if (6.5) holds, then the system (6.4) can be put into 
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a conservation form, provided that the condition [Cl] 1 is satisfied. 

Hence, in the sane way as in Theorems 4.3 - 4.5, we have the global exist-

ence and asynptotic. s tabili ty results for (6.4), (6.5) . 

Finally in this chapter, follOtling Kawashima and Okada [41], we con

sider the one-dirrensional equations of (6.4), (6.5) in Lagrangian coordi

nates. Let [Cl] 1,2 be assUIl'ed. Then this one-dimensional system satis

fies Conditions 4.1 and 4.2 if one of [C2]j (j =1,2,3(4) and one of [C3]k, 

(k = 1(2) are asstnred. Moreover, if . K ;::. 0, then the system also satis

fies Condition 4.3 in each of the following three cases: 

1/0 > 0 

I/O - 0 

I/o > 0 , 

Therefore we can get the global existence and asymptotic stability results 

in these three cases. On the other hand Condition 4.3 is not satisfied 

if K = O. In this case we take (p,S), in place of (p,e), as the ther

m::xiynamic unknowns. . Then the corresponding linearized system separates 

into two parts; the first part consists of a single equation St = 0 and 

the second. part forms a system which satisfies Condition 4.3 in each of 

the above three cases. Using this property, we can also establish the 

global existence results even if K = o. 

The plan of this chapter is as follcws. Section 6.2 contains sone 

basic properties on the system (6.1), (6.2) of electro-magneto-fluid dy

namics. The two-dinensional systems of (6.1), (6.2) are studied in :sec

tions 6.3 and 6.4 (the cases (6.7) 1 and (6.7) 2 are treated in sections 

6.3 and '6 ",4, respectively). The system (6.4), (6.5) of magnetohydrcxly

narnics in lR
3 

is considered in section 6.5, while the one-dirrensional 
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system of (6.4), (6.5) in Lagrangian coordinates is studied in sections 

6.6 and 6.7. In sections 6.5 and 6.7, as a special case, we also dis-

cuss briefly the sysbern (6.6) of fluid mechanics. 

6.2 BASIC PROPERTIES 

In this section we shall summarize'some basic properties on the sys-

bern (6.1), (6.2) of electro-magneto-fluid dynamics. 

[PI] A smooth solution of (6.1) satisfies (6.2) for all time t > 0 if 

it satisfies (6.2) at t = O. 

Indeed, applying div to the equation of JE and subtracting from it the 

equation of Pe , we obtain (EOdiv E - P
e

) t = O. On the other hand the 

application of div to the equation of JB gives (div E) t = O. These 

equali ties prove the assertion. 

We introduce here the total m::JIrentum ffi1EM and the total energy PE
EM 

of the electrically conducting fluid: 

(6. 8) 2 

[P2] 

lMEM = P 1ll + EO (::IE x JB) , 

Let (p,u,8,::IE,JB,p) be a solution of (6.1). Then, under the cone 

di tion Eel] I' the quanti ties p, PE
EM

, JB and P e respectively 
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satisfy conservation laws. MJreover 1 if the solution satisfies 

(6.2) 1 the equation for lI1EM also beCOITeS a conservation fo:rm. 

This fact directly follows from (6.1) for 

we have the follawing equation (see [32]). 

P, JB and p . e 

= div(211JP + 11' I div 1l1) 1 

where we have used the equality ]8 x rot JB = - ! di v (2 tJBJB - 1 JB 12I) + 

]8 divE (the sane equality for JE was also used). Here t UllU denotes 

the matrix with elements uiuj
. The equation (6. Q) becorres a conserva-

tion form if (6 . 2) holds. This proves the assertion for ffi1
EM

• Next we 

can deduce from [Cl] 1 that 

(6.10) 2 
e p = (p - 8p 8) 1 P 1 

2 
Sp = - P8/p 1 

By use of (6.1) and the first relation of (6.10) we get the equation of 

PEEM (see [32]). 

(6.11) (PE
EM

) t + div{pu(e + I ul 2 
12) + pu + (1/11 0) (E x]8)} 

= div(211 uiIP + 11' 1l1div U + K'V8) , 
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which proves the assertion for pEm.f This completes .the proof of [P2]. 

[P3] Under the conditions [ell 1,2 the negative entropy - pS (resp. - S) 

is a strictly convex function of (p,pu,PEEM,E,JB) (resp. (l/p,'U, 

EEM,JE/P,E/p)). The total energy pEEM (resp., EEM) is also a 

strictly convex function of (p,p Ul,pS,E,JB) (resp. (l/p~1U,S,JE/p, 

JB/p)) . 

The assertion of [P3] is a Consequence of the strict convexity of the 

internal energy e as a function of (l/p,S). The strict convexity of 

e can be ShONil by a direct calculation of the Hessian of e with re-

spect to (l/p ,S) (see [66]). Indeed, regarding the quantities e, p 

and e as srrooth functions of (V, S) (where V = 1/ p) , we get the rela-

tions 

de 
-= - p 
dV 

and hence we have 

ae _ 
as - e/ee ' 
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These relations together with the condition Eel] 2 shows that the Hessian 

of . e = e (V,S) is positive definite for p > 0 and e > o. This corn-

pletes the proof of [P3]. 

Here we remark that the second and the third relations of (6.10) 

together with (6.1) yield the equation of the entropy. 

(6.12) (pS)t + div(plUS) = div{ (K/8)'V8} + 

+ (1/8) {\j! + (K/8) IV8 12 + O\JE + ILl x JB12} 

Next, as in chapter IV (4.10), we shall introduce the quadratic func-

tions associated with the convex functions in [P3]. We first consider n 

= EEM relative to the states 

S, 0 , JB/ p), where S = S (p, 8) . 

t - t -z = (l/p,ILl,S,JE/p,JB/p) and z = (1/ p,O, 

Let n* = Ern be the quadratic function 

associated with n = EEM. By direct calculations we have 

(6.13) 

wheree = e (p,8) and p = p (p,8). In the sarre way we can see that the 

quadratic functions associated with PEEM' - S and - pS are respectively 

given by PEEM' (1/8)EEM and (1/8) PEEM. 

NaN suppose that p > 0, 8 > 0 and JB.E JR.3 are constant states. 

Then, from (6.11), (6.12) and (6.1), we have the eg:uation of PEEM: 
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(6.14) 

= div{211 uiIP + 111 llJdiv U + K (1- 8/0) VO} 

6.3 ELECTRO-MAGNETO-FLUID DYNAMICS IN JR2, I 

We shall consider the two-dimensional motion of an electrically con-

ducting fluid. We assurre that the flON' is uniform in the x 3-axis, i.e., 

all the quanti ties in (6 .1) , (6 .2) do not depend on the space-variable x 3 . 

'V'le further assurre (6. 7) l' that is, the velocity and the magnetic induction 

are parallel to the (Xl' x2) -plane and the electric field is parallel to 

the x3 -axis. Under these assumptions we have P :: 0 (the exact neutrali
e 

ty) by the first equation of (6.2). Therefore the system (6.1), (6.2) and 

Ohm 1 S law (6.3) are simplified as follON's: 

Pt + div(pu) = 0 , 

p(u
t

+ (u·V)u) + Vp = div(211P +11 11 divu) + JxB , 

(6.15 ) 
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l Bt + rot E = 0 , 

(6.16 ) divB= 0 , 

(6.17) J = 0 (E +.U x B) " 

1 2 3 . 1 2 i j 
where u=.(u,u), E =E, B= (B,B), P = (1/2)(u +u )1<' '<2' and x, x, -1.,J-

J 1. 
I is the unit matrix of order 2. Here' we have used the follCJV.ling nota-

tions for 2-vectors u = (ul , u2) and v = (vl , v2) and a scalor a in 

addi tion to the ordinary ones. 

(6.18) 1 

1 2 2 1 

( 

UXV=-VXU=UV2 -U: 

u x a = - a x u = (au , - au) , 

(6.18) 2 
(

rot u = \j x u = u2 - ul 
xl x 2 

rot a = \j x a = (a , - a ) • 
x 2 xl 

The equations (6.15), (6.16) fonn a closed system of 8 Equations for 

7 unknowns (p, u, 8 ,E, B). For this system, the properties [Pl] - [P3] hold 

with a trivial rrodification. Moreover we have the follCMing. 

I.emma. 6.1 We assume [Cl] 2 and one of [C2] j (j = 1., 2., 3., 4). Let 0 be a 

smooth function of (p, 8)., and 'let P > 0., "8 > 0 and 13 E JR2 be arbi-

trari'ly fixed constants. Then the system (6.15) satisfies Conditions 2.1 

7 and 2~2 for 0 = {(p,u,8,E,B) E JR i P > 0., 8 > O} and a constant state 
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(p,0,8,0,B)~ i.e.~ (6.15) is symmetric hyperbolic-parabolic in the sense 

of chapter IT. (In the case of [C2]4~ (6.15) is a symmetric hyperbolic 

system (m" = 0) . ) 

Proof. 
t Put w = (p.,u,8,E,B). The system (6.15) can be written in the 

form 

(6.19 ) 
o 2 , 2 'k 1 2 

A (w)w
t 

+ L AJ(W)W - L' BJ (w)w = f (w,D w) + f (w) , 
j=l Xj j,k=l Xj~ x 

where AO (w), Aj (w) and Bjk (w) are square matrices of order 7, and 

f 1 (w,D w) and f 2 (w) are JE~?-valued functions; they are given explicit
x 

ly by 

pI o 

(6.20) 1 peele t 

----------T--------

o : EO 

(6.20) 2 

o 

p(u·S)I 
t 

Pe S o 

= o (peele) (u· s) I 

-------------------+-----
I 

o I 



(6.20) 3 

(6.20)4 

'k I BJ (w)s,s = 
jk J k 

1 f (w,D w) = 
x 
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o 

o 

(K/8) 1 s 12 : 
- - - - - - - - - - - - - - - - - - _1- ___ _ 

I 
I 0 

o 
o 

o 

2 (VlJ) P + VlJ 'div u 

(1/8) (\}I + VK-V8) 

o 

o 

is the term which does not contain the deri vati ves D w. Here s x 
2 0 

= (sl,s2) E JR and s* = (s2' - sl). Note that the syinbols w, A (w), 

• •• used here don't always agree with the previous ones (in chapters II 

and IlI). It is easily seen that A
O 

(w) is (real) diagonal and positive 

, 'k k' 
defini te for p > 0, 8 > 0, and AJ (w) and BJ (w) = B J (w) are real 

symrretric. Furthenrore a sirrple calculation shows that 

(6.21) 
'k /\. /\. /\. 2 /\. 2 

< {I BJ (w)w.w. }w, w> ~ min{lJ, v}lul + (K/8) \8\ 
jk J K 

/\. t /\. /\. /\. /\. /\. 7 1 
for w = (p,u,8,E,B) E IR and w = (w

l
,w

2
) E S , where < , > denotes 

the standard inner product in JR? On the other hand the right ID2illbers 

fl (w,D w) and f2 (w) are regarded as lower order terms in every case of 
x 

1- 2- - t- -
[C2]. (j = 1,2,3,4), and satisfy f (w,O) = f (w) = 0 for w = (p,O,8, 

J 

o ,B). All these considerations prove the lemma. 
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Now we shall consider the initial value problem for (6.15) ,(6.16) 

wi th the initial data 

(6.22) 

We first note that I.emma 6.1, Theorem 2.9 and the property [PI] give the 

follcwing local existence results for the problems (6 .15) , (6. 22) and 

(6 .15) , (6 .16) , (6.22) . 

Theorem 6.2 ([38] 3) (local existence) Let [Cl] 2 and one of [C2] j (j = 

1~2~3~4) be assumed and let - 0 be a smooth function of (p,8). Let p 

> O~ e > 0 and 13 E JR2 be arbitrarily fixed constants. Suppose that 

- - - s 2 the initial data satisfy (PO - p, uO' 80 - 8 ,EO ,BO - B) E H (JR) (for s ~ 3) 

and inf{PO(x) , 8
0 

(x) }'> O. Then the problem (6.16)~ (6.22) has a unique 
x 

solution (p,u,8,E,B) (t,x) (in the Sobolev spaces) on ~ with some T 

> O~ which satisfies inf~{P(t,X)' 8 (t,x) } > 0 (for the solution space~ 

see Theorem 2.9). Furthermore if diVBO(X) = 0 for x E JR2~ then 

(p,u,8,E,B) (t,x) becomes a solution of the original problem (6.15)~ (6.16)~ 

(6.22) . 

Next we shall study the global existence problem for (6.15) ,(6.16), 

(6.22). As a preliminary we will shaw that the linearized system for 

- t - - -
(6.15) at the constant equilibrium state w = w = (p, 0,8,0 ,B) satisfies 

Conditions 3.1 and 3.2 (with a slight rrodification). To this end we con

sider the linearization of (6.15) around w = W : 
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(6.23) 

where AO (w), Aj (w) and Bjk(W) are given by (6.20) 1-3 with w = w, and 

,,0 O· O' I 0 0 
I 

0 ~*B* 0 l~ I * 0 
I 

(6.24) L(w) = 0' 0 0 0 
I 

0 0 I 
---------1""--- --

0 B'* 0 I 1 0 
I 
I 

0 0 0 I 0 0 

where 0 = 0' (p,8) and B* = (B2 , - B
l
). Note that (6.23) is a symrretric 

system. While, as a linearized form of (6.16), we have 

(6.25) 

where 

L Rj~. = (O,O,O,O,~) 
j J 

2 
E JR • 

(Rj are (1, 7)-matrices). Since the solution of (6.23) is subordinate to 

(6.25), we introduce 

(6.26) 
A tAAAAA 7 

X = {w = (p,u,8,E,B) E JR i 
w 

( L Rj w . ) ~ == w· ~ = 0 } 
j J 

for W E S 1 , and modify Condition 3. 2 as follows. 
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condition 3.2' (cf. [81]) There exist (real) constant square rratrices 

K
j 

(j = 1, • • • • ,n) of order m such that 

(i) KjAO (~) are real anti-symrretric, 

(iL) 

+ L(W} 

for any W E sn-1, the symrretric part of I {KjAk (w) + B
jk (w) }wJ.w. 

jk K 

is positive definite ,on a 'linear subspace X of :nf. 
W 

Then we hav~: 

Lemma 6.3 Let the conditions [C1]2~ [C2] 1 and [C3] be assumed. Then 

the linearized system (6.23) of (6.15) satisfies Conditions 3.1 and 3.2' . 

In particular~ X and K
j 

(j = 1~2) in Condition 3.2' are taken as in 
W 

(6.26) and (6.27) (with a suitably small constant ex > O)~ respectively. 

Proof. I t is easy to verify Condition 3.1. So we omit it. We only check 

Condition 3.2'. let ex be a positive constant and let K
j 

(j = 1,2) to be 

(6.27) 

o Pp~ 0 

-j? tt;: 0 0 
P 

o 
I 

o 0 0 I 
- - - - - - - - - _I ____________ _ 

I 
I 0 - (1/110) t;:* 

o I 

: (1/11
0

) tt;:* 0 

where Pp = Pp (p,e), ~ = (t;:l,t;:2) E JR2 and ~* = (~2' - ~1). Then it is 

'0 " t" 
seen that KJA (w) are real anti-syrmetric. Furthenrore , for w = (P, 

u I 8,E,B) E X I we have 
w , 
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(6.28) 
, k '" '" 

< { L [KJA (W)] I w ,wk}w, W > 
jk J 

where t~*~* = I ~ ,21. - t~~ ,and 'w.~ = 0 are used.. In (6.28), Co = 

1/ls0110 is the speed of light and e is a constant indepen~t of W 

1 'k- 'k-
E S and . a. i [KJA (w)] I denotes the symretric part of KJA (w). On 

the other hand 

(6.29) 
'" '" '" '" 2 

< L (w) w, w > = 01 E + u x i3\ 

holds for w E IF? Combining (6.21) (with w=w), (6.28) and (6.29), we 

can deduce that L {[Kj~ (w) ] I + Bjk (w) }w ,w, + L(w) is positive definite 
'k J K J ' 

on X for a suitably small a. > O. Thus the proof of I.e.m:na 6.3 is coro
W 

pleted. 

Let [ell 2' [e2] 1 and [e3] be assumed. Then, by virtue of I.e.m:na '6.3 

and n = 2, we can apply the results of lemmas 3.1 and 3.8 to the solu-

lion of (3. 15) , (3 .16), and consequently we obtain the following a priori 

estimates for t E [O,T] (see (3.8) and (3.36)). 

(6.30 ) 

(6.31) 
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+ Jt liD (u,8) (T) 112 + II (E+uxB) (T) 11 2
dT} o x s s 

- - -112 3 ~ c{ II Po - P, u o ' 80 - 8, EO' BO - B s + NS (T) } , 

where s 2:: 3, C is a constant, cind N (T) is assurred to be suitably 
s . 

small; note that for our system (6.15), (6.16), N (t) is given by s 

2 II - - - 112 N ( t) = sup (p - p, u, 8 - 8, E, B - B) (T) + 
s O~T~t s 

J
t 2 2 

+ \I D (p, E , B) (T) II 1 + \I D (u, 8) (T) II dT • o X s- x s 

On the other hand, using the quadratic function PEEM (see (6.13)), we 

obtain as in I..ernma 4.1 

(6.32) \\ (p -p, ~, 8 - e, E, B -Ii) (t) \\2 + J: II Dx (u,8} (T) \\2 + 

II - - -11 2 3 ~ C{ Po - P, uo ' 80 - 8, EO' BO - B + N2 (T) } • 

Indeed, for the solution of (6.15), (6.16), the equation (6.14) is valid 

2 with a trivial rrodification. Integrating it over Q = [O,t] x JR , we t 

obtain after integration by parts 

(6.33) 
T=t t [ f PEiM dx] + J J (e/8) {\j! + (K/8) 1'181

2 
+ 

T=O 0 
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Using the estimate (2.4) (with p = 4, s = 1 and n = 2), we see that the 

second tenn of the left Ire1TIber of (6.33) is bounded from belCNl by 

for sone positive constants c and C.' Therefore the desired estimate 

(6.32) follCNls from (6.33) because PEEM is equivalent to the quadratic 

I - - -1 2 
function P - p, u, 8 - 8, E, B - B • 

Combining the estimates (6.30) - (6.32) , we get 

(6.34) N (t)2 + It II (E+uxB) (T) 11 2
dT 

s 0 

for t E [0, T] , 

which is corresponding to (3. 39) in Proposition 3.9. Therefore we can 

establish the global existence result for (6.15), (6.16) ,(6.22) in the 

sane way as in Theorem 3.10. 

Theorem 6. 4 ([ 3 8] 3) (g lobal exis tenee) Let the conditions [Cl] 1,2 ., 

[C2] 1 and [C3] be asswned. Suppose that (PO - p, uo' 80 - S, EO' BO - B) E 

s 2 2 II - -H (JR) (for s;::::3)., diVBO(X) = o· for x E Rand PO-p,u
O
,8

0
-8, 

EO' BO - Ell s is sufficiently small. Then the prob lem (6.15)., (6.16) ., 

(6.22) has a unique global solution (in the Sobolev spaces) satisfying 

(6.34) (for the solution space., see Theorem 3.1Q). The solution decays., 
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s-3 2 t-n the B (JR ) -norm., to the constant state (p,O, e,O ,S) as t -+ 00. 

6.4 ELECTRO-MAGNETO-FLUID DYNAMICS IN ffi2, IT 

In this section we study another two-dinensiona1 flow. "We assurre 

that all the quantities in (6.1), (6.2) are independent of x38 We fur

ther assurre (6.7) 2. Then (6.1), (6.2) and (6.3) are reduced to 

(6.35) 

(6.36) 

(6.37) 

P
t 

+ div(pu) = 0 , 

B
t 

+ rotE = 0 , 

J - P u = 0 (E + u x B) , 
e 

12 12 3 i j 
where u = (u , u ), E = (E , E ), B = B and P = (1/2) (u + u ) 1< . . <2 . x. x. -l,J-

J l 

Here we again used the notations in (6.18) 1,2. 'Ihe equations (6.35), 

(6.36) form a closed system of 9 equations for 8 unknowns (p,u,8,E,B,p ). 
e 
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If P
e 

is eliminated by P
e 

= EOdivE, the system (6.35) is trans

fomed to 

P
t 

+ div(pu) = 0 , 

P (u
t 

+ (u-\?) u) + \?p = div(21.1P + 1.1' I divu) + 

+ EO (E +u. x B) div E + 0 (E + u x B) x B , 

(6.35) , 

Bt + rotE = 0 • 

This is a closed system of 7 equations for 7 unknowns (p, u, 8 ,E,B). COn-

versely, for a given (6.35)', we put P
e 

= EOdivE and J = Peu + 0(E + 

+ u x B) • '!hen, applying div to the equation of E of (6.35) I, we get 

(Pe)t + divJ = O. Hence (6.35) I is equivalent to the system (6.35), 

(6.36) • 

For the system (6.35)', we have the follONing lerro:na (compare it with 

Lemma 6.1). 

Lemrna 6.5 Let [Cl]2 and one of [C2]j (j=1.,3J be asswned and ~et 0 be 

a smooth function of (p ,8) • Suppose that P > 0., e > 0 and 13 E JR.l 

are arbitrari~y fixed constants. Then the system (6.35) I satisfies Con-
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ditions 2.1 and 2.2 for 0 = {(p,u,e,E,B) E m? i p > 0,., lui < co., e > O} 

and a constant state (p,0,6,0,B)., where Co = 11/E
O

ll
O 

is the speed of 

~ight. 

Proof. t Set w = (pi,u,e,E,B). Then (6.35)' can be written in the form 

'k (6.19), where BJ (w) 

° (see (6.20t 3,4) , A (w) 

~ 

and fl (w, D w) are the sane as the previous ones x 

and A
j (w) are given by 

pI 
I 

I 
I ° 

(6.38)1 peele I - _________ 1 _______ _ 

I I t * EO EO U 

° E u* 

° 
1/110 

(6.38)2 L Aj (w) l; , 
, J 
J 

(pp/p) (u·l;) ppl; ° ° ° t 
Pp l; p(u·l;)I t 

Pe l; 
t 

- EO (E +u*B) l; ° I 

= ° Pel; ( pe el e) (u·l;) I ° 0, 
-- ------ --- -------+- -- ---- - -------

I E (tul; - tu*l;*) - (l/ll ) tl;* 
100 

2 and f (w) 

0. 
- (1/ll

0
) l;* - (1/ll

0
) (u·,l;) 

is the term which does not contain the derivatives D w. Here , x 

we used the notations u* = (u
2

, - u
l
), l;* = (l;2' - l;l). It is seen that 

A ° (w) is real syrnrretric and positive defini te in the domain {p > 0, I u I 
< cO' e > O} . W1ile Aj (w) is real syrru:retric if the elerrent corresponding 
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to - EO t (E + u*B) s is absent, and the tenn - EO t (E + U x B) div E (associ

a ted with it) can be regarded as a lcwer order term if 11, \) > 0 is 

2- - t- - -
assurred. Moreover we have f (w) = 0 for w = (p , 0 , 8 ,0 ,B). 'Ihese 

'k 1 
considerations together with the properties of BJ (w) and f (w,D w) 

x 

(see Lerrrna 6. 1) prove the lerrma.. 

'Ihus the results of 'Iheorem 2.9 are applicable to the problem 

(6.35) , , (6.22), and consequently we have the following local existence 

results as in 'Iheorem 6.2. 

'Iheorem 6.6 ([38] 3) (local existence) Let [Cl] 2 and one of [C2]j (j = . 

1~3) be assumed and let 0 be a smooth function of (p,8). Let p > o~ 

8 > 0 and B E JRl be arbitrarily fixed constants. Suppose that (PO-

- - - s 2 , 
p, uO' 80 - 8, EO' BO -B) E H (JR) (for s, ~ 3) and lnf{PO (x) i 80 (x)} > O~ 

x 
sup I U o (x) I < Co = 1/ !E0110. Then the prob lem (6.35)' ~ (6.22) , has a unique 

x 
solution (p,u,8,E,B) (t,x) (in the Sobolev spaces) on ~ (with some T 

> O)~ which satisfies inf~ {p(t,x), 8(t,x)} > 0 and sUP~lu(t,x) I < cO. 

Next we consider the global existence problem for (6.35)', (6.22). 

, - t-
'Ihe linearized system for (6.35)' at the constant state w = w = (p ,0, 

8,0,13) is written in the form (6.23), where A 0 (w) , Aj (w) and B
jk (Vi) 

are given by (6.38) l' (6.38) 2 and (6.20) 3 (with w =w), respectively I and 
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0 0 0 I 0 0 
1 

0 B2I 0 : g:I* 0 

:J (6.39 ) L(w) = 0- 0 0 0 I 0 0 with I* = ( -: 1 
- - - - - - - - -I - - - - - -

0 BI* 0 I I 0 

0 0 0 . I 0 0 

Note that this linearized system satisfies Condition 3.1 (and therefore 

it is a syrrrrretric system). It also satisfies Condition 3.2. In fact, 

in this case, we may take Kj (j = 1,2) to be 

(6.40) L Kjl;. = a 
j J 

0 Ppl; 0 

-t 
0 -P l; 0 p 

0 0 0 
---------1-

o 
I 
1 
I 

o 

I - (l/ll ) l;* o 

o 

(l/llO)tl;* 

o 

with a suitably small constant a > o. Then after a simple calculation 
A 7 

we get (6.28) for w E JR. J.vbreover we have (6.29) by use of the ex-

pression (6.39). These estimates together with (6.21) (with w =w) shows 

Condi tion 3.1 (ji). 

These considerations are summarized as follows. 

Lemma 6.7 Let [Cl]2> [C2]1 and [C3] be assumed. Then the ~inearized 

system of (6.35) 1 satisfies Conditions 3.1 and 3.2. In particular> K
j 

(j = 1> 2) in Condition 3.2 are taken as in (6.40) with a suitably small 

constant a > o. 
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llius, in the sarre way as in llieorem 6.4, we have: 

Theorem 6.8 ([38] 3) (global existence) Assume the same conditions as in 

Theorem 6.4. Then the probtem (6.35) I~ (6.22) can be sotved gtobatty in 

time as in 'Theorem 6 • .4. 

6.5 MAGNETOHYDRODYNAMICS IN ffi3 

We shall oonsider the system (6.4), (6.5) of magnetohydrodynamics. 

We first summarize the basic propertites on (6.4), (6.5). As a counter-

part of [Pl], we have: 

[Ql] A smooth solution of (6.4) satisfies (6.5) for all time t > 0 if 

it satisfies (6.5) at t = O. 

The total monentwu /MM and the total energy pEM of the magneto

hydrodynamical system are given by (6. 8) 1,2 with EO = 0 : 

( 11 12 ~ IJBI2 • pEM = P e + '2 ill ) + 2lJ
O 

Then, as a counter:part of [P2], we have: 

[Q2] Let (p ,ID,e,JB) be a solution of (6.4). Then, under the condition 

[ell l' the quanti ties p, PE
M 

and ]3 respectively satisfy con

servation laws. Moreover, if the solution satisfies (6. 5), the 
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equation for P1U also becorres a conservation form. 

In fact it is obvious for p and JB. As for plU and pE
M

, we have 

the equations (6.9) and (6.11) with Co = P = 0 and lE = - lUX E + e ' 

+ (1/11
0

) JBdiv E = div(211JP + 1111 div Ul) , 

2 
= div{211lUl? + 111 lUdiv 'UJ. + KV8 + (1/011

0
) E X rot E} , 

from which folloos the assertion for p lU and PE
M

• 

The property [P3] is modified as follows. 

[Q3] Under the conditions [Cl] 1,2 the negative entropy - pS (resp. - S) 

is a strictly convex function of the conserved quantities (p ,pu, 

PEM,JB) (resp. (l/p, lU,EM,JB/P)) . The total energy PE
M 

(resp. EM) 

is also a strictly convex function of (p,plU,pS,13) (resp. (l/p, lU, 

S ,JB/p)) . 

We note that the equation of the entropy is given by (6.12) with lE + 

(pS) t + div(pu.:lS) = div{ (K/8) V8} + 
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2 . 2 2 
+ (1/8) {'¥ + (K/8) I V8 I + (1/0flO ) I rot E I }. 

let EM be the quadratic function associated with EM· Then PEM 
is given by (6.13) with EO = 0: 

where p > 0, 8 > 0 and 16 E JR.3 are arbitrarily fixed constants, and 

e = e(p,8) etc. It satisfies the equation (6.14) with EO = 0 and )E 

= - u x JB + (1/0fl
O

) rot]3, i.e., 

(PEM) t + div{plU{e - e + p(l/p -l/p) - 8(S - S) + 

2 2 2 
+ (8/8) {'¥ + (K/8) I V8 I + (1/0flO ) I rot JB I } 

2 -
= div{2fl1UJl? + fl' udiv 11.1 + K (1- 8/8) V8 + (1/0fl

O
) (E - JB) x rot]3} 

Nav, taking (6.5) into account, we transform (6.4) into the fo11av-

ing symretric system: 

P t + di v (p u) = 0 , 

P ( 1U t + ( u e V) lU) + Vp - (1/ fl 0) rot E x E = di v (2 fllP + fl ' I di v u) , 

(6.4)' 
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(u-V) JB + 13 eliv u - CIB-V) 1U 

Here we have used the equalities 

(6.41) 1 rot (u x 13) = {udiv E- (u· V) JB} - {E eli v 11.1 - (JBe V) u} I 

(6.41) 2 

It is easy to see that the system (6.4) I I (6.5) is equivalent to the origi-

nal system (6.4) I (6.5). As for (6.4) I I we also have the following prop-

er-qr . 

[Ql] I A smooth solution of (6.4) I (in the Sobolev spaces) satisfies 

(6.5) for all time t > 0 if it satisfies (6.5) at t = o. 

Indeed, applying div to the equation of JB of (6.4) I and using (6.41) i 

and (6.41) 2' we obtain (div B) t + div.( lU div B) = div{ (1/011
0

) V eliv JB} , 

which proves the assertion. 

To shav the existence of a local solution, we prepare the following· 

lemma. 

I.emma 6.9 Let [C1]2" one of [C2]j (j=1.,2,,3.,4) and one of [C3]k (k=l" 

2) be asswned. Let p > 0., e > 0 and JB E ]:~? be arbi trari ly fixed 

constants. Then the system (6.4) I satisfies Conditions 2.1 and 2.2 for 

o = {(p ,u,e ,E) E ::IR
8

; P > 0" e > O} and a constant state (p,O, 8,JB)" 
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i. e." it is symmetric hyperbolic-pa!~abolic in the sens.e of chapter II. 

(In the case where [C2]4 and [C3]2 hold" (6.4) I is a symmetric hyperbolic 

system (m" = 0) .) 

Proof. Put w = t(p, lU,e,B).. Then the system (6.4)' is written in the 

form 

(6.42) 
o 3 , 3 'k 

A (W)W
t 

+ I AJ (w)w - . I . BJ (w)w = g(w,D w) 
j=l Xj j,k=l Xj~ x 

where. AO (w), Aj (w) and Bjk (w) are square matrices of order 8, and 

g(w,D w) is a JR8-valued function; they are given explicitly by 
x 

pI 
(6.43) 1 

(6.43) 2 

o o 

= 
o Pet; (pee/e) (Ill·t;) o 

o (1/11
0

) (tJEt; - (JE. t;) I) 0 



(6.43) 3 

= 

(6.43)4 

'k L BJ (w)~'~k 
jk J 

o 

g(w,D w) = 
x 
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o 

2 2 
(1/8) {\j! + '1K-'18 + (1/0110 ) IrotJBI } 

2 
- '1(1/0110 

) x rot JB 

Here the relation JB x rot JB = ~ V ( IE 12) - (JB- V) E is used. It is seen 

o· 
that A (w) is (real) diagonal and }?Osi ti ve definite for p > 0 I 8 > 0 I 

and Aj (w) 
'k k' and BJ · (w) = B J (w) are real symrretric. Furthermore we have 

(6.44) 
'k A A A 2 

< L BJ (w)W,w, W, w > ~ min{11, \)} I lUI + 
jk J K 

A t AAAA 8 
for w = (p, lU, 8,E) E lR 

2 and w E S • On the other hand g (w, D w) 
x 

can 

be regarded as a lower order term in every case of [C2] j and [C3] k (j = 1, 

2,3,4 i k=1,2). r-breover g(w,O) = 0 holds for w = t(p,o,e,JB) . 

rrherefore the proof of Iernma 6. 9 is completed. 

We prescribe the initial data at t = 0 : 
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(6.45) 

By virtue of I.errma 6. 9, Theorem 2.9 and the property [Ql]', we have: 

Theorem 6.10 (local existence) 'Let [Cl] 2" one of [C2]. (j = 1., 2., 3., 4) . J 

and one of [C3]k (k = 1., 2) be asswned. Let p > 0., 8" > 0 
~- 3 and, JB E JR 

be arbitrar.ily fixed constants. Suppose that (PO - p, 1.U
O

,8
0 

- S,E
O 

- JB) 

E HS (JR.3) (for s 2:: 3) and inf{po (x) ,8
0 

(x)} > o .. Then the problem 
x 

(6.4) '., (6.45) has a unique solution (p, u,8,E) (t,x) (in the Sobolev 

spaces) on C1r with some T > 0., which satisfies. inf~ {p(t,x), 8(t,x)} 

3 
> o. Furthermore if diVEO(X) = 0 for x E JR.., then (p,1U,8,E) (t,x) 

becomes a solution of the problem (6.4) '., (6.5)., (6.45) (and consequent~y 

(6.4)., (6.5)., (6.45)). 

Remark 6.1 As a special case (JB = B = 0), we get a local solution (in 

the Sobolev spaces) to the initial value problem for the system (6.6) of 

fluid :rrechanics in every case of [C2]. (j = 1,2,3,4) . 
J 

Here we briefly survey the local existence results for the sysUem 

(6 .6). In the case [C2] 1 (i. e ., viscosity and heat conducti vi ty are as

surred) , the initial value problem for (6. 6) was solved locally in t.iIre by 

Nash [59] and Itaya [34] 1,3 in the Holder spaces ,and by Vol' pert and 

Hudjaev [85] (see also [55] 1) in the Sobolev spaces. The existence 

resul ts to the initial boundary value problems were established by Tani 

[77] 1,2 in the Holder spaces, and by Matsumura and Nishida [55] 3,4 (see 

also [82], [69]) in the Soboiev spaces. 

In the non-viscous case [C2] 4' the initial value problem was also 
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solved locally in tiJre (in the Sobolev spaces) by Vol 'pert and Hudjaev 

[85] and Kato [38] 4. However the initial boundary value problems (in the 

general situation) are still open in this case; see [14], [83] and [1], 

where the existence results were obtained under the assumption that p 

= p (p) is independent of 8· (the' barotropic case) . 

In the case [C2] 2 or [C2] 3' we don I t know the existence results to 

the initial bOundary value problems for (6.6). 

Now we consider the global existence problem for (6.4), (6.5) ,(6.45). 

We need the fol1CMing lemma. 

Lemma 6.11 Let the conditions [Cl]2~ [C2]1 and [C3]i be assumed. Let 

p > o~ e > ° and JB E JR.3 be arbitrarily fixed constants. Then the 

- t- -- . linearized system of (6.4) I at the constant state w = (p,0,8,JB) sat~s-

fies Conditions 3.1 and 3.2 (with L(w) = 0). In particular~ the matrices 

K
j 

(j = 1" 2" 3) in Condition 3.2 are taken as in (6.46) with a suitably 

small constant a > 0. 

Proof. TIle condition 3.1 is easily verified. Here we only check Condi

tion 3.2. We may take K
j to be 

(6.46) 

° 1- 6 
1 PpS ° - -_- t -I - - - - - - - -

-p S I 
P I = a 

° ° 
° 
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with a suitably small constant a > 0, where Pp = Pp (p,e) - t
and w = (p,. 

0, S, 18) . For this choice of Kj, Condition 3.2 (i) is obvious. Moreover 

we have 

(6.47) 

'" t"'''''''''' 8 
for w = (p,u,8,E) E JR. , where C is a constant independent of w 

'k 'k-
and .0., and [KJA· (w) ]' . denotes the symrretric part of KJA (w). 'Ihe 

estimates (6.44) (with w=w) and (6.47)· imply Condition 3.2 (with L(w) = 

= 0) for a suitably small a > O. 'Ihis conpletes the proof of Ien1ma 6.11. 

Under the conditions [Cl] 2' [C2] 1 and [C3] i, the results of 'Iheorerns 

3.10 and 3.11 are applicable to the problem (6.4)' ,(6.45) (and therefore 

(6.4), (6.5), (6.45» because the condition (3.30) is satisfied for the 

system (6.4)'. Hence we· can get the global existence and asyrrptotic sta-

bility results. Moreover in [P2] and [P3] we have proved that the system 

(6 .4) , (6.5) can be put into a conservation fonn and has a convex entropy 

if [Cl] 1,2 are assl.lID8d. So the argunents in 'Iheorems 4. 3, 4. 4 and 4. 5 

are valid for the present sys tern (6. 4) , (6 .5). 'Ihus we have: 

'Iheorem 6.12 (global existence and asyrrptotic stability) Let [CI] 1,2"' 

[C2] 1 and [C3] i be assumed. Suppose that (PO - p, lUO,80 - e,EO - 18) E 

HS (JR.3) (for s ~ 3)", div lBO (x) = 0 for x E JR.3 and II Po - p, lUO I 8
0 

- e, 
180 - Ells is suffieien~l;ly small. Then the problem (6.4).) (6.5)", (6.45) has 
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a unique global solution (P,ui8,E) (t,x) (in the Sobolev spaoes)~ whioh 

s-3 3 
oonverges~ in the B (JR ) -norm~ to the oonstant state (p,O,S,JB) as 

- - - • ..8 3 P 3 Moreover we asswne that (PO - p, UlO' 80 - 8, EO - ID) E .tl (JR) n L (JR ) 

(for s ~ 4 and P E [1,2)) and ,II Po "':p, lllO' 80 - S, IDO - ~ II s, p is ~uffioiently . 

small. Then II· (p .,.. p, lll, 8 - 6, JB - E) (t) II s-2 -r 0 at the rate:; t-Y (Y = 

3 (1/2p - 1/4)) as t -r 00. Furthermore this so Zution satisfies the asyrrrp-

totio relation similar to (4.37). 

Remark 6. 2 :As a special case (JB = E = 0) , we obtain similar global ex

·istence and asyrrptotic stability results to the initial value problem for 

(6.6) i these results were previously obtained by.Matsumura and Nishida 

[55] 1,2 and Matsumura [54] 4. '!he global existence and asyrrptotic decay 

(without decay rate) of solutions to the initial ooundary value problems 

for (6.6) were shovlT.nbY Matsumura and Nishida [55]3,4.' 

6.6 MAGNETOHYDRODYNAMICS IN m1 (LOCAL EXISTENCE) 

In this section we shall consider the one-d.irrensional equations of 

magnetohydrodynamics. We assurre that all the quanti ties appearing in 

(6.4), (6.5) are independent of (x
2
,x

3
). '!hen the first cOI11fX)nent of JB 

1 1 1 becorres a constant (B =B E JR) and the system (6.4), (6.5) is reduced to 
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(6.48) 

{(l/OlJO)B} , xx 

12323 
where x = xl' u = u , v = (u ,u ), B = (B ,B ) 

2 2 
and \l' = VU + lJ I v I x x 

(recall that v = 2lJ + lJ I ) • 

We nON consider the transfoIl1liition (t,x) -+ (T ,E;) : 

T = t , !; = f: p (t,y) dy - f: (pu) (s,O) ds ; 

(T ,E;) is called a system of Lagrangian coordinates. Since 3/3t = 3/3T -

- pu(3/3E;) and 3/3x = p(3/3E;), the system (6.48) is transfonred to 

(6.49) 

1" B
t 

+ p (Bu - B v ) = p{ (l/OlJO) pB} , 
x x xx 
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. where (T , ~) is again denoted by (t, x). The equations (6.49) fOTIn a 

closed system of 7 equations for 7 unknowns (p,u,v,8,B). 

For the system (6.49), we have the following rrodification of [Q2]. 

[R2] Under the condition [Cl] 1 the system (6.49) can be put into a con-
. 

servation fOTIni the conserved quantities are. (l/p, U,EM,B/P) , 

2 2 
wher~ 111 = (u, v) and PE

M 
= P (e + \11.1 I /2) + (1/21-1

0
) I B I . 

It suffices to derive the conservation laws for EM and B/p i they are 

given by 

(6.50)~ 

(6.50.) 2 

= [p{vuu + 1-1V·V + K8 + (1/01-10
2

) B·B }] x x x x x 

{ (1/01-1
0

) pB} . xx 

The property [Q3] is also valid in this case. 

[R3] Under the conditions [Cl] 1, 2 the negative entropy - S (resp ~ - pS) 

is a strictly convex function of the conserved quantities (l/p, 11.1, 

EM,B/p) (resp. (P,P11.1,PEM,B)). The total energy EM (resp. PE
M

) is 

also a strictly convex function of (1/ P, Q1, S ,B/ p ) (resp. (p , p u, pS , 

B) ) • 

The equation of the entropy is given by 
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(6.51) } . 2 2 1 12 St = {(K/8) p8 + (p/8) {~ + (K/8) 8 + (1/0110 ) B }. xx x x 

The quadratic function EM associated with the convex function EM 

is given by 

where p > 0, '8 > 0 and B E JR2 are aibitrari1y fixed constants, and 

e = e (p,8) etc. It satisfies 

(6 .. 52) (EM) t + [{ (p + (1/2~0) 1 B 12) - (p + (1/2110) 1 B\2) }u -

1" - - 2 2 I 12 - (1/11
0

) B (B - B) ·v] + p (8/8) {~ + (K/8) 8 + (1/0110 ) B } x x x 

= [p{vuu + 11V·v + K (1- 8/8) 8 + (1/0110
2

) (B- B)·B }] • x x . x x x 

- In the case K:: 0, we also take (p, u, v,S ,B) as the unknowns of 

the system (6. 49) and change (6. 49) into 

(6.53) 
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p{ (1/0110
) pB} , 

xx 

where a -- (p2pp + epe2/ee) 1/2 . th d ed' La . eli .L lS e soun spe . ill granglan coor -

nates. 

t-Jow we will shew that Conditions 2.1 and 2. 2 are satisfied for the 

one-dimensional system (6.49) or (6.53). 

lemma. 6.13 Let [Cl] 2" one of [C2] j (j = 1., 2., 3., 4) and one of [C3] k (k = 

- 1 1 - 2 1.,2) be assumed. Let p > 0., e > 0., B E IR and B E IR be arbitrarily 

fixed constants. Then the system (6.49) satisfies Conditions 2.1 and 

2.2 for 0 = {(p,u,v,e,B) E m? i p > 0., e > o} and a constant state (p,O, 

O,S,B). Moreover., in the case K = 0., the system (6.53) also satisfies 

Conditions 2.1 and 2.2 for 0 = {(p,u,v,S,B) E m? ; p =p(p,e) and S = 

S (p, e) for p > 0., e > O} and a constant state (p,O, ° ,S,B) with p = 

p (p, S) and S = S (p, S) • 

Proof. 
t Put w = (p,u,v,e,B). 'Ihen (6. 49) is written in the fonn 

(6.54) ° A (w)w
t 

+ A(w)w - B(w)w = g(w,w) , . x xx x 

where AO (w), A(w) and B(w) are square matrices of order 7 and 

9 (w, w) is a JR? -valued function; they are given explicitly by 
x 



(6.55)1 

(6.55) 2 

(6.55)3 

(6.55) 4 

0 

Pp 

A(w) = 

B (w) = p 

g(w,w ) = 
x 

0 

0 

0 

o 

p 

Pp 

0 

0 

Pe 
(1/11

0
) B 
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pI 

0 0 

0' P8 

0 0 

0 0 

1 
- (1/11

0
) B I 0 

Ki8 

2 
(1/011

0 
) I 

o 

(vp) u 
xx 

(11P)xVx 

0 

(1/11
0

) ~ 
1 

- (1/11
0

) B I 

0 

0 

(1/8) {p\j! + (Kp) 8 + p (1/0110
2

) IB 12} xx x 

2 
(P/011

0
) B xx 
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where I is the unit matrix of order 2. Compare (6.55) 1-4 with 

(6.43)1_4. The assertion for the system (6.49) easily follows from the 

expressions (6.55) 1-4. 

In the case K:: 0 
t we put w = (p,u,v,S,B) and ,- t( .) w - p,u,v,B. 

Then the system (6.53) nearly separates into two parts: St = (piG) {'¥ + 
2 2 

+ (l/OlJo ) I Bx I } and 

(6.56 ) o A (w)w't + A(w)w' - B(w)w' ,= g(w,w) , 
x xx x 

where AO (w), A(w) and B (w) are square matrices of order 6, and 

g(w,w) is a JR6-valued function; they are given explicitly by 
x 

(6.57) 1 

0 

1 
(6.57) 2 A(w) = 

° 
° 

(6.57) 3 B(w) = p 

o 

2 
pia 

1 

0 

0 

p 

(l/lJ
O

) B 

v 

pI 

0 0 

° (l/lJ
O

) ~ 

0 
1 - (l/lJ

O
) B I 

1 
- (I/lio) B I 0 



(6.57) 4 g(w,w ) = x 
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(-vp) u xx 

(l1P)xvx 

(P/01102) XBX 

rrhe assertion for (6.53) follows from (6.57) 1-4. This completes the proof 

of lemma 6. 13. 

We prescribe the initial data at t = 0 : 

(6.58) 

By virtue of lemma 6 .13 the initial value problem (6. 49) , (6 .58) is solved 

locally in time as follows. 

rrheorem 6.14 (local existence) Let [Cl] 2" one of [C2] j (j = I., 2., 3., 4) 

and one of [C3]k (k = I., 2) be asswned. Let p > 0., e > 0., Bl E JRl and 

B E JR2 be arbitrarily fixed constants. Suppose that (PO - p,uO,v
O

' 

- - s 1 
8

0 
- 8,B

O 
-B) E H (JR) (for s 22) and inf{PO (x), 80 (x)} > O. Then the 

x 
initial value problem (6.49)., (6.58) has a unique solution (p,u,v,8, 

B) (t,x) (in the Sobolev spaces) on G1, with some T > 0., which satisfies 

inf~ {p(t,x), 8(t,x)} > o. 
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6.7 MAGNETOHYDRODYNAMICS IN m1 (GLOBAL EXISTENCE) 

we shall consider the global existence problem for (6.49), (6.58) . 

We first show the following lemna. 

- . 
Lemma 6.15 Let [Cl] 1,2 be assumed and let p > 0., S > 0., Bl, ~ JRl and 

2 
B E IR be.constants. 

(i) If one of [C2] j (j = 1., 2., 3., 4) and one of [C3]k (k = 1., 2) are assumed., 

o then the system (6.49) satisfies Conditions 4.1 and 4.2 for f (w) = 

t 7 
. (l/p,U,V,EM,B/p)., n=-S and 0= {(p,u,v,e,B) E JR i p>O., e>o}. 

(ii) We assume one of the following three conditions: 

2 ° 11::: \) ::: 0 ., ·K > 0., 1/0 > 0 ., 

3° 11., \) > 0., K > 0 -' 1/0 - 0 

In the case 2° (resp. case 3°) we also assume Ipe(p,S) I + lEI =t 0 and 

Bl =t 0 (resp. Bl =t 0). Then the linearized system of (6.49) at the con-

- t- --stant state w = (p,O,O,e,B~ satisfies Condition 4.3; the matrix K 

is taken as in (6.62)1_3 below. 

(i[) We assume one of the following three conditions: 

5° 11::: \) ::: 0 ., K - 0., 1/0 > 0 ., 

6° 11., \) > 0 -' K - 0., 1/0 - 0 . 

In the case 5° (resp. case 6°) we also assume lEI ~ 0 and Bl ~ 0 
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(resp. Bl ~ 0). Then the Zinearized system of (6.56) at the constant 

state w = t(~,O,O,S,B) satisfies Condition 4.3., where p = p(p,8) and 

S= S(p,8); the matrix K is taken as in (6.62)4_6 beZow. 

Remark 6.3 (i) The condition Bl ~ 0 is not essential in the case 2° 

or 5° (i.e., 11 == v == 0 and 1/0 > 0). Indeed, if Bl = 0 is assuITecl in th~ 

case. 2°, t:l)e. system (6.49) cornpletely separates into two parts; the first 

part consists of v t = 0 and the second part fonnsa system 

(6.59) 

Bt + pBu = p{(1/011
0
)PB} , x xx 

whose linearized system satisfies Condition 4.3 if Ipe(p,8) I + 1131 ~ o. 

The case 5° is considered similarly. In fact, if Bl = 0, the equations 

(6 .56) separates into v t = 0 and the remaining part whose linearized 

system satisfies Condition 4.3 if 1131 ~ o. 

(.ii) In the case 3° or 6° (where 1/0 == 0), additional considerations .are 

necessary if Bl = O. In fact, if Bl = 0, the equation (6.50) 2 implies 

that (B/p) (t,x) = (BO/PO) (x), and so the system (6.49) is reduced to 



(6.60) 

v
t 

= (l1PV) , xx 

- 177 -

This system. depends explicitly on the space variable x (unless (BO/P
O

) (x) 

is a constant) and our results are not applicable. 

Proof of Lemma 6.15 (i) Condi tion 4.1 follows fran the properties [R2] 

and [R3] i note that (6.51) is corresponding to (4.9). As, a counterpart 

of ( 4 • 3) we have (6.54), and so Condition 4. 2 was already checked in 

lemma 6.13. Thus the proof of (i) is finished. 

(ji) We first note that (6.55) 3 yields 

(6.61) 
'" '" "'2 "'2 "'2 2 "'2 

< B(w)w, w > = p{vlul + 1ll v l + (K/8) 18 1 + (1/0110 ) IBI }, 

'", t"''''''''''''' 7 
for w = (p,u,v,8,B) E JR. In the case lOwe may take the matrix K 

in the sane way as in Lemma 6 .11: 

K=a 

o I - , 
I Pp 

- -_- 1- --

-P r p 

o 

o 

o 

o o o 

o 
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where a > 0 is a suitably srrall constant and p = p (p,S). 
p p 

'Then, 

using (6.55) 1,2' we have 

(6.63)1 < [KA(w)] 'w, w > 
a -2 A 2 A A A A 2 

;::: -2 {p Ipi - C\u, v, e, BI } 
p , 

. 
with SOITe constant C independent of a, where [KA(w) J' denotes the 

symrretric part of KA(w). The estimates (6.61) and (6.63) 1 imply Condi

tion 4.3. 

In the case 20 we may take K to be 

0 SPp - (2/11
0

) (B
l ~I p): 0 0 

I 

(6.62) 2 - SP 0 0 
1-

(1/11
0

) ~ 
p IPe 

(2/11
0

) (B~I p) 
I 

1 
0 1 0 AO (w) -1 ' K=a 0 I -(1/11

0
)B I 

- - - - - - - - - -
_..1. _______ 

0 0 
I 

-P e 
1 0 

0 - (1/11
0

) B (1/11
0

) B I 

with suitably small constants a > 0 and S > 0, where Pe = Pe (p,e) . 

Then a simple calculation shoos that 

A A 

(6.63) 2 < [KA (w) ] 'w, w > 

--2 - -1-1 2 IAI2 . -'11 12 '" 2 I'" "'1 2 + e Pe 1 ee + (1/11
0

) p B ) u + (1/11
0

) p B ' ,I v I - c, e, B } 

with sorre constant C independent of a and S, where the oonditions 

Ipe l + IBI ~ 0 and Bl ~ 0 are used. 'The estimates (6.61) (with 11 =v 
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= 0) and (6.63) 2 imply Condition 4.3 for small a and. S. 

In the case 30 we may take K to be 

(6.62) 3 

with a suitably snaIl constant a > O. After a simple calculation we 

have 

A A 

(6.63) 3 < [KA(w)] 'w, w > 

wi th SOIre constant C independent of a. This' estimate together with 

(6.61) (with 1/0 =0) implies Condition 4.3 if BI ~ 0 is satisfied. 

This completes the proof of (ji). 

(ill) letting a > 0 and S > 0 be suitably small constants, we 

take the matrix K as follows: in the case 40 

(6.62)4 K=a 

0 1 100 
---'- --
-I 

o o 

o 
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in the case 50 

- I 
S - (2/11

0
) (pBl tr3/ a 2): o 0, 

(6.62) 5 
-s o o 

K=a 
-1- -2' I 1" 

(2/110 ) (pB B/ a) 0 0 ;- (1/1l0) B,~ r 
----------------- -1--'-----

o - (1/1l0) B (1/1l0) B r 0 

,with 
- - - -2- --2 - 1/2 
a = a (p , e) = (p p p + e p e / ee) , and in the case 6 0 

(6.62)6 K=a 

o I 
I 

1 o o 
I - - - - - - -

I I 

1-(1/11 )tr3 
I 0 

-1 
o 

I -

o I : (1/11
0

) Blr 
__ .J _________ + ____ _ 

I - "1 o I (1/110) B - (l/llO) B r o 

Then, by the similar argunents as in (.ii.), we get the' conclusion of (iii). 

The details are omitted. This corrpletes the proof of Lemma 6 .15 . 

By virtue of Lemrna 6.15 we have the following results conserning the 

global existence and asyrrptotic stability of the solution to (6.49), 

(6.58) . 

Theorem 6.16 ([41]) (global existence and asynptotic stability) Let 

- - "1 1 - 2 
[Cl]1,2 be assumed and let p > 0 e > 0 B E IR and B E IR be con-

stants. 

(i) We consider one of the cases 1 0 -3 0 of Lerrona 6.15 (ii); the addi-
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tional conditions specified in Lemma 6.15 are also assumed. Suppose that 

(Po~p,uo'VO,SO-8,BO-B) E HS(JR1) (for s~2) and Ilpo-p, uo,vo ' SO-8, 

.BO -Ells is sufficiently small. Then the problem (6.49)., (6.58) has a 

unique global solution (p,u,v,S,B) (t,x) (in the Sobolev spaces)., which 

s-2 1 . --converges., in the B (JR }-norm.,· to the constant state (p,O,O,S,B) as 

t -+ 00. 

Moreover., if (PO-p,uO'VO,SO-8,BO-B) is small in HS(JR1) n 

1 1 II - - - II L (ill.) (for S ~ 3)., then (p - p, u, v, S - S, B - B) (t) s-2 converges to 

zero at the rate t-l / 4 as t -+ 00. This solution also satisfies the 

asymptotic relation ~.imilar to (4.46)., provided that the above smallness 

condition is satisfied for S ~ 6. 

(Ii) We consider one of the cases 40 
- 6 0 of Lemma 6.15 (iii)., wi th the 

additional conditions specified there. Suppose that. (PO - p,uO,vO ,SO - 8, 
- S 1 

BO - B) E H (JR) (for S ~ 2) and II Po - p, uO' vo' So - 8, BO -Blls is suffi-

ciently small. Then the problem (6.49)., (6.58) has a unique global solu-

tion (p,u,v,S,B) (t,x) (in the Sobolev spaces)., which satisfies the 

following decay law: I (p(p,S) -p(p,8); u, v, B- E:) (t) Is -
2 

-+ ° as t -+ 00. 

Remark 6.4 In the case 11:: \) :: K :: 1/0 :: ° the system (6.49) bec~s 

a nonlinear hyperbolic system of conservation laws, and so we cannot 

expect in general the global existence of SItDOth solutions (see [57] 7' 

for exanple). In this case, hcwever, the global existence of weak solu-

tions is well knCM7Il, see [22], [48]. While in the last case where 11:: 

\) :: 1/0 :: ° and K > ° hold, global existence (or non-existence) prob-

lems are open. 
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Proof of Theorem 6.16 The results of (i) directly follc:w from Theorems 

4.3, 4.4 and 4.8. Here we give the proof of (.ii). We consider the case 

4 0 and ami t the argurrents for the cases 50 and 6 0
• Noting that Condition 

4.3 is satisfied only for Wi = t(p,u,V,B), we modify Ns(t) as follc:ws: 

N (t)2 = sup II (p- p, u, v, e -e, B-B) (T) 112 + 
s O::;;T::;;t s 

Firstly, integrating (6.52) (with K == 0) by parts, we have 

II(p-p,u,v,e-e,B-B)(t)11
2 +ft liD (u,v,B) (T)11

2
dT 

o x 

Secondly, applying the argurrents of Proposition 4.2 to the equations 

(6.56) for Wi = t(p,U,V,B), we get the estimates 

2 ft 2 2 IIDx(p,u,v,B) (t) Il s - l + 0 IIDx(u,v,B) (1") " s - l d1" 

f
t 2 

+ II D (u, v,B) (1") II d1"} o X s 
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where Po = p(pO,80
) and p = p(p,S). Here we have used the fact that 

the right hand side of (6.56) satisfies g(w,D w) = O(ID Wi 12 + . . ,x x 

+ IDx (p,8) IIDxw'l) for Ip -:-p, u~ v, 8- Ef, B-BI -+ 0 (see (6.57)4). 

Finally, from the equation of S, we deduce 

where So = S (PO' 80). Here we have used the fact that the right msnber 

of the equation of S is dominated by O( 1 DXWI I~) for I p - p, 8 - 81 -+ o. 

Since Ip - p, S - 8"1 is equivalent to I p - p, 8 - 81, a combination of the 

above estimates gives the desired a priori estimate for N (T), from 
s 

which follow the results of (ii) (cf. 'Iheorem 4.3) . 'Ihis completes the 

proof. 

Finally in this section, we briefly survey the global existence 

resul ts for the system' of fluid nechanics in one srace-dinension. If the 

magnetic induction and the second and the third cOl1lfOnents of the ve-

locity' are neglected (i.e., B=v=O) in (6.49), we are led to the one-

dirrensional sys tern of fluid mechanics in lagrangian coordinates. 

u
t 

+ P = (~pu) , x xx 

(6.64) 
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For this system, Theorem 6 .16 is simplified as follows: 

corollary 6.17 ([41]) Let [Cl]1,2 and one of the three conditions [C2]j 

(j = I., 2., 3), be asswned; in the case [C2] 2 we also asswne Ipe (p,e") I ~ 0., 

where P and 8 are positive constants. Then~ in ,the case [C2] 1 or 

[C2]2 (resp. [C2]3)" the initial value problem for (6.64) is solved glQb

ally in time as in Theorem 6.16 (i) (resp. (ii)). 

Remark 6. 5 In the case [C2] 4 (i. e ., ll:: v :: K :: 0), SlUCX)th solutions of 

(6.64) in general develop singularities in the first oori vati ves in fi

nite tirre (see [52] 7' for exanple). HONever, weak'solutions (J.n the 

space of bounded variation) of (6.64) exist for all time t;::: ° if the 

initial data have small total variation, see [22], [48]. Global weak 

solutions for large initial data were obtained by Nishida [61] l' Nishida 

and Srroller [65] l' DiPe~a [13] I and Liu [52] 1 for ideal polytropic gases 

where the equations of state are given by 

(6.65). p = Rpe ., e = eye + constant. 

Here R > 0 is the gas constant and ey (: positive constant) denotes 

the heat capacity at constant VOlUITBi the relation Cy = R/(y -1) holds, 

where y;::: 1 is the adiabatic exponent. They established:the .global 

existence results under the condition that the quantity Ql:: (y -1) • 

{total variation of the initial data} is sufficiently small. For ini-

tial boundary value problems, similar global existence results were also 

obtained in [61] l' [65] 2' [52] 2· For asymptotic behaviors of these weak 
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solutions, see [13]4' [52]5,6· 

Remark 6.6 In the case [C2] 1 (i.e., 11, v, K > 0) there are many results 

conseming global srrooth solutions of (6.64). The general fluids satis-

fying [Cl]l,2 were considered by Okada and Kawashima [66] ,[41]. (see the 

results of Corollary 6.17). In particular, the following resuit was 

proved in [66]. When 11, v and K are independent of e, (6.64) has a 

solution in the Holder spaces (which" tends, in the IIEXimum nonn, to the 

constant state as t -+ 00) if the initial data belong to the corresponding 

Holder spaces' and are small in HI (JR.I) . This resul t remain valid for 

the initial rounda:ry value problems in a finite interval; in this case 

the solution decays at the exponential rate as t -+ 00. 

Global Srrooth solutions to the initial value problem with large ini-

tial data were obtained by Kane 1 , [36] I' Itaya [34] 2,4' Kawashima and 

Nishida [40], Kaihikhov [42]2' and Okada and Kawashima [66] for ideal 

polytropic gases. Notice that (6.65) together, with [Cl] I gives 

(6.66) with some constant c. 

Kane 1 , [36] 1 considered the case p =" Cp Y (i.e., S = constant) and showed 

the global existence and asymptotic decay of solution (in the Holder 

spaces) under the condition that the initial data belong to roth HI (JR.I) 

and the Holder spaces. These results were extended in [40] and [66] to 

the case (6.66), where the quantity Q
2 

== (Y - 1) • {HI (JR.I) -nonn of the 

initial data} is assurred to be sufficiently small. Kazhikhov [42] 

shONed such global existence result without restriction on the quantity 
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Q2. On the. other hand, Itaya [34]2,4 considered the case p = Cp (i.e., 

y = 1 or 8:Iuivalently 8 = constnat) and proved the global existence of 

solution in the Holder spaces when the initial data are in the corre

sponding Holder spaces but not necessarily in the Sobolev spaces. It 

is an open problem to. investigate· asyrrptotic behaviors of the solutions 

obtained by Kazhikhov and Itaya. 

The iI}i tial boundaIy value problems (in a finite interval) for the 

equations of ideal polytropic gases were also solved globally in ti.rre 

for large initial data i see Kazhikhov [42] 1,3' Kazhikhov and Shelukhin 

[44], Itaya [34] 5,6' and Okada and Kawashima [66] for the global exist

ence, and also [42] 3 and [66] for asymptotic behaviors. 

The monotonicity condition [Cl] 2 on the pressure can not be satis

fied for the Van der Waals gas, for which the relation 

p = R8/(V-b) - a/~ holds for V - lip > b , 

where a and b are positive constants. In this case the global exist

ence problem for (6.64) is still open, see Kazhikhov and Nikolaev [43] 

and Kawohl [89]. We also refer to [12], [2] , [3] , [88] and [87], where 

similar problems in viscoelasticity were discussed. 

Remark 6.7 In [72], Slernrod considered the initial boundary value .prob

lem for the system (6.64) of thermoelastici t¥ under the condition [C2] 2 

(i.e., II == 'J == 0, K > 0). He showed the global existence of SJllCX)th solu

tions for small initial data. But his result can not be applied to the 

initial value problem in JR
l . 
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