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ABSTRACT

The global (in time) existence and asymptotic stability of smooth
solutions to the initial value;problem,are proved for a general class of
qua51llnear symmetric hyperbol1c~parabollc camposite systems, under the
smallness assumptlons on the initial data and the dissipation: cond@tzon
on the linearized systems. In the special case of hyperbolic-parabolic
systems of conservation laws with a convex entropy, it is also proved
that for time t » «, the solutions of the nonlinear systems are asymp—
totic to those of the linear ones if the space-dimension n = 2,kand to
those of the Semi—linear ones if n = 1. These resulté are applicable
to the equations of campressible viscous fluids, the equations of
magnetohydrodynamics (or electro-magneto-fluid dynamics) for electrically
conducting compressible viscous fluids, the equations of heat conduction
with finite speed of propagation, and so on.

Furthermore hyperbolic systems of conservation laws with small vis-—
coéity are investigated on the relation to the limit systems without vis-
cosity. It is proved that as viscosity tends to zero, the smooth solu-
tions of the systems with viscosity converge on a finite time interval

to the smooth solutions of the limit systems.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 HISTORICAL BACKGROUND

Many physical phenomena arising in mathematical physics are described
by the quasilinear symmetric hyperbolic-parabolic systems of composite
type which consist of first-order hyperbolic equations and second-order
parabolic ones, when the effects of dissipative mechanisms (such as vis-
cosity, heat conduction etc.) are taken into account. If the dissipative
effects are neglected, then these systems degenerate to the first-order
quasilinear symmetric hyperbolic systems.

In recent years, these systems describing physical laws have been
studied intensively from a mathematical point of view. Vol'pert and
Hudjaev [85] considered the initial value problem for a general class of
syﬁmetric hyperbolic—parabolic canposite systems and established in a
unified way the local (in time) existence and uniqueness of solutions in
the L2—Sobolev spaces. Their results remain valid for the two special
cases, quasilinear symmetric hyperbolic systems and quasilinear symmetric
parabolic ones. Similar existence and uniqueness results were also oOb—
tained by Fisher and Marsden [16] and Kato [37]4 (see also [30]) in the

case of quasilinear symmetric hyperbolic systems.




However, there has been nothing about a unifiedltreatment of the
global (in time) existence problem for these general systems. Concerning
the global existence problem, we should note the following: smooth solu-
tibns of the first-order quasilinear hyperbolic systems (without dissi-
pation) in géneral develop singularities in the first derivatives in
finite time no matter how smooth the initial data are, which-&as proved
by Lax [50],, Jomn [35]; and others [52], (531, 9], 46] (see also (351, 5
[37]7). This fact suggests that at least for these hyperbolic systems
(without dissipation) global solutions must be sought in a class of non-
smooth (discontinubus) functions. This approach was pursued for the
first-order nonlinear strictly hyperbolic systems of conservation laws in
one space-dimension; the global existence of weak solutions in the space
of bounded variation was shown by Glimm [22] and Kuznetsov and Tupchiev
[48] for small initial data; the structure of weak solutions was studied
by DiPerna [13]3; asymptotic behaviors of weak solutions as time +t + o
were investigated by Glimm and Lax [23], DiPerna [13]2,4 and by Liu
[52]3_6. These results are applicable to the system of gas dynamics in
one space-dimension. But it is not straightforward to generalize these
results to higher dimensions.

Another approach for the global existence problem is to still seek
smooth solutions. Some authors have succeed to prove the global exist-
ence, unigqueness and asynmptotic stability of smooth solutions for the
physical systems in which the effects of dissipative mechanisms are taken

into account. Among these systems, we mention:

(a) the equations of compressible viscous fluids,




(b) the equations of magnetohydrodynamics (or electro-magneto-
fluid dynamics) for electrically conducting compressible
viscous fluids,

(c) the equations of nonlinear viécoela;ticity (or thermoelas-—
ticity),

(d) the equations of heat conduction with finite speed d% propa-
gation, | |

(e) the equations for discrete velocity models of the Boltzmann

equation.

The systems (a), (b) and (c) (resp. (d) and (e)) are typical examples of
quasilinear symmetric hyperbolic-parabolic composite systems (resp.
quasilinear symmetric hyperbolic systems with dissipation) .. Global ex-
istence theorems for these systems were proved by a combination of the
local existence resuits and the a priori estimates of solutions. In many
cases, a priori‘estimates are derived by the Lz—energy method which makes
use of the energy integral associated with the physical structure of the
systems; see Kanel' [36]l and Ckada and Kawashima [66] (and also [36]2,
[43],[42]2) for the system (a), Kawashima and Okada [41] (and also [38]3)
for (b), Greenberg, MacCamy and Mizel [27] (apd also [25],[12],[26]1,12],
[3]) for {(c), and Kawashima [38]4 (cf. [64]1) for (e). It is also effec-
tive, especially in the case of higher dimensions, to make use of the
decay éstimates for linearized equations (with constant coefficients) ;
see Matsumura and Nishida [55]2 for (a), Browne {[4] and Potier-Ferry [67]
for (c), Matsumira [54]l (and also [71]) for (d), and Inoue and Nishida

[33].(and also [38]4) for (e); for another class of equations, the Boltz-




mann equation and the nonlinear wave equations, we refer to Nishida and

Imai [62] (and also [79], [80] ) and Klainerman [45] (and also [47],

1,2

[70]) . The existence of energy integral and the decay estimates (for
linearized equations) are, however, not known for a general class of
quasilinear symmetric hyperbolic-parabolic composite systems.

Usually we have two different systems for a physical phenémenon, one
of which corresponds to the diséipative case and the other to the non-
dissipative case. It is then expected that in the limit, as the coeffi- -
cients of dissipaﬁions tend to zero, the solutions of the dissipative
system converge to the solutions of the non-dissipative system. This
convergence problem has been solved in the case of a single equation, but
it is still open for general systems. The convergence of progressive-—
wave solutions to shock-wave solutions in one space-dimension was shown
by de [17] and Conley and Smoller [lO}l (and also [73],[74]) for general
;systems; we also refer to [86],[20],[21] (resp. [10}2,3,[29]) for the
equations of compressible fluids (resp. magnetchydrodynamics). The con-
vergence (on a finite time interval) of smooth solutions in higher dimen-
sions was proved by Nishida and Kawashima [63] for the equations of com-
pressible fluids; this is a generalization of the results for incompress-—
ible fluids,.see [76],[37]2 (cE. [24],[57]). Similar convergence results
were also obtained for the Boltzmann equation (resp. its discrete veloc-
ity models), see [61]3,[6],[80]3 (resp. [33],[7]1). Finally we should
note the recent work of DiPerna [13]6. He has established a general con-
verdgence result for a moael system of one-dimensional nonlinear elas— .
ticity: smooth solutions of the dissipative system converge (for all time

t > 0) to the weak solutions of the non-dissipative system.




1.2 AIM OF THE PRESENT WORK

The main purpose of the present work is to show, in a unified way,
the global (in time) existence and asymptotiq stability of smooth solu-
tions to the initial-value problem for a class of quasilinear symmetric
hyperbolic-parabolic composite systems. We are only concerneé with small
amplitude solutions because thelsystems treated here are general enough
and so the global existence of large amplitude solutions can not be ex-
pected in general in a class of smooth functions. Therefore in this
situation we are sufficient to show that the constant equilibrium solu-
tions for these systems are asymptotically stable (in time) for small
perturbations at the initial time.

In order to establish these results, we usually need decay estimates
for the equations linearized around the equilibrium state. For our
general class of systems, we shall formulate a condition which guarantees
the decay structure for linearized systems. This dissipation condition
ehables us to conclude the global existence and asymptotic stability of
solutions when the space-dimension n = 3.

In the case n < 2, additional considerations are needed. We shall
restrict our attention to a class of hyperbolic-parabolic composite sys—
tems of conservation laws with a cdnvex entropy. These systems enjoy the
energy integral associated with the entropy. This energy integral to-
gether with the dissipation condition gives the global existence and
asymptotic stability resﬁlts for all n = 1.

We then show that our results are applicable to the physical systems

(@), (b) and {(d) mentioned in section 1.1 (though, in some cases, slight




modifications are needed); the applications to the systems (c) and (e)
will be omitted in this dissertation, we refer to Kawashima [38]4 for
(e) . In applications a key point is to verify the dissipation condition
for each system, and this can be done rather algebraically.

The second aim of this work is to justify the vanishing viscosity
method locally in time for a class of hyperbolic systems of co%servation
laws. We shall assume that our éystéms with small viscosity are of
hyperbolic-parabolic composite type and:possess a convex entropy. In
this situation a convergence theorem (as the viscosity tends to zero) is
established for local smooth solutions and this theorem can be applied

to the physical systems such as (a) and (b).

1.3  SUMMARY

The contents of this dissertation are as follows. In chapter I we
shall consider the initial value problem for a class of quasilinear sym-
metric hyperbolic-parabolic composite systems and prove a local (in time)
existence theorem in the Sobolev space H(RY). The global (in time)
existence problem for these general systems is studied in chapter II.
Making use of the dissipation condition, we shall derive a priori esti-
mates (with decay rate £4 as time t - w) of small solutions when

1(135 and n 2 3. Cormbining these

the initial data are in H°(R) n L
a priori estimates with the local existence result, we can show the
global existence and asymptotic stability of smooth solutions if n 2 3

and the initial data are sufficiently small in IS(®RY n LN(®Y). In the




last section of chapter I, we shall apply these results to the equations
of heat conduction with finite speed of propagation.

In chapter IV we treat a rather restricted class of systems, hyper-
bolic—parabolic composite systems of cdnservation laws with a convex en—
tropy. By the technical energy method based on the energy integral, we
shall establish similar glcbal existence and asymptotic stabiiity results
for all n.= 1. In this case i£ is élso éroved that for t - «, the
solutions of the nonlinear systems are asymptotic to those of the linear
ones if n = 2, and to those of the semi~linear ones if n = l.

In chapter V we shall investigate the convergence problem for a
class of hyperbolic systems of conservation laws with vanishing vis-
cosity. It is proved that in the limit, as viécosity tends to zero, the
smooth solutions of the systems with small viscosity converge on a finite
time interval to the smooth solutions’of the limit systems without
viscosity.

Chapter VI contains the applications to the equations of magneto-
hydrodynamics (or electro-magneto-fluid dynamics) for electrically con-
ducfing compressible fluids. Global existence and stability results are

established for the following cases:

(1) two spécial type systems of electro-magneto-fluid dynamics in

R? ,
(2) the equations of magnetohydrodynamics in Eg or ZR?,
1

(3) the equations of magnetohydrodynamics in IR .

The dissipation condition is verified for (1) and (2) if all the effects

of dissipative mechanisms are assumed, while for (3) this can be done by




assuming only one or two of them. As a special case, we also discuss

briefly the system of fluid mechanics in IR3 (or ]RZ) and IRl.
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CHAPTER O

QUASILINEAR SYMMETRIC HYPERBOLIC-PARABOLIC. SYSTEMS, I

eSS S

( LOCAL EXISTENCE )

2.1 INTRODUCTION

In this chapter we shall consider the initial value problem for a

system of quasilinear partial differential equations of the form

n .
0 j _
Al(u,v) u + jz_lAll (u,v)ux' = fl(u,v,DXV) ,
(2.1)
0 Sk
A(u,v)v, - ] Bl (uv)v = f_(u,v,D.u,D v) ,
2 t 5, k=1 2 ijk 2 X 'Tx

where t 20 and x = (xl,----,xn) € iz nh=1l; u=u(t,x) and v =
v(t,x) are vectors with m' and m" components, respectively, and the

pair (u,v) (t,x) takes its values in an open convex set 0 in ®" (m=

" 0 j . 0 jk .
T L > ; = P LY . ’ = ’ LI IR )
m'+m">1) Al and All (=1 ) (resp A2 and B2 (F,k=1
++,n)) are square matrices of order m' (resp. m"); fl (resp. f2) is a

T "
= -valued (resp. yize -valued) function; Dx denotes the derivatives
(3/0x)% with |a| = 1. The initial data are prescribed at t = 0 :

(2.2) (u,v) (0,x) = (u ) (%) .

0




- 10 -

We assume that the system (2.1) is symmetric hyperbolic-parabolic in

the following sense.

Condition 2.1 The functions A (u, v), A (u,v), A 1 @v) (=1,-+-n)

and B%k(u,v) (J,k=1,++-+,n) are"sufficiently smooth in  (u,v) ¢ 0 such

that

(1) Ag (u,v) and Ag (u,v) are real symmetric and positive definite for

(u,v) € 0, ’ ’

(ii) A:le (u,v) are real symmetric for (u,v) € 0,

(did) Bg (u,v) are real symmetric and satisfy ng(u,v) = B]éj (a,v) for
(u,v) € 0 ; ZB%k {(u,v) ijk is (real symmetric) positive definite for all
jk
n-1

(U,v) ¢ 0 and w = (wl,----,wn) e S .

Under these conditions £, (u,v,D.v) and £.{u,v,D.u,D v) in the
1 X 2 x 'Tx
right hand side can be regarded as lower order terms of the system. ILet
ne R and T € R™  denote the vectors corresponding to D u and

va . We assune:

Condition 2.2 The functions fl(u,v,(;) and fz(u,v,n,g) are suffi-

"

ciently smooth in (u,v,r) ¢ OXIan and (u,v,n,g) e OXIan, respective-
ly, and satisfy fl(E,V,O) = £, (u,v,0,0) = 0 for some constant state

(H,—G) e 0 .

Remark 2.1 In the special case m" = 0, the system (2.1) is reduced to

(2.1)" A (Wu, + Z 1 @u, =@,




...ll._
which is symmetric hyperbolic; while in the case m' = 0,

n 0 : — ]k —
(2.1) Az(v)vt jszz (v)vxjxk fz(v,va) ,

which is parabolic in the sense indicated above.

In a similar situation Vol'pert and Hudjaev [85] have proved the -
existence of local solutions (in the»Lz(DfB-Sobolev spaces) to the ini-
tial value problem (2.1),(2.2), by use of the Schauder's fixed point
theorem. Their results are applicable to the special case m' =0 or
m" = 0. On the other hand Fischer and Marsden [16] and Kato [37]4 have
established similar existence results for symmetric hyperbolic systems
(2.1)"' (i.e., m"=0), by using the general theory of abstract evolution
equations (see Kato [37]1,3). The purpose of this chapter is to recon-
struct a local solution of (2.1),(2.2).

The contents of this chapter are as follows. In section 2.2 we in-
troduce some function spaces. The basic inequalities in the Sobolev
spaces are also given. In section 2.3 we consider the linearized equa-
tions (with variable coefficients) for (2.1). The existence result is
obtained as an application of Theorem II of Kato [37]3. We also derive
the energy inequalities in the L2(EP)~Sobolev spaces. In section 2.4
we’construct a local solution of (2.1),(2.2) as a limit of successive ap-

proximation sequence.
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2.2 PRELIMINARIES

We shall first introduce some function spaces. Lp(IRn) (L<p <) de-
notes the space of measurable functions whose p-th powers are integrable

‘ n .
on IR, with the norm

£l = ] dre Pao VP
TP ,

We sometimes write |[|£]| instead of [£] , . I (IR') denotes the space
L

of bounded measurable functions on IR , with the norm

|£]] . = ess.swp [£(x)] .
L X
HS(]Rn) (s 20 : integer) denotes the space of Lz(mn)—functions £ whose
.:derivatives (in the sense of distribution) D];f (k <s) are also L2(IRn)—

functions, with the norm
bl = 3?2
s K=o X

Here Di denotes the derivatives (3/ 3x)% with la] = k; we write D, -

instead of Dl . Note that HO

. @) = L2 ®) and [£||, = [I£]] . @)

(s 20 : integer) denotes the space of Lw(IRn)-—functions. f whose deriva-

tives D f are Hs_l(IRn)—-functions, with the norm

121 g = HEll o+ Dl -
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In the case of s =0 we define VO(RK) =L (RY) and IEll o= £l & -
\Y L
BSL(]Rn) (L 20 : integer) denotes the space of bounded continuous func-
tions £ whose derivatives D]:(f (k <) are .also bounded continuous, with
the norm
. £ K ' :
[£], = L sup [DE(x) | . ‘
=0 x :

BQ'+O(IRn) (220 : integer, 0 <0 <1) denotes the space of BQ' (R") -functions
such that their 2-th order derivatives are o-HOlder continuous, with the

norm

[Dif (x) - Df;f(y) |

1£lg4g = |Ely + s o
X2y |x - v|
Let X be a Banach space and let t' < t. IP(t',t;X) (L<ps<w)
denotes the space of IP-functions £(t) on [t',t] with the values in
X. C’g (t',t;X) (220 :integer) denotes the space of &-th times oohtinu—
ously differetiablé functions f£(t) on [t',t] with the values in X.
The following interpolation inequalities for Lp(iRn) -norm of the

derivatives D}]{u are found in [60].
Lemma 2.1 ([60]) Let 1 <qg,r <®, and let k > 0 be an integer.
Assume that u € Lq(IRn) and ka\l € Lr'(IRn) . Then for the derivatives

Dlu, 0<3 <k, the following inequalities hold:

j k a 1-a
(2.3) Ipdal| < c|Dl® [ul] T2,
X 1P N 13
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where

+a(-]1;—§) + (1 - a)

|
B -

T
Q=

for all a satisfying 3Jj/k < a <1, and C is a positive constant; .
there are the following exceptional cases:

(2) If 3.=0, tk <n and q =, ih(m a}e made the additional assump-

tion that either u(x) + 0 as |x| + or uc 14 (= for some 0 <

q' <. | .

() If l<r<w, aud k - j - n/r <is a non-negative integer, then

(2.3) holds only for a satisfying 3Jj/k < a < 1.
As a consequence of (2.3) we have:

Corollary 2.2 Let.s = 0 be an integer and assume that u e B (R .

Then the following two statements are true.
(i) For any p with max{0, 1/2 - s/n} < 1/p < 1/2, we have u €
1P (R") and

(2.4) Hu“LpsCH D}S{uHa”uH < CHUHS 5

where a = (n/s) (/2 - 1/p), with the exceptional case: if s =n/2,
then (2.4) holds only for 0 < 1/p < 1/2 (i.e., 2 < p < ).

(i) If s >n/2, then for & =s - 552 0 (so=[n/2] +1) and for any o©

2+o

with 0 <0 < sy - n/2, we have ue B (R") and |U[2+GSCHUHS-
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Remark 2.2 It follows from (ii) that for s > n/2 there is an imbed-

ding of H°(R)) into V°(RY) , and Hu]lvs < C Jlull, -

By virtue of Corollary 2.2, Lemma 2.1 and Leibniz's formula we get

the following estimates for oompoéite functions.

lemma 2.3 -Let s 20 and % 2 0 be integers satisfying s + & = SO'
(sO= [n/2) +1). Assume that u € Hs(an) (resp. u e VS(IRn) ) and V €

HJL(IRH). Then for k =min{s, %, s+5L—sO} we have uVer(IRn) and

(2.5) vl = cllullgllvily  (resp. [lu][ <c HuHVSHVIIQ ).

Note that if s =2s. and 0 < £ < s, the estimate (2.5) holds for k = R.

0

Lemma 2.4 ([85]) Let s = 1 be an integer and assume that Vv = (Vl,"’

",Vm) € VS(IRn) . Let F=F(V) bea Cm—function of Vv e ®’'. Then for

l<j<s, we have DF(W) e BT HRY  and

| -1
(2.6) HDXF(V)Hj__l s’cm(1+1|v|]Lw)J |]val|j_l ,

J
where C 1s a positive constant and M = ) sup IDijF(v)l ( sup s taken
' k=1v v
over all v with . |v| < ||v] _ ).
‘ L

Finally we shall give the estimates for commutators (for the proof,

see [58] and [54]3) .
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i Wmmmm%@

Ilemma 2.5 Let s = sy + 1 (so= [n/2] +1) be an integer and assume that

a8

u e Vs(]Rn) . §
(1) Let 1<% <s be an integer and let V e Hz—l(IRn) . Then for 0 < %5’%%
k <%, we have [D};, ulv = D]:{(uv) - uD];V e 12 (K" and
g ” - | . i

2.7 I oS wvll <l lIvl g
: x’ - x s-1 =1 - .

s

(#7) Let 0 < & < s be an integer and let V € HQ(]Rn) . Let <b6* denote

.

the Friedrichs mollifier. Then we have [¢.*, ulD v = ¢ *(uD v) — u(d.* %
8 X S X § .

Dv) ¢ HY(RY, %
X 2
@8 5% un ly = clull vl
and H[(bd*, U]DXVH%—*O as § 0. é

o

2.3 LINEARIZED EQUATIONS

In this section we shall prove the existence of solutions for the

linearized equations of the form
(2.9) Ow,mu, + 7 83 wvu =¢
2y Al AT T

(2.9) A (u,v)v, = ) By (u,V)V =f, .
2 2 t ik 2 ijk

Iet Q‘I‘ = [0,T] x TR™ (T is a positive constant) and s, = [n/2] + 1, and

0
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let s2s,+1 and 0 < % £ s be integers. For (u,v)(t,x) and (£

0 1’
f2) (t,x), given functions on QI" we assume the following conditions.
.10, u-ueOr;®@), smelore*T@),

Cv-ve Lot ®), |
(2.10), e - , '
AV e P (0,T ;HS—Z(IRn)) n 12 (0,T; Hs_l(JRn)) '

(2.11) (W) (6,%) € 0] for any (t,%) € O,
where (U,v) ¢ 0 is the constant state in Condition 2.2 and 0, isa
bounded open convex set in IR' satisfying 51 c0;
(.12, £, Q7B HEY) 0 Lo, ENEY)
(2.12, £, ¢ ComiE @) .

First we shall cbtain the energy estimates for (2.9) For this

1,27
purpose we only require the conditions which are obtained by replacing

A(++) in (2.10)

1, and (2.12); , by L (+++). That is,
14 r

(2.13); u-Tuc L7(0,T ; B (RY) , B.u e 120, ; 5 H(RY)

v-VelL (0,T;E5(RY),

(2.13)

2

5.7 e L7(0,T 5 B2 (RY) o L2o,7; 55N ®Y)

(.10, £, e 7018 HEY) 0 P07 E @)
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(2.14), £, ¢ 20, ; B ®EY) .

Then we have:

Lemma 2.6 (energy estimates for linearized equations)  Let us assume

Condition 2.1. Let n21l and s z2s,+1 (SO==[n/2]-+l) be'integers and

0
let (u,v) (t,x) satisfy the conditions (2.13)l 5 and (2.11). Put

L T . /2
M= s | (a-T, v-D (O, M = <[ lagww 0|2 a0 .
0

0<t<T

(1), Let 0 < & <s be an integer and let fl(t,x) satisfy (2.14)1. As-

sume that u(t,x) <s a solution of (2.9)l satisfying

(2.15) ue 170,T; BV (RY) 20 € 10,1 LY

1

Then we have U e CO(O,T; HQ(H{H) . Furthermore there exist constants

C, =C(0) >1 and C,=C,(0;,M >0 such that the following energy

2
inequality holds for t e [0,T].

1/2
~ C.(Mt+M, t ) ~ t '

2 2 72 1 2 2
.16, Juw]? = cle (laco |12 + czt[o g, @ [2ar) .

(i) Let 1 < % < s be an integer and let fz(t,x) satisfy (2.14)2. As-
sume that vI(t,x) is a solution of (2.9)2 satisfying

o -2

(2.15) ver 0T B @), oy e 0,1 iH (R .

2
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2+1

Then Vv e CO(O,T ; Hg @®Y) n L2 (0,T; H (]Rn)), and the following energy

inequality holds for t e [0,T].

e
@16, IVWIF + | I, &

C,(t+M t ) t :
2 72 1 2 :

o 2
<c2e v+ e, |

- where Cl and C2 are constants as in (i).

Proof. This lemma can be proved by the standard energy method (see [63]
or [54]3, for example). We devide the proof of (i) into 4 steps.
step 1 We first show the estimate (2.16)l under the assumptions that

u satisfies (2.13)1, v and £, satisfy

1

s-1

' = © S (-l o0 n
(2.13), v-vel (0,T;H (R)), atVeL (0, T;H “(R)) ,

o JRS P o
(2'14)1 fleL (0,T;H'(R)) ,

respectively, and that u is a solution of (2‘9)1 satisfying

(2.15), ue 20,7 ; po T

&), suer01;H EY) .

Applying D}; (k £2) to the system (2.9)1, we have

0 Kk~ j kY
(2.17) 4 Al (0, v)Du, + g All(u,V)Dquj = F}i ,
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where

F}i = Ai(u,v)Di{Ag(u,v)_lfl} - Ag(u.,v) % [Di,'Ag (u,v)—lAjjhl(u,v)]11,\1Xj .

Take the inner product (in K" ) of (2.17) with D]:cu . Integrating it

over R and adding for k = 0,1,+++*,%, we obtain
(2.18) % < ¥ V)Dka + ) 2 (u,v) e, fa s> ax
S SN R R x“xj' x

j<E‘]i,D]:{u>dx,
0

)
k=
'
where < , > denotes the standard inner product in K" . We introduce
here the energy norm:
S 0 kK~ _k” 1/2
Ej[u] = ( ) J < A (u,v)Du, Du >dx) .
Since A?_ (u,v) 1is real symmetric and positive definite, El [u] is equiva-
lent to |[lul|, , that is, there are constants cj = c,(0;) >0 and C, =
Cy(07) > 0 such that cyllufl, < E [u] < COHuHQ . By integration by
parts we find that the left member of (2.18) 1 is bounded from below by

2
3t

1

~o2 ~2
(5B, []”) - CO(M+||3t(u,v) 1]5__1)El[u}

for some constant Co = S (Ol) ; where (2.4) (with p=« and s+s-1250) was

used. On the other hand (2.7) and (2.6) (with j=s) yield the estimate

e G b R

T




Zof -

Yok 0, -1 ~ ~
kzo “ [DX’ Al(ulv) All(u,V)]U_x]H < CM Hu”z Yy

while (2.5) (with k=2) and (2.6) (with j=s) give the estimate

R @ TN, < s

£1, )
side of (2.18)l is majorized by

, where C = C(Ol,M)‘. Therefore the right hand

% % Hias ' N
K11 11K 2
kZO I lHHDXuH < CMEl[u}’ +.CHleQIEl[u] .

Thus we arrive at

d

=g B[] < ce+ Hat(u,v) Hs_l)El[u] +C £l -

Applying the Gromwall's inequality, we cbtain

~ C(Mt + Mltl/ 2) ~

t
E [l <e & [l () + ce™/? ([O £, (0 || 2an /2

}

for some constant C = C(Ol,M) . The estimate (2.16)l is an immediate con-

sequence of the last inequality.

| step 2 Next we show the estimate (2’16)1 for (u,v), fl and u satis-
¥ ¥

fying (2'13)1 o (2.].4)l and (2.15)1, respectively. ILet q;(s* denotes the

Friedrichs mollifier and put Ve = ¢6*v . Then Vs satisfies (2.13)2.

The system (2.9) 1 is rewritten in the form

0 ~ 3 ~ 5
(2.].9)l Zﬁs.l(u,v(g)ut + § All(u’vé)uxj = fl + R

where
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Ri = Ag(u,vé) {231(1)(11,v)":L - Ag(u,v(s)_l}fl -

1

0 0 -1 0 ~1.7 ~
- A (4, vy) %{Al(u,v) Ail(u,v) - 2, (4,v,) Ail(u,va)}ux ;

The results in step 1 are applicable to (2.19) 1° So we get the estimate

‘ § . $
| replaced by £, +R . Since IRyl

ClIEL I, + HGHSLH_) by (2.5) and (2.6), we have stTlp ”Ri(’[) I, >0 as

(2.16), with f < C v - vl

§ - 0. Therefore, letting ¢ = 0, we conclude the estimate (2.16)l for

(u,v), £, and u mentioned above.

1
step 3 Finally we show that (2.16)l also holds for (u,v), fl and u

satisfying (2.13) (2.14)l and (2.15)1. Applying ¢6* to the system

1,2,
(2.9)1, we obtain
220, 22wva. . +7 A @ =f  +d,
200 RN e A (I e T By T O

~ AN

s * : =
where Us ¢6u, fl,é ¢6*fl and

S

_ A0 0 -1
Ql = Al(ulv) [(b(s*r Al(urv)

]fl -

_ 0 0 -1 ~
Ay () ) Log*, A (V) Ay (@v)le, .
J J
The results in step 2 are applicable to (2.20)l because fl st Qi and
14

~ 1

1 .
satisfy (2.14)l (cf. (2.8)) and (2.15)1, respectively. So we get the

'

Us

estimate (2.16)lwith u and f. replaced by Us and fl’6+Q§. It

1

is easy to see that as § » 0, u, » u strongly in LOO(O,T;HQ'(IRH)), £

§

- fl strongly in L2 (0,T ;Hz (IRn)) , and Qi +.0 strongly in L2 (0,T;

HK (IRn)) ; the last convergence is a consequence of Lemma 2.5 (il). There-

l,6
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~

fore, letting § - 0, we obtain (2.16)l for (u,v), fl~ and u mentioned

in Lemma 2.6.

N

. ~ 0 £, n
step 4 It remains to prove u e ¢ (0,T;H (IR")). Note that Ug €

we have

Ao, @®)) for §> 0. From (2.20);

~ 5 51 8
=(E g+ Q) - ) 5o v Q=5 .

Since the estimate (2.16)., is applicable to this system, we get (2.16) 1

1
~ ]

with u and fl replaced by Ugs ~ Ugo and fi’é , respectively. It is
easily seen that as &, §' » 0, (1 - u,,)(0) + 0 strongly in 1t (R’

§,8!'
1

(§ >0) is a Cauchy sequence in CO (0,T;H

and £ +~ 0 strongly in 1.2 (0,T ;HQ' (RY). This implies that ug

Q(IRn)) .  Therefore the limit

G belongs to CO (0,T ;HJL (RY)). Thus the proof of (i) is completed.

The proof of (ii) is almost similar to that of (i). Since the argu-
ments on the mollifier are also applicable, it suffices to prove the esti-

mate (2.16)2 only in the case that u, v and f2 satisfy (2.13)1,

1
(2.13) , and
(2.14), £, ¢ (0,7 ; BV (BY)

respectively, and that v is a solution of (2.9)2 satisfying

' ~ o) ~ o
(2.15), velL 0,7 ;82 @®Y) 5.V € L 0,7 ; BV (RY) .
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Applying D]:{ (k<2) to (2.9)2, we have

0 kYo i K
(217, Ay vIDyv, izj B (u'V)DXinXj - ¥,

¥y = A il (v T+ ) T A5 T ey,

2
1j 1]

In the same way as ‘in step 1 we obtain as a counterpart of (2.18) 1°

X 0 k> ij k" k”
(2.18),, -Z_ J < Ay (u,v)Dv, - Z B,” (u,v)Dv, .+ DV > dx
k=0 ij iy
L o~
= Z < Flgr DXV > dx .
k=0
Define the energy norm
o X 0 ~ k- 1/2
E, vl = ( } < 20w, v, DV > dx) ,
2 k=0 2 X X

which is equivalent to ||v]|| o+ By integration by parts and the Garding's
inequality for the strongly elliptic operator | BEJ (u,v) (82/ axi‘axj) , we
ij

find two positive constants c and C = C(Ol,M) such that the

0 l)
left hand side of (2.18) 5 is bounded from below by

= cO(O

2

1 ~.2 ETRNTY n.2
=t (5 B, V1) + o IVl - c@+{o v [[ B, vIT .

On the other hand the right member of (2.18) 5 is majorized by
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C IVl gyq By ) + C NIyl g vl g

if we estimate the terms containing Dif2 by integration by parts and the
other terms by using (2.5), (2.6) and (2.7), where C = C(Ol,M) is a con-

stant. Thus we arrive at

3 ~2
-——E2[V] + c

: ~ g 5
5E < C(L+ Hat(ulv) “s-—l)EZ [vl™ +C Hlelg-l '

o I¥IlE

A

by virtue of the Grorwall's

from which follows the desired estimate (2.16) 5

inequality.

2+1

The regularity result, v e C’O (0,T; HQ' (@®YH) n LZ(O,T ;T (RY), can

~ be shown in the same way as in step 4 of (i). So we omit the details.
This completes the proof of Lemma 2.6.

Next we state the existence results for (2.9)l o°

Proposition 2.7 (existence of solutions for linearized equations) Let

us assume Condition 2.1. Let nz=21l and s = s, + 1 (sO= n/2] +1) be
integers and let (u,v) (t,x) satisfy (2.].0)1,2 and (2.11).

(i) Let 1 < & < s be an integer and let fl(t,x) satisfy (2.12)1. If
the initidl data satisfy 3(0) € H%(IRn) , then the system (2.9)l has a
unique solution G € CO (0,T ;HQ(IRH)) n C’l(O,T;HQ'—l(IRn)) satisfying the
estimate (2.16)1.

() Let 2 < % < s be an integer and let fz(t,x) satisfy (2.12)2. If
\/;'(0) € HQ'(IRD) , then (2.9)2 has a unique solution \; € C'O (O,T;HQ(IRD)) n

2+1

C'l(O,T ;HJZ,—2(]Rn)) n L2 0,T; H ~(RY) satisfying the estimate (2.16)2.

s

e e e

e el e LD e

.

)
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Proof. The system (2.9), is written in the form

1

~

du

P S | S0, -1
where A, (t) = % A (w,v) A7 (W) axj » £ (0 = Al(u,v) £, - VYe apply

Theorem II of Kato [37], to the system (2.21),. Let X= (®Y, Y=

(R and s(®) =5 = (1-0)"2. Tt is not difficult to verify the

conditions (i)', (i)™, (ii) of Theorem ‘I in [37]3. Since fl € Ll(O,T;

HSL (IRn)) n CO (0,T; Hz—l(JRn)) by '(2.12) Theorem II in [37}3 gives a solu-

ll
tion ue c2(0,T;EYM@Y) n ¢t (0,T; LE@®Y) of (2.21) | (and consequent-

ly (2.9) LRy There-

l) .
fore u 1is the desired solution. The estimate (2.16)

Moreover it follows that Btu € C’O 0,T;H
1 is an immediate
consequence of Iemma 2.6 (i). Thus the proof of (i) is completed.

The system (2.9)2 is written in the form

~

(2.2, T4 iz(t)x?: Ez(t) , t e [0,7] ,
where zsz(t) = ~ jzk‘Ag(u,v) _lng(u,v) Bijxk , Ez(t) = Ag (u,v)--lf2 . We give

the proof for & = 2. Letting X = P(RY, v=0 @) and S(t) = A, ()
+ B + 1 (with a sufficiently large £ > 0), we can verify the conditions
(1) ', ()", (ifl) of Theorem I. Suppose now that f2 € LZ(O,T ;H2 (IRn)) n

A 0,7; 12@®Y). Then £. ¢ 1r(0,T; M) n 20,T7; 12(®Y), and there-

2
fore Theorem II gives a solution V € CO(O,T ;H2 @®YH) n C’l(O,T; 1 (RY))

of (2.21)2 (and consequently (2.9)2). For general £, satisfying (2.12)2

2

with £ = 2, we consider the problem
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2.22° 2w’ - | Fwme £ L) = v,

3k 2 ijk 2,6

where £, , = ¢g*E,. Since £, . 20,1582y o Po,r; L2@Y),

2,6
the above consideration shows the existence of a solution v6 € CO(O,T;
2

~

12 (®Y) 0 cH(0,T; L

S

(®Y) of (2.22)°. 2pplying (2.16), (with £=2) to
the system (2.22) - (2.22)6', we have |

t

Il - w Hg < C(T)JO I (f"?_’6 - ) 50 (D) Hidr

for some constant C(T). Since £
0

2,86 f2,6' + 0 (as §, §' -~ 0) strongly
in ¢ (O,T‘;Hl(ﬂfh) ' V5 is a Cauchy sequence in CO(O,T ;HZ(Hfﬁ).

Therefore there is a Vv ¢ CO(O,T ;HZ(BfB) such that v6 + v strongly in

AP, (EY) as 6 + 0. This limit v is a solution of (2.9)., and

o7
SO we know at§ € CO(O,T ;LZ(BfH). Hence, by Lemma 2.6 (il), we have a
regularity v e L2(0,T; Ho(R)) and the estimate (2.16) , with 2 = 2.

Thus the proof for £ = 2 is completed. We can give the proof for 2 <
L < s by induction, but we omit it. This completes the proof of Propo-

sition 2.7.

2.4 LOCAL EXISTENCE

First we shall consider the linearized system of (2.1):

Ap(u,v)u

1

J A
et Z All(u,v)uxj = fl(u,vnyV) ,

(2.23)
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0 Fay 'k ~
l A, (u,v)vt - Z Bg (u,v)vxl = f2 (u,v,DXu,DX_v) ,
Jk ]
with the initial data
(2.24) (u,v) (0,%) = (u,v)(0,x) = (uofvo) x) . . . .

-i; 1 (SO= [n/2] +1)
- V) E'HS(]RH)

- Iet Conditions 2.1 and 2.2 be assumed and let s = Sq

be an integer. For (1y,V,) (%) we assume that (u, —E,vo

and

(2.25) (uyrv,) (¥) € 0 for any x ¢ R,

0

where 0, is a bounded open convex set in IR' satisfying 0. c 0. For

0 0
(u,v) (t,x), given functions on QT’ we assume that
- 0 S (R 0 LS—1l,n
(2.10)1 u-ue ¢ (O, T;H (IR)) , atueC'(O,T,H (IR))) ,
v-vec0,7;85@®) nl0,7; B5N@EY)
(2.10),, | |
| a.v e ¢20,m; B2 @) o Lo, BN
(2.11) (u,v) (t,x) € Ol for any (t,x) e QT P
(2.26),  sw |-, v-9) (@] + tH -9 (0|2, dr <,
o<T<t o s 0 s+l
t 2 2
(2.26)2 Hat(u,v) (1) Hs——ldT <My for t e [0,T] ,

0
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where 0; is a bounded open convex set in K" satisfying 51 c 0, and

M and M, are constants. We denote by X,?(Ol,M,Ml) the set of func-
]

tions (u,v) (t,x) satisfying (2.10)1, (2.10)2, (2.11), (2.26)l and
(2.26)2.

We shall determine 0,, M, M; and T so that for (u,v) ¢ X,?(Ol,

1’ 1
M'Ml) , the initial value problem (2.23),(2.24) has a unique solution

o~ . s . s .
(u,v) in the same XT(Ol’M’Ml)' That is, the set XT(Ol,M,Ml) is in-

variant under the mapping defined by : (u,v) > (u,v).. To state more pre-

cisely, we need some preparations. Iet (u,v) e Xg(Ol’M’Ml) . Then Con-
dition 2.2 together with the estimates (2.5) (with k=2=s-1 and s-~+s~1

z S8

o) and (2.6) Gwith j=s-1) gives

(2.27) £, wv,D ¥ |l + [[£, (v, Du,Dv) || _; < CM

o
[

AN

for some constant C = C(Ol,M) . ILet (u,v)(t,x) be a solution of (2.23)
1] . ~
satisfying (2.10)1, (2.l0)2 and (2.26)l with M replaced by M. Then,

by using (2.5) (with k=2=s-1), (2.6) (with j=s) and (2.27), we have

t Val A ~ N
(2.28) J lo ) (0 [|2_ar < o (1 + of + 1))t}
0

with some constant C3 = C3 (Ol,M) . Now fi}i a constant dl so that 0 <

dl < dO = dlst(OO, 90) , and take Ol, M and Ml as follows:

i

s

0. = d,-neighborhood of 0

1 1 (VI

S

(2.29)

M= 2C, ||u0—f1', \% —\7”8 , M, = 2C

0

oo

e
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where Cl = Cl(Ol) and C3 = C3(01,M) are constants in ILemma 2.6 and

(2.28) , respectively. Then we have:

Proposition 2.8 (invariant set under iterations) Let Conditions 2.1

and 2.2 be assumed. Let n=1 and s 2 g * 1 (sO-—— n/2] +1) be inte-. .

gers. Suppose that the initial data satisfy (u0-f1_,v

-9 e (RN and

0
(2.25). Then there exists a positive constant "I‘O, depending only on ‘OO,
— - . s .
d, and Huo-—u, VO—VHS, such that-if* (u,v) e XTO(Ol,M,Ml) with 01,

M and Ml defined by (2.29), the initial value problem (2.23), (2.24)

has a unique solution (u,v) <in the same X'; (0, ,M,M,) .

0 1 1
Proof. The existence of a solution (u,v) +to (2.23),(2.24) follows from
Proposition 2.7 with & = s. So it suffices to estimate the solution.

By 12.16)1 2 (with 2 =s) we have

N a 5t~ _ 5
(2.30) l-w, v-9) © | +f | v-v) (0|, dr
0
1/2
< CZGC(HMlt ){ lu -3, v -7]|° + ot +b)}
=1 o "0 s

for some constant C = C(0;,M). Here we have used the estimates £ (a,

v,va)HS < C(M+HDXV“S) and (2.27). Take T, so that

ety +my 767 ?) 2 — —12
e <2, QT (1+T) < Huo—u, v —VHS .

0 0

Then the right hand side of (2.30) is majorized by 4Cl2 ||uO -u, vo—ﬂli

= MZ. Therefore the solution (u,v) satisfies (2.26) 17 which also gives
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’(2.28) with M= M:

t NN
J I8, (,v) (1) Hz_ldr < C321V12 (L+2t) .
0 |

The right hand side of the above inequality is bounded by 4C32 M2 Ml2

provided T 3/2. So the estimate (2. 26) 5 is proved to be satisfied

0
for the solution. On the other hand this estlmate gives

o Ene i/z
| (u,v) (t,%x) - (uyrvg) (%) | < Cfo Hét(u,v) (1) Hs—l dr < aqt .

where C is the constant in (2.4). Take ’I‘O so that CMlTOl/2 < dl."
Then the last inequality implies that the solution satisfies (2.11).

This completes the proof of Proposition 2.8.

Based on Proposition 2.8, we shall introduce the successive approxi-

mation sequence {(u",v) (£,x) )}

=0 for the initial value problem (2.1),

(2.2) as follows:
@, (e = @9 .

and for n = 0,

0, n._n n+l+ZAj(un n n+l__f

Al(u SV )ut : ,V )ux' l(u ,v ,D N4 ) ,
+1 J J
(2.30)"
n _n, ntl jk, n _n _ntl _ n.n_.n_._n
A W, vV, —ZBZ W, vV = £,(u,v,Du ,DV) ,
ik ik
+ +
2.32™ W@ 0,5 = w,v) e .

0’70
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By Proposition 2.8 the sequence (un,vn) (t,x) 1is well defined on QT
0
for all n = 0, and is uniformly bounded with respect to n > 0, i.e.,

(u v ) € )gST (Ol,M Ml We will show the convergence of the sequence

n+l _

(u 'V ) as n -+ «, Consider the dlfference (2.31) (2.3l)n. Iet

W,V = (un+l— D +l-—vn)' for n = 1. Then we obtain .
0, n_n’'n n _n’'n 2
A (a,v u Z (u RY )uxj = fIi ,
(2.33)" :
0O, n_n Jk,. n _n 5
(u,v ) z B (u’,v )v = £ ,
2 t ik ij 2

A~

2.3 @Y 0% = (0, 0) ,

where

A\ - —l —
£ = 2w @ Wt e @ - Al
£ WD Ty - 20w ]l W T W -
1 X : 11
_ A(i(un—l,vn—l) —13 ( n- l S l)} L
J
fn _ 0 n n {Az(un,vn) -1 n n n n 0, n-1 n-1 —l.

f (u,v ,Dxu ,va) - Az(u SV )

n-1 n-1 n-1 n-1 o0, n n n l
-fz(u Vo T,D U ,va )l - Az(u ,v Z{ )

'Bjk n._n O( n-1 n-1 —LBjk n-1 n—l

(u A% ) - A2 u Y ) 2 (u Ay )}an.xk
J

By the estimates (2.5), (2.6) and (un,vn) € X?. (Ol,M,Ml) , we find a con-
0

stant C = C(Ol,M) independent of n = 1 such that
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I M T el R
Hfzus_z < Cllu” TV Hs—l .
Therefore, applying (2.16)l 2 (with & =s-1) to the system (2.33)n, we get
. ' W .'
2 t “n 2 t
(2.35) sup || @ (0|12, +J v [lgar
Ost<t S 0
e+ e/ (-1 ol 2
t(l+t)e { sup H (u RGN
O<t<t

S

t ~
+ J anfl(T)l|2dI }y,
0

where C = C(Ol,M) is a constant independent of n > 1. Take T. soO

1
small that

7 1/2
C(T1+ 1T

<1.

T <T., Cr, (L+T))e

1

Then it follows from (2.35) that (4" -u,v"'-%V) is a Cauchy sequence in

A o,r. ;B H®Y)). Therefore there is a (u,v) (t,x) with (u-T,v-9)

1
¢ co(o,Tl;HS'l(mn)) such that (@ -u,¥'-v) » 0 strongly in C° (0,1 ;
Hs_l(IRn)) as n - «. On the other hand it follows from the uniform esti-

mate (u ;v ) € XT (Ol'M M ) c XT (Ol,MMl

{n'} of {n} such that v' -v + 0 weakly in L (o,T

) that there is a subsequence

s+l,. n
LPH ().

Furthermore there is a subsequence {n"} = {n"(t)} of {n'}, depending

on te [O,Tl], such that (un —u,vn -v) > 0 weakly in HS(IRn) for

every fixed t ¢ [O'Tl]‘ Thus we have a solution (u,v) (t,x) of (2.1),
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(2.2) satisfying

u-1de L°°(o,Tl ;E(RY)

v-VeL (0,7 H°(RY) n L2(O,Tl;HS+l(]Rn)) .

Mbreover it follows that

o C.s-1 '
du € L7(0,T) i H (®Y)

0,V < Lm(o,Tl;Hs"z(IRn)) n L2(Q,Tl; B RY) .

Therefore, by Iemma 2.6, we have a regularity u-u,v-v) e CO (O,Tl;
HS(IRn)), and consequently Btu‘e C’O(O,Tl;Hs_l(IRn)) and 8tv € C’O(O,Tl;

1572 (®Y)). Thus we have proved:

Theorem 2.9 (local existence) Let Conditions 2.1 and 2.2 be assumed.

Let nz1 and s 2s,+1 (so > [n/2] +1) be integers. Suppose that the

0

initial data satisfy (uO—E,V -9 e B°(®Y) and (2.25). Then there

0
ewists a positive constant T; (STO), depending only on 0p> dq and

O-E, v0—§f|ls, such that the initial value problem (2.1),(2.2) has a

unique solution (u,v) € Xi (Ol'M’Ml)’ where Ol’ M dnd Ml are deter-
~ 1

mined by (2.29). In particular, the solution satisfies

|lu

s-1

u-u € CO(O,Tl;HS(IRn)) n C‘l(O,Tl;H (JRn)) >

s-2

v-v e 20,1, ; BS(@®Y) n Cl(O,Tl;H (EY) o LZ(O,Tl;HS+l(IRn)) ,

1
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t
s | - = 2 — 2 — 2
2.36) su u-u, v-v) (1) + (u-w) (1) + (v=v) (T) 6!
( s | I3+ la-D@IZ+ llw=9 @,
< C42 lluy -, vo—ﬂli - for te [0,14],

where C, > 1 isa constant depending only on 0p» & and HL}O-G, Vo -

-l -

Remark 2.3 (1) In the special case m" = 0 (resp. m' = 0), we can show
a similar local existence result for the symmetric hyperbolic system
(2.1) ' (resp. symmetric parabolic system (2.1)").

(ii) The proof .and the statement of Theorem 2.9 remain valid in the case
when ng (j,;k=1,++++,n) depend on DV as well as (u,v), i.e., ng =

ng (u,v,DXv) ; provided that s 2 s, + 2 is assumed.

.

.

e

.

L

i
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CHAPTER III

QUASILINEAR SYMMETRIC HYPERBOLIC-PARABOLIC SYSTEMS, II
( GLOBAL EXISTENCE ) '

3.1 INTRODUCTION

Let (u,v) be the constant state in Condition 2.2. Then (u,v) (t,x)
= (u,v) is a constant equilibrium solution of the system (2.1). In this
chapter we shall prove that under appropriate conditions a solution to

the initial value problem (2.1),(2.2) exists for all time in a small neigh-
borhood of (u,v) and decays to (u,v) as t - «, that is, the equi-
librium state (1,v) is- asymptotically stable as t - «.

Our analysis below is based on a study of the dissipative structure

of the linearized system for (2.1) around the equilibrium state (u,v).

3.1 2@Wu
(cf. (3.16)), where all the coefficients a’(@@,¥), A @ %, BN@¥ and
L(u,v) are constant square matrices of order m; they are given explic-

itly by
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. Ag(u,v) 0 _ Ail(u,V) A::{z (u,v)
A’ (u,v) = ., AMEw =
0 j J
- 0 Az(u,v) AZl(u,v) A22 (u,v)
(3.2)
. 0 0 | ; Lll(u,V) Ly, (u,v)
BJ (U,V) = - > T L(U.,V) = . r
jk -
0 B2 (u,v) LZl(u,v) L22(u,v)
where -
j - —
,, AlZ (u,v) DC .fl(u,v,O) ’
(3.3), . J
j - _ J - _
AZl(u’V) = Dnjfz(u,v,0,0) ; A22(u,v) chfz(u,v,0,0) ’
Lll(u,v) = - Dufl(u,v,O) ’ le (0,v) = - val(u,v,O) ,
; (3.3)2
LZl(u’V) = - Dufz(u,v,0,0) , Lzz(u,v) = - vaz (u,v,0,0) .

) ]
Here n = (nl,----,nn) e ®™ and g = (;l,----,(;n) c ”™ are vectors

corresponding to Du and D v, respectively; Dg denotes the differ-
J

entiation with respect to Cj and so on.
We assume the following conditions on the linearized system (3.1);
these conditions guarantee the dissipative structure for the system (3.1)

(see Proposition 3.A.4).

Condition 3.1

(1) al (U,v) is real symmetric and positive definite,
(i) AJ(@G,¥) (§=1,-+++,n) are real symmetric,

(iii) Bjk({fﬁ) (j,k=1,++++,n) are real symretric and satisfy B
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B]‘k Q,v) ; E Bjk (E,V)ijk is (real symmetric) positive semi-definite for
Jk n-1
any w = ((l)ll""lwn) e S r

iv) L(u,v) is real symmetric and positive semi-definite.

Condition 3.2 There exist .(real) constant square matrices K (J=1,e°"
+,n) of order m such that
(i) N (u,v) (3j=1,++++,n) are real anti-symmetric,

(i) the symmetric part of the matrix ) {KJAk (u,v) + pIk (u,v) }ijk +
- Jk -
L(u,v) is positive definite for any w = (wl,-~ .. ,wn) e s" l.

t is noted that, in view of (3.2), Condition 2.1 (i) and (ii) imply Con-
dition 3.1 (i) and (ii) respectively.

Under these conditions it has been proved by Umeda, Kawashima and
Shizuta [81] that the solution of the linearized system (3.1) with the
initial data U(0) € Lz(]Rn) n Lp(]Rn) (L <p<2) decays at the rate £
(With Yy=n(l/2p-1/4)) as t » « (see appendix 3.A.1). A combination of
this decay estimate with the energy inequalities for (2.1) gives the main
result of this chapter. "Let n = 3. If the initial data are close to
the constant equilibrium state (@,v) in H- (R o IP(®Y) with s>
“[n/2] +3 and 1<p<2n/(nt2)), then the initial value problem (2.1),(2.2)
has a unique global solution in a small neighborhood of (u,v) and the
solution tends to (u,v) at the rate rt—Y (with y=n(l/2p-1/4)) as t
> o." (Theorem 3.6).

The plan of this chapter is as follows. In section 3.2 we give the

a priori estimates for higher order derivatives of small solutions of

(2.1) by a somewhat technical energy method, which make use of the K7
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in Condition 3.2. For similar energy methods, see [54],[66],[41],
[38]3’4. In section 3.3 we shall prove that small solutions of (2.1)
have the decay rate th, Yy=n(l/2p-1/4), if n=3 and if 1 < p <
3/2 for n=3 and 1l <p <2 for ﬁ > 4; this is an immediate con-
sequence of the same -decay result for linearized system (3.1). This
decay rate also gives the a priori estimates for lower order aérivatives
of solutions when n 2 3 and i < pv< 2n/(n+2). The global existence
of a solution of (2.1) is proved in section 3.4 by the standard continu-
ation argument, based on the a priori estimates derived in sections 3.2
and 3.3. Section 3.5 contains some global existence results for (2.1)
in the case that the nonlinear terms satisfy additional conditions. In
section 3.6, as an application of our results, we shall treat the equa-
tions of heat conduction with finite speed of propagation.

In the appendix the linearized system (3.1) is investigated on the
decay estimates and the spectral analysis. The decay estimates in ap-
pendix 3.A.l1 are used in section 3.3. The eigenvalue problem associated

with (3.1) is discussed in appendix 3.A.2.

3.2 A PRIORI ESTIMATES, I (ENERGY ESTIMATE)

Iet s 2 s, + 1 (sO==[n/2]-%l) be an integer and let T > 0 be a

constant, and consider a solution (u,v) (t,x) of (2.1),(2.2) satisfying
s-1

u-ae 0,8 @Y) ot o,T; BETHERY)
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(3.4) v-ve 0,85 mY) 0 cto,T; 5TAEY) ,
Du e 20,1; 85 @R Y) DV ¢ 20,7 ; 15 (®Y)

(3.5) (a,v) (t,x) € 02 for any (t,x) € o

where 0, 1is a bounded open convex set in r" satisfying 0, c 0. For

2 2

the solution we introduce

G.6) N (0= s |- v-R ]2

Tt

t
+{t'm&gh)uii-+npgﬂﬂlﬁdx for 0st'<tsT,

and we simply write Ns(t) = NS(O,t). Then by (2.4) (with p=« and s==so)

we find a positive constant a, such that

(3.7) if NS (T) < ay then (3.5) is satisfied automatically.
0 :

So it is convienient to assume NS(T) < a,. instead of (3.5).

0
The purpose of this and the next sections is to obtain the a priori

estimate for NS(T) when NS(T) satisfies a smallness assumption. Our

first result is stated as follows:

Iemma 3.1  A4dssume Conditions 2.1, 2.2 and 3.1. Let n=1 and s = s,
+ 1 (sy=1[n/2]1 +1) be integers, and let the initial data satisfy (uo-ﬁ}

vb~f§3 € Hs(ﬂin). Let (u,v) (t,x) be a solution of the problem (2.1),

(2.2) satisfying (3.4) and NS(T) < a Then there is a constant C =

0"
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C(ao) > 1 such that the following a priori estimate holds for t e [0,T].

t
(.8 o @2 + JO In2v(o 12, + 12D, ) (0 |2 ac
< c{ ||p, (uy,v,) ll_f,_v;L + NS(T)3} s

where BT is the orthogonal projection onto the range of L(u,v) ( = the

orthogonal complement of the null space 'of L(u,v)).

Proof. We first rewrite the system (2.1). Since fl('ﬁ,V,O) = £, (a,v,0,0)

= 0 by Condition 2.2, the lower order terms fl and f2 can be written

in the form (see (3.3) )

1,2

(3.9)1 fl(u,v,va) = - § Aj (u,v)v ; -

- {Lll(E,G) U-0) + L. (@9 v-91} + £ v,DV)

12
_ _ i T J (g -
(3.9)2 Iz(u,v,DXu,va) g{AZl( , )uxj + A22(u,v)vx'}
- {LZl(u,v) (u-u) + L22(u,v) (v-v)} + f2 (u,v,DXu,DXv) ,

~

where the remainders El and f2 are smooth in each argument and satisfy

%l(u,v,va) =0({|lu-u, v-v| + IDXV[}z) ,
(3.10)

‘Nfz(u,v,DXu,DXv) =o0({|u-u, v-v| + le(u,V) l}z)
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for |u-u, v-v| + le(u,V)[ + 0. Substitute (3.9) into (2.1) to

1,2

obtain }
|

‘ 0 ~5 3k S

(3.11) A (u,V)Ut + ) A (u,v)UX -} B (u,v) U, + L(u,v)U

4 j J Ik B
= f(u,v,Dxu,DXv) ,
where U=t(u—i1—v—§7—) f(u,v,D u,D V) = t(% (u,v,D.v), f.(u,v,D u,D.V))
4 14 ’_ 7 X ' X l ¥ 14 < r 2 I 7 X 1 4 bie 7

j J ==
All(u,v) A7, (u,v)

2 @) AL @)

It suffices to prove the lemma for sufficiently smooth solutions be-
cause the arguments on the mollifier are also applicable. Apply Df“{ (1<

2 <s) to (3.11). The resulting system can be written in the form

L =0 % ~5 Lo v oodk = oL .
(3.12) A" (4, v)D U + Z A (u,v) DU, ) BT (u, )DU, , +L{,v)DU

] i ik 7%
ot~ 2
= (Fl ' Di’l'xz(u,v,DXu,va,DXv) ),
where
Ag(u,v) 0

~0
A (U,V) = 7

0,— —
~ 0

(3.13) F A (u,v) Df{{A(])_ (a,v) _l%

1 1 1 (u,v,DXV) } -

1
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- 20 ,v) %{[Df;, A (v e v le, + ok 2w Al @y %)

(-

- 2w o, 22w L, @9 @-1) L, @9 -9

2, _ 0==.0, . -l
(3.13)2 h2 (u'V'DX?'DXV'DX_V) = Az(u,v)vAz(u,v) f2 (u,v,DXu,va)

+A(uv)z{A (a,v) lBjk(uv —A(uv) lBJ (u,Vv) }v -
jk : xjxk
-1 0

- A (a, ){A (W) © - Ay (u,v) }{L (u v) (u-u) + LZZ(E,\'?) v-v)1} .

It should be noticed that the equationg for Diu are regarded as a lin-
ear hyperbolic system whose principal part is of variable (not constant)
coefficients. Take the inner product (in IRm) of (3.12)2 with DiU, in-
tegrate the resulting equality over Q= [0,t] xIK* and then add for

2 = 1,*+++,s. Noting that Ag(u,v), -Ag(—ﬁ,g) and ) Bjk(u V) w

| k
- Jk
positive definite and that L(u,v) is positive semi-definite, we have by

are
integration by parts
2 t o2 2 + 2
(3.14) “DX,(U’V) (t) Hs—l + (0 ”DXV(T) Hs—l + ||p D, (u,v) (1) Hs__ldl'
5 t
< cf HDX(uO,VO) Hs_l + fo R, (1) dr }

where C = C(ao) > 1 is a constant and

0 S0
R (£) = ] J Claj v |+ g[ L) |)\D + |[F [ [Du] dx +
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+ J !thz (u,v,DXu,va,Div) | lDle dx +

I
24— 2 9+1
+ Q;E‘Z J |DX lhz (u'v’Dxu’va'va) I le Vl dx .

By the estimates (2.5), (2.6) and (2.7) we have
R (1) < Clu-T, v-|| ([IpullZ + [In]2)
1 - ! s X Hg-1 x s

with a constant C = C(ao) , where NS (T) < a is assumed. Therefore the

0
desired estimate (3.8) follows from (3.14) easily. This completes the

proof of Lemma 3.1.

Next we show the estimate for LZ(O,T ; 52 (R )-norm of the deriva-

tives D}Z{u .

Lemma 3.2 Assume Conditions 2.1, 2.2, 3.1 and 3.2. Let (uO,VO) (x) and
(u,v) (t,x) be the same as in Lemma 3.1. Then there is a positive cons-

tant C = C(ao) such that the following a priori estimate holds for t e

[0,T].
£ 2 2 t o2 2
(3.15) IDju(n) [|5_,dr - cl|p aw) )|y + | [IDv(D|[L; +
0 0
+ ||P+Dx(u,v) (1) “i—l dr} < cf{ HDX(uO,vO) Hi_l + NS(T)3 J

Proof. We again rewrite the system (2.1) such that the linear pars at the

constant state (u,v) appear in the left hand side and the nonlinear parts
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in the right hand side:

I @9, -] BV, + L@V
j j j

(3.16) a0 @, 9 U,

2 .
= h(u,V,Dxu,DXv,va) ;o , .

t — ot ’ 2 .
where U=, (u-u,v-v) and h = (hl,hz) : h2 = hz(u,v,Dxu,va,va)' is

given by (3.13)2 and h =hl(u,v,DXu,D}‘{v) by

1
0= =0, -l
(3.17) hl(u,v,DXu,DXv) = Al(u,v)Al(u,v) fl(u,v,DXv)
0@ -1 4 0= =-13 ~ = _
a; (u Z{A (w,v) Ay, (V) - Ay (W) Ay W) ha
j J
- 22 @9 {A(i(u,v)_l - 2@ z @@, -
-1

0,— = ;A0 0,—=-1 — = — — = -
= A; (W) {3y (w,v) © - A (0, v) "HL  (wv) (a-u) + Ly, (u,v) (v=-v)}
:Apply D (1<% <s-1) to (3.16) and then multiply the resulting system by
the matrices K] (in Condition 3.2). Take the inner product (in ®") of
these equations with the vectors DiUx , integrate them over Qt and then
add for both j = 1,***»,n and & = 1l,°+*-,s-1. By Condition 3.2 we have
2

3.0 —— . %
< K°A (u,v)DXUt, DXUX >

..__1"- jo—— Q’ Q’ — * % 00 00
_.2{<KA (u,v)DXU, DU, >}JC { }X.

and the estimate
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X J < ¥ @, %) iU , Df“{UX > dx
ik % 5

> ¢ ool - el 2]+ (e )%

with constants ¢ and C (0<c<C). Therefore the above calculation

yields the estimate
5 t

t o9 : 2 2 2
(3.18) IpZ @) (12, - cllip w5, + | DVl +
0 0

+HP+D (uv)()l[2 dt} < c{||p_(u V)H2 + - (t) dt }
x \WVI AT g g T 7= RUIP WMy rVg) llgoy ORZ !

where C 1is a constant and

s-1 (t
R, (t) = y J lDih(u,v,Dxu,va,Div) | lDiH'(u,v) | ax .

By use of (2.5), (2.6) and NS(T) < ayr We know a constant C = C(ao)

such that
— —_ 2 2
R, (t) < Cllu-u, v-v]|_( HDqus—l + |Ipvl[3) -

This estimate and (3.18) yield (3.15). This completes the proof of Lem—

ma 3.2.
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3.3 A PRIORI ESTIMATES, II (DECAY ESTIMATE)

In this section we shall get the decay estimates of small solutions
to the problem (2.1),(2.2). Let (u,v)(t,x) be a solution of (2.1),
- (2.2) and put U(t,x) = t(u-eﬁ,v -v) (t,x). Then, noting (3.16), we ar—

rive at the expression

-

t
@19 v = @OV E RN Yy, +J e TS @O V2 () ary
| 0
where U, = t(uO—E,vO—\‘r), and h= “(b ,h,) is given by (3.17) and

(3.13)2 ; e_ts is defined by (3.A.13) (for the definition of S(§), see
(3.A.4)) in appendix 3.A.1l. Applying the decay estimate (3.A.14) to the

expression (3.19), we have:

Proposition 3.3 (a priori decay estimate)  Assume Conditions 2.1, 2.2,

3.1 and 3.2. Let n=3 and s = s, + 2 (so= [n/2] +1) be integers, and

let pe [1,3/2] for n=3, pe [1,2) for n=4 and p e [1,2] for

-0V, -V) e (@Y 0 IP@®EY  and put

n > 5. Suppose that (u 0

0

-, vV

(3.20) llug - VO_VH,Q,,p = ||lu 0

. =3l + Hg =T vy =l

for & < s. Let (u,v)(t,x) be a solution of (2.1), (2.2) satisfying

(3.4). Then there exist positive constants a; (sao), 61 = cSl(a and

l)

C5 = Cs(alr(S -{;H

sié

l) > 1 such that 1f NS(T) <y and Huo—u, 4

s-1,p
then the following decay estimate holds for t e [0,T]. '

l.’




s wmmw@gmm«m«ﬁm%g

s

P

o

SRR

G.2) - v-R @l < cg@Hn T flug-w v -l g

S e

st

s

e T

S

‘where Y =n(l/2p - 1/4).

Corollary 3.4  Assume the conditions of Proposition. 3.3 with p satis-

-

fying 1 <p < 2n/(nt2). Then the following energy estimate holds for

i

te [0,T]. .

t
— —_ 2 — — 2
(3.22) l-u, v=-%) (|| _; + fo | w-u, v-v)(0)[| _;dr

-v)|2
0 S—

< Cluy-ur v 1p

where C = C(al,cSl) > 1 41s a constant.

Proof of Proposition 3.3 Applying (3.A.14) (with 0<% <s-1) to (3.19),

~ we obtain the inequality

(.23 Juwllgy sca+o T ully o+

' t -c,(t-1) _
+ CJ 2 n/4

e Il + @+e-1) [n() || jdr
0 _ L

with v = n(l/2p - 1/4) and a constant C. From (3.17) and (3.13)2 we

see that for [u-u, v-v| + [D (u,v) | + 0,

2 — — 2
(3.24) h(u,v,Du,Dv,Dv) = O0({[u-u, v-v| + le(u,v)I} +

+ Ju-1, v -] |pv])
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- Therefore if NS(T) < a, with s =2 oh + 2, then

.25 nllgy s cllullg Cllullg + Hingvlig)

P ¢ JJull3

 hold for some constant C = C(ao). Substitution of (3.25)l 5 to (3.23)
. r

yields

=Y
lo@ gy s ca+n ™ lluglly , +
t —cz(trr)
+C U(t) J U(1) dr +
o 0wl j e T @l
t t -2c,(t-17)
+c(] D (1) nidml/z({ e 2 uml|2an)? «
J0 0
t
+CJ (l+t—TY{M4HUﬁ)H21dT.
0 | s
= Y i
Put HIU(t)H[S_l'Y Oixﬁt(lm) Ju(t) [l _, - Then it follows that
6.2 Mo@Ilgy s cllleyp *
2
+ cupan @ flluwlligy , + cuy@lliv@illig, | -

where

- =Y
ul(t) sup (L+T (l—le) dTl +

T —C,(T-1,)
)Yfez 1
O<t<t

0
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T —2¢, (1-1,) _
+ sup (l+T)Y{j e 2 1 (L+1) 2Ydrl}l/2 ,
O<t<t 0
T -n/4 -2
uy(6) = sup (1+T)Yf (L+t-1y) (L+1y) Ydrl.
O<t<t 0 .

(<a;) and & such that if N_(T) < a; and gl

1= op(ay)
then [[[U(t) |||

1
<C HUOHS_l o holds with some constnat C =
’

s~-1,p
1’ s-1,Y

l). This implies (3.21). Thus the proof of Proposition 3.3 is

completed.

We next prove Corollary 3.4. Since vy = n(l/2p-1/4) > 1/2 for
nx=3 and 1 <p < 2n/(nt+2), the function (l-+t)_Y is square inte-
~grable with respect to t ¢ [0,*). Therefore (3.22) is proved as a

direct consequence of (3.21). This completes the proof.

Finally in this section we make a summary of the a priori estimates
of small solutions to the initial value problem (2.1),(2.2). ILet us com
bine the estimates in ILemmas 3.1 and 3.2 and Corollary 3.4 so as to make
(3.8) + (3.15) xa + (3.22) with a positive constant o satisfying aC

< 1. Then we obtain the inequality for NS(T):

N (D)% + J | -3, v-9) (b ||2at

< c{flu, - v —vn;p +N (07,

0
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from which we can deduce that both NS (T) and the L2(0,T ; L2 (]Rn ) ) —norm
of (u-u,v-v) are bounded by C Huo-—ﬁ, VO_‘—;Hs,p if NJ(T) is suit-

ably small. Thus we have proved:

Proposition 3.5 (a priori estimate)  Assume Conditions 2.1, 2.2, 3.1

and 3.2. Let n=3 and s = So + 2 (SO= [n/2] +1) be integefs, and let

1<p < 2n/(n+2). Suppose that (uO'-E,vO—G) e BB (®Y o IP(®RY. Let

(u,v) (t,x) be a solution of (2.1),(2.2) with (3.4). Then there are pos-
1tive constants a, (Sal) and C6 = C6 (az,él) > 1 (61 18 the constant

in Proposition 3.3) such that if N, (T) < a, and Huo—u, VO—VHS"l,P

< 61, then the following a priori estimate holds for any t e [0,T].
2t — =2 2 — —2
(3.27) N (6) 7 + [0 | a-u, v-v) (0) ||7dt < Ce lluy-u VO—V“SIP .

Remark 3.1 (1) In special cases m' =0 and m" = 0, Proposition 3.3
and Corollary 3.4 (and therefore Proposition 3.5) are valid for s = Sy

+ 1 because the estimate (3.25)l for h is replaced by

HhHS_l <C HVHS-—l HDXVHS for m' =0 ,
”hHS_l <C “uHS_l HUHS for m" =0 ,
where N_(T) < a, (with s>s +1) is assumed.

(il) The a priori estimate (3.27) has been derived by a combination of
the energy inequalities for quasilinear equations and the decay estimates

for linearized equations (with constant coefficients). This method was
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"previously employed by Matsumura and Nishida [55] 2 for the equations of

compressible viscous fluids in IR3 .

3.4 GLOBAL EXISTENCE

Based .on the a priori estimates (Propositions 3.5 and 3.3) and the
local existence result (Theorem 2.9), we can conclude the global exist-

ence and asymptotic stability of a solution to the problem (2.1),(2.2).

Theorem 3.6 (global existence and asymptotic decay)  Assume Conditions

2.1, 2.2, 3.1 and 3.2. Let n=23 and s =s. + 2 (s, = n/2] +1) be in-

0

tegers, and let 1 < p < 2n/(n+l). Suppose that (u —E,VO—;I—) ¢ H°(RY)

0

0 P @Y and define ||u (with L <s) by (3.20). Then

0~ W Y, —VHLP
there exists a positive constant 6, (<8, a,) such that if Huo -u,

v, =v]|| < 6 then the initial value problem (2.1),(2.2) has a unique

0 s,p 2°
global solution (u,v) (t,x) with

2

u-T e 20,0 ;ES@Y) n cr0,0; B5T@Y) 0 120, ; 55 (@)

v-7 e 20,0 BSMY) n ¢t (0,0; B52(@EY) n 120, ; 55T

(RY) .

The solution satisfies the following estimates for t e [0,°).

- 2 (t - 2 — 2
(3.28) || (u-u, v-v) () Hs + [0 | (w=-1) (1) Hs + || v=v) (1) Hs-l—ldT

:
%

i

S

i
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<cla

6

-, v, -9
0o "0 s,p’

(3.29) lw- v=9) Bl = c5(;+t)‘Y lug - vy -]

O S_l 'p 2

where Y =n(l/2p - 1/4) ; (36 and C5 are constants in (3.27) and

(3.21), respectively.

Remark 3.2 In special cases m' =0 ‘and m" = 0, the above results
also hold for s = s, + -1, see Remark 3.1 (i).

Proof of Theorem 3.6 Take 62 so that

—— 2,1/2
62 = mln{c‘il, a2/C4, aZ/C6(l+C4) }

Then the solution of (2.1),(2.2) can be continued glopally in time pro-

vided the smallness condition Huo -u, v is satisfied. In

fact we have Iluo~ﬁ, VO-?/"HS <8,<a,<a

Oﬂvlls,p < 62
Therefore, by Theorem 2.9,

there are constants Tl = Tl (ao) >0 and C

solution exists on [O,Tl] and satisfies NS(T

= C4(a0) > 1 such that a

) < ¢, llug - v, -9l -

1

0~ Vo —VHs—l,p

Propositions 3.5 and 3.3 give the estimates (3.27)

0

Since N_(T{) <C,5, <a, (<a;) and | <6, <8 by

472~ 72
the definition of 62,
and (3.21) for t ¢ [O,Tl].

Noting that || (u-u, v-v) (1)) |4 < NS (Ty) < a, < aj, we apply Theo-

2

rem 2.9 by taking t =T, as the new initial time. Then we have a solu-

1
tion on [T,2T;] with a estimate N_(T;,2T;) < C, | (w-u, v=v) ()|l -

By the estimate (3.27) (for te [O,Tl]) ;, we have
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2 2,1/2
NS(ZTl) < {NS (Tl) + Ns(Tl,ZTl) }
2,1/2 2.1/2 — —
< (L+C,) 7N (Ty) < C(1+Cy) oy - ur v, V”s,p ,
. 2.1/2
from which we conclude that NS(2T1) < G (l+C4) 62 < a,. On the other
hand the condition ||u,-u, v,-V|| < 8, was already checked. There-
0 0 s=1,p 1 K

fore Propositions 3.5 and 3.3 again give the estimates (3.27) and (3.21)
for t e [6,2Tl] . In the same way we can extend the solution to the in-
terval [O,nTl] successively n = 1,2,+++++, and get a global solution.

'This completes the proof of Theorem 3.6.

3.5 SOME FURTHER REMARKS

In this section we shall treat the case when the remainder term
~ _ t ~ ~ ~ ~ .
f(u,v,DXu,DxV) = (fl (u,v,va) ' f2 (u,v,DXu,va)) (fl and f2 are defined

by (3.9)l 2) satisfies the additional condition
14

(3.30) (T - P+)%(u,v,Dxu,DXv) =0(lu-u, v—§7_|3 +

+ Ju-T, v-9||p (v | + |D_(a,9) [

for |u-u, v-v| + IDX(u,v)I >0, where P’ is the orthogonal projec-
tion onto the range of L(u,v). Note that (I - P+)% does not contain
the quadratic term |u-u, V—§l2 (compare (3.30) with (3.10)).

For general E(u,V,DXu,DXv) the existence of a global solution has

been proved for the initial data near the constant state in % (RY n
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PRY), where n>3, s>s.  + 2 (sg=I[n/2] +1) and 1 <p < 2n/(n+2)

0

(see Theorem 3.6). In the case (3.30), we will show a similar existence

result for a class of initial data near the constant state in HS(IRn )
‘,With n=2 and 8280+l.
We start out to improvethe a priori estimates in Lemmas 3.1 and

3.2,

Iemma 3.7 Let n 2 2 be an integer and assume the same conditions as
in Lemma 3.1. We further assume the additional condition (3.30). Then

the following a priori estimate holds for t e [0,T].
— =2 [F 2 o= 2
(3.31) | (u-u, v-v) (t) Hs + J ||, v (1) Hs + [|PT (u=-u, v-v) (1) |l dr
0

_ 2
< cljuy-w, vo-vilg + NS(T)3} .
Proof. We put U = t(u:—ﬁ,v—?r—) and use the equation (3.16). It fol-

lows from (3.17) and (3.13)2 that the right member h is expressed as

> 0 1

(3.32) h=20@9Na0 v % - 20G@9 2 wvt - 203G 9.

L(u,V)U + 0(1U|{1DXU| + ]Divl})

for U] + [DU| ~ 0. The first term in the right hand side of (3.32)
is of the form  + o(|u||E) = £ + o(|u|{|u] + |DU|}?), where (3.10)
was used. While the second term is dominated by O(|U||P'U|). There-

fore we get

(3.32)'  n=%+o(u||p'u| + |u]® + |ul{|pu] + |D2v|}
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for |U| + iDXUl + 0. Now we take the inner product of (3.16) with U

and integrate it over Qt' By the same arguments as in ILemma 3.1 we have

t ,
633 Je-T v-a @12+ [ lny@? P - v ) 2a
. 0 N

_.2 (E
< C{Huo—u, vy vl + JO R, (1) dt }

with some constant C, where
~ 4+ o~ ~
R, (t) =J [£]|p'U| + [(x-P)E||U| + |h-£||U] ax .

It follows from (3.10), (3.30) and (3.32)' that for [U| + [DU| ~ 0, the
integrand in Ry (t) 1is dominated by

o(|U|21P+U| + lU|4 + !U$2{1DXU| + lDivl} + [UHDXU’Z)

Therefore if NS (T) < Ay, we have

2
(3.34) Ry(t) < Cf HP+UHHUHI2J4 + HUHill + ilU[li4(l\DxUl| + [[DvIl) +
# 10l linl%) < e 170l + c ol lInollg )

for any € > 0 and a positive constant C€ = C€ (a where we have used

O)I

the estimate (2.4) for n =2 2 WwWith p=4 and s=s,-1; p=» and s=s,).

0 0
Choose € so small that eC < 1. Then (3.33) together with (3.34) yields

t
(3.35) | -1, v-v) (t) |]2 + [ [|va(r) [|2 + Hp*(u-ﬁ‘,v-?f) (1) sz'r
0 .
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< of |luy -8 vy -7 + 1, >3 .
0

The desired estimate (3.31) is a consequence of (3.35) and (3.8). This

completes the proof of Lemma 3.7.

-

Temma 3.8 Let n = 2 be an integer and assume the same conditions as

in Lemma 3.2. Then the following a priori estimate holds for t e [0,T].

t 2 _ _ 2 t 2
(3.36) ( Ip s |12 &t -l | -T, v-9 (@ ]}2 + f Inwm 12+
0 0

1P =T v-9 () | 2a ) s o fluy -, vy - V2 +N (7).

Proof. Multiply (3.16) by KJ and take the inner product of the result-

ing eguation by U, - Integrate it over O and add for j = 1l,****,n.
]
The arguments in Iemma 3.2 give the estimate

t 2 — =2 [F 2
(3.37) [ Ip, (v @ J|2ar - el | @-5, v-9) 0 |1} +j Ipv(o |2 +
0 | 0
b = 2 — _.2 . (F
+ || (u-w, v=-v) (n) |[{dat} < i Huo—u, VO—VHl + J R, (T) At} 4
0
where

R, (£) = J Ih(u,v,DXu,va,D}Z{v) | D, (@, v) | ax .

Taking (3.24) into account, we have in the same way as in (3.34)
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IA

- - 2
(3.38) R, (t) = C lu-u, V—VHSOHDX(u,V) Il

so—l !

v

provided that n = 2 and NS(T) <a, are assumed. Here we again used

the estimate (2.4) (with p=4 and,s==so-l). Substituting (3.38) into

(3.37), we obtain the estimate (3.36) for s = 1, with Ny

by Ns (T). This estimate together with (3.15) implies the desired esti-
0 .

mate (3.36).. This completes the proof of Lemma 3.8.

(T) replaced

A combination of Lemmas 3.7 and 3.8 completes the a priori estimates
of small solutions to the problem (2.1),(2.2) when the additional condi-
tion (3.30) is satisfied. Indeed, we combine Lemmas 3.7 and 3.8 sO as to
make (3.31) + (3.36) xo with a positive constant o satisfying oC < 1.

Then we cobtain
2 (Foe - 2
N (D)7 + f. P (u-u, v-v) (1) ||“at
0

- =12 3
—u, VooVl AN D7),

where C = C(ao) is a constant and NS(T) < q, is assumed. From this

inequality we can deduce:

Proposition 3.9 (a priori estimate) Let Conditions 2.1, 2.2, 3.1 and

3.2 as well as (3.30) be assumed. Let n =22 and s 2 e + 1 (SO==[N/2]

+1) be integers. Suppose that (u -U,v,. - V) eHSm?L and (u,v) (t,x)

0 0
s a solution of (2.1),(2.2) satisfying (3.4). Then there exist positive

constants ag (:éao) and C

5= C7(a3) > 1 such that i1f NS(T) < a

3 3
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then the following a priori estimate holds for t e [0,T].

t
2 — o 2 2 — 2
(3.39) N (D)7 + JO ”P“"(u—u, v=-v) (’F) ||“ar < C; Huo—u, VO—VHS .

Combining Theorem 2.9 with Proposition 3.9, we can conclude the ex-

istence of a global solution to (2.1),(2.2).

 Theorem 3.10 (global existence) Assume (3.30) in addition to Conditions

2.1, 2.2, 3.1 and 3.2. Let n=2 and s = sy * 1 (sy=[n/2] +1) be in-

0 -V) € HO(RY. Then there exists a

positive constant 6, (<a,) such that if llu

tegers and suppose that (u -u,v

-u, v -—ﬂls <6 then

0 0 3°
 the problem (2.1),(2.2) has a unique global solution (u,v) (t,x) satis-

fying (3.4) with T = . The solution satisfies the estimate

— — 2 t 2 | 2
(.40) -8, v-9 (0] +J Ina(o |2, + Iove |2+
0
+ [P -1, v-9) @ % ar < |y -1, vy -2

for t e [0,%), where C., 1is the constant in (3.39). Furthermore the

7

solution decays to the constant state (u,v) (uniformly in X e ®') as

t > .

.

(3.41) |-y, v-v) ()| _ (55+D)

2)1/2
4

existence of a global solution can be proved in the same way as in Theo-

Proof. Take 63 so that 63=mln{a3/c4, a3/C7(l+C }. Then the
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rem 3.6. SO we omit it. We only prove the decay law (3.41). Put &(t)
= HDX(u,V) (t) “5—-2' Then it follows from (3.40) and (2.1) that

—12
-912

Jo lo(t) | dt + E 320 ] dt < ¢ [lu -, v,

with some constant C. From this estimate we can deduce thatf‘;cl)(t) =
||D, (u,v) (£) Hi__z >0 as t- . This and the inequality

1-a

Iul s— (so+l)

<cC HDqu:;zlluH ‘with a=n/2s,

s— (so+l)

(which follows from (2.4)) give the decay result in (3.41). Thus the

proof is completed.

It is easy to get the decay rate of the solution (constructed in Theo-

rem 3.10) when the initial data satisfy (4, -U,v,=V) € B (R) n IP(®RY.

k‘Iheo‘rem 3.11 (asymptotic decay) Assume (3.30) in addition to Conditions

2.1, 2.2, 3.1and 3.2. Let n=3 and s=s. +2 (s, = [0/2] +1) be in-

0
tegers, and let p e [1,3/2] for n=3 and pe [1,2) for n = 4. Sup-

pose that (u —E,V‘O-?f) e (@Y 0 IP@EY and define ||lu,-u, v

0 0 0~
-—\—/’-Hl’p (with L <s) by (3.20). Then there exists a positive constant 64

(<845 83) such that if la, =u, VO'—V”s,p < 8,, the solution construct-

0
ed in Theorem 3.10 satisfies the decay estimate (3.21) for t e [0,%):

[w-a, v-9) (|| _; < c5(1+t>‘Y llug =T, vy =]

0 s-1,p "’
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where Y =n(l/2p - 1/4).

Remark 3.3 In special cases m' = 0 and m" = 0, the above decay re-

sulfs also hold for s = SO + 1, see Reinark 3.1 (1) .

Proof of Theorem 3.11 Take §

4 SO that 64 = mj.n{él, 63, al/C7 }.

Then, by the estimate (3.40), the solution satisfies Ns(t) < C, Huo -4,
4 < al for te [0,%). ©6n the other hand the condition

- v

VO--VHS < C76

Huo—ﬁ, vy o1,p 8, <6, is cbvious. Therefore Proposition 3.3

>proves the assertion of Theorem 3.11l. This completes the proof.

Finally in this section we shall make a slight modification of Prop-

osition 3.3 (and consequently of Theorem 3.11), when the nonlinear term

2. _t 2 ‘ '
h(u,V,DXu,DXV,DXv) = (hl (u,V,Dxu,DXv) ’ h2 (u’vaxu’va’DxV)) (hl and h2

are defined by (3.17) and (3,13) 9 respectively) satisfies the additional

condition
(3.42) (I—P+)h(uvDuDvD2v) =0
. ) 14 I e 14 X 14 X
2 nm n2m"
for any (u,v,DXu,DXV,DXV) € OXIR™ xIR .

Proposition 3.12 (a priori decay estimate) Assume Conditions 2.1, 2.2,

3.1 and 3.2 as well as (3.42). Let n =21 and s = s, + 2 (SO= n/2] +

+1) be integers, and let p=1 for n=1, pe [1,2) for n=2
-9 e B2 (@®H n

and p e [1,2] for n = 3. Suppose that (u. -u,v

0 0
Lp(IRn), and (u,v) (t,x) <Zs a solution of (2.1),(2.2) satisfying (3.4).
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) . .. - 1 1
Then there exist positive constants a, (Sao), 61 _ cSl (al) and C5

C5' (al',(Sl') > 1 such that if NS(T) < al' and Huo—ﬁ, VO—-VHS_ZIP
61' , then the following decay estimate holds for t e [0,T].
(3.43) -3, v=9) (0 ]],_, < +0)™" |lug-u vy -]l

S-:2,p 2
where Y = n(l/2p - 1/4).

Proof. Iet U= C(u-4,v-v). Noting (3.24), we have

(.44 nlly = c loll,, Il

0 (s 2 sO+2) is assumed. ILet n = 1. Ap-

plying (3.A.16) (with 0 <% <s-2 and g=1) to the solution of (3.16) and

and '(3.25)2, where Ns(T) < a

using (3.44) and (3.25),, we obtain as a counterpart of (3.26):

2’

(3.45) o Mg-p,y = CIHYlIen,p *
. 2
+ Cuy (BN (1) [||ult) |I1S_2,Y + Ccuy (8) |[|ute) HIS_2,Y '
where Y = 1/2p - 1/4 and
T =-C,(T-T,)
u3(t) = sup (l+T)Y[ e ? 1 (1+1,) Ydrl '
O<t<t 0
t 3/4 -2
u, () = swp (l-l—T)YJ (L+1-1) (L+T1y) Ydrl.
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It is easy to see that u3(t) and u4'(t) are bounded by a constant in-
dependent of t e [0,») for p = 1 (note that y=1/4 for p=1). There-
fore we deduce from (3.45) that I“U(t)‘“5_2,1/4 <C HUO”s—Z,l if
N, (D) and “UOHs—z,l are sufficiently small. Thus the proof for n =
1 is completed. k

Iet n > 2. Apply (3.A.12) (with 0<% <s-2 and g=1) to~éhe solu-

tion of (3.16). Following the abovevarguménts we obtain
2 B
(3.46) [lu(t) ‘”s—z,y <Clu

2 2 4
¢ cug ey 2 flow 12, + cug@ v I,

T

y
where Yy = n(l/2p - 1/4) and
2y (T "G (1Y) -2y
usw)= sup (L+71) j e H+Tﬂ dﬁ_,
Ost<t 0
2y T -n/2 -4y
p6(t) = sup (1+71) { (l-+T-—Tl) (l-%rl) drl .

O=<t=t 0

It is easy to see that uS(t) and u6(t) are uniformly bounded with re-
spect to t e [0, for n=22 and p e [1,2). Therefore the desired
estimate (3,43) for n = 2 follows from (3.46) in the same way as in the

proof for n = 1. This completes the proof of Proposition 3.12.

Proposition 3.12 gives the following modification of Theorem 3.11.
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Theorem 3.13 (asymptotic decay)  Assume (3.30) and (3.42) in addition.

+ 2 (SO==

-v)

to Conditions 2.1, 2.2, 3.1 and 3.2.. Let n=z2 and s 2 5

-q,v
70

1 (SG',

n/2] +1) be integers, and let p e [1,2). Suppose that (uO

€ HS (R®Y o IP(®Y). Then there exists a positive constant 64

. A,_‘—"' »_‘_“ | 1 2 .
§4) such that if Huo u, v, VHs,p < 8, the solution of The?rem 3.10

satisfies the decay estimate (3.43) for t e [0,%):

|-, v-9) @) || _, < ¢ @+ flu,-T, v, -7|

s-2,p°

where Y =n(l/2p - 1/4).

Remark 3.4 For symmetric hyperbolic systems (m"=0), Proposition 3.12

is valid for s = S, + 1 and the estimate (3.43) is replaced by

r

(3.43)" -y, el @+ ug-all

O—'u‘, vo—?fll 0

< 61‘ . Therefore, in this case, the results in Theorem 3.13 also hold

for s = Sy + 1 and the decay estimate is improved as in (3.43)'.

if the condition llu s-2,p © 6,' 1is replaced by [Ju ~E||s—l,p

Proof of Theorem 3.13 Take 64‘ so that 64' =min{ §.', 63, al/C7 }. j‘g

Then the theorem is proved in the same way as in Theorem 3.11. The de-

tails are omitted.
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3.6 EXAMPLE

As an application of our results, we treat here the equations of
heat conduction in an anisotropic rigid body of constant density at rest

(cf. [56],[84],[8],[51], and also [28]): , @

,et=~divql '

(3.47)

qut+q1=—|<V6,

where the unknown functions e and ¢ represent the (real-valued) inter-

nal energy and the (IRn—valued) heat flux respectively, which are the

functions of time t 2 0 and position x = (xl,----,xn) e RY; 0=6(),

the given functlon of e, is the absolute temperature; T = T(e,q) and
Kk = k(e,q), the given funétions of (e,q), are the (scalar) relaxation
time and the heat conductivity fensor, respectively. The first equation
of (3.47) describes the energy balance, where the external heat supply
is neglected; while the second one of (3.47) is the generalized Fourier's
law.

We assume the following conditions on the system (3.47).

(3'48)1 The function 6(e) is smooth in e ¢ IR and satisfies 6(e)

>0 and db(e)/de > 0 for e € 1R.

(3.'48)2 The functions Tt(e,q) and «k(e,q) are smooth in (e,q) €

1Rn+l; T(e,q) > 0 holds for (e,q) « ]Rn+l, while «x(e,q)

is real symmetric and positive definite for every fixed
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(e,q) € ]Rn+l.

Iet us rewrite (3.47) in the form

’ 0 e n .f(e e
(3.49) A (e,q) + ) A +Le,q)| | =0, .
aj. =1 laly a :
where '
0 1 0 L w
A" (e,q) = -1 ’ z Ajw- = + ’
0 O K Jj J w 0
0 0
L(e,q) = -1 ’
0 CVK

Sy = (de/de)_l is the heat capacity at constant volume, and w = (0 ,**

1

"-,wn) € Sn- . We can show that if (3.48) are assumed, then Condi-

1,2
tions 2.1, 2.2, 3.1 and 3.2 as well as the conditions ‘(3.30) and (3.42)
are satisfied for the system (3.49). Indeed, it is easily seen that

AO (e,q) 1is real symmetric and positive definite, a’ (j=1,++++,n) are

re’a]_ symmetric, and L(e,q) is real symmetric and positive semi-definite.
The?efore Conditions 2.1, 2.2 and 3.1 are verified with " = 0, 0=
{(e,q); e« R, q eJRn} and with a oohstant state (e,q) = (e, 0),
where e ¢ IR is an arbitrarily fixed constant. To check Condition 3.2,

we define the matrices K9 (3J=1,+*++,n) by
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O — —
A" (e,0) r

where o 1is a positive constant det-emﬁ_ned below. For the above KJ,

it is obvious that KJAO (€,0) (3j=1,++++,n) are real anti-symmetric. .

Furthermore a simple calculation shows that

. o-< why, w > 0
) KjAkw.wk + L(e,0) = ! ,
gk

0 A, - o ww

-1 l)

-1 — -1, — .
where Al= (T Cy «) (e,0) and A2 = (CVK (e,0) are real symmetric

and positive definite; < , > denotes the standard inner product in R}
and t@w the symmetric matrix with elements wiwj . Therefore

_ZKjAkijk + L(e,0) is proved to be positive definite for any w e gt
22 o > 0 1is suitably small. Thus Condition 3.2 is verified. Since the

projection p' onto the range of L(e,0) is given by

we can verify (I - P)F= (I - P)h =0 which implies (3.30) and (3.42).

Summarizing the above considerations, we have:

Iemma 3.14 Let (3.48)l 5 be assumed. Then the system (3.47) satisfies

Conditions 2.1, 2.2, 3.1 and 3.2 as well as (3.30), (3.40), with m" = 0,

]Rn+ 1

0= {(e,q) ¢ } and a constant state (e,q) =.(e,0). In particular,
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the matrices K (j=1,*+++,n) in Condition 3.2 are taken as in (3.50)

with a suitably small constant o > 0.

By this lemma we can apply all the‘theorems (in particular, Theorems
2.9, 3.10, 3.13 and also Remarks 2.4 (i), 3.3, 3.4) in chapteré I and I
to the system (3.47). Consequently, we obtain the local solution for
n = 1 and the global solution for n z 2.

Finally in this section we shall remark that the system (3.47) ad-

mits a global solution even if n = 1. ILet

2 t

ﬁs(t',t) = Ns(t',t)2 + j ||P+(u—-ﬁ} v-E@(T)[Izéﬁ /

t
where N_(t',t) is defined by (3.6). For the systen (3.47), ﬁs(t',t)

takes the form

~ 2 _ 2 (t 2 2
N, (£ /) ~_tﬂifit”(e_.eﬂl)(r)ns +.[t.HE§?(T)“s—l + quﬁjl[SdT .
It is not difficult to see that for our system (3.47), Lemmas 3.7 and 3.8
also hold for n = 1 with NS(T) replaced by ﬁS(T). Hence Proposition
3.9 (with N_(T) instead of N_(T)) and Theorems 3.10, 3.13 (cf. Proposi-

tion 3.12) are also valid for n = 1. Therefore we obtain the following

results for the system (3.47).

Theorem 3.15 (local existence, global existence and asymptotic decay)

Let (3.48) 5 be agssumed. Let n=21 and s =2 s. + 1 (SO==[n/2]—+l) be

1, 0

integers.
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(2) (cf. Theorem 2.9) Suppose that the initial data (e-e,q) (0) €
H (R). Then there is a positive constant Ty such that the initial

value problem for (3.47) has a unique solution (e-e,q) e CO (O,Tl;

15 @) o cto,ry BT EY)

(%) (cf. Theorems 3.10 and 3.13) If (e-e,q)(0) e HO(RY) and ||(e-
-e,q) (0) Hs is small, then the solution of (3.47) ewists for all time
t > 0 and decays to the constant state (e,0) as t~>o: |(e-e, q)

+~0 as t - o Furthermore if (e-e,q) (0) « B2 (RY) n

(t) ls— (so+l)

P (®RY with p=1 for n=1and pe [1,2) for n22) and || (e-e, q) (0) Hs p
is small, then || (e-e, q) (t) lgy decays at the rate £ (with y=

n(l/2p-1/4)) as t ~» .

Remark 3.5 If T is a constant and k = k(e) is independent of q,
the system (3.47) is reduced to the second-order single equation

Te,, +e, =div (c_ "kVe) ,

tt t

which is called the dissipative wave equation. For these equations, the

global existence results are known; see [61]2, [54]2, [711.
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APPENDIX TO CHAPTER I

LINEARIZED-SYSTEMS AT THE CONSTANT EQUILIBRIUM STATE

3.A.1 DECAY ESTIMATES

We shall treat here the linearized system (3.1) with the right hand

(3.A.1) Ay + 7y -7 8% +IU=nh,
t : X : X
S i |

J

where A0 = 20@,9), aJ = @9, 8 =*GEY and L=L@V are
(real) constant square matrices of order m, and h = h(t,x) 1is a given
function on QT = [0,T] xTR*. We assume Conditions 3.1 and 3.2 on the
system (3.A.1). Under these conditions. the decay rate of solutions of
(3.A.1) with h = 0 has been obtained in [81] by the method of estimat-
ing the Fourier image of solutions. The purpose of this section is to

extend the results to the case that

(3.A.2) (T - P+)h(t,x) =0 for any (t,x) € QT P

where P+ is the orthogonal projection onto the range of L = L(u,v).

Iet £(£) denote the Fourier image of £(x):
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£E) = (217)‘“/2J e E £ (x) ax .
Taking the Fourier transform of (3.A.l), we have

(3.A.3) AOGt + {ilg|a(). + lg-lzB(w) + L}G:ﬂ ,

where A(w) =) Ajwj , B(w) =} Bjkijk and w = It should be
J Jjk
noted that (3.A.3) can be reduced to a symmetric system with AO =1 if

we consider (A ) Y/ 2U instead of U. In fact we have

(3.A.3)' (@& )l/ZUt rse @)Y= OV,
where S(£) 1is defined by
G.a4g  s@ = @) Y20aw +BE) + 1) Y2

with A(E) = |£]a) and B(E) = [£]*BW)

The estimate for U(t,£) is given by the following.

Lemma 3.A.1 Assume Conditions 3.1 and 3.2. If h(t,x) satisfy (3.A.2),

thén the solution of (3.A.3) has the estimate

(3.A.5) 10(6,8) |2 < ce 200 UED 150,612

t ~ B
+ c[ 2o UED | L 5y 12ar for (£,8) € (0,7 xE
0
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2 .,
) are posttive constants.

where p(x) =clr2/(l+r ; C and c

1

- Remark 3.A.1 Since the solution of (3.A.3) with h = 0 is represented

by the formula (%)Y 20(t,8) = e B @0)25(0,5), the estimate (3.A.5)

with h =0 gives
.25 . e B8Ok < ce®UED 5| for any E.

Proof of Iemma 3.A.1 Take the immer product (in €) of (3.A.3) with U.

Since AO, A(w), Bw) and L are real symmetric, its real part is

A ~

G.a6)  {3@%, 0+ [P @@, U + @, V) =k G, V)

where ( , ) denotes the standard inner product in . Next multiply
(3.2.3) by -ilg|K@W) K@) =] Kjwj) and then take the inner product
‘with 6 Since iK(w)AO is hgrmitian, the real part of the resulting
equality is |

~

a7 -2 KA, U+ [P (K@AWI'D, )
= re {i|E]?KWBWU, U) + ilg| KLU, 0} - ReilE] K(w)h, U) ,
where [K(w)A(w)]' denotes the symmetric part of K(w)A(w). Noting that

B(w) and L are positive semi-definite and the condition (3.A.2), we

have from (3.A.6) and (3.A.7)
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N~ N

(3.A.8) {(AOG, G) bt |g|2(B(w)6, U) + (LU, G) < c:]:rAll2 ,

N

.29 1 el k@2, O+ |2 (KWAWI'T, O

< elg]“|ul” + C€{|€,[4(B(w)U, U) + (W, U) + |h|2}
for any € > 0 and for some constants C and Ce' Combine (3.A.8) with
(3.A.9) s0 as to make (3.A.8) x (1+ lgl?T) + (3.A.9) xa with a constant
o > 0 (o will be determined later). Then we have

~

@3.2.100 @+ [glIEL + [6]* (eK@AW] +B) +LI, ) +
v lelf@WU, O + @, 0) < aelg]?]0]% +

+ac {e] BwWU, O + @, B+ ©rac) @+’ |nl?

where we set

It is easy to see that there exists a constant oy > 0 such that E* is

equivalent to |EI|2 for o e (0,0)]. On the other hand, by Condition
3.2, there exists a constant c¢ > 0 such that the second term in the

left member of (3.A.10) is bounded from below by occ[glzlﬁ[z, where o
<1 is assumed. Now choose € and o so that € = ¢/2 and o = min

{1, N l/CE}. Then (3.A.10) implies
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(3.2.11)  E% + 20(]gDE" < cla|?

with p(x) = clrz/(l-+r2); 1 and C are positive constants. Inte-
gration of (3.A.11) with respect to t gives the desired estimate (3.A.5)
by virtue of the Gronwall's inequélity. This completes the proof of Lem-

ma 3.A.1.

Integrating (3.A.5) over Iﬁg and applying the Plancherel's theoremn,

we can obtain the following decay estimate.

Theorem 3.A.2 (decay estimate) Asswme Conditions 3.1 and 3.2. Let n

21 and 2 20 be integers and let p, q € [1,2]. Suppose that U(0)
e BN 0 P(®) and that h e 0,7 ;B (R nIP(B)) satisfies

(3.A.2). Then the solution of (3.A.1l) has the estimate

-c.t

(3.A.12) ||DiU(t) ||2 <cle T HDf“{U(O) 1|2 + Ly~ B [|u(o) ||2p}
L
t -c (t—T) [
. c[ e 1 D@ ? ¢ weron B

Nine |2 a
Lq

for t e [0,T], where vy =n(l/2p - 1/4) and Y' = n(l/2q - 1/4), and

c. is the constant in (3.A.5).

1

Remark 3.A.2 Iet us define e_tS by

(3.A.13) (e %5 (x) = (2n)‘“/2J AXETEE ey g for Ferd(Y.
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Then the estimate

—czt

.a.24) keS| < cle 2 |pke] + @+nT 0D g o)
S L

holds for £ « Hl(ﬂvan Lp(Ifﬁ, where c. = cl/2 and vy = n(l/2p - 1/4

2
This implies that the LZ(IRH)—nornl of solutions of (3.A.1) with h =0
decays at the rate t ' as t - o. This decay rate coincides with the
one for the dissipative wave equations ([54]1), the Boltzmann equation

([62],[80]1) and the equations of compressible viscous fluids ([55]2).

Proof of Theorem 3.A.2 It suffices to prove that (3.A.5)' implies
|22

(3.A.14). Multiply the square of (3.A.5)' by | and integrate it

over Iﬁg. By the Plancherel's theorem we have
Ike™Sn 12 s o je12e 2 UED |2 2 a .

We divide the integral in the right hand side into two parts Il and I

1. By use of the Holder's

\2

according to the regions |£| <1 and |&]
inequality we have

BRI

-C
lg]?%e t '[fv(é)lzdé;

el e
1 lg|<1

1/

IA

HEIEES

2
-re, |§] 7t
20r 71 dg)l/r (J
lg]sl

c(flglsllil

IA

—hv2r+£)H£“2 r
L

C(l+1t)

).

2

s
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where r e [l,0] and 1/r + 1/r' = 1. Apply to the last term the Haus-

dorff-Young inequality

£l pr < C Il £]] b P e (1,21, 1p+1/p' =1,
L I .

«

with taking 2r' =p' (i.e., 1/2r=1/p~-1/2). Then we obtain:
I, < c(l+n” By g2
Lp

with vy =n(l/2p - 1/4). BAs for 12 we have

ot c t
1 15, 22
I E

I,<Ce J 1g1221%(g)12dg <Ce
lg|=1

Thus the desired estimate (3.A.14) is cbtained. This completes the proof

of Theorem 3.A.2.

For general f ¢ HJL (JRn) n P (IRn) , we have prove the decay estimate

(3.A.14) . Next we shall show that in some case the decay rate Y

improved to t (y+1/2)

is

Theorem 3.A.3 (decay estimate) Asswne Conditions 3.1 and 3.2. Let n

=1, & >0 (an integer) and p € [1,2]. Assume that £ ¢ HQ(IR]‘) n Lp(IRl)

and that for each X € IRl the vector £(x) <is orthogonal to the null

(AO)—l/ZL (AO)-l/Z

space of . Then the decay estimate (3.A.14) is im-

proved to
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-c,t
@15 |ole 0| <cle *|p] + (l+t)—(Y.+l/2+9V/2)HfHLp} ,

where Y = 1/2p - 1/4 (because of n=1).

‘Remark 3.A.3 It follows from (3.A.3)' that

. t
U = @217 @10 2% +J DS W02 1y any
0

-

Note that (3.A.2) is equivalent to the condition that the vector (AO)-l/ 2.

h(t,x) is orthogonal to the null space of (AO)—l/ 2L (AO)—l/ 2

for each
(t,x) e Q- Therefore, applying (3.A.14) (with n=1) and (3.A.15) to the

above expression, we conclude the estimate

-c,t
@.a16)  [pluw ] <cle ot | + @+ 2y | o
t -, (t-1) (ot
T I [ R e el Y [
0 L

for t e [0,T], provided that the conditions (with n=1) of Theorem 3.A.2

are satisfied, where y = 1/2p - 1/4 and Y' = 1/2q - 1/4.

Proof of Theorem 3.A.3 When n = 1,

0)—-1/2 -1/2

s(E) = @ (ifA + £%B + 1) (&°)

is an one-parameter family of matrices, where & = £ € IRl, a=nal u,v)

and B = Bll (u,v) . Therefore the perturbation theory of matrices (see
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Kato [37]6) is applicable to S(§). This enables us to represent the ma-

-tS(€)

trix exponential e explicitly for & -+ 0. We have to estimate this

expression carefully as in [33] or [15] (see also [62]). Noting that

E(E) is orthogonal to the null space of (AO)—l/ 2L(AO)—1/ 2 for £ e IRl,
we can get
~£5(£) —clg] %2
le £(&)] < clgle [£(8) | for £-+10,

where c¢ and C are positive constants. This inequality together with
(3.A.5)" gives the desired decay estimate (3.A.15) in the same way as in

the proof of Theorem 3.A.2. We omit the details.

3.A.2 SPECTRAL ANALYSIS

In our analysis in chapter II, Condition 3.2 has played a crucial
role. We discuss in this section the eigenvalue problem associated with

the linearized system (3.1):
(3.A.17) w0 + {ife|aw) + [&IZB(w) + Lip =0,
where A = A(i]|g|,w) ¢ € and ¢ = ¢(i|E|,0) € €\ {0). We prove that

(under Condition 3.1) Condition 3.2 guarantees the dissipative structure

for the system (3.1) in the following sense.
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Proposition 3.A.4  Let Condition 3.1 be assumed. Let X = A(i|E|,w)

satisfy (3.A.17) for some ¢ = $p(i|&]|,w) « c \ {0}. Then the following

statements are true.
(1) Condition 3.2 implies that

(3.A.l8)l Re A (i|g],w) < - p(|E]) forany |E] 20 and w;e Sn_l,

where p(xr) = cr2/ (1 +r2) with some constant ¢ > 0.
(#) The condition (3.A. 18)1 and the following two conditions (3.A.18)2

and (3.A.18)3 are equivalent with each other.

(?».A.lS)2 Re A(1|E|,w) <O for any |E] %0 and w e gL

(3.A.18)3 Let Y satisfy By =1Ly =0 for some w € Sn_l. Then
for this w and for any Y e IR, pAOqJ + AWY X0 holds.

(Here { 5% 0 4is assumed.)

Remark 3.A.4 The estimate (3.A.18), was proved in [81]. The proof of

(ii) was owing to the private communication with Y. Shizuta.

Proof of Proposition 3.A.4 The proof of (i) is essentially the same as

that of Iemma 3.A.1. The equation (3.A.17) is equal to (3.A.3) if at,
G and 1/:1 are replaced by A, ¢ and 0, respectively. Therefore we ob-
tain (3.A.6)-(3.A.10) with at,ﬁ and 1;\1 replaced by 2ReA, ¢ and 0,
respectively. Hence, as a counterpart of (3.A.11), we have 2ReA +

2p(]g|) < 0, which is the desired estimate (3'A'18)l with c=c¢ This

1
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completes the proof of (i).

We next prove (ii). First note that the implication (3.A.18) 1 =
(3.A.18) 2 is trivial. The remaining part of the proof is devided into
4 steps. '
step 1  We prove (3.11\1.18)2 = (‘3.}\.18)3 by éontradiction. Iet B(w)y
=1y =0 and uAOqJ + A(w)Yy = 0 hold for some w € Sn~l, U] #O and W
e R. Then we have (3.A.17) with A = ilglu and ¢ = Y. This contra-
dicts (3.A.18)2. Thus (3.}\1.18)2 = .(3‘;A.l8)3 is proved.

From (3.A.3) with 9,, U and h replaced by 2ReA, ¢ and 0, we

tl

have
(3.A.19) Re)\(AO(b, ¢) + 1512(B(w)¢, ¢) + (Ld, ¢) =0 .

Since AO is positive definite, B(w) and L are positive semi-definite,
we know Re A < 0. Now assume that ReA = 0 holds for some [£] X0

and w e ST Then, from (3.A.19), we cbtain B(w)¢

Lo = 0. Using
these relations in (3.A.17), we get AAOq> + ilE‘A(w)cb = (0. This gives
w22 + AWy = 0 with u=1Im)/|¢| and ¢ = ¢ because ReA = 0. This
is a contradiction. Thus the proof is completed.

step 2 We prove that (3.A.18), implies (3.A.18), for any r < el <R
and w e Sn_l, where r and R are arbitrary positive constants. This

is a easy consequence of (3.A.18) ., = (3.2%..18)2 because A(il&|,w) is a

3
continuous function of |£| and w.

step 3 We prove the implication (3.A.18), = (3.A.18); for lg] +~ 0
and we s%T by contradiction. Assume that there are sequences 1gji

+ 0 (j»») and Wy e s%1 such that Aj = x(i]gjl,wj) satisfies
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Rekj/lgjiz +0 (jo»). Let cbj ¢ €\ {0} be the vector corresponding

to AL :
J

0 , 2 -
(3.A.20) AjA by * {llgj[A(wj) + |gj[ B(mj)\+ L}cbj =0 .

Il

We normalize ¢j by the relation (Aocbj, ¢j) 1. By choosing subse-

quences, we may assume without loss Of‘ generality that wj + w, and q;j >

0
¢. as j - ». Take the inner product of (3.A.20) with ¢.. From its
0 ]

- real part,

‘ 2

3.A.21 Re A, + LT (Bw.) . O+ (Lol . =0.

( ) ;5 IEJ! ( (wj)(bj, <1>j) ( ¢j, ¢])
Divide (3.A.21) by [Ejlz and take the limit along j + «. Then, since
B(w) and L are positive semi-definite, we get B(wo)cpo =0 and
Vanj/lgjl +0 as J »«. From the latter we know Lo, = 0. On the other

hand we have from the imaginary part

ImAj + i[gjl (A(wj)q)j, ¢j) =0 .

Divide the above equality by i]gjl and let j + «. Then we obtain

(3.A.22) Llim Imxj/lgj[ =Yy == Blg)dyr 99 € R .

j+00
Now devide (3.A.20) by i]gj| and let j » «. Using the relations cb-
tained above, we conclude the equality uOAOq)O + A(wo)qao = 0, which con-

tradicts (3.A.18) 3
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step 4 We prove (3.A.18), = (3.A.18), for |[g] »» and w e Sl by
contradiction. Assume that there are vlsecjuences ]gjl + e (j+) and W,
s*1 such that Ay = Mileglwy) satisfies Red; > 0. Iet ¢y ™
\ :{0} be the vector satisfying (3.A.20.) and (A0d>j, ¢j) = 1. By choosing
subsequences, we may -assume that k u)j > Wy and cbj - ¢O as - > o, let-

ting j > « in (3.A.21), we hav_e [Ele(Qj)¢j +0 as j -~ o and Lbg
= 0. In particular, we get B(wo)% = 0. Therefore, deviding (3.A.20)
by i[gjl and letting j - «, we obtain uOAO% + A(wo)q)o = 0 in the
same way as in step 3, where Hy is given by (3.A.22). This is a con-
tradiction.

By steps 2-4, we have proved the implication (3.A.l8)3 = (3.A.18)l.

Thus the proof of (il) is completed.
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CHAPTER IV

HYPERBOLIC-PARABOLIC SYSTEMS OF CONSERVATION LAWS
WITH A CONVEX EXTENSION

4.1 INTRODUCTION

Many equations in mathematical physics are described by conservation
laws. In this chapter we shall consider the initial value problem for

the following system of conservation laws.

0 R S5k
- (4.1) W, + )YfFw, = )} {cww, } .,
R = B R e %

(4:2) w(0,x) =w0(x) .

Here t 20 and x = (xl,--n,xn) € JRn; w = w(t,x) takes ité values
in an open convex set 0 in ]Rm; ff'j w) (3J=0,1,++++,n) are IRm-—valued
functions and ij w) (j,k=1,¢+++,n) are square matrices of order m.
Keeping applications to the equations of fluid mechanics (or elas-

ticity) in mind, we assume the following conditions on the system (4.1).

Condition 4.1 The functions f(w) (3=0,1,----,n) and GX@) (j,k=

1,¢+++,n) are sufficiently smooth in w ¢ 0 such that
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(1) fg, (w) is non-singular for w e O.

There exist smooth functions n(z) (ze0' =f0 (0)) and qj w) we0) (j=
~1,*+++,n) such that

(i) n(z) is strictly convex for z ¢ 0',

1 j == t j - O 3 ——- LRI

(4ii) qw(w) = fw(w)nz(f w)) (=1, ,n) hold for all w e O"

1) B

Hi

f8 n,, (0 @) (k=100 0 satisty” B =
ﬁkj w) for weoO; ) gjk(w) w3y is (real symmetric) positive semi-

Jjk _
definite for all we 0 and w e ST L.

Here and in the sequel we sometimes use the abbreviations fVO\I w) = DWf0 (W) ,
n, () = nE ), n (£w) = D2n(E2w) etc. The functions n
and (ql,---' ,qn) in Condition 4.1 are called the convex entropy and the
associated entropy flux, respectively. The notion of the convex entropy
was introduced by Friedrichs and Lax [19] for the first-order systems of
conservation laws (i.e., (4.1) with ij (w) £0); for related topics of the
convex entropy, see [50]3, [13]4—6 (and also [18]2, [68]).

It was proved in [19] that the first-order systems of conservation

laws with a convex entropy can be put into a symmetric hyperbolic form.

A simjilar result still holds for our system (4.1). Indeed, we have from
(4.1)

0 j jk _ jk
£Eww,_+ ) E2ww, - ) G (Ww =) G (W, w, oo
wolt g W Ry gk X% Sk Xy ¥

Multiplying the above equation by tfg (w)nzz(f0 w)), we get

(4.3) al (wW)w, + X ) wWw, - ) Bjk(w)w

5 ! 5 ijk = g(WrDXW) ’




- 85 —

where

4.4), A = n. (£ w)) £ w) 5=0,1,++n
) 1 w 27 W ‘ ' -7 4 r

4.9, 8w = 26w +B9m), k=1,m,

(4.9), gD = § fomn ()6 ) W )

jk i %k

Under Condition 4.1, the coefficient matrices in (4.3) satisfy the fol-

lowing:
(4.5, A’(w) is real symetric and positive definite for w ¢ 0,
(4.5)2 A w) (j=1,++++,n) are real symmetric for w e O,

(4.5)3 B]k(w) (j;k=1,++++,n) are real symmetric and satisfy Bjk (w)
= g9 w) .for we 0; ZB]k(w)w.w is (real symmetric) posi-

. jk
Jk n—1
tive semi-definite for we 0 and we S .

It follows from Condition 4.1 (ii) that nzz(z) is real symmetric and

positive definite, which together with Condition 4.1 (i) implies (4.5) 1

The property (4.5)3 is a consequence of Condition 4.1 (iv) while (4.5)2
is proved in [19].

For the symmetric system (4.3) we assume:

1
Condition 4.2 There is a partition w = t(u,v) with u e ® and Vv e

IE%“ (m=m' +m") such that




_
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=
b
=
I
o
o =
=
N:Do
T o
<
s

i

()
(ew)
s

i) 3w = ,

(.
~
I
-
B
e

where Zng(u,v)ijk is (real symmetric) positive definite for (u,v)
jk - .

Here we note that Condition 4.2 (il) gives

0 0
(W) = . I;
0 ng(u,v)

Bjk
vhere B3*(u,v) = 3B v + BsJ(u,v)}. According to the partition in

Condition 4.2, let us denote

| 2wy AW
M =] _ .
B V) A, V)

~ Then the system (4.3) can be written in the form (2.1) with the right

nerbers

- _ J
£ (u,v,DXV) Z A, (u,v)VX' +g; (u,v,DXv) ,
(4.6) J J
- J J
f2 (u,v,DXu,DXv) = % {AZl(u,v)qu + A, (u,v)VX.} +

+ 95 (u,v,DXu,DXv) .
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The above system satisfies Conditions 2.1 and 2.2. In fact Condition 2.1
(1), (i) follow from (4.5)l 5 while Condition 2.1 (iiil) from (4.5)3 and

’
condition 4.2 (i). since &) = ("R (° @)1 B e, (1.9,

together with Condition 4.2 (ii) and (iii) implies that

gy v, ¥ = ol v,
(4.7) |
(_‘:]2 (w,v,Du,D,v) = O(|D, (u,v)| [DXVl)

for |u-u, v-v| > 0, where w = Y@,% ¢ 0 is an arbitrarily fixed con-
stant state. So Condition 2.2 is satisfied for arbitrary w = t(ﬁﬁf) e O.
Thus we have proved that under Conditions 4.1 and 4.2 the system (4.1)
can be reduced to a symmetric hyperbolic-parabolic form in the sense in-
dicated in chapter II. Hence, by Theorem 2.9, we have a local solution
to the problem (4.1),(4.2). |

To discuss the global existence and asymptotic stability of solu-~
tions, we shall require, as in chapter I, the conditions which guarantee

the dissipative structure for the linearized system of (4.3):

(4.8) Ao(v_v)Ut + z AJ (V—V)Ux. _ z Bjk(‘}')Ux'Xk =0

(cf. (4.18)), where we have used L(w) = Dwg(\—/v—,O) = 0. We note that Con-

dition 3.1 is satisfied automatically because (4.5) and L(w) = 0.

1,2,3
So we only require:

Condition 4.3 There are (real) constant square matrices K7 (J=1,0%°-
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++,n) of order m such that
(1) K]AO w) (j=1,++++,n) are real anti-symmetric,
(ii) the symmetric part of the matrix z {KjAk (w) + Bjk (w) }ijk is pos-

- Jk
itive definite for any w e s" l.

«

Since the remainder term %(u,v,Dxu,DXv) associated with £ 't

(fl,fz)
in (4.6) satisfies (3.30), we can apply Theorems 3.10 and 3.11 to the sys-
‘tem (4.1). Hence we obtain the global existence and asymptotic stability
results for (4.1),(4.2) if n = 2,

The purpoée of this chapter is to establish the global existence re-
sults for (4.1),(4.2) for all dimensions n = 1, and to get an asymptotic

form of the solution as t + . In order to get the a priori estimates

of solutions of (4.1) in one space-dimension, we employ a technical ener-
gy method, which makes use of the quadratic function associated with the
convex entropy (see the proof of Lemma 4.1). For similar energy methods,

see [36] [66]1,[41], [38] [27]. It seems to the author that in one-

1,2’ 3,4'
dimensional case the convex entropy piays a crucial role in a study of
the global existence problem for (4.1).

The contents of this chapter are as follows. In section 4.2 we shall

derive the a priori estimates of small solutions of (4.1) by the tech-

nical energy method. As a consequence we get a global solution to (4.1),

(4.2) for small initial data with w, - W e H(RY) (with n>1 and s 2

[n/2] +2). 1In section 4.3 we shall prove the decay rate of the solution:
if Wy~ W e HS(]Rn) n LP(IRn) (with n>21 and s> [n/2] +3; p=1 for n=1
and pe [1,2) for n>2) is small, then the solution of (4.1),(4.2) decays

to the constant state w at the rate t ! (with y=n(1/2p-1/4)) as t
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+ o, In section 4.4 the asymptotic behavior of the solution is discussed
more precisely. It is proved that if n > 2 (resp. n=1), the solution
of (4.1),(4.2) is asymptotic to that of the linearized system (4.8) (resp.
the semi-linear system (4. 39)) with the corresponding initial conditions

B

at the rate t =~ (with some B>Y) as t + w=. The results in sections 4.3

and 4.4 are based on the conservation form of the system (4.1).

4.2 GLOBAL EXISTENCE

First, following [19], we write down the equation of the convex en—
tropy. Differentiating n(f0 (w)) with respect to t and using (4.1),

we get

(e W) = - ] - n, (£ ), fg<w>wxj> +

+ P len (Cw), e, >,
ik 3k 3

where < , > denotes the imner product in R®'. 1t follows from Condi-
.tion 4.1 (ifi) that the first term in the right hand side is equal to

) qj (w)x . Since nZZ(z) is real symmetric, the last term in the right

: ] B -

menber is rewritten as |} < gk (w)ka, w,_ > (cf. the definition of 55K )
Jk ]

in Condition 4.1 ()). Therefore we cbtain the equation

(4.9 e w) + ) o« Dy

- 0 ik
) < n,(E W) .G (w)ka> ,
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T

S

X

- 0 Jk ~Jk
= {<n (E W), G wWw, >} - ) <BTWw, ,w > .
ko F * %5 gk ®

e

e

This equation has a physical meaning if the latter half of Condition 4.1

—

(iv) is replaced by the following stronger condition:

——

¥ o< Ejk(w)qyk, . >=>0 holds for all we 0 and ¢j E;Hgn

ik J
(j::l’o.oo’n)’.

-

In fact in this case (4.9) implies that:the integral - fn,(fo w(t,x)))dx
is non-decreasing in t, which corresponds to the second law in thermo-
dynamics.

Now let us introduce

(4.10) n*(z,z) = n(z) - n(z - < nz(E), z-z >

for z, z e 0' = fo (0). Since n(z) is strictly convex, n*(z,z) is pos-

itive definite; n*(z,2) = 0 holds if and only if z = z. In particu-
lar, n*(z,z) is equivalent to the quadratic function |z —512 in Br('—)
={zeR"; |z-2Z| <r}, where r > 0 is arbitrary as long as Br(E) e 0'
is satisfied. let z=f(w) and z = £ (W), where w= "@,¥) ¢ 0 is
an arbitrarily fixed constant state. Since f‘g (w) is non—singular, the

inverse mapping theorem shows that there exists a neighborhood Br W) =
' 0

{we R"; |w-w| <ro} < 0 with some r, > 0 such that

(4.1 clw-u| < |£2@) '@ | < clw-w| holds for w e B_ (),

1 0

with some positive constants c¢ and C,
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(4.11)2 the inverse function w = w(z) exists and satisfies Dzw(z)

- fgv(w(z))_l for z e fO(BrO(W)).

Without loss of generality we can assume that B, (w) ¢ 0 and £ (B, (w))
' ) 0 0
c Br(fO w)) c 0'. So-we get the following estimate for any w ¢ Br W) .
: 0

4.12)  clw-w]? < m* (0w , L2 @) < clw-wul?

with some positive constants ¢ = c(r,) and C = C(ro) .

0

Now, letting s = Sy + 1 (sO= [n/2] +1) be an integer and T > 0 be

a constant, we consider a solution w(t,x) = t(u,v) (t,x) of (4.1) satis-
fying (3.4) and (3.5) with 0, =B_ () = {we R ; [w-¥w| <r }. Iet
0
Ns(t',t) be defined by (3.6). Then there is a positive constant a, =

a, (rO) such that

then (3.5) with 0, =B_ (w) is satisfied

(4.13) if N (T) < a
S 0

0
automatically.

4!

We will derive the a priori estimate for Ny (T). The a priori estimate

for L2 (R") -norm of the solution is obtained by means of the quadratic

function n*(z,z):

lemma 4.1 Let w = t(ﬁﬁi—) € 0 be an arbitrarily fixed constant state.

Assume Conditions 4.1 and 4.2. Let n =21 and s = Sg + 1 (sO= [n/2] +

1) be integers. Suppose that the initial data A (x) = t(uO,VO) (x) sat-

isfy Wy - W= t(uo—ﬁ,vo -9 e B5@Y) and that w(t,x) = S(,v) (£,%)
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18 a solution of the problem (4.1), (4.2) satisfying (3.4) and Ny (T) <
0

a Then there is a constant C = C(a'4) > 1 such that the following a

4
priori estimate holds for t e [0,T]:

| — 2 fF 2
(4.18) |-G v-9 ® | +[ Ip, v || de
0

3y,

-VHZ + N, (D)
0

Proof. For the solution w = w(t,x), we consider the quadratic function

n*(f0 (w) ,fO (w)). From (4.9) and (4.1) we get the equation of n* (fO (W),

@) -

(£ £ @)+ T @~ @ - <n (@), B - @),
J J

X

=T e (B w) -n 0@y, Kww, »1. - T <B R ww, , W > .
k 2 z X5 4k SR

Integration of this equality over Qt = [0,t] X]Rn yields

T=t £
(4.15) tjn*(fo(w),fo(v'v‘ndx] + 7 j J<§jk(w)w , W >dxdr =0
- =0 k0 %N

Since ) Egk (u,v) w0y is real symmetric and positive definite, the sec-
Jjk
ond term in (4.15) is bounded from below by

t
cJ Ip v (o) |[*at - cn, (°
0 0

with some positive constants ¢ and C = C(a4). Therefore (4.15) togeth-
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er with (4.12) gives the desired estimate (4.14). This completes the

proof of Lemma 4.1.

We proceed to estimate the derivatives of the solution. Under Con-
ditions 4.1 and 4.2 (resp. 4.1-4.3), Lemma 3.1 (resp. 3.2) with p' =0
is applicable to the system (4.1). Therefore, if Ns () < a 4',.; we obtain
the estimates

2

| 2 Eo2
436 lngom @I, + [ v | e

< el b, ay v 12, +N @33,

o 2 2 t o2 2
(4.17) IDfu(n) || S ,at = el Ip w0 ][5 + | [IDvn || qar}
0 0
2 3
< cf{ l[Dx(uO,vO) I|S_l + NS(T) }
for t e [0,T], where C = C(a4) is a positive constant.

To complete the estimate for NS (T) , it suffices to estimate the
L2 (0,T; L2(IRn))—noxm of the derivatives Dxu. Iet U=w-w= t(u—ﬁ,

v-v). The system (4.1) is rewritten in the form

0 ,— g — v Tk = 3 2
(4.18) A (w)Ut + % A (w)UXj jsz (w)UXj = h(u,v,DXu,DxV,DXV) ,

where h = t(hl,hz) is the nonlinear term of the form

_ 0,==.0 -1 _
(4.19) hl(u,v,DXu,va) = A; (u, )Al(u,v) gl(u,v,DXv)

1
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- 2@ A ww T ww - A @9

3 11 (w,v) }ux .

- 2@ e e, ww - 2 @w T, @R,

J

2. _ 0—=0, -1
(4.19)2 h2 (u,V,DXu“,DXV,Dx?r) = {xz(u,v)Az (u,v) 9, (u,v,DXu,DXv)

- 2@ §{Ag () "Ry ) = @9 'nd, @9 }u;{j -

- g Z{Az(u v) lA] (u V) A2(u v) lAj (a,v) }v o+
+ Ag u,v) ) {A (u,v) lBjk(u v) - A(Z) u,v) Bjk |, v .
jk

xjxk
Therefore, following the arguments in Lemma 3.8, we cbtain the estimate
(3.37) with P’ = 0. Since
(4.20) h (4, v,D_u,D_v,D2v) = 0(|D (uv)|2+
hd 14 14 prd 14 bie r X bid 14
lu-T, v-v|{|D_(w,v ]| + [D2v|}
! x ! x
for |u-u, v-v| + 0 (compare this with (3.24)), the estimate (3.38)
also holds for n =2 1. So we get

t 2 — =2 [F 2
wan [ Ipp@ e - ol w-T v @13 + | Iyl e
: 0 0

3

— —02
< c{ [|u0i-u, VO—le + NSO(T) I .

Now consider the combination (4.14) + (4.16) +{(4.17) + (4.21) } xa

with a positive constant o satisfying 20C < 1. Then we cbtain
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NS(T)Z < cf Huo—ﬁ, v —\7]!2 + NS(T)3} .

0

whenever NS (T) < a 4 is satisfied. Hence we have:

Proposition 4.2 (a priori estimate) ILet w = t(ﬁ,f\?) e 0 be arbitrary

<

| and let Conditions 4.1-4.3 be assumed. Let n =1 and s 2 S'O + 1 (so=

[n/2] +1) .be integers. Suppose that W, -w = t(uO —E,VO-\_?) ¢ B (R,

and w(t,x) = t(u,v) (t,x) is a solution of (4.1),(4.2) with (3.4). Then
there exist positive constants ag (Sa4) and Cg = C8 (aS) > 1 such that

if NS (T) < a,., the following a priori estimate holds for t e [0,T].

5.’

(4.22) N (t) < cgnuo-—ﬁ”, v -\7“8 .

0

The global existence result for (4.1),(4.2) (for all nz=1) is now
follows from Theorem 2.9 and Proposition 4.2 by the continuation argu-

ments as in Theorem 3.10.

Theorem 4.3 (global existence) Let w = t(ﬁ,?) € 0 be arbitrary and

-~ let Conditions 4.1-4.3 be assumed. Let n =1 and s = 59 + 1 (sO=

[n/2] +1) be integers. Suppose that Wy =W = t(u0 —E,VO -7 e B2 (RY.

Then there exists a positive comstant 6. (<ac) such that if HuO—E,

Vo~ Vllg < 8, the problem (4.1),(4.2) has a unique global solution

0 5°
wit,x) = t(u,v) (t,x). satisfying (3.4) with T = o, The solution satis-

fies (4.22) for t e [0,):

T R 2 2
(4.23) | @-u, v-v) (t) Hs + (0 [l D a () Hs—l + HDXV(T) HSdT
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g

2 — =2
< Cg lug—u, vy-vilg -

Furthermore the solution decays to the constant state w = t(u,v) as

R ECEIT S N O PR >0 as t - o.
| 0 h

Remark 4.1 The constant §

, ) 2,1/2
{a5/C4, a5/C8(l+c4) }.

¢ in the theorem is determined by 8. = min

4.3 ASYMPTOTIC DECAY

2

In this section we shall show that if w

oW e 55 (®Y) o IP(®Y,

the solution of Theorem 4.3 decays at the rate £ (with y=n(l/2p-1/4))

o

as t->oo, If n 2 3, this decay law was already proved in Theorem 3.11.
The following arguments including the case n = 1, 2 are based on the

conservation form of the system (4.1).

Theorem 4.4 (asymptotic decay) Let w e O be arbitrary and let Condi-

tions 4.1-4.3 be assumed. Let n=1 and s = s+ 2 (sD= In/2] +1) be

integers, and let p=1 for n=1 and p e [1,2) for n = 2. Sup-

R

pose that LA ~w e BB(RY n IP@®"Y). Then there is a positive constant

8¢ (<85) such that if |[w, - WHs,p < 8, then the solution w(t,x) con-

6.)

‘structed in Theorem 4.3 satis fies

(4.24) 1€ ww) - 2@ oy s C@+0) V|, - oo p
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for t e [0,°), where Y =n(l/2p - 1/4), and C = C(66) 18 a positive

.

econstant; the norm is defined by (3.20).

L,p

Remark 4.2 The solution w(t,x) itself satisfies

@20 =W @l = carn vy - W,

Proof of Theorem 4.4 We consider z = £ (w) as the unknown and linear-

ize (4.1) at the constant state z = £0(w). Noting (4.11),, we obtain

(4.25) £9 (w) . % fal(;v_) fg(v—v)_lfo W, -] @ fg(ﬁ)_lfo W,

j Jk 7k

=7 5w + ) w1,
3 %5 5k ey

where we set

W =- Hw -2 - gl - 2@,
e = @ wm™ - F@mL@m™eLw .

Put

(4.26) V= fg(v_v)—lk{fo W - £2G@} .

Multiplying (4.25) by tfg(v_?)nzz(fo (7)) and noting (4.4) , (see also
I

Condition 4.1 () ), we have
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0,— J — _ ik =
(4.27) A (w)vt + 2 A (w)VX. 2 B (w)vx_Xk
J Jj ok J

=T, + 7 Eww, 1,
j ¥y 5k M ¥y

where

(4.28)]  nlw) = 5o G@n, (2 @) o)

(4.28),, 1K o) = tfg(i?)nzz(fo eI ) .

It should be noticed that the linear part of (4.27) coincides with that
of (4.18) and the nonlinear term of (4.27) is of a conservation form.

Let A(E) = ] &)@ e, and B(E) =] Bjk(v‘q)gjgk. Let S(£) be de-
fined by (3.A.4) vith 20 =29@) ana j1].{= 0, and let e % by (3.A.13).

~

Then the solution V of (4.27) has the expression
(4.29) v = @) V2B @Y%) +

N , .
+f e_(t_T)S(AO)—l/Z{ y hjr(w)x (1) + 7§ {ij(w)w }X (t)}ar] .
0 ] 3 gk R

Applying (3.A.14) to (4.29) and using the conservation form of the nonlin-

ear term, we obtain

(4.30) vy, < ca+n VO,

t -c:2(t—T) . T
+ cj e (Tinden, ol + I e, 1 @] e +
] 3 ik % %5
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+ cJt (1+t—T)—(n/4+l/2) {7 ||hj W) (O] + y H{ij(w)w Ho || qyar
0 j L~ ik *k L
with v = n(l/2p - 1/4) and a constant C. We estimate the norms in the
right hand side of (4.30). It follows from (4.28) , that b ) = o(|w-
-w% and B =0(w-W|) for |w-W| + 0. On the other hand
(4.11), gives clw -w| < |V|] < Clw-w| for we Bro(v'v), and ’(.;4.11)2 shows

the existence of the inverse function w = w(V) of (4.26) in the neigh—

porhood V(B (w)). Therefore if [[V||] (with s=2s,+2) is suitably small

0
0
(this condition is satisfied if |w-w|[, < a; with sufficiently small
a4‘ < a4) , then
(4.31) Find e |+ TR e ww . b ||
: 1 : ' X.''s=2 / X X, s-2
] J Jk J

< clvilgy lIvilg -

(4.31)

Z[[hj(w(v))l[ + XHij(w(V))w(V) Il ; <clv 2
) ] e o Iy = clvid

J jk

hold with some constant C. Substituting (4.31) to (4.30) and using

vl

inequality for ||v(t)|]]

1,2

< C |lw-wl| HVHS < C|lw-wll, and (4.23), we obtain the

s-2,p s=2,p’

= sup (l+T)YHV(T) ||S_2:

S72:Y  peret

(4.32) v || < C [Jwg - wl]

S=2,Y s-2,p *

2

# Cuye) g =l [V ] 52,y

+ Cu e |[[lvie) |

L4

s-2,Y

where u3(t) appeared in (3.45) and My (t) is given by
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T
Hy(t) = sup (l+T)YJ (l+T-—"cl)_(n/4+l/2) .(l+Tl)-2YdTl .

O<t<t 0

Note that Hy (t) is identical with p4' (t) in (3.45) if n = 1. Since
u3(t) and u 4 (t) are uniformly bounded with respect to t e [0,~) for
any n and p indicated in.Theorem 4.4, the desired estimate (4.24) fol- ,

lows from (4.32) as in Proposition 3.'3 (or 3.12). Thus the pi':oof of the

theorem is .completed.

“ 4.4 ASYMPTOTIC BEHAVIOR

In this section we shall study the asymptotic behavior of solutions
of (4.1) in detail. We first consider the case n 2= 2. Let w*(t,x) be

a solution of the linearized system (4.8):

with the initial conditions
(4.30) w00 = fo@ T HE w ) - @)

where wO (x) is the initial data in (4.2). Iet w(t,x) be the solution

of (4.1),(4.2) constructed in Theorems 4.3 and 4.4. Since w*(t) =

(AO)—l/ze—tS(AO) l/zw*(O) and w*(0) = V(0), (4.29) yields

(4.35)  £6 O m0) - 2@} - wr(b)
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t . .
=[ (00) ™27 (608 (10 =1/2 743 )y, (0 + ] 5w, 3 (0lar .
0 j j ik e ¥y

0

Iet s = s, + 2 (note that s;=[n/2] +1>2 for n>2). Then for [jw-wl|

. . -2
-39 ] 0] @y Nlomg 1 [I{ij(w)w}{]{}lels_4 < cllw =W,

-

holds with some constant C = C(a4) .- Bpplying (3.A.14) to (4.35) and

using the estimates (4.36), (4.31), (with [|V||; replaced by |lw-w]|;) and

(4.24) ', we obtain

12 w) - 26 - fg(iz—)w*(t) -

2
s=2,p

14

< Cup () @+ ™ Jluy - Wl

‘with B =2y - ¢ (for any small € >0) for n= 2 and B = min {n/4+1/2,

2y} for n =z 3; u7(t) is defined by

t
u () = (l+t)Bj (L+t-g)~W4E+HL/2) 0 L =2 g
0
It is not difficult to see that Ho (t)y < C€ holds for every small € > 0

if n=2 and i17(t) < C if n 2 3. Thus we have proved:

Theorem 4.5 (asymptotic behavior) Let n 2= 2 be an integer and assume
the same conditions as in Theorem 4.4. Let w(t,x) and w*(t,x) be the

solutions of (4.1), (4.2) and (4.33),»(4.34), respectively. Then the fol-

. T e
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lowing estimate holds for t e [0,®).

2
s=2,p°

9!

@3 Pww) - 2@ - 22@wr @, < e+t P w, -]

s—4

I

‘where B >y =n(l/2p-1/4) 4is determined by

1l
Y]
[

2y - € (for any small € >0) if n

min {n/4 +1/2, 2y}

o
kb
o)
v
w

1)

:‘and C= C(66) i8 a constant (in the case of n=2 it depends on € >0 too).

: Remark 4.3 The estimate (4.37) implies that the solutions of the non-
:linear equations (4.1) are asymptotic to those of the linear ones (4.33).
A similar result was obtained by Kawashima, Matsumira and Nishida [39]

for the equations of compressible viscous fluids in IR3. Based on this
eét:i.mate, it was proVed in [39] that the Boltzmann ’equation can be approx-
imated by the equations of compressible viscous fluids for t -+ « and
that the latter equations by the Navier-Stokes equation for incompress-—
‘.ib,le ‘viscous fluids.

Next we consider the case n= 1. Iet Aw) = Al W), Blw) = plt W) ,

“hw) = hl(w), Hw) = Hll(w) and X = X € ]Rl. Then, in this case, the

system (4.27) is reduced to a simple one:

(4..27)' AV (xTv)Vt + A(v?)vx - BWV, =h(w + {H(W)WX}X .
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let w=w(V) be the inverse function of (4.26). Since h(w) = O(|w-

w|%) for |w-W| >0, we find that Dh(w(0)) =0 for k =0,l. There-

fore -hw(V)) has the form
(4.38) hw(V)) = h*(V) +hp(V) ,

where h*(V) = D\zlh w(0)) (v, V), énd hR(V) is the remainder term with
hp(V) = O(1v|3) for |v| - 0.

We will show that for t -+ «, the solution of (4.1),(4.2) (with n
=1) is approximated by the solution of the semi-linear equations

| 0 * W)k - w) Wk = h* (wk
(4.39) A (W)wt + A(w)wX B(w)wXX h*(w )x
~ with the initial conditions (4.34) . We need some preparations. First
we show that in the case of n =1 the L2 (]Rl) -norm of the derivatives

of solutions to (4.1),(4.2) decays at the rate P (with B=3/4 -¢ for

any small € >0) as t = o,

lemma 4.6 Let n=1 and s 2 5 (an integer), and assume that L/ w
e H° (IRl) n .t (IR]') . Then for any small € > 0, there exists a positive
constant 67 = 67(8) (s66) such that if Hwo--wHS,l < 67, then the solu-

tion constructed in Theorems 4.3 and 4.4 satisfies

. ) _
(4.40) I L) [l g = ca+ P llwg-wl,, 1 s

for t e [0,°), where B = 3/4 - ¢, and C = C(€,67) 18 a constant.
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Proof. Apply DX to (4.29) (with n=1). Application of (3.A.14) to the

resulting equation yields

-3/4

(4.41) Iyt flg_g < c@+t) VO [ 4 1 +

-c, (t T)

md%m

2 .
o F D E®W, (D) || g} ar +

t
+cf (1+t-0"4 D s ( @l

-5/4

+ (L+t-1) ||{H(w)wX}(I)H L dr
L

By use of the estimate (2.4) (with p=« and s=n=1), we have in the same
way as in (4.31)

112'

2 2
(4.42); IR || _c + [IDJEHEO)w®) H0 |l g

< ¢ oy 2 VIl Y2 ||

s-5 s-4 s-2 '

(4.42) ]{th(w(V))IILl + HH(w(V))w(V)XHLl's c v fiov -

Substituting (4.42) to (4.41) and using the decay estimate (4.24) (with

1,2
Y=1/4 for n=p=1), we obtain

(4.43) llD, v (t) H]s_S’B < C |[w0~v7lls_4,l +
— —n1/2 1/2
+ Cug(0) [lwg = ll oy 1 llwg =l L2 oy 172+
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+ Cug (t) HWO —V—;H

s-—4,l”

DI ® [llgg,g

where B = 3/4 - ¢ (for any small € >0) and

T —CH(T-T,) 3
ug(t) = sup (l+I)BJ*e 2 1 (l+Tl) ,(B/2+3/8) dty 4
O<t<t 0 .
T .
,ug(t) = sup (l+T)BJ (l+T—Tl)—3/4(l+'fl)—(6+l/4) dTl .
O=st<t 0

For every small e > 0, u8(t) and Hg (t) are bounded by a constant C€
independent of t ¢ [0.,00) . Therefore from (4.43) we can deduce the de-

sired estimate (4.40). This completes the proof of Lemma 4.6.

Next we investigate the initial value problem for the semi~linear
system (4.39). In the same way as in Theorems 4.3 and 4.4, and as in

Ilemma 4.6, we can obtain:

lemma 4.7 Assume Conditions 4.1-4.3 for n=1.

(i) Let s =1 and assume W W e HS(IRl) . Then there is a positive

constant X such that if |w —WHS < 8%, the problem (4.39), (4.34) <s

0 57

solved globally in time as in Theorem 4.3.

(iZ) Let s = 2 and assume’ Wy

positive constant §* (<08X) such that if |lw

- Woe BB(RY o LYRY . Then there is a

O_V—;Hs,l < 8, the solu-

tion w*(t,x) of (i) satisfies

(4.44) 1£2 e (1) - £ gy = C(l+t)_l/4||Wo“"7“s-1,l .




- 106 -

(i5) Let s = 3 and assume L/ W e HS(]Rl) n Lt (JR-l) . Then for any

small € > 0, there is a positive constant & = 8X(e) (<8*) such that

if |lw, -wl] < 8%, the solution w*(t,x) satisfies
0 s,1 7 7

(4.45) DG @) || 5 < C@+0) P - 5|

s-3 s-2,1°7°

with B = 3/4 - ¢ and a constant C = C(€,67*) .

" Now we state the result on the asymptotic behavior (as t-«) of the

solution of (4.1),(4.2) in one-dimensional case.

Theorem 4.8 (asymptotic behavior)  Assume Conditions 4.1-4.3. Let n

=1 and s = 6 (an integer), and assume that Wy T W e HS(JRl) n Ll(lRl).

Then for any small € > 0, there exists a positive constant 68 = 68(8)

0 vlls,1 = %

;the solutions of (4.1), (4.2) and (4.39), (4.34) respectively, satisfy

(s67, 67*) such that if ||w then w(t,x) and w*(t,x),

(4.46) 12 ww) - £2@) - fg(rq)w*(t) llg 2

< c<1+t>‘6uw0-e;ns_4ll ,

-6
:with B=3/4-¢ and a constant C = C(€,68). (For the existence of
w(t,x) and w*(t,x), see Theorem 4.3 and Lemma 4.7. See also Theorem

4.4 and Lemma 4.6.)

Remark 4.4 A similar result was proved by Kawashima [38]l for one-dimen-
sional model equations of a viscous compressible fluid, which are derived

from the Broadwell model of the Boltzmann equation by the Chapman-Enskog
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expansion. Using this result, he proved the following: in one-dimension-
al case, the Broadwell model of the Boltzmann equation can be approximated

by the model equations of a viscous compressible fluid for t -+ «,

Proof of Theorem 4.8 - We express the solution w*(t,x) of (4.39),(4.34)

by means of e *° and subtruct it from (4.29). Noting (4.26) and (4.38),

we have

t
(V = w) (£) = j 00) 257 (=108 30y =1/2 (s gy - px(un) +
- 0

+ hR(V) + H(w(V))w(V)X}X(T) dt .

Applying (3.A.14) to the above equation, we get

t —Cz(t—’f)
(4.47) | (V=w*) (t) Hs—6 < CJ e {Hh*(V)X(T) Hs—6 +
0

+ [[p* ) (D) [ + (D) (D [ g + [[EH@O)w©) ] (1) gt dr +

ldT +

t
+ cJ (L+t-0 Y4 |n* @) (1) - b @) (0 |
0 L

~-3/4

. .
+C[ (L+t-1) {HhR(V) (0 || 1t H{H(w(V))w(V)X}(T) | l} dr .
0 L L

The norms in the right member can be estimated in the same way as in

(4.31)1,2:

RS D e o WP 1 W D

z
.
3
E
g
5
»‘
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+ H{H(W(V))W(V)X}X“S-6 < C “VI W*HS—S ”DX(VIW*) HS"S r

Ih* (V) = hx@*) || | < Cllv, wH[[[[v - w*]

Ll

5/2 1/2

HhR(VHlLl-SCHVH o Vi

Substitute the above estimates and (4.42), to (4.47). Then by virtue of
the decay estimates (4.24) (with y=1/4 for n=p=1), (4.40), (4.44) and

(4.45) , we have the inequality for ||| (V - w*) (t) HIS_6 (with B=3/4-¢€):

/B

2

(4.48) IV =9 (@) [l g g = Clug(®) +up () Hlwg=wllg_, o +

+ Cug (0 [l =Tl gy 1107 = ) () g g

where ug(t) appeared in (4.43) and ulo(t) is given by

T
(t) = sup (l+T)BJ (l+'r—-Tl)_3/4(l+Tl)"(B/2+5/8) dr

U
10 0Tt 0

1

Both of the first and the last integrals in the right member of (4.47)
are corresponding to the first term in the right hand side of (4.48). It
is easy to see that ug(t) +ulo(t) < C€ holds for every small e > 0.

Therefore we can deduce from (4.48) that the estimate ||| (V - w*) (t) |[|__¢ 8
4

< Cglle—WH2 Thus the proof

s-4,1
of Theorem 4.8 is completed.

holds for suitably small ||w, -WHS 1

i

B s e i
e S e S R SR o S e sl e M i e
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CHAPTER V

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS
WITH VANISHING VISCOSITY

.1 INTRODUCTION

In this chapter we shall consider the initial value problem for the

+

system of conservation laws with a parameter € e (0,1]:

0 j - Jk
(5.1) fw,+) W, =) {GTww, }, .
; t 3 Xj 3k X xj
(5.2) w(0,x) =w,x) ,

where t =20 and x = (xl,-'-',kn) e R'; w=wt,x, fj(w) (3=0,1,--
«+,n) and ij(w) (j,k=1,++++,n) are the same as in chapter IV. We also
assume Conditions 4.1 and 4.2. Then it was examined in chapter IV that
the system (5.1) can be reduced to

(5.3) AO (w)wt + Z Aj (w)wX -e) Bjk(w)wX = s—:g(w,wa) '

J J Jk J

which is symmetric hyperbolic-parabolic (in the sense indicated in chap-

ter ) for every fixed € ¢ (0,1], where a7 W) (3=0,1,++++,n), Bjk(w)
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(j,k=1,++++,n) and g(w,DXw) are defined by (4.4)1’2,3, respectively.
It should be also noted that the system (5.3) with € = 0 is a symmetric
hyperbolic one, as was pointed out by Friedrichs and Lax [19]; this fact
s seen from (4.5)1’2. "

In the following we are interested in the asymptotic problem as ¢
=+ 0. Since (5.3) with € ¢ (0,1] is symmetric hyperbolic—pariabolic,
Theorem 2.9 gives a local solution of (5.1) ,(5.2) on a time interval
[O,TE]. However in this case we only know Té =0(e) for e+ 0 and
so we can not take the limit as € -~ 0. To prove the existence of solu-
ions to (5.1),(5.2) on a time interval [0,T] independent of ¢, we
must utilize the property that Aj w) (3 =l,-;--,n) are real symmetric;
in Theorem 2.9 we only require that the block matrices A%l w) (3=1,0°-
oo ;n) are real symmetric. As is expected, we can establish the following
results. "The initial value problem (5.1),(5.2) has a unique smooth
:solution woo=wt (t,x) on a time interval [0,T] independent of € if

the initial data satisfy w, - w ¢ H (IR (with n>1 and s> [n/2] + 2)

0
with a given constant state w e¢ 0. Furthermore, as € - 0, the solution
w8 converges on [0,T] to a limit wo, which is a unique smooth solu-
tion of the limit system (i.e., (5.1) with €=0) for the same initial
data." (see Theorems 5.4 and 5.5).

Similar results were obtained by many authors. In one-dimensional
:Case the system (5.1) with € = 0 admits shock-wave solutions and (5.1)
with € €(0,1] admits progressive-wave solutions, if (5.1) with € =0
is strictly hyperbolic and genuinely nonlinear in the sense of Lax [50]1.

The convergence of progressive waves to the shock waves as € + 0 was

proved in [17], [lO]l, [73]1,[74] for general systems, in [86],[20],[21] for
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; the equations of compressible fluids, and in [101, 5,[29] for the equa-

- tions of magnetohydrodynamics. We also refer to DiPerna [13] 6’ where gen-
~eral convergence theorems are established for some simplest systems in
one space-dimension: smooth solutions We converge to a limit w0 for
‘all time t 2 0, and W’ is.a weak solution of the limit system. For

- convergence résults (local in time) in higher dimensions (n = 2);, we refer
to [63], where the equations of éompressible fluids in IR3 are consider-
ed.

Similar convergence problems were also considered for the equations
~of incompressible fluids and for the Boltzmamn equation. We refer to
[24],[57],176], [37]2 for the former equations and [61]3, (61, [80]3 (and
~also [33],[7]) for the latter one.

The contents of this chapter are as follows. In section 5.2 we con-
sider the linearized system (with variable coefficients) for (5.1). The
energy estimates and the existence results, which are valid uniformly in
 € e (0,1], are established by a similar method as in section 2.3 of chap-
~ter II. By virtue of these results, we can 5how that (5.1),(5.2) has a
smooth solution w° = w© (t,x) on a time interval [0,T] independent of
e € (0,1], see section 5.3. The solution is constructed by the successive
approximation method. In section 5.4 we shall prove that as € = 0, W
con{ferges on [0,T] to a smooth solution of the limit system. Section
5.5 contains some remarks on the global existence problem for (5.1),(5.2).
In particular, it is proved that if the amplitude of the initial data is
O(e), then (5.1),(5.2) admits a global solution whose amplitude is of the

same order.
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5.2 UNIFORM STABILITY FOR LINEARIZED EQUATIONS

In this section we shall consider the linearized equations of the

form

(5.4) A (w)wt + 7 A ww, - £) Bjk(w)w =f + eqg ,
: X, : X, :
J ok J

-

where coefficient matrices AJ(w) (3=0,1,++-+,n) and BN @) (3,k=1,+
*+,n) are the same as in chapter IV (cf. (4.5)1'2’3 and Condition 4.2);
wit) = Swv) (60, £, = S(ELE) (6% and glt® = T(g),9,) (£,%)
are given functions on QI‘ = [0,T] xR'. Iet s = SO + 1 (so= [n/2] +1)
and- 1 £ 2 £ s be integers. let w = t(u,,v) satisfy (2.10)1’2 and

(2.11):

(5.5, u-Te A o,7; 85 (@), 2,0 € Ao, @Ry

v-ve ;@) ,
(5.5)
2
3,V e Ao, 55 %@ Y) oo, 5 Ry

for any (t,x) € Qp 7

(5.6) wit,x) = S,v) (£,%) ¢ 0,

where W = t(ﬁ,?) e 0 is an arbitrarily fixed constant state and 0y is

a bounded open convex set in IR satisfying 51 c 0. For £ = t(fl,fz)
t

and g = (gl,gz), we assume:

0 -1

(5.7) £= "5 ¢ o, E @) 0 Lo Et @)

R

e

i

-




- 113 -

1/2 -1

(5.8) e/ g, « Lo, @) 0 1,7 BHEY)

(5.8) g, Ao, Ry .

As in chapter I, we also consider the conditions (5.5) (5.7)

, 1,2'
and (5.8); ,with ¢(-++) replaced by L°(-++). :
r '

_l(

(5.9); u-ueL (0,T;H(RY) , d.u e L°(0,T;ES S(RY) ,

v-ve1 0,7; (@Y ,

(5.9),,

2.V € L7(0,T sE2@®Y) o 2o, BTN EY)
(5.10) £ = t(fl,fz) e 1700,T; B T @®Y) o 29(0,T; BUEY)
(5.11) el/zgl e 120,17 B L mY) o 20,7 BYEY)

-1

(5.11), g, e Lo, ;E T(®Y) .

Under these assumptions we can prove the energy estimates for (5.4), which,‘

are valid uniformly in € ¢ (0,1].

lemma 5.1 Let A](w) (j=0,1,**++,n) and Bjk(w) (j,k=1,*+++,n) are the

same as in chapter IV, Let n=21l, s2s_ +1 (sO= [n/2] +1) and 1 < &

0
< s be integers. Let w = t(u,v) satisfy the conditions (5.9)l 5 and
7

(5.6) and put

' T
—_ 2 1/2
M= sup [||w=-w)(t) N M = (j o, w(t) dt) .
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Let f = t(fl,f2) and g = t(gl,gz) satisfy the conditions (5.10) and

~ NN

(S'll)l o9 respectively. Further assume that w = ~(u,v) is a solution
1

of (5.4) (with €€ (0,1]) satisfying

>

-1

e 10, BN L, sae 0,7 ECH@Y)

t

>

v e 120, BN EY) Bt\; e 70,7 ; B 2 (@Y .

Then it follows that W= "(u,v) e ¢°(0,T: B (®Y) and /% ¢ 12(0,T;

H5L+l (mn) ).

Furthermore we have the energy estimate which is valid uni-

formly in € e (0,1]:

(5.12)

for t e [0,T] and for any o e (0,1], where C9 = C9(Ol) > 1 and Cl

oo 2 L 2
l@w @2 + eJO [ |2, a

1/2
C. (t/oa+M. t™7 %) ~ A t
< C92e 10 1 L] ) (0) Hi + J I (£ ,£,) (1) szr +
. 0

t 2 [t 2
+ e{oceJ llgy (0 || at + Clo{ llg, (0 I3y dt 3]
0 0

0

= Cyp (Ol,M) are constants independent of € and a.

Proof. We use the arguments in Lemma 2.6. Apply D]:{ (k £2) to the sys-

- tem (5.4) and take the inner product (in Iffn) of the resulting equation

by D};{W' Integrating it over R and adding for k= 0,1,*+++,%, we Ob—

tain
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2[ A : ~A L N el
0 k | k. _ ij k
(5.13) Z J< A"w)Dgw, + ) A (wW)Dw_ - €} B wDbw ., Dw>dx
k=0 J J 1] 1]

L

= Z[<Fk+eGk,Dk€7>dx,
0 X A

P = 2o’ w e - 2% § ok, e e,
J J

& = 20w Df;{AO w) Tgt + 20 w) ) '[D]:(, A% o) 718 ) ]QX . -
ij 1]

Iet us introduce the energy norm

~ % ~ ~
Ew] = () j< Ao(w)Dkw, Dkw >c‘lx)l/2 ,
k=0 X

which is equivalent to |lw]|. . By the arguments in Lemma 2.6, we can de-
[)

duce that the left hand side of (5.13) is bounded from below by \ §

- c+|lawll,_pEm?

1..7,2 "2
(gE[W] ) + ECOHVHQ,.H

2
3t

0
of €. On the other hand the right member of (5.13) is majorized by

where c, = < (Ol) and C = C(Ol,M) are positive constants independent

c®m® + ||£,5, ] EWD) +

+ec®M [Vl gy + lagllyllally + Nayll, s 191 ,)

Wlth a constant C = C(Ol,M) independent of €. Therefore, noting that
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eCllgy Il llull, < ouezﬂglﬂi + o lcEW]? for any a > 0, we can get the
inequality

9 "2 "2 -1, "2

3¢ EWIT + ECOHVHSLH <o C+|w] _EWT +
2 2 2

+ Hfl'f2”52,. + €(0‘€||911|g + CHQZHQ_l) '

~where o < 1 is assumed. The desired estimate (5.12) is an immediate
consequence of the above inequality. We omit the proof of the regularity
- results, because these results can be obtained in the same way as in Lem-

ma 2.6. This completes the proof of Lemma 5.1.

The existence of a solution of (5.4) follows from Proposition 2.7.

Indeed, (5.4) can be written in the form

O "~ j N _ 8 . ~
Al(u,v)ut + 2 Z—\‘ll(u,v)uXj = fl(t,x ; DXV) ,
(5.14)

O ~ _ jk ey _ 8 . N N
Az(u,v)vt 82 By (u,v)vxlXk = fz(t,x ; D,D.V)
jk J

where

£ o - _ j ~
£/ (tx ;D) = £ + eg; % A, (u,v)vX. ,

8 . N Fay - _ j Fay j A
£, (tx;Du,D V) = £, + eg, % {AZl(u,v) uxj + A, (u,v)vxj} .

Therefore, based on Proposition 2.7, we can define the successive approx-
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imation sequence W = (W) for (5.14) as follows: |

({-\10':70) (t/x) = (GIV) r

fand for n = 0,

“n+l

+1 £
& kfl(t,x;va ),

0 “n+l j
Al(u,v)u,C + % Al ,V)u

-

A (u, v)vn+l - € Z BJk(u V)V nfl = fg(t,x ;D un,D vn) ’
t 2 . 2 X X
Jk %
n+l n+l o~

(u ) (0,x) = (u,v) (0,%) .

Note that the last variable of f£° is not van but van +l. We apply

1
the energy estimates (2.16) 1,2 to the equations for the difference wn l

N, A,

w'. Then it follows that for every fixed € ¢ (0,1], W o= t(un,vm)

and V' are the Cauchy sequences in CO(O,T ;HQ' (]Rn)) and LZ(O,T;
H’H‘l(IRn)) , Trespectively. So we have a solution of (5.14) (and therefore
(5.4)) as a strong limit of the sequence wh. Summarizing the above con-

siderations, we have:

Proposition 5.2 (uniform stability for linearized equations) Let A7 (w)

(j=0,1,+*+,n) and BJk(w) (j,k=1,*++,n) are the same as in chapter IV.

v

Let n21, szs +1 (so= n/2] +1) and 1 < & < s be integers. Let

0
t(fl,fz) and g = t(gl,gz) satisfy the conditions

w o= t(u,v), £
(5.5)l 5 (5.8)l o If the initial data satisfy w(0) = t(u,V) (0) €

A

HSL(]Rn), then (5.4) with € e (0,1] admits a unique solution w(t,x) =

) (6,%) with




- 118 -

e 20,1 @) ot B HNEY)

[l

<>

e Ao, @) o o, EVEY)

% ¢ 2,0 MY L

hich satisfies the energy estimate (5.12) for t e [0,T] and‘ffor any

yo e (0,1].

5.3 UNIFORM STABILITY FOR NONLINEAR EQUATIONS

In this section we shall construct a solution of (5.3) (and conse-

quently (5.1)) on a time interval independent of € ¢ (0,1] by the suc-
oésé_ive approximation method. To prove the existence of a invariant set
Uniformly bounded with respect to e) under iterations, we first consider

the linearized system for (5.3):

5'.15) AO (w)wt + Z aJ wWw. - ¢ Z Bjk(w)w = eg(w,D.w) ,
: ; X, ! XX X
~ ] ] jk ]

ith the initial data

~

5.16) w(0,x) = w(0,x) =W0(X) .

Iet Conditions 4.1 and 4.2 be assumed and let s > Sy + 1 (so= [n/2] +1)
be an integer. For v, (x) = t(uo,vo) (x) we assume that v -w = t(u0 -

E,VO-?) e E(RY) and
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(5.17) Wy (%) = t(uo,vo) (%) € 0 for any x ¢ R,

0

where W= "(@,%) ¢ 0 is an arbitrarily fixed constant state and 0, is

a bounded open convex set in IR© satisfying A50 c 0. For given functions

w(t,x) = t(u,V) (t,x) ; we assume _ti'xat

(5.5); w-Ue Ao, @®Y) , 3.u € P, ;85N @®Y)

veve o, B, e w-9 120,7;5HEY)

(5.5)2

B,V € A0, ;854 @®Y) o 20,7; B5HEY)
(5.6) w(t,x) = t(u,v) (t,x) € Ol for any (t,x) € QT ’

—_ 2 t 2 2
(5.18) u-u, v-v) (1) + J (v -v) (1) dr < M° ,
Ll R @ ) e e w2 e

t 2 2
(5.18), [ |3 (wrv) (1) HS__ldT <My for te [0,T] ,

o’

where Ol is a bounded open convex set in R satisfying 51 c 0, and

M and Ml are constants; 01, M and Ml will be determined later. We

denote by )@(Ol,M,M ;e) the set of functions w(t,x) = t(u,v) (t,x) sat—

isfying (5.5)., (5.5)

17 o (5.6) and (5.18)1’2.
t 2
et w= "(u,Vv) e )é(ol,M,Ml;e). Then Hg(w,DXw)HS_l < (M° holds
with some positive constant C = C(Ol,M) (see (4.7)). Therefore, if w
t ~ N

1
= "(u,v) 1is a solution of (5.15) satisfying (5.5) (5.5)2 and (5.18)l

l,

with M replaced by M, then there is a constant C such

11 = C11(0pM
that
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t AN Fay A
- (5.19) J o (v (012 ar < o fled” + o +eluh )
| 0

~holds for t e [0,T]. Now fix dl so that 0 < dl < dO = dist(OO, 30) ,

:and then take Ol' M and Ml as folloWs:

Ol = dl—nelghborhood of OO _,
(5.20) '

M= 2Cy [[uO-E, vO—GHS r M = 2C M,
‘where C9 = C9 (01) and €y = Cll(Ol’M) are constants in Lemma 5.1 and
(5.19), respectively. For this choice of Ol’ M and M;, we can show

AN

that the set X,?_,(Ol,M,M ;€) is invariant under the mapping (u,v) - (u,v)

if T is sufficiently small (but independent of €).

Proposition 5.3 (invariant set under iterations) Let Conditions 4.1 and

4.2 be assumed. Let n=1 and s = s, +1 (SO= [n/2] +1) be integers,

and let w= S@,7) ¢ 0 be an arbitrarily fixed constant state. Suppose

‘that the initial data satiefy W, - = t(uo

(5.17). Then there exists a positive constant T, ( <T), depending on

-~V =) e B and

‘00, dl and Huo-a, A

t . . . .
(u,v) € )@2(01,M,Ml;€) with 01’ M and Ml defined by (5.20), the ini-

tial value problem (5.15), (5.16) ‘has a unique solution w = t(u,v) in

_;Hs but not on e e (0,11, such that if w =

‘ the same X,?,Z (Ol,M,M ;€).

Proof. This lemma can be proved in the same way as in Proposition 2.8.
It suffices to show w= "(u,v) € X,i (Ol,M,Ml;E) , because the existence of
2
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W follows immediately from Proposition 5.2 with & = s. Since ”g‘l (u,
2
v,D ) ||, < aM|lpyv]l, and |g,(u,v,D,Dv) ||, < CM°, the energy es-

timate (5.12) (with 2=s) yields

2

- (5.21) I (@-T, v=9) (&) I

. t A~ 2
+ e{ | v=v) (D], dr
0 .

1/2
Ci (/o +M t77)
o210 My

< Ulug =, vy =712 + eai @ +0)}

0

where C = C(Ol,M) is a constant independent of € ¢ (0,1] and o e

(0,1]. Teke o so that 2uCM® < [lay = s vo—ﬂii. For this choice of
0, we take T, so small that
ClO (TZ/OL +MlT2]/2) 4 _ —2
e <2, 2aMT, < Huo—u, VO—VHS.

 Then the right hand side of (5.21) is majorized by 4C92 Huo -u, VO-\7H§
= M2 . Therefore it is proved that w = (u,v) satisfies (5.18) Since

1
f we have (5.19), the remainig estimates (5.18)2 and (5.6) can be verified

in the same way as in Proposition 2.8. This completes the proof of Prop-

osition 5.3.

By virtue of Proposition 5.3, the initial value problem (5.1),(5.2)

can be solved on a time interval independent of € :

Theorem 5.4 (uniform stability for nonlinear equations) Let Conditions

4.1 and 4.2 be assumed. Let n =1 and s = s, + 1 (SO= n/2] +1) be
t —_—

integers, and let w= (u,V) € O be an arbitrarily fized constant state.
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Suppose that the initial data satisfy W, -w = t(uo —E,VO -9 e B (RY
and (5.17). Then there exists a positive constant Ty (STZ), depending
on 0y, &) and Huo-ﬁ} VO-—G]LS but not on € e (0,11, such that the
initial value problem (5.1), (5.2) has a unique solution W = t(u,v) €

X%B(Ol,M,Ml;e) for any € e. (0,1], where Ol’ M and M.l are determined

<

by (5.20). In particular, the solution satisfies

u-ue CO(O,T3;HS(IRn)) n C’l(O Ty H il l( n))

v-7e®0r @) 0ty ETEY)

20 -9 20,1, ; BN @)

3

t
(5.22) s || (u-u, v-v) (1) Hi + EJ | (-1 (T)[li +
Ostst : 0

+ || (v=v) (1) Hs+l < 0122 Huo—ﬁ, vo—ﬂlz for t e [0,T5]

where Cp, > 1 is a constant depending on 0y, d; and Huo-ﬁ} VO-GHS

but not on €.
Proof. Iet us introduce the successive approximation sequence W'} =
{(un,vn)} for (5.3),(5.2) as follows:
t —_—
WO(trX) = (uOIVO) (t,x) = t(ufv) 7

and for n =z 0,

AO (wn)wn+l + aJ @™ ntl e 7 B (wn)wn+l = eg W, DwY
; X, . X% X
] J Jk J
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(0,%) =w0(x) .

By Proposition 5.3 the sequence W= t(un,vn) is well defined on Q‘I‘
2

for n = 0, and is uniformly bounded with respect to n=20 and € ¢

(0,11, i.e., W= t(un,vn) € XT (Ol,M,M ;€). To prove the convergence

N,

of w' +to a solution of (5.3), (5 2), we consider the dlfference W=

ntl n _t, ntl n _ntl _t,n’n
w -w = (u -u,Vv —v) (u,v):
(5.23) 2am® + T Al - e T B L = B ed®
t : X xxk
J ] jk J
(5.24) wi(0,%) =0,
where

= - 20w J e T o - %W h T W
] J

~ i I - -1
gn _ {A (w lg(wn,DXwn) _ AO (wn l) lg(wn l,DXwn )3

A0 (wn) ) {AO (wn) —-lBjk (wn) _ AO (Wn—-l)—lBjk(wn-—l)}wnx .
3k 5k

-+

A

Since w € (O MM ;e), the right members fn=t(fn,f) and gn
1M . 1

t
(gri,grzl) satlsfy

12, 20y + ey < ™y
IRy = et ™+ 9 H)

]

i

N e e

——

i

AR

s

s
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for a constant C = C(Ol,M) independent of n and €. Therefore appli-

cation of (5.12) (with 2=s-1) to (5.23),(5.24) yields

R t oA
(5.25) sup Hwn(nf) ”g—l + ef ]]vn(T) Hng
0<t<t 0 ‘
RN | :
Clt/a+M £ %) ~e t ned
c e 1 {t swp ”wnl(’[) Hi—l+a62J an’l(T) sz”[}
O<t<t . 0

with a constant C = C(Ol,M) independent of n, € and o, where € < 1

and o £ 1 are used. Take o so that 2ocCM2 < 1l. Aand for this choice

of o, we take T3 so small that

clry/o +M1T31/ 2) ,
e <2, o2ofr <1.

Then it follows from (5.25) that w -w is a Cauchy sequence in CO(O,T3;
HS"l(]Rn)), and hence there is a w = t(u,v) with w-w = t(u—a,v-—@:) €
0 (0,T, ;ESH®EY) such that wh-w » 0 strongly in ¢° (0,T, ;S HmDY)
as n = «, Moreover by the arguments in Theorem 2.9 it is easily seen
that the limit w = T(4,v) is the desired solution to the problem (5.3),
(5.2) (and therefore (5.1),(5.2)). Thus the proof of Theorem 5.4 is can-

pleted.

5.4 LIMIT AS VISCOSITY TENDS TO ZERO

The solution of (5.1),(5.2) constructed in Theorem 5.4 is depending

S

on e e (0,1]. So, in this section, it is denoted by W o= t(ue,ve) . We
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shall show that there is a time interval [0,T] independent of € such
that as € » 0, W converges on [0,T] to a limit wO, which is a

smooth solution of the limit system (5.1) with € = 0. To see this we

consider the difference w = w6 —wE = t(u --ue,v(S -V ) (u V) , where
0<6<e<1l. Since w satisfies
al (wE)wgt + YA W)W, -e ) BIK W) w = egw DwW) ,
: X. . X‘}{k X
] i ]

the system for the difference w = wCS -w is

(5.26) A @)w, + [ A whw, - 6 ] Bjk(wé)wx'xk
] J Jk J
= fe"S + 6g€’6 + (e—é)hg’(S '
(5.27) w(0,x) =0,
‘where
fe,ﬁ - _ 0 6) E{ cS -1 '(wé) _ AO(WE)—lAj (we)}ng ,
J J
” % = 2 ) gl i) - Pp(ws)_lg(we,Dkwe)} '
+ 20w J 20 wH TR W) - 2w TR W,
ik 'k
he'a = -2’ (w(S)AO (wa)_l{g(wg,DXwe) + ) Bjk(wg)wE J

jk *5%%
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In Theorem 5.4 we have already proved that W e x; (Ol,M,Ml;e) for any

e e (0,11, So ££8 = Beteb g0y ofr8 2 B(gB0 650 ana n®r0 -
t(hi'é,hg'S) respectively satisfy

o e, 8 .&,6 €40 o
(5.28) £ £ Ig + gy Mgy s Atllwlly o

£,8 n -
(5-28)2 Hgl, ”S-l < oM ”u“S—l + HVHS) ’

Al

2
5 <o+ ||V

s+l) !

€,6
(5.28) 4 th , h a1

where C = C(Ol,M) is a constant independent of € and ¢§. Therefore,

g,6

applying (5.12) Gwith 2=s-1, £=£5'0+ (€ -)n®'® and g=¢°'%) to (5.26),

(5.27) and using (5.28)l 23 and W e X; (Ol,M,M.;e), we obtain
r<r
. 3

(5.29) sup [Jwin) |2, + Gft v || 2ar
0<T<t s-1 0 S

5 C(t/u%—Mltl/z)

<CM e {e

"l[e—@]z(l+t) +

. t
A2 2(5 1~ 2
+tswp [lwn) [ _; + ad J [[v () || dr}
0<T<t s-1 0 s

forany 0 <8 <e <1 and o e (0,1], where C= C(Ol,M) is a constant

independent of ¢, § and a. Take o so that 2uCM2 < 1l. For this o,

we take T4 so small that

1/2
eC(T4/oc+MlT4 )

2, ZQET < 1.

&)
IA
H
IA

Then (5.29) gives for t e [O,T4],

wwm%m%w&w&%%é

i

e G

Sl s e B R R e

s s
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t
(5.30) sup || @ -w) (0|2 + ch | =) (|| 2ar < ceTHe-s[?,
0

0<t<t

where 0 < § <e <1, and C= C(Ol,M) is independent of € and {§. Es-

timate (5.30) implies that wo -w is a Cauchy sequence in CO (O,T4;

Hs—l(ﬂfh), and so there is a W with w0-§'e CO(Q,TZ ;Hs—l(ﬂfﬁ) such
that w" -wo + 0 strongly in CO (O,T4 ;Hs_l(IRn)) as € - 0. ':Moreover,
since w" €, X; (Ol,M,Ml;e) ; by the argmrents in Theorem 2.9 we can see
that this l:um.4t wO is a solution of (5.3) with € = 0, satisfying wO -

-W e LOO(O,T4 JHES(RY) and E)two

e L7(0,1, 85T (@) . herefore, by
. . 0 - 0 s ﬂ£1
Iemma 2.6 (i), we have a regularity w -w e C (0,T4 ;s H (IR)). Thus we

have proved:

Theorem 5.5 (limit as €-+0) et n=21 and s = oA + 1 (SO= n/2] +1)

be integers. Assume the same conditions as in Theorem 5.4. Let wo =

W (t,x) be the solution (on Q‘I‘ ) of (5.1), (5.2) constructed in Theorem
3

5.4. Then there is a positive constant T, (ST3) independent of € €

(0,11, such that w0 -w = lim (WE—W) exists strongly in C‘O(O,‘I‘4 ;

e~>0
S_]'(IRn)). This limit function WO 18 a unique solution of the limit
system (5.1) with € = 0, satisfying wo -W € C’O(O,'I‘4 FHS(RY) Cl(O,T4;
Hs_l(]Rn)). Moreover, as a consequence of (5.30), we have
(5.31) | w© - W) (t) Hs—-l < M
for t e [O,T4] and for any € e (0,1], where C <is a constant depend-

ing on the initial data but not on €.
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Remark (i) In the case of s 2 =N + 2 (so= [n/2] +1), we can get a

rapid convergence result:

eC .

IA

RCIE L R N [

<

Because in this case we have the estimates (5.28) with s - i'feplaced

1,2
£,6

, ~ . ” €,6
by s-1 as well as the estimate th' p h2 Hs——Z

< CM. Therefore as a

counterpart of (5.30), we have

swp || 6 =) (0 ]|%_, + ar I =v®) @ || ar < cle-5|%,
O<t<t 0

which implies (5.31)°'.

(ii) In order to discuss the convergence W w0 for all time t = O,
we have to consider weak solutions (see DiPerna [13] 6) . Because smooth
solutions of the limit system (5.1) with € = 0 in general develop sin-

gularities in the first derivatives in finite time.

5.5 REMARKS ON THE GLOBAL EXISTENCE

In Theorem 4.3 we have proved that if [luj-u, v -v|[ <6

0 0 5
tion of (5.1) with € =1 exists for all time t 2 0. In this section

, a solu-

we shall show that if the smallness condition |u is

0 0 5
satisfied, then (5.1) admits a global smooth solution for any € ¢ (0,1].

-u, v —?HS < €8

We assume that the initial data (5.2) are of the form
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— ~

:(5.32) wo(x) =w + ewo(x) '

vwhere w= C(0,¥) ¢ 0 is an arbitrarily fixed constant state. Then we

<

Theorem 5.6 (global existence) Let Conditions 4.1-4.3 Dbe assumed. Let
n2>21 and .s = 5o+ 1 (SO= [n/2] +1) be integers. Suppose that the ini-

tial data savisfy (5.32) with Wy = F@p,) < BB ). Let 8 be the
constant in Theorem 4.3. If HEO’;OHS < 65, then the initidl value
" problem (5.1), (5.2) has a unique global solution w(t,x) = W+ ew(t,x)

for any € e (0,11, with W= t(LNI,\Nf) satisfying

T e o0 5 @) a cto,e; BTHEY)

s-2

Ve 20,0 BS@Y) 0 cH0,@; BETHEY)

el/znxﬁ ¢ 1200, =N ®Y) el/znx?} e 12(0,= ; B°(RY) .

Furthermore we have the estimate for W= t(a,\Nr), which 1s valid uniformly

in e e (0,1]:

@

| ~ 2 t . 2 ~ 12
(5.33) Il (w,v) () HS + EJ ”DXU(T) Hs-—l + HDXv(t) HSdT
0
< ¢ |15y, I for te [0, ,

where Cg > 1 <s the constant in Theorem 4.3. We also have the decay

law: | (u,v) (1) | +~ 0 wuniformly in € e (0,11 as t + .

s- (so+l)




..]_30..

Proof. First we note the local existence result (Theorem 2.9). "There
exists a positive constant Ti (=0(e) as €+0) such that a solution

wit,x) = t(u,v) (t,x) of (5.1),(5.2) exists on the time interval [O,Ti]

and satisfies

— — 2 t — 2 | = 2
| w-w v=9) (® 3 +‘ef0 [@-w @[+ [ v-v) (]2, dr

2 m 112 €1
= C4 Huo“u, VO-VHs .« for t e [O,Tl] .

Next we shall prove the a priori estimates for the solutions. We

shall modify NS (t',t) as follows:

N (k) = swp [ @-T, v-9) (]|
t'<t<t

-+

t 2 2
. eft‘nnxu(f)ns_l + oy | 2ar

We put NS (tie) = Ns (0,t;e). Then we have the following modification of
Proposition 4.2. '"Let ag and C8 be the constants in Proposition 4.2.

Assume that Ns (T;e) < €a . Then the following a priori estimate holds
for t e [0,T]:

(5.34) N, (tie) < Cglluy-u, vy-v| ."

Indeed, as a counterpart of (4.14), we have

- 2 t 2
(5.35) | u-u, v-v) (&) ||© + eJ [Dv (1) [[*dr
0
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< cllluy-T, v 2

— 3
oVl +NSO(T;€) by

where Ns (T;e) < a, is assumed. Moreover if NS(T;E) < ay, then

0
2 £ 2 2
(5.36) D () (B ||y + ] [[Dv(D|[L_jdr :
0 :
< clllp, agvg 12, + T et
. t 2 . 2 . t 2
(5.37) IDu(o) |5 g ar - clff -7, v-9 @ |5 + | |Ipv(n)||Sar)
o * 0

- -2, - 3
< C{l|u0~u, vo—vHS + e lNS(T;E) }.
The estimate (5.36) (resp. (5.37)) is corresponding to (4.16) (resp.

(4.17) +(4.21)). Combining the estimates (5.35)-(5.37) as in Proposition

4.2, we get the inequality

NS(T;e)2 < C{Huo—ﬁ, \%

—2 - 3
- VIZ T me ),

whenever NS(T;E) < a, is satisfied. The desired estimate (5.34) is an
immediate consequence of the above inequality.

A combination of the local existence result and the a priori estimate
stated above gives the theorem, see the proof of Theorem 3.10. This com-

pletes the proof.
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CHAPTER VI ‘

APPLICATIONS 'TO THE EQUATIONS OF
ELECTRICALLY CONDUCTING FLUIDS

6.1 INTRODUCTION AND EQUATIONS

In this chapter, as applications of the generalAtheory developed in
chapters IIL-V, we shall deal with the system of equations describing the
motion of an electrically conducting fluid in the presence of an electro-
magnetic field. The state of the fluid motion is specified by the mass
density p, the velocity u = (ul,uz,u3) and the absolute temperature 60,

while the electromagnetic field by the electric field E = (El,Ez,EB),

the magnetic induction B = (Bl,Bz,B3) and the electric charge density
Par All these quantities are functions of time t = 0 and poéition b4
= (xl,xz,x3) € IR3. Since the flow and the electromagnetic field are
closely connected with each other, the system of fundamental equations of

the fluid becomes a coupled system of conservation laws for hydrodynamical

quantities and Maxwell's law for electromagnetic ones (see [32],[5]1):

Pt div(pu) = 0 ,

p(ut+ (wV)w) + Vp = diveuP +p'Idivu) + P ,E+ TxB,
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(6.1) J pee(et+ u-ve) + epedlvu

= div(kVe) + ¥ + (Jr—-peu)-(IE‘.+u><IB) ’

EOJEt - (l/uo)rotIB + JI'= 0,

| B_+ rotlE =0, (p )

. | Cp), tdvI =0,

(6.2) e divE = Pe 7 divB =0 .

Here the pressure p and the internai energy e are expressed with the
aid of the thermodynamic quantities p - and © by the equations of state,
i.e., p=p(p,0) and e = e(p,0) (the abbreviations such as p6=8p/86,
eq= 9e/36, ++++ are used); the fluid under consideration is an isotropic
Newtonian fluid, i.e., the stress tensor - pI+ (2uP+u'Idivu) is a
linear function of the deformation tensor 1P = (1/2) (ui + u?{ )

3 i
where I is the unit matrix of order 3, and uy = u(p,8) and u' =

1<i,j<3"

u'(p,0) are the coefficients of viscosity; ¥ is called the viscous

dissipation function and is given explicitly by

F ol +w )% w@ivw®

ij ] 1

-
I
N

the heat flux q is given by Fourier's law, i.e., q = - kV0 (cf. the
second equation of (3.47)), where k = k(p,0) 1is the coefficient of heat

Conductivity; the electric current density J is given by Owm's law, i.e.,

(6.3) J—peu=o(IE+u><JB) ,
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where o = o(p,8) 1is called the coefficient of electrical conductivity;
the dielectric constant A and the magnetic permeability W, are as-
sumed to be positive constants.

We list up the conditions for (6.1),(6.2).

[Cl] The thermodynamic quantities p and e are smooth func;tions of
vp>§)and 6 >0 suchtﬁat |
1. the relation de = 6dS - pd(l/p) - holds for some smooth function S
= S(p,0); this relation expresses the first law of thermodynamics
and S is called the entrOpy (see [11], [49]1) '

2. pp (=9p/op) >0 and e, >0 for p >0, 6 > 0.

0

[C2] The coefficients u, p' and k are smooth functions of p > 0 and
6 > 0, and satisfy one of the following four conditions for p > O,
8 > 0. (v=2u+u")

1. yu, v>0, kK >0, 2. U

i
<
Hi
o
~
~
v
o
~

3. Y, v>0, K =0, 4.,

3
<
1
(@]
~
~
1
o

[C3] The coefficient o is a smooth function of p >0 and 6 > 0 such

that 0 >0 for p >0, 6 > 0.

Under these conditions, the equations (6.1),(6.2) form a closed system of
14 equations for 12 unknowns (p,m,e,E,]B,pe) , which is called the system
of electro-magneto-fluid dynamics.

If letting e, - 0 formally in (6.1),(6.2), we have Pe = 0 and I

0
= (l/uo)rotJB . These relations together with (6.3) yield E =- uxB +
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(l/GpO)rotB . Therefore the system (6.1),(6.2) can be reduced to (see

(491, 1321, [51)

Pt div(pw) =0 ,

B

plu + (V) w) + Vp - (I/p)rot Bx B = div(2uP+ I divu)

(6.4) 1 .
pee(6t+ u-ve) + epedivu = div(kVe) + ¥ + (l/cuoz) |rot B]Z ,
\ ]Bt - rot{(uxB) = - rot{ (l/cuo)rotIB} ,
(6.5) divB=0 .

For this system, it is convenient to replace the condition [C3] by the

following.

[C3]' The coefficient 1/0 is a smooth function of p >0 and 6 > O,

and satisfies either

1
[eo]

l. /o >0 or 2. 1l/0 for p > 0, '8 > 0.
Under these conditions, we can consider (6.4),(6.5) as a closed system of
9 equations for 8 unknowns (p,w,6,B), which is called the system of
magnetohydrodynamics.

Furthermore, in the special case when the magnetic induction is neg-
lected (i.e., B=0) in (6.4),(6.5), we get the usual system of fluid

mechanics (see [49]1):

i
i
i
i
;

a
%
5

1 i
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(pt+diV(pu) =0,

(6.6) 1 p(u + (wV)u) + Vp = div(uP+u'Idivu) ,

\ peg (6, +me70) + epediv'u = div(kVe) + V¥ . .

This is a closed system of 5 equatiohs for 5 unknowns (p, u,0).

Here we briefly discuss the difference between the two systems (6.1),

(6.2) and (6.4),(6.5). The second system (6.4),(6.5) of magnetohydro-

dynamics (and therefore the system (6.6) of fluid mechanics) is of the

desired type, i.e., it is transformed into a symmetric hyperbolic-para-
bolic system in the sense of chapter II. The system (6.1),(6.2) of
electro-magneto-fluid dynamics is also of hyperbolic-parabolic composite

type. However it is not of symmetric form. In fact the electromagnetic

part (IE,JB,pe) of (6.1) is considered as a first-order hyperbolic sys-—
tem but it is neither symmetric hyperbolic nor strictly hyperbolic (cf.

[18]2) . The situation is same for the first-order hyperbolic system of

(IE,B) which is derived from the above system by eliminating Pe with
the aid of the first equation of (6.2). Hence the existence problem. for
(6.1), (6.2) (in R>) is still open even if local in time.

In this chapter we first restrict ourselves to the two-dimensional

equations of (6.1),(6.2); this means that all the quantities appearing in

(6.1),(6.2) do not depend on the space-variable x There are two in-

3
teresting cases (see Kawashima [38]3): the first case is

(6-7)1 u = (ulluzro) ' E = (OIOIEB) r B = (Bllelo) r
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the second one is

u= w0, E=E,550 , B=(0,0,B

'7)'2 ) .
[t was pointed out in [38], that in the case (6.7),. the system (6.1),
(6.2) becomes a symmetric hyperbolic-parabolic form (in the sénse of
hapter II)- in the domain {p >0, 6 >0}, provided that [Cl]2 and one of
['(32]j (1=1,2,3,4) are satisfied; while in the case (6.7)2, (6.1),(6.2)
an be reduced to a symmetric hyperbolic-parabolic éystem in the non-
elativistic domain {p >0, |u| <cy, 6 >0}, provided that [C1], and one
0 = ¥eHy
is the speed of light. Therefore, in these two-dimensional cases, the

OI
‘_of [C2]j (j=1,3) are satisfied, where u = (ul,uz), and c

local existence result of Theorem 2.9 can be applied to the system (6.1),
‘ (6.2). Furthemnre it is seen that in both cases (6.7)1’2, the linear-
ized system for (6.1),(6.2) satisfies Conditions 3.1 and 3.2 (with a
slight modification) if [Cl]2, [C2]:L and [C3] are assumed. Using this
property and the energy integral associated with - pS (see [Cl]l) ; we
can establish the global existence and asymptotic stability results for
these two—dimensional system of (6.1),(6.2).

We next consider the system (6.4),(6.5) of magnetohydrodynamics.
This system can be transformed into a symmetric hyperbolic-parabolic sys-
tem (in the sense of chapter II), provided that [Cl]z, one of [(22}j (5=
1,2,3,4) and one of [C3]}'< (k=1,2) are satisfied. Therefore by Theorem
2.9 we have a local solution. Furthermore the corresponding linearized
system satisfies Conditions 3.1 and 3.2 if [Cl]z, [C2]l and [C?’]Z'L are

assumed. Moreover, if (6.5) holds, then the system (6.4) can be put into
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a conservation form, provided that the condition [Cl]l.is satisfied.
Hence, in the same way as in Theorems 4.3-;4.5, we have the global exist-
ence and asymptotic stability results for (6.4), (6.5).

Finally in this chapter, following Kawashima and Ckada [41], we con-
sider the one-dimensional equations of (6.4),(6.5) in Lagrangian coordi-
nates. Let [Cl]l,2 be assumed. Then this one-dimensional sys%em satis—
fies Conditions 4.1 and 4.2 if dne of [C2]j (j=1,2,3,4) and one of [CBJQ
(k=1,2) are assumed. Moreover, if « > 0, then the system also satis-

fies Condition 4.3 in each of the following three cases:

1° u, v>0, 1/o

v
o
-
"
<
"
o

2° qu ’ /o >0,

3° uy, v>0, 1/c

1
(@]

Therefore we can get the global existence and asymptotic stability results
in these three cases. On the other hand Condition 4.3 is not satisfied
if k =2 0. In this case we take (p,S), in place of (p,0), as the ther-
modynamic unknowns. Then the corresponding linearized system separates
into two parts; the first part consists of a single equation St =0 and
the second part forms a system which satisfies Condition 4.3 in each of
the above three cases. ‘Using this property, we can also establish the
global existence results éven if k = 0.

The plan of this chapter is as follows. Section 6.2 contains some
basic properties on the system (6.1),(6.2) of electro-magneto-fluid dy-

" namics. The two-dimensional systems of (6.1),(6.2) are studied in :sec-
tions 6.3 and 6.4 (the cases (6.7)l and (6.7)2 are treated in sections
6.3 and 6.4, respectively). The system (6.4), (6.5) of magnetohydrody—

namics in Bfg is considered in section 6.5, while the one-dimensional
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system of (6.4),(6.5) in Lagrangian coordinates is studied in sections

6.6 and 6.7. In sections 6.5 and 6.7, as a special case, we also dis-

cuss briefly the system (6.6) of fluid mechanics.

6.2 BASIC PROPERTIES

In this section we shall summarize: some basic properties on the sys- |

tem (6.1),(6.2) of electro-magneto-fluid dynamics.

[P1] A smooth solution of (6.1) satisfies (6.2) for all time t > 0 if

it satisfies (6.2) at t = 0.

Indeed, applying div to the equation of IE and subtracting from it the
equation of Por We obtain (eodiv E - pe)t = 0. On the other hand the
application of div to the equation of B gives (div B) £ = 0. These
equalities prove the assertion.

We introduce here the total momentum MEM and the total energy PEgy
of the electrically conducting fluid:

(6.8)l MEM=pu+s-:0(]E><IB) ,

(6.8), oEy =ole+z|ul® + L |+ ﬂ%_uagz) .
0 .

[P2] Iet (p, u,0,E,B,0,) be a solution of (6.1). Then, under the con-

dition [Cl] the quantities p} pE_, B and Pe respectively

ll
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satisfy conservation laws. Moreover, if the solution satisfies

(6.2), the equation for MEM also becomes a conservation form.

This fact directly follows from (6.1) for p, IB and Po- As for MEM'

we have the following equation (see [32]).

(6.9) . (pig), + divip“uu + pI - (e,/2) 2°EE - |E|’D) -
- (l/Zuo) (Zt]B]B - IIBIZI)} + E(eodiv]E - pe) + (l/uo)]BdivB

= dv(2uP + p'Idiv u) ,

where we have used the equality BxrotB = - %—div(Zt]BIB - ‘]BIZI) +
Bdiv B (the same equality for IE was also used). Here tuu denotes

the matrix with elements u'u’l. The equation (6.9) becomes a conserva-

tion form if (6.2) holds. This proves the assertion for IMEM' Next we

can deduce from [Cl] 1 that

- (o~ 2 . 2 -
(6.10) e, = (P-0pg)/p" + S, =-pg/p" 1 S5 =ey/0 .

By use of (6.1) and the first relation of (6.10) we get the equation of

pEEM (see [32]).

(6.11) (pEEM)t + divipul(e+ lu12/2) +pu + (l/uo) (ExB)}

= div(2puP + p'wudiv u + Vo) ,
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which proves the assertion for pEEM' This completes the proof of [P2].
[P3] Under the conditions [Cl]l 2 the negative entropy - pS (resp. -S)
14
is a strictly convex function of (p,pu,pE.. ., E,B) (resp. (1/p,u,
EEM’ E/p,B/p)). The total energy pEEM (resp. EEM) is also a ,
strictly convex function of (p;pu,pS,E,]B) (resp. (/p,w,S,E/p,

B/p)) .

The assertion of [P3] is a consequence of the strict convexity of the
internal energy e as a function of (1/p,S). The strict convexity of
'k e can be shown by a direct calculation of the Hessian of e with re-
‘spect to (1/p,S) (see [66]). Indeed, regarding the quantities e, p
and 6 as smooth functions of (V,8) (where V=1/p), we get the rela-

tions

de _ _ de _

WP 55 - 9

—B-E)—: — 2 2 —B—Er:
30 _ 20 _

v - - %Pg/eg 55 = Ve

and hence we have

2

de _ 2 2
8\]’2——ppp+epe/ee 4

82e 82e
R ot I h 0/eq -
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?Ihese relations together with the condition [Cl] 2 shows that the Hessian
of e =e(V,S) is positive definite for p > 0 and 6 > 0. This com

pletes the proof of [P3].

Here we remark that the second and the third relations of (6.10)

together with (6.1) yield the equation of the en‘crdpy.

-

(6.12) (pS)t + div(pws) = div{ (k/0)Ve} +

+ (1/6) {¥ + (x/0) |ve[2 + 0|E + uxIBlz} .

Next, as in chaptér IV (4.10), we shall introduce the quadratic func—.
tions associated with the convex functions in [P3]. We first consider n

= EEM relative to the states z = t(l/p,1u,S,]E/p,IB/p.)- and z = t(LL/E,O,

S,0,1B/p), where S =5(p,0). ILet n* = EX be the quadratic function

EM
associated with n = EEM' By direct calculations we have
- - - = — . 12
(6.13) pEﬁd=p{e—e+p(l/p—l/p) - 6(8-98) + i—[ul T+

1 2, 1 —2
+ 5 (e |E]T + D—(—)—|B—]B{ ) 4

where e =e(p,8) and p = p(p,6). In the same way we can see that the
quadratic functions associated with pE’EM, -S and -pS are respectively

given by p (l/e)EEM and (1/ G)QEEM’

*
Egn
Now suppose that p >0, 6 >0 and 1B e R> are constant states.

Then, from (6.11), (6.12) and (6.1), we have the equation of pE‘EM:
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(6.14) (PEE) ¢ + divipule - e + p(1/p-1/p) - B(S-5) +
%2+ e-Pu+ Uy {Ex B-B)) +
+ (B/6){¥ + (c/0)|v0]|? + o| B+ uxB|%)
- aivi2uuP + udlvu + g(l—@/@)vve} .

6.3 ELECTRO-MAGNETO-FLUID DYNAMICS IN IRZ, I

We shall consider the two-dimensional motion of an electrically con-
ducting fluid. We assume that the flow is uniform in the x3~axis‘, i.e.,

all the quantities in (6.1),(6.2) do not depend on the space-variable x

3
We further assume (6.7) 17 that is, the velocity and the magnetic induction
aré parallel to the (xl,xz)—plane and the electric field is parallel to

the X3—axis. Undexr vthese assumptions we have pe = 0 (the exact neutrali-
ty) by the first equation of (6.2). Therefore the system (6.1), (6.2) and

Om's law (6.3) are simplified as follows:
pp + divipw) =0,
p(ut+ (u*V)u) + Vp = div(2uP+u'Idivu) + JxB ,

(6.15) o pe6(6t+u~V8) + epedivu = div(kV8) + ¥ + J(E+uxB) ,

EOEt - (l/uo)rotB +J=0,
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lB + rotE=0 ,

- (6.16) divB =0 ,

(6.17) J=0(E +uxB) ,

.12 .3 12 _ i J
where u=(u,u), E=E, B= (B ,B7), P= (1/2) (uxj+uxi)lsi,j52 '
I is the unit matrix of order 2. Here:we have used the following nota-

tions for 2-vectors u = (ul,uz) and v = (Vl,vz) and a scalor o in

“and

addition to the ordinary ones.

u><v=--v><u=ulv2—uzvl ,
(6.18)l
2 1
uxg =-agxu= (ou,-ou) ,
rotu=V.><u=u2 —ul '
o )
(6.'18)2
roto = Vxa = (OLX ,—oux) .
2 1

The equations (6.15),(6.16) form a closed system of 8 equations for
7 unknowns (p,u,0,E,B). For this system, the properties [Pl]-[P3] hold

with a trivial modification. Moreover we have the following.

lemma 6.1  We assume [Cl]2 and one of [CZ]j (1=1,2,3,4). Let o0 be a
smooth function of (p,0), and let p >0, 6 >0 and Be IR2 be arbi-
trarily fixed constants. Then the system (6.15) satisfies Conditions 2.1

and 2.2 for 0= {(p,u,8,E,B) ¢ ]R7; p >0, 8 >0} and a constant state
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('5,0,5',0,-), t.e., (6.15) is symmetric hyperbolic-parabolic in the s'ense
of chaptér II. (In the case of [C2]4; (6.15) is a symmetric hyperbolic

system (m" =0).)

- Proof. Put w= t(p‘,u,e,E,B) . The system (6.15) can be written in the

x

form

0 2 . 2 . 1 2
(6.19) AWy + T aleww, - ) B mw = £ (w,Dw) + £ W) ,
. X, . X, X
J=1 J Jk=l 3

where AO w) , A w) and B:]k (w) are square matrices of order 7, and

fl (w,wa) and f2 (w) are ]R7-valued functions; they are given explicit-

ly by

[P,/ i
oI : 0
O i
(6.20)l A w) = pee/e : '
R S
0 | 50
\ | (L/ug) T )
3
(6.20), %A (W) €
( . : '
(pp/p) (u-¢) ppa 0 :
p,E  pwDI Py E ! 0
I
S0 Rt ey, '
0 (1/ug) £*
0
k (1) Fex o
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(0 ! )
1
ule] o+ (uun Bee 0
jk _ 21
(6.20) 4 ;,%{B Wege = WelElmy ,
o
0 |
L 0
0 0 )
) 2(Vy)P + Vu'divu
(6.20) fl(w,DXw) = | (1/8) (¥ + vke-v0) | ;
’ 0
\ 0 /

f2 w) is the term which does not contain the derivatives DXW. Here §&
(gl,gz) € IR2 and &* = (52, —El). Note that the symbols w, AO W), *°
«»+ used here don't always agree with the previous ones (in chapters IT
and II). It is easily seen that AO (w) 1is (real) diagonal and positive
definite for p > 0, 6 > 0, and Aj w) and Bjk(w) = gKJ (w) are real

symmetric. Furthermore a simple calculation shows that

(6.21) <{} Bjk(w)ijk}w, w> 2 min{y, \)}lul2 + (k/0) {6]2
Ik
for w= "(p,u,9,E,B) ¢ R" and w = (wl,wz) e 87, where < , > denotes
7

the standard inner product in IR'. On the other hand the right members
fl (w,DXw) and f2 (w) are regarded as lower order terms in every case of
(2] (3=1,2,3,4), and satisfy 2 @,0) = £26@) =0 for w= °(,0,7,

0,B). All these considerations prove the lemma.

0
|
I
I
|
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Now we shall consider the initial value problem for (6.15),(6.16)

with the initial data
(6.22) (p,u,9,E,B) (0,%) = (poluoleolEolBO)‘ (%) .

We first note that Lemma 6.1, Theorem 2.9 and the property [P1] give the
following local existence results for the problems (6.15),(6.22) and

(6.15), (6.16), (6.22) .

Theorem 6.2 ([38}3) (local existence) Let ‘[Cl]z and one of [CZ]j (j=

1,2,3,4) be assumed and let o be a smooth function of (p,0). Let p
>0, 86>0 and Be IR2 be arbitrarily fixed constants. Suppose that

the initial data satisfy (oy-psuy/8y-8,EyB,-B) ¢ B (W) (for 523)
and inf{po(x), eo(x)j‘> 0. Then the problem (6.16), (6.22) has a unique
solutizﬁ (o,u,0,E,B) (t,x) (in the Sobolev spaces) on QT with some T
> 0, which satisfies inf_ {p(t,x), 6(t,x)} > 0 (for the solution space,

Or

see Theorem 2.9). Furthermore 1f div BO (x) =0 for xce IRZ, then

(p,u,0,E,B) (t,x) becomes a solution of the original problem (6.15), (6.16),

(6.22).

Next we shall study the global existence problem for (6.15),(6.16),
(6.22). As a preliminary we will show that the linearized system for
(6.15) at the constant equilibrium state w = w = ©(p,0,5,0,5) satisfies
Conditions 3.1 and 3.2 (with a slight modification). To this end we con-

sider the linearization of (6.15) around w = w :
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+ 7 2, - § B @y, +L@U=0,
] j ok ]

(6.23) A% @) U,

dhere 20@, aJ@ and B¥G) are given by (6.20),  with w=1w, and

(6.24) L@ =0 0 0 0

q—-——-——-:-—————T— —————
o B 0 !1:0
!

Lo 0 0.0 0)

where o = o(p,08) and B* = (Bz, -Bl) . Note that (6.23) is a symmetric

system. While, as a linearized form of (6.16), we have

(6.25) } Ry, =0,
J J
where
- 2
%‘R]gj = (0,0,0,0,8) for £= (Ey/E,) ¢ K’ .

(&) are (1,7)-matrices). Since the solution of (6.23) is subordinate to

(6.25), we introduce

(6.26) X = 1w = "(p,08EB ¢ R ; (] Rlu)w = wB=0)
J

for we Sl, and modify Condition 3.2 as follows.
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condition 3.2' (cf. [8l]) There exist (real) constant square matrices

K’ (j=1,+++,n) of order m such that
(1) KJAO ({«7;) are real anti-symmetric,
(i) for any w e Sn—l, the symmetric part of E{K]Ak W) + BJk (w) }ijk

+ L(w) 1is positive definite.on a -linear subspace X, of T

'

Then we have:

lemma 6.3 Let the conditions [Cl]z, [C2]l and [C3] be assumed. Then
the linearized system (6.23) of (6.15) satisfies Conditions 3.1 and 3.2°'.
In particular, Xw and X v(j =1,2) in Condition 3.2' are taken as in

(6.26) and (6.27) (with a suitably small constant o >0), respectively.

Proof. It is easy to verify Condition 3.1. So we omit it. We only check

Condition 3.2'. Iet o be a positive constant and let K’ (j=1,2) to be

(0 pE 0|
s :
| -pp £ 0 0 | 0
(6.27) ) Kjgj = q 0 ) i Ot
=20t e
S 0 - (1/uy) g
0 i
\ C TR B

where B =p (5,8), £ = (£,5) « R and £* = (£, ~E)). Then it is

seen that KJAO (w) are real anti-symmetric. Furthermore, for w = t(p, |

N

~

u,6,E,B) ¢ Xw' we have
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(6.28) < (KA @1 w Jw, w>
3k J

v

TR/ P lol? + (o5 /g 1BI% - clu 6, B%)

where Texgx = |g|°D - %6z and weB =0 are used. In (6.28), ¢ =

1/ve is the speed of light and C is a constant mdependént of w

oMo ‘
1 . Jak =y 10 y : Jpk = '
€ S and.a; [K'A"(w)]' denotes the symmetric part of K-A (w). On

the other hand

(6.29) < LWw, w >=5E+u><§l2

holds for w ¢ R'. Combining (6.21) (with w=w), (6.28) and (6.29), we

can deduce that J {[KA“G@)]' + B7F @) Jugy, + LG is positive definite
jk : )

on X for a suitably small o > 0. Thus the proof of ILemma 6.3 is com-

pleted.

et [Cl]z, [C2]l and [C3] be assumed. Then, by virtue of Lemma 6.3
and n = 2, we can apply the results of ILemmas 3.1 and 3.8 to the solu-
tion of (3.15),(3.16), and consequently we obtain the following a priori‘
estimates for t ¢ [0,T] (see (3.8) and (3.36)).

t

2 2 2
(6.30) HDx(p,u,e,E,B) (t)Hs—l +J HDX(u,G) (T)HS__l +

0

— 2 2 3
+ D E+uxB) (1) || dr < Cll[D (pgruyr8q:EyBy) |5 ) + N (M7},

t
(6.31) J I, (p/E,B) (1) Hz__ldr - c{|{(p-p,u, 6-6,E, B-B) (t) ui +
0
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t ) _ 5
+ HDX(u,e) (T)Hs + || (E+uxB) (T)Hsd’f}
0

2

B, - Bl

3
o By N (T)7)

s Clllpg =By ugs 0= 8, E

where s 2 3, C is a constant, and Ny (T) is assumed to be suitably

x

small; note that for our system (6.15),(6.16), Ns(t) is given by

-

N,(0% = sw || (0-7,u, 8-, 8- @2+

0<t<t S

t 2 2
+ J HDX(p,E,B) (1) ”s—l + “Dx(u,E) (1) Hsdr .
0

On the other hand, using the quadratic function pEEM (see (6.13)), we

obtain as in ]'_emma’4.l
_ _ - 2 2
(6.32) (o -0, u,6-8, E,B-B) (t) | +J D, (u,0) (1) || +
0
= 2
+ || @+uxB) (1) ||“dr

- = = 2 3
< clloy - 0suys 8y~ 8/ Eqr BO—BH + N, (D)7} .
Indeed, for the solution of (6.15),(6.16), the equation (6.14) is valid
with a trivial modification. Integrating it over Qt = [0,t] X]RZ, we

obtain after integration by parts

=t b, 5
(6.33) [JQE* ax] o+ J J(e/e){\y + (k/0) |V |“ +
0
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+ G(E+uxB)?}dxdr = 0 .

Using the estimate (2.4) (with p=4, s=1 and n=2), we see that the

second term of the left member of (6.33) is bounded from below by

t 2 e 2 3 0
c HDX(u,e) (O ||° + || (E+uxB) (1)]|“ar - CN,, (T)
0 S

-

for some positive constants ¢ and C.: Therefore the desired estimate

(6.32) follows from (6.33) because pEEM is equivalent to the quadratic

function |p-p, u,0-6,E, B—Elz.

Combining the estimates (6.30)-(6.32), we get

2 (t o 2
(6.34) N_(t) +[ | (€ +uxB) (1) ]|*dr
0

< Clloy -5, uy, 8,-8, By, B, ~B]|

0 for t ¢ [0,T] ,

which is corresponding to (3.39) in Proposition 3.9. Therefore we can
establish the global existence result for (6.15),(6.16),(6.22) in the

same way as in Theorem 3.10.

Theorem 6.4 ([38],) (global existence) [Let the conditions [Cl] R
e 0. 3 1,2

[C2]l and [C3] be assumed. Suppose that (p0 =0, Uy 60 -9, EO' B0 -B) €

Hs(le) (for s23), divB,(x) =0 for xe B and Hpo—a,uo,eo—5,

Eqr BO—-B_HS is sufficiently small. Then the problem (6.15), (6.16),

(6.22) has a unique global solution (in the Sobolev spaces) satisfying

(6.34) (for the solution space, see Theorem 3.1Q0). The solution decays,
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in the BS_3(]R2)-norm, to the constant state (0,0,06,0,B) as t > o,

6.4 ELECTRO-MAGNETO-FLUID DYNAMICS 1IN 1R2, II

“

In this section we study another two-dimensional flow. We assume

that all the quantities in (6.1),(6.2) are independent of x We fur-

3°
ther assume (6.7)2. Then (6.1),(6.2) and (6.3) are reduced to

( p, + div(pu) =0 ,
plu + (uV)u) + Vp = div(2uP +p'I divu) + PE + IxB
(6.35) (¢ peq (8t+u-\76) + Gpedivu = div(kV8) + ¥ + (J- peu)-(E+u>< B) ,

e E, - (l/uo)rotB+ J=0,

0t
| B+ TOtE=0, (b ), + divd =0,
(6.36) e diVE = p_ .
(6.37) J - P = o(E + uxB) ,

.12 12 .3 _ i3
where u= (U ,u), E= (E,E"), B=B" and P = (1/2) (uxj+uxi)15i,j52'

The equations (6.35),

Here we again used the notations in (6.18)l 5
X 14

(6.36) form a closed system of 9 equations for 8 unknowns (p,u,G,E,B,pe) .
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If Pe is eliminated by Pe = eodiVE ; the system (6.35) is trans—l

formed to
( e t div(pu) = 0 ,

plu,+ (@-V)u) + Vp = div(2uP +p'Idivu) +

+ eO(E+u XxB)AivE + o(E+uxB) xXB ,

(6.35)" A« .
peq (0, +u-V0) + Op divu = div(cve) + ¥ + o|E+uxB|?
EOEt - (l/uo)rotB + eOudlvE + g(E+uxB) =0,
L Bt + rotE=0 .

This is a closed syétem of 7 equations for 7 unknowns (p,u,8,E,B). Con-
versely, for a given (6.35)', we put Pe = €OdiVE and J = S + o(E+
+uxB). Then, applying div to the equation of E of (6.35)', we get

(p )t + divd = 0. Hence (6.35)' is equivalent to the system (6.35),

For the system (6.35)', we have the following lemma (compare it with

Lemma 6.1).

Iemma 6.5 Let [Cl]2 and one of [C2]j (§=1,3) be assumed and let G be

a smooth function of (p,8). Suppose that p >0, 8 >0 and B e R

are arbitrarily fixed constants. Then the system (6.35)' satisfies Con-
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ditions 2.1 and 2.2 for 0 = {(p,u,0,E,B) € IR7; p >0, |ul < o 0 > 0}
and a constant state (p,0,6,0,B), where ) = l//eouo ig8 the speed of

light.

Proof. Set w = t(p;,u,ye,E,B) . Then (6.35)' can be written in the form

«

(6.19) , where Bjk (w) and fl (w,wa) are the same as the pre%rious ones

(see (6.20); ), 2%G) and 2)(w) are given by
4

(py/P j
pI : 0
1
(6.3, Aw=| beg/8 1 .
. ;' EOI EO u*
| eou* l/u0 )
j
(6.38), ZA (w)Ej
J
4 . |
(pp/p) (u-g) ppE : 0 0
p e pwOI  pE | -e (BFWBE 0
= 0 Pt (0ey/0) (a-E) | 0 o |,
—————————————————— e T T T T T
ey (uE - uRER) — (1) B
O‘ |
. —(l/uo)i* —-(l/uo) (u-g)

and f2 (w) is the term which does not contain the derivatives D . Here

we used the notations u* = (uz, -ul) , EX = (F,Z, - El) . It is seen that

N (w) 1is real symmetric and positive definite in the domain {p >0, |u]

<c., 6>0}. While A’ (w) is real symmetric if the element corresponding

0

1
i
1
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to —eot(E +u*B)f 1is absent, and the term —eot(E +uxB)divE (associ-
ated with it) can be rega.rded as a lower order term if u, v > 0 is
assumed. Moreover we have £2 W) =0 for w= t(5,0,§,0,§). These
considerations together with the properﬁes of Bjk (w) and f:L (w,DXw)

(see Lemma 6.1) prove the lemma.

Thus the results of Theorem 2.9 bare applicable to the problem
(6.35)",(6.22), and consequently we have the following local existence

results as in Theorem 6.2.

Theorem 6.6 ([38}3) (local existence) Let [Cl]2 and one of [CLZ]j (3="
1,3) be assumed and let o be a smooth function of (p,8). Let p > 0,

6>0 and Be IRl be arbitrarily fixed constants. Suppose that (po-

— - — 2 . '

Pr Uy 60—6, EO,BO—B) ¢ H° (R (for s23) and 1§f{po(x), eo(x)} > 0,

,supluo (x)| <cy = l/,m/eopo . Then the problem (6.35)"', (6.22). has a unique
X

solution (p,u,9,E,B) (t,x) (in the Sobolev spaces) on QT (with some T

>0), which satisfies inf. {p(t,x), 6(t,x)} > 0 and sup

r Or

lutt,x) | < Cye
Next we consider the global existence problem for (6.35)',(6.22).
The linearized system for (6.35)' at the constant state w=w = t(?»',o,

5,0,5) is written in the form (6.23), where 0G0, AJ(W) and BIF@)

are given by (6.38)1, (6.38)2 and (6.20)3 (with w=w), respectively, and
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(0 0 0 i 0 0
0o B o |BYrx o
_ ! 0 1
(6.39) Lw)=¢|0 0 o0, 0 0 with I* = .
ket - -1 0
0 BI* 0 I 0
|
Lo o 0.0 o0 )

Note that this linearized system satisfies Condition 3.1 (and therefore
it is a symmetric system). It also satisfies Condition 3.2. In fact,

in this case, we may take K’ (jJ=1,2) to be

4 —_ | N
0 ppg 0 ‘
5% o o0, 0
. |
(6.40) ] Kjgj =a 0 0 0| N
S R (AR .
L0 Wy e
0 |
\ -(uges o)

with a suitably small constant o > 0. Then after a simple calculation
we get (6.28) for x:r € IR7. Moreover we have (6.29) by use of the ex-
pression (6.39). These estjmates.together with (6.21) (with w=w) shows
Condition 3.1 (ii).

These considerations are summarized as follows.

Iemma 6.7 Let [Cl] 2 [C2]l and [C31 be assumed. Then the linearized
system of (6.35)' satisfies Conditions 3.1 and 3.2. In particuldr, K
(3=1,2) in Condition 3.2 are taken as in (6.40) with a suitably small

constant o > 0.
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Thus, in the same way as in Theorem 6.4, we have:

Theorem 6.8 ([38]3) (global existence)  Assume the same conditions as in
Theorem 6.4. Then the problem (6.35)"', (6.22) can be solved globally in

time as in Theorem 6.4.

-

6.5 MAGNETOHYDRODYNAMICS IN IR3

We shall consider the system (6.4),(6.5) of magnetohydrodynamics.
We first summarize the basic propertites on (6.4),(6.5). As a counter-

part of [Pl], we have:

[Q1] A smooth solution of (6.4) satisfies (6.5) for all time t > 0 if

it satisfies (6.5) at t = 0.

The total momentum MM “and the total energy pEM of the magneto-
hydrodynamical system are given by (6.8)l 2 with €g = 0:
. 14 .

1 2 1 2
M =pu, pEM= p(e+2—|m| ) + ZJ—(‘)‘I]BI .
Then, as a counterpart of [P2], we have:

[02] Iet (p,w,9,B) be a solution of (6.4). Then, under the condition

{ci] the quantities p, pEM and 1B respectively satisfy con-

ll

servation laws. Moreover, if the solution satisfies (6.5), the
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equation for pw also becomes a conservation form.

In fact it is obvious for p and B. 2as for pwu and pE‘M, we have
the equations (6.9) and (6.11) with ej=p =0 and E=-uxB+
+ (l/ouo)rotB:

(pw)  + divip“un + pI - (L/2u) 2"BB - |B]°D)} +

+ (l/uo)]BdivB = div(2uIP + py'Idivu) ,

(pEy) . + divipu(e+ Itu|2/2) + pu = (/1) (uxB) x B}

= div{zumiD + p'udivwu + Ve + (l/ouoz)]BXrot B} ,

from which follows the assertion for pum and pEM.

The property [P3] is modified as follows.

[03] Under the conditions [Cl]l’2 the negative entropy -pS (resp. - S)
is a strictly convex function of the conserved quantities (p,pw,
pEM,IB) (resp. (1/p,u,EM,IB/p)). The total energy pEM (resp. E_M)
is also a strictly convex function of (p,pw,pS,B) (resp. (1/p,u,

S,B/p)) .

We note that the equation of the entropy is given by (6.12) with E +

S

e s e e

uxIB = (l/(mo) rot B:

(pS)t + div(anS) = div{(k/6)Ve} +

o
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+ (/0¥ + (x/0) [v0|® + (1/ou ) [ror B[} .

M
is given by (6.13) with €y = 0:

Let E* be the quadratic function associated with EM. Then pEﬁ

QEﬁz ple - e + E(l/p-l/'b") - B(s-5) + %]m[z} + —Zil-'(-)‘—"]IB—f]z ,

where p >0, 8>0 and 1B ¢ R are arbitrarily fixed constants, and
e =e(p,f) etc. It satisfies the equation (6.14) with €, =0 and E
=-uxB + (l/ouo)rot]B, i.e.,

(pEﬁ)t + divipuf{e - € + p(l/p-1/0) - B(S-5) +

2 — —
+ |ul?/2} + E-Plu - (L/uy) (uxB) x (B-B)} +
— 2 2 2
+ (6/6) {¥ + (k/0)|ve|” + (l/GuO)Irot]B[ }
= div{2uuP + p'udivu + k(1L -6/0)Ve + (l/ouoz) (B-1B) x rot B} .

Now, taking (6.5) into account, we transform (6.4) into the follow-

ing symmetric system:
( Pt div(pw) =0 ,
p(lut+ (u*V)u) + Vp - (l/uo)rot]BX:B = div(2uP+ pu'Idiv w) ,

(6.4)" A«
pee(6t+ u-ve) + epediv u = div(kVe) + ¥ + (l/ouoz) | rot B|2 ,
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]Bt + (wV)IB + Bdivu - (B*V)u

= (l/OUO)AIB - V(l/ouo) xrotB .

Here we have used the equalities

x

(6.41)l rot(uxB) = {udivB - (uV)B} - {Bdivu - (B-V)u} ,

-

(6.41) - rot{ (l/cuo)rot]B} = (l/ouo) (AB - Vdiv B) - V(l/(mo) xrot B .

It is easy to see that the system (6.4)',(6.5) is equivalent to the origi-
-nal system (6.4),(6.5). BAs for (6.4)', we also have the following prop-
erty.

[QL]" A smooth solution of (6.4)' (in the Sobolev spaces) satisfies

(6.5) for all time t > 0 if it satisfies (6.5) at t = 0.

Indeed, applying div to the equation of B of (6.4)' and using (6°4l)i
and (6.41)2, we obtain (div :B)t + div(udiv B) = div{ (l/cmo)Vdiv B},
which proves the assertion.

To show the existence of a local solution, we prepare the following -

lemma.

lemma 6.9 Let [Cl]z, one of [CZ]j (1=1,2,3,4) and one of [CB]]'{ (k=1,
2) be assumed. Let p >0, >0 and Be B be arbitrarily fixed
constants. Then the system (6.4)' satisfies Conditions 2.1 and 2.2 for

0= {(,u,b,B) ¢ ]R8; p >0, 6 >0} and a constant state (p,0,6,B),
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i.e., 1t 18 symmetric hyperbolic—pardbolic in the sense of chapter IIL.
(In the case where [C2]4 and [(23]"2 hold, (6.4)' is a symmetric hyperbolic

system (m"=0).)

Proof. Put w = t.(p,u,e,B)‘. Then the system (6.4)' is written in the

form

3, 3,
(6.42) A+ ] Adeww, - 3B e, = gD

J=1 J o J.k=l ]

where . AO W), ) (w) and BJk (w) are square matrices of order 8, and

g(w,wa) is a IR8—valued function; they are given explicitly by

. \
pp/o
0 el
(6.43), ') = ,
pee/e
\ (1/ng) T J
(6.43), ] w)E,
J
4 . \
(pp/p) (u-g) ppg 0 0
P, pw)T e (W) (gB-(m-E)T)
0 Pgé (peg/0) () 0
0 Wy CBE-@HD 0 (1/uy) (weE) T
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6.43; ] BFweg
ik
(0 )
wel T+ ) B
we el
’ ‘ ' 2,142
. (L/oug) [E]7 )
( 0

2(Vu)IP + V' divm
(6.43)4 g(w,DXw) = .

(1/6) {¥ + Vk-VO + (l/ouoz) Irot]BlZ}

\ - V(l/cuoz) x rot 1B

Here the relation BxrotIB = %—V(IB}Z) - (B*V) B is used. It is seen
that AO (W) is (real) diagonal and positive definite for p > 0, 6 > O,

and A’ (w) and Bjk‘ w) = K] w) are "real symmetric. Furthermore we have

(6.44) <} Bjk(w)ijkw, w > 2 min{y, v}| u|2 +
jk

o2 , 2102
+ (</0) 6] + (1/ous) | B
~ _ t A A A ~ 8 2 .
for w= "(p,u,0,B) ¢ R" and w e S8°. On the other hand g(w,wa) can
be regarded as a lower order term in every case of [C2]j and [C3]}'{ (=1,

t — —_—

2,3,4;k=1,2). Moreover g(w,0) = 0 holds for w= (p,0,8,BB) .

Therefore the proof of ILemma 6.9 is completed.

We prescribe the initial data at t = 0:

%&“»m@mtmﬁ

s
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(6.45) (pru,6,B) (0,x) = (DO:’UO,@O:BO) (x) .

By virtue of ILemma 6.9, Theorem 2.9 and the property [Ql]', we have:

Theorem 6.10 (local existence) Let [Cl]Z’ one of [CZ]j (1=1,2,3,4)
mdmwofUB%(k=L2)wcmmmd Let 5;0,§>0 mﬂﬁﬁslg
be arbitrarily fized constants. vSuppose that (p0-55,mb,90-5§g80-ﬁ5’
e B° () (for s23) and infloy(x), 8(x)} > 0.  Then the problen
(6.4)"', (6.45) has a unique :blution (p,u,0,B) (t,x) (in the Sobolev
spaces) on Qp with some T > 0, which satisfies . ianT{p(t,x), 0(t,x)}
> 0. Purthermore if divBy(x) =0 for x < B, then (0,1,8,B)(t,)

becomes a solution of the problem (6.4)',(6.5),(6.45) (and consequently

(6.4),(6.5), (6.45) ).

Remark 6.1 Asaqﬁdﬂxmw(B=§=m,muptakmﬂsdem(m
the-Sobolev spaces) to the initial value problem for the system (6.6) of
fluid mechanics in every case of [C2]j (j==l,2,3,4);

| Here we briefly survey the local existence results for the system
(6.6). In the case [CZ]l (i.e., viscosity and heat conductivity are as-
sumed) , the initial value problem for (6.6) was solved locally in time by
Naéh [59] and Itaya [34]1,3 in the HOlder spaces, and by Voi'pert and
Hudjaev [85] (see also [55]1) in the Sobolev spaces. The existence
results to the initial boundary value problems were established by Tani
[77]1’2 in the HOlder spaces, and by Matsumura and Nishida [55]3,4 (see
also'[82],{69]) in the Sobolev spaces.

In the non-viscous case [C2]4, the initial value problem was also
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~solved locally in time (in the Sobolev spaces) by Vol'pert and Hudjaev

5 [85] and Kato [38] A However the initial boundary value problems (in the
general situation) are still open in this case; see [14], [83] and [1],
where the existence results were obtainéd under the assumption that p
=p(p) is indepeﬁdent of 6. (the barotropic case).

In the case [(32]2 or [C2]3, we don't know the existence results to

the initial boundary value problems for (6.6).

Now we consider the global existence problem for (6.4),(6.5),(6.45).

We need the following lemma.

lemma 6.11 Let the conditions [Cl] 9 [CZ]l and [C3]i be assumed. Let
0>0, 6>0 and Be IR3 be arbitrarily fixed constants. Then the
linearized system of (6.4)' at the constant state W = t(E,O,'G—,_]TB-) satis-
fies Conditions 3.1 and 3.2 (with LwW) =0). In particular, the matrices
'Kj (1=1,2,3) in Condition 3.2 are taken as in (6.46) with a suitably

small constant o > 0.

Proof. The condition 3.1 is easily verified. Here we only check Condi-

tion 3.2. We may take K9 to be

0 IpE 0 0
_____ R
— t
6.46)  F K, =a| P | 0@t
3 J 0 0
|
0 |




- 166 -

with a suitably small constant o > 0, where §p =P, (0,6) and w = t(E,V

0,6,B). For this choice of KJ, Condition 3.2 (i) is obvious. Moreover

(6.47) <SR @ 1w, Tw, W >
Jk 'k

vV

O =2,— "2 AR,
-2—{(pp/p)lp| - Clu, 6, B[}
for w = t(p,u,e,]B) € IR8, where C 1is a constant independent of w
and o, and ,[KjAk- W) ]' - denotes the symmetric part of KJAK(W). The

estimates (6.44) (with w=w) and (6.47) imply Condition 3.2 (with L(w) =

1l

0) for a suitably small o > 0 This completes the proof of Lemma 6.11.

Under the conditions [Cl],, [C2]; and [C3]}, the results of Theorems
3.10 and 3.11 are applicable to the problem (6.4)',(6.45) (and therefore
(6.4) ,(6.5),(6.45)) because the condition (3.30) is satisfied for the
system (6.4)'. Hence we can get the global existence and asymptotic sta-
bility results. Moreover in [P2] and [PB] we have proved that the system
(6.4) ,(6.5) can be put into a conservation form and has a convex entropy
if [Cl]l'2 are assumed. So the arguments in Theorems 4.3, 4.4 and 4.5

are valid for the present system (6.4),(6.5). Thus we have:

Theorem 6.12 (global existence and asymptotic stability) Let [Cl]l 2
14

[C2], and [C31] be assumed. Suppose that (po—b_, uo,eo——e—,BO— ) €

HS(]R3) (for s23), div]BO(x) =0 for X ¢ ]R3 and Hpo -0, Uy 60—5,

JBO__ﬁHs is sufficiently small. Then the problem (6.4),(6.5), (6.45) has
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a unique global solution (p,w,0,B) (t,x) (in the Sobolev spaces), which

converges, in the 553 (]R3) -norm, to the constant state (p,0,6,B) as
tl > o,

- Moreover we assume that (po-—f)—, mdieo—a,Bo—TB-) € Hs(]R3) n LP(IR3) |
(for s >4 and pe [1,2)) and leo -0, LA -8, IBO-—EHS,p 8 ?ufficiently |
small. Then | (p-p, w, 6-6, B-B) (t) Hs-—2 >0 at the rate 't | (y= |
3(1/2p-1/4)) as t » . Furthefmoré this‘ solution satisfies the asymp-

totic relation similar to (4.37).

Remark 6.2 As a special case (B=B=0), we cbtain similar globai ex—. -
fi‘stence and asymptotic stability results to the init;_ial value problem for
(6.6); these results were previously obtained by Matsumura and Nishida
[55]1’2 and Matsumura [54] 4 The global existence and asymptotic decay
(without decay rate) of solutions to the initial boundary value problems

for (6.6) were shown by Matsumura and Nishida [551; 4-
14

1

6.6 MAGNETOHYDRODYNAMICS IN R~ (LOCAL EXISTENCE)

In this section we shall consider the one-dimensional equations of
magnetohydrodynamics. We assume that all the quantities appearing in

(6.4),(6.5) are independent of (x2,x3) . Then the first component of B

1

becomes a constant (B1=B élRl) and the system (6.4),(6.5) is reduced to
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p(ut+uux) + o + (l/uO)B-Bx = (\)ux)X ’
Sl

(6.48) < p(v +uv) - (1/u))BB = (v )

pe. (6, +ud_ ) + 6p,u_= (kO_)_+ ‘i’% (l/ouz)lB |2

't X 0 x x'x ' 0 x !
B, + (uB—ng) = [(/ou B}
\ "t X 0/ x'x !

where X = X;, U= ul, v = (uz,uB) , B= (Bz,B3). and VY = \)uxz + ulvxlz

(recall that v=2u+u'").

We now consider the transformation (t,x) - (t,£):

t

X
T=1t, £=Jp(t,y)dy-((pu)(s,0)ds;
0 0

(t,£) is called a system of Lagrangian coordinates. Since 93/ot = 3/93T =

- pu(8/9€)

(6.49) 1

\

and 9/9x = p(9/3&), the system (6.48) is transformed to
(l/p)t - uX =0,
u, + {p + (1/2u)) I1312}X = (vou )
v, - (JL/lJLO)BlBx = (upv) s

e, + 6p,u_= (kpd_)_ + pl¥ + (l/cmz)]B |2}

ot 67x x'x 0 X !

B, + p(Bu_~B'v) = p{(1/oug)pB,},
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where (t,&) 1is again denoted by (t,x). The equations (6.49) form a
closed system of 7 equations for 7 unknowns (p,u,v,9,B).

For the system (6.49), we have the following modification of [Q2].

[R2] Under the condition [Cl]l the system (6.49) can be put into a con- -
servation form; the conserved quantities are (l/p,u,EM;B/p) ;

where u = (u,v) and pEﬁ= p(e+|ﬁ1}2/2) + (l/2u0)|B|2.

It suffices to derive the conservation laws for EM and B/p; they are

given by

(6.50)] (B, + Lo+ 120 [B]Du - (1/u)B'Bv)

2

= [p{\)uux + AN + Kex + (l/auo )B-BX}]X ,
0 _

(6.50) , (B/0) - BV) = {(1/ouy) Bl -
The property [Q3] is also valid in this case.
[R3] Under the conditions [Cl]l 2 the negative entropy -S (resp. - pS)

14
is a strictly convex function of the conserved quantities (1/p,uw,
EM,B/p) (resp. (p,perEM,B)). The total energy EM (resp. pEM) is
also a strictly convex function of (1/p,w,S,B/p). (resp. (p,pu,pS,

B)).

The equation of the entropy is given by
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6.51) S, = {(/0)06_}_ + (6/0) (¥ + (/)62 + (L/ou)|B_|%)
: t X X X 0 pid :

The quadratic function Ezjl associated with the convex function EM

is given by

0Bk = ple - 5+ P(/o-1/7) - (-5 + &|ul?} + =~|B-B|*,
M , , 2 2u0
where p >0, 8 >0 and B« IR2 are arbitrarily fixed constants, and

&= e(p,0) etc. It satisfies

(6.52) m§t+[up+ua%HBF)—(§+um%n§ﬁﬂu—

- (L/uy)B (B-B) vl + p(6/0) v+ (c/0)8.2+ (1/ou ) [B,|%}

_ X _5 2) BT -
= [p{\)uuX + vV, + k(1 G/G)GX + (l/cm0 ) (B-B) BX}]x .

In the case « = 0, we also take (p,u,v,S,B) as the unknowns of

the system (6.49) and change (6.49) into

( Pt a2ux = (ppe/ee) {y + (l/cqu) IBxlz} '
u, * o+ (/2u) [BI%1, = (opu
(6.53) 1 v, - (l/uo)gl_Bx = (uov ) »

2 2
S, = (p/8){¥ + (L/ou) [B |73
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l BJC + p(Bux-Blvx) = p{(l/c?uo)pr}X '

where a = (pzpp + Spez/ee)l/2

is the sound speed in Lagrangian coordi-
nates. |

Now we will show that Conditions 2.1 and 2.2 are satisfied for the
'one—-dimensional system (6.49) or (6.53).

lemma 6.13  Let [Cl]z, one of [C2]j- (7=1,2,3,4) and one of ‘[C3}}‘< (k=

1,2) be assumed. Let o > 0, 6 > 0, LBl € IRl and B e IR2 be arbitrarily
fixed constants. Then the system (6.49) satisfies Conditions 2.1 and

2.2 for 0= {(p,u,v,0,B) € ]R7; p>0, 6>0} and a constant state (p,0,

0,0,B). Moreover, in the case k = 0, the system (6.53) also satisfies
Conditions 2.1 and 2.2 for 0 = {(p,u,v,S,B) ¢ IR7; p=p(p,0) and S=
S(p,8) for p>0, 6>0} and a constant state (p,0,0,5,B) with p=

S(p,0).

p(p,8) and S

Proof. Put w = t(p,u,v,@,B) . Then (6.49) is written in the form
0, _

(6.54) A (w)wt + A(w)wx - B(w)wXX = g(w,wX) ’

where AO (w), A(w) and B(w) are square matrices of order 7 and

g(w,wx) is a IR7—Valued function; they are given explicitly by

|

s

AL N N O SO S R

S

AR

T ——
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/ \
Pp/p
P
(6.55), 20 = -;- oI )
pee/e
N (1/ug)T )
4
) 0 P, 0 0 0
Py 0 0 Py (l/uo)_tE
(6.55), A =| 0 0 0 0 —(1/u0>le
0 Py 0 B 0 0
[ 0 (1/uyB - (L/u)BT 0 0
(o \
V
(6.55)3 Bw) =p pI p
/6
(1/ou )1
0
(vp)xuX
(6.55),  gw,w) = () v

(1/0) (p¥ + (ko) 8+ p(1/ong) [B,|%)

(0/ou) By
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where I is the unit matrix of 6rder 2. Compare (6..55)1_ 4 with

(6.43) 1-4° The assertion for the system (6.49) easily follows from the

expressions (6.55);_,-
In the case K 20 we put w = t(Ap,u,v,S,B) and w' = t(p,u,v',B) .

Then the system (6.53) nearly separates into two parts: S,_= (p/6){Y +

+ (l/cuoz) lelz} and

-

(6.56) Al @'+ AW - Baw! = glw)

where AO (w), A(w) and B(Ww) are square matrices of order 6, and

g(w,wx) is a IR6-—valued function; they are given explicitly by

\
/o/az
0 P
(6.57), AW = = ,
oI
\ (l/uO)I ]
(0 1 0 0
1 0 0 (l/uo)tB
(6.57)2 Aw) = -
0 0 0 - (l/pO)B I
[0 (/B = (/BT 0
’ 0 \
AY)
(6-57)3 Bw) = p I
[
2
\ (1/0110 )T )

5

.

.
.

S

s

iShsbeaiaaaa
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((opy/aeg) ¥ + (L/oud |3 %) )
: (vp) u
(6.57)4 g(w,wx) = x X ,
(We) v,
(0/0u%) B
A ~ /0t )Py y,

The assertion for (6.53) follows from (6.57),_,- This completes the proof

of Iemma 6.13.
We prescribe the initial data at t = 0:
(6.58) (p,u,v,6,B) (0,x) = (po’uo’VO’eo'Bo)(x) .

By virtue of Lemma 6.13 the initial value problem (6.49),(6.58) is solved

Jlocally in time as follows.

Theorem 6.14 (local existence) Let [Cl]z, one of [C2]j (j=1,2,3,4)

1

and one of [CB]}'{ (k=1,2) be assumed. \Let 0>0,6>0, € ]Rl and

B e ]Rz be arbitrarily fixed constants. Suppose that (po—b—,uo,v ’
60—_5,80—5) € HS(IRl) (for s22) and inf{po(x), eo(x)} > 0. Then the
X

initial value problem (6.49), (6.58) has a unique solution (p,u,v,0,
B) (t,x) (in the Sobolev spaces) on QT with some T > 0, which satisfies

inf {p(tlx)l B(t,x)} > 0.

r

st m}g

SR

S e N G G
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1

6.7 MAGNETOHYDRODYNAMICS IN R (GLOBAL EXISTENCE)

We shall consider the global existence problem for (6.49),(6.58).

We first show the following lemma.

Lema 6.15 Let [Cll, . be assumed and let p>0,86>0, gl e ®R and
’ c .

B« IR2 be .constants.
(¢)  If one of (C2)4 (3=1,2,3,4) and one of (C31} (k=1,2) are assumed,
then the system.(6.49) satisfies Conditions 4.1 and 4.2 for fo(w) =

--t(l/p,u,v,EM,B/p), n=-S and 0= {(p,u,v,0,B) € IR7; p>0, 6>0}.

(i) We assume one of the following three conditions:

1° y, v>0, k>0, />0,

L)

\

2° " u=vz0,k>0, 1/c >0,

3 w,v>0, k>0, 1l/c

.

1
o

In the case 2° (resp. case 3°) we also assume |pg(p,0) |+ |IB|] X 0 and

Bl X 0 (resp. Bl % 0). Then the linearized system of (6.49) at the con-

t

stant state w= (0,0,0,6,B) satisfies Condition 4.3 ; the matriz K

18 takén as in (6.62) below.

1-3

(i) We assume one of the following three conditions:

4° py, v>0, k=0, 1/c>0,
5 u=vz0, k=0, 1/o>0,
6° W, v>0, K =0, 1/0:0.

In the case 5° (resp. case 6°) we also assume |B| % 0 and Bt %0




~ 176 -

(resp. Bl %X 0). Then the linearized system of (6.56) at the constant

state w = t(§-,0,0,§, ) satisfies Condition 4.3, where p = p(p,0) and

S = S(p,0); the matrix K s taken as in (6.62) 4G below.

Remark 6.3 (1) The condition Bl % 0 1is not essential in the case 2°

or 5° (i.e., H=v=0 and 1/0 >0). Indeed, if L _ 0 is assumed in the
case 2°, the system (6.49) completely separates into two parts; the first
part consists of v, =0 and the second part forms a system

4 -u =
(1/p), - u =0,

2
u, + p + (1/21,\0) |B| }x =0,
(6.59)

B 2 2
eeat + epeux = (erx)X + p(l/cm0 ) IBXI ,

B, + pBu = p{(l/cmo) oBX}X ’

whose linearized system satisfies Condition 4.3 if |[p,(0,8)] + |B] % o.

The case 5° is considered similarly. 1In fact, if Bl = 0, the equations

(6.56) separates into v, = 0 and the remaining part whose linearized

t
system satisfies Condition 4.3 if |B| % 0.

(iLl) In the case 3° or 6° (where 1/0 =0), additional considerations are
1 0. In fact, if B:L = 0, the equation (6.50)2 implies

necessary if

that (B/p) (t,x) = (BO/pO) (x), and so the system (6.49) is reduced to

[(vmt—%=o,

ﬂ

_—_

s

N

AR SR

T

§

T
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u + o+ (1/2u) | By/eg) &) %%, = vow)
(6.60) 1

Ve = (upvx)x P

eeet + epeux = (erx)x + ¥ .

This system depends explicitly oﬁ the spacé variable x (unless (BO/pO) (x)

is a constant) and our results are not applicable.

Proof of Iemma 6.15 (i) Condition 4.1 follows from the properties [R2]
and [R3]; note that (6.51) is correspondiﬁg to (4.9). As a counterpart
of (4.3) we have (6.54), and so Condition 4.2 was already checked in
Iemma 6.13. Thus the proof of (i) is finished.

(ii) We first note that (6.55) 3 yields

(6.61) < Bww, w>=olvlul® +ulv|®+ we)|6]® + (L/ouD) B’}
for w = t(p,u,v,e,B) € IR7. In the case 1° we may take the matrix K

in the same way as in Lemma 6.11:

|

:

[

' o —

(6.6, K=a| 0 | @t

|

|

|

i

i
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where o > 0 is a suitably small constant and i)—p =p (p,0). Then,
using‘ (6.55)l or We have
' 14
~2
|

6.63, < &M@, w>> 55 ]0)” - clu, v, 8,8)%)

with some constant C independent of o, where [KA(w)]' denotes the
symmetric part of KA(w). The estimates (6.61) and (6.63); imply Condi-
tion 4.3.

In the case 2° we may take K 1o be

_ T - \
(o B, -/ R0 0
. |
(6.62)., -85, 0 0 By (/1) "B
—_— I : J—
K=a| (/) @B/ 0 0 1o -amgeT | 2@
U N
0 -B, 0 :
| o )
— l
(0 -GAQE GgET

with suitably small constants o > 0 and B > 0, where Pg = Py (0,0).

Then a simple calculation shows that

(6.63), < [KAGI'w, w> 2 %{Biipzlglz + (—sb“zﬁp +

___2 . I ~ . __-"""’ -~ A A
+ 5D/ 8y + WuolBl?) [u]® + a/uplstv]® - cle, B|*)
with some constant C independent of o and B, where the conditions

Byl + Bl %0 and B" %0 are used. The estimates (6.61) (with u=v -
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=0) and (6.63). imply Condition 4.3 for small o and B.
2

In the case 3° we may take K tobe

(o' B 0 o' 0 )
| pp |
- T - - T T T T T T Ty T T T
~Pg | . :‘(l/}lo)_ !
_ ’ . 1 0,=-1
(6.62); K=a| 0 | 0 | (/)BT |A°G)
| |
] 0, t 0
__—l' _________ —-:j——- ___: ______
L 0 1 (/B -(/uBT 04 0

with a suitably small constant o > 0. After a simple calculation we

have

(6.63), < KA@I'w, w> = F(|pp+ (1/u0)§-§|2 4

"—l‘ 2 A 2 A A A
+ (l/uo)le 1“|B]” - Clu, V.elz}
with some constant C independent of a. This estimate together with
(6.61) (with 1/0=0) implies Condition 4.3 if Bl % (0 is satisfied.
This conpletes the proof of (ii) .
(ifi) ILetting o >0 and B > 0 be suitably small constants, we

take the matrix K as follows: in the case 4°

@t
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in the case 5°

e o A
0 B - (2/uy) (5B tB/aZ): 0
(6.62) | ! _
> -8 0 0 ! (1/u0)ts N
K=a o : : B PN ) N
T, 2. ! T
(2/110) (pBB/a’) 0 0 '—(l/uo)B;;I
_________________ —_-_——— - T — o — e
\ 0 -(l/‘u0)§ (l/uo)BlI | 0
- i
with a = a(p,0) = (p 2pp + 8562/56)1/2, and in the case 6°
(o : 1 0 } 0
R
-1 —m) B |
(6.62), K=a | 0 | R N ) R
0 1 | (L/u) BT
T KU
l _ N
L 0 1 A/mB ~Q/BT 0

Then, by the similar arguments as in (ii), we get the conclusion of (iii).

The details are .om.'i.t’ted. This completes the proof of ILemma 6.15.

By virtue of Lemma 6.15 we have the following results conserning the
 global existence and asymptotic stability of the solution to (6.49),

(6.58).

Theorem 6.16 ([41]) (global existence and asymptotic stability) Let

L € ]Rl and B ¢ ]R2 be con-

be assumed and let p >0 6 >0 B
stants.

()  We consider one of the cases 1° -=3° of Lemma 6.15 (#%); the addi-

e s

ﬂ‘/m‘x
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tional conditions specified in Lemma 6.15 are also assumed. Suppose that

Py = PriigrVyr0y = B/By = B) € K (D) (for s22) and oy =, uy vy 0,-5,

0
By —§||S is sufficiently small. Then the problem (6.49), (6.58) has a

unique gZobaZ solution (p,u,v,0,B) (t,ﬁ{) (in the Sobolev spaces), which

converges, in the BST2 (IRl) -norm, " to the constant state (0,0,0,6,B) as

t > o«

Moreoper, 1f (pO—E,uO,VO,SO—e,B -B) s emall in Hs(lRl) n

0
it (]Rl) (for s23), then | (p-p,uw, v, 6-86,B-B)(t) ”3-2 converges to
zero at the rate t—l/ 4 as t > o, This solution also satisfies the

asymptotic relation similar to (4.46), provided that the above smallness
condition is satisfied for s = 6.

(i) We consider one of the cases 4° —6° of Lemma 6.15 (i), with the
additional conditiané specified there. Supposé ‘that, (pO —E,uo,vo,eo -9,
BO—E) € HS(IRl) (for sz2) and HpO—E, uo,vo, SO—E—, B0
ciently‘ small. Then the problem (6.49), (6.58) has a unique global solu-

—ﬁ“s ig suffi-

tion (p,u,Vv,0,B) (t,x) (in the Sobolev spaces), which satisfie‘s the

following decay law: |(p(p,8) -p(p,0),u, v, B-B) (t) Is—2 ~0 as t o,

Remark 6.4 In the case U = Vv =k = 1/0 =0 the system (6.49) becomes
a nonlinear hyperbolic system of conservation laws, and so we cannot
expect in general the global existence of smooth solutions (see [57}7,
for example). In this case, however, the global existence of weak solu-
tions is well known, see [22],[48]. While in the last case where B =
v =1/0 20 and « > 0 hold, global existence (or non-existence) prob-

lems are open.
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Proof of Theorem 6.16 The results of (i) directly follow from Theorems

4.3, 4.4 and 4.8. Here we give the proof of (il). We consider the case
4° and omit the arguments for the cases 5° and 6°. Noting that Condition
4.3 is satisfied only for w' = t(p,u,V,B), we modify Ns(t) as follows:
2
)

— — = 2
= sw |[(p-p,u, v,0-0,B-B) (1) [ +

Ns(t
O<t<t :

-

t 2 2
+ ”Dxp(p,e) (1) Hs—l + “Dx(u,v,B) (1) HSdT .
0 .

Firstly, integrating (6.52) (with kK =0) by parts, we have

- N I 2
“ (p-pru,v,6-9,B-B) (t)H + { “DX(uIVIB) (T)H dt
0 ‘

< Clpy = Pr uyr vy 6= 5, B, ~Bl|°

Secondly, applying the arguments of Proposition 4.2 to the equations

(6.56) for w' = t(};),u,\}',B), we get the estimates

2 t 2 2
||DX(p,u,V,B) (t) ”s~l + . HDX(u,v,B) (1) Hs_ldr

< c{lle(pO,uO,vo,BO) “;l + N (T)3} .
t ) B B ,
JO IDp(0) [|S_ydr - cl||(p-p,u, v, B-B) (t) || +

t 2
+ f HDx(u,V,B) (1) HSdT}
0

e — mj
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< C{Hpo—ﬁ, Ugr Vgr B --§||2

3
. N},

where p, =p(p,,6)) and p =p(p,8). Here we have used the fact that
the right hand side of (6.56) satisfies g(w,Dw) = O(|Dw'|* +
+ IDX(p,6)|.|DXw'[) for |p~p,u;v,6-6,B-B|] ~ 0 (see (6.57) ) -

Finally, from the equation of S, we deduce

-

2

2 3
sl = cllipsyllsy + N7},

where S, = S(p Here we have used the fact that the right menber

0 0%’
of the equation of S is dominated by O(|Dw' |2) for |p-p,06-0] » 0.
Since |p-p,S-S| is equivalent to |p-p, 6-8|, a combination of the
above esmtes gives the desired a priori estimate for NS (T) , from .‘
which follow the results of (ii) (cf. "‘Theorem 4.3). This completes the

proof.

Finally in this section, we briefly survey the global existence
results for the system of fluid mechanics in one space-dimension. If the
magnetic induction and the second and the third componénts of the ve-
locity are neglected (i.e., B=v=0) in (6.49), we are led to the one-

dimensional system of fluid mechanics in Lagrangian coordinates.

(l/p)t -u =0, ~u +tp = (vpux)X '
(6.64)

eeet + epeux = (erx)x + oY .
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For this system, Theorem 6.16 is simplified as follows:

Corollary 6.17 ([41]) Let‘[Cl]l , and one of the three conditions [C2]j
4

(3=1,2,3) be assumed; in the case [C2]2 we also assume ]pe(5)§3l X 0,

where p and © are positive constants. Then,; in the case [C2]l or

[C2]2 (resp. [C2]3), the initial value problem for (6.64) is solved glob-

ally in time as in Theorem 6.16 (i) (resp. (i)).

Remark 6.5 In the case [C2]4 (i.e., v EVYEK =0), smooth solutions of
(6.64) in general develop singularities in the first derivatives in fi-
nite time (see [52]., for example). However, weak solutions (in the
space of bounded variation) of (6.64) exist for all time t 2 0 if the
initial data have small total variation, see [22],[48]. Glcbal weak
solutions for large initial data were obtained by Nishida [61]1, Nishida
and Smoller [65]1, DiPerpa [13]l and Liu [52]l for ideal polytropic gases

where the equations of state are given by

(6.65) P

Rpb e = cvﬁ + constant .

Here R > 0 is the gas constant and cv,(: positive constant) denotes
the heat capacity at éonstant volume; the relation Sy = R/(y -1) holds,
where 7y 2 1 is the adiabatic exponent. They established the global
existence results under the condition that the quantity Ql = (y-1)-
{total variation of the initial data} is sufficiently small. For ini-
tial boundary value problems, similar global existence resuits were also

obtained in [61]1,[65]2,[52]2. For asymptotic behaviors of these weak
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solutions, see [13]4, [52]5 6"
r

Remark 6.6 In the case [C‘2]l (i.e., Y, v, €k > 0) there are many results
copseming global smooth solutions of (6.64). The general fluids satis-
fying [Cl]l,2 were considered by Okada and Kawashima [66],[41] (see the
results of Corollary 6.17). In particular, the following resui_t was
proved in [66]. When u, v and k are independent of 6, (6.64) has a

solution in the HOlder spaces (which tends, in the maximum norm, to the

constant state as t - ») if the J'nitial data belong to the corresponding.

Holder spaces and are small in HY(RY). This result remain valid for
the initial boundary value problems in a finite interval; in this case
the solution decays at tﬁe éxponential rate as t » o, |

Global smooth solutions to the initial value problem with large ini-
tial data were obtained by Kanel' [36]' , Itaya [34]2’4, Kawashima and -

Nishida [40], Kazhikhov [42] and Ckada and Kawashima [66] for ideal

2[
polytropic gases. Notice that (6.65) together with [Cl] 1 gives

(6.66) p=Ccole (y-1)S/R with some constant C.

Kanel! [36]1 considered the case p ='CpY (L.e., S=constant) and showed
the global existence and asymptotic decay of solution (in the HOlder
spaces) under the condition that the initial data belong to both HY(IRD)
and the HOlder spaces. These results were extended in [40] and [66] to
the case (6.66), where the quantity Q, = (y=-1) -{Hl(]Rl)—norm of the
initial data} is assumed to be sufficiently small. Kazhikhov [42]

showed such global existence result without restriction on the quantity

- m&m@m&mﬁ%&l

e e b G S

O
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Qz. On the other hand, Itaya [34]2,4 considered the case p = Cp (i.e.,
Yy =1 or equivalently 6 =constnat) and proved the global existence of
solution in the HOlder spaces when the initial data are in the corre-
sponding Hélder spaces but not necessarily in the Sobolev spaces. It
islan open problem to investigate' asymptotic Eehavio:s of the solutions
obtained by Kazhikhov and Itaya. ‘

The initial boundary value problems (in a finite interval) for the
equations of ideal polytropic gases were also solved globally in time
f?r large initial data; see Kazhikhov [42]1’3, Kazhikhov and Shelukhin

[44], Itaya [34] and Okada and Kawashima [66] for the global exist-

5,6"
ence, and also [42]3 and [66] for asymptotic behaviors.
The monotonicity condition [Cl]2 on the pressure can not be satis-

fied for the Van der Waals gas, for which the relation
p = RO/(V-b) - a/V> holds for V= 1/p > b ,

where a and b are positive constants. In this case the global exist-
ence problem for (6.64) is still open, see Kazhikhov and Nikolaev [43]
and Kawohl [89]. We also refer to [12],[2],[3],[88] and [87], where

similar problems in viscoelasticity were discussed.

Remark 6.7 In [72], Slemrod considered the initial boundary value. prob-
lem for the system (6.64) of thermoelasticity under the condition [C2]2
(i.e., W=V =0, k>0). He showed the global existence of smooth solu-
tions for small initial data. But his result can not be applied to the

initial value problem in Egl

S
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