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SATO'S PRINCIPLE FOR MICROLOCALIZATION
AT THE BOUNDARY OF A CONVEX SET
| — - - - i
J I-V" AP%)-%4(%)- LIEUTENANT Jean-Louis (*)
INTRODUCTION

Roughly speaking, Sato's fundamental microlocalization prin-
ciple asserts that Pu=f implies for any partial differential ope-
rator P and any solution u, that one has the inclusion S.S.(u) -
S.S.(f) u{(x,n) :S(x,n) =0} in the cotangential spherical bundle
of the base space. Here, we are going to see that such a formula
remains true if one considers a certain type of microlocalization
at the boundary that allows to characterize the possible decompq-
sitions in sumsof holomorphic functions in special imaginary co-
nic domains admitted by a real analytic function or an hyper-
function defined over a convex set 2 of R" near a point x € 3Q.
To establish this fact, we are basically going to investigate the
conditions under which the morphism induced by a linear diffe-
rential operator with constant coefficients constitutes an iso-

morphism of the stalks of the microlocalization sheaf Cb.

(*) Senior Research Assistant of the Belgian F.N.R.S.



GEOMETRICAL BACKGROUND

From now, let Q denote a convex open set of Rn, F be its

n u S of R"

closure in the radial compactification D" = R n-1

and 30 its bbundary in D". We denote by z=x+iy the points of
F+1']Rn and by z=£+in the directions of tn, i.e. the elements of
m"\{O}. ‘We identify ¢ provided with the hermitian product

<Z,C> = szZ; with the euclidean space RZn provided with the

scalar product Re<z,z>. We shall denote indifferently by P or

P(D) the linear partial differential operator I T Cy Di over
_ o<m
Q with constant coefficients c, or its natural extension to

. o _ .
the complex domain Tc, DZ (where Dzj—(ij-1Dyj)/2). The
characteristic variety of P will be denoted by

o

Char(P) = {z eL™{0}: P(g)= 0} ,

where P is the principal part of the operator. Throughout this
paper, we will also mean by w any open subset of F whose inter-

section with @ is convex, by S the unit sphere of R" and by

n-1
S;_l the unit cosphere of RrR".

Let us now give a brief description of the sheaves of mi-
crolocalization we are going to deal with. If T >T' are open
convex cones of R" with vertex 0, we denote by AMw,I',T''). the
‘Qrofile [ v {x}+ dir JU[ U {x}+ir*] and call a tuboid

Xewn§l Xew\f
of profile A(w,T,I'') any intersection of an open convex neigh-
borhood of wn in Q+iR" With an open subset V of A(w,F,F')'such
that, given any compact set Kc A(w,T,T'), one can find o >0
such that x+ipy belongs to V for every x+iy ¢ K and every p in
]0,po]. If A and 0 denote respectively the sheaf of real ana-

lytic functions over Q and the sheaf of holomorphic functions
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over R+iR", we denote by Oo_[resp. 01, 02] the sheaf over SF:=

F xSn i that associates .to any SF nA(w,T,I')the space Tim 0(V),
- -5

where V runs through the family of tuboids of profile A(m,Rn,Rn)

1/OO and

(k=1,2) which vanish

[reép. A(w,Rn,F), AMw,T,T')]. The quotient sheaves O1 O=O
_ . b,k
02’0—02/00 allow to define the sheaves C

over € xs;_ but, whose stalk at any point (xo,no) e 3N x S* is

1 n-1

defined by the formula

0 oLSF n Alw T LT )]

= . m - m (])
o) % sjgiok’o[SF n Mo )] |

with the following notations. The family W (meIN) is a decrea-

b,k
C;2 Tim
(x,

m*Ti,mTi,m
sing sequence of open neighborhoods of Xo in F such that wan is

convex for any m, & is the Cech coboundary operator (i.e. alter-

nate sum of restrictions); if for any ne S;_l, we denote by

En the open half-space {y <R" : <y,n>>0}, then Fm and Fj o are
. n . . — . . ] ’ .
defined by Pm'_jgi Enj,m a"d,rj,m'-kgj Enk,m’ where, for each m
in ]N.,{n1 n? cee 20y m} is.a set of linearly independant points
* o
of Sp_,verifying |
1im n. = n s ¥ je{a,...,n}
m-- J.m 0
n N
{ﬂosni’m“'_i.fn:ﬂn;m.l.l} C'Ym'—{j.ii Y‘jnj’m-rj >0} s v m.
It is then possible to define the morphisms pk, ok and Ek (k=1,2)
making exact‘the rows of the commutative diagrams
1 - 1
0 o b,1
> T*OO — 1,A — 7,C -0
| T S S| (2)
» P ¢ b2

and
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0 > ker 6% —

| bl @

0 - ker 52 —r ﬂ-il*B — Cb’2 +~ 0 ,

where tis the imbedding @+iR" -~ F+iR",t the projection SF~+F,

m the projeétion S*F:=F xSr’:_1 -~ F, the pk's are restriction
morphisms, the ok's decomposition morphisms and the Ek's the

compositions of the respective'ﬂ—iok's with the natural mor-

phisms W-lﬂ*cb’k —~+Cb’k. We may then define the wave-front

sets up to the boundary by w.F.b(f) =suppcb’k(0kf) for feA

if k=1 and feB if k =2.
In what follows, we are going to develop the complete

b,1 (that we are going to

proofs only in the case of A and C
denote now by Cb for short). The case of hyperfunctions is
entirely similar and the proofs even contain some simplifi-

cations related to the use of Ozinstead of that of Of

SOME PRELIMINARY PROPOSITIONS

PROPOSITION 1. Any operator P induces an éndomonphiém p

04 cP verifying 5oP =PoSG (P denotes also the trivial extension

1

of the oniginal P as an endomorphism of m T1,A). Moreovern, P

induces a sunjective endomorphism of C? forn any point

X,eN,)
0o ,
(xo,no) dn S*F such that x, admits a basis 04 neighborhoods

{w} vernifying PA(wnQ)=A(wnQ).

Proof. By the definition of 01,0, it is clear that P in-
duces an endomorphism of this sheaf deduced from the usual
action of a differential operator over holomorphic functions.
The cohomological definition of Cb in terms of derived cate-
gories allows to deduce from this morphism the endomorphism

b b

P: ¢® » ¢ by derivation of functors.



The equality Pog=GoeP may then be verified only in the
stalks. As. the derivation of functors commutes with restric-
tions, it is clear that P coincides in the stalks with the
application of P to elements of the numerator of (1). By

commutativity of the diagram

nin, B
- * -
T 1ﬂ*Cb i 1n*Cb
cP - — P
P

and by the stability of the stalks under w_l, we are lead to

prove that o_ oP = (m,P)_ ooc_ holds for any x_eF. By use of
X, Xo X, 0

tech cohomology, it is possible to prove that the image under
o of any fe (1,A)(w) =A(wnQ) [where w is any neighborhood of

X such that wn® is convex] may be repreéented by a vector

. \ .
(([f1]’ cee s [fn+1])) with the fj s sections of O1 over do-

mains of SF whose projections over Sp-q @re such that their

polarsconstitute a covering of S* for every x in w. In the

above representation, [ ] means the equivalence class for OO,

(( ))the equivalence class for tech coboundaries and one has
n+1 '

f= 3 f. over wn . (%)
=1 J

J

We get therefore the equality (w*ﬁ)oo(f);=(([Pflj,...,[an+1])).
On the other side, the equality Pf=gzi Pfj and the uniqueness
of the decomposition (*) modulo tech coboundaries gives also
geP(f) =(([Pf1],..;,[an+1]))i which is enough.

The surjectivity of 5( ) when PA(wn®) = A(wn®) holds

X s
0’0
for a basis of neighborhoods of X0 is then a trivial conse-

quence of the exact sequence of microlocalization (3).0
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LEMMA 2. Left w

o be an open subset of F, Ngs =ov 5 N 553_1
: n
be Lineanly independant and T be the open cone n En . Fon any
‘ j=1 J

open convex sel w ne&at@veky compact in w, and any tuboid V of
profgile A(wo,Rn, I'), there exists a convex tuboid V' 0§ progfile
Mw,T,T) contained in V and which is constituted by the intenr-
section of a convex neighborhoodof wnQ in Q+iR" with a domain 04

produclt type with nespect to neal and imaginary variables.

Proof. As conveaneighborhood of wun2 that will allow to de-
fine V;, let us consider the. intersection of the convex complex
neiﬁﬁorhoodofubnﬂ'that'defines:V with o+iR". From now, let us
also denote for‘short by V and V' the other two open sets whose
intersectiom with the neighborhoods mfwomzand(mmwe just mention-
ned constftuté the tuboids of the statement.

Let us denote by nand n. the traces on the cosphere 6f

J.m
{Aan: A<0} and {k(nj+m-1n): A>0};it is direct to verify that

for any m-eN larger than 1, the {nl SN "}st1]1 constitu-
2 9 n » .
t=.0, E_ ve-
mI3T Tym

m’
te bases of the dual of R" and that the cones 'y

-9

rify UYHI=T as well as Yo €€ Ypaq €€ --- ©C for every m=z 2.

For any r >0, we have n {yer™: |y - r
J=1
therefore, it is straightforward to prove the existence of a

|< r }ey_ and

m nj,m il

sequence of positive numbers "o that decreases to 0 and such

that one has:

- = . n n. ~
(a) B, i= o + i jgl {yeR': |y rm”j,ml <rleV, ¥m=z2.
Let us now also prove the following two relations:

(B) ¥ chaﬂ'ym, Jo>0 s.t. {X+'ip'y:x+‘]yeK,O<p'sp}CBm

|
(v) ] § >0 s.t. {xtiy <B_: <y,n> > —ém} C‘Bm+1‘ J

If (B) does not hold, we can find xq+iyqe K such that x,+iq "y,

-
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does not belong to Bm, hence such that
2
|

ly >2 r_q inf {<y’njo > 1 xtiy € K}

q m ,m

holds for at least one jo <n., As this lower bound is strictly
positive, we get a contradiction by making g»«. If (y) does not

hold, we can find xq+1y eBm\Bm verifying <yq,n>A2—q—1. As we

q *1

have yq eymczr for every q, as up to a positive coefficient in-

n -
- dependant of q we also have I <yq,nj> <q 1 and as up to the
: j=1
choice of a subsequence we may also suppose x_+iy =x +iy ew+iy .,
n q q o Yo m
we get O<lim <y ,n.>= sN.> < .> = j i
ge 'q+2 yq ”J <y0 ”3> <j£1 <yo,nJ> 0 for every j which
implies y0=0. Considering now the compact set K:={xq+1yq|yq|_1:
q EN}<:B+i7hc:E¥iym+1, we get by (B) a number p>0 such that
<o . oy
Iyql p implies Xqtiyg € B

——_ Hence a contradiction because yq+0.

We are now going to modify the Bm‘s in order to get an

increasing sequence of convex sets open in o +iR" verifying
m
(8) | Bp e U B, , ¥m=22,

and for which there exists a decreasing sequence of positive

numbers em+0 such that the following equality holds:
(e) {x+iy eBm : <y,n> >—sm}':,{x+1y eBm: <y ,n> >-em}.
As it is clear that B‘=Bé and €,71 are suitable, Tet us proceed

2

by induction and suppose B., and €os +vx sE alrea-

m-1
[

such that {x+iy eB$_1: <y,n>>-81 cBm holds. Let us -now prove

the existence of €n € 10,8 such that the convex hull of B$_1 u

!
> Booy

dy determined. Combining (y) and (e), we may find ée]O,sm_1

{x+iy eB_: <y,n>>-¢_} is contained in B uB_ . If this does not

occur, we can find sequences 8: 11, z =x_+i
a q q e [0,1] q xq yq

|_t-|v + 1 _"1 - 1 1
zq—xq+1yq eB_ such that <yq,n> > -q and eq;q+(1 eq)zq ¢ B uBr_, -

Let us first remark that we may suppose eq+eoe[0,1], zq—>xo+iy0

and zé+xéeﬁ because one gets directly

eBm-i and

belonging to E#iym_l

1im yé =0 by the same argumentation as above. If the yq's verify
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<yq,n> >-§ for g large enough, we are lead to a first contradic-
) . . . . +(1- . .

tion by convexity of Bm which implies eqzq (1 eq)zq eBm We may

therefore suppose <yq,n>-s—6 for any q. As we have <yé,n>>—6/2

for q large enough, there exist uqe[O,i]'such that -8/2 =

<pqu+(1-u )y!sn>. If we suppose uq+uoe[0,1], we have necessarily

q°7q
uoe]o,i[. As B$_1 is open and convex in o+iR" and admits both
X = +(1- ! X +i i its closure, it con-
X eoxo (1 eo)x0 and X, Fiy, as points of it

tains x *iuy, and consequently x0+1(uqu+(1—pq)yJ for q large

enough.Let us first consider theipossibi]ity eqe[o,uq]; as we
may write :

) )
0 +(1-6 s (1-—d)yr 4+ 9 +(1- '
oq ( q)yq ( uq)yq pq(uqu ( uq)yq)

with x0+1yq eBm and x0+1[uqu+(1—uq)yq] e {x+iy eBm_iz <y,n>>-61}

c {z eBm: <y,n>>-8}, we get another contradiction by convexfty

of Bm. The second possibility eqe]uq,lj provides also a contra-

diction if one writes

: 6. - u 1-06
e +A_e - + g ) + 1- I
oY (2 q)yq (—%—:—Ei)yq (77:—52)[uqu ( uq)yq]
because Yq and the factor between brackets belong to B4 Which

is convex.
The conclusion follows then directly by taking as B$ the
convex hull we just considered and as € the number of which

we proved the existence. As a matter of fact, the union of the
B& ‘s will provide a convex set which is of required type as one

can verify easily by use of (8);it is then straightforward to
verify that such a set is of product type with respect to the

real and imaginary variables.O
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PROPOSITION 3. 1§ (x_.n.) s a point of 3 xS*_ such that

5(n ) # 0, then P induces a bijective endomorphism of C?

0] Xosno)

Proof. Let Yo be an open convex salient cone of the dual of

R" containing n_ and consider the representation of Cb
0 . (Xoano)

given by formula (1) of the introduction. Using the notations
of that paragraph,we may of course suppose that the closures in

the complement of the origin of the cones y _={Zr.n. : r.>0} are
v m J J,.m J

contained in Yo and that P does not vanish over Yo-

Any element of Cb appears then Tike the equivalence
(X:n)

0’0
class of a function f holomorphic over a. tuboidVof profile

A(wnPRn,Pm). As it is trivial to prove by using the theory of‘

inductive limits that the restriction map corresponding to the
inclusion w +il_ cw +iT_ induces in CP
m+L  m o Cm o om (x,sn,

operator, lemma 2 allows to suppose that V contains a tuboid

) the identity

V' of profile A(mm,rm,fm) which is a.convex intersection of

a convex neighborhood afwmm2wfth a domain V' of product type.
By Malgrange-Ehrenpreis principle, we can solve -the equation
Pu=f over V'. Let us then remark that wan is contained in the bound-
ary of V' and that in a neighborhood of any point of wan, V' coincides
with V'. It is then easy to verify that V' fulfills the condition C(x,I)
stated in 4.1 of [1] for I= -i(?ﬁ\{O})<:-iyo. By homogeneity, E does
not vanish on I and therefore, theorem 4.1 of [1] aséerts that u extends
holomorphically on a neighborhood of wan.

The surjectivity of ﬁ(x ) will then follow directly from propo-

0’0 : _
sition 1 because u constitutes clearly a section of 01 over w

x (S r)

m” “n-1"m

such that P(cu) =c(Pu) =of holds in CbEuh‘x(S;_fym)] and because the de-
composition of f is unique modulo tech coboundaries.

)2 let us again denote by f a
. o’nob
representing function of an element of C(

To prove the injectivity of ﬁ(x

, 1.e. a holomorphic funct-
0*No)
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jon defined over a tuboid of profile A(wm,Rn,Fm). By homoge-

“neity of P, we may find a e J0,1[ such that P does not vanish

over T(n ):={z e E":[g|2+|n|?= 1, |g|<a,n e £y~ \{0}}.
1f -P(of) =

(Pf) vanishes in cb we may sup-
(x

Ny)

)], this means the

o
n
® [SF nA(w ,R"

pose that Pf ej_1 1,0

o
J m
n

(w ,R ’Fj,m) and of

funct1ons gjeo(vj) and g eOO[SFnA(wm,Pm, m)] such that

existence of n tuboids Vj of profile

Pf= 1 g over w_nQ.
m
j=o

By a restriction affecting only the real variables
and by a procedure similar to the one we used to prove the
surjectivity of P (use of lemma 2), we may suppose that 9
is defined over a convex complex neighborhood VO of w nQ and
that the V.'s contain respectively a tuboid Vj of profile
A(wm’rj,m’FJ m) composed by the intersection of a convex
complex neighborhood of wmnﬂ with a domain of product type.

By Malgrange-Ehrenpreis principle, we may again solve the

equat1ons Pf. gj over those Vj's; we hence obtain P(f-_ Z f.)

J j=o0 J
n o
=0 on V':=Vn novj. According to theorem 2.1 of [1], we may
J:
extend f- z fj to any open convex set V" containing V'
j=o

2 .
" whose normal is characte-

such that each hyperplane of R
ristic and that intersects V", intersects also V'.
We are going to take

V"= n v {zet": Re<z-z',z> = 0}
teChar(P) z'eV'

as such a V". As a matter of fact, V" is open because other-
wise, we could find a point z, e V' and a sequence z. ¢V" con-
verging to z,- It should therefore exist some T € Char(P)
such that any z'eV' verifies Re<zm-z‘,cm> # 0. By convexity

of V' and up to the extraction of a subsequence, we may sup-

pose ¢~z e Char(P) and V'c {z: Re<zm-z,cm> >0} for any m.



By taking the 1imit and using the fact that V' is open, we
obtain V'c{z :Re<zo-z,;0> >0}, which contradicts z, e V",

The convexity of V" will follow from the convexity of
V' as one may verify directly. More important is the fact
that V" contains wan. As a matter of fact, we shall prove
this by distinguishing the two cases |&|<a and |g|=a. In the
first one, we get necessarily nffﬁ; and hence, we may find

y_ in Fm such that <y0,n> =0. Any X ewmnﬂ is then the center

0
of a compact ball b contained in man; we may then find

p0>0 such that x'+1'py0 belongs to V' for any x'in b and

any ps]O,pO]. As there exists at least one x' in b such

that <x-x',&> =0, the point z:=x'+1’pyO e V' verifies
Re<x-z,z>= 0. In the second opportunity (|&|=a), there exists
certainly r>0 such that the function <x-.,&> takes all the
values between -r and r in b. Let us then consider a point

y of Fm; there exists again p0>0 such that x'+ipy belongs to
Vf for any x' in b andpin ]0,90]. Hence we may choose p in
order to get |<py,n>|< r and then x' in b to get <x-x',g> =
o<y,n>, which is also sufficient.

The injectivity of 5(x ) follows then directly be-

sT
n 0] 0
cause the function f- gy fj will then constitute in fact a
J=0
section of OO.D

SATO'S PRINCIPLE FOR Cb.

THEOREM. I4 u and f are simultaneously rneal analytic
gunctions l(orn hypernfunctions) over the internsection wnQ and

vernify Pu=f , the following Ainclusions hold:

W.F.D0F) e F.P(u) e W F.P(F) ul(xsn) ed2 xS* . : P(n) =0}

n-1

Proof. The first inclusion is a trivial consequence of
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the linearity of P. Let us now consider a point (xo,no) which

does not belong neither to w.F.b(f) nor to 90 x Char(P). If we

identify u, f, Pu and Pf with their respective images in
(']T ll*A) (XO,T}O
S(Pu) =G (f) =0 and by proposition 3, this implies that u=0,

ice. (xgon,) ¢ W.F.2(u).0

): we get by proposition 1 the relation P(cu) =
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