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On some properties of the universal

power series for Jacobi sums

Yasutaka TIhara ({3 /& %) #f-13 *

In our previous work [PGC], we associated to each element

P of Gal(0/Q) an @-adic power sériesr ?P(u,v) in two variables

and studied its connection with Jacobi sums, Coleman power series

etc., as a first step in the study of the Galois representatidn

in Autqt{ro—g (Pl\{o,l,&ﬂ). In this paper, we shall prove some

symmetricity properties of the power series §} (for stal(E/Q(HE»)n,

in particular, G5é-svmmetricitv of the amalgamated product

E}(u,V)E}(u'-,V’) € ZJ_Eu,v,u',‘V']] /U(L+u)(1+v)(1+u')( 1+v') -1].

This is based on the corresponding 65;-symmetricity of Jacobi sums
on 4 parameters a,b,a',b'e(2/g") with a+b+a'+b'=0 (n2 1);cf.
Theorem Al below. As a consequence, ‘we conclude that, although
there are m+l coefficients of %Ju,v) in degree m, they are "esseh—

tially the same" for each m (Theorem.Az).

This study was motivated by a recént.communication with
P.Deligné, who ekplained me his idea to use amalgamation of two
- copies of 'Fi(gg\{o,l,OO}) along 1Tl(sl) (in the contéxt of algebraic
geometry) to obtain a similar type of restriction to the Gaiois
_image in Aut'KEro_Q(Pl\{O,l,M&).*) In the present situation,
it is carried out by érithmetical means.

| Al
.The author learned that G.Anderson has also obtained various

results on % ;, including similar symmetricity, by a different method.

*) The author wishes to thank P.Deligne for this valuable communication.
3) 1oL, 304h AFH. E A3 S4E @R (e BRID S UF snk BT t it EAn %%l
WiR$3 27, ' / .
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We shall present our main results in $1, and their proofs
in §2. In é3, we discuss some open questions related to the

image of ¢ = E/ (mod L.

1l The main statements

Let Q be a flxed ratlonal prlme, Zg ‘be the rlng of Q—adlc
lntegers, and /4 be the commutatlve zn—algebra of formal power

series:
A =2 (o] = g eV, W]/ D) (1) (1ew) -10

equipped with the Krull topology. An element of /A; will be
denoted by F =’F(u V), and also as F(u,v,w) (a repfesentative
modulo the 1deal [(l+qu+vﬂl+w) -11). Let GQ= Gal(Q/Q) be the‘
absolute Ga101s group over Q, ;( G —% Z be ﬁﬁe Q-cyclotomic

character describing the action of GQ on the group f}? of Q-power
roots of unity in Q, and let G, act On;A--Via,~
5, T+a =5 (1+a) *PY l+v—>(l+v)x('e), T —> (L4w) ()

( f eGQ). Iﬁ_ [PGC], we.constructedka contlnuoue(Leeocycle‘
(2) g AT (g Esrmum).
It is unramified outside ¢ , and is "universal" for Jacobi sums
on 3 éeramete:s‘Aa;ﬁ,c e(z/gP) with a+bfe=d. Thls 1- cocycle
depends on the choice Qf a’"coordihate system ) " related to
_pro-2 L N S S

(P \{O,l,&ﬁ) (loc.cit I$§2), but its restriction to G

1 Q(rlm)
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= Gal (a/Q()lfo) ), which is a continuous homomorphism
v o | y ]
(3) GQ(M“) —> 1+uvwhA < A

depends only on the choice of a basis (Cn)n>l of TQ_(Gm) = lﬁi_m ).kln
> ;

(which is subject to Ul ).

For each F = F(u,v)_éA , define F * F to be the element of

(4) A *A = ‘Zl[[u,v,u',v‘]] /[(l+u)(l+\})(i+u')(i+v')-l]

represented by the product F(u,v)F(u',v'). (This algebra A*A

is a sort of "completed amalgamated free product ,4 :"\]A v
z Ctwl
2

but we denote it simply as A *A , for brevity of notations.)
The first formulation of our theorem is as follows.
. Then FP GA is symmetric

Theorem Al . Let 9 € GQ (Fg‘”)

in u,v,w, and Ff* E:e e A*A is symmetric in u,v,u’,v'.

We shall show that these symmetricities w.r.t. G3 and 84
follow from corresponding symmetricities of Jacobi sums (§2).. The
first symmetricity also allows a direct proof based on the definition

of F As for the second, the author learned that :G.Anderson

b -
recently obtained it independently by a totally different method.

Further éymmetricities of Jacobi sums (Gr+l—smnet’riCity of the
Jacobi sum on r+l1 parameters agr---ra_g(2/gR) for r >4 )do

"not give any more new functional equations for F .

To state the second formulation of the theorem, change
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.varibles as

(4) l4+u=exp U, l+v=exp V, l+w=exp W (U+V+W=0) .
Then
| Theorem A2 Let 9 e(SQ(FQW). Then Ff has an expansion
of the form :
- : (®)
(5) F(u,v,w) = exp > _, F — (U
b - m23 me :
odd

with @ (f) € 2z, (m»3, odd).

This is in accordance with the results of [PGC] IV (Theorem 10
and its Corollary). Combining this with a formula of Deligne([D]
(cf. also [PGC] IV) which, in our terminology, determihes the
coefficients of U™ YV and OV ' in log %3 (ét least for m<{),
we conclude that ‘

(6) | g () = ="M (p)

for m23,0dd (and at least for m<{). Here, 'Xm is a Kummer

' character w.r.t. some system of circular @ -unitsof Q(}&@)([PGC] Iv).

From this follows in particular that the Vandiver conjecture for
Q ("the class number of Q(cos %?) is not divisible by ¢") is
valid if and only if @m : GQ(F m);>zl- is surjective for all
m=3,5..., §-25(2>3),



83
2 Proofs.
Proof of Theorem A,. Let (Cn)rml be the basis of TL(Gm)
which determines the homomorphism (3) of $1. (Each §  is a primi-
'8 o . ’ ’
i = 7 .
tive element of }Jln , and §n+l §n (n71).) For each n>1, denote

by ‘f‘n the set of all ordered triples (a,b,c) such that a,b,c &
(Z/Q_T‘.) ~ (0), a+b+cﬂ=0, and such that at least one of a,b,c belongs
to (Z/ln')x. For F = F(u,v,w) GA and (a,b,c) € i’n (n21),the
special valvue | | | |

(1) | F(g2-1, 52-1, g S-1)

is well-defined, because a+b+c=0 (and: the series obyiously converge:
We shall first prove the following two statements (I), (II) for

any S:eG and nZl:

a,b,c.

(II) Let a, a', b, b'e¢ (Z/ﬂn) be such that

a+a'+b+b'=0,
b, b % 0 (mod ),

0 (mod £), but a , a' # 0;

1

a , a'=

(hénce necessarily n> 2). Then
a b a' b',, _ a' b a b' '
(2) .Fy@n-l@n-l)f},@'n-l,Sn—l) = B -1, 0 -DES-1,5-1) .

In fact, for each fixed n) 1, we shall prove the statements

of (I)(II) for all p¢G (resp. when (= 2).

Q(}{Qn)

By continuity, it suffices to prove them when [ is a Frobenius

GQ (}4 ln+l )’

element of a prime divisor 32 of Q(/u/jqn) such that 3?,}’,@, But
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a b c .
for such § , ?ﬁ(n—l,gn—l,gn—l) ((a,b,c)e;ﬂn) is, by Theorem 7 of

[PGC]II§6, the Jacobi sum:

<‘—7
-2 X% 0% P
X,y € FX
x-+y+l=0q

e R R A5 b AR MRS
! X,y,2€FX
xX+y+z=0

' a b . rC
(3) %jfn—l,En—l,gn—l)

i

where q = N(@), Fq is the finite field Z[§£]<F , and'Xn:F;—>ﬂ£p

is the Teichmuller character determined by

g-1
Y.z x & (mod p) (x cF.)
p(¥) = x | mod p X e g
Note that 'Xn(—l)=l, because when (= 2, we assumed fe¢ GQ(}&p+l)
and hence g=1 (mod Qn+l). Since the right side of (3) is symmetric

in a,b,c, (I) follows.
Now, to prove (II) when P is a Frobenius element of{g, let
a,b,a',b' be as in (II). Then all the 4 triples
(a,b,-a-b),(a',b',-a'-b"),(a',b,-a'-b),(a,b',-a~-b'")
belong to jin, becauée a+b,a‘+b',a'+b,a+b'#€0 (mod {); hence in

particular # 0. Therefore, the formula

« B
(4) B(CL-L, 800 = - 5 X 0% ()
x,y e %
x+y+1=0"=
is valid for (d,@)=(a,b),(a',b‘),(a',b),(a,b'). On the other hand,

(5) B N e A ke A R A
X,¥,xy'eF% n
x+y+x'+y'=0 ¢

= > {\ 2. X% (> ZZ: Xy A (¥ ;}

zeF x+y=z2 X +y
X, y#0 - ’ X 'Y ?50

Since j{n is surjective and ‘a+b,a'+b'# 0, the summand for z=0



vanishés}‘hence (5) is’equél to the sum over ZesF;. The summand
: X o . i
for each z}EFq may be rewritten as
> p -xz)aX'n(-YZ) ' Z : X (x'2)° LY 2)°,
x+y=-1 x'+y'=
x,y#0 ‘ x',y #0
whichvis independent of z, as a+b+a'+b'=0. And since %%(rl)=l,

(5) 1is equal to .

(57) (q-1) Z X (x) X(y) D ', X, (x)axw)
L C x+y=-1 X '*‘Y""'l
. X, y#p S : x',y'#0
'_ L. d b a' b
= (q-l)€é§n-l,§n—l)§$§n—l,§n-l).
Since (5) is a priori symmetric in a,b,a’',b', and (4) holds for.
(d,@)=(a‘,b),(a,b'), we deduce that (5') is also~equal to

(s (q-_fl)Ff(é' 1; l)F(§ -1; 1)

This gives the proof of (II).

G;j-symmetricity.‘ In [PGC] II we studled the ldeals
(6) Ozm = {?=F(u,v,w)e/4 ; F(§- l § -1, §"—l) =0, for all 5,5, §"]
G}*ﬂm\ {1} witn gyt =1
21) of /4 and in particular proved that f\ CR_

, m21l
(cf.'II§4(l4), §1(16)). Now the property (I) proved above for all

n{m implies that if 9€G and "¢ is any substltutlon of

three letters u,v,w, then
F(u v w) F(o—u SV,0wW)
£ £

| belongs‘to‘(ﬂm. Since m»1l is arbltrary, thls must vanish.

P .. . .
G;;—symmetricity. Let u,u',v be 3 independent variables,

Therefore, F(u,v,w), as an element'of A, is symmetric in u,v,w.

and define v'e€¢ %Ffu,u',vﬂ by the equality

(1+u) (I1+u') (1+v) (1+v')=1.
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(Note that v' has no constant texrm.) To prove the 6'4-syxmnetricity

of EJP * E)L -(for P e GQ ()‘ng“’)) , it suffices to prove that

(7) Fa,v)E(’,v!) = B(al,vEW,v) (P <S(p )

holds in ZL[[u,u',V]] , because €4 (on u,u',v,v') is generated
by 3 transpositions usv, u'¢»v', and ueru'. (These transposi-
tions generate a transitive subgroup containing " 6'3 on u,u',v ",

the full stabilizer of v'.) Now, to prove (7), fix f and put

Glu,u',v) F(u,{r)ff;(u',v')-F(u",v)‘f;,(u,v')

f o . !
: Z H.(u,u')vl,
= 1 0

Il

with Hi(u,u') E“Zé_[[u,u']l’. Then, by (II),

' a_ a' b_ _

G(53-1,52-1,00-1) = 0

X
holds as long as a, a'e (Z/g_n) ~(0), be(z/9™) and a, a'= 0
(mod (). (Note that '=-a-a'-b $ 0 (mod 2 ).) So, if we fix
mZ2l and o, «'c (Z//Qm)\ (0), and take n=m+k (k=1,2,...) and
a=9_}& , a'=9_k°g' (the image of «, &' by the ,Qk-multiplication
map (2/g™ = (2/9™)), then
4 L/ b
GGl gyl ShD) = 0

m+k X X ! ;
for all k21 and be (Z/4 7). But then, G(Cm-l,ym—l, v) vanishes

at v = ¢¥-1 for infinitely many distinct values of gé)“i‘” . By
lemma 1 below, this implies that G(?Zl—l,g’;-l-l,v) =0, i.e.,
Hi(f:—l,g':-l) = 0 for each 1i20. This implies in particular that
H, € OZm. Since m » 1 is arbitrary, this gives Hiem(;lmm = (0),

all i. Therefore, G = 0. This gives (7), and hence completes °

the proof of Theorem Al'



lemma 1. Let k be a finite extension of Qﬂ.’ O be the
ring of integers of k, and G(u)e §[Cuill be a formal power series
of one variable over © . Suppose G(§ -1) = 0 for infinitely

many distinct elements § of. }Af,. Then G = 0.

Proof This is well-known, and can be verified immediately

as follows. Suppose on the contrary that G(u)= Z aiu:L # 0 (aiee) ’

120
and let i, be the smallest integer> 0 such that ord, (a; ) =
0
Min.ordk(ai) (ordk : the normalized additive wvaluation of k).
i

1

Take n (> 1) so large that gn—l > i, -1)" ord, £ , and let Fe Moo

i -1. -
be of order exactly Qn. Then ordk(§-1) 0= io(gn—ﬁn l) lorde<:l.
But then, it is easy to see thét

(8) | ‘_ ordk(aio(§—l)lo) <ordk(ai(‘§—l)l) , all i;éio;

Therefore, G(£-1) # 0 for all such €, a contradiction. g.e.d.

Proof of Theorem A,. For each F = F(u,v) GA with F(0,0)

= 1, define its logarithm by log F = 2 (-1)™ 1 (F-1)"/m, and
| = ,

consider it as an element of Ql [Cu,v]] , where U=log (1l+u),V=

log(l+v). The involutive automorphism of /4 defined by l+u >

1

(1+0) "L, 14v = (14v) Y (i.e., U -U, V> -V) is denoted by the

bar sign * —=>*. We shall reduce Theorem A1 to:

Proposition 1 Let F = F(u,v) 6/4 . Then the following

conditions (i) (ii) are equivalent;
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(1) ©F = 1 (mod uvw),

F is symmetric in u,v,w,

FxF is symmetric in u,v,u',v';

(ii) . log F 1is of the form

(9) | log F = > %I?-(Umwmmm),
m23 )
-odd
where W = - (U+V), Bmezl.;
Remark. As the folldﬁing proofvéhOWS, (1) is

also equivalent to an apparently weaker condition:

1 (modbuv),

il

(i) ' F

F(u,v)F(u',v') ;z F(u',v)F(u,v") mod [ (1+u) (1+v) (1+u') (1+v')-1].

s

When F = F ( p €G ), the first two'properties in (1)
Q (}Jgoo) _ , ,
are proved in [PGC], and the last two are given by Theorem A

1°

Thus, Theorem A2 is reduced to Proposition 1.

Proof of Proposition 1. We shall only prove the implication

(i)' = (ii) (the implication (ii}Xi}>(i)' is obvious). From the
first congruence of (i)' follows that log F is divisible by UV.

Hence log F 1is of the form
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1 (10) - Z =) gyl ,
, - i1 iy
with B, ]E yA a(That F is integral follows automatically frem

the integrality of the coefficients of F(u,v); cf . [PGC] Ivéz.)
so, it remains to show, from the second congruehce of (i)',that

Bij depends only on m = i+j and vanishes when m is even.

This is immediately reduced. to the following

lemma 2 Let m be a positive integer, and . g(x,y)
be a homoéeneous polynomial of degree m over a field of character-
istic O.’ Then, if m is odd, the follow1ng two condltlons (1)(11)
are equivaleht;
(i) g(x,y) satisfies
(*) 9(x,0) = q(O,y) =0,

e(*¥) g(x, y)+g(x» v') g(x’;y)+g(x}y') mod (x+k'+y+y');'

ll\

(ii) g(x,y) isia:cpnstant multiple'ofv(x+y)m—xm—ym.
If m is even, the condition (i) implies g(x,y) = 0. °
Proof  The implication (ii)-—>> (i) (for m:odd) is straight-

forward. To prove the rest, let g(x,y) Satisfyt(i), and write

(11) g(x,y) = :Z: b x y , andx B. = ilj!b..
i,j20 J ]
i+j=m
Then by =b_ =0, by (*). ' The congruence (**) says that'

the polynomial

/]
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(12) g(x,y) + g(x',=-x-x"'-y)
is symmetric in x,x'. Therefore, the coefficient of yj in (12)

for each j, givén by the formula below, is symmetric in x,x'

i _ g9 2-j_,m=-X%
(13) b.x* + b (-1)(; )(x+x')”" Ix!
3 jsﬁzém (15 e .
_ i j+p (3+p D\, K i-M
byx" + os%i 54p (D) ( ) ( }

(put @ =j+p). For HrV 2 o, )4+V= i, the coefficient of x)Ax'
in the second term of (13) is given by

(14) > (_1)j+p<jfp>(p

b. (put g=i-p)

“oz T e i Y

0<ggvVv
with \Y
(1) 6= 2, en9(G R
0<qsy q 9
(Bm—q , as in (11).) But since (13) is symmetric in x, x',

(14) must be symmetric in M, V , unless M or V =0 (this exception,
as we have not yet taken the first term bjxl in (13) into account),

Therefore, XV= Xi_? for all V, with 0<V< i. Therefore,

1= Yi st
=Y

(16) | Xl(= Y, = ... =¥ "=

for 2< ifm; hence

Moreover, the coefficients of x* and of x'" in (13) must be equal;

hence we obtain (notlng that bo"b =0) :
- eyt ¥, (1,3 >0, i+i=m).

ll]l

Therefore,
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(17) | ,Bj = (=7 S}l (0< i<m).
Therefore, (16) gives _ »
' , o put
- (18) B, =8 =...=07 6.

Since GO\ = Bm = (0, we obtain :
Li] 3
g0e,y) = B 2 T =R (e Ty
: i,j21 —°°°
i+j=m.

On the other hand, (15) and (18) gives X: -B , and (17) givés

(3= (-1)™Y . Therefore, (3= 0 when m is even. g.e.d.

13:



92

3 Some open questions

We have th d that F, (peG., ) satisfies the
g ave us prove that ¥, (pe Q(}&g)) a
equivalent conditions of Proposition 1. It is natural to ask

x
Q (Pyee) inA.

More plausible would be a similar characterization of the image

whether these conditions characterize the image of G

-moduio £ . As we have seen above, it is closely connected with
the'Vandiver conjecture atqg-,\ It also.seéms to be an inte;esting
qﬁeséiohvto éonstruct all po&ér séiieé in  (Z/ﬁf[tuJVUj Satisfyihg

the conditioné analogous ﬁb thoée-of Propbsition 1 (i). Here} we

meet with the study of the power series h(u)€ (Z2/g)[full satisfying.

the differential equations of the form

"1 (n) - p* ) o =h - e
where D = (u+l)3%. (Such h(u) appears in the v-adic expansion ofi
F(u,v) as |
F(u,v) =1 + h(u)v + .... 2)

Is there a totally different approach (e.g. from topology) to

construct such power series in (Z[Q)R:u,V'ﬂ ?
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