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ON A QUESTION ARISING FROM COMPLEX MULTIPLICATION THEORY
by Greg W. Anderson

§0. Introduction

An(abelian vériety A defined over E;‘équipped with compléx
multiplication and level structure, is described up to
isomorphism by some invariants that are "analytic" in nature.
(The details of thié deécription are reviewed in §1.) Let s
be an arbitréfy automorphism of C. ‘Taté conjectured [8] and
Deligne proved [1] a formula for the analytic invariants of AS,
the conjugate of A under s, in terms of classfield theory.
(See also Lang [4], in which summaries of the contents of [l,é]
can be found.) Tate'é’formula génefalizes‘the classical
reciprocity law of Shimura-Taniyama [6,7] to the case in which
s does not necessarily fix the CM type of A. (Tate's formula
is reviewed in §1.)

Now figuring prominently in Tate's formula is a certain
cocycle. The task we set for ourselves in this paper is to
abstract the construction of the cocycle figuring in Tate's
formula making possible thebsubsequEnt‘specialization of that
construction to the function field case. This task is carried
out in §2.

The ebonymoué questioﬁ of the paper is not the qqestion
answered by the investigation of §Z, but rather the gquestion
raised by it: What interpretation can be given to the new
cocycle Which we have constructed. in the function field case?

This is an open problem; the author expects the solution



9d

to be found in an as-of-yet-undeveloped theory of higher-
dimensional Drinfeld modules with complex multiplication

in which, in particular, an analogue of Tate's formula is valid.

Acknowledgement: The author gratefully acknowledges the support

and hospitality of the RIMS in Kyoto during the author's visit
in October 1985,

§1. The Basic Problem of Complex Multiplication Theory

1.0. Notation: We denote by @ the algebraic closure of @ in C.

Complex conjugation is denoted by /ﬁ. By'the term numberfield,
we understand an extension of @ of finite'deé}ee emBedded in C.
Given a numberfield K, let |

rK:(idéle group of K)'——f9Ga1(Kab/K)
denote the reciprocity law of classfield theory, where Kab denotes -
the maximal abelian extension of K in ﬁ. ‘Let i)denote the
profinite completion of Z, and let X:G’al(ﬁi/(]})*""’,&’< denote
the cyclotomic character. - Let Kabs denote the largest subfield
of Kab in which every archimedean place of K splits completely,
and let

T (R®ZY ——> cal(k®PS/K)
denote the unique homomorphism rendering the diagram

r

(iddle group of K) K 5 6a1(x®%/x)
forget components : _ ’ ol b
at oo ke s
(RO ZY — > Gal(k2PS k)
. ! rK

commutative. Note that, in particular,

2.
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;Q(}'(od) = the restriction of ¢ to Qabs.»

1.1. Let K be a CM numberfield; i. e. a‘num‘berf'ield K such that

for all x €K and O'véGal(a/(D),

TPX = poX € ok i R.
Let @<Hom(K,T) be a CM type, i. e. a subset(@ such that
FNpd-0, BUp- ton(x,0).
Let ‘é? denote the ring of integers of K, and Hl(A) the first
singular homology group of the complex manifold underlying A.
A homomorphism 6:(9k—f—?Endm(A) relative to which Hl(A)

becomes a rank one projective @i(—module is termed (a structure’

of) complex multiplication by @'K The complex multiplication

f is said to be of type j§ if
_@ = 27"6Hom(_K,(E)]' Lie(A),V% 0%,
where for each 7€ Hom(K,L),

dgf {

- Lie(A) v€ﬁLie(A)] Vxécgk,,g(x)*v = T(x)v%.

An continuous parameterization of an abelian variety A defined

over € endowed with complex multiplication (9by é}k

definition an G?—equivariant isomorphism of real Lie groups

is by

A:(oL® R)/oL"PA(L)
where Ol is a suitably chosen fractional ideal of C9E.
1.2. Let K be a CM numBerfield; Let A be an:abelian variety
defined over € endowed with complex multiplication »Q,by C?K of
type §§. Let s be an automorphism of C. Let deGal(E/Q) denote
the restrictién of s to E; Let s8 dehéteJthe composition of O
with the "transport of structure" isomorphism Endm(A)‘:i?Endm(sA),

where sA denotes the conjugate of A relative to s.
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Then 8A is endowed with complex multiplication s@ of type sj?.
Select continuous parameterizations ):(oL@]R)/OL—ﬁéA(m) and
/A:(/@®]R)//QJ—’E->SA(E). Let A and sA’ denote the torsion

tor tor ‘
subgroups of A(L) and SA(E), respectively. Then there exists

A .
unique g € (K ®Z)x rendering the diagram

A
~J
K/lot ——> A .
X bk—=gx l L ar— sa
Vad '

K/ —=—sA__
tor

commutative. It can be shown without great difficulty that
X Y o S
modulo K< (K®Z) , g depends only upon K, _@ and o. Set

g (0 6) def o¥* ¢ (x® 2y /K"

One of the most basic problems of complex multiplication
theory is the determination of gK(whf). "The reciprocity

law of Shimura-Taniyama [6,7] is, in effect, a formula for
gK(G,gf) in the case s§§.=,ég. ‘Tate conjectured [¢] a
formula.in the general case more or less equivalent to fhe
"O—dimeﬁsional case" of Langlands' conjecture [5] on the
conjugation of Shimura varie;ies. Both Tate's conjectural
formula and O-dimensional Langlands' conjecture were iater
proven by Deligne [1,2]. The remainder of §1 is devoted.to

a presentation of Tate's formula. |

1.3. The cocycle‘gq(?,?),constructed in the preceding paragraph
satisfies many fﬁnctional equations. We note here several_of'

the most important functional equations. Let K be a CM field,

4
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é;a CM type of K, and ¢, elements of Gal(Q/Q). Let L be
a CM numberfield containing K, and let_? be the unique CM type.

of L such that
& -3t

Then the following relations hold:

¢ Hom(K,T) ' te L,
K

gy (0, 78 g (7, §) = gy lor, B). (1.3.1)
@ 1)g (0, F) = g (o, BTH). C(1.3.2)
gg (5 gy (@p$) = X(e)  mod K7 (1.3.3)
g (0, F)= gelo,F) mod L*, (1.3.4)

Of these relations, .only (1.3.3) is not a purely formal
consequence of the definition. In order to prove (1.3.3) one
considers polarizations. (See Taté [ 8] or Lang [4].)
1.4, Deligne uncovered a much deeper functional equation
for g?(7,?) , a consequence of his theory of absolute Hodge cycleé
on abelian varieties [2]. Let K be a CM field. Given'a CM type
5? of K, one attaches the characteristic function

(&1, ‘¢ e ﬂKé@g%Gal@/fﬂ)—*io’l%-

0 if G#K ¢

—

Deligne observed [1 ] that given CM types @l"';’@n and

m ., €72 such that
n

ji:'ni[égi]K = 0,

10

one has
m

e 7 =1 mod K (1.4.1)

for all o€ Gal(@/({)).

-
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1.5; We consider Tate's half-transfer construction."Let K be

a CM numberfield. For each embedding 7:K— 1, select a lifting
w;_GGal(E/Q) subject to the constraint

=P, . ‘ © (1.5.1)

WP,'_,
Then, according to Tate [8&], for each c€Gal(Q/Q) and CM type

@ of K,rtheré.exists'unique FK(v,jf)e'Gal(Kab/K) such that
s i | L
Fo(o, &) = ié@i (wirev.) mod G(K*%),

independent of the choice of a lifting w, € Gal(Q/Q) for
each embeddingk’P:K——?ﬁ subject to condition (1.5.1) and the
choice of an ordering of the product. (A prodf of this indébén—
dence in a more generalAconfe#t will be given in-.§2%) Tate'v
termed this construction thé half—transfef because

(e DT pB) = Very (o), (1.5.2)

:Gal(mab/m)‘**Gal(Kab/K)'denotes the trénsfer

where Ve?K/Q

homomorphism. Tate went on to show that there exists unique

fK(O',ZJ)S /IEX/KX such that

((po Vg (2. 8) = 7o) mod K, (1.5.3)
T (£ (e, 8)) = Fo(o, £). (1.5.4)
(A proof of this:uniqueness result in a more general context
will be éiven in’§2.) Since gK(Gyjf) poésesses property
(1.5.3) and, in the case cf=@ , possesses (1.5.4) by
Shimura-Taniyama reciprocity; Tate was inspired to conjecture [&]
(0, &) = g (o, B). (1.5.5)
According to-Deligne [1], (1.5.5) is the consequence of

(1.3.1,2,3,4), (1.4.1) and Shimura-Taniyama reciprocity.
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1.6. In order to complete the task of motivating the abstract

cocycle construction of §2, we prove the following

Proposition. Let f:Gal(@/Q)-?ZZbe a locally constant function.
The following two conditions are equivalent:
(1) - The function f is an integral linear combination
of fuhctionS‘of the form [5f]K, K an arbitrary CM fieldk
and @ an arbitrary CM type of K. |
(1I1) ”Forball cg¢‘€Gal(E/Q);

f(ﬁpfﬁ + f(o7) ; f(ﬁ) + f(1).

Proof. The implication (I) = (II) is obvious. We turn to thé

proof of (II) = (I). For all th’éGal(ﬁ/Q),

F(o(rprlp)) = £(p) + £(1) - £(op) = £(e).
Therefore, for a suitaﬁie CM numberfield K galois over @, the
function f factors through Cal(K/Q). Select a CM tjpe j? of K
arbitrarily and identify é? with a subset of Gal(K/Q)~in the
evident fashion. Set

w def £(p) + £(1).
Replacing f by f;w[ﬁ]K; we may éssﬁme thaﬁ w=0. For each

’l“f,@’-, set | :
g, ‘&8 181 - WU ferh~inf1y.

/’J

Then

£- 2 s |

7"5§



§2. The Abstract Cocycle Construction

2.0. Notation: Let k be a global field and let oo be a place of -
k. We assume that, in case char(k) = 0, the place o is the
unique archimedean place of k. ' Let k, denote the completion of

k at oo, koso

a fixed separable algebraic closure of k , and k°
the separable algebraic closure of k in kS . Note that k° is a
separable algebraic closure of k. Let us agree to restrictlthe

use of the term global field henceforth to the designation of

subfields of k° containing k and of finite degree over k. Set

def def

G Gal(k®/k), D €' Gal(x% /x_),

identifyihg D with a closed subgroup of G in the evident fashion.

Given any subfield K of k> contaiﬁing k, we write

dgf

G(K) Gal(k®/K) <G.

Given a global field K and a place v of K, we say that v is
infinite if v lies above e¢o, and finite otherwise. We write

ab dgf

, . . . L s
K the maximal abelian extension of K in k7,

KaPs dgf the largest subfield of k2 in which every

infinite place of K splits completely.
Set

A dgfb{

X€ k | |x|V > i for all finite v§ )
def |

=7

lim A/ot,
where the inverse limit is extended over all nonzero ideals
O( of A. Given a global field K, we write

s dgf

N

A
We denote by

i :(id2le group of K) —>Gal(k®P/k)

¥
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the reciprocity law homomorphism of global classfield’theory,

and define

T 1K *—> Ga1(k2P/K)
to be the unique homomorphism rendering the diagram

r

(idele group of K) ~———~—f———>Gal(Kab/K)
forget components el abs
at oo : . K s .
N .
Kx —— ‘7G 1(Kabs/ )
A Ty

commutative.
2,1, Let X denote the set of locally:constant functions

_@ G—>Z such that for all o ’r’éG

/§(O‘ﬁ?)cy’ /mpdf

def - . :
y) =" normalized Haar measure on D.

where

Given o €G and BeX, we define oPFeX and BoeX by the rules
def -1 + def. SIS B
@) € BT, @om € Fre).

For each global field X, set
x(k) &f ) Fex c‘cG(K), B =B %.

Lemma. Let K be a global field, B an abelian group (written
additively) and f:G—B a function factoring through the double

coset space D\G/G(K). Then for all jff‘X(K), the function

- "”’E f(crr)é(r) :G—> B

TE€G/G(K)

is constant.
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Proof. We may assume without loss of generality that B = 7Z
and that f is the characteristic function of a subset S of G

such that DSG(K) = S. Set
£

ay dg normalized Haar measure on G.
Then ) '
[G=G(K)]_1 : : f@r) () =/f(ﬂ’)§(b’)db/
P€G/G(K). G

=A(A f(p_lo*?f)df>§(7()d)’= Kfm(/])f(@",;z{)dﬁ ay
=(L f(ﬁd}()(/})@_(/)df). [ | | | “

2.2 For'each‘global field K,.let W(K) denote'ﬁhe;set of
functions w:G—>G such that w féctdrs through/G/G(K)land’such
that for all S€G and ™D,

w(o) e oG(K), wira)w(e) leD.
'Given any 7€G(K), let T} éenbte'thé image of 7" in Gal(Kabs/K)
under restrictién.

Lemma/Definition.  There exists for all global fields K,

o€ G, and @FeX(K) a unique element FK(W,jE) bf Gal(Kabs/K)'
such that for all w e W(K),
. B()
@ &) = T [ wenTewry
YE€G/G(K)

Proof. Proyisionally,.let us denote the product on the right

by FK(ﬁyff,w).v At issue is the dependence of FK(GQQF,W)'upon W.

/0
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Given also w'€ W(K), we have

-1 : -1 B
FK(¢,§3W')FK(G’§!W) = J | (h(cw?") h(T‘)) T

~€G/G(K)

abs/K) is given by the rule

where h:G—>Gal(K

def

h(o) €5 (w' (o )w(e ™}

g
Now the function h factors through the double coset space D\G/G(K)

by the lemma of 2.1,

FK(6~9‘§;W) = FK(¢9§,W')° “

Theorem/Definition. There exists one and only one way to assign

to each triple (K,CT,§) consistihg of a global field K, ¢ €G,
and De¢X(K) an element fK(G,jﬁ)ofﬁx/K* such that for all
global fields L =2 K, 2, é' € X(K), 0,7€ G, the following

relations hold:

(1) £(0, "DVE (7, B) = £ (s, B).
(1 (r@ Dy(e, &) = £,.(s, 877,
A
(I11) fele, @) =f (e, &) mod L™,
(V) f (@ )Ep(o, ') = £.(, $+ BN

The proof is deferred, pending some discussion of the theorem

and the proofs of some lemmas.

S S
o0 ’k ) =

2.3. Let us consider the theorem in the case (k,k
(Q,C,0). Then for all ¢¢€Gal(Q/Q), CM numberfields K and
CM types @ of K, the value of the symbol fK(o,QS) defined in §1,

following Tate, coincides with the value of the symbol

fK(W,[§5]K) as defined by the theorem above.

7/
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2.4. Next, let us consider the theorem in the case that the
characteristic of k is'nonéero. Tﬁen ﬁhe cocycle f?(?,?)

does not figure in a réciprocit& law analogoﬁs to (1;5.5), as
far as the author knows. But inspired by Drinfeld's paper [3],
we pose the eponymous question of the paper: Does there gxist
a theory of higher-dimensional Drinfeld modules with compléx

multiplication in which a cocycle g,(?,?) can be defined without

the use of classfield theory, such that a significant reciprbcity
law of the form "f=g" is valid? The author is convinced thét
this is indeed possible; a few steps toward this goal were faken
in the author's paper [ ].

2.5. - Let K be a global field and let U(K) denote the set of
nonzero elements u of K such that for allvfiﬂite places v of K,
[u\V = 1. For each finite set S5 of finite places of K and

0<¢<1l, let U(K;S,£) denote thevset of elements u:of U(K) such

, that for all places v of 'S, \u—lyv < E.

Lemma 2.5.1. For all positive integers n and global fields K,

there exists a finite set S of finite places of K and 0<&<1
such that U(K)" 2 U(K;S,€).

Proof. This is due to Chevalley, but the author cannot find a
suitaBle reference; therefore therfollowing sketch of a proof
is offered. We may assume at the outset that n is a power of

'a prime number p. We then distinguish four cases:

(I) p = char(Kj = n.

(11) p = chér(K) < n.

(II1) p # char(K) and K ;zluh(k?).
(IV) p #

cﬁar(K) and K galuh(ks).

/2
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In case (1), we consider the Spéce V(K) cohsisting differentials

~of the form %% , U an arbitrary eiemént‘bf U(K); TheisequeﬁceA
oot
1— U(K)P—s U(K) > V(K)—> 0

is well known to be exact. Therefore, in order to insure that
U(K)p contain U(K;S,€), it is necessary only that S be large
‘enough so that any'differéntial «' belonging to V(K) such that

e« vanishes at v for all ve S vanishes identically. In case (II)

note that
UK 2 U(K;S,e) = W(EK)"P 2 ux;s, P

Thus case (II) is disposed of by an induction the base step of
which is case (I). In case (ITI), one considers the finite
Kuhmer extension L of K in k° obtained by adjoining every nl:-E
root of eVefy element of U(K) to K. One insures that U(K)"
coﬂtaiﬁ U(K;S;E) by taking\S to be any finite set of finite
places of K unramified in L such that

{(V,L/K)‘ecal(L/K)l vest
genefates Gal(ﬁ/K), where (v,L/K) is the Arfin symbol., Finally -
in case (IV), it is enough, in view of case (III),'tb prove
that the index
198t Uk )N UE) UE)™)

n
is bounded, where Kn denotes the field obtained by adjdining the

h ' ' x
nE— roots of unity in k° to K. Now the map
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| G
u > QfH:U(Kn)n/\U(K)4—>(U(Kn)£¢uh(Kﬁ))
is anvisomOrphism, where | | |

def Gal(Kn/K).

_ &Gn v
Thus by considering the long exact sequenoe in ancohomologj
for the’short exact seqoence |
1—%7ﬂh(Kn)~—>U(Kn)-—*U(Kn)éfuh(Kn)——%1,

one arrives at the estimate o “

I < #H (G , (K D).
The quant1ty onvthe right is ea311y shown to be bounded for n
ranging over the powers of the prime p. ﬂ
Given a global fleld K, let C}'denote the ring of elements of K
regular at all finite places of K and let U(K) denote the
closure of the group U(K) in the profinite group (CzcépA)
By Lemma 2.5.1, U(K) is prec1sely the proflnlte complet1on ofv
U(K). For any global fleld K galo1s over k, and left G-module
M, let Hom (X(K) M) denote the group of homomorph1sms f X(K)——>M
of abelian groups such that for all 0e€G and féX(K),

£(Fo? ) = of(P). |
Lemma 2.5.2. For all global fielos K galoie over k, the

A
homomorphism Homg(X(K),K*/K*) —>Homy(X(K),Gal(k?P®

/K)) induced
by ?K is an isomorphism. |
Proof. The sequence of Gal(K/k)-modules
A r 4
1—U(K) /U(K) — & /k*—X 5 6a1(x2P5/k)—1
is exact. It therefore suffices to prove ‘the followihg two

Statements:

ol
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ﬁ(K)/U(K)'is an’injective-Gal(K/k)jmodulg. (2.5.3)
Homy (X(K),T() /(X)) = o, - (2.5.4)
Now é\Z/Z is infinitely and uniquely divisible,“i. e. a vecfér
space over Q). The statement‘(Z.S.é) néw follows from the
obserfation that there exists a Gél(K}k)—équivariéﬁt isomorphism
0 /UK =U(K) X(Z/Z), "
and, further, (2.5.4)’now reduces to ; |
Homg (X(K),U(K) ®Q) = 0. C (2.5.5)
ﬁet l?l denote | ‘an extension to Ki of the absolute |

value [?]1 of k,. Then for all u €U(K) such that there exists

P
_§6 X(K) ang fe HomG(X(K);U<K)éQ) such that f(@) = u@lm, and
for all GfGG; : o . |

1§g]oul = Jé/iog V@ul@p = logfq{,r ’ | | “ (2.5.6)’
by appeal to the definition of X. But (2.5.6) impiies that u

is a root of unity, hence u<91m = 0., This establishes (2.5.5)

and completes the proof of the lemma. |

Lemma 2.5.7. For all global fields L 2K, where L is galois

over K, the sequence
Gal(L/K)"

A A g
1— K — kK= (L7/1) —1

is exact.,
Proof. Hilbert's Theorem 90. |
2.6. For each pair L 2 K of global fields, 1et’

Ver :Gal(Kab/K)’——>Gal(Lab/L)

L/K

denote the transfer homomorphism. Let

VersL/K:Gal(Kabs/K)'—9Gal(LabS/L)

denote the unique continuous homomorphism rendering the diagram

as



restriction

cal(k2%/x) 5 Gal(K2PS/x)
VerL/K VersL/K
Gal(L2P/1) > Gal(L2PS/1)
restriction

commutative; in order that VersL/K‘exist, it is necessary and
sufficient that

,VerL/K(Gal(Kéb/KabS)) < ca1(L2P/12Psy, (2.6.2)

Now (2.6.2) follows from the well known fact that the diagram

- r . .
(idele group of K) ———E———a'Gal(Kab/K)

inclusign ’ , VerL/K (2.6.3)

(idele group of L)—————————#Gal(Lab/L)
' r
L
commutes. In turn, the commutativity of (2.6.1) and (2.6.3)

implies that the diagram

|

Vol
K K 5 Gal(K3PS/K)
inclusion VersL/K . (2.6.4)
Pal
L > Ga1(L2PS/L)
'L

commutes.

/é
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Proposition. For all global fields L 2K, &, &'e€ X(K) and

c,T€G, the following relations hold:

(T Fp (e, »)F (~, &) = Fp (o, &).

(11) rF (o, &) < B (o &7,

(II1) FL(m,é) = VersL/K(FK(cr,_é')).
(IV) Fe(o, 8)F (o, ') = F(o, 8+ 8").

Proof. The proofs of (I), (II), and (IV) are not particularly
difficult, and so we omit them. The proof of (III) is not
particularly easy; we gi&e full details. Select weW(L) and
€ W(K) arbitrarily. Set
def
vy 4&

= wev ..

0

v

0

Note that

wev = v € W(K). (2.6.5)
We define a function u:G—>G(K) by the formula

u(y) 18T (o) e v (.
Given ¥€¢G(K) and &€G(L), we denote by Wk and 6L the
images of ¥and §, respectively, in Gal(Kabs/K) and Gal(LabS/L),
respectively. For each ¥€ G, we define a function hx:G(K)-—aG(K)
by the rule

hy(8) €5 v Thwv (6.

For each $¢G(XK), we define a function pS:G——aGal(LabS/L) by

the formula

def -1
By definition §(¥)
Fe(o, &) = T 1 u(y (2.6.6)

¥<G/G(K)

i



For each Y¢G, hy factors through G(K)/G(L) and has the property
that for all $&¢G(X), | |
hY(S)e'SG(L). (2.6.7)
Consequently, by definition, for all Ye¢G,
Vers, (u(Hp) = | | (hy(u() &) lu()hy ().
| $€G(K)/G(L) »

(2.6.8)

For all ¥YeG and §£¢G(X), one verifies by direct calculation

that |
Pucyys (0 Py yys (D (hy(u(HH T (DR
= (w(ov(X)S)_lc~w(v({)g))t, (2.6.9)

By definition,

-1 | H(¥)
P @) = T 7T ] (evi owv(ND),

¥eG/G(K) $G(K)/G(L)
(2.6.10)

We claim that for all &eG(K), the function p, factors through
the double coset space D\G/G(K). To verify the claim, let Y¥eG,
pED, and T¢G(K) be selected arbitrarily. Then |

Pe(pIMIp (N = (g (TThy(8))y
W(v(pY¥™) ) v (eI vOH (v (D)),

(w(p v (8! pru(v($)8)), = (v (8 py (v (D8N

‘1 eGal(L3PS/1),

1]

where ,fl"PZJED are given by the formulas

P o v

Py 48 W DS v ()

24
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By (2.6.8,9,10) and the lemma of Y2.1,

Vers ;(Fy(o, EN7'F (0, &)

' ()

¥eG/G(K) \ S¢G(K)/G(L)

N 3
(p(®) ™ pg (¥)) )

30

XéG/G(K)(SeG(K)/G(L)

(pg (%) P (¥))
%€G(X)/G(L)\ ¥€G/G(K)

1. |

2.7. Proof of the theorem. We claim that there exists a unique

way to assign to each global field L galois over k, <¢G, and
@eX(L) an element ,va(o,éf) of /I:X/L" such that for all G,7€G

and -@_, S e x(L),

(r® DI (7, 2) - £ (e, dr Y, (2.7.1)
F ()i (e 2') = i (nd+ ), (2.7.2)
1 (fi(s,8)) = F (s, D). (2.7.3) .

The claim is established by an appeal to Lemma 2.5.2 and to
the proposition of 92.6. We claim also that for all global

fields M 2 L, both M and L galois over k, o€G, and &eX(L),

(o 8)=f (e, ) mod M. (2.7.4)
This claim follows from the definitions, Lemma 2.5.2, Lemma
2.5.7, and (III) of the proposition of 92.6. By Lemma 2.5.2,
and (II) of the proposition of 92.6, for all global fields L

galois over k, o,™€G and P¢X(L),

2
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£ (s, 7 HE (7, ) = _%'L(wr,é)'_.t o ’(2.._7._5) |

By Lemma 2.5.7, and relation (2.7.4) there exists unique

fK(w,é:)e‘Ex[Kx such that for all global fields L 2 K, with

L. galois over k, , _ A

fK(G‘,i) = ,EL(°',§) mod L. ('2.7.6‘)_

.By Lemma 2.5.7, (III) of the proposition of ﬂ2.§, and (2.7.3),

fK(w,g?) possesses property (V) of the statement of*thé gHeofgm.

The reméining properties of fK(G;jﬁ) are de@uced via Lemmai2.577

from (2.7.1,2,3,5). This settles the existence of fK<¢,§;j, |

Relation (2.7.6) affirms the uniqueness of fK(G,§§). 0

References

[1] P. Deligne, letter to J. Tate, dated Oct. 8, 1981.

[2] P. Deligne, J. S. Milne, A. Ogus, K.-y. Shih, Hodge Cycles,
Motives, and Shimura Varieties, Lecture Notes in Math. 900
(1982), Springer, New York.

[3] V. G. Drinfeld, Elliptic modules, Mat. Sb., 94(1974);
translation, 23(1974), p. 561.

[4] S. Lang, Complex multiplication, Grundlehren der math.
Wiss. 255, Springer, New York 1983.

[5] R. P. Langlands, Automorphic representations, Shimura
varieties and motives. Ein mirchen, Proc. Symp. Pure
Math. AMS, 33(1979), part 2, pp. 205-246.

[6] G. Shimura, Introduction to fhe arithmetic theory of

automorphic functions, Princeton Univ. Press, Princeton,

1971.



78

[7] G. Shimura and Y. Tahiyéma, Complex multiplication of
abelian varieties ana its applications to numbér theory,
Publ. Math. Soc. Japan, no. 6, 1961.

[8] J. Tate, On conjugation of abelian varieties of CM type,

unpublished, 1981.

Author's address:

Greg W. Anderson

School of Mathematics
University of Minnesota

206 Church Street S. E.
Minneapolis, Minnesota 55455
U. S. A,

21



